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Abstract

As the current electrical grids are progressing towards SmartGrid, an increasing amount
of renewable energy sources and power electronics are connected to the grid. Distortions
caused by the nonlinear loads and small inertia of the power source are becoming more
severe, and lead to unwanted effects in the system including overheating and reduced com-
ponent life expectancy. This calls for a way of identifying and accessing these distortions.

The nonlinear distortion consists of harmonics, which are the integer multiples of the grid
fundamental frequency. Frequency scanning methods are predominantly used for identi-
fying the harmonics parameters, but have to deal with the time delay caused by the con-
version of time domain to frequency domain. There are needs for a real-time identification
method that can identify the harmonics impedance which enables further stability assess-
ment of the system.

This thesis analyzes the use of several Kalman filter based on-line identification methods
to estimate the harmonics impedance in a rectifier system, including the Extended Kalman
Filter(EKF), Adaptive Extended Kalman Filter(AEKF) and Adaptive Kalman Filter(AKF).
The results of these method is compared to a impedance mapping method based on har-
monics linearization. The AKF yields the most accurate estimation.

To further analyze the impedance of non-characteristic harmonics, we injected the sys-
tem with a step signal and looked into its transient response. The AKF estimation shows
promising results and points to potential use cases in future studies.
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Sammendrag

I dag er det en kontinuerlig overgang fra distribuert kraftnettverk til fremtidens Smartnett.
Det er en tydelig trend med økende innslag av fornybare energiressurser og kraftelektro-
niske komponenter i nettverket. Faktorer som ulineære laster og lavt treghetsmomentet
fører til økte forstyrrelser i systemet. Det øker risikoen til overoppheting og redusert lev-
etid av nettverkkomponentene. Det er derfor av interesse å måle og identifisere disse
forstyrrelsene.

Disse forstyrrelsene består av harmoniske svingninger, som er multipler av grunnfrekvensen.
Frekvensskanningsmetoder er ofte brukt for å måle harmoniske svingninger, men lider på
grunn av tidsforsinkelsen som skapes ved konverteringen fra tids- til frekvensdomenet.
Det er derfor behov for en sanntidsidentifikasjonsmetode som kan måle disse svingnin-
gene og muliggjøre en videre stabilitetsevaluering av systemet.

Denne masteroppgaven analyserer flere Kalman-filtre basert på sanntidsidentifikasjons-
metoder i et likerettersystem, blant annet Utvidet Kalman-filtre og Adaptivt Kalman-filtre.
Resultatene er sammenlignet med en impedansemodeleringsmetode basert på harmonisk
linearisering. Det Adaptive Kalman-filtret gir svært gode resultater.

Videre analyserer basert på ikke-karakteriske harmoniske svingninger. Ved å injisere
systemet med en stegfunksjon klarer vi å hente ut informasjon av ikke-karakteriske sig-
nalkomponenter fra transientresponsen. Det viser lovende resultater og åpner for videre
utvikling og fremtidig forskning av transientanalyse basert impedanseestimering.
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Chapter 1
Introduction

1.1 Background

Traditional power supplies consist of power generator with large inertia that makes the
grid frequency relatively stable despite sudden changes in the loads. Today electrical
grid is gradually transforming toward SmartGrid, with real-world examples like micro-
grid, marine vessel grid, solar farm and wind farm. SmartGrids are characterized by high
penetration rate of renewable energy sources and non-linear loads such as power electron-
ics and power converters that convert between AC and DC. Combine the non-linearity
of the loads with the small inertia of the renewable power generating sources, the grid
frequency is more prone to distortions. These distortions contain harmonics, which are
often the integer multiples of the fundamental grid frequency(characteristic harmonics).
These harmonics cause unwanted effects in the system including overheating and reduced
component life expectancy[3]. It is therefore of interest to identify and detect these har-
monics signals for the purpose of further stability assessment[4] and harmonics distortion
mitigation[5].

Due to the complexity of SmartGrid system especially when the scale grows (e.g. wind
farm), high fidelity modeling would not be a sustainable for impedance identification. It
contains several different components which interact with each other depending on the
control actions and information flow available. Underlying model uncertainties and un-
known dynamics make mathematical modeling of SmartGrid a challenging task. This
project will work with on-line identification techniques as an alternative to high fidelity
modeling. These techniques are based on limited measurement availability and algorithms
such as Kalman Filter, which is able to identify critical parameters of the Smart Grid under
investigation.
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Chapter 1. Introduction

1.2 Project Objective and Design of Experiment
The purpose of this work is to perform an on-line identification of the system impedance
based on the identification of harmonics amplitude and phase. Furthermore, an injection
method will be used to analyze the impedance of non-characteristic harmonics.

The project will consist of modeling, simulation work (Matlab/Simulink), system iden-
tification, signal analysis and impedance estimation. The work will be a mixture of stabil-
ity theory, signal processing and power system analysis.

1.3 Thesis structure
Chapter 1: Introduction: This chapter presents the background and motivation for the
work in this thesis.
Chapter 2: Literature Review: This chapter contains literature review of related topics
and work.
Chapter 3: Basic Theory: This section contains a brief presentation of the theoretical
background for the terminologies and methods used in this thesis.
Chapter 4: Summary of Previous Work: This chapter is a summary of the work done
in the specialization project during Autumn 2018.
Chapter 5: Proposed Parameter Identification Methods: This chapter details the dif-
ferent parameter identification methods for the three-phase rectifier system.
Chapter 6: Transient analysis: This chapter analyzes the system impedance during a
transient step response.
Chapter 7: Conclusion and Future Work: Conclusion of the thesis and recommended
work for future papers and master thesis.
Appendix A: Matlab Simulink models of the simulated system
Appendix B: Matlab script of the implemented parameter identification methods

2



Chapter 2
Literature Review

In this chapter some relevant topics and related work are investigated.

2.1 Impedance modeling
On the topic of impedance modeling for three phase diode rectifier, two work stand out.
One being Lei(2013)[6], which presents a frequency domain generalized input impedance
model. The other work is Bing(2009)[7] which details small-signal input impedance anal-
ysis based on harmonic linearization mapping method.

2.2 Impedance Identification
Impedance identification can be achieved by offline frequency-response analysis. Differ-
ent frequency domain identification methods are presented and compared in the previous
specialization project, summarized in Chap 4. Frequency scanning methods have the
disadvantage of having a time delay due to the conversion of time domain to frequency
domain.

Examples of passive methods can be found in papers such as Hoffmann(2014)[8],
Jondal(2017)[9], Sanchez(2015)[10] and Broen(2016)[11]. These methods are designed
to utilize the disturbances that are already present in typical power networks and are less
invasive to the system. They provide real-time estimation of the equivalent grid impedance
by means of recursive estimation techniques such as Kalman Filter. One challenge for
these passive methods is for example tuning the filter.

On the other side there are also active methods, such as the ones proposed in Sum-
ner(2002) [12] and Asiminoaei(2004)[13]. These techniques utilize a forced disturbance
that is injected as a perturbation current or voltage. Based on the injection signal, these
methods are able to determine the grid impedance at individual frequencies or in charac-
teristic frequency bands. Small signal injection frequency response analysis is accurate
but off-line, and in most cases invasive to the system.

3



Chapter 2. Literature Review

2.3 Stability Analysis
Small-signal impedance stability analysis for power electronics systems is discussed in
papers such as Sun(2011) [4] and Amin(2019) [14]. Both apply Nyquist Stability Criterion
on small-signal impedance models. In contrast to the small-signal method are the large-
signal stability analysis which are detailed in Griffo(2008)[15] and Sanchez(2015)[10].
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Chapter 3
Basic Theory

This chapter contains a brief presentation of the theoretical background for the terminolo-
gies and methods used in this thesis.

3.1 Diode bridge rectifier
Diode rectifiers are commonly used for converting an AC input supply into a DC supply.
It gained popularity due to its affordability and the ability of handling high voltage. There
are single phase(as shown in Fig 3.1) and three-phase diode bridge rectifiers(as shown in
Fig 3.2), where the three-phase variant is more preferable due to the low ripple content in
the wave-forms and a higher power handling capability[1, P.103]. It utilizes diode bridge
for the rectification process, which constitutes as a non-linear load. Current drawn by the
nonlinear loads such as the diode bridge rectifier results in distortions and harmonics in
the system.

Figure 3.1: Single-phase diode bridge rectifier [1, P.83]

5



Chapter 3. Basic Theory

3.1.1 Three-phase diode rectifier characteristic

Fig 3.2 shows an example of the three-phase, six-pulse full bridge rectifier.

Figure 3.2: Three-phase full bridge rectifier [1, P.103]

From Lei’s input impedance modeling of three-phase diode rectifier[6], the equivalent out-
put dc voltage vd and the input three-phase voltages are related by the switching function
Sa, Sb, and Sc:

vd = vaSa + vbSb + vcSc (3.1)

Sa, Sb, and Sc are all stair switching functions, and can be decoupled into infinite number
of sinusoidal wave-forms with multiple times of fundamental frequencies, so called the
Fourier series:

Sa =

∞∑
n=1

(Asncos(nθ) +Bsnsin(nθ)) (3.2)

Where the coefficient is defines as:

Asn =
2
√

3(−1)l

π

sinn(u+ φ) + sin(nφ)

n
(3.3a)

Bsn =
2
√

3(−1)l

π

cosn(u+ φ) + cos(nφ)

n
(3.3b)

n = 6l ± 1(l = 0, 1, 2, 3, . . . n > 0) (3.3c)

We observe that the sinusoidal in the coefficient is of order n = 6l ± 1, which indicates
that this is the characteristic harmonics of the AC voltage. Subsequently the AC current
will have the same characteristic harmonics in its content.

6



3.2 Harmonics

3.2 Harmonics
In the context of power systems, a harmonic is defined as the content of the electronic
signal whose frequency is an integer multiple of the system fundamental frequency, which
is commonly 50 Hz in Europe and 60 Hz in the US [16, p.1]. Harmonics emerges when
there are non-linear loads in the system, such as rectifiers and switching power supplies.
Applying voltage to these non-linear loads will result in complex current waveform, which
according to Fourier analysis(Ch 3.4) can be decomposed into integer multiples of the
fundamental frequency.

3.3 Superposition Principle
Superposition Principle states that for linear systems the response causes by multiple
sources is equivalent to the algebraic sum of each individual source responses. Voltage
and current are sinusoidal signals, and according to Fourier Analysis each can be decom-
posed into infinite many sinusoids. Each sinusoid will then have their own impedance
responses, which can be analyses individually. This allow us to decompose our voltage
and current signals into subsequent harmonics and compute their impedance individually.

3.4 Fourier Analysis
The analysis and modeling of the harmonics are largely based on the Fourier analysis,
which states that every non-sinusoidal periodic wave can be decomposed as the sum of
sine waves through the application of the Fourier series[17]. This gives the basis for the
harmonic measurement methods[18]:

x(t) = a0 +

∞∑
h=1

ch sin(
h

N
ωnt+ φh) (3.4a)

ch =
√
a2h + b2h (3.4b)

φh = tan−1
ah
bh
, ifbh ≥ 0 (3.4c)

φh = π + tan−1
ah
bh
, ifbh < 0 (3.4d)

ωn is the fundamental frequency, h is the harmonic order and N is the number of
samples of a period of the signal. ah and bh are the harmonics’ phasor(Eulers’ identity)
component:

ah =
2

Tω

∫ Tω

0

x(t) cos(
h

N
ωnt+ φh)dt (3.5a)

bh =
2

Tω

∫ Tω

0

x(t) sin(
h

N
ωnt+ φh)dt (3.5b)

7



Chapter 3. Basic Theory

a0 =
1

Tω

∫ Tω

0

x(t)dt (3.5c)

where Tω is the window width.

3.5 Fast Fourier Transform
Fast Fourier Transform (FFT) is a divide and conquer algorithm which computes the dis-
crete Fourier Transform:

x̂ =
N−1∑
n=0

xne
− 2πj

N kn (3.6)

of a sequence x of length N , and transforms it from the time domain into frequency
domain. The signal gets decomposed into sinusoidal frequency components, which gives
us an overview of the frequencies that is present in the signal. FFT is most suitable for
stationary signals as any change in the frequency components will get diluted. The major
frequency components of the original sequence can be observed from the energy spectral
density of x:

Sxx(f) = |x̂(f)|2 (3.7)

3.6 Short-Time Fourier Transform

X(t, f) =

∫ ∞
−∞

x(t1)h∗(t1 − t)e−i2πft1dt1 (3.8)

The Short-Time Fourier Transform (STFT) uses a window function h(t) that divides
the signal into shorter windows, and then compute the Fourier transform of each windows.
STFT is suitable for slowly varying non-stationary signals, because the signal can be con-
sidered stationary in a small enough window. There will however be a trade-off between
time and frequency resolution according to the Uncertainty Principle [19]. A spectrogram
contains the spectral density of each window:

Sxx(t, f) = |X(t, f)|2 (3.9)

3.7 Continuous Wavelet Transform
Continuous wavelet transform (CWT) computes a convolution of the signal with the scaled
wavelet Φ where the scale |a| changes continuously. The scale only changes the duration
and the bandwidth of the wavelet without changing its shape. The CWT of a time-series
x(t) is given by:

x̂(t, a) =

∫ +∞

−∞
x(τ)|a|−1/2Φ

(
τ − t
a

)
dτ (3.10)

CWT differs from STFT in that it uses short windows at high frequencies and long
windows at low frequencies, instead of using one single analysis window like STFT [20].

8



3.8 Symmetrical Component Transformation

3.8 Symmetrical Component Transformation

In able to utilize the Kalman Filter(KF) the system have to be transformed into state-space
form. The unbalanced three-phase system is first transformed into three balanced systems
named the positive, negative and zero sequence by using the Fortescue Theorem. And then
the three-phase signal is simplified by Clarke transform which project the system onto αβ
stationary frame.

3.8.1 Fortescue Theorem

Fortescue theorem states that 3 unbalanced phasors of a 3-phase system can be resolved
into 3 balanced systems of phasors:

Va = Va,p + Va,n + Va,0

Vb = Vb,p + Vb,n + Vb,0

Vc = Vc,p + Vc,n + Vc,0

(3.11)

Eq 3.11 shows the three-phase unbalanced system Vabc transformed into three bal-
anced sequence components. Vp = [Va,p, Vb,p, Vc,p]

T is the positive sequence, where the
components have the same magnitude and is displaced by 120°with each other.
Vn = [Va,n, Vb,n, Vc,n]T is the negative sequence. The components in the negative se-
quence also have the same magnitude while in a displacement of 120°with each other, but
in the opposite phase sequence than of the positive sequence. V0 = [Va,0, Vb,0, Vc,0]T

is the zero sequence, where components are balanced and in phase with each other. A
balanced system has the advantage of reduced required states and the system complexity.

3.8.2 Clarke Transform

Clarke transformation(αβ0 transformation) projects the three-phase system onto the αβ
stationary frame by using the transformation matrix:

Tαβ0 =
2

3


1 −1

2
−1

2

0

√
3

2
−
√

3

2
1

2

1

2

1

2

 (3.12)

When applying Clarke transform to a balanced three-phase system, the 0 component
becomes zero. The transformation matrix can therefore be simplified as:

Tαβ =
2

3

1 −1

2
−1

2

0

√
3

2
−
√

3

2

 (3.13)
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3.9 Discrete Kalman Filter

Kalman filter can be described as an recursive algorithm that enables “linear time-domain
minimum mean-square error filtering.”[2, p.141-147] It is a well established method within
the realm of state estimation and tracking. To apply the Discrete Kalman Filter(DKF), the
system has to be in discrete time and state-space form:

Xk+1 = ΦkXk +Wk

Zk = HkXk + Vk
(3.14)

HereXk is the state vector, Φk is the state-transition matrix, Zk is the measurement vector
and Hk is measurement matrix. Wk and Vk are respectively the process noise and mea-
surement noise.
We start with the a priori estimate X̂−k and try to improve it with the measurement Zk:

X̂k = X̂−k +Kk(Zk −HkX̂
−
k ) (3.15)

The Kalman gainKk minimizes the mean-square estimation error which is obtained through:

Kk = P−k H
T
k (HkP

−
k H

T
k +Rk)−1 (3.16)

Update the error covariance from the a priori P−k :

Pk = (I −KkHk)P−k (3.17)

The we predict the state vector and the error covariance ahead:

X̂−k+1 = ΦkX̂k

P−k+1 = ΦkPkΦTk +Qk
(3.18)

Figure 3.3: Kalman Filter loop [2, P.147]
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3.10 Extended Kalman Filter

Most real life system are considered non-linear, which makes the Kalman Filter described
in section 3.9 not applicable. For non-linear systems, one could us Extended Kalman
Filter for parameter estimation, which is established in [21, p.547-549]. We can write the
non-linear system models as:

xk+1 = fk(xk, uk) + εk

yk = gk(xk) + νk
(3.19)

The prediction step for the a priori states is hence given as:

x̂−k+1 = fk(x̂k, uk) (3.20)

For each step the Jacobian matrices are calculated as:

Fk =
∂fk(x, u)

∂x

∣∣∣
x=x̂k,u=uk

(3.21)

Gk+1 =
∂gk+1(x)

∂x

∣∣∣
x=x̂−

k+1

(3.22)

The a priori error covariance is predicted as:

P−k+1 = FkPkF
T
k +Qk (3.23)

And the Kalman gain is calculated as:

Kk+1 = P−k+1Gk+1(Gk+1P
−
k+1G

T
k+1 +Rk)−1 (3.24)

Update the a posteriori system states and error covariance:

x̂k+1 = x̂−k+1 +Kk+1(yk+1 − gk+1(x̂−k+1)) (3.25)

Pk+1 = (I −Kk+1Gk+1)P−k+1 (3.26)

In the fashion of the original Kalman Filter, these steps(Equation 3.20- Equation 3.26)
are also repeated recursively. With the right tuning it will achieve an accurate state estima-
tion even with distortions and noise in the measurements. It greatly reduces the calculation
burden and provides a way of parameter estimation in non-linear systems.

3.11 Adaptive Kalman Filter

The concept of an Adaptive Kalman filter was established in [22], which is further im-
proved by Anders in [11, p.23] by including a maximum number of iterations for updating

11



Chapter 3. Basic Theory

the Q:

q− = q[k − 1];
Q[k] = q−I;
while i 6= N do

P−[k] = AP [k − 1]AT +Q[k];
K[k] = P−[k]C[k]T (C[k]P−C[k]T +R)−1;
X̂[k] = X̂−[k] +K[k](y[k]− C[k]X̂−[k]);
Ŵ [k] = K[k](y[k]− C[k]X̂−[k]);
q = 1

n

∑n
i ŵi[k]2;

if |q| − |q−| < ε then
break;

end
Q[k] = qI;
q− = q;
i+ = 1;

end
P [k] = (I −K[k]C[k]P−[k]);

Algorithm 1: AKF algorithm
This algorithm is adaptive in the sense that the error covariance is calculated for each

iteration, which gets an improved estimate of the state compared to having just a constant
error covariance.

3.12 Sequence Analysis

Sequence analysis is enabled through the Sequence Analyzer block in Simulink. It ap-
plies Fourier analysis to the three input signals over a sliding window of one cycle of the
specified frequency. It evaluates the phasor values Va, Vb, and Vc at the specified funda-
mental or harmonic frequency. Then the transformation is applied to obtain the positive
sequence, negative sequence, and zero sequence. Sequence Analyzer block outputs the
magnitude and phase of the positive-, negative-, and zero-sequence components of a set
of three balanced or unbalanced signals. Index 1 denotes the positive sequence, index 2
denotes the negative sequence, and index 0 denotes the zero sequence. The signals can
optionally contain harmonics.

V1 =
1

3
(Va + a · Vb + a2 · Vc)

V2 =
1

3
(Va + a2 · Vb + a · Vc)

V0 =
1

3
(Va + Vb + Vc)

(3.27)

Where Va, Vb, Vc are the three voltage phasors at the specified frequency, and a=ej2π/3

=1∠120 is the complex operator.
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3.13 Genetic Algorithm
The genetic algorithm is a method for solving optimization problems that is inspired by
the process of natural selection. Selection of solution(population) relies on three genetic
algorithms: elitism, crossover and mutation. By starting off with an initial population, we
apply the genetic algorithms for generations until the population has converged, meaning
that the newly produce solution(offspring) does not differs significantly from previous
solutions(parents).

3.14 Real-Time
Real-time in the context of system estimation and computing means that it has guaranteed
or predictable response time. It is characterized by high reliability and efficiency and
limited computational load for each step.

3.15 Generalized Nyquist Stability Criterion
The generalized Nyquist stability criterion is introduced Desoer(1980) [23] and later es-
tablished as a impedance-based stability analysis method in Sun(2011) [4]. By defining
the system in a source and a load subsystem, the transfer function from the source voltage
to the load voltage can be written as:

H(s) =
VS(s)

Vload(s)
=

1

1 + ZS(s)
Zload(s)

(3.28)

The interconnected source-load system stability can be then determined by applying
the Nyquist stability criterion to the ratio between the source output impedance ZS and
the load input impedance Zload. The system is stable if the Nyquist plot of the impedance
ratio does not have any encirclement of the point -1. It can also be calculated by finding
ω180 that make ∠ ZS(jω180)

Zload(jω180)
= −180° and check if | ZS(jω180)

Zload(jω180)
| < 1 [24].
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Chapter 4
Summary of Previous Work

This thesis is a continuation of the specialization project Smart grid parameter identifica-
tion Methods of fall 2018, which established that AKF is a fitting method for harmonics
parameter identification. This chapter includes the main results and findings of the spe-
cialization project.

The specialization project Smart grid parameter identification Methods studied the use
of Fast Fourier Transform, Short-Time Fourier Transform, Continuous Wavelet Transform,
Hilbert-Huang Transform, and Adaptive Kalman Filter for parameter identification of the
harmonics. These methods are tested on both synthetic composite signal and complex
smart grid signal.

4.1 Synthetic Composite Signal
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Figure 4.1: The harmonic signal components and the composite signal that contains them.
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The synthetic composite signal in Fig 4.1 contains the 1th(the fundamental frequency),
3th(intermittent), 5th(intermittent) and the 6.5th(non-characteristic) harmonics.

As seen in Fig 4.2, the FFT were excellent in pinpointing the exact frequency of the
components, but unable to extract the time information of the intermittent signals. STFT
and CWT are similar in that both visualizes the components in time and frequency spec-
trum. STFT do suffers a time and frequency accuracy trade off, which is problematic
for non-stationary signals. CWT does not suffer from this time-frequency trade off but
choosing a fitting wavelet could be a challenge. Additionally, CWT suffers from the "edge
effect" which could potentially cause information loss at the start and end of the signal.

The AKF requires more prior knowledge about the system than the other methods. The
parameter such as fundamental frequency, initial input co-variance, orders of harmonics
etc has to be known in order to initialize the AKF. In return the AFK performs very well,
especially with capturing the dynamics in the signals(Fig 4.3). Additionally it is able to
provides the magnitude and phase angle of each component in real time, which is desired
property for system monitoring and control.
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Figure 4.2: The FFT of the composite signal.

Figure 4.3: Magnitude and phase angle of the identified harmonics for the synthetic signal.
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4.2 Complex Smart Grid Signal
The methods were tested further by applying them to signal data from simulation of a
complex smart grid system. Fig 4.4 shows the part of the system that is being analyzed,
which is powered by distributed DC power sources. These DC sources are then converted
to AC through a single three-phase Voltage Source Converter (VSC), which has a switch-
ing frequency of 2.85 kHz. Measurements are done at the PCC on the AC side, where the
three-phase current and voltage are sampled at 10kHz for a duration of 4 seconds. The
system is stabilized and is therefore stationary. The three phases signal is also balanced
and noise free.

VSC

PV

Battery storage

DC

DC

A

B

C

AC

Z

Z

Z

fV SC = 2:850kHz

ffundamental = 50Hz

Figure 4.4: Grid schematics. The grid is supplied by DC sources that is converted to AC through
the VSC.

Fig 4.5 reveals that the most significant components varies for the voltage and current
signal. Beside the 1th order harmonic, 55th, 59th, 85th and the 87th order harmonics are
significant in both voltage and current, which gives us the basis to focus on these four
harmonics later in the AKF.
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Figure 4.5: FFT of the grid voltage and current with the x-axes showing the order of the harmonics.

Due to the drastic difference between the fundamental frequency magnitude and the
rest of the frequency components, both STFT and CWT failed to visualize the harmonics
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in the current signal with linear scaling. For STFT this can be resolved by using a loga-
rithmic scaling instead. However, the logarithmic scaling makes it difficult to pinpoint the
exact magnitude of the signals.
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Figure 4.6: Zooming in on the magnitude of higher order harmonics detected in the grid current
using the AKD. The measurement covariance R = 10−3
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Figure 4.7: Magnitude of higher order harmonics detected in the grid current using the AKF with
measurement covariance R = 10−4

The AKF performed well and is able to give us the magnitude and phase angle of the
specific harmonics it is tracking. Among all the methods tested AKF requires the most
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amount of priori knowledge about the signal, such as orders of the harmonics, measure-
ment covariance matrix and initial error covariance matrix. Tuning the parameters of the
AKF could be a challenge as seen in Fig 4.6 and Fig 4.7, the initialized value plays a big
roll in its performance.

4.3 Methods Viability for Stability Analysis
Considering the aspect of parameter identification, the AKF performed the best among all
the methods tested. It is responsive and has the added bonus of providing the harmonics
phase angle. If we can overcome the challenge of tuning and initializing the AKF, it is
very much suitable for stability analysis.

Furthermore, AKF is an on-line method, meaning it runs in real time. It has the benefit
of detecting abnormalities in the system without delay and gives ground to on-line stabil-
ity analysis. By following the superposition principle, we can use AKF to identify each
harmonic in both voltage and current, and divide them through complex division to obtain
individual impedance:

Zith =
Vith
Iith

(4.1)

Where i is the order of the harmonics.
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Chapter 5
Proposed Parameter Identification
Methods

In this chapter two operation points is defined for our system, and parameter identification
methods for respective operation points are developed. For the operation point on the
three-phase bus, Exended Kalman Filter(and it adaptive variant) and Adaptive Kalman
Filter is utilized. While for the operation point on the DC bus, a harmonics modeling
method is utilized.

For our experiments we are analyzing the three-phase diode bridge rectifier, which are
one of the most commonly used devices in power systems. It is often used for battery
charger. It consists of three parts: the three-phase source, diode bridge and the DC load
Zdc, where the diode bridge together with Zdc makes up the load subsystem. This is a typ-
ical source—load system, and is suitable for applying Nyquist stability criterion to study
its stability. The three phases are assumed to be balanced.

Va
 

 

L2

C

Source Load

Zs Zload

L1

R

Zdc
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Figure 5.1: Three phase diode rectifier system model.

The initialized value for the system elements are shown in Tab 5.1.

Component Value

L1 5× 10−3H
L2 5× 10−3H
C 3× 10−4F
R 10Ω

Table 5.1: System components values

The following sections will propose different methods of obtaining the impedance of
the source and load subsystems.

5.1 Using the Three Phase PCC As the Operation Point

Fig 5.2 shows the equivalent system model of the three-phase rectifier. We use the three-
phase bus between the three-phase source and the diode bridge as the Point of Common
Coupling(PCC),

Va
 

 

L2

C

PCC

L1

R

ipcc

Vpcc

Load

Zload

Figure 5.2: Equivalent system impedance model with the operation point at the AC side.

The measurements at the PCC are taken after the system is in steady state.
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Figure 5.3: The measured three-phase PCC voltage and current signal.

The 6-pulse rectifier has harmonics naturally embedded in it as seen in Sec 3.1.1, which
are in the order of 6kfnom±1. Doing a FFT analysis on the voltage signal also quickly
reveals the underlying harmonics.
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Figure 5.4: The FFT of voltage signal.
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Figure 5.5: The lower order harmonics of voltage signal.

Fig 5.4 shows that the magnitude of the harmonics decreases with the increase of its order.
This means that the lower order harmonics(Fig 5.5) are the most critical for the states
estimation.

5.1.1 Parameter Estimation based on Extended Kalman Filter

Hoffmann(2014)[8] introduced a parameter estimation method based on Extended Kalman
Filter(EKF). It aims to utilize the non-linear property of EKF to perform a minimal in-
vasive impedance estimation on a time-variant and frequency-dependent power system,
which consists of non-linear loads.

In Hoffmann’s paper, the system is modeled to estimate the source output impedance
Zs, where as for our system we want to estimate the load input impedance Zload. For our
estimation the changes in the system model is reflected in the One-line diagram seen in Fig
5.6. Thevenin equivalent is used to derive this equivalent system impedance model. This
diagram shows the equivalent three-phase diode rectifier system impedance seen from the
connection point(PCC) of the overall network. The source output impedance (Zs) can be
derived separately using the analytical impedance model.
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Three-phase 
source 

VloadVpcc

ipcc
Rload Lload

Load

Figure 5.6: One-line diagram of the equivalent system impedance model.

From the diagram, we can deduct the equation below:

LS
dipcc
dt

+RSipcc = Vpcc − Vload (5.1a)

LS
dipcc
dt

= −RSipcc + Vpcc − Vload (5.1b)

dipcc
dt

= −RS
LS

ipcc +
Vpcc
LS
− Vload

LS
(5.1c)

Which in αβ frame becomes:

d

dt

[
ipcc,α
ipcc,β

]
=

−RSLS 0

0 −RS
LS

[ipcc,α
ipcc,β

]
+

 1

LS
0

0
1

LS

[Vpcc,α
Vpcc,β

]

+

− 1

LS
0

0 − 1

LS

[Vload,α
Vload,β

]
(5.2)

Following the observer reformulation we obtain:

d

dt


ipcc,α
ipcc,β
Vpcc,α
Vpcc,β
Vload,α
Vload,β

 =



−RS
LS

0
1

LS
0 − 1

LS
0

0 −RS
LS

0
1

LS
0 − 1

LS
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


︸ ︷︷ ︸

:=A


ipcc,α
ipcc,β
Vpcc,α
Vpcc,β
Vload,α
Vload,β

 (5.3)
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And the measurement vector is:

y =


ipcc,α
ipcc,β
Vpcc,α
Vpcc,β

 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0


︸ ︷︷ ︸

=G


ipcc,α
ipcc,β
Vpcc,α
Vpcc,β
Vload,α
Vload,β

 (5.4)

Through superposition the equivalent Load subsystem voltage Vload is modeled using
the harmonics: positive and negative sequence fundamental voltage VS,1+ and VS,1−; 5th
harmonic VS,5−(negative sequence); And 7th harmonic VS,7+(positive sequence). The
final discretizied state space formulation with the extended disturbance model is:


ipcc,α(k + 1)
ipcc,β(k + 1)
Vpcc,α(k + 1)
Vpcc,β(k + 1)

Vload1+,α(k + 1)
Vload1+,β(k + 1)
Vload1−,α(k + 1)
Vload1−,β(k + 1)
Vload5−,α(k + 1)
Vload5−,β(k + 1)
Vload7+,α(k + 1)
Vload7+,β(k + 1)
Rload(k + 1)
Lload(k + 1)



=



[1− TS Rload(k)Lload(k)
]ipcc,α(k)− TS

Lload(k)
Vpcc,α(k) + TS

Lload(k)
[Vload1+,α(k) + Vload1−,α(k) + Vload5−,α(k) + Vload7+,α(k)]

[1− TS Rload(k)Lload(k)
]ipcc,β(k)− TS

Lload(k)
Vpcc,β(k) + TS

Lload(k)
[Vload1+,β(k) + Vload1−,β(k) + Vload5−,β(k) + Vload7+,β(k)]

Vpcc,α(k)
Vpcc,β(k)

Vload1+,α(k)cos∆ϑ− Vload1+,β(k)sin∆ϑ
Vload1+,α(k)sin∆ϑ+ Vload1+,β(k)cos∆ϑ
Vload1−,α(k)cos∆ϑ+ Vload1−,β(k)sin∆ϑ
−Vload1−,α(k)sin∆ϑ+ Vload1−,β(k)cos∆ϑ
Vload5−,α(k)cos5∆ϑ+ Vload5−,β(k)sin5∆ϑ
−Vload5−,α(k)sin5∆ϑ+ Vload5−,β(k)cos5∆ϑ
Vload7+,α(k)cos7∆ϑ− Vload7+,β(k)sin7∆ϑ
Vload7+,α(k)sin7∆ϑ+ Vload7+,β(k)cos7∆ϑ

Rload(k)
Lload(k)


︸ ︷︷ ︸

=f(x(k))



ipcc,α(k)
ipcc,β(k)
Vpcc,α(k)
Vpcc,β(k)

Vload1+,α(k)
Vload1+,β(k)
Vload1−,α(k)
Vload1−,β(k)
Vload5−,α(k)
Vload5−,β(k)
Vload7+,α(k)
Vload7+,β(k)
Rload(k)
Lload(k)



+



qipcc,α(k)
qipcc,β(k)
qVpcc,α(k)
qVpcc,β(k)
qVload1+,α(k)
qVload1+,β(k)
qVload1−,α(k)
qVload1−,β(k)
qvload5−,α(k)
qVload5−,β(k)
qVload7+,α(k)

qVload7+,β(k)
qRload(k)
qLload(k)



(5.5)

y(k) =


ipcc,α(k)
ipcc,β(k)
Vpcc,α(k)
Vpcc,β(k)

 =


1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0


︸ ︷︷ ︸

=G


ipcc,α(k)
ipcc,β(k)
Vpcc,α(k)
Vpcc,β(k)
Vload,α(k)
Vload,β(k)

+


ripcc,α(k)
ripcc,β (k)
rVpcc,α(k)
rVpcc,β (k)


(5.6)

Where TS is the sampling time and ∆ϑ is the rotation angle resolution:

∆ϑ = 2πfgridTS (5.7)
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5.1 Using the Three Phase PCC As the Operation Point

The Matlab script for EKF is shown in appendix ,and the initialized parameters for the
EKF is shown in Tab 5.1.1:

Parameter Description Initialized value
TS Sampling time 5× 10−5I
fgrid Grid fundamental frequency 50Hz
P0 Initial error covariance matrix 1× 10−9I
R Measurement covariance matrix 5× 10−5I
Q0 Initial input covariance matrix 1× 10−9I
x0 Initial state 0

Table 5.2: Initialized EKF parameters for harmonics estimation

The obtained estimation of the states Vload5−,α, Vload5−,β , Vload7+,α(k), Vload7+,β us-
ing AEKF is shown in Fig 5.7.
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Figure 5.7: The obtained 5th and 7th AC voltage harmonics in αβ frame by using EKF.

The αβ-phase of the voltage harmonics states is then be used to calculate its amplitude

27



Chapter 5. Proposed Parameter Identification Methods

and phase angle:

Ai =
√
V 2
loadi,α + V 2

loadi,β

φi = arctan(
Vloadi,α
Vloadi,β

) (5.8)

Where i is the order of harmonics.

The calculated harmonics amplitude and phase angle is shown in Fig 5.8.
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Figure 5.8: The obtained amplitude of 5th and 7th AC voltage harmonics by using EKF. P0 = 10−9

Discussion

Tuning EKF could be a difficult task. Finding the optimal parameters for the EKF is
challenging especially due to the trade-off between speed and accuracy caused by initial
error covariance matrix P0. Fig 5.9 uses 10−4 for P0, and when comparing to Fig 5.8 it
can be observed that value of P0 makes significant impact on the performance. Lower P0

gives more accurate value while higher P0 gives better response time.
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5.1 Using the Three Phase PCC As the Operation Point
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Figure 5.9: The obtained amplitude of 5th and 7th AC voltage harmonics by using EKF. P0 = 10−4

This matter is brought up in [25, p.3]. Observe in Fig 5.7 that there are significant
amount of oscillation in the αβ-phase of the voltage harmonics states. This is an indication
of the Q and R being sub-optimal as they are constants through out the estimation process.

One option is to resolve this problem is to find the optimal Q and R using a Genetic
Algorithm. But it increases the computational load and complexity. It is much more
appealing to resolve this problem by making the input covariance matrix Q adaptive, which
is discussed in the next section.

5.1.2 Parameter Estimation based on Adaptive Extended Kalman Fil-
ter

Adaptive Extended Kalman Filter(AEKF) is discussed in paper such as Akhlaghi(2017)
[26], which uses a forgetting factor 0 6 α 6 1 to adaptively estimate the covariance ma-
trices. However the forgetting factor α could be tricky to determine.
Our AEKF implementation is detailed in Appendix, and it is inspired by the AKF al-
gorithm by Anders in [11, p.23] and the self tuning algorithm in Jose(2006)[22]. The
measurement innovation term d = yk+1− gk+1x̂

−
k+1 multiplied with the Kalman constant

is our basis for estimating the model error ω̂:

ˆωk+1 = Kk+1(yk+1 − gk+1x̂
−
k+1) (5.9)

Which is used for calculating the estimated model error covariance:

Q̂k =
1

n

n∑
i

ŵ2
k,i · I = q̂ · I (5.10)
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Chapter 5. Proposed Parameter Identification Methods

Where q̂ is the diagonal element of Q̂, and n is the number of elements in ω̂k. To find
the optimal Q̂, the steps below will be repeated until the stopping criteria is satisfied(j is
the covariance update iteration index):

P j−k+1 = FkPkF
T
k + Q̂jk (5.11)

Kj
k+1 = P j−k+1Gk+1(Gk+1P

−
k+1G

T
k+1 +Rk)−1 (5.12)

x̂jk+1 = x̂−k+1 +Kj
k+1(yk+1 − gk+1(x̂−k+1)) (5.13)

ω̂j+1
k+1 = Kj

k+1(yk+1 − gk+1x̂
j
k+1) (5.14)

Q̂k
j+1

=
1

n

n∑
i

(ŵj+1
k+1,i)

2 · I (5.15)

until |q̂j+1 − q̂j | < ε or reached the maximum number of iterations N .
The initialized parameters for the AEKF is shown in Tab 5.1.2:

Parameter Description Initialized value
TS Sampling time 5× 10−5I
fgrid Grid fundamental frequency 50Hz
P0 Initial error covariance matrix 6× 10−4I
R Measurement covariance matrix 1× 10−5I
Q0 Initial input covariance matrix 1× 10−3I
x0 Initial state 0
ε Covariance estimation error threshold 1× 10−8

N Maximum iterations for each time-step 10

Table 5.3: Initialized AEKF parameters for harmonics estimation
The obtained estimation of the states VS5−,α, VS5−,β , VS7+,α(k), VS7+,β using AEKF

is shown in Fig 5.10
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Figure 5.10: The obtained 5th and 7th harmonics in αβ frame by using AEKF.
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The calculated harmonics amplitude and phase angle is shown in Fig 5.11.
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Figure 5.11: The obtained amplitude of 5th and 7th harmonics by using AEKF.

To verify the accuracy of the AEKF, we use the Sequence Analyzer block in Simulink.

Figure 5.12: The obtained 5th and 7th voltage harmonics amplitude using Sequence Analyzer.
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Discussion

Comparing Fig 5.10 to Fig 5.8, the oscillations in αβ phases are no longer present in the
AEKF. The response of AEKF is also much faster, as it reaches the correct state value
instantly with some minor oscillation. The trade-off between accuracy and response time
are now minimized by utilizing an adaptive input covariance matrix Q. It also greatly sim-
plifies the tuning process. Tuning the two variables P0 and R is straight forward through
trial and error. The effect of each variable on the estimation result is easily detectable and
therefore finding the optimal value is much easier.

The Sequence Analyzer indicates that the amplitude of the 5th and 7th voltage har-
monic to be respectively 57.05 and 37.12. Reading off from Fig 5.11 the 5th and 7th
voltage harmonic amplitude are estimated to be 57 and 29. AEKF estimates the 5th order
harmonic accurately, but the 7th order harmonic is off by an error of 21%. This could
be cause by the non-modeled higher order harmonics which is not included in this im-
plementation AEKF. For both EKF and AEKF the state transformation matrix A is not
an identity matrix, which means the states are dependent on each other. This raises the
possibility of the states accuracy being negatively impacted when higher order harmonics
is not included.

Another reason for the performance issues in AEKF and EKF could stem from the fact
that EKFs model assumes that the system load is inductive-resistive. Our actual system
load also includes capacitive component, which is not taken into consideration. Adding
capacitive components to the system model will add more complexity to the system model.
The usage of jacobian for the calculation of the linearized transfer function may be a minor
factor in the performance issues and contribute to deviance in the results.

5.1.3 Parameter Estimation based on Adaptive Kalman Filter
Another alternative for estimating the input impedance for the load subsystem by using
the Adaptive Kalman Filter(AFK) algorithm, which is described in section 3.11. It differs
from the EKF in that it utilizes a Random Walk model for the states transformation instead
of the non-linear state transformation. This means that the state transformation matrix A
is an identity matrix. For AKF the system is formulated in state-space form by applying
Fortescue Theorem(Ch 3.8.1) and Clarke Transformation(Ch 3.8.2) on the three-phase
signal:

Va(t) = Aa(t)cos(ω(t)t+ φa(t))

Vb(t) = Aa(t)cos(ω(t)t+ φa(t)− 2π

3
)

Vc(t) = Aa(t)cos(ω(t)t+ φa(t) +
2π

3
)

(5.16)

, one would obtain:[
Vα(t)
Vβ(t)

]
=
∑
i∈hp

[
cos(iω(t)) −sin(iω(t))
sin(iω(t)) cos(iω(t)))

] [
Ai,pcos(φi,p)
Ai,psin(φi,p)

]

+
∑
i∈hn

[
cos(iω(t)) −sin(iω(t))
−sin(iω(t)) −cos(iω(t)))

] [
Ai,ncos(φi,n)
Ai,nsin(φi,n)

]
(5.17)
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5.1 Using the Three Phase PCC As the Operation Point

By writingAicos(φi) andAisin(φi) as the system states xi,1 and xi,2, and also writing
Vα(t) and Vβ(t) as the system measurement y, we obtain the system state-space model for
our AKF in discrete time[27, p.2] k:

y[k] =
∑
i∈hp

[
cos(iω∆tk) −sin(iω∆tk)
sin(iω∆tk) cos(iω∆tk)

] [
xi,1
xi,2

]
k

+
∑
i∈hn

[
cos(iω∆tk) −sin(iω∆tk)
−sin(iω∆tk) −cos(iω∆tk)

] [
xi,1
xi,2

]
k

(5.18)

[
xi,1
xi,2

]
k+1

=

[
1 0
0 1

] [
xi,1
xi,2

]
k

(5.19)

Where the three phase synthetic signal is measured at the three phase PCC close to
the diode bridge(as seen in Fig A.1). It is then transformed into αβ frame using Clarke
transformation (Ch 3.8.2) and fed into the AKF as the measured state y[k]. The AKF is
then able to compute and estimate the state X̂ , which can be used to extract the magnitude
and phase angle of the ith harmonic:

Ai =
√
x2i,1 + x2i,2

φi = arctan(
xi,2
xi,1

)
(5.20)

The ith harmonics can also be expressed in polar form and its angel representation:

Xi = Aie
jφi = Ai∠φi (5.21)

The Matlab script and for the AKF initialization is shown in Appendix B.3.
The initialized AKF parameters for the voltage signal is shown in Tab 5.1.3. The tuning
process is straight forward with R and P being the main factor for the performance. Trough
trial and error it is observed that decreasing R will lead to less oscillation in the stabilized
states, but allowing more "spikes" in the initial transient period. While decreasing P cause
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Chapter 5. Proposed Parameter Identification Methods

the states to stabilize faster.

Parameter Description Initialized value
TS Sampling time 5× 10−5I
fgrid Grid fundamental frequency 50Hz
Hp Set of positive sequence harmonics [1, 7, 13]
Hn Set of negative sequence harmonics [1, 5, 11]
P0 Initial error covariance matrix 1× 10−3I
R Measurement covariance matrix 1× 10−9I
Q0 Initial input covariance matrix 0
x0 Initial state 0
ε Covariance estimation error threshold 1× 10−9

N Maximum iterations for each time-step 10

Table 5.4: Initialized AKF parameters for harmonics estimation in grid voltage signal

The result of the voltage harmonics eatimation matches very well with the Sequence
Analysis in Fig 5.14. Values obtained through both methods deviates only around 0.2,
which indicates a correct AKF model. The AKF is responsive, as the states stabilizes
after 0.04 seconds. The estimated harmonics phase angle also coincides well with the
Sequence Analyzer, with a deviance of 6 0.02. Observe that there is a periodic spikes in
the 13th harmonics phase estimation that swings between −π and π. This is because the
phase angle is calculated by Four-quadrant inverse tangent function. In cases where xi,2
is negative and xi,1 fluctuates between positive and negative values, the phase angle will
also fluctuated between the second and third quadrant.
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5.1 Using the Three Phase PCC As the Operation Point

(a) The obtained amplitude and phase angle of
5th, 7th, 11th and 13th voltage harmonics using
AKF

(b) Zoomed in around 0.5s

Figure 5.13: AKF voltage harmonics estimation

(a) The obtained 5th, 7th, 11th and 13th
voltage harmonics amplitude using Se-
quence Analyzer.

(b) The obtained 5th, 7th, 11th and
13th voltage harmonics phase using Se-
quence Analyzer.

Figure 5.14: Sequence Analysis of the PCC voltage
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(a) The obtained amplitude and phase angle of
5th, 7th, 11th and 13th current harmonics using
AKF

(b) Zoomed in around 0.5s

Figure 5.15: AKF current harmonics estimation

Next we perform AKF on the three phase PCC current. The initialized parameters for
the AKF is shown below. The estimated current harmonics are displayed in 5.15.

Parameter Description Initialized value
TS Sampling time 5× 10−5I
fgrid Grid fundamental frequency 50Hz
Hp Set of positive sequence harmonics [1, 7, 13]
Hn Set of negative sequence harmonics [1, 5, 11]
P0 Initial error covariance matrix 1× 10−5I
R Measurement covariance matrix 1× 10−10I
Q0 Initial input covariance matrix 0
x0 Initial state 0
ε Covariance estimation error threshold 1× 10−9

N Maximum iterations for each time-step 10

Table 5.5: Initialized AKF parameters for harmonics estimation in grid current signal
After obtaining the magnitude and phase of 5th, 7th 11th and 13th order harmonics in

both voltage and current, we can now calculate the harmonics impedance through complex
division:

Zith =
Vith∠Φith
Iith∠φith

=
Vith
Iith

∠(Φith − φith) (5.22)

The estimated harmonics impedance is shown in Tab 5.6
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5.1 Using the Three Phase PCC As the Operation Point

Harmonics Order Voltage(V) Current(A) Impedance(Ω)

1(positive) 309.19∠−0.24 52.68∠−0.48 5.87∠0.24
5 57.08∠−1.11 7.22∠0.48 7.9∠−1.59
7 37.13∠−1.79 3.37∠−0.18 11.03∠−1.61

11 19.14∠−2.33 1.10∠−0.71 17.33∠−1.62
13 16.42∠−3.06 0.81∠−1.45 20.37∠−1.61

Table 5.6: AKF harmonics impedance estimation

Discussion

This AKF differs from previous EKFs methods in that it utilizes a random-walk model for
the state transformation matrix, meaning that the A matrix is an identity matrix(Eq 5.19).
The states are therefore modeled as being independent from each other. The AKF has
proven give much better estimation than the AEKF, which indicates that AKF models the
system more accurately.
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Figure 5.16: Plot of characteristic harmonics impedance.

Fig 5.16 shows the obtained harmonics impedance amplitude plotted against the har-
monics order. Observe that the amount of points are scarce, which is caused by the nature
of the characteristic harmonics(6k ± 1). The impedance information in between them are
unknown and could lead to incorrect evaluation of the system dynamic. We wish to ex-
plore the possibilities of gaining more information of the non-characteristic harmonics.
One possibility is to use the impedance mapping method from Bing(2009)[7], which is
discussed in the next section.
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5.2 Use the DC Side PCC As the Operation Point

Va
 

 

L2

C

PCC

L1

R

ipcc

Vpcc

Zload

Figure 5.17: Equivalent system impedance model with the operation point at the DC side.

Here the operation point is set at the DC side close to the diode bridge. The DC load
impedance Zdc can be found by either using complex division between vpcc and ipcc, or
the analytic model of the load components.

Zdc(ω) is the analytic expression of DC impedance of angular frequency ω. For our
system where there is a inductor L2 in series with a parallel of a capacitor C and a series
of inductor L1 and resistor R, it is expressed as:

Zdc(ω) = ωL2 +
1

ωC +
1

R+ ωL1

(5.23)

5.2.1 Harmonics Linearization Mapping Method
The input impedance of the load subsystem Zload could also be modeled using the concept
Harmonics Linearization, which is introduced in Sun(2008)[28] and further generalizes in
Sun(2009)[29]. It utilizes analytical mapping functions S that describe voltage and current
transfer through general multi-pulse rectifiers, such that the load input impedance can be
expressed as a function of the DC impedance Zdc as shown in Fig 5.17. The harmonic
linearization specifically for three-phase six-pulse rectifiers is detailed in Bing(2009)[7].
This method assumes that the DC current is continuous, and that the diodes are ideal.

The Positive-sequence load input impedance is expressed as:

Zload−p(s) =
π2

9

{ ∞∑
m=−∞

[
1

(1− 36m2)

1

Zdc(j12πmfnom)

+
1

(1− 6m2)

1

Zdc(s+ j2π(6m− 1)fnom)

]}−1 (5.24)
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The Negative-sequence load input impedance is expressed as:

Zload−n(s) =
π2

9

{ ∞∑
m=−∞

[
1

(1− 36m2)

1

Zdc(j12πmfnom)

+
1

(1 + 6m2)

1

Zdc(s+ j2π(6m+ 1)fnom)

]}−1 (5.25)

The calculated AC impedance using Eq 5.24 and Eq 5.25 are shown in Fig 5.18 and
Fig 5.6, where the system components are initialized as in Tab 5.1. The Matlab code for
calculating the AC impedance is shown in Appendix B.4.
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Figure 5.18: Mapped load input impedance using harmonics linearization.

Harmonics Order Impedance Magnitude(Ω)

1th 5.53
5th 6.09
7th 7.22

11th 8.44
13th 11.22

Table 5.7: Load input impedance harmonics magnitude

5.2.2 Discussion
Harmonics linearization method is able to map the impedance of an entire frequency range
and thus provides more information on the system impedance than AKF. Being able to
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analyze the system impedance over a large frequency range will bring valueble insight into
the system stability and behavior. However, comparing the harmonics impedance obtained
through AKF in Tab 5.6 and harmonics linearizaiton modeling in Tab 5.7, it shows higher
discrepancies for higher order of harmonics. The author would argue that this is caused
by the inaccuracy of the harmonics linearization for higher frequencies. The harmonics
linearization method is based on so a called Small signal method, which assumes small
variation in the voltage and current.

In comparison AKF is a much more accurate method of system impedance estimation.
By directly measuring at the PCC and extracting the harmonics from the signal measure-
ment, the AKF is also more robust against disturbances and discrepancies. We will explore
another possibility of gaining more information on the non-characteristic impedance using
the AKF and signal injection, which is discussed in the next chapter.
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Chapter 6
Transient analysis

In this chapter the transient response of the system will be analyzed.
The system will be injected with a step function in order to analyze its step response.

Appendix A.2 shows the Simulink implementation of the voltage step injection. It is done
with a series connected Controlled Voltage Source block on the load bus. The input of the
Controlled Voltage Source is a step function of 100 in magnitude and step time t = 0.5.

6.1 Expanded AKF

In order to extract the impedance of more frequencies, we expand the states of AKF to
include non-characteristic harmonics.

Parameter Description Initialized value
TS Sampling time 5× 10−5I
fgrid Grid fundamental frequency 50Hz
Hp Set of positive sequence harmonics [1, 2, 3, 4, 5, 6, · · · , 20]
Hn Set of negative sequence harmonics [1, 2, 3, 4, 5, 6, · · · , 20]
P0 Initial error covariance matrix 1× 10−2I
R Measurement covariance matrix 1× 101I
Q0 Initial input covariance matrix 0
x0 Initial state 0
ε Covariance estimation error threshold 1× 10−9

N Maximum iterations for each time-step 10

Table 6.1: Initialized Expanded AKF parameters for harmonics estimation in grid voltage signal
The AKF is now configured to estimate both the positive and negative sequence for up

to the 20th harmonic.
To verify the its accuracy, we apply the expanded AKF to our orignal grid voltage

signal without the perturbation.
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Figure 6.1: Estimated voltage harmonics with the expanded states.

As expected, we observe the steady state value of 1th, 7th, 13th, 19th harmonics in
the positive sequence and 5th, 11th 17th harmonics in the negative sequence, with the rest
being zero. The value of these characteristic harmonics also have the same value as we
have obtained before, which further confirms its accuracy.

6.2 Step Function

A step function is also known as Heaviside step function. It can be defines as a piecewise
constant function:

f(x) =


0 if x < t
1
2 if x = t

1 if x > t

Where t is the step time.
This will induce a controlled perturbation to the system.
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6.2 Step Function

(a) Obtained voltage harmonics with the signal in-
jection

(b) Zoomed in around 0.52 s

Figure 6.2: Expanded AKF of voltage harmonics estimation

(a) Obtained current harmonics with the signal in-
jection

(b) Zoomed in around 0.52 s

Figure 6.3: Expanded AKF of current harmonics estimation
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6.3 Perturbed System Estimation result

The estimation results are shown in Fig 6.2 and Fig 6.3. Observe that the steady state(in
voltage and current) of the characteristic harmonics alters after the signal injection. The
calculated impedance of the 1th harmonic(fundamental frequency) is decreased due to the
injection, while the impedance of the rest of the characteristic harmonics(5th, 7th, 11th,
13th, 17th, 19th) remains the same.

During the transient period between 0.5 and 0.54 seconds, there is also induced re-
sponses of the non-characteristic harmonics. We will look into the possibility of extracting
harmonics impedance using these signals.

6.4 Harmonics Impedance Extraction

For the characteristic harmonics we can extract its impedance by simply dividing the
steady state voltage with the steady state current. For non-characteristic harmonics how-
ever, the signal responses are not in steady states and are varying with time. To resolve
this time dependency problem, we will extract the harmonics impedance using an average
method. A similar impedance extraction using average mathematical model is discussed in
Khan(2018)[30]. We will use the average values of the entire transient period to calculate
the respective impedance of the harmonics.
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Expanded AKF impedance estimation using signal injection - Positive Sequence

Figure 6.4: Calculated impedance of the positive sequence using average method. Characteristic
harmonics are marked in red.
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Expanded AKF impedance estimation using signal injection - Negative Sequence

Figure 6.5: Calculated impedance of the negative sequence using average method. Characteristic
harmonics are marked in red.

6.5 Discussion
Both Fig 6.4 and Fig 6.5 shows an upward trend of the impedance with the increase of
harmonics order. The impedance of the characteristic harmonics(marked in red circle)
fit in well with the non-characteristic harmonics. The points are approximately linear in
structure and resembles a cyclic pattern in a period of 6 points, which corresponds with
the 6-pulse of the rectifier.

Outliers in the plots seems to be correlated. In Fig 6.4, the positive sequence harmonics
of order 4, 10 and 16 have much lower magnitude than the linear structure of the plot. In
Fig 6.5, the negative sequence harmonics of order 4, 10 and 16 have higher magnitude
than the linear structure of the plot.

This type of step change injection on the load bus resembles a load change. This gives
way for analyzing the transient caused by load side changes instead of forced injection,
given that one is able to isolated the event from rest of the grid activities.

The injected voltage in our case has a magnitude of 100, which is a relatively high
perturbation value compared to the nominal DC voltage Vdc for our system which is around
500V. Smaller perturbation magnitude will impact the estimation accuracy especially for
higher order harmonics as the transient response become to small to estimate precisely.

Observe in Fig 6.3b and Fig 6.2b that higher order harmonics has significantly lower
readings. Estimation of harmonics with order higher than 20 will be significantly distorted
due to their lower amplitude.
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Chapter 7
Conclusion and Future Work

In this master’s thesis, several parameter identification methods that aims to estimate the
harmonics impedance are proposed and verified with the sequence analyzer. A further
transient analysis is done by a load side signal injection.

First, three Kalman filter based on-line identification methods are implemented. These
methods are tested on a three-phase rectifier system. All three methods shows varying
degree of accuracy and responsiveness. The methods with adaptive error covariance holds
better performance, while the AKF performed the best overall. It became apparent that
the the impedance information provided by the naturally embedded characteristic harmon-
ics is not sufficient for the system impedance assessment. Therefor an impedance map-
ping method based on harmonics linearizaiton was also implemented to mapped out the
impedance of an entire frequency band, but it lacked accuracy for higher order of harmon-
ics.

For further assessment of non-characteristic harmonics impedance, we performed a tran-
sient analysis of the load-side signal injected system. We used the expanded AKF to es-
timated the parameters and calculated the impedance using average method, which shows
promising results.

Some problems and possibilities are still left unexplored, and could provide some interest-
ing topics for future papers and master’s thesis:

• This experiment has been conducted in a noise-free environment. The on-line iden-
tification methods could be further tested with noise and distortions.

• The impedance models and estimated impedance are presented, but the actual stabil-
ity analysis was not performed in this thesis. Future papers is encourages to calculate
the system impedance based on the Nyquist stability criterion.

• The transient analysis was based on a load side signal injection. The author sug-
gests further exploration of potentially using actual load-change induced transients
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to calculate harmonics impedance.
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Appendix A
Matlab Simulink models

A.1 Three phase diode rectifier model
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Figure A.1: The three-phase diode rectifier model
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A.2 Step function injection
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Figure A.2: The simulink model of the series injection of a voltage step on the load bus.
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Appendix B
Matlab Code

B.1 Extended Kalman Filter Matlab Function implemen-
tation

By Yi Cao at Cranfield University, 02/01/2008

1 function [x,P]=ekf(fstate,x,P,hmeas,z,Q,R)
2 % EKF Extended Kalman Filter for nonlinear dynamic systems
3 % [x, P] = ekf(f,x,P,h,z,Q,R) returns state estimate, x and state ...

covariance, P
4 % for nonlinear dynamic system:
5 % x_k+1 = f(x_k) + w_k
6 % z_k = h(x_k) + v_k
7 % where w ¬ N(0,Q) meaning w is gaussian noise with covariance Q
8 % v ¬ N(0,R) meaning v is gaussian noise with covariance R
9 % Inputs: f: function handle for f(x)

10 % x: "a priori" state estimate
11 % P: "a priori" estimated state covariance
12 % h: fanction handle for h(x)
13 % z: current measurement
14 % Q: process noise covariance
15 % R: measurement noise covariance
16 % Output: x: "a posteriori" state estimate
17 % P: "a posteriori" state covariance
18

19

20 [x1,A]=jaccsd(fstate,x); %nonlinear update and linearization ...
at current state

21 P=A*P*A'+Q; %partial update
22 [z1,H]=jaccsd(hmeas,x1); %nonlinear measurement and ...

linearization
23 P12=P*H'; %cross covariance
24 % K=P12*inv(H*P12+R); %Kalman filter gain
25 % x=x1+K*(z-z1); %state estimate
26 % P=P-K*P12'; %state covariance matrix
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27 R=chol(H*P12+R); %Cholesky factorization
28 U=P12/R; %K=U/R'; Faster because of back ...

substitution
29 x=x1+U*(R'\(z-H*x1)); %Back substitution to get state update
30 P=P-U*U'; %Covariance update, ...

U*U'=P12/R/R'*P12'=K*P12.
31 end
32

33 function [z,A]=jaccsd(fun,x)
34 % JACCSD Jacobian through complex step differentiation
35 % [z J] = jaccsd(f,x)
36 % z = f(x)
37 % J = f'(x)
38 %
39 z=fun(x);
40 n=numel(x);
41 m=numel(z);
42 A=zeros(m,n);
43 h=n*eps;
44 for k=1:n
45 x1=x;
46 x1(k)=x1(k)+h*i;
47 A(:,k)=imag(fun(x1))/h;
48 end
49 end

B.2 Adaptive Extended Kalman Filter Matlab Function
implementation

1 function [x,P,Q]=Aekf(fstate,eps_adaptive, ...
N_iterations,x,P,hmeas,z,Q,R)

2 q_last=Q(1,1);
3 [x1,A]=jaccsd(fstate,x);
4 [z1,C]=jaccsd(hmeas,x1);
5 iter = 0;
6 while iter < N_iterations
7 P_adaptive_ = A*P*A'+ Q;
8 K = P_adaptive_*C'*(C*P_adaptive_*C' + R)^(-1);
9 w_adaptive = K*(z-C*x);

10 x =x+K*(z-C*x);
11 q = 1/length(w_adaptive)*sum(w_adaptive.^2);
12

13 if(abs(q-q_last)<eps_adaptive)
14 break
15 end
16 Q = q*eye(size(Q,1));
17 q_last = q;
18 iter = iter+1;
19 end
20 P = (eye(size(Q,1)) - K*C)*P_adaptive_;
21 end
22
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23 function [z,A]=jaccsd(fun,x)
24 % JACCSD Jacobian through complex step differentiation
25 % [z J] = jaccsd(f,x)
26 % z = f(x)
27 % J = f'(x)
28 %
29 z=fun(x);
30 n=numel(x);
31 m=numel(z);
32 A=zeros(m,n);
33 h=n*eps;
34 for k=1:n
35 x1=x;
36 x1(k)=x1(k)+h*i;
37 A(:,k)=imag(fun(x1))/h;
38 end
39 end

B.3 Adaptive Kalman Filter Matlab Initialization Func-
tion

1 function [ init_kalman ] = three_adaptive_kalman_struct( hp, hn, ...
Q0, R, P, x0 )

2 %ADAPTIV_KALMAN_STRUCT Creates a struct necessary for the adaptive ...
kalman

3 %simulink block for three phase signals
4 init_kalman = struct;
5 %% Constants, should not be necessary to change these
6 init_kalman.eps_adaptive = 1e-10;
7 init_kalman.N_iterations= 10;
8 init_kalman.ang_bias = -pi/2;
9 %% From input

10 init_kalman.hp = hp;
11 init_kalman.hn = hn;
12 init_kalman.Np = length(hp);
13 init_kalman.Nn = length(hn);
14 init_kalman.N = init_kalman.Np + init_kalman.Nn;
15 init_kalman.Q = Q0;
16 init_kalman.R = R;
17 init_kalman.P0 = P;
18 init_kalman.x0 = x0;
19 init_kalman.eye2N = eye(2*init_kalman.N);
20 end

B.4 Harmonics linearization mapping method

1 syms m
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2 F=1000; %mapping frequency range
3 f1=50; %fundamental frequency
4 R=10; %Resistor
5 C=0.0003; %capacitor
6 L1=5e-3; %inductor 1
7 L2=5e-3; %inductor 2
8

9 Zdc=@(w)((L2*w+1/(C*w+1/(R+L1*w)))); %dc impedance model
10

11 s_p=zeros(1,F);
12 amp_p=zeros(1,F);
13 s_n=zeros(1,F);
14 amp_n=zeros(1,F);
15 s_dc=zeros(1,F);
16 amp_dc=zeros(1,F);
17

18 for j=1:F
19 for m=-1000:1000
20 s_p(j) =s_p(j) + 1/((1-36*m^2)*(Zdc(i*12*pi*m*f1))) + ...

1/((1-6*m^2)*(Zdc(2*pi*j*i+i*2*pi*(6*m-1)*f1)));
21 s_n(j) =s_n(j) + 1/((1-36*m^2)*(Zdc(i*12*pi*m*f1))) + ...

1/((1+6*m^2)*(Zdc(2*pi*j*i+i*2*pi*(6*m+1)*f1)));
22 end
23 amp_p(j)=abs((pi^2/9)*s_p(j)^(-1));
24 amp_n(j)=abs((pi^2/9)*s_n(j)^(-1));
25 s_dc(j)=Zdc(i*2*pi*j);
26 amp_dc(j)=abs(s_dc(j));
27 end
28 figure
29 semilogx(1:F, amp_p(1:F),1:F, amp_n(1:F))
30 title('Impedance')
31 xlabel('frequency[Hz]'), ylabel('Magnitude')
32 legend('positive','negative')
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