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Summary

Model estimation and, especially nonlinear, regression has been extensively studied in
the past. The research is heavily used in various industries: manufacturing, process control,
and, in the later decades, artificial intelligence (Al). This paper is looking into the possibility
to use Gaussian Processes regression on an industrial level — modelling and control of a robot
manipulator arm. The advantages of this method are that the modelling is non-parametric and
has guaranteed convergence. No prior model of the system needs to exist to be able to model
the desired system. However, the knowledge of some prior information of the system dynamics
beforehand is not of no use. This information can be used in construction of covariance
function, the heart of Gaussian Processes, and help speed up the regression process.

Gaussian Process has showed great potential in ability to interpret highly non-linear
models extremely well with minimal tuning. Even though the hyperparameter optimization was
not implemented fully, the resulting research showcases the potential of the method. Equally,
it uncovers maybe the biggest problem with the method — its complexity. Complex derivation
and implementation leads to confusion and frustration when trying to wrap one’s head around

the basics of Bayesian Inference.



Vilius Ciuzelis
GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

THIS PAGE LEFT INTENTIONALLY BLANK



Vilius Ciuzelis

GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

Contents

SUMMIAIY ...ttt e et e te e s e e st e s beeseeese e beesteaRe e seesseeaeesseeneesseesseenseaneeneans i
LISE OF TADIES ...ttt %
LIST OF FIQUIES.. .ttt ettt et e et sreenteenee e v
NOMENCIATUIE ...ttt st be st nenneas %
R LT L8 Tox (o] o PSSP 1
PIEVIOUS WOTK ...ttt sttt ettt sttt sttt et s te et e st e sbeentesaeesseenseas 1

[1 BACKGIrOUNG tREOIY .....viiiiieeee e 3
RODOE MOEL ...ttt s 3
EQUAtions Of MOTION.......cceriiiiieieeeee e 3

KINEMALICS. ..ttt s s 4

GAUSSIAN PIOCESSES ....vecveievieviireieiietestest ettt ettt st a et sa e s sse s seebesbeneeressens 5
MEAN TUNCLION ..o 6

CoVvarianCe TUNCLION .....cc.ovirireeieceeee e e 6

o 0] OO SRRORRPPRPRRRN 7

0 (=] o SRR 8

PIEAICTION ...ttt st s eneas 8

HYPEIPArAMELEIS ....veeviieieeieiee e 9

THE SIMUIBLION. ...ttt enreeeesneesneenee s 12
RODOL arm MOGEL........oovieieeeeee e 12
(000] 11 0] | [T SO R U OSSP PSR 12

TV RESUILS ...ttt et e s te e st e s seeteanaeeneenreeneeaneenreeneeas 14
BV 1T (o] o SRRSO 16
VI FULUIE WOTK .ottt bbb 17
APPENAIX A o bbbttt bbb bbbt 20
Derivation of the EOM for 2-link planer manipulator..........ccccccovvvevevcvenveieenenne. 20
Inverse kinematics for 2-link planar manipulator ............cccoceveeieeceniereneseeee 21
APPENAIX Bttt e e b et a et reeraea 24
MATLAB COUR ...ttt sttt bbb 24
ManIPUIALOT.IM .....eiiiiiciiee e e 24

SEANTUD. M .ottt ettt b e b et e neene e 30

(C] o (=0 (=115 o] o 1 U 30



Vilius Ciuzelis
GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

THIS PAGE LEFT INTENTIONALLY BLANK



Vilius Ciuzelis
GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

List of Tables
Table 1. Manipulator arm model Parameters..........ccoveceeieiiere e 12
Table 2. CONrOlIEr QAINS.......ciieiiiee e 12

List of Figures

Figure 1. EXample of OVErfitting........cccooiiiiiiiiieieee e 1
Figure 2. 2-link planar robot manipulator arm model.............cccooiiiiiiiie i, 3
Figure 3. Example of multiple sample functions from the prior distribution. ............cc.cccceeee. 7
Figure 4. Posterior distribution of a rather noisy signal..............ccccoveviiiiiicii e, 8
Figure 5. Algorithm to compute log marginal likelihood and its partial derivatives............... 10
Figure 6. Motion trajectory, simulated motion and error dynamics ...........cccoveevvevesieesrernenne 13
Figure 7. Prior and posterior for angular velocity of JoiNt g2 ........cccccooeiiiiiciiiiiecce, 14
Figure 8. GP regression fOr JOINT G2 ........cccviieieee e 14
Figure 9. Prior and posterior for joint angle g2 ... 15
Figure 10. GP regression for the angular velocity of jointangle g1 ..........ccccoeeviieieinenen 15
Figure 11. Latin Hypercube with two variables.............cccocvoveiiiiiiic e 17
Nomenclature

cholesky(4) - cholesky factorization. Returns L where LL\

Opq - Kronecker delta function which equals to 1 iff p =g and 0

otherwise

f, orf, - Gaussian process posterior prediction

f, or f, - Gaussian process predictive mean

GP - Gaussian process with a mean and a covariance function

Ji - moment of inertia

U - mean value

m; - mass of link i

N(u,0?) - Normal (or Gaussian) distribution

n - number of training inputs

n, - number of test inputs

k(x,x") - kernel (or similarity) function evaluated at x and x’

KX, X) - n X n covariance matrix

L - Lagrangian

l - characteristic length-scale parameter

m(x) - mean function

of - variance of the noise-free signal

o2 - variance of the noise

T, - Kinetic co-energy

tr(A) - trace is the sum of the elements on the main diagonal of a square

matrix. X', @i = a1 + Ay + o+ apy
0 - joint angle
v; - velocity of link i

\Y



SIS

Vilius Ciuzelis
GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

- potential energy

- variance in (C. E. Rasmussen, 2006)
- matrix of training inputs

- matrix of test inputs

- training input i

- training targets

Vi



Vilius Ciuzelis
GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

| Introduction

Previous work

Gaussan Processes have received a lot of attention in the last decades, the leading cause
being machine learning and hype around the Artificial Intelligence or Al (Hopgood 2003). The
truth is, the first GP works with GP date back to as far as 1940’s (Wiener, 1949). It has been
used in geology (Cressie, 1990) and is extensively described by (C. E. Rasmussen, 2006),
which has later become as a go-to work on GP. This particular book has therefore been used as
basis for this paper.

GP is a stochastic process used in statistics and probability theory as a method for
regression or classification when some data about the model is known. In terms of machine
learning — supervised learning method. The main difficulty with finding the correct model is
therefore the trade-off between complexity and overfitting. The model should be complex
enough to model the main dynamics in the system, yet simple enough as to not model the noise,

see Figure 1 below.

GP regression using SE

Figure 1. Example of overfitting

The fit is controlled by some free parameters, called the hyperparameters, which are then to be
optimized to ensure best fit to the data at hand. There exists several other data-fitting methods
in both regression and classification (Harvey Motulsky, 2004). Gaussian Processes has proven
itself to be a generally strong method of data-fitting extremely nonlinear models and is easily
scalable to different size models (J. Hensman 2015). It can even be combined with other control
and modelling methods to enhance the method further (J. Kocijan 2004). The downsides of the

method is its complexity when implementing and computational needs. The numerous inverses

| Introduction -1- Previous work



Vilius Ciuzelis
GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION
of covariance matrix in GP are computationally expensive (C. E. Rasmussen, 2006).
As a test case, basic control of a 2-link planar robot manipulator arm has been chosen.
The dynamics of manipulators are highly nonlinear in the sense that joints might have non-
linear friction forces, elasticity and rigidity (or lack thereof) in the links is also highly non-
linear (Cai 2002). Let’s take a look into the robot model itself.

| Introduction -2- Previous work
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|1 Background theory

Robot model

Figure 2. 2-link planar robot manipulator arm model

Physical manipulator parameters are (loosely) based on Kuka’s own LBR iiwa 14 R280
(GmbH) robot. The mass of the robot was assumed to be uniform such that the masses of the
respective links were simply obtained by linear combination of the lengths of the robot. To
calculate moments of inertia, the arms of the manipulator are modelled as thin, uniform beams.
The inertia about the center of mass is then given by

ml?

Leenter = E

The complete overview of the parameters used in the simulation is shown in Table 1 under Il

Simulation on page 12. Next, analytical robot model is derived.

Equations of Motion
In order to gather training data for the GP model of the robot, one needs to describe the
model analytically. For that purpose, an energy-based - Lagrange method was used. Let the
total energy in the system be defined as
L=T"=-V
where T, is the so-called kinetic co-energy and V' is the potential energy in the system. Define

these energies as

Il Background theory -3- Robot model
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* 1 2
T = zzmivi
i

Vgraviey = mgh
Equations of motion (EOM) are then found using Lagrangian (Egeland, et al., 2002)
d (0L oL
255
For the extensive derivation of the equations of motion, see Appendix A. For completeness,
fully-derived EOM are given below
7y = (I + I + myL2, + my(L3 + L2, + 2Ly L, €08 q3))§;
+ (I + myLZ; + myLyLey €0S @), — MyLyLey Sinqy (2414, + 45)
+ (myL¢er +myLy) g cosqy + myle,g cos(qy + qz)
Ty = (I + MyLE, + myLyLey €05 q3) 1 + (I + MpL?) G, + MLy Lepgisin q;
+ myLepg cos(qq + q2)
These equations can be written in a more compact form, just as in (Egeland, et al., 2002)
M(@)q+Cqq +6q) =1
where M(q) = MT(q) is a positive definite matrix and G(q) is the gradient of the gravity
potential. The matrix €C(q, q) can be selected to be

Clqq) ={cjx} = {Z Cijkqi}

=1

where

Cijk = %(a::;lk + aan;jk + 6;;1:)
are the Christoffel symbols of the first kind. In this case the matrix M — 2C is skew symmetric.
When it comes to the controller, a simple PD regulator is used

T=ky(—q) + k,(qr — q)
where q,- is the reference trajectory and k,; and k, are control constants. Now that the equation
of motion are described, one needs to describe the input out relationship of the system —

kinematics.

Kinematics
Forward kinematics expresses the position of the end effector as the coordinates in the
xy-plane as a function of joint angles and geometry of the links. These formulas are trivial to

find and can be proven to have the following form

Il Background theory -4 - Robot model
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Ve lysingq + 15 sin(qy + q2)
Inverse kinematics problem, or IKP for short, is sort-of an inverse of the forward

(xe) B <l1 cos q + 1, cos(qy + q2)>

kinematics problem, as the name suggests. The formulation of the problem is as follows: given
the position of the end effector in xy-plane, compute all possible joint angles and link
geometries which correspond to that particular end effector position. Several forms of the
solution exist, each one with different characteristics when it comes to computation complexity
and orientation of the links. The fully-derived formula is given below. For complete derivation
of the formula see Appendix A.

[, sin
atan2(ye, x,) + atan 2 (%)

2
o +j1_(x3+y3—15—l§) Xt tyl 121}

q(Xe,Ye) =

20,0, 21,1,

where k; = [; + 1, cos(q,) and k, = [, sin(q,). The analytical model of the robot arm is now
fully derived. Let’s take a look into the regression process.

Gaussian Processes

GP is used for making understandings about the relationships between the training and
target data. Said in other words, input-output relationship or the conditional distribution of the
targets, given the inputs (C. E. Rasmussen, 2006). By definition in the same book, a Gaussian
Process “is a collection of random variables, any finite number of which have a joint Gaussian
distribution”. Given a dataset of n observations, which we call D = (X,y), a GP is fully
expressed by its mean and covariance functions m(x) and k(x, x"). These functions are defined
as

m(x) = E[f ()]
k(x,x") = E[(f(x) —m®)(f(x') = m(x"))]
where f(x) is the process. A Gaussian Process using formulas above can be denoted as
fx) ~ GP(m(x), k(x,x"))

To fully understand GP it is crucial to talk about its structure — its mean and variance functions.

I Background theory -5- Gaussian
Processes
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Mean function

Since a GP is fully expressed by its mean and a covariance functions or matrices, let’s
take a look into the mean function first. There exist methods of fitting a mean to the data at
hand, however it is often omitted and left zero. The reason behind this is simply that the
covariance function usually takes the mean into the account when computing the variance
matrix. There exist, of course, applications where the data is inherently at a slope or has an
angle, but a suited covariance function will usually cover the increasing/decreasing mean. This

paper will therefore be using a mean function of 0 throughout the derivations and simulations.

Covariance function

Covariance (or kernel) functions contain most of the information about the model.
Assuming the mean function to be zero results in covariance function defining the whole model
by itself! Covariance functions always have one or more free parameters which decide its form.
To accommodate the vast range of possible nonlinear models, a number of kernel functions
have been developed. Both explicit and composite functions. These functions define one or
more of the following aspects of the covariance functions: stationarity, isotropy, smoothness
and periodicity.

Stationarity refers to a stochastic process whose unconditional joint probability
distribution, mean, and variance do not change in time. It means that x — x’ only depends on
the values of x and x’ and not their position (in time?). Isotropy deals with the measurement of
distance. If a function is only dependent on values and not the measurement direction, then the
function is called isotropic. Smoothness is defined by the expected closeness (or similarity)
between input-output pairs. If the expectancy is high, the resulting function will tend to favor
a more rapidly changing model rather than a slower, smoother model.

There exist numerous kernels functions which have different properties and are best
suited for a range of applications. Therefore, the choice of the best-suited kernel function is not
arbitrary. The most common and maybe simplest kernel function is the Squared Exponential
(SE)

! 2 1 NT ! 2
k(x,x") = ofexp —E(x—x) M(x—x") |+ 070

where sz is the variance of the noise-free signal, ;2 is the variance of the noise, and 8y, is a

Kronecker delta which is 1 if x =x' and 0 otherwise. M is simply a symmetric matrix

containing the characteristic length-scales. It might take one of the following forms, depending

I Background theory -6- Gaussian
Processes
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on the values of hyperparameters:

M, = I?], M, = diag(l)72, M; = AAT + diag(l)~?
Parameter [ in M, is called characteristic length-scale. It decides how fast pace of change the
sample functions are to have. Low [ values will yield a more rapidly changing functions, while
greater values will tend to smooth out the functions. Now that the basics of GP structure are
covered, let’s take a look at the next step of GP regression — prior distribution.

Prior

When choosing hyperparameters manually, or picking the initial values for optimization
later, it is wise to check the function pool for the general form of the functions being drawn,
the so-called prior distribution. This distribution is a multivariate normal (Gaussian)
distribution together with a covariance matrix generated by the chosen kernel function. Firstly,
one needs to compute the n X n covariance matrix K,:
kGixD) o kG X3)

KX, X)) = : . :

k(xp,X1) -+ k(Xp,Xp)

Note that the prior distribution is solely dependent on the training data. One can sample the

desired number of sample functions from GP using the multivariate normal distribution
f.~NV(m(x),K(X.,X.))

Prior functions can be sampled using the following equation:

forior = cholesky(K(X.,X.) + o:1) - b ¢))

where b is a n, X N matrix of random numbers drawn from a normal (Gaussian) distribution

with 0 mean and standard deviation o¢. An example of such a sample of prior functions is

shown in Figure 3 below.

Histogram over normal samples Prior distribution samples, ;2=0, nn=0.10, 1=0.5465

0.5 T 0.3 T —
Normal distribution g ™

0.4 r ;3 ] 02+

‘ 01
03 hl

> 0
0.2
04k
01t 1 0z
0 -0.3 :
3 2 1 0 1 2 3 2 1.5 1 0.5 0 0.5 1 1.5 2

Figure 3. Example of multiple sample functions from the prior distribution.

I Background theory -7- Gaussian
Processes
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Posterior
While prior has information about the prior functions which might be used in regression,
posterior shows which functions have been used in the regression (Freitas, 2013):
foosterior = fx + cholesky(K (X,, X,) + 041 — LgLy) - b
where L, = cholesky(K(X,X) + ¢21)"*K (X, X,) and b similar to (1). The posterior shows the

uncertainty in the prediction very clearly.

. Samples from the posterior distribution, Iml -14.5979

Figure 4. Posterior distribution of a rather noisy signal

Prediction

Realistic observations or measurements are never 100% accurate. Whether because of
the measuring instrument noise, inaccuracies in computing or simply modelling errors, one
must always account for some disturbances in the system. In robust control, the unknown
disturbances are usually modelled as (white) noise. The prior on the observations should

therefore be expressed (C. E. Rasmussen, 2006):
cov(yp, vq) = k(Xp,Xq) + 028, or cov(y) = K(X,X) + 021

where &, is a Kronecker delta which is 1 when p = g, otherwise 0. The joint distribution of

the observations at the test points are (C. E. Rasmussen, 2006):

I Background theory -8- Gaussian
Processes
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2
-2 (0[S e

The fully derived conditional on Gaussian prior distribution is then
f. = KX, KX, X) + a71]7y
COV(f*) = K(X*;X*) - K(X*,X)[K(X,X) - O-‘nl] IK(X X )

Algorithm used in the simulations is the same as in (C. E. Rasmussen, 2006). The algorithm is
denoted as (2.1) in the book. Given training input X, training targets y, covariance function k,
noise level g2, and test input x,. Define the following

L == chol(K + ¢2I)

a = LT\(L\y)
f=Ka
v := L\Kk,
V[f.] = diag(k(x.,x.)) — VTV + o2

1 . n
logp(ylX) = -y a —zlogLii —5log2m 2)

where chol(K + o2I) returns the lower diagonal matrix L in LL" = K + ¢2I. This is done to
ensure stability since the inverse of the K matrix tends to be numerically unstable. The
algorithm returns the predictive mean and variance for the noisy test data y,. The three terms
in (2) can be interpreted as penalties. The first term penalizes low the data-fit. The second term,
which is only dependent on the covariance matrix K, is the complexity penalty. The model with
high complexity are usually over-fitted. The last term is the normalization constant. The only
way to control the data-fitting process is to change the hyperparameters of the covariance

function.

Hyperparameters

The optimization of hyperparameters is rather tricky. The problem is non-linear and
computationally costly. Therefore, a well-designed optimization algorithm is needed. To
compute the hyperparameters using the maximization of marginal likelihood with respect to
parameters (C. E. Rasmussen, 2006)

2, (ylx, 0 Ly By L (k0 2
50, 08P ) =3y a6, K Yt

I Background theory -9- Gaussian
Processes
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1 0K
— T _ -1\ _
=5 tr<(aa K )69,-)

where @ = K ~ly. Because of the inversion of matrix K, gradient based optimizers are advised,
such that steepest descent or congujate gradient method.
The algorithm that (C. E. Rasmussen, 2006) propose to use with congujate gradient method is

shown below:
input: X (inputs), y (+1 targets), @ (hypers), p(y|f) (likelihood function)
2: compute K compute covariance matrix from X and 6
(f, a) := mode (K,y,p(y|f)) locate posterior mode using Algorithm 3.1
4: W := —=VVlogp(yl|f)
L := cholesky(I + W2 KW 2) solve LLT =B=T+WzKW3
6: logZ := —za' f +logp(y|f) — > log(diag(L)) eq. (5.20)
R:=WzLT\(L\W2) R=Wz(I+W:KWz)"'Wz
8 C:=L\(W2K) -
89 := —3 diag (diag(K) — diag(CTC)) V3 log p(y|f) } eq- (5.23)
10: for j:=1...dim(@) do
C := 0K/0b, compute derivative matrix from X and 6
12: s :=3a' Ca— 5 tr(RC) eq. (5.22)
b := CVlog p(y|f .
14: S3:=b — KRL | ) } ed- ()24)
V,log Z := s1 + s, 83 eq. (5.21)
16: end for
return: log Z (log marginal likelihood), Vlog Z (partial derivatives)

Figure 5. Algorithm to compute log marginal likelihood and its partial derivatives.

Conjugate gradient (CG) method would then be used to optimize the hyperparameters (Andrew
V. Knyazev, 2007). These methods usually are more computationally expensive than methods
used in literature, i.e. kernel-alignment by (Nello Cristianini), grid search algorithms (Kupinski

2010), random search (Bergstra 2012), or Bayesian optimization-based search (Snoek 2012).

When dealing with data that is much greater than 1, it might be useful to normalize or
standardize the data first. This should be done to both the training inputs and the training
targets. Then the optimization can be started by initializing the hyperparameters: initialize
length-scale and function variance to 1. Standardization of data is usually done with the

following formula:
X — U
o

Xstandard =
where u is the mean and o is the standard deviation of the data explored. The experience also

I Background theory -10- Gaussian
Processes
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shows that higher initial values for the target function variance yield better performance when
optimizing the other hyperparameters, even though you expect low noise. A small number of
restarts of the optimization algorithm with different initial starting points is a possible remedy
for when local optima is reached (Murray, 2008).

I Background theory -11- Gaussian
Processes
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1l Simulation

The software used in this project thesis is simply MATLAB prerelease version 2018a.
The hardware is a Windows OS based laptop with Intel Core i7-7700 CPU @ 3.60 GHz and 8

GB memory.

Robot arm model

Friction coefficients in the robot joints is chosen to be simply [10800 50000]. The
behavior of the unforced system represents life-like behavior.
Model parameter LBR iwwa 14’s parameter  Value Explanation

L D 420 mm Length of the 1% link
I, A-C-D 526 mm Length of the 2" link
mr myr 299 kg Total mass of the robot
my — 9,6 kg Mass of the 1% link
m, — 12,0 kg Mass of the 2" link
I, — 5640 kgmm?  Inertia of the 1% link
I, - Inertia of the 2" link
g - —9,81 kgm/s? Gravity constant

Table 1. Manipulator arm model parameters

Controller
PD-controller gains were found by tuning the controller manually. The final gains used

in the simulation are shown in Table 2.

k, | [100000 - mlll]
25000 - m, L,

k, | [15000 - myl;
1000 - m, 1, ]

Table 2. Controller gains

The values of the gains might not be entirely feasible in a real-world application as they are
relatively high. These gains yield an extremely fast convergence rate and fast error dynamics.
Therefore, they are satisfactory based on the application of the current model.

The motion of the robot was chosen to be a circle with a diameter of the second robot arm link.

This path of motion reveals a sufficient amount of robot dynamics to be analyzed by the GP.

1l Simulation -12 - Robot arm
model
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Planned e.e. trajectory in the reachable workspace Motion of the robot

60 60
40 40
20 20+
o =~ 0 oy
20 20 o
\///

Error dynamics in the first 200 simulation steps
T T

005 — -1

0 20 40 60 80 100 120 140 160 180 200

Figure 6. Motion trajectory, simulated motion and error dynamics

The error dynamics show fast convergence with minimal overshoot. They are shown in Figure

6 above.

The sampling values for the GP regression were chosen with an equal amount of spacing
between the data points gathered from the robot motion. Only every 200" point of the data
points was chosen, due to computational expensiveness. This sampling technique does not pose
any real threats to the simulations since the motion is not prone to aliasing or really any other
problems that oscillating motions have. The marginal likelihood function in GP regression did

not perform as expected and has even achieved positive values, which should not be possible.

11 Simulation -13 - Controller
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IV Results

The resulting plots are shown in figures below. The (sub-)optimal hyperparameter
values were found using marginal likelihood and tuning the lengthscales values manually.
Since the optimization of the hyperparameters did not work satisfactory it is left out of further

discussion. The covariance function performance was very similar, even though the optimal

GP regression using SE
T

[___JConfidence interval
Predicted mean
+ Testpoints
True function

.05 - =

Figure 8. GP regression for joint g,

Samples drawn from the normal distribution Prior distribution samples, ;:=0, o, =1.00, 1=5.5890
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Figure 7. Prior and posterior for angular velocity of joint g,

values were quite different. MacKay and Squared Exponential were the most promising ones
yielding near-perfect regression. Some of the most interesting results are shown below. The

IV Results -14 - Controller
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brown area surround the prediction is the uncertainty. It is 2 times the standard deviation, that
is just above 95% confidence interval.

GP regression using MacKay
T

5
1 I ! I IilmMMunmu
Predicted mean
+ Testpoints
AN ’| True function
o |
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Figure 10. GP regression for the angular velocity of joint angle g,
Samples drawn from the normal distribution Prior distribution samples, =0, a"-o.w. 1=0.1484
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Figure 9. Prior and posterior for joint angle g,
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V Discussion

The results show great algorithm capabilities and versatility to adapt to new data.
Surprisingly little effort is needed to achieve excellent results even when tuning the GP model
manually. Even though the hyperparameter optimization did not work in time, the GP
regression method has shown its strengths and application possibilities. Interestingly enough,
failure to implement the optimizer, shows the great disadvantage with the method — its
complexity. | have found numerous implementations of different parts of the GP regression
and all of them seems to produce somewhat believable results. Which ones were the “correct”
ones, is difficult to say. A strong statistical background is needed to understand and handle this
method if it were used for control, whereas a simple PID controller is simple enough to be

handled regardless of one’s background.
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VI Future Work

The further research ideas presented in this section are the framework for the master
thesis following this paper. The first step is to implement gradient-based hyperparameter
optimization and develop a sparse model. Online covariance function selector would further
improve the data fit. Even though the GP is a very powerful method on its own, it would be
very interesting to see it work together with some other controllers and models. Implementation
of more sophisticated controllers, like (nonlinear) MPC controller, Neural Networks-based
controller and other both industry and novel controllers. 1t would especially be interesting to
see it work as a standalone model in a model reference control problem, where the requirement
for the model update is of relative low frequency.

Decision theory for selecting new observations contra computational costs of the
system. A bigger comparison of several techniques would be interesting. One promising
technique is the Latin-hypercube sampling which maximizes the minimum distance between
the sampling points (see Figure 11 below). Monte Carlo simulations and Orthogonal sampling
have shown promising results and deserves some attention. Research on hyperparameter
optimality conditions to check whether a true optimum has been reached or the optimizer is

stuck in a local optimum.

PDF(X,)

Figure 11. Latin Hypercube with two variables.
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Appendix A

Derivation of the EOM for 2-link planer manipulator
Based on (Egeland, et al., 2002)

The planar manipulator has kinetic energy:

1 - - 1 - - — — — — = —
T = Emlvcl Ve +Em2vcz * Ve +§W1 . Ml Wy +§W2 . ME * Wy
c c

This can be written as

T = Emufﬁ +my24:G; + Emzzqg

where
myqy = L, + I, + myL% + my(L3 + LY, + 2Ly Ly €S q3)
Myy = Myy = I, + MyL%, + myLyLey OS g,
Myy = I, + myL%,
are the elements of the inertia matrix and g; and g, are the angles between the horizontal plane
and the robot arm 1 and 2 respectively. The potential energy in the system is given by
V = (mygLlei + maglLy) singy + mygLe; sin(gy + qz)

Then, from £ = T — V partial derivatives are found to be

oL oT ) )
0_6'11 = a—ql = Mmq1q1 + M12q;
oL oT ) )
a—qz = a—qz = Mq2q1 + My2(q;
oL ov
— = ——=—=—(myL,; + myL1)g cosq, —myLg cos(q; + qz)
0q, 0q,

oL oT oV 1omyy ,
aq; B 94 _an "2 aq; o +a—qz
Recalling the chain rule expansion:
dz 0z0x 0z0dy
dt " oxot "ayoe

the equations of motion are then found to be:

4192 — myLcg cos(qy + qz)

. . omyq |\ , omyy |\ , %
Ty = Mq1qq + My2q, + ( C12) q1 + ( Q2> d; + —
09, 0q,

a9,
) ) omyy |\ . omyy .\, 1omyq\ , OV
T2 —m21‘h+m22‘h+< 34, QZ)Ch ( 94, ‘h)‘h 2( a4, )‘h +6q2
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Ty = (I + I + myL%, + my(L3 + L2, + 2L, L, c0S q5) )iy
+ (I + MyLZ, + MLy Ly €05 3) G, — MyLyLes Sin g (241G, + G5)
+ (myLey + myLy) g cos gy + myLeag cos(qy + q2)

Ty = (I, + ML, + MyLyLep €05 q3) Gy + (I + myL2;) G, + (ML Ly Sin q2) 45
+ myLepg cos(qy + qz)

Inverse kinematics for 2-link planar manipulator
The derivation of these formulas is borrowed from (Jazar, 2010) and (Hessmer, 2009)
Start with forward kinematics formulas
Xe [y cosq, + 1, cos(qy + q2)
(ye) - <l1 sing, + 1, sin(q, + q2)>
where all variables are according to Figure 2 on page 3.

(1)

Rewrite squares of the end effector position

x5\ _ (U cos? q; + 15 cos®(qq + qz) + 21,1, cos q; cos(qy + qz)
y2)  \ ?sin?q, + [2sin2(q; + q;) + 21,1, sin q; sin(q; + q2)

Use Pythagorean identity
asin? 6 + acos? 0 = a?
and rewrite
x5 +yé = 1§ + 15 + 2l115[cos q; cos(qy + q2) + sin gy sin(q; + q,)]
Use the following identities
sin(a + b) = sinacosb + cosasinb
cos(a+ b) =cosacosb ¥ sinasinb
to prove
x2+yi=10+13
+ 21,1, [cos g, (cos g, cos q, — sin g, sin q;)
+ sin g, (sin g, cos q, + cos q; sinq,)]
x2 +y2 =12+ 12 + 21,1,[cos? q, cos g, + sin? q; cos q,]
x2+y2=1+15+2ll,cosq,
From this follow

x;+yi -1 -1
20,1,

q, = cos™!
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Since arcsin  and arccos  are inaccurate for small angles, use the atan2 function:

6, = atan2(sin 6, ,cos 6,)

= atan2 (i 1 — cos?6,,cos 92)

x24+y2—12-12 2 x2+y2—12-12
= atan2| + |1 — ,
atan —\/ ( 20,1, 20,1,

Next, use (1%) to rewrite x and y:
x =k, cos6; —k,sinb;
y =k, sin6; + k, cos 0,

Where kl = ll + lz COS 92 and kz = l2 Sin 92.

r= /kf+k§

y = atan2(ky, kq)

Now, use the following:

This gives
ki =rcosy
k, =rsiny
This leads to
x =rcos(y + 6,)
y =rsin(y + 6,)
Finally apply atan2 function to find 6, :

Y Y\
y + 6;atan2 (;;) = atan2(y, x)
0, = atan2(y,x) — atan2(k,, k)

Where kl = ll + lz Cos 92 and kz = lz sin 92.

The final solution contains + sign which can be thought of as elbow-up and elbow-down

solutions. Plus sign yields the elbow-up solution, while the minus yields the opposite.
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[, sinq, )

atan2(y,, x.) + atan 2 (l1 tlcosq;

q(xe,¥e) = 2
_(xE+y2 -1 —l§> x+y;—1i—13
atan2 J—”j 1 ( 240, T
[ ]
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Appendix B
MATLAB code

Manipulator.m

%% Robot manipulator Vilius Ciuzelis

¢}

% Control parameters

sandbox = 0;

debug = 0;

h = 0.01; % integration step length
time = 50; % the length of simulation

hFig = figure();
% Define model constants
constants = getConstants (sandbox) ;

¢}

% Define trajectory
trajectory = getTrajectory(h, time, constants);
plotTraj (constants, trajectory, hFig);

% Simulate the trajectory using a planar 2-1link robot
manipulator arm

data = simulate (h, trajectory, constants, sandbox) ;

[e)

% Present the results
animate (data, constants, hFiqg);
plotErrDyn (data, hFig);

% Export the data
output = struct('g 1', data.qg(l,:), 'g 2', data.qg(2,:),
'g 1 dot',

data.omega(l,:),'qg 2 dot', data.omega(2,:), 'u 1',
data.tau(l,:), 'u 2', data.tau(Z,:));

$% Simulation

function res = simulate(h, traj, constants, sandbox)
% Get variables
[g, omega, omega dot] = getInitialStates;
[kp, kd] = getGains(constants, sandbox);

f coeff = getFCoeff (sandbox);
storage = getStorage (length(traj)):;

x e = traj(:,1);
y e traj(:,2);

for i=1:1:1length(traj)

Appendix B -24 - MATLAB
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omega = omega + h*omega dot;
g = g + h*omega;
[storage.ll pos(:,1), storage.l2 pos(:,1),

storage.ee pos(:,1)] = forwardKinematics (constants,q);
[M, C, G] = getModel (constants, g, omega);
R e PLAN-————————————————

storage.q r(:, 1) =
inverseKinematics (constants,x e(1i),y e(1));

tau = kd* (-omega) + kp*(storage.q r(:,1)-q) -
f coeff*omega;

omega dot=inv (M) * (tau-C*omega-G) ;
% Storage

storage.qg(:,1) = qg;
storage.omega(:,1) = omega;
storage.omega dot (:,1) = omega dot;
storage.tau(:,1i) = tau;
storage.error(:,1) = storage.q r(:,1)-g;
% error dynamics
end
res = struct('gq', storage.q, 'omega',

storage.omega, ...

'omega dot', storage.omega dot, 'tau',
storage.tau, ...

'ee pos', storage.ee pos, 'll pos',
storage.ll pos, ...

'l12 pos', storage.l2 pos, 'error', storage.error,
'g r', storage.q r);
end

%% Storage function

function res = getStorage (count)

[tau, omega, omega dot, ee pos, 11 pos, 12 pos,
error, q r] = deal( zeros(2, count) );

g = zeros (2, count);

res = struct( 'gq', g, 'omega', omega, 'omega dot',

omega dot, ...
'tau', tau, 'ee', ee pos, 'll', 11 pos,...
'12', 12 pos, 'error', error, 'gr', g r);
end

%% Storage of constants

Appendix B -25- MATLAB
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function res = getConstants (sandbox)
if sandbox
11=1;
12 0.7;
m1l=1;
m 2 =1;
else
11 =42;
1 2 =052.6;
m 1 = 9.6156;
m 2 = 12.0424;
end
1 cl=11/2;
1 c2=12/2;
g = -9.81;
I 1 =m1l*1 172/12;
I 2 =m 2*x1 272/12;

res = struct ('l 1', 1
'L c2', 1 ¢c2, 'm1

- ’
'T1', 1.1, '1.2', I

1, 'l c1', 1 c1, "L 2", 1 2,...
'y ml, 'm2', m2, 'g', g,...
2

) ;

end

%% Manipulator model

function [M, C, G] = getModel (const, g, omega)
1 1 = const.1l 1;
1 ¢c2 = const.1 c2;
m 2 = const.m 2;

M 11 =
const.I l+const.I 2+const.m l*const.l cl”2+4m 2*(1 172+1 c
272+42*1 1*1 c272+2*1 1*1 c2*cos(q(2)));

M 12 = const.I 2 + m 2*(1 c272+1 1*1 c2*cos(g(2)));

M 21 =M12;

M 22 = const.I 2+const.m 2*1 c2"2;

M=[MI11 M 12; M 21 M 22];

2)) *omega (2) ;
(

C 1l = -m 2*1 1*1 c2*sin(g(

C 12 = (-m 2*1 1*1 c2*sin(g(2))) * (omega (1)+omega(2));

C 21 = m 2*1 1*1 c2*sin(g(2)) *omega (l);

C 22 = 0;

C = [C 11 C 12; C 21 C 22];

G1=-
const.g*((const.m l*const.l cl+m 2*1 1)*cos(g(l)) +

m 2*1 c2*cos(q(l)+g(2)));

Appendix B - 26 - MATLAB
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= -const.g*m 2*1 c2*cos(g(l)+qg(2));
(G 1; G 2];

N

G_
G
end

$% Friction coefficients

function res = getFCoeff (sandbox)
if sandbox
res = [2 0; 0 1];
else
res = [10000 0; 0O 5000];
end
end

%% Initial states
function [q, omega, omega dot] = getInitialStates
qa= [-1; pi/2];
omega = [0; 0];
omega dot = [0; 0];
end
%% Forward kinematics
function [linkl, 1link2, endEffector] =
forwardKinematics (const, q)

linkl = [0;07];
link2 = [const.l 1*cos(g(l)); const.l 1*sin(g(1l))];
endEffector =

[const.l 1*cos(g(l))+const.l 2*cos(g(l)+g(2));
const.l 1*sin(g(l))+const.l 2*sin(g(l)+g(2))];
end

%% Inverse kinematics

function res = inverseKinematics (const, x,yVy)
1 1 = const.l 1;
1 2 = const.l 2;

res = [atan2(y,x)-atan2(l 2*sin(atan2 (sqgrt (1-
((x"2+y"2-1 172-1 272)/(2*1 1*1 2))"2),...
(x"2+y"2-1 172-1 272)/(2*1 1*1 2))),
1 1+41 2*cos(atan2(sqrt(l-((x"2+y"2-1 1"2-
1. 272)/(2*1 1*1 2))"2),...
(x"2+y"2-1 172-1 272)/(2*1 1*1 2)))); ...
atan2 (sqrt (1- ((x"2+y"2-1 172-1 272)/(2*1 1*1 2))"2),
(x"2+y"~2-1 172-1 272)/(2*1 1*1 2))1;
end

%% Controller gains
function [kp, kd] = getGains (const, sandbox)

Appendix B - 27 - MATLAB
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if sandbox

k dl = 50;

k pl = 500;

k d2 = 20;

k p2 = 200;
else

k dl = 30000*const.m l*const.l 1/2;
k pl = 100000*const.m 1*const.l 1;
k d2 1000*const.m 2*const.l 2;

k p2 = 50000*const.m 2*const.l 2/4;

end
kd = [k dl 0; 0 k d2];
kp = [k pl 0; 0 k p2];

end

%% Motion trajectory
function [traj, count] = getTrajectory(h, steps, const)
%% Define The Trajectory

[e)

% Define a circle to be traced over the course of 10
seconds. This circle

o)

% 1s 1in the xy plane with a radius of 0.15.

t = (0:h:steps-h+l)"'; % Time

count = length(t);

center = [const.l 1 0];

radius = 1/2*const.l 2;

theta = t* (2*pi/t(end));

points = center + radius*[cos(theta) sin(theta)];
traj = points;

end

%% Trajectory plotter

function plotTraj (const, traj, Hfig)
1 1 = const.l 1;
1 2 = const.l 2;

[g,~,~] = getInitialStates;

subplot(2,2,1)

plot(traj(:,1), traj(:,2));

grid on;

title("Planned e.e. trajectory in the reachable
workspace") ;

axis ([-(1 1+1 2) (1 141 2) —-(1 141 2) (1 1+1 2)1);
hold on;
plot ([0 cos(qg(l))*1_1],[0 sin(q(1l))*1_11);
hold on;
Appendix B - 28 - MATLAB
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plot ([cos(g(l))*1 1
cos(g(l))*1l 1+cos(g(l)+g(2))*1 2], [sin(g(1l))*1 1
sin(g(1l))*1 1+sin(g(1l)+g(2))*1 _21);

hold off;
end

$% Animation
function animate(data, const, hFiqg)
subplot(2,2,2);

if nargin == 2
hFig = figure();
end

d = 100; s FPS
j=1l:d:length(data.q);

ee pos = data.ee pos;
12 pos = data.l2 pos;

for i=l:length(j)-1

hold off

plot(ee pos(l,1:j(i)),ee pos(2,1:3(1)), "-");

hold on;

plot ([12_pos(1l,J (1)) ee pos(l, j(i))1,[12_pos(2,
j(i)) ee pos(2, j(i))1l,'o",

[data.ll pos(1l) 12 pos(1l,J(i))],[data.ll pos(2)

12 pos(2,3(1))],'k", ... % first arm

[12_pos(1l,]j (1)) ee_pos(l, j(i))],[1l2_pos(2,] (1))
ee pos(2, J(i))],'k") % second arm

hold on;

title('Motion of the robot')
xlabel ('x"')
ylabel ('y")
axis([-const.l l-const.l 2 const.l l+4const.l 2 -
const.l l-const.l 2 const.l l+const.l 2]);
grid on;
hold on;
drawnow;
end
end

%% Error dynamics plotter
function plotErrDyn (data, hFig)
steps = 200;
subplot (2,2, [3,41);
plot (l:steps, data.error(:,l:steps));
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txt = sprintf ("Error dynamics in the first %d
simulation steps", steps);

title (txt);

legend ("Error in g 1", "Error in g 2");
end

startup.m

% startup script to make Octave/Matlab aware of the GPML
ackage

o o° g

Copyright (c) by Carl Edward Rasmussen and Hannes
Nickisch 2018-08-01.

disp ('executing gpml startup script...')

mydir = fileparts (mfilename ('fullpath'));

% where am I located

addpath (mydir)

dirs = {'cov','doc','inf','1lik"', 'mean', 'prior', 'util'};
% core folders

for d = dirs, addpath (fullfile (mydir, d{1})), end
dirs =

{{'util', 'minfunc'}, {'util', 'minfunc', 'compiled'}};
minfunc folders

for d = dirs, addpath (fullfile (mydir, d{1}{:})), end
addpath ([mydir, '/util/sparseinv'])

o\

GP_regression.m

%% GP Vilius Ciuzelis

o\°

run startup.m; For
gpml randn ()

run Manipulator.m

% Globals

global sigma f sigma n 1 gamma

sigma £ = 0.5;

standard deviation of the noise-free signal
sigma n = 0.005;

standard deviation of the noise

1 =10.189;

Length-scale

gamma = 2;

in gammaExp cov. func. Value must be 2
rng ('default');

repeatability

o\°

o°

o°

o\°

For use

o\°

For

Appendix B -30- MATLAB
code



Vilius Ciuzelis
GAUSSIAN PROCESSES IN NON-LINEAR REGRESSION

rngseed = 5;

%% main

input = output.qg 1; % true
function

spacing = 100;

% Omitting the first 100 samples, due to very high
transients in u 1

Y = input (100:spacing:end) '; % Target
data

y = Y + 0.005*gpml_randn (rngseed, length(Y) , 1 );
some noise

o\°

Add

trainingData = l:length(y);
X = trainingData;
Training data

o\°

m = 100; number
of test points

Ns = 10;

of prior and posterior rnd samples
xs = linspace(X(1l), X(end), m)"';
data

o\

o\°

number

o\°

Test

o\°

Choose cov function between:

'SE', 'MacKay', 'Matern3/2', 'Matern5/2', 'gammaExp',
exponential'
covFunc = 'SE';

- o0

[e)

% Sampling from prior
fPrior = getFPrior(xs, covFunc, Ns);

% GP regression

[mu, variance, 1ml] = getGP (X, xs, y, covFunc);

% Sampling from posterior

fPosterior = getFPost (X, xs, covFunc, mu, Ns, 1ml);

figure();
hold on; plot(xs,variance);hold off;
f = [mu+2*sgrt (variance); flipdim (mu-
2*sqgrt(variance),1l)];
fill ([xs; flipdim(xs,1)1, £, [7 7 71/8);
hold on; plot(xs, mu, 'b'); plot(X, vy, 'r+'");
plot (1:1length(Y) .
, Y); hold off;
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legend ('Confidence interval', 'Predicted mean', 'Test
points', 'True function');
txt = sprintf ('GP regression using %s', covFunc);
title (txt) ;
%% Covariance function
function covariance = kernel (x, x prime, covType)
N = max(size(x,1),size(x,2));
M = max(size(x prime,l),size(x prime,2));
covariance = zeros (N,M);
for i=1:1:N
for j=1:1:M
if nargin ==
switch covType
case 'SE'
covariance (i, j) =
SE (x (i) ,x_prime(j));
case 'MacKay'
covariance (i, j) =
MacKay (x (1) ,x_prime(J));
case 'Matern3/2'
covariance (i, j) =
Matern32 (x(1),x prime(Jj));
case 'Matern5/2'
covariance (i, j) =
Matern52 (x(1),x prime(J));
case 'gammaExp'
covariance(i,j) =
gammakExp (x (1) ,x_prime (J));
case 'exponential'
covariance (i, j) =
exponential (x(1),x prime(J));
otherwise
disp('Invalid covariance function
given. Using SE instead');
covariance (i, j) =
SE(x (i) ,x_prime(j));

end
else
disp('Too few arguments given. Exiting');
return;
end
end

end
end

%% Prior
function fPrior = getFPrior (X star, covFunc, Ns)
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o\

m = length (X star);
number of test points
hyp = getHyp;

Kss = kernel (X star, X star, covFunc); T m
m

Lss = chol (Kssthyp.sn"2*eye (m), 'lower'); % m
m

b = normrnd (0, hyp.sf, m, Ns); % m
Ns

% Should I use Kss or Lss here? What's the
difference?
fPrior = Kss*Db;

o\
S

Ns

% Plotter functions
figure ()
subplot(2,2,2);
plot (X star, fPrior);

hold on;

plot (X star, 0*X star);

hold on;

txt = sprintf ("Prior distribution samples, \\mu=%d,

\\sigma n=%.2f, 1=%.4f",0,hyp.sf,hyp.1);
title (txt);
xlabel ('x"); ylabel ('v');

subplot(2,2,1);

plot (X star, Db);

title("Samples drawn from the normal distribution");
legend ("Sample 1", "Sample 2", "Sample 3");

hold on;

subplot (2,2,3);
samples = (-3:.1:3);
norm = normpdf (samples,0,1);
plot (samples, norm, 'Linewidth', 2);
hold on;
histogram(normalize(b), 'Normalization', 'pdf',
'BinMethod', 'auto'):;
title("Histogram over normal samples");
legend ("Normal distribution™);
hold off;
end

¢

%% GP regression

function [mean, variance, 1lml] = getGP(X, X star, vy,
covFunc)
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% This function uses algorithm 2.1 from
Rasmussen&Williams, 2006

fprintf ("Using %s as covariance function for GP
regression\n", covFunc);

n = length (X);

hyp = getHyp;

o®

Optimization of the hyperparameters
hyp = optimize(y, n, 'Iterations', 100, hyp);

o\

K = kernel (X,X, covFunc);

Kss = kernel (X star, X star, covFunc); % m
m

ks = kernel (X star, X, covFunc);

L = chol (K+hyp.sn"2*eye(n), 'lower'); s 2.
L:=cholesky (K+sigma n"2*1I)

alfa = L'\ (L\y); % 3.
alfa:=L"T\ (L\Yy)

mean = ks*alfa; s 4.
f star bar:=k star"T*alfa

v = L\ks'; % 5.
v:=L\k star

variance = diag(Kss)-dot(v,v)' + hyp.sn”2; % 6.
V[f star bar]:=k(x star,x star)-v T*v

dataFit = (-1/2)*y'*alfa;

terml = log(diag (L)) ;

complPenalty = (-1/2)*sum(terml (:));

normConst = (-1/2)*n*log(2*pi);

Iml = dataFit+complPenalty+tnormConst; s .

log marginal likelihood;
display(dataFit (1), 'Data fit');
display (complPenalty(l), 'Complexity penalty');
display (normConst (1), 'Normalization constant');
display(lml(l), 'Log marginal likelihood'");

end

%% Posterior
function FPost = getFPost (X, X star, covFunc, mean, Ns,
1ml)
hyp = getHyp;
n = length(X);
number of training points
m = length (X star);
number of test points

o\

o\°
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ks = kernel (X star, X, covFunc); % m
n

K = kernel (X,X, covFunc); % n
n

Kss = kernel (X star, X star, covFunc); T m
m

L = chol (K+thyp.sn"2*eye(n), 'lower');

Lk = L\ks';

Lk = Kss+hyp.sn”2*eye (m)-Lk'*Lk;

L = chol (Lk, "lower'");

b = normrnd (0, hyp.sf, m, Ns); % m
Ns

FPost = mean+L*b;

subplot (2,2,4);
plot (X star, FPost);

hold on;

plot (X star, 0*X star);

hold on;

txt = sprintf ("Samples from the posterior

distribution, 1ml %.4f", 1ml(1l));
title (txt);
xlabel ('x'"); ylabel('y");

end

%% Squared Exponential covariance function (2.20) R&W
2006
function res = SE(argl, arg2)

hyp = getHyp;

r = argl”2+arg2”2-2*argl*arg?2;

M = hyp.1"2;

res = hyp.sf"2*exp((-1/2) *M\r)+hyp.sn"2*eq(argl,
arg2);
end

%% MacKay covariance function, (4.31) R&W 2006
function res = MacKay(argl, arg2)

hyp = getHyp;
r = argl-arg2;

res = exp(-2*inv (hyp.172) *sin(r/2)."2);
end
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%% Matérn v=3/2 covariance function, (4.17) R&W 2006
function res = Matern32(argl, arg2?)

hyp = getHyp;
r = argl-arg2;

res = (l+sgrt(3)*r*inv (hyp.1l)) *exp (-
sgrt (3) *r*inv (hyp.1));
end
%% Matérn v=5/2 covariance function, (4.17) R&W 2006

function res = Maternb52(argl, arg2)
hyp = getHyp;
r = argl-arg2;
res =
(1+sgrt (5) *r*inv (hyp.1l)+5*r"2*inv (3*hyp.1"2)) *exp (-
sgrt (5) *r*inv (hyp.1));
end

%% Gamma-exponential covariance function, (4.18) R&W 2006
function res = gammaExp (argl, arg2?)

hyp = getHyp;

r = argl-arg2;

res = exp(-(r/hyp.1l) “hyp.gamma) ;
end

%% Exponential covariance function
function res = exponential (argl, arg?)
hyp = getHyp;
r = argl-arg2;
res = exp(-r*inv (hyp.1l));
end

[

%% Hyperparameters

function res = getHyp
global 1 sigma f sigma n gamma
res = struct( '1',1, 'sf', sigma f , 'sn', sigma n,
'gamma', gamma) ;
end
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@NTNU

Kunnskap for en bedre verden
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