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Abstract

Palletizing of boxes has been done for robots for many years. It is a simple task to pick
a box and place it at a pallet. However, if the box has unknown size and positions, the
solution to pick-and-place is not trivial. In this thesis, there are going to be addressed
two methods that are meant to be a part of a fully automated palletizing system. The first
method detects the sizes and poses of all boxes that are present in a point cloud. The
second method decides which box should be picked first and where to place it.

The Box detection method is developed by the use of common point cloud operations
and self-developed methods. All of these are implemented in C++ with the help of point
cloud library, PCL. In order to map the result of all the parts of the method, there is
developed a point cloud simulator. The box detection method is tested on point cloud
from the simulator and Zivid-camera. The results show accuracy and precision that is far
greater then what industrial applications need with a computational-time approximately
equal to the capture time of the Zivid-camera.

The second method is the Robotic bin packing. By utilizing the research done on Bin
packing problem, the method calculates the future cost of the available boxes and cur-
rent solution. With this cost, the decision of which box to pick first is made. This is
implemented in Python. The method is tested on data randomly generated with industrial
properties. The performance of the methods show significant improvement compared to a
simple heuristic packing, and in many cases optimal.

The results of the two methods show that both of the methods could be implemented in an
industrial application. By implementing the findings in this thesis in industry, the shipping
and distribution sector may obtain a significant step towards a more optimal process. The
consequences for such an optimization would be reduced need for freight carriers, thus
lowering the cost for shipping and reducing the carbon footprint in this sector.
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Sammendrag

Palletering av bokser er gjort med roboter i mange år. Det er en enkel oppgave å velge
en boks og stable den på en pall. Men hvis boksen har ukjent størrelse og posisjoner,
er løsningen til dette problemet ikke triviell. I denne oppgaven skal to metoder som
er ment å være en del av et fullt automatisert palleteringssystem utvikles. Den første
metoden oppdager størrelser, posision og orientering av alle bokser som er tilstede i en
scene. Den andre metoden bestemmer hvilken boks som skal velges først og hvor den skal
plasseres.

Boksdeteksjonsmetoden er utviklet ved bruk av vanlige punktsky-operasjoner og selvutviklede
metoder. Alle disse er implementert i C ++ ved hjelp av point cloud library, PCL. En punk-
tskyssimulator er utviklet for å kartlegge resultatene av alle delene av metoden. Boksde-
teksjonsmetoden er testet på punktskyer fra simulatoren og Zivid-kameraet. Resultatene
viser nøyaktighet og presisjon som er større enn hva industrielle applikasjoner krever, og
med en beregnings-tid omtrent som opptakstiden til Zivid-kameraet, er ytelsen tilstrekke-
lig.

Den andre metoden er Robotic bin packing. Ved å utnytte forskningen som er gjort på
Bin packing problem, metoden regner ut fremtidige kostnader for de tilgjengelige basert
på fremtidige bokser og nåværende løsning. Med denne kostnaden er beslutningen om
hvilken boks å velge først gjort. Alt dette er implementere med bruk av Python. Metoden
er testet på data tilfeldig generert med typiske industrielle egenskaper. Utførelsen av denne
metoden viser betydelig forbedring sammenlignet med en ren erfaringsbasert pakking, og
i mange tilfeller optimal pakking.

Resultatene fra de to metodene viser at begge metodene kunne implementeres i en indus-
triell applikasjon. Ved å implementere funnene i denne oppgaven i industrien, kan frakt-
og distribusjonssektoren få et betydelig skritt mot en mer optimal prosess. Konsekvensene
for en slik optimalisering vil være redusert behov for fraktbåter, og dermed redusere kost-
nadene for frakt og redusere karbonavtrykket i denne sektoren.
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Chapter 1
Introduction

1.1 Motivation

Robots have been used in many years for the palletizing task. In a manufacturing facility,
there are usually a homogeneous set of boxes, i.e., equally sized, which makes the picking
and palletizing highly repetitive. In the case of a logistics facility, the bins can be a strongly
heterogeneous set of boxes, i.e., varying in size. That makes it non-trivial for the robot how
to pick and palletizing the boxes. Therefore this task is often done by manual labor. With
the increasing number of boxes transported we can see that there is a demand for more
solutions that utilize a robot for packing.

With the development of digitalization and automation during the last years, there has
been much improvement in the field of 3D vision. After Microsoft announced the Kinect,
in 2009, both the consumer market and the professional marked got an affordable camera.
That led to software like Point Cloud Libary, PCL, in 2010, which made algorithms for 3D
point cloud available. In 2017 the first structured light camera from Zivid was delivered to
the marked. The Zivid-One camera has much higher accuracy than the Microsoft Kinect
and is easy to use. This makes it ideal for solving the problem of detecting boxes for a
robotic manipulator.

To address the problem of palletizing the boxes, the study of Bin packing problems, BPP,
is of big interest. This is a widely studied problem in combinatorial optimization, and
there are various formulations to different types of BPP, more described in section 2.7.2.
The common challenge in BPP is grouping a set of small objects into one or several larger
objects, for instance boxes on a pallet in the most optimal way. The general approach to
solving such problems is based on changing the order the smaller objects are placed into
the larger object. In many industrial packing cases, we only know which boxes that will
be placed on each pallet, not the order they will arrive and could choose between a few
numbers of boxes to pack next, which is the case of this thesis.
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Chapter 1. Introduction

1.2 Problem description

Rocketfarm AS in Sogndal is delivering robotic solutions for industrial automation. For
the last years, they have developed software for palletizing in manufacturing facilities. To
evolve into more cases, they want to investigate how they can proceed towards palletizing
with varying box sizes. Two of the most challenge part of this is to detect the boxes that
are present and find a suitable placement for a box on the pallet.

The formal description of these two problems are stated as follows:

Problem statement

1. Given a point cloud, develop a method that will detect multiple boxes within the
point cloud. Then for each of the boxes, the method should estimate the pose, posi-
tion and orientation, and the size.

2. Develop a method that will estimate a solution for a Robotic bin packing problem,
see Definition 1, page 22.

Figure 1.1: For a robotic manipulator to pick a box, it needs to know the pose and size, problem 1.
To pack a pallet it needs to know which box to pick and where to place it, problem 2.

1.2.1 Limitation

In order to make these problems feasible for a Master thesis, it was necessary to introduce
some limitations to the problem.

The limitations for the Box detection is as follows:

• There is no physical contact between the boxes that will be picked.

• The detection of boxes should be done within a second.

• The environment is stationary when a point cloud is captured.

• The surfaces of the boxes are possible to capture with a structured light camera.

And for the Robotic bin packing:

2



1.3 Contribution

• The sizes of the boxes that should be known, but not the order.

• The boxes will have 3 different footprints and 3 different heights, i.e., in total 9
different boxes types.

• Rotations of the boxes is not to be considered.

• There are 3 boxes available for picking at each time.

1.3 Contribution

• Box detection: In a fully automated palletizing system, the boxes that are present
are unknown. To solve this, there have been developed and implemented a solution
to detect the size and pose of the boxes in the scene. This software is made in C++
by using the point cloud library, PCL. It has been tested both on data from the Zivid-
camera and data from the simulator. The method has high accuracy and precision,
more than sufficient for an industrial application. In addition, the computational
time is almost the same, few milliseconds slower, as the capture time of the Zivid-
camera.

• Point cloud simulator: To avoid manual and inaccurate measurements on testing
data, there has been developed a point cloud simulator. With this simulator, it is pos-
sible to place a point cloud generated from CAD models in the scene. All geometric
properties, pose and size, are known for all object, and the pose of the camera can
be changed. There is also a possibility to output the mask for each point present in
the scene, which makes it possible to train and test segmentation neural networks.

• Bin packing: In order to solve the Robotic bin packing problem, there had to be
made a solution to the Bin Packing problem. To solve this, there has been imple-
mented a Generic algorithm with a heuristic packing strategy inspired by research
in the field. The performance is tested and it is sufficient for using it in the Robotic
bin packing method.

• Robotic bin packing: Since the Robotic bin packing problem is not a well-studied,
a new design had to be made. It is based on computing the best future cost for the
available boxes and choose the box with the best cost. In order to make the solu-
tion that is achievable for a robotic manipulator, a new concept for manage feasible
packing space have been developed. It guarantees that the packable space has sup-
port either by floor or a box underneath. The whole Robotic bin packing method is
implemented in Python and tested on industrial relevant data. The performance of
the method is equal or better compared to a pure heuristic packing method, and in
many cases optimal.

• Instance generator: In lack of suitable datasets that fit the limitations for this thesis,
there has been developed an instance generator. It generates a random instance that
is industrially relevant and ensures that there exist a solution to the problem if it is
solved as a Bin packing problem.
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Chapter 1. Introduction

1.4 Structure of this report

This report includes:

• Chapter 1, presents the motivation for the problem and the problem that is worked
on in this thesis. Also, the limitations to the problem and contribution are presented.

• Chapter 2, presents the tools used or considered used in box detection. To get suf-
ficient knowledge about the Bin packing problem, there will be given an overview.
It includes a definition of the general problem, typical variations of the problem,
a literature review of different solutions, and lastly a definition of the Robotic bin
packing problem.

• Chapter 3, describes the different parts of the two problem investigated, namely
Box detection and Robotic bin packaging. For the Box detection, it consists of a
point cloud preprocessing, the detection, and feature extraction. For the Robotic bin
packing it consists of developing the heuristic packing strategy, a Generic algorithm
to solve the Bin packing problem, and lastly use both of them in the Robotic bin
packing method.

• Chapter 4, describes the experiments used to test the performance of the methods.
The experiments include both synthetic data, and for the box detection real-world
data. The performance of the method through the experiments are mapped and
results are presented and discussed.

• Chapter 5, the conclusion of the thesis, and some suggestions to further work are
presented.
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Chapter 2
Background theory

This chapter is divided into the two main topics of this thesis, namely the Box detection
and Robotic bin packing. For the first sections, there will be presented tools that are used
as a part of the Box detection or have been considered to be a part of the Box detection.
In the last section there will be build an in-depth knowledge about the Bin pack packing
problem. This theory will later be used to develop a method for solving the Robotic bin
packing problem.

2.1 Zivid-camera

The Zivid-One is the first 3D-calibrated camera that Zivid launched in 2017. To obtain an
accurate point cloud, Zivid-One uses structured-light with 13 projected pattern to obtain
one point cloud, and it takes 100 ms, 10 Hz. The minimum working depth is 600 mm,
and the maximum working depth is 1100 mm. These are the optimal ranges and will
give full overlap between the field-of-view of the projector and the image sensor. The
output resolution of the point cloud is 1920 × 1200, and at a depth of 600 mm the image
sensor will cover an area of 430× 270 mm and at a depth 1100 mm the area is 780× 490
mm.

The output of the Zivid-One is an organized point cloud. With that means that the points
in the cloud can be indexed with rows and columns. This is convenient since then it is
known that the neighboring pixel is the neighboring point, which can make searching in
point cloud much faster. For each pixel in the Zivid point cloud, there is a value for a 3D
position (XYZ), color (RGB), and a contrast value.
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430 mm

270 mm

780 mm

490 mm

1920 px

1200 px

"Image sensor"

Minimum working depth 600 mm

Maximum working depth 1100 mm

Figure 2.1: Working depth of a Zivid-camera.

2.2 Homogeneous coordinates

In order to describe the geometry in this thesis, there have been used Homogeneous coor-
dinates. This mainly because it makes many of the operations done simpler than the same
operations in the cartesian representation. Most of this thesis work with 3D geometric
and will, therefore, begin with present the properties that have been used. For the case
of 2D, many properties are valid from the 3D case. However, some important properties
will be presented. The theory behind this is from (Hartley and Zisserman, 2003, p. 26-29,
p. 66-68).

2.2.1 Homogeneous coordinates in 3D

A point in the 3D projective space, P3, is represented as:

x =
[
x1 x2 x3 x4

]>
(2.1)

the equivalent to the representation in cartisian space is:

p =
1

x4

x1x2
x3

 =

xy
z

 ∈ R3 (2.2)

where x, y and z are the coordinates to the point. It can easly be seen that the x = p when
x4 = 1.

In homogeneous coordinates for a point, x, to be on a plane it has to satisfies the equa-
tion:

x> · π = 0 (2.3)

where π = (π1, π2, π3π4). In inhomogeneous form of a plane is given by p>n + d = 0.
Where n is normal vector, and the distance from origo is given by d/||n||. For ho-
mogenogus form the first three components of π represents the the normal vector n =
(π1, π2, π3) and the distance therm d = π4.
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2.2 Homogeneous coordinates

Given N points that are on the plane, then the plane, π, is given by:x
>
1
...

x>N

 · π = 0N×1 (2.4)

If N = 3 and the points are linearly independent there can be seen that the points matrix
has rank 3. Then the plane, π, is given uniquely by the right null-space of the points matrix.
For N = 2 the points are underdetermined and will have infinet amout of solutions to the
problem. If N > 3 the points are overdetermined and there will be an approximated
solution, e.g. with a leat-squars solution.

The intersection point, x, between three planes, πi, can be computed easily by computing
the right null-space of the 3× 4 matrix composed by the planes:π>1π>2

π>3

x = 0 (2.5)

2.2.2 Homogeneous coordinates in 2D

Points and lines in 2D homogeneous coordinates are a reduction in one dimension from
the 3D homogeneous coordinates. However, some elegant properties will be pointed
out.

For a point, x, to be on a line it has to satisfy:

l>x = 0 (2.6)

Which means that the point x is orthogonal to the line l.

By further investigating the orthogonality of a line and points, some interesting results will
rise. If point x lies on both l1 and l2, then it means that x is the intersection between. It
also means that x is orthogonal to both l1 and l2, that gives:

x = l1 × l2 (2.7)

An opposite argument can be maid by if a line l goes through both x1 and x1. Then it
means that l is orthogonal to both x1 and x2, that gives:

l = x1 × x2 (2.8)

This principle of that the properties of that point and lines in homogeneous coordinate are
interchangeable is called the ”Duality principle” and is an important property of homoge-
neous coordinates.
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Chapter 2. Background theory

2.3 Kinematics

In this section, it will be presented the kinematic tools that are needed to describe the
different frames and the transformations between them. The theory in this section is taken
from (Egeland and Gravdahl, 2002, p. 209-242).

The coordinate-free vector can be written as

v =
[
v1 v2 v3

]>
(2.9)

The scalar product between two coordinate-free vector is

u>v = |u||v| cos θ (2.10)

where | · | is the lenght of the vector and θ is the angle between the two vectors.

The vector cross-product is given by

u× v = n̂|u||v| sin θ (2.11)

where n is a unit vector that is orthogonal to both u and v and defined so that (u,v, n̂)
forms the right-hand system.

A reference frame A can be described by three unit vectors that are orthogonal to each
other, i.e.

â1, â2, â3 (2.12)

where â>i âj = 0.

A coordinate-free vector v described in reference frame A and frame B is

va =
[
va1 va2 va3

]>
vb =

[
vb1 vb2 vb3

]>
(2.13)

Then coordinate transformation from frame B to frame A is given by

va = Ra
bv

b (2.14)

where Ra
b has to be a element in SO(3) to be called a rotation matrix.

Consider the rotation in Figure 2.2, this rotation is a simple rotation about the y-axis. In
Figure 2.2 the y-axis is equal, â>2 b̂2 = 1 , to in both frames, which leads to that the other
unit vector is orthogonal to each other:

â>2 b̂1 = â>2 b̂3 = â>1 b̂2 = â>3 b̂2 = 0 (2.15)

And the x-axis and z-axis have the relationship

â>1 b̂1 = cos θ, â>3 b̂3 = cos θ (2.16)

â>3 b̂1 = sin θ, â>1 b̂3 = − sin θ (2.17)
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2.3 Kinematics

The rotation matrix is then given by

Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 (2.18)

And the same goes for simple rotations about x-axis and z-axis.

Figure 2.2: Simple rotation from frame A to frame B about y-axis

As for the simple rotations rotate about a fixed axis it can be shown that for all rotations it
exists a unit vector the rotation is about

k̂ = k̂a = Ra
b k̂

b (2.19)

Given that the rotation from frame B to frame A about k̂ is given by θ, then the rotation
matrix is

Ra
b = Rk,θ = I+ k̂× sin θ + k̂×k̂×(1− cos θ) (2.20)

To describe the relative pose, position, and orientation, there need to be included a trans-
lation between the two frames. Given that the rotation between frame B and frame A is
given by Ra

b and the relative position of frame A in frame B is raab, then the transformation
is given by

Ta
b =

[
Ra
b raab

0> 1

]
∈ SE(3) (2.21)
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Figure 2.3: The relative pose of frame A in frame B

To apply a transformation matrix to a vector there is convenient to use a homogenogus
representation of the vector, section 2.2. The transformation will then simply be:

va = Ta
bv

b (2.22)

2.4 Convex-hull

The Convex-hull of a set of points that forms a smallest convex polygon that the points
either is on the boundary or is encapsulated by the polygons, (Cormen et al., 2009, p. 1029-
1039). It can be thought of like a rubber band that surrounds a set of nails hammered into
a plane. Convex-hull is widely used in many applications, such as box wrapping, obstacle
avoidance, pattern recognition, and many more. Follows the many different applications
there exist many solutions to find the Convex-hull, one of the is Quickhull, Barber et al.
(1996). The Quickhull algorithm follows a divide and conquers approach similar to that
of Quicksort.

The algorithm is outlined in Algorithm 1. Also, in Figure 2.4, there is an example of how
Quickhull is used on a set of points. In (b) the to initial points, the left and right most, is
found. In (c) - (e) the Findhull() function is performed to find the segments and vertices.
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2.4 Convex-hull

Also, in (e), the termination of the algorithm is reached.

Algorithm 1: Quickhull
Input: Set of points, P
Result: Convex-hull, CH

1 CH = {}
2 Function Quickhull(P):
3 A← Find the left most point
4 B ← Find the right most point
5 CH ← A,B
6 Create a segment S1 that is all the points that is the subset to the right of the line

oriented A−B. Do the same for the segment S2 that is oriented B −A.
7 Findhull(S1, A, B)
8 Findhull(S2, B, A)
9 return CH

10 Function Findhull(S, P1, P2):
11 if |S| == 0 then
12 return
13 C ← Find the point farthest away from line P1 − P2

14 CH ← C
15 Create a segment S0 that inside the triangle P1, P2, C
16 Create a segment S1 that is all the points that is the subset to the right of the line

oriented P1 − C. Do the same for the segment S2 that is oriented C − P2.
17 Findhull(S1, P1, C)
18 Findhull(S2, C, P2)

19 return CH
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Chapter 2. Background theory

(a) (b) (c)

(d) (e)

Figure 2.4: Example of Quickhull algorithm on a set of points

2.5 ArUco markers

Garrido-Jurado et al. (2014) was the one that induced the ArUco marker. ArUco marker
is a binary square fiducial marker which is commonly used in many applications, such
as augmented reality and robot localization, for pose estimation. With a single marker,
it is possible to detect the pose by the correspondence with its four vertices. Garrido-
Jurado et al. (2014) presents an algorithm for generating configurable marker dictionaries,
an automatic method of detecting the markers and correction possible errors, and lastly
a solution to occlusion problem in augmented reality. Now the method of detecting the
Aruco marker and how to estimated the pose, will be reviewed.
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2.6 Model fitting

The detection method in Garrido-Jurado et al. (2014) consists of an image analysis part,
and marker identification and error correction part. Where the last part is their main con-
tribution and makes it spacially robust. The method goes as follows:

• Image segmentation: Will thresholding be done on the gray-scale image. For com-
putational reasons, they have chosen to use a local adaptive thresholding approach.
This because they saw that a method like the Canny edge detector was to slow for
real-time purpose.

• Contour extraction and filtering: All contours are extracted from the thresholding
image. This is done by first approximate all the polygons from the contours. Since
there is know that a marker consists of four vertices, it will discard all polygons that
do not consist of four vertices.

• Marker Code extraction: Before it can identify the code in each marker, there needs
to be done some preprocessing. First, the perspective is removed by estimating the
homography matrix. Then binary thresholding is performed with Otsu’s method.
Lastly, the binary image is divided into a grid. Each of the cells in the grid is
assigned either 0-1, determined on the major pixel. Now all markers that do not
have a 0 around the border.

• Marker identification and error correction: At this point, it is necessary to determine
which of the markers that are ArUco markers and which that is the environment.
This is done by looking up each every rotation, four, in the set of all possible mark-
ers(dictionary). The ones that are in the set is determined as a valid marker.

2.6 Model fitting

This subsection is taken from the specialization project, Vasdal (2018)

2.6.1 Hough transform

The primary goal of the Hough transform is to check all feasible models that fit the data.
To compare all the data points to all possible models is computational very expensive.
Hough transform do this in the opposite way. Instead of check all points to every model, it
finds all models that fit the points. Parametric models, models that can be described with
a finite number of parameters, is ideal for this kind of transform.

Given a line, it can be described as:

y = a0x+ b0

All points that satisfy that equation is part of the same line with parameters a0 and b0. The
Hough transform will map all points from image space through Hough space

b = y0 − a0x
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Chapter 2. Background theory

All points in image space will be transformed to a line in Hough space, and at the point
where the parametric values have an intersection, they will have the same parametric model
in that point, i.e., for lines the same line. It a simple example is shown in Figure 2.5.

0 1 2 3 4 5
0

1

2

3

4

5

0 1 2 3 4 5
−2

−1

0

1

2

3

Figure 2.5: To the left there is two points, (1, 1) and (2, 2), in image space. To the right there is
both the the Hough transform of both points into Hough space. They are represented as two lines,
b = 1 − a and b = 2 − 2a. The intersection between this two lines, point (1,0), is the line, gray
dashed line, that goes through both points in image space.

This was a simple example. In an image, we will have more data and also noise. This will
then lead to a more complex Hough transform, and the parameters for one line can deviate.
I.e., we do not have one intersection between parametric values. To find the parametric
parameters that fit the most points, we will have voting for each point inside a bin. The
bins that have more votes than a given threshold is considered a line.

The method described above is made for parametric models, but it has also been made a
generalized Hough transform. This method was introduced in Ballard (1981) and with this
type of Hough transform, we can use it to find arbitrary object described with its model.
E.g., if we want to find the position of an object in the image is transformed into finding
the transformation parameters to place the object into the image.

2.6.2 Least-Squares fitting

Least-Squares fitting is a method for fitting models to a dataset. It is based on finding
the parameters to the model that the absolute distance from the model to the date is mini-
mal.

For a dataset of n points, where xi independent variables and yi dependent variables,
for i = 1, ...n. The model that will be fitted is given by f(xi,θ), where θ is the model
parameters. The residual, ri = yi−f(xi,θ), tells that the error between the measurements
and the model is. The Least-Squares solution is given when

min
θ
J = minθ

n∑
i=0

r2i

For a linear model the dependent variables is given by y, independent varabels is given by
x = [x1 x2 ... xk 1]> and parameters θ = [θ1 θ2 ... θk b]

>, where b is a bias. This Least
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2.6 Model fitting

squares problem can then be rewritten as

minθ(y − x>i θ)(y − x>i θ)
>

Solution to this is given when

∂J

∂θ
= 0 =⇒ ∂J

∂θ
= −2xy + 2xx>θ = 0

The minimal value Least-squares solution to a linear model is given when

θ = (x>x)−1x>y (2.23)

where
x† = (x>x)−1x> (2.24)

is defined as the psudo-invers.

An important note is that the least-squares solution does try to find the parameters that fit
all data points, also when they could lay outside the model.
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2.6.3 Random Sample Consensus

RANSAC, Random Sample Consensus, is a method that is widely used for model fitting
and was first introduced in Fischler and Bolles (1981). This method is based on the knowl-
edge that there exist some points within the dataset that describe the model, and there are
outliers from this model. The assumption that RANSAC takes is that the outliers of the
model is random and votes against the model. The inliers to the model all agree that the
models are right and vote for the model. Therefore the goal is to find the right points so
that the model can be computed.

The method is done by an iterative process. First, it will be drawn a sample uniformly
random from the dataset. This sample consists of a minimum number of points that are
needed to fit the model. For a line, it needs two, and for a plane, it needs three. Then the
residual of the model needs to be measured. The points that are inside a given threshold
from the model is considered as inliers. This process continues until a high probability
that the model has the right parameters.

In Figure 2.6, there is a comparison between a RANSAC fitted line and Least-squares
fitted line to data points with outliers. Here it is clear that the Least-squares solution is
affected by the outliers and estimates the wrong line.
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Figure 2.6: Comparison between RANSAC line fitting and Least-squares line fitting.
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2.7 Bin Packing Problem

2.7 Bin Packing Problem

In the chapter, it will try to give a better understanding of the whole Bin packing problem,
BPP. This by in the first section provide a general mathematical description of the BPP.
In the second section, it will be given an overview of the different kind of 3D-BPP that is
commonly addressed. In the third section, it will be reviewed some of the most important
work that has been done in the field of 3D-BPP. Lastly, a concrete formalization of the
Robotic bin packing problem will be addressed.

2.7.1 Definition of the Bin Packing Problem

In order to state and solve the problem for this thesis, there needs to be gain more knowl-
edge about the BPP. Therefore there will define the general 3D-BPP. The definition pre-
sented here is inspired by Hu et al. (2017). The main difference is that in Hu et al. (2017)
want to minimize the total surface area of one bin. While in the general 3D-BPP there will
be a minimization of the number of bins needed for packing a set of boxes.

min

M∑
m=0

ym (2.25)

Subject to
aim · (xi − xj) + L · sij ≤ L− aim · l̂i (2.26a)

aim · (yi − yj) +W · sij ≤W − aim · ŵi (2.26b)

aim · (zi − zj) +H · sij ≤ H − aim · ĥi (2.26c)

0 ≤ xi ≤ L− l̂i (2.26d)

0 ≤ yi ≤W − ŵi (2.26e)

0 ≤ zi ≤ H − ĥi (2.26f)

l̂i = δi1li + δi2li + δi3wi + δi4wi + δi5hi + δi6hi (2.26g)

ŵi = δi1wi + δi2hi + δi3li + δi4hi + δi5li + δi6wi (2.26h)

ĥi = δi1hi + δi2wi + δi3hi + δi4li + δi5wi + δi6li (2.26i)

aimajm · (sij + uij + bij) + (1− aimajm) = 1 (2.26j)

δi1 + δi2 + δi3 + δi4 + δi5 + δi6 = 1 (2.26k)

sij , uij , bij ∈ {0, 1} (2.26l)

δi1, δi2, δi3, δi4, δi5, δi6 ∈ {0, 1} (2.26m)

ym ∈ {0, 1} (2.26n)

aim ∈ {0, 1} (2.26o)
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Variable Type Meaning
ym Binary bin m or not
aim Binary item i is place in bin m or not
L Continuous the length of the bins
W Continuous the width of the bins
H Continuous the height of the bins
xi Continuous LLB coordinate of the item i in x-axis
yi Continuous LLB coordinate of the item i in y-axis
zi Continuous LLB coordinate of the item i in z-axis
sij Binary item i is in the left side of item j or not
uij Binary item i is under item j or not
bij Binary item i is in the back of item j or not
δ1 Binary orientation of item i is front-up or not
δ2 Binary orientation of item i is front-down or not
δ3 Binary orientation of item i is side-up or not
δ4 Binary orientation of item i is side-down or not
δ5 Binary orientation of item i is bottom-up or not
δ6 Binary orientation of item i is bottom-down or not

Table 2.1: Decision variables for the general 3D-BPP

M∑
m=0

aim = 1 (2.26p)

where the description of the decision variables is given in table 2.1. As mention, this
definition describes the minimization of the number of bins needed to pack a set of boxes.
The constraints that are given in the definition help finding a feasible solution. Constraints
(2.26a), (2.26b), (2.26c), (2.26j) will guarantee to not get any overlap between item i and
j. Constraints (2.26d), (2.26e), (2.26f) will guarantee that the placement of the item i is
inside the bin m. Lastly (2.26k) will help with rotation the item i and (2.26g), (2.26h),
(2.26i) will give the length, width and height of the item i after it is rotated.

To reduce the 3D-BPP to a 2D-BPP, it can be done by removing one dimension from the
problem. E.g. in the z-axis, then the decision variables needs to be changed: H = ∞,
hi = ∞, zi = 0, bij = 0, δ2 = 0, δ2 = 0, δ4 = 0, δ5 = 0 and δ2 = 0. This will result in
that (2.26c), (2.26i) and (2.26f) will be removed.

In the case of reduction to 1D-BPP, it only needs to take the capacity into account. There-
fore all decision variables that describe the position, orientation, and relationship between
items will be removed. In the end, the three constraints, (2.26n), (2.26o), (2.26p) will be
kept, and merge the other constraints:

m∑
m=1

I∑
i=1

aimli < L (2.27)
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this constraint does that all constraints are independent of unnecessary decision vari-
ables.

2.7.2 Different type of 3D Bin Packing Problems

In industrial applications, there is not only minimizing the number of bins that are of
consideration. By doing some modifications to the problems, it can use many of the sim-
ilar methods to find a solution to other packing problems. Wäscher et al. (2007) gives
an overview of many the different types of packing problems. Common for all of these
problems is that there are given two sets of elements:

• a set of small items.

• a set of large objects.

Divide some or all items into one or more subsets. Assign each subset into one of the
larger objects such that the geometric conditions hold, i.e., the small items lies within the
larger object and do not overlap each other.

If the placement of all the items gives an optimum to a given objective function, a solution
is found. The solution to the problem may result in using one or all large objects, and some
or all small items.

To concretize the different problems Wäscher et al. (2007), gives some further criteria that
could define this thesis packing problem. These criteria will concern the assortment of
small items and large objects and the objective function.

The assortment of small objects is divided into three types of size distribution. First is
identical small items, where all the items have the same size and shape. Second is weakly
heterogeneous items, where the items are grouped into relatively few classes, for which the
items are identical concerning shape and size. The third is strongly heterogeneous items,
the set of small items are by the fact that only a few elements have the same shape and
size. If they are equal, they are treated as individual elements. For all types of distribution
shapes identical shaped and sized object with different orientations are treated as different
kinds of items.

The assortment of large objects is dividing the two main groups. The first group, the set
of a large object, consists of only one large object. This can be a fixed-sized object, or
its extension may variable in one or more dimensions. The second group, the set of large
object is more the one, and the large objects are of fixed size. However, the sizes within
the set do not have to be equal. It can be used the same analogy of describing the size
distribution as for the assortment of small objects.

Considering the objective function, it will eighter formulate the problem as a maximization
or minimization problem. The difference between the two cases lies in the accommodation
in the large objects. In the case of maximization, there is not given that the set of large
objects is sufficient to accommodate all the small items. For the minimization, the large
object is sufficient to accommodate all small items, but all small items are to be assigned
to a selection of the large objects.
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This gives a general understanding of how the different primary type of packing problem
that could be met. In many applications, it is necessary to give even more constraints to
the problem. Bortfeldt and Wäscher (2013) gives an overview of the state-of-the-art for
container load problems where other types of constraints taken into account. This is e.g.,
weight, orientation, stacking order, positioning, stability, and complexity.

2.7.3 Solving 3D Bin Packing Problems

To find a solution to the BPP is not in any way trivial. As mentioned the problem 1D
BPP is considered NP-Hard, not solvable in polynomial time (Garey and Johnson, 2002,
p. 124-127), Also, 3D BPP is, therefore, strongly NP-Hard. In this section, there will
be conducted a brief studied of three types of approaches to solving BPP, exact method,
heuristic methods, and lastly deep reinforcement methods.

The study of exact methods for BPP is mostly done in late 1990 to 2007. Martello et al.
(2000) gives an exact algorithm to solves the problem of a single BPP. They have devel-
oped a branch-and-bound algorithm that guarantees the optimal solution. As well they give
a good. In Martello et al. (2007) they continue the development and makes the algorithm to
work on a general BPP. Fekete and Schepers (1997, 2004) are using graph-theoretic char-
acterization for mapping the relative position of the items, where it is feasible to pack. By
using this and with good heuristics for dismissing infeasible items, they have implemented
an exact algorithm that can solve 2D- and 3D-BPP.

The exact methods can guarantee optimal solutions; however, are usually very timing con-
suming even on moderate datasets. The use-case is, therefore constrained. A heuristic
algorithm, cannot guarantee optimality, gives a good solution to the BPP with much less
computational time. Scheithauer (1991) was the first to propose an approximation algo-
rithm for the 3D-BPP. They reduce the problem to multiple 2D-problem so that they stack
each layer with a branch-and-bound algorithm. Faroe et al. (2003) propose a heuristic al-
gorithm based on guided local search heuristic. By starting with an upper bound obtained
from a greedy heuristic, the algorithm reduces the number of items until the upper bound
is equal to the lower, or it has exceeded the time. There have been multiple suggestions for
using Tabu search algorithms. Lodi et al. (1999) developed a general Tabu Search frame-
work for 2D-BPP. By defining a search scheme and a neighborhood which is generalized,
they were able to write the 2D-BPP framework to a 3D-BPP with few changes in Lodi
et al. (2002). Crainic et al. (2009) also have used Tabu Search to both reduce the number
of bins needed to pack the items and optimize the packing of each bin.

For the case of this thesis, it will be a robotic manipulator that will pack the items. A
natural to choice then is to pack the items one-by-one. In comparison to Scheithauer
(1991) and Lodi et al. (2002) which is packing layer-by-layer, place all items into a layer
then pack. The drawback for this is that there if the input forces fragmentation of the
loading surface there will degrade the rest of the solution. A solution for using the one-by-
one packing there is common to divide the decision into:

1. the sequence in which the items are packed into the bins.
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2.7 Bin Packing Problem

2. the strategy of selecting the placement of the item.

3. item orientations.

The methods that have mostly been investigated in this thesis are using Genetic algo-
rithms(GA) for optimizing the stacking sequence, and a heuristics approach for selecting
the placement and orientation of the items. Karabulut and İnceoğlu (2004) was one of the
first to introduce GA in BPP, and at time of publication, it was reported to perform well.
In Kang et al. (2012), Li et al. (2014), and Gonçalves and Resende (2013), they use the
encoded packing sequence in the chromosomes and GA to evolve the sequence towards
the optimal solution. Kang et al. (2012) use this on a single bin problem and reports that
they find a near-optimal solution within an acceptable amount of time. Li et al. (2014)
encodes both the packing sequence and the container load sequence and use that to find a
solution for general BPP. Gonçalves and Resende (2013) uses GA both to find the stack-
ing sequence and to find the orientation for each box on a general 2D- and 3D-BPP. They
report their method is equally or outperformance then other approaches.

To find the placement of the items, all methods use heuristics packing. The work of Baker
et al. (1980) starts one of the first most notable works for packing strategy. They introduced
the bottom left, BL, packing strategy for 2D BPP. This places the item in the bottom left of
the bin, Figure 2.7a. After that many improvements were made in 2D packing strategies,
among them was Hopper (2000) who introduced bottom left with fill, BLF, Figure 2.7b.
Compared to BL, it also fill spaces that BL left out. In Karabulut and İnceoğlu (2004)
proposed DBLF, deep bottom left with fill, this was an extension of BLF to the 3D-BPP.
DBLF moved the item as deep into the bin (smallest z value), far as possible to the bottom
(smallest y value), and finally as far to the left as possible (smallest x value), but at the
same time fill the space.

(a) Bottom left (b) Bottom left with fill

Figure 2.7: 2D packing huristics.

In the most recent packing strategies, it is common to use the concept of Empty Naximum
Space, Lai and Chan (1997), to manage the packable area. This by defining the all feasi-
ble space-objects as a different cuboid. Doing this, it can reduce expensive computational
operations such as reduce the number of space-objects by removing all space object under-
neath the dimensions of the items. Methods such as Kang et al. (2012) and Li et al. (2014)
use EMS together with DBLF to perform the placement of each of the items. While in
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Chapter 2. Background theory

Gonçalves and Resende (2013) use a distance to the front top right corner to determine
which space-object in EMS that should be chosen for packing.

The most reaches in the field of BPP is done with deep learning. The first publication
that tried to solve 3D-BPP was Hu et al. (2017). A neural network called Pointer-Net,
Vinyals et al. (2015), inspired them. This network had previously been used with good
results to solve the Traveling salesman problem, Bello et al. (2016). Hu et al. (2017) used
deep reinforcement learning on the Pointer-Net to solve the packing sequence, while it
uses a heuristic packing strategy with EMS. Later Hu et al. (2018) came up with a multi-
task framework that was able to generate packing sequences and the orientation of the
items. For generating the sequence, they used deep reinforcement learning, while for the
orientation, it was supervised learning. The most important contribution they did was
that they did two parts together that was previously have been treated separately. Lastly,
Laterre et al. (2018) have been inspired by work like AlphaZero to learn from Self-Play
Reinforcement Learning. By letting neural network learn by playing itself, it outperforms,
e.g., heuristic algorithms.

2.7.4 Robotic Bin Packing Problem

To better understand the problem that will be addressed in the thesis, it will be given an
example before the formal definition.

In modern production, line boxes could be an important part of the system. In many of
these applications, the content that will be produced is known, but the sequence which the
boxes are arriving in is not given. In such a system, there is very hard to palletize the boxes
with a robotic manipulator. To do this there, the system can be made such that the robotic
manipulator can choose n to pick for packing. The decision to choose which of the boxes
to pick and where to place it will be called the Robotic bin packing problem. Formerly it
will be stated as:

Definition 1 (Robotic Bin Packing Problem):
Given a set of items and one container, with a size of (W ×L×H). Find the subset, I , of
boxes that minimizes the waste space:

W · L ·H −
I∑
i=0

li · wi · hi

Subject to

• All the items in the subset lies entirely within the container

• All the items do not overlap each other

When all items, Nitems, that should be packed is known, but only Npick items available
for each pick and.
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Chapter 3
Method and implementation

3.1 Introduction

In this chapter, two parts of a pipeline, Figure 3.1, for solving a fully automated box
palletizing system have been developed. In section 3.2 there will be developed a method
for detection of multiple boxes within a point cloud. This method includes three parts;
preprocessing part to transform the point cloud into a define reference frame, a part that
does the detection of the boxes and lastly a features extraction part. The last section of
the chapter, section 3.3, deals with the Robotic bin packing problem, RBPP. It will be
developed a new type of packing heuristic for robotic packing applications, a Generic
algorithm that solves a single container Bin packing problem, BPP. And, a method for
RBPP which choose which box to pack next and where to pack it.

Input

Point cloud
simulator

Box detection

Robotic bin
packing

Box instance
generator

Method

Future boxes

Executing

Figure 3.1: Overall pipline over the fully automated box palletizing system

Two tools have been developed in order to test the methods: a simulator for box detection,
and an instance generator for robotic packing. This allows the possibility of testing the
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methods independently of each other, and to control the difficulty of the test.

3.2 Box detection in a point cloud

The are three steps that are needed to detect all of the boxes in a point cloud. First is point
cloud preprocessing, it will is to give as good base before any detection is done. Second is
detection, where points that are part of a box is separated from the point cloud. Lastly, the
pose and size are estimated.

Raw
Point cloud

Point Cloud
preprocessing   Detection Feature exctraction

Number of boxes
Pose
Sizes

Figure 3.2: Parts of the box detection

3.2.1 Point Cloud preprocessing

The point cloud preprocessing consist of two parts, as illustrated in Figure 3.3:

First parts will detect all planar surfaces that are considered as noisy in the point cloud. It
will then calculate a transformation for each of the surfaces. Which does that the removal
of the planar surfaces can be done by filtering along an axis.

The second part will calculate the relative pose, TC
B , between the Camera-frame and a

defined frame called Base-frame. This Base-frame will be a unique description for all part
of the system. All the object present in the system will have its relative pose be described
in Base-frame. To use this reference-system it needs to be computed the relative pose
between the Camera-frame and the Base-frame.

Planar surfaces
detection Transformation

TransformationBase-frame
detection

Floor plane

Filtering

Filtering Preprocessed
Point cloud

Raw
Point cloud

Figure 3.3: All steps done in the preprocesing of the point cloud
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3.2 Box detection in a point cloud

Figure 3.4: The two frames in our problem

All the transformations calculated in this section can be done offline by assuming a sta-
tionary camera and scene. These detections are expensive, and by doing them offline the
total expense will be reduced with a significant amount.

In the rest of this section, it will be reviewed in more details all the in the preprocessing,
as illustrated in Figure 3.3.

Plane detection with RANSAC

To estimate the planar surfaces in the point cloud, it needs to be a method that is robust
and possible to detect multiple surfaces. Hough transform, section 2.6.1, have success-
fully been used for detection of 3D-shapes even in data with a high proportion of outliers.
However, as Illingworth and Kittler (1988) reports due to low efficiency or high memory
consumption, it is not that suited. A pure plane fitting with least-square, section 2.6.2,
would not work since there is a possibility of multiple planes and outliers. The method
that is commonly the most method for model fitting with a high proportion of outliers is
RANSAC, section 2.6.3. In the case of this problem Schnabel et al. (2007) reports that it
can be used for detection of primitives shapes, e.g., planes, in a point cloud.

The general method of RANSAC is described in 2.6.3. To use RANSAC, there need to be
defined two properties about the model. These properties are: how to compute the model
and the residual to the model. To describe points and plane, it will be used homogenous
coordinates, as described in section 2.2. This because of its relationship between points
and plane in three-dimensions.

To compute the plane-model, we only need the right null space of equation (2.4) with a
sample size of 3 linear independent points. The residual will be computed as the difference
of the distance from the plane to origo and the distance of the point to Origo, i.e.:

ε =

∣∣∣∣ π4
‖π1,2,3‖

− ‖x‖
∣∣∣∣ (3.1)
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Where π is the estimated plane, and x is the point that is computed the residual to the
plane.

In order to know when to stop searching for new shape in the RANSAC algorithm, there
needs to be define a termination condition. From Schnabel et al. (2007) given a termination
condition that will calculate the number of iterations so that with a probability there will
be detect a plane within the iterations, it goes as follows. Given a point cloud, P , with N
points. Within the point cloud, there is a plane that consists of n points. The probability
of detecting the plane in a single pass is:

P (n) =

(
n

3

)
/

(
N

3

)
≈
( n
N

)3
(3.2)

The probability of a succsessful detection a succsessful candidate after s itterations is given
by:

P (n, s) = 1− (1− P (n))s (3.3)

Solving for s tells us the number of itterations T required to detect a plane of with n points
with a probability P (n, T ) ≥ pt:

T ≥ ln(1− pt)
ln(1− P (n))

(3.4)

The detection done in this thesis will be done offline, therefore, probability pt could be set
very high to be sure that the planes that have been detected will be fitted very well. This
since there is no need to think about computation time.

As described in Schnabel et al. (2007) a refitting step can be done after the detection is
done. This step is consist of doing a least-square, section 2.6.2, fitting of all the point
accounted as an inlier. This optimizes the geometric error for the planar surface.

Base-frame detection

In order to get a description of the Base-frame that will be detectable by a camera, there
were chosen to use an ArUco marker, section 2.5. The purpose of using ArUco marker is
that it is robust when detecting the marker and very easy to use. One of the most important
properties for the ArUco marker is that the relative pose between the camera and the ArUco
marker can be estimated by minimizing the reprojection error of the corners of the marker.
However, since the quality of the point cloud captured by the Zivid-camera is of such high
quality, there is of interest to utilizing the information within the points.
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3.2 Box detection in a point cloud

Figure 3.5: The ArUco marker placed in the sceen to define the Base-frame.

The detection of the ArUco marker is done in the RGB-image, and therefore the corners of
the ArUco marker are given in the pixel-frame. Since the point cloud outputted from the
Zivid-camera is organized, it is trivial to find the corresponding point in the point cloud.
One challenge with using ArUco marker is that the Zivid-camera will not detect any points
on dark surfaces. Therefore it is necessary to use an ArUco marker with inverted intensity
and do an invention of the colors before detection.

There are two features that will be calculated from the ArUco marker. It will define the
center of the Base-frame, and it will calculate the rotation such that the point cloud is
aligned with the Base-frame.

The orientation of the Base-frame is computed from the edges of the ArUco marker, see
Figure 3.6. This is done in three steps. First, it will be found the normalized vector, v̂i, of
each edge. Secondly define a unit vector, ŵi, that is in the principal axis and the direction
of v̂i. Thirdly the orientation of each of edges is given by the dot product between v̂i
and ŵi. Out of this, there will be four different angles. The orientation of the marker is
computed as the median of the four orientation.
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Figure 3.6: Illustation of how the orientation of a ArUco marker is estimated. The green dots are
corners, blue vectors, v̂i, the vector between corners and the red vectors, ŵi, are the principal axis
of v̂i.

Transformation

As stated at the beginning of this section, there where two different types of transforma-
tions that will be calculated. The first transform is used to align a planar surface with a
known axis, such that the point in the planar surface could be filtered out

Tp
c =

[
Rp
c rppc

0> 1

]
(3.5)

where rppc is a arbitrary point on the surface. Rp
c is the rotation ti align the surface normal,

π̂1,2,3, from the planar surface with the y-axis in Base-frame, b̂2. To compute this rotation
it will be used the axis-angle representation (2.20)

Rp
c = Rk,θ = I+ k× sin θ + k×k×(1− cos θ) (3.6)

Where k = π̂1,2,3 × b̂2 and cos θ = π̂>1,2,3b̂2.

The second transform is to align the whole point cloud with the Base-frame

Tb
c =

[
Rb
aR

a
c rbbc

0> 1

]
(3.7)

where Ra
c computed equally the plane algiment that where did in (3.6). rbbc is the centroid

of the Base-frame calucalted in from the ArUco marker. And the last rotation is com-
puted as the simple rotation (2.18) about the y-axis with the orientation computed from
the ArUco marker.
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3.2 Box detection in a point cloud

3.2.2 Detection

In this section, there will be developed a method for the detection of multiple boxes in
the point cloud. The parts of the point cloud that is considered to be a box will be further
processed before the feature will be extracted in the next part.

Clustering

In this stage, all points that are part of a box will be extracted from the point cloud.
Rodriguez-Garavito et al. (2018) suggest using Mean-Shift clustering. The two arguments
why they choose Means-Shift was for its capabilities to detect a variable number of boxes
and for having presented good results as an unsupervised classification. In order to use
Means-Shift, there needs to be searched in the calculated direction in which the points
should be shifted. To do search operations in a point cloud should be kept to a minimum
since these operations are expensive. Methods such as Kd-Tree can reduce the search
time. The method that has been used in this thesis is the Connected Component. Con-
nected Component is that it utilizes the point cloud from the Zivid-camera is organized
point cloud, and do not need to do any search operations. Which makes it much faster than
Mean-shift. The general performance is pretty good, but with the wrong camera setting, it
can have some weaknesses.

We will now review how Connected Components will cluster the point cloud. The origin
of the method is from Trevor et al. (2013). As mentioned the method requires that the point
cloud is organized. This does that it can be access a points neighborhood only by its pixel-
coordinates. Which makes it possible to find the neighborhood in constant time.

The method works by partitioning the point cloud into segments. This by making label-
ing, L(u, v), of each point in the point cloud. The points that corresponding to the same
segment will have the same label, i.e. L(u1, v1) = L(u2, v2). To determine this, there have
to be used a comparison function which takes two points as input and returns true or false
based on how the function is defined.

C(P (xi, yj), P (xn, ym)) =

{
true if similar
false otherwise

(3.8)

IfC(P (x1, y1), P (x2, y2)) = true thenL(u1, v1) = L(u2, v2), elseL(u1, v1) 6= L(u2, v2).

In the case of this thesis, there have been used the Euclidean distance between each point
as the comparison function, other possibilities could for instance be surface normals and
pixel intensity. These methods have not been used, because: By using surface normals, the
clustering will cluster each of the planner faces of the box as individual clusters. Also, it
is expensive to compute surface normals. By using the pixel intensity will not work since
there for example could be labels with a different color than the box. While with the only
Euclidean distance, it does not consider these changes is surface.

The labeling algorithm starts by assigning the first valid point with the label 0. Compare
the points in the first row and column with the specified comparison function and assigned
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a label after that. The remainder of the points is treated by examining their neighboring
points, left and above. If both neighbors have different labels, but the comparison function
returns true for neighbors, then the labels to the two points should be merges. This is done
by using the union-find algorithm. A second pass is done to merge labels such that it will
reduce the number labels. This will finally return the labeled point cloud. The labels that
contain fewer points, then a threshold will be excluded. Typically there is a significant gap
between the labels that contain a box or not, so the threshold is easy to set.

1 2
3

22

Figure 3.7: Example of two labeling points that should be merged. Current pixel is in blue without
any label and green is the neighboring pixels. If the blue matches green, the labels should be merged.
This will be done in the second pass using the union-find algorithm

Height calculation

All the features estimations will be done in the top-plane of the box. However, the method
for separating the top-plane from the rest of the box depends on a good estimation of the
height. Hence, the height has to be computed before the other features.

Since the point cloud is aligned with the Base-frame, any of the points on the top-plane will
represent the height. The centroid of the box will be used as the initial point for calculation
of the height. Because there are no points on the planes not facing the camera, the centroid
will be located closer to the edges of the top-plane. The final height is represented as the
mean of y-value of all the points within 5 cm.
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3.2 Box detection in a point cloud

Figure 3.8: An example of a patch used for estimation of the height.

Top-plane seperation

Since the point cloud still consists of many points, there is expensive to do RANSAC
and downsampling. Downsampling could may some important information that can been
lost. The method that is suggested use the fact that the top-plane is co-planar planar to the
ground plane.

To extract the top-plane, there is needed a threshold for what should be accounted for as
inliers. There is common to the same constant threshold on both sides of the plane when
extracting inliers. However, in this problem, there have been experienced that there are
uneven surfaces on the top-planes. Having a constant threshold on both sides, there will
include many points on the side walls and the whole top-plane, or there will have few
points from the side walls and lose some information on the top-plane. When there are
many points from the side walls, it will cause problems in the next step when the points
are projected onto the floor plane. It will in the next step cause problems when the points
are projected onto the floor plane. If there is an uneven surfaces on the side walls, there
will be points from the side walls that will make padding around the projection. With an
adaptive threshold this problem will not occur.
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Figure 3.9: Illustation of the challage with seperation of the top-plane with an uneven surface.

In this appraoch, the prior knowledge of that there is more points in a horizontal slice of
the top-plane of the box then in the middle of the box. The method starts by taking a
horizontal slice with a predefined height 1 mm, see Figure 3.10. The number of points at
this slice will be set as the reference of what that will be considered as a part of the side
walls. The method will it iterate along the y-axis from starting from 10 mm below the
height of the box. For each iteration, a new slice with a height of 1 mm will be extracted
and compare it with the reference slice. If the ratio of points in the new slice is above a
defined threshold, thslice, it will be considered as the minimum value of the top-plane.
All points in the cluster that are above the minimum value are considered a part of the
top-plane.

Figure 3.10: Sample slice of the boxes, used as an common value of points on the side plane.
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3.2 Box detection in a point cloud

Edges estimation

The features will be estimated from the edges of the top-plane. Since the top-plane is co-
planar with the floor-plane, it will be projected onto the floor-plane. To compute the edges,
it will be used Convex-hull, section 2.4, which is the smallest set of vertices that encloses
all the points in the top-plane. The method used is Quickhull, Algorithm 1 11, which is
implemented in PCL.

The Convex-hull have too many vertices that describe the top-plane. In this application,
it is only needed to have the four edges on each side of the box. To reduce the number
of vertices, Algorithm 2 is applied. This algorithm makes a vector between each vertex
and then by comparing how much change in direction there is between the vectors there
can be determined two properties. First, current vector direction change so much that it
is part of a new edge, line 7 in Algorithm 2. Secondly, the current vector has the same
direction as previous, and they are part of the same edge, line 9 in Algorithm 2. The vector
with a length beneath a threshold, thlenght, will not be considered as a possible part of an
edge.

Algorithm 2: Edges around a plane
Input: Convex hull, CH
Result: Edges along plane

1 edges = {}
2 foreach vertex ∈ CH do
3 vector = vertex− vertexnext
4 if |vector| > thlenght then
5 if vertexidx > 0 then
6 θ = angle(vector, vectorprev)
7 if θ > thadd then
8 edges← vertex, vertexnext

9 if θ < thmerge then
10 merges edges from vector and vectorprev

11 else
12 edges← vertex, vertexnext
13 vectorprev = vector

14 return edges
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Figure 3.11: An examples of computation of edges from the Convex Hull (blue dots). The the first
vector is counted as a full edge. When the second vector is computed it is accouted as a new edge.
The two last vector will be merge and be a part of a edge

3.2.3 Feature estimation

Now the features that described that box can be estimated. All the features are described
with respect to Base-frame. Therefore the orientation of the box is only α about the y-axis.
The position, (x, h, z), is defined in the center of the top-plane. The size of the box is given
as width, height, and length, (w, h, l). For both position in y-direction and the height, h, it
is already calculated in section 3.2.2. The features are illustrated in Figure 3.12.

Figure 3.12: Features that will be estimate. Orientation, α, position, (x, h, z), size (w, h, l)
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3.2 Box detection in a point cloud

Position

To estimate the position, a common approach is to calculate the centroid to find the posi-
tion. One of the disadvantages for calculating the centroid is that an assumption that the
points are uniformly distributed over the plane has to be taken, which is not always the
case. If a point cloud is captured from an angled oreintation, there will be a different den-
sity of points at different depths. Also, in the case of partwise occluded top-plane, there
will be a part of the plane that is missing points.

To calculate the position in a more robust way, the edges have been utilized by paring each
of the parallel edges and compute the mean line for both pair lines. Then the center of the
box is calculated as the intersection of the mean lines.

Figure 3.13: The lines of two parrallel edges is illustrated in red and the mean of these two lines is
in yellow

Orientation

A common technique to calculate the orientation of a set of points is to use PCL. How-
ever, as for the centroid, it will compute the wrong orientation due to unevenly distributed
points.

The orientation, α, is computed equivalent as there was done in the computation of the
orientation of the ArUco marker in section 3.2.1. Instead of using the vector between each
corner in the ArUco marker, there will use the vector on each edge in the edges. From
these calculations, there will be four orientations. The final orientation is given by it the
median of these four orientations.
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Size

The width and length are given as the distance between two pairwise edges. It is com-
puted with the line for each edge and then computes the distance between each of the
lines.

x>l1 = 0 (3.9)

x>l2 = 0 (3.10)

d =

∣∣∣∣ l13
‖l11,2‖

− l23
‖l21,2‖

∣∣∣∣ (3.11)
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3.3 Optimal Robotic bin packing

It this thesis there have been developed a method that will solve Robotic bin packing
problem, section 2.7.4. Since the research on RBPP is not that well studied, the work of
this method is based on the research done to solve BPP, section 2.7.3. BPP problems have
been studied for many years and will give fundamental knowledge towards a solution to
the problem.

In the RBPP, there are three classes of decision that need to be taken:

1. Packing, where should the given box be placed into the pallet.

2. Sequence, which will calculate the optimal sequence of boxes if they are packed
one-by-one.

3. Picking, which of the boxes should be pack first.

All these decisions are strongly dependent on each other. If the Picking had been removed,
the problem would be a BPP.

In the following sections, it will be reviewed how each of the decision will be solved.

3.3.1 Packing of boxes

The main two steps that are done in this section is that a new concept of Empty Supported
Maximal Space, ESMS, that keeps track of the feasible space where boxes can be packed
will be introduced. Moreover, the second step there will be used some heuristics to choose
where in this feasible space, the box will be packed. In Figure 3.14 it is an overview of
how the packing of one box on the pallet is performed. If a set of boxes should be packed,
the procedure in Figure 3.14 is repeated for all the boxes. The boxes that do not fit into
any space will be placed in an unpacked box list.

Prioritize ESMS

Divide
space-objects

Find fitting 
space-objects

in ESMS

Find intersect
space-objects 

in ESMS
Pack box Validate

space-objects

Add ESMS

Packing Update ESMS

Figure 3.14: Overview of operations that is preformed when a box is packed
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Figure 3.15: Maximal number of space-objects.

Empty Supported Maximal Space

ESMS, will managing which feasible space which will possible for packing boxes. This
is done by dividing the unpacked volume into space-object, si, which says the maximum
dimensions that could be packed into space. The idea is inspired by Lai and Chan (1997)
who introduced the concept of Empty Maximal Space, EMS. Both of the methods are
managing a feasible space where boxes could be placed. The difference between them is
that in ESMS, guarantees that there always will be supported surface, ground, or another
box, underneath the space.

In the initialization, a list will be declared, S, which will contain all the feasible spaces.
The first space-object that will be inserted is created with coordinate in left-bottom-back,
(0, 0, 0), and have the the size is equal to the maximum packing volume, (wmax, lmax, hmax).
When inserting a box onto the pallet, a update of S is needed. The update process starts
by finding all space-objects that intersect with the box that should be packed. The in-
tersecting space-objects are so updated by removing the displaced volume, i.e., dividing
the space-objects into new feasible spaces. The maximum number of divisions of a space
object is 5 in ESMS, i.e., back, left, front, right and above. A 2D example of how the
space-objects will look like after an update step can be seen in Figure 3.15a. An in the 3D
case, Figure 3.15b, there is a space above as well,

The search for intersecting spaces is a time-consuming operation. This search will be done
both for placement of a new box, and to search for if a recently created space-object is in-
scribed by other space-object and thereby need to be added to S. There will be made some
rules for which space-objects that will be added to S. This will do that the total number of
space-objects will be reduced, and expensive operation like a search for intersection will
be cheaper

• If the newly created space-object volume is smaller than each of the remaining box
volume, the space-object will not be add into S.

• If the dimensions, (w, l, h), of the space-object is smaller then each of the remaining
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Figure 3.16: Difference between ESMS and EMS.
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Figure 3.17: Merger of space-object that is created above a box

box dimensions, the space-object will not be add into S.

In Gonçalves and Resende (2013) they report that the reduction of computational is 60%
for applying these rules, for most problem instances.

The difference between ESMS and EMS is when the space above the box is created. For
EMS it will leave all the dissipated space as a space-object, see Figure 3.16b. These space-
objects have no need for any merge of space-object, while ESMS will there is a need for
this. Since the space-object above is only the supported be the box, it needs to be merged
with neighborhood space-object as same height. The merger starts with a search through
S for spaces that touches the newly created space-object. Depending on how the boxes
touch each other, there will eighter merge the two space or create a new space-object in
the touching points.
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Chapter 3. Method and implementation

Packing heusterisic

The packing heuristic, section 2.7.3, that have been considered in this thesis is the packs
the boxes one-by-one, a natural choice since there is a robotic manipulator that perfor-
mance the packing. Ideally, the heuristic choose will pack the boxes as compacted solu-
tion as possible. The heuristics are used to sort S every time space-object is created, see
Figure 3.14.

The heuristics used in this thesis is Deep Bottom Left with Fill, DBLF, that Karabulut and
İnceoğlu (2004) proposed. It has been used in multiple other publications such as Kang
et al. (2012) and Li et al. (2014) with good results. DBLF moved the item as deep into the
bin (smallest z value), far as possible to the bottom (smallest y value), and finally as far to
the left as possible (smallest x value), but at the same time fill the empty space.

When searching for a box position, only the position of the feasible space-objects, Sfeasible,
in S. Sfeasible is all space-objects where one or more orientations of the box fit inside
(number of orientations depends on the problem statement).

3.3.2 Stacking sequence

In most of the BPP, it is possible to change the sequence of the boxes that should be
packed. In this case, all boxes to be stacked are known, but the robot is only allowed to
chose between a random subset of them. This makes it harder to optimize, and based on
the sequence of available subsets, it may be impossible to pack the bin optimal. Most of
the research is on BPP, this knowledge had to be transformed to the RBPP domain. In the
next section, it will be shown that RBPP consists of solving multiple BPP for each box
pick.

Genetic algorithms have gained much acceptance for solving optimization problems. It is a
biology-inspired optimization method that will evolve during the optimization. GA cannot
guarantee an optimal solution, but in general, it returns a satisfactory result in a reasonable
time. In this section, the search for the optimal stacking sequence with the use of GA will
be reviewed. This GA is based on the work of Li et al. (2014), although compared to the
RBPP, they have multiple containers while RBPP have a single pallet.

Starting with defining some terminology:

• Population, set of trail stacking solution: Pk = {spk; p = 1, . . . , P}.

• Chromosomes, represents a candiadate stacking solution: spk = {1, . . . N}.

• Parent, member of current population: spk.

• Child, member of next population: spk+1.

• Generation, successively created population: Pk+1.

• Fitness, measurment of how much spaces a stacking solution utilizes: F pk = C (spk).
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3.3 Optimal Robotic bin packing

With the terminilogy defined there will be a reviewed of the whole optimization. Overview
of the framework can be found in can be found in Figure 3.18.

Initialize population

Packing of solution

Evaluation

Packing
sequence

Packed
solution

Selection Crossover and
mutation Solution

Figure 3.18: The framework of the Genetic algorithm.

Initialize population

Li et al. (2014) and Wang and Yanjie Chen (2010) give a suggestion to how the GA could
be initialized, and is what will be used. They suggested to generate some special chromo-
somes in the first generation. They have done observations that the bigger boxes should
be packed into the pallet early. The initial population, P1, will have the four first chromo-
somes sorted by the volume, length, width, and height. The rest of the population in the
first generation will be generated randomly.

Selection

GA is based on natural evolution, where the chromosomes which performs well are used
for learning in the next generation. First, a sort of all of the chromosomes in descending
order by their utilization of space, F pk , is done. The firstE will be chosen by elitism which
directly proceeds to the next generation, Pk+1. Now missing |Pk| − E chromosomes for
the next generation are missing. The last chromosomes that will be selected have to be
selected first for joining a mating pool. A tournament selection makes the selection of
chromosomes. Two randomly chromosomes from the population is selected in each round
of the tournament selection. With a probability, probt the better one is added into the
mating pool; otherwise, the weak one is added. The chromosomes in the mating pool are
paired up as parents. For each of the parents, there is a probability of probc that they
goe directly into the next generation; otherwise two offsprings are generated through a
crossover.
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Crossover and mutation

To explore more of the solution space there is proposed to do crossover and mutation.
Crossover does this by inherent properties of well performance chromosomes and mutation
is doing this by adding unexplored space into the solution.

Two parents, s1k and s2k, are needed to perform crossover. These will generate two off-
springs, s1k+1 and s2k+1. To find the the genes that are inherit to the first child, s1k+1, two
cutting points i and j will be randomly pick. The genes in s1k between i + 1 and j will
be copied to s1k+1. The missing genes is gather by sweeping through s2k and circularly
the genes that are missing into s1k+1, starting from j + 1. To find the second child,s2k+1,
there is simply just to change the two parents. In Figure 3.19 there is an example of
crossover.

The mutation is performed on newly generated offsprings with a probability of probm. If
the offsprings are selected, there will be randomly selected two genes that will swap their
positions.

9 6 5 38 2 710 4

9 5 10 6 34

1 2 97 6 5 38 04

8 2 7

Parent 1

Child 1

Parent 2

Figure 3.19: Crossover preformed between two parents.

3.3.3 Robotic bin packing

The big difference from BPP to RBPP, section 2.7.4, is the constraints on the possibility
to change the sequence that the boxes arrive. In RBPP all, Nitems, the boxes that should
be packed is know, but it is only possible to choose between a few, Npick. For these kinds
of problem, it is not given it is possible to find a solution to the problem, due to the hard
constraint regarding the order.

An example of the problem can be seen in Figure 3.20. In this example, the robot manipu-
lator needs to choose which of the three boxes that need to pick up and pack on the pallet.
This decision depends on the current solution on the pallet. However, equally important,
it also is dependent on all the future boxes that will arrive later.
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3.3 Optimal Robotic bin packing

PalletConveyor beltPicking

Figure 3.20: Illustration of how the decition for the robot can look like, with npick = 3

The method that will be suggested to solve this RBPP problem is illustrated in Figure 3.21.
For each of the Npick boxes available to be picked, temporary pack the box and remove
it from the list of not-packed-boxes. Then, find the best stacking sequence for each of the
remaining not-packed-boxes and store the Ncost best costs after the cost is calculated for
all the available boxes. Based on these costs, pick the box that will have the best cost in
the future. This box will then be packed on the pallet with the heuristics packing strategy
in section 3.3.1, that includes updating the ESMS.

Then the problem is reduced to find a method to calculate the possible future cost. In the
last section, 3.3.2, the GA search to find the optimal stacking sequence for a given set
of boxes. If this method is given the list not-packed-boxes, it will calculate the optimal
stacking sequence for the future boxes that will arrive. Since the GA is search by trying
multiple attempts, there is possible to output the Ncost best costs. This can then be used
in the method above to decide on which box to pick.

npick 
Boxes available

Box 1

. . .

Box npick

Packing

Stacking seqence

Packing

Stacking seqence

Future cost

Future cost

Pick box with
best cost

Figure 3.21: Pipeline of the Robotic bin packing. The methode calucalted the future cost of available
boxes and picks the one with best future.
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Chapter 4
Result and Analysis

4.1 Box detection

In this part, we will present the conducted experiments and the following results for the
box detection method described in 3 chapter. The goal of the experiments is that we want
to map the performance and uncertainties of the method.

4.1.1 Data

To get sufficient data for testing the performance of the method, there is not enough with
data from a 3D-camera. It will only output the point cloud and to get a ground truth, we
have to measure the features manually. This is a time-consuming task, inaccurate, and
some of the features are impossible to measure. For this reason, we have developed a
point cloud simulator, Appendix A. With the simulator we can:

• Add all types of objects into the scene.

• Place the object freely around in the scene, regarding both rotation and translation.

• Move the camera, regarding both rotation and translation.

• Add noise to the scene.

• Output a point cloud as seen from a 3D-camera, while knowing the exact pose and
size of each object in the scene.

Also, we can test the performance on much more data and have control over each of the
feature at every experiment.
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Chapter 4. Result and Analysis

Figure 4.1: To the left is the point cloud from the simulator, and to the right is the point cloud from
the Zivid camera. The point cloud from the Zivid camera is without ArUco markes, and have only
been used for size estimation.

4.1.2 Cloud preprocessing

In our experiment, we will only focus on instances where we have one planar surface that
supports the boxes. The center and orientation of the Base-frame is given as an ArUco
marker and will also be present in all of the experiment. To get an accurate measurement
of the performance, we need a ground truth. Therefore all the results are obtained on
simulated data and some visual samples from the Zivid-camera.

The experiment conducted has the following properties:

• Random camera orientation between 30◦ and 70◦ about x-axis and −40◦ and 40◦

about the y-axis.

• Number of point clouds: 50

• Number of boxes in each point cloud: 0

• Total number of boxes: 0

Figure 4.2: Input to ArUco detection from simulator and Zivid-camera.

The results from the experiment can be seen in Table 4.1. As we can see, the computated
orientation has a perfect match. Important to notice is that for 7 of the captured point
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clouds, we did not find the ArUco marker. So with these point clouds, we cannot estimate
the orientation about the y-axis.

From the Zivid-camera, we captured 8 point clouds with different positions for the ArUco
marker, and we did detect all. In Figure 4.3, we have an example of one of the output point
clouds.

y-axis k-axis
Mean error 0.00◦ 0.058◦

Standard deviation error 0.00◦ 0.00◦

Table 4.1: Results camera orientation estimation.

Figure 4.3: An example of the output of the ArUco, the red dots are the corners.

4.1.3 Preprocesing of clusters

Clustering

The clustering part of the method makes it possible to do detection of multiple boxes. This
makes it a critical part of the method. To evaluate the performance, we could make the
use of that the simulator gives us which points in the point cloud that represents the boxes.
This is a good metric, but the data quality from the simulator is to ideal so we will return
the correct clusters of the point cloud each time. The experiment in the clustering part will
be conducted on data from the Zivid-camera, and the result will be the number of detected
boxes.

The experiment conducted have the following properties:

• Random placed boxes in the scene.

• Number of point clouds: 22

• Number of boxes in each point cloud: 2

• Total number of boxes: 44
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In 20 of these point clouds, we detected all the boxes. In this set of point clouds do we
have samples where we have a large and short distance between the boxes, occlusion for
another box and boxes partly is outside the point cloud. Two examples of this can be seen
in Figure 4.4 and Figure 4.5.

We have also observed two cases where the clustering fails. Both of the cases have to do
with that we are using Connected Components with Euclidean distance as a comparator.
In the first case, Figure 4.6, we have physical contact between the boxes. The neighboring
boxes will have small Euclidean distance in the contact area, and then be determined as
the same cluster. For the second case, Figure 4.7, we have a discontinuity in the surface.
The neighboring points will then have infinite Euclidean distance and then not able to bind
the two sides if the discontinuity.

Figure 4.4: Successful clustering of two boxes

Figure 4.5: Successful clustering of two boxes, with occlusion

Figure 4.6: Failed to cluster the two boxes due to physical contact between the boxes
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Figure 4.7: Failed to cluster the two boxes due discontinuity in the surfaces

Top-plane extraction

With a constant threshold, two errors can occur. The first error is that we have included
too many points from the side-planes, to large distance threshold. When projecting this
into the top-plane equation, there will be padding around the projection, Figure 4.8. The
second error is due to that the distance threshold is too small. For some top-planes it could
be sufficient distance, but since we do not have any prior information about the upcoming
planes this distance can be too small. In Figure 4.9 we have one plane that the distance
threshold fits well, and one that has removed parts of the plane.

(a) No error (b) Error

Figure 4.8: Error due to projection of points from side-planes.
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(a) No error (b) Error

Figure 4.9: Error due to that we remove to many points from the top-plane.

With an adaptable distance, we will avoid these two errors. The decision of the distance
threshold is decided on that a change in the ratio of points within a sliding cross section
along with the box. With a sample of the point clouds captured with the Zivid-camera,
we have made a plot visualizing the change of points within the sliding cross-section,
Figure 4.10. We can see a significant change for all of the samples and that there are
different distances from the height for the box. In our case, we have set the termination
condition to be a ratio of thslice = 2.

Figure 4.10: Ratio of inliers of the sliding cross section.

Edges

Now we will look into how the computation of the edges from the Convex hull will look
like. This is dependent on three thresholds that is defined in beforehand, the thresholds
we had was thlength = 15mm, thadd = 10◦ and thmerge = 80◦. In Figure 4.11 have
we picked out two instances of interest from data obtained by the Zivid-camera. Both
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4.1 Box detection

Figure 4.11a and Figure 4.11b have very good results. The edges follow perfectly outside
of the planes. The most interesting result is that we can compute the edge when we have
occlusion. Which does such that there is possible to compute the position and orientation
without the use of the centroid and PCA.

(a) Perfect edge computation. (b) Edge computation on a occluded point cloud.

Figure 4.11: Examples of the edge computation. The orange dots represent the output from the
convex hull, red and green lines the computed edges.

4.1.4 Height calculation

The height calculations are being used both as a feature in height and position along y-
axis. Also, it will be used as a parameter in the next steps in our method, which makes it
important for multiple reasons. Since boxes height is possible to measure, it can be done
experiment with real data from Zivid-camera.

The experiment conducted with the Zivid-camera has the following properties:

• Two fixed sized boxes

• Number of point clouds: 20

• Number of boxes in each point cloud: 2

• Total number of boxes: 40

As we can see in Table 4.2 and 4.12 the result from the Zivid-camera have fairly good
results. The largest part of the estimation is within 2.5 mm from the correct height. Also,
for the Zivid-camera, we have a different type of measurement error then can occur with
the simulator. E.g., on the surfaces of the box faces the simulator will have a perfect
plane with only Gaussian noise. While for the case of Zivid-camera experiments, we are
working with real-world objects where we have uneven surfaces where only the mean of
all the points in a face could be a plane. The centroid of the top-plane, where we calculate
the height, can have a small deviation from what we have measured. Also, the height of
the boxes is measured manually, and will there will also be a measurement error. We have
also done an experiment with 235 boxes from the simulator.
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Zivid Simulator
Mean error [mm] 0.66 1.00

Root mean square error [mm] 2.73 1.01
Standard deviation error [mm] 3.42 0.17

Table 4.2: Results height calculation.

(a) Zivid-camera (b) Simulated

Figure 4.12: Distribution of errors in height calculation.

A question that could be asked is why we do not use centroid to the position in x and z
as well. This can be seen in Figure 4.13 where we have two cases where the centroid of
the points corresponding to the true center top-plane and one case where it deviates. To
use the centroid as position, there has to be even distribution of all points in the top-plane.
For the case in Figure 4.13 we have occlusion from a box in front of it that results in a
missing part in the top-plane. Another occurs when we capture a point cloud from the
Zivid-camera. The deeper the points are in the scene, the less dense the number of points
are in the neighborhood, which gives us an uneven distribution of points.

Figure 4.13: Red is the centroid of the top plane and the blue point is the true center for the top-
plane.
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4.1.5 Box position estimation

In our problem, we have two frames of reference, Camera-frame, and Base-frame, Fig-
ure 4.14. The Base-frame is thought of as the known frame by, e.g., the robotic manipu-
lator. The experiment and result done for this part are only done with simulated data. We
will look into the result both for describing the position error both in the Base-frame and
the Camera-frame.

Figure 4.14: Frames of refrence in our problem.

The experiment conducted have the following properties:

• Random placed within the scene.

• Number of point clouds: 50

• Number of boxes in each point cloud: 1

• Total number of boxes: 50.

• Fixed-feature: all others.

In Table 4.3 we have not included the position in height, since it is already coved in 4.1.4.
As we can see from the result of both position in the Base-frame, 4.3, and the Camera-
frame, 4.4, have both an accuracy within an 5 mm. These results are more than sufficient
for a robotic manipulator to pick up. An interesting observation is that the error in Camera-
frame is less than the Base-frame. This has likely to do with that when describing the
position from the Base-frame we have to do to estimations. Both the origin of the Base-
frame and the position of the box. The result given for the Base-frame will, therefore, be
dependent on two errors.

Our method will estimate the correct position if we have a partly occluded top-plane.
If we look at the case in Figure 4.13 we have a big part of the top-plane occluded by
computing the center of the box as the centroid of all the points. The center will be placed

53



Chapter 4. Result and Analysis

with a distance of 45.5 mm from the true center. With our method, we get a significant
improvement with only 5.8 mm from the true center.

x-axis z-axis Euclidean distance
Mean error [mm] -0.16 -0.62 3.10

Root mean square [mm] 2.81 1.96 3.58
Standard deviation error [mm] 2.80 1.86 1.78

Table 4.3: Results box position for Base-frame.

(a) x-axis (b) z-axis (c) Euclidean distance

Figure 4.15: Histogram of error in calculation of box position in Base-frame.

x-axis y-axis z-axis Euclidean distance
Mean error [mm] -0.00 0.87 0.65 1.53

Root mean square error [mm] 0.75 1.10 0.75 1.63
Standard deviation error [mm] 0.93 0.68 0.39 0.55

Table 4.4: Results box position for Camera-frame.
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4.1 Box detection

(a) Error in x-axis (b) Error in y-axis

(c) Error in z-axis (d) Error in euclidean distance

Figure 4.16: Histogram of error in calculation of box position in Camera-frame.
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4.1.6 Box orientation estimation

As well as for the box position, we can describe the orientation in two frames. Since
the boxes is supported by the XZ-plane in the Base-frame, we need only to describe the
orientation with one angle. For the case of the Camera-frame, there will be three rota-
tions, roll, pitch, yaw. The experiments and results for this part can only be done in the
simulator.

The experiment conducted have the following properties:

• Random orientation in about y-axis in Base-frame.

• Number of point clouds: 50

• Number of boxes in each point cloud: 1

• Total number of boxes: 50.

• Fixed-feature: random box size.

As we can see from the Table 4.5 and Figure 4.17 the error is only i bias of 0.49◦. If we
look at the mean of the error of the camera orientation for the same instances, we also
have a bias of 0.53◦. This is the same case as for the position error where the results
contain two errors, which makes sense when we look at the error in roll, pitch, and yaw
for the Camera-frame, where the mean is zero and a standard deviation almost equal to
zero.

y-axis
Mean error 0.49◦

Root mean square error 0.51◦

Standard deviation error 0.11◦

Table 4.5: Results box orientation calculation.

Figure 4.17: Histogram of the orientation error about y-axis in Base-frame.
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4.1.7 Box size calculation

An essential feature for the industry is the box size. This is the feature that is the easiest to
see as a measurement of cost. For industrial application where they are using fixed-sized
cardboard, the size could vary above 2 cm. Since we have measurements of the boxes sizes,
we do evaluate our method with the point clouds from the Zivid-camera. However, to get a
comprehensive evaluation, we will use the simulator as well with accurate measurements
and much more instances.

The experiment conducted with the Zivid-camera has the following properties:

• Two fixed sized boxes

• Number of point clouds: 20

• Number of boxes in each point cloud: 2zero

• Total number of boxes: 40

Moreover, the experiment conducted with the simulator has the following properties:

• Random box sizes between 15 cm - 40 cm for each of the dimensions.

• Number of point clouds: 100

• Number of boxes in each point cloud: 1− 4

• Total number of boxes: 235.

• Fixed-feature: all others.

In the Table 4.6, Figure 4.18 and 4.19 we can se the results of our experiment. The overall
performance of the size calculation is pretty good and is sufficent for a indutrial application
where the required accuracy is in cm-range As we can see from Figure 4.18 and 4.19 we
have a few cases where we have error above 1 cm.

In the calculation of the width and height, we use the edges calculated in last part, 3.2.2.
An assumption we have done is that these edges are parallel to each other. This assumption
have we experienced that is not always true. In the case of data from the simulator, we
have a deviation of up to 2.75◦ between the parallel edges. If we look at the instances at
the heads and tails of Figure 4.18 all the that have an absolute error above 10 mm have also
deviation above 1.0◦. For the instances with the must error, above 20 mm, we a deviation
above 1.94◦.

Zivid Simulator
Width Length Width Length

Mean error [mm] -0.34 -0.09 -1.66 -3.59
Root mean square error [mm] 6.92 7.92 6.47 4.68
Standard deviation error [mm] 6.98 8.83 6.25 2.99

Table 4.6: Results box size calculation.
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(a) Width error (b) Length error

Figure 4.18: Histogram of error in calculation of box sizes from simualtor data.

(a) Width error (b) Length error

Figure 4.19: Histogram of error in calculation of box sizes from Zivid data.

In search of a method that is more robust, we need a method that is independent of geo-
metric properties between edges. Our first suggestion is first to utilize that the estimation
of the orientation has very high performance. This by computing the intersection between
the line that is along the orientation of the box and the edges. This line can be described
as:

lc(α) = pc ×
(
pc + [sin(α) cos(α) 1]

>
)

(4.1)

Where α is the orientation of the box and pc is the center of the top-plane. Then the width
and length is given by:

w = ‖lw1
× lc(α)− lw2

× lc(α)‖ l = ‖ll1 × lc(α)− ll2 × lc(α)‖ (4.2)

Where lw1
, lw2

, ll1 , ll2 are the lines on the edges for the box.
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In this thesis, only ideal simulation data has been used to evalutate the pose, since there
is more noise in captured point clouds. Rodriguez-Garavito et al. (2018) suggests both
width, length and orientation could be found simoultaneously. They do this discretization
of the orientation and measuring the distance, with (4.2), for each step. The features can
be extracted where the distance is smallest.

We suggest that we can solve this as an optimization problem:

min
α
‖lw1

× lc(α)− lw2
× lc(α)‖+ ‖ll1 × lc(α+

π

2
)− ll2 × lc(α+

π

2
)‖

subject to |α| < π

2

With this optimization problem we will not get an quantization error, and reduce the
amount of unnecessarily itterations.

Figure 4.20: Illustration of the optimization to find the width and length.

4.1.8 Run-time

The run-time of the method could be interesting in many cases. The most important is to
minimize the idle time that could be caused by the computations. There is a possibility
that there is a need for detection the scene multiple time, e.g., if there are disturbances
that could cause the boxes to move. Also, the most computation expensive part of the
complete system is the Robotic bin packing method. There should be prioritized to run the
optimization as long as possible such that it could find any new better solution.

The experiment that is conducted used is the same as for the box size experiment; this
dataset has the most number of different boxes. The results could be seen in Table 4.7 and
Figure 4.21.
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The initial goal given in the limitations was to detect the boxes within one second. As seen
from the results beneath that is achieved with the good margin. As there can be seen it is
a quite big gap between the point clouds from the Zivid-camera and the simulator. This
dataset has the most number of boxes and also with variable size there is a variable number
of points for each box. Both of the datasets have boxes sizes in the same range. However,
since the simulator has a larger focal length than the Zivid-camera, there will be less dense
point cloud for the boxes from the simulator. This results in a computational time that is
faster for the simulator.

To get an intuition of what the run-time for this method, it can be compared to the capture
time of the Zivid-camera. To capture one point cloud the Zivid-camera uses 100 ms,
section 2.1. However, there is also common to use High-dynamic-range, HDR, which
captures multiple images at different exposures, then the capture time will be above 200
ms pr. point cloud. For this method, it will be a bit slower than a point cloud captured
without HDR, and faster if the point cloud is captured with HDR.

Zivid Simulator
Mean run-time [ms] 134 73

Standard deviation run-time [ms] 15 11

Table 4.7: Results run-time for detection of one box
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Figure 4.21: Histogram run-time for detection of one box.
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4.2 Box packing

In this section, the results of the Robotic bin packing method developed in this thesis
will be presented and analyzed. As stated in the introduction to the thesis, 1.2.1, there
are some limitations considered when testing this method. RBPP can be stated as a very
complex problem, and there exist no trivial solution. Therefore it is important to confine
the problem such that it can be feasible for a masters thesis. Most of these restrictions can
be made on the complexity that is presented below.

First, two experiments are conducted to investigates performance of two fields; the op-
timization of the stacking sequence, and the performance of different heuristic methods.
Lastly, there will be an experiment on the whole Robotic bin packing method.

In the method that is described in section 3.3, some constants need to be set. While gath-
ered the results for all the experiments that solve RBPP, there have been used:

• Number of boxes on pick, Npick = 3

• Number of stacking packing solutions to decide the cost, Ncost = 8

• Genetic algorithm:

– Population size: 8

– Elitism size: 2

– Generations: 5

– Probability of being added into the mating pool, probt: 0.85

– Probability of crossover, probc: 0.75

– Probability of crossover, probm: 0.5

For solving the BPP problem, there is only used the constants beneath the GA bullet. The
constants ”Population size” and ”Generations” are changed to 30 and 10. This is due that
the computational time for the RBPP is much higher since it solves multiple BPP for each
packing operation.

To compare all the results, all test instances are generated in such a way that there will
always be an optimal solution. Also, there is conducted a test on all instances where the
boxes are packed with only heuristic packing strategy. With only this heuristic packing
strategy, the packing can be thought of as a stupid robotic manipulator. The results for
only heuristic packing strategy are presented below in Figure 4.22. As expected, there are
many unpacked boxes without any optimization.
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Figure 4.22: Only heuristic packing strategy of boxes, no optimization done

4.2.1 Data

The data considered for this thesis is based on experience from Rocketfarm AS. It is based
on a typical industrial application that is fitted for with limitations in this thesis. Solving
this type of problems will bring valuable knowledge both as a service and how they can
address RBPP.

The data that will be tested with is based on stacking on a pallet. A EURO pallet has a
surface area 800 mm x 1200 mm. The limitations that we are given is that the boxes we are
going to pack have three different footprints. Where the footprints of the boxes are 1/4, 1/8
and 1/16 of a pallets surface area. These footprints will be 600mm × 400mm, 300mm ×
400mm and 300mm × 200mm. For the height of the boxes, there will be three different
height, 300 mm, 200 mm, and 100 mm. A valid packing solution has to fulfill the physical
constraints on the pallet. The surface area of the pallet gives the constraints in width and
length. While the constraint in height is not trivial since, in industrial application, the
stability of the packing solution can vary depending on the objects. Therefore there will
be three different maximum heights in the dataset, 600 mm, 800 mm, and 1200 mm. The
datasets have all 200 instances in each, and there is one dataset for each height, in total
there are 600 instances.

62



4.2 Box packing

(a) Boxes footprints (b) Boxes height

Figure 4.23: Diffrent boxes sizes that are in the dataset

Instances generator

In the lack of any dataset that includes similar types of problems, there has been developed
a instances generator. The properties of the instances generator are as follows:

• Scalable dimensions of the pallet.

• Boxes surface area has to be divisible on the pallet surface areas, i.e., 1/4, 1/8, 1/16,
1/32,...

• Boxes heights can be assigned within the maximum height of the packing height.

• Guarantees that there exists a stacking pattern to the problem which has no waste-
space if it is solved as a BPP.

The last property is important in our problem. Since all of the instances generated is
known to have a solution where all the boxes fit inside. The performance metric can be
both number of unpacked boxes and how much –space there is.

4.2.2 Solving the problem as BPP

In order to use the optimization of stacking sequence to decide which box to pick next,
the performance of the algorithms must be validated. To do this, it has been conducted
an experiment where the instances are solved as a BPP, i.e., possible to change order on
all boxes. This experiment is on all three datasets, as described above. The results are
presented below
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(c) Maximum height 1200 mm

Figure 4.24: Problem solved as an BPP where the order of the boxes can be change

By comparing the result with, Figure 4.24, and without, Figure 4.22, optimization there
are major improvements. As these problems are very simplified for a BPP, it should be a
requirement that it find an optimal solution. The most important is that it confirms us that
it is possible to use this GA in the decision making of the Robotic bin packing.

To further investigate what can cause the error, it has been looked into the case in Fig-
ure 4.25. It has three unpacked boxes have sizes 300 mm × 400 mm × 100 mm, while
the waste-space have footprint 300 mm × 200 mm. The volume of the waste-space is
equal to the space of the unpacked boxes, so there are no fundamental placement errors.
The problem could probably have been solved with running the optimization for further
generations. Then the unpacked boxes would be placed earlier in a fitted footprint.
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Figure 4.25: Illustration of a solution with 3 unpacked boxes, red boxes are waste-space

4.2.3 Heuristic packing strategy comparison

The most crucial part to get well performance on a Robotic bin packing method is the
packing strategy. With the Robotic bin packing method, two different scenarios has been
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4.2 Box packing

tested. One with a heuristic packing strategy where the feasible packing space is sorted
after the distance from the origin. The other one use a Deep Bottom Left with Fill, DBLF.
These are tested on the full robotic bin packing system with the dataset with a height of
600 mm. The results are presented below

0 1 2 3 4 5 6
Number of unpacked boxes

0

10

20

30

40

50

60

70

Nu
m

be
r o

f i
ns

ta
nc

es

(a) Distance to the origin

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Number of unpacked boxes

0

20

40

60

80

100

Nu
m

be
r o

f i
ns

ta
nc

es

(b) DBLF

Figure 4.26: Comparison of heuristic packing strategy

When investigating the result, a DBLF shows a much better performance. The distance
heuristic had 50 instances with perfect stacking, whereas DBLF had 100 instances. This
means distance heuristics had a 25% perfect succes rate, whereas DBLF had 50% perfect
success rate.

An example if the decisions can be seen in Figure 4.27, where a box of with footprint
300mm× 200mm should be packed. For the case of distance heuristic, it is as likely place
the box in the orange position, since the distance is closer, while the DBFL will fill the
space and place the box inside the missing gap and place it in the green position. The
green position seems to be the most clever to choose since there is only possible to fit a
box with footprint 300mm × 200mm. In the orange position, there could be placed both
of the two other sizes.
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(b) Two possible placement

Figure 4.27: Case where the two heuristic can choose differently

4.2.4 Robotic bin packing

Now the final result for the whole method will be presented. These are conducted on all
three datasets, i.e., 200 in each dataset with three different heights.
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(c) Maximum height 1200 mm

Figure 4.28: Problem solved as an RBPP

The overall performance is seen in Figure 4.28. In 66 % of the cases, its performance as
good as optimal or only one box was not packed. As there also could be seen in the figure
is that for the case with more boxes, i.e., maximum height of 800 mm and 1200 mm, there
are more cases with outliers. In the dataset with a height of 1200 mm, there are 23 cases
where more than five boxes have not been packed. This is caused by that when there are
more boxes, it will be more opportunities than three large boxes will arrive at the same
time. At the end of the packing, the feasible space is getting smaller. If then three large
boxes arrive at the same time, it will not have feasible space for any of them and have to
discard all three of them. The number for times this occurs can be seen from the figures
Figure 4.28b and Figure 4.28c. The instances where there are multiples of 3 unpacked
boxes is the most dominant in the figures.
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4.2 Box packing

Some of the most interesting results to look at fitness during training. In Figure 4.29
there are the 6 worst instances in the dataset with height 1200, tail of Figure 4.28c. This
fitness was the best when the robotic bin packing was choosing which box to pick. For
each of the plot, there is possible to count the number of clear steps. The instance with
nine unpacked boxes have three steps, and the instance with 12 unpacked boxes have four
steps. This is also an observation that the method had not found any feasible space for all
the boxes when the decision was made. Another observation that could be made is that
there are some parts where the cost suddenly seems to be better. This could occur because
the optimization found a possible future solution that it previously did not found.
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Figure 4.29: The cost of the 6 worst performing instances. The green and brown is the instance with
12 unpacked boxes and the rest have 9 unpacked boxes.

To analyze the results, there will be compared to the results from only heuristic packing,
Figure 4.26, and that the dataset is generated to have a solution when solved as a BPP. The
pure heuristic packing could be thought of as a worst-case situation if the robotic packing
performed worst then that there is no need for any optimization. In Table 4.8, there is a
comparison of all the instance. The overall performance is that 91.8% of the instances
performed it is better than or equal to the pure heuristic packing strategy.

Heuristic packing strategy
Dataset Optimal Better Equal Worst
600 mm 100 151 33 16
800 mm 64 156 25 19

1200 mm 33 151 35 14

Table 4.8: Results for the robotic bin packing method. The results are in number of instances

Out of 600 cases, the heuristic pacakging strategy managed to find an optimal solution for
8 of them. For 5 of the 8 cases in this subset, the robotic bin packing method had a poorer
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performance than the heuristic packaging strategy. This means that the optimization had
the oppurtinty to place all the cases optimally, but failed to do so. This gives a failure rate
of 5/600.

4.2.5 Comments on the result

At the end of the work on this thesis, a minor error in the implementation of the RBPP
was discovered. The error causes the following incorrect behavior: The last three boxes
could be placed in the same place, i.e. the last two boxes could be placed at the same
place as the third last box. This error will not affect the results in serious deviations in
the findings. Due to the fact that the mistake was found just before the deadline of this
thesis, it was not possible to correct it and redo all results within time. Due to the relatively
mild implications on this bug, the results should still provide a good confirmation of the
performance of the methods.
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Chapter 5
Conclusion and future work

5.1 Conclusion

Robotic solutions in industrial applications get more important for every year. Repetitive
tasks are easy to automate since many of them could be programmed with sequential ma-
neuvers. Palletizing of known sized boxes is a typical example of these tasks. THowever,
when palletizing boxes with mixed or even unknown dimensions, new challenges occur.
Where should the robot grip, where should the box be placed, and at which order should
the robot pick the boxes are crucial questions. These problems can be divided into several
subproblems, for instance how to handle damaged boxes and internal stability of pallets
due to the order and patterns to palletize. This thesis emphasizes on solving two of the
sub problems found in a fully automated palletizing system for mixed size boxes found in
industry.

The first suggestion is the Box detection method that utilizes the accuracy and precision
of the Zivid-camera to detect boxes. This method use known operations for point clouds
to calculate the transformation to a known reference frame, remove constant noise, detects
all boxes present in the scene, and describes the pose and size of each box. The size
estimation has been tested on data captured from the Zivid-camera. The size of the boxes
could be described with an accuracy of 0.66 mm and precision 8.83 mm. In order to also
get comprehensive results of the pose, a simulator for point cloud representation of object
was developed. As seen from section 4.1.5 and 4.1.6, the pose of the method could be
described with high accuracy and high precision.

The second suggestion emphasizes the Robotic Bin Packing Problem, section 2.7.4. Be-
case RBPP is not well studied, research on Bin Packing Problems have been transformed
into the RBPP domain. The method calculates the future cost for each of the available
boxes and based on the cost it decides which box to pick. The data used for testing is ran-
domly generated with properties that are commonly found in industrial applications. The
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overall performance shows in 91.8% of the instances the decisions that the method takes
does equally or better performance than a pure heuristic packing strategy. Despite the
fact there are limitations on the data and a minor error in the implementation, the results
confirm the method is correct.

In conclusion, the methods developed in this thesis shows satisfactory results which could
be used in an industrial application. By combining the detection of boxes from the point
cloud, captured from the Zivid-camera, with decisions from the Robotic bin packing
method, it could be able to fill a typical missing gap in a fully automated palletizing sys-
tem.
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As concluded above, the results show the results show these methods could be used to
solve parts of the mixed box palletizing problem. This could motivate to further study the
problem.

During this thesis, there have been no experiments on a complete system. If it should
be taken into consideration to continue with this study, an experiment on a complete sys-
tem should be conducted. By doing this, a framework for the total system needs to be
developed, which makes it easier to test future improvements.

The least robust part of the box detection method is the clustering. In a noisy environment
and more uncertainties on the boxes, it needs to be very robust. At the same time, many
of the ordinary clustering techniques are time-consuming and therefore, unsuitable for this
application. The suggested improvement is to utilize that the Zivid-camera outputs an or-
ganized point cloud, and therefore, do segmentation of the boxes in the RGB-image. Then
extract the point cloud of the box with the help from the mask it outputs. The segmentation
can suggestively be done by a Mask-RCNN trained to segmentate boxes.

The Robotic bin packing is the method with most limitations, and therefore, many im-
provements could be made. As a start, the instance generator could be made more ad-
vanced by adding more variations in sizes. A suggestion to this could be to add a standard
deviation on each of the dimensions. Another could be to add continues heights. By doing
this it could be interesting to see if there is an advantage to do rotations of the boxes.

In Bin packing problem, the heuristic packing strategy is not that important since there
could be done many decisions on the order of the boxes. For the Robotic bin packing
problem, there need to be done much more short term decisions that affect the whole
solution. Therefore it should be investigated more advanced methods that do not place the
boxes on rule-based methods. These could be a packing strategy that does optimization
purely on the packing.

The most promising new research on combinatorial optimization is done with deep rein-
forcement learning. As mention in section 2.7.3, it has been tested with excellent results
for Bin packing problems. There would be of big interest to try some of these methods on
the Robotic bin packing problem. However, to implement this, there is a need for a large
amount of training data, which could be hard to get.
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Appendix A
3D point cloud simulator

The 3D point cloud simulatour is made becuse of there are no accurate method to obtain
pose data when using capturing point clouds with a 3D-camera. Also it gives the abilety
to easly to experiments under controlled environment with a lot of point clouds. The
simulator inputs an point cloud generated from CAD-model or mesh-model, and a outputs
a orgainzed point cloud with all transformation done to it. The simulator works in four
steps:

1. Transformation: Each of the object need to be given a transformation matrix and
the scene will also be given one. These transformation matrices are applyes to the
respectively point clouds.

2. Projection: First each of the point clouds are projected into the normalized camera-
frame. Then the camara matrix is used to find the pixel coordinate for each of the
points. If multiple points have same pixel coordinate it will only keep the point
closes to the camera, smallest depth-value.

3. Depth-map: For each of the object it is made a depth-map.

4. Merge object: The depth-maps are used as mask to find which of the objects that
occludes the others. These masks can then be used to remove occluded points. The
result is a orgainzed point cloud.

In addition to give out a orgainzed point cloud there the masks could be outputted. These
masks can be used for training and testing of segmentation neural networks.
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(a) Input point cloud (b) Transformed into the scene

(c) Point cloud projected into the camera, re-
moved occluded points

(d) Depth-map of point cloud

(e) Output point cloud

Figure A.1: An example of the four steps, described above, in the simulator. The camera is placed
to look at the sceen with an angle of 45◦.
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Appendix B
Results Box detection

Ground truth Estimated Error
# y-axis k-axis y-axis k-axis y-axis k-axis
1 58.0 −26.0 58.0 −25.9 −0.1 0.0
2 41.0 −14.0 41.0 −13.93 −0.07 0.0
3 56.0 32.0 56.0 31.78 0.21 0.0
4 66.0 −29.0 66.0 −28.24 −0.76 0.0
5 48.0 2.0 48.0 0.93 1.07 0.0
6 45.0 −37.0 45.0 −36.29 −0.71 0.0
7 61.0 3.0 61.0 2.52 0.48 0.0
8 47.0 39.0 47.0 38.07 0.93 0.0
9 63.0 5.0 63.0 4.15 0.85 −0.0
10 40.0 29.0 40.0 29.0 0.0 0.0
11 38.0 −5.0 38.0 −4.18 −0.82 0.0
12 56.0 −31.0 56.0 −30.94 −0.06 0.0
13 67.0 0.0 67.0 0.01 −0.01 0.0
14 53.0 −32.0 53.0 −31.81 −0.19 0.0
15 64.0 −37.0 64.0 −36.27 −0.73 −0.0
16 41.0 −2.0 41.0 0.0 −2.0 0.0
17 35.0 39.0 35.0 0.0 39.0 0.0
18 39.0 −7.0 39.0 0.0 −7.0 0.0
19 62.0 29.0 62.0 28.74 0.26 0.0
20 53.0 −39.0 53.0 −38.34 −0.66 0.0
21 37.0 −29.0 37.0 0.0 −29.0 0.0
22 50.0 −15.0 50.0 −14.76 −0.24 0.0
23 40.0 −33.0 40.0 −32.24 −0.76 0.0
24 48.0 9.0 48.0 7.32 1.68 0.0
25 35.0 −24.0 35.0 0.0 −24.0 0.0
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Table B.1 – continued from previous page
Ground truth Estimated Error

# y-axis k-axis y-axis k-axis y-axis k-axis
26 69.0 −40.0 69.0 −39.47 −0.53 0.0
27 64.0 −16.0 64.0 −15.47 −0.53 0.0
28 56.0 −18.0 56.0 −17.17 −0.83 0.0
29 59.0 26.0 59.0 25.69 0.31 0.0
30 64.0 8.0 64.0 7.8 0.2 0.0
31 43.0 1.0 43.0 0.97 0.03 0.0
32 48.0 −21.0 48.0 −20.77 −0.23 0.0
33 59.0 −13.0 59.0 −12.68 −0.32 0.0
34 52.0 8.0 52.0 7.68 0.32 0.0
35 56.0 37.0 56.0 0.0 37.0 0.0
36 54.0 28.0 54.0 27.67 0.33 0.0
37 58.0 −22.0 58.0 −21.6 −0.4 0.0
38 46.0 −32.0 46.0 −31.99 −0.01 0.0
39 67.0 8.0 67.0 7.91 0.09 0.0
40 52.0 −31.0 52.0 −30.66 −0.34 0.0
41 45.0 33.0 45.0 32.44 0.56 0.0
42 57.0 31.0 57.0 29.72 1.28 0.0
43 67.0 −16.0 67.0 −15.96 −0.04 0.0
44 53.0 11.0 53.0 10.97 0.03 0.0
45 44.0 −36.0 44.0 −36.0 0.0 0.0
46 35.0 17.0 35.0 0.0 17.0 0.0
47 45.0 39.0 45.0 37.65 1.35 0.0
48 63.0 −11.0 63.0 −10.91 −0.09 0.0
49 38.0 9.0 38.0 8.33 0.67 0.0
50 39.0 34.0 39.0 33.94 0.06 0.0

Table B.1: Results camera orientation estimation, all dimensions in degrees.
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Ground truth Estimated Error
# x-axis y-axis z-axis x-axis y-axis z-axis x-axis y-axis z-axis
1 90.0 250.0 800.0 90.66 249.04 800.15 −0.66 0.96 1.16
2 −100.0 250.0 920.0 −93.82 249.14 921.18 −6.18 0.87 6.24
3 230.0 250.0 320.0 229.6 248.74 321.35 0.4 1.26 1.33
4 −50.0 250.0 500.0 −48.02 248.97 500.12 −1.98 1.03 2.23
5 −60.0 250.0 820.0 −57.94 249.07 820.62 −2.06 0.93 2.26
6 −400.0 250.0 750.0 −401.74248.68 750.09 1.74 1.32 2.18
7 80.0 250.0 510.0 83.61 248.85 508.85 −3.61 1.15 3.78
8 −500.0 250.0 900.0 −501.86249.12 900.75 1.86 0.88 2.06
9 210.0 250.0 310.0 209.52 249.01 310.67 0.48 0.99 1.1
10 −510.0 250.0 660.0 −507.61249.02 662.04 −2.39 0.98 2.58
11 −440.0 250.0 870.0 −441.5 248.99 869.86 1.5 1.01 1.81
12 −70.0 250.0 740.0 −76.46 249.1 739.64 6.46 0.9 6.53
13 560.0 250.0 580.0 564.98 249.09 574.73 −4.98 0.91 5.06
14 −200.0 250.0 690.0 −205.19248.96 689.09 5.19 1.03 5.29
15 160.0 250.0 500.0 161.03 249.0 500.48 −1.03 1.0 1.43
16 440.0 250.0 330.0 437.39 248.95 334.33 2.61 1.05 2.82
17 380.0 250.0 500.0 376.6 248.85 505.38 3.4 1.15 3.59
18 0.0 250.0 980.0 0.81 249.27 979.52 −0.81 0.73 1.09
19 −330.0 250.0 720.0 −334.53248.79 718.5 4.53 1.21 4.69
20 440.0 250.0 230.0 439.76 249.02 230.5 0.24 0.99 1.01
21 0.0 250.0 690.0 −1.1 249.03 690.78 1.1 0.97 1.47
22 −60.0 250.0 740.0 −60.76 249.04 739.79 0.76 0.96 1.22
23 60.0 250.0 690.0 65.27 248.76 689.5 −5.27 1.24 5.41
24 210.0 250.0 770.0 209.0 248.95 771.4 1.0 1.05 1.45
25 480.0 250.0 610.0 479.33 248.89 611.15 0.67 1.11 1.3
26 180.0 250.0 600.0 180.41 248.84 599.42 −0.41 1.16 1.23
27 −490.0 250.0 460.0 −489.8 249.22 459.04 −0.2 0.78 0.81
28 −560.0 250.0 490.0 −555.77248.81 491.38 −4.23 1.19 4.4
29 −570.0 250.0 440.0 −570.71248.77 437.4 0.71 1.23 1.42
30 −410.0 250.0 70.0 −408.3 248.99 72.25 −1.7 1.01 1.98
31 −450.0 250.0 270.0 −451.26248.97 267.71 1.26 1.03 1.62
32 −200.0 250.0 720.0 −196.88249.33 721.12 −3.12 0.67 3.19
33 −390.0 250.0 430.0 −386.6 248.97 432.93 −3.4 1.03 3.56
34 −120.0 250.0 400.0 −119.14249.15 400.59 −0.86 0.85 1.21
35 320.0 250.0 380.0 318.49 248.48 382.21 1.51 1.52 2.14
36 150.0 250.0 250.0 151.52 249.02 249.36 −1.52 0.98 1.8
37 170.0 250.0 300.0 168.22 249.01 301.56 1.78 0.99 2.04
38 460.0 250.0 960.0 462.22 249.05 959.58 −2.22 0.95 2.42
39 180.0 250.0 890.0 182.15 249.35 890.44 −2.15 0.65 2.25
40 470.0 250.0 640.0 473.9 249.13 638.33 −3.9 0.87 4.0
41 −250.0 250.0 250.0 −248.0 248.92 254.04 −2.0 1.08 2.28
42 −190.0 250.0 460.0 −190.75248.97 460.05 0.75 1.03 1.27
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Table B.2 – continued from previous page
Ground truth Estimated Error

# x-axis y-axis z-axis x-axis y-axis z-axis x-axis y-axis z-axis
43 −460.0 250.0 370.0 −459.64248.94 370.17 −0.36 1.06 1.12
44 200.0 250.0 440.0 198.59 249.06 441.52 1.41 0.94 1.7
45 440.0 250.0 690.0 433.98 248.95 694.43 6.02 1.05 6.12
46 −450.0 250.0 30.0 −452.09249.17 31.88 2.09 0.83 2.25
47 580.0 250.0 570.0 578.0 249.24 572.02 2.0 0.75 2.13
48 460.0 250.0 460.0 458.0 249.05 461.49 2.0 0.95 2.22
49 −390.0 250.0 840.0 −385.39249.04 842.88 −4.61 0.96 4.7
50 −600.0 250.0 200.0 −600.31248.76 198.98 0.31 1.24 1.28

Table B.2: Results position estimation, all dimensions in mm.
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Ground truth Estimated Error
1 35.0 34.59 0.41
2 33.0 32.49 0.51
3 −14.0 −14.56 0.56
4 −32.0 −32.56 0.56
5 −4.0 −4.53 0.53
6 1.0 0.49 0.51
7 −6.0 −6.62 0.62
8 −10.0 −10.4 0.4
9 −16.0 −16.45 0.45
10 31.0 30.43 0.57
11 −3.0 −3.49 0.49
12 6.0 5.5 0.5
13 −34.0 −34.49 0.49
14 −25.0 −25.48 0.48
15 28.0 27.42 0.58
16 −39.0 −39.47 0.47
17 20.0 19.47 0.53
18 −35.0 −35.52 0.52
19 −7.0 −7.59 0.59
20 14.0 13.43 0.57
21 −21.0 −21.43 0.43
22 4.0 3.5 0.5
23 −24.0 −24.56 0.56
24 10.0 9.41 0.59
25 −12.0 −12.58 0.58
26 −16.0 −16.44 0.44
27 −8.0 −8.52 0.52
28 16.0 15.47 0.53
29 −40.0 −40.63 0.63
30 23.0 22.44 0.56
31 −34.0 −34.53 0.53
32 −35.0 −35.46 0.46
33 38.0 37.44 0.56
34 −31.0 −31.52 0.52
35 −13.0 −13.54 0.54
36 −34.0 −34.57 0.57
37 37.0 36.49 0.51
38 −6.0 −6.5 0.5
39 26.0 25.61 0.39
40 6.0 5.46 0.54
41 −7.0 −7.45 0.45
42 −32.0 −32.69 0.69
43 −1.0 −1.57 0.57
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Table B.3 – continued from previous page
Ground truth Estimated Error

44 −34.0 −34.53 0.53
45 −36.0 −36.52 0.52
46 21.0 20.44 0.56
47 −24.0 −24.54 0.54
48 35.0 34.44 0.56
49 −40.0 −40.57 0.57
50 −18.0 −18.56 0.56

Table B.3: Results orientation estimation relative to Base-Frame, all dimensions in degrees.
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Ground truth Estimated Error
# Width Height Lenght Width Height Lenght Width Height Lenght
1 205.0 165.0 230.0 212.34 165.0 234.91 −7.34 0.0 −4.91
2 216.0 155.0 205.0 202.33 152.61 204.28 13.67 2.39 0.72
3 205.0 165.0 230.0 218.79 170.3 239.11 −13.79 −5.3 −9.11
4 205.0 155.0 216.0 206.19 158.6 200.39 −1.19 −3.6 15.61
5 205.0 165.0 230.0 213.42 165.68 241.97 −8.42 −0.68 −11.97
6 216.0 155.0 205.0 207.3 155.55 207.22 8.7 −0.55 −2.22
7 205.0 165.0 230.0 214.22 167.04 241.61 −9.22 −2.04 −11.61
8 216.0 155.0 205.0 200.42 157.36 207.96 15.58 −2.36 −2.96
9 205.0 165.0 230.0 209.78 162.54 239.57 −4.78 2.46 −9.57
10 205.0 155.0 216.0 206.98 151.6 208.14 −1.98 3.4 7.86
11 165.0 230.0 205.0 167.72 228.78 196.49 −2.72 1.22 8.51
12 205.0 155.0 216.0 207.61 154.2 208.13 −2.61 0.8 7.87
13 230.0 165.0 205.0 212.96 154.59 207.93 17.04 10.41 −2.93
14 216.0 155.0 205.0 212.96 154.59 207.93 3.04 0.41 −2.93
15 165.0 205.0 230.0 169.41 201.73 233.41 −4.41 3.27 −3.41
16 205.0 155.0 216.0 205.98 152.81 207.76 −0.98 2.19 8.24
17 165.0 205.0 230.0 166.6 206.45 233.2 −1.6 −1.45 −3.2
18 155.0 205.0 216.0 153.42 204.09 214.72 1.58 0.91 1.28
19 165.0 205.0 230.0 167.07 204.14 238.87 −2.07 0.86 −8.87
20 205.0 155.0 216.0 205.56 155.08 199.84 −0.56 −0.08 16.16
21 230.0 205.0 165.0 235.33 207.0 163.45 −5.33 −2.0 1.55
22 205.0 155.0 216.0 209.89 156.39 240.86 −4.89 −1.39 −24.86
23 230.0 205.0 165.0 231.42 204.78 166.64 −1.43 0.22 −1.63
24 216.0 155.0 205.0 209.26 154.96 204.82 6.74 0.04 0.18
25 230.0 205.0 165.0 232.22 204.48 163.67 −2.22 0.52 1.33
26 216.0 155.0 205.0 209.77 152.44 202.39 6.23 2.56 2.61
27 230.0 205.0 165.0 233.07 205.2 165.34 −3.07 −0.2 −0.34
28 205.0 155.0 216.0 207.48 154.73 201.59 −2.48 0.27 14.41
29 230.0 165.0 205.0 233.32 164.64 200.42 −3.31 0.36 4.58
30 155.0 205.0 216.0 161.91 202.75 213.6 −6.91 2.25 2.4
31 230.0 165.0 205.0 233.32 164.64 200.42 −3.31 0.36 4.58
32 155.0 205.0 216.0 161.91 202.75 213.6 −6.91 2.25 2.4
33 230.0 165.0 205.0 233.32 164.64 200.42 −3.31 0.36 4.58
34 155.0 205.0 216.0 161.91 202.75 213.6 −6.91 2.25 2.4
35 230.0 165.0 205.0 232.8 165.44 205.56 −2.8 −0.44 −0.56
36 216.0 155.0 205.0 199.23 156.47 208.38 16.77 −1.47 −3.38
37 230.0 165.0 205.0 232.72 159.41 204.09 −2.72 5.59 0.91
38 155.0 216.0 205.0 157.24 210.61 195.16 −2.24 5.39 9.84
39 205.0 165.0 230.0 205.88 164.7 233.32 −0.88 0.3 −3.32
40 155.0 216.0 205.0 156.53 214.41 195.55 −1.53 1.59 9.45

Table B.4: Results size estimation on Zivid-data, all dimensions in mm.
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Ground truth Estimated Error
# Width Height Lenght Width Height Lenght Width Height Lenght
1 370.0 290.0 250.0 375.03 289.07 253.75 −5.03 0.93 −3.75
2 200.0 260.0 270.0 204.76 258.94 269.53 −4.76 1.06 0.47
3 150.0 360.0 180.0 151.09 359.25 183.32 −1.09 0.75 −3.32
4 170.0 390.0 380.0 172.64 389.34 383.57 −2.65 0.66 −3.57
5 220.0 300.0 250.0 224.97 298.92 252.72 −4.97 1.08 −2.72
6 380.0 320.0 200.0 384.84 318.92 202.42 −4.84 1.08 −2.42
7 270.0 390.0 320.0 260.56 388.85 321.61 9.44 1.15 −1.61
8 260.0 270.0 240.0 251.5 268.89 245.88 8.5 1.11 −5.88
9 300.0 200.0 320.0 286.83 198.84 322.74 13.17 1.16 −2.74
10 290.0 170.0 280.0 295.08 169.12 283.12 −5.08 0.88 −3.12
11 160.0 160.0 220.0 162.98 158.82 223.44 −2.98 1.18 −3.44
12 360.0 330.0 300.0 363.42 329.34 302.41 −3.42 0.66 −2.41
13 200.0 290.0 230.0 197.32 289.06 242.07 2.68 0.94 −12.07
14 260.0 290.0 200.0 267.97 289.03 203.77 −7.97 0.97 −3.77
15 260.0 360.0 360.0 264.89 358.97 362.95 −4.89 1.03 −2.95
16 350.0 300.0 260.0 332.25 299.22 263.59 17.75 0.78 −3.59
17 340.0 170.0 180.0 343.59 169.14 184.36 −3.59 0.86 −4.36
18 350.0 330.0 390.0 353.62 329.38 393.63 −3.62 0.62 −3.63
19 380.0 230.0 350.0 381.75 229.11 354.23 −1.75 0.89 −4.23
20 280.0 280.0 220.0 283.09 279.06 225.02 −3.09 0.94 −5.02
21 260.0 340.0 180.0 254.26 338.78 177.25 5.74 1.22 2.75
22 380.0 380.0 310.0 386.68 378.97 313.55 −6.68 1.03 −3.55
23 380.0 250.0 220.0 377.82 248.88 222.96 2.18 1.12 −2.96
24 180.0 370.0 250.0 184.28 369.0 252.2 −4.28 1.0 −2.2
25 270.0 320.0 170.0 269.65 318.99 173.6 0.35 1.01 −3.6
26 370.0 290.0 360.0 388.74 289.32 363.21 −18.74 0.68 −3.21
27 160.0 170.0 160.0 194.89 348.99 302.59 −4.63 1.01 −3.72
28 190.0 350.0 300.0 164.63 168.99 163.72 −4.89 1.01 −2.59
29 210.0 240.0 370.0 207.46 239.01 375.79 2.53 0.99 −5.79
30 230.0 250.0 240.0 234.45 249.03 243.93 −4.45 0.97 −3.93
31 230.0 240.0 320.0 235.05 239.13 324.43 −5.05 0.87 −4.43
32 260.0 170.0 190.0 259.24 168.82 192.8 0.76 1.18 −2.8
33 270.0 310.0 250.0 259.41 308.92 255.3 10.59 1.08 −5.3
34 230.0 200.0 150.0 235.84 199.18 150.34 −5.84 0.82 −0.34
35 190.0 270.0 160.0 171.98 269.03 165.72 18.02 0.97 −5.72
36 230.0 260.0 190.0 234.24 259.4 187.0 −4.24 0.6 3.0
37 340.0 390.0 150.0 312.58 388.94 151.91 27.42 1.06 −1.91
38 370.0 150.0 160.0 373.68 149.02 162.33 −3.68 0.98 −2.33
39 330.0 210.0 230.0 334.64 209.2 233.28 −4.64 0.8 −3.28
40 210.0 260.0 290.0 210.74 258.9 293.09 −0.74 1.1 −3.09
41 160.0 200.0 210.0 163.06 198.98 204.19 −3.06 1.02 5.81
42 160.0 300.0 390.0 163.63 298.88 394.94 −3.63 1.12 −4.94
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Table B.5 – continued from previous page
Ground truth Estimated Error

# Width Height Lenght Width Height Lenght Width Height Lenght
43 330.0 360.0 150.0 329.65 358.83 153.27 0.35 1.17 −3.27
44 280.0 260.0 260.0 284.29 259.35 262.35 −4.29 0.65 −2.35
45 280.0 340.0 180.0 266.77 339.05 183.68 13.23 0.95 −3.68
46 190.0 360.0 300.0 195.31 359.03 304.68 −5.31 0.97 −4.68
47 390.0 360.0 300.0 393.12 359.12 304.17 −3.12 0.88 −4.17
48 210.0 300.0 250.0 214.76 299.14 246.75 −4.76 0.86 3.25
49 360.0 270.0 180.0 328.92 269.08 181.36 31.08 0.92 −1.36
50 390.0 280.0 200.0 395.58 279.09 200.68 −5.58 0.91 −0.68
51 240.0 310.0 380.0 244.73 309.05 384.03 −4.73 0.95 −4.03
52 190.0 240.0 170.0 194.78 238.95 194.44 −4.78 1.05 −24.44
53 300.0 360.0 340.0 304.62 358.75 344.23 −4.62 1.25 −4.23
54 160.0 170.0 270.0 165.92 169.08 275.04 −5.92 0.92 −5.04
55 170.0 310.0 290.0 175.72 309.12 296.37 −5.72 0.88 −6.37
56 260.0 380.0 380.0 264.55 379.01 382.2 −4.55 0.99 −2.2
57 330.0 150.0 160.0 273.81 369.05 312.33 18.47 1.21 −7.74
58 270.0 370.0 310.0 311.53 148.79 167.74 −3.81 0.95 −2.33
59 280.0 240.0 190.0 223.34 298.91 243.46 13.58 0.85 −3.13
60 220.0 300.0 240.0 266.42 239.15 193.13 −3.34 1.09 −3.46
61 270.0 270.0 390.0 267.82 268.98 393.08 2.18 1.02 −3.08
62 330.0 240.0 160.0 329.97 238.96 164.52 0.03 1.04 −4.52
63 210.0 340.0 200.0 206.05 338.9 204.24 3.95 1.1 −4.24
64 260.0 150.0 260.0 261.09 149.2 265.16 −1.09 0.8 −5.16
65 210.0 210.0 290.0 209.2 209.0 299.53 0.8 1.0 −9.53
66 300.0 320.0 210.0 303.59 319.02 210.04 −3.59 0.98 −0.04
67 360.0 390.0 380.0 343.6 389.02 386.28 16.39 0.98 −6.27
68 350.0 230.0 210.0 354.15 229.01 216.45 −4.15 0.99 −6.45
69 180.0 240.0 260.0 190.1 239.19 258.65 −10.1 0.81 1.35
70 210.0 350.0 250.0 212.24 349.06 254.63 −2.24 0.94 −4.63
71 180.0 280.0 180.0 234.15 298.81 354.96 12.07 1.16 −4.55
72 230.0 300.0 350.0 167.93 278.84 184.55 −4.15 1.19 −4.96
73 330.0 380.0 300.0 316.54 379.0 303.98 13.46 1.0 −3.98
74 230.0 320.0 350.0 233.77 318.89 352.47 −3.77 1.11 −2.47
75 320.0 300.0 370.0 323.8 299.11 373.46 −3.8 0.89 −3.46
76 240.0 160.0 160.0 246.62 159.04 160.55 −6.62 0.96 −0.55
77 310.0 180.0 260.0 294.1 179.03 264.22 15.9 0.97 −4.22
78 150.0 230.0 370.0 154.54 228.7 373.97 −4.54 1.3 −3.97
79 360.0 320.0 360.0 365.15 318.84 358.01 −5.15 1.16 1.99
80 250.0 180.0 240.0 255.25 179.01 240.11 −5.25 0.99 −0.11
81 310.0 280.0 240.0 294.62 278.83 243.68 15.38 1.17 −3.68
82 220.0 150.0 280.0 223.86 149.01 284.23 −3.86 0.99 −4.23
83 180.0 360.0 150.0 180.53 359.1 151.9 −0.53 0.89 −1.9
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Table B.5 – continued from previous page
Ground truth Estimated Error

# Width Height Lenght Width Height Lenght Width Height Lenght
84 280.0 190.0 290.0 283.58 188.97 293.68 −3.58 1.03 −3.68
85 260.0 310.0 320.0 266.73 309.26 327.11 −6.73 0.75 −7.11
86 240.0 380.0 340.0 243.38 379.06 345.62 −3.38 0.94 −5.62
87 390.0 170.0 180.0 395.24 168.94 183.28 −5.24 1.06 −3.28
88 370.0 280.0 260.0 377.25 278.89 261.97 −7.25 1.11 −1.97
89 320.0 310.0 190.0 319.79 308.92 193.12 0.21 1.08 −3.12
90 250.0 310.0 160.0 255.31 308.82 165.47 −5.31 1.18 −5.47
91 180.0 380.0 240.0 187.85 379.33 248.3 −7.85 0.67 −8.3
92 270.0 330.0 330.0 274.93 328.98 331.25 −4.93 1.02 −1.25
93 220.0 190.0 150.0 222.79 188.9 150.18 −2.79 1.1 −0.18
94 330.0 150.0 350.0 327.14 149.02 357.63 2.86 0.98 −7.63
95 340.0 150.0 230.0 356.47 339.07 322.77 −3.04 0.95 −3.88
96 350.0 340.0 320.0 343.04 149.05 233.88 −6.47 0.93 −2.77
97 150.0 250.0 310.0 149.98 248.75 316.29 0.02 1.25 −6.29
98 270.0 230.0 280.0 268.55 228.87 284.46 1.45 1.13 −4.45
99 160.0 240.0 290.0 163.77 238.74 298.22 −3.77 1.26 −8.22
100 170.0 260.0 320.0 169.69 259.1 321.62 0.31 0.89 −1.62
101 200.0 320.0 370.0 203.58 318.89 372.94 −3.58 1.11 −2.94
102 370.0 260.0 320.0 374.53 258.98 322.42 −4.53 1.02 −2.42
103 320.0 390.0 270.0 319.58 389.0 269.95 0.42 1.0 0.05
104 330.0 330.0 180.0 327.75 329.15 184.71 2.25 0.85 −4.71
105 330.0 220.0 330.0 331.17 218.77 334.24 −1.17 1.23 −4.24
106 280.0 350.0 370.0 275.05 349.05 372.66 4.95 0.95 −2.66
107 270.0 320.0 160.0 263.66 349.18 167.27 −1.39 1.18 −2.34
108 260.0 350.0 160.0 271.39 318.82 162.34 −3.66 0.81 −7.27
109 150.0 270.0 250.0 156.15 269.39 254.14 −6.15 0.61 −4.13
110 360.0 190.0 200.0 363.14 188.74 203.74 −3.14 1.26 −3.74
111 260.0 160.0 250.0 261.02 159.35 254.41 −1.02 0.65 −4.41
112 270.0 150.0 180.0 280.43 148.93 181.81 −10.43 1.07 −1.81
113 250.0 170.0 350.0 255.24 169.11 354.2 −5.24 0.89 −4.2
114 180.0 180.0 270.0 183.29 179.12 272.58 −3.29 0.88 −2.58
115 360.0 390.0 150.0 333.63 388.95 153.22 26.37 1.05 −3.22
116 270.0 160.0 210.0 383.54 179.01 302.58 −2.6 0.7 −2.5
117 380.0 180.0 300.0 272.6 159.3 212.5 −3.54 0.99 −2.58
118 250.0 260.0 230.0 248.82 259.06 240.12 1.18 0.94 −10.12
119 350.0 250.0 380.0 353.91 248.94 382.84 −3.91 1.06 −2.84
120 280.0 150.0 150.0 284.03 149.41 158.21 −4.03 0.59 −8.21
121 250.0 170.0 260.0 251.15 168.77 261.56 −1.15 1.23 −1.56
122 210.0 260.0 290.0 214.0 259.04 292.75 −4.0 0.96 −2.75
123 330.0 150.0 270.0 333.93 149.16 275.76 −3.93 0.84 −5.76
124 150.0 240.0 390.0 155.0 238.93 395.02 −5.0 1.07 −5.02
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Table B.5 – continued from previous page
Ground truth Estimated Error

# Width Height Lenght Width Height Lenght Width Height Lenght
125 230.0 210.0 150.0 236.54 209.1 153.43 −6.54 0.91 −3.43
126 370.0 190.0 210.0 373.99 189.11 214.05 −3.99 0.89 −4.05
127 290.0 380.0 320.0 290.07 378.97 326.39 −0.07 1.03 −6.39
128 340.0 380.0 170.0 342.28 378.99 174.29 −2.28 1.01 −4.29
129 260.0 240.0 180.0 263.07 239.05 184.78 −3.07 0.95 −4.78
130 350.0 180.0 280.0 354.97 178.71 285.09 −4.97 1.29 −5.09
131 320.0 200.0 330.0 325.91 198.83 333.81 −5.91 1.17 −3.81
132 220.0 170.0 380.0 223.89 169.15 384.52 −3.89 0.85 −4.52
133 360.0 190.0 300.0 364.54 189.21 303.65 −4.54 0.79 −3.65
134 350.0 220.0 370.0 355.24 219.18 373.92 −5.24 0.82 −3.92
135 290.0 190.0 280.0 293.93 189.0 281.59 −3.93 1.0 −1.59
136 320.0 330.0 340.0 317.79 329.19 338.3 2.21 0.81 1.7
137 360.0 170.0 250.0 365.81 168.89 253.75 −5.81 1.11 −3.75
138 330.0 200.0 320.0 333.46 198.68 320.46 −3.46 1.32 −0.46
139 180.0 200.0 150.0 185.22 199.2 150.73 −5.22 0.81 −0.73
140 240.0 330.0 270.0 239.36 329.09 274.35 0.64 0.91 −4.35
141 220.0 340.0 290.0 223.73 339.05 294.54 −3.73 0.95 −4.54
142 310.0 150.0 200.0 303.42 148.95 200.99 6.58 1.05 −0.99
143 270.0 370.0 330.0 272.48 369.06 332.07 −2.48 0.94 −2.07
144 380.0 390.0 230.0 383.76 389.1 232.34 −3.75 0.9 −2.34
145 380.0 250.0 370.0 384.9 249.26 373.17 −4.9 0.74 −3.17
146 260.0 180.0 350.0 269.27 179.04 353.57 −9.27 0.96 −3.57
147 300.0 190.0 190.0 302.42 188.91 191.94 −2.42 1.09 −1.94
148 190.0 290.0 310.0 193.98 288.72 313.29 −3.98 1.28 −3.29
149 360.0 230.0 190.0 204.61 238.9 331.41 −3.99 1.23 −3.05
150 200.0 240.0 330.0 363.99 228.77 193.05 −4.61 1.09 −1.41
151 360.0 370.0 210.0 354.96 368.89 214.13 5.05 1.11 −4.13
152 190.0 150.0 310.0 164.86 309.23 182.48 −3.41 0.83 −5.63
153 160.0 310.0 180.0 193.41 149.17 315.63 −4.87 0.77 −2.48
154 240.0 350.0 380.0 242.64 349.04 384.52 −2.64 0.96 −4.52
155 200.0 170.0 270.0 185.18 319.17 213.28 −4.02 1.03 −4.88
156 180.0 320.0 210.0 204.02 168.97 274.88 −5.18 0.83 −3.28
157 250.0 310.0 200.0 245.04 309.02 211.35 4.96 0.98 −11.35
158 220.0 230.0 310.0 225.16 228.8 312.95 −5.16 1.2 −2.95
159 160.0 300.0 180.0 163.93 298.75 181.99 −3.93 1.25 −1.99
160 260.0 390.0 240.0 255.06 389.05 244.7 4.94 0.95 −4.7
161 390.0 220.0 350.0 394.04 249.13 391.76 −5.09 1.17 −3.52
162 390.0 250.0 390.0 395.09 218.83 353.52 −4.04 0.87 −1.76
163 160.0 320.0 320.0 162.5 318.95 317.67 −2.5 1.05 2.33
164 240.0 260.0 280.0 243.84 259.0 281.59 −3.84 1.0 −1.59
165 380.0 220.0 310.0 385.06 219.09 316.43 −5.06 0.91 −6.43

Continue on next page

91



Table B.5 – continued from previous page
Ground truth Estimated Error

# Width Height Lenght Width Height Lenght Width Height Lenght
166 350.0 160.0 300.0 152.17 319.14 309.29 11.79 0.73 −4.8
167 150.0 320.0 310.0 338.21 159.27 304.8 −2.17 0.86 0.71
168 270.0 160.0 190.0 274.11 158.99 194.13 −4.11 1.01 −4.13
169 180.0 170.0 390.0 182.15 168.84 396.07 −2.15 1.16 −6.07
170 360.0 220.0 390.0 362.86 218.64 394.36 −2.86 1.37 −4.36
171 330.0 150.0 280.0 334.34 148.78 283.74 −4.34 1.22 −3.75
172 220.0 230.0 250.0 227.08 228.9 245.77 −7.07 1.1 4.23
173 230.0 300.0 170.0 232.4 298.91 174.02 −2.4 1.09 −4.01
174 360.0 220.0 230.0 355.18 278.99 202.24 1.44 0.91 −3.28
175 350.0 280.0 200.0 358.56 219.09 233.28 −5.18 1.01 −2.24
176 280.0 200.0 290.0 282.24 199.27 292.36 −2.24 0.73 −2.36
177 380.0 150.0 370.0 363.37 338.96 283.2 −5.07 0.73 −4.53
178 350.0 190.0 370.0 385.07 149.27 374.53 −2.86 0.98 −4.1
179 360.0 340.0 280.0 352.86 189.02 374.1 −3.37 1.04 −3.2
180 150.0 340.0 380.0 145.29 338.74 395.31 4.71 1.26 −15.31
181 390.0 360.0 160.0 401.37 359.19 164.29 −11.37 0.81 −4.29
182 340.0 390.0 280.0 343.94 388.73 284.4 −3.94 1.27 −4.4
183 340.0 250.0 250.0 345.18 248.92 253.69 −5.18 1.07 −3.69
184 370.0 180.0 170.0 374.33 179.24 171.03 −4.33 0.76 −1.03
185 350.0 270.0 250.0 352.27 269.05 255.85 −2.27 0.95 −5.85
186 230.0 160.0 270.0 282.8 288.92 176.71 −3.14 0.8 −3.28
187 280.0 290.0 170.0 233.14 159.2 273.28 −2.8 1.08 −6.71
188 260.0 330.0 330.0 259.55 328.87 332.68 0.45 1.13 −2.68
189 380.0 330.0 310.0 362.35 378.74 394.19 −3.32 0.79 −3.53
190 360.0 380.0 390.0 383.32 329.21 313.53 −2.35 1.26 −4.19
191 210.0 190.0 390.0 214.18 189.17 390.03 −4.18 0.83 −0.03
192 180.0 170.0 200.0 183.23 168.84 198.22 −3.23 1.16 1.78
193 240.0 260.0 390.0 273.61 339.15 364.51 −6.01 0.84 −2.77
194 270.0 340.0 360.0 273.71 359.06 254.47 −3.61 0.85 −4.51
195 270.0 360.0 250.0 246.01 259.16 392.77 −3.71 0.94 −4.47
196 170.0 280.0 280.0 178.11 278.82 291.14 −8.11 1.18 −11.14
197 300.0 290.0 360.0 304.06 289.07 363.65 −4.06 0.93 −3.65
198 340.0 290.0 250.0 342.45 288.87 253.64 −2.45 1.13 −3.65
199 160.0 170.0 340.0 164.84 169.0 340.24 −4.84 1.0 −0.24
200 320.0 370.0 330.0 321.52 368.63 333.56 −1.52 1.37 −3.56
201 310.0 250.0 160.0 213.93 328.97 271.18 −1.85 0.88 −4.37
202 270.0 200.0 230.0 311.85 249.12 164.37 −2.69 0.96 −3.46
203 210.0 330.0 270.0 272.69 199.04 233.46 −3.93 1.03 −1.18
204 210.0 320.0 230.0 223.38 318.91 230.52 −13.38 1.09 −0.52
205 300.0 230.0 180.0 302.16 228.91 184.73 −2.16 1.09 −4.73
206 350.0 240.0 230.0 242.81 298.9 163.44 −1.05 0.84 −3.89
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Ground truth Estimated Error

# Width Height Lenght Width Height Lenght Width Height Lenght
207 240.0 300.0 160.0 351.05 239.16 233.89 −2.81 1.1 −3.44
208 320.0 170.0 220.0 311.65 168.98 223.96 8.35 1.01 −3.96
209 360.0 210.0 350.0 361.34 208.89 353.79 −1.34 1.11 −3.79
210 270.0 280.0 260.0 273.6 278.9 263.96 −3.61 1.1 −3.96
211 190.0 150.0 390.0 194.56 148.82 394.16 −4.56 1.19 −4.16
212 360.0 220.0 360.0 364.34 218.9 359.52 −4.34 1.1 0.48
213 180.0 220.0 210.0 320.53 328.48 253.0 −6.54 1.23 −5.06
214 320.0 330.0 250.0 173.38 279.3 359.95 −0.53 1.52 −3.0
215 170.0 280.0 360.0 186.54 218.77 215.06 −3.38 0.7 0.05
216 180.0 260.0 270.0 181.56 258.6 263.08 −1.56 1.4 6.92
217 300.0 390.0 230.0 301.2 388.96 233.39 −1.2 1.04 −3.39
218 370.0 200.0 270.0 368.06 199.1 273.23 1.94 0.9 −3.23
219 220.0 180.0 210.0 223.49 179.19 216.72 −3.49 0.81 −6.72
220 270.0 300.0 350.0 273.2 298.77 362.7 −3.2 1.23 −12.7
221 350.0 290.0 390.0 353.31 289.12 394.71 −3.31 0.88 −4.71
222 300.0 340.0 310.0 302.51 338.91 313.21 −2.51 1.09 −3.21
223 170.0 170.0 200.0 172.49 168.78 202.84 −2.49 1.22 −2.84
224 350.0 160.0 180.0 354.66 158.58 186.7 −4.67 1.42 −6.7
225 220.0 190.0 220.0 292.6 379.02 314.2 −2.42 0.95 −0.96
226 290.0 380.0 310.0 255.48 228.89 382.24 −2.6 0.98 −4.2
227 250.0 230.0 380.0 222.42 189.05 220.96 −5.49 1.11 −2.24
228 300.0 290.0 170.0 303.21 289.12 178.2 −3.21 0.88 −8.21
229 310.0 370.0 180.0 316.79 369.24 183.46 −6.79 0.76 −3.46
230 170.0 320.0 230.0 172.51 319.01 233.56 −2.51 0.99 −3.56
231 330.0 220.0 320.0 333.78 218.98 324.74 −3.78 1.02 −4.74
232 380.0 220.0 340.0 382.33 219.12 341.67 −2.33 0.88 −1.67
233 310.0 210.0 180.0 183.18 338.98 186.09 4.35 1.03 −4.88
234 210.0 190.0 220.0 305.65 208.97 184.88 0.33 0.86 −3.76
235 180.0 340.0 180.0 209.67 189.14 223.76 −3.18 1.02 −6.09

Table B.5: Results size estimation on simulation-data, all dimensions in mm.
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Appendix C
Results Robotic bin packing

Heuristic packing strategy Bin packing problem Robotic bin packing
1 2 0 0
2 3 0 2
3 2 0 0
4 3 0 0
5 2 0 0
6 3 0 1
7 1 1 0
8 2 0 0
9 2 0 0
10 2 0 1
11 2 0 2
12 1 0 1
13 4 0 0
14 2 0 0
15 2 0 1
16 4 0 0
17 4 1 0
18 3 0 1
19 1 0 0
20 3 0 2
21 1 0 0
22 1 0 2
23 2 0 0
24 3 0 0
25 6 0 0
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Table C.1 – continued from previous page
Heuristic packing strategy Bin packing problem Robotic bin packing

26 2 0 0
27 3 0 1
28 2 0 1
29 3 0 3
30 4 0 0
31 2 0 1
32 3 0 0
33 1 0 0
34 3 0 1
35 4 2 0
36 3 0 3
37 1 0 1
38 2 0 0
39 2 0 0
40 2 0 2
41 4 0 0
42 2 0 1
43 1 0 2
44 2 0 1
45 3 0 0
46 1 0 2
47 2 0 1
48 4 0 2
49 0 0 2
50 0 0 1
51 1 0 1
52 3 0 1
53 2 1 2
54 2 0 2
55 1 0 0
56 4 0 0
57 6 0 1
58 2 0 0
59 3 0 0
60 6 0 1
61 1 0 1
62 1 0 0
63 2 0 1
64 3 0 3
65 3 0 0
66 1 2 0
67 3 0 0
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Heuristic packing strategy Bin packing problem Robotic bin packing

68 1 0 1
69 2 0 2
70 5 0 0
71 4 0 1
72 2 0 0
73 2 0 1
74 4 0 0
75 1 0 2
76 3 0 0
77 1 0 0
78 4 0 1
79 3 1 0
80 1 0 0
81 2 0 1
82 2 0 2
83 2 0 0
84 1 0 2
85 1 0 2
86 2 0 2
87 4 0 0
88 1 0 1
89 2 0 0
90 2 0 0
91 2 0 0
92 3 0 1
93 2 0 0
94 2 0 2
95 1 0 1
96 3 0 0
97 1 0 0
98 4 0 0
99 2 4 0
100 1 0 3
101 3 0 1
102 1 0 0
103 1 0 3
104 2 0 1
105 1 0 2
106 4 1 0
107 1 0 1
108 2 0 1
109 2 0 1
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Heuristic packing strategy Bin packing problem Robotic bin packing

110 3 0 1
111 4 0 1
112 1 0 2
113 3 0 2
114 3 1 0
115 1 0 0
116 2 1 1
117 3 0 0
118 2 0 0
119 3 0 0
120 3 1 0
121 1 0 2
122 2 0 0
123 1 0 1
124 2 0 0
125 2 0 1
126 1 0 1
127 0 0 0
128 2 0 0
129 6 0 1
130 1 0 0
131 2 0 0
132 2 0 0
133 2 0 0
134 2 0 0
135 1 0 2
136 2 0 0
137 1 0 1
138 1 0 0
139 2 0 2
140 2 0 0
141 3 0 1
142 2 0 0
143 2 0 0
144 2 0 0
145 4 0 1
146 2 0 0
147 3 0 1
148 0 0 0
149 1 0 0
150 2 1 0
151 2 0 0

Continue on next page

98



Table C.1 – continued from previous page
Heuristic packing strategy Bin packing problem Robotic bin packing

152 2 0 1
153 2 0 1
154 2 0 2
155 3 0 0
156 1 0 1
157 2 0 0
158 2 0 0
159 3 0 1
160 1 0 0
161 4 0 0
162 4 0 1
163 2 0 0
164 2 1 2
165 2 0 0
166 3 0 0
167 2 0 2
168 2 0 3
169 1 0 0
170 5 0 0
171 3 0 0
172 4 0 1
173 3 0 1
174 3 0 2
175 2 0 0
176 1 0 1
177 1 0 0
178 1 0 0
179 2 0 1
180 3 1 1
181 3 0 2
182 1 0 1
183 1 0 0
184 2 0 0
185 2 0 2
186 2 0 0
187 6 0 0
188 3 0 2
189 2 0 1
190 3 0 0
191 2 0 1
192 3 0 1
193 3 0 2
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Heuristic packing strategy Bin packing problem Robotic bin packing

194 1 0 2
195 2 0 1
196 2 0 0
197 2 0 1
198 2 1 0
199 3 1 3
200 1 0 0

Table C.1: Number of unpacked boxes for the dataset with maximum height of 600 mm.
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Heuristic packing strategy Bin packing problem Robotic bin packing
1 8 0 1
2 2 0 0
3 2 0 2
4 1 0 1
5 2 0 1
6 3 0 1
7 1 0 1
8 3 0 2
9 5 0 3
10 2 0 0
11 3 0 0
12 2 0 1
13 3 0 0
14 4 0 1
15 1 0 0
16 3 0 1
17 4 0 6
18 4 0 6
19 1 0 0
20 3 0 2
21 1 0 0
22 1 0 1
23 3 0 1
24 2 0 3
25 3 0 0
26 4 0 0
27 5 0 0
28 6 0 1
29 4 0 1
30 6 0 0
31 7 0 3
32 3 1 0
33 3 0 2
34 6 0 1
35 2 0 0
36 5 0 0
37 1 0 0
38 4 1 0
39 3 0 1
40 3 0 3
41 4 0 2
42 2 0 0
43 0 0 0
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Heuristic packing strategy Bin packing problem Robotic bin packing

44 3 0 3
45 2 0 2
46 4 0 1
47 1 0 3
48 5 0 0
49 4 0 1
50 5 0 2
51 3 0 0
52 2 0 2
53 2 0 0
54 4 0 0
55 3 0 2
56 2 0 3
57 6 0 2
58 2 0 0
59 3 0 0
60 4 0 1
61 3 0 1
62 5 0 1
63 4 1 2
64 1 0 3
65 5 0 2
66 4 0 3
67 3 0 0
68 3 1 3
69 3 0 2
70 3 0 1
71 1 0 1
72 2 0 1
73 2 0 0
74 2 0 2
75 3 0 0
76 3 0 0
77 3 0 3
78 5 0 1
79 4 0 3
80 3 0 1
81 4 0 0
82 3 0 3
83 2 0 3
84 1 0 2
85 3 0 1
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Heuristic packing strategy Bin packing problem Robotic bin packing

86 1 0 2
87 4 0 1
88 3 0 3
89 1 0 3
90 3 1 1
91 2 0 1
92 2 0 3
93 2 0 0
94 1 0 1
95 4 0 1
96 4 0 0
97 2 2 1
98 4 0 0
99 4 0 0
100 1 0 1
101 5 0 1
102 3 0 1
103 2 0 3
104 2 2 3
105 6 0 0
106 4 0 6
107 6 0 2
108 4 0 1
109 1 0 0
110 1 0 1
111 0 0 3
112 1 0 0
113 3 0 1
114 5 0 0
115 4 0 3
116 3 0 0
117 2 0 0
118 3 0 1
119 4 0 1
120 6 0 0
121 1 0 0
122 3 0 0
123 2 0 3
124 4 0 3
125 4 0 1
126 3 0 3
127 3 0 0
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Heuristic packing strategy Bin packing problem Robotic bin packing

128 1 0 2
129 4 0 0
130 5 0 2
131 2 0 2
132 5 0 2
133 2 0 1
134 3 1 0
135 2 0 1
136 4 1 1
137 3 0 1
138 3 0 3
139 2 0 0
140 6 1 0
141 3 0 0
142 4 1 0
143 1 0 1
144 3 0 1
145 4 1 0
146 0 0 3
147 5 0 1
148 3 0 1
149 3 0 1
150 3 2 0
151 2 0 0
152 4 0 1
153 4 0 1
154 4 0 0
155 5 0 1
156 3 0 1
157 3 0 1
158 2 0 1
159 4 0 1
160 3 0 1
161 9 0 0
162 3 0 0
163 2 0 1
164 3 1 1
165 6 0 2
166 1 0 0
167 4 0 1
168 6 0 1
169 5 0 1
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Heuristic packing strategy Bin packing problem Robotic bin packing

170 1 0 1
171 1 0 1
172 3 0 1
173 5 1 1
174 5 3 0
175 4 0 1
176 1 1 0
177 3 0 1
178 3 0 0
179 2 0 1
180 4 0 1
181 5 0 1
182 2 0 3
183 2 0 1
184 2 0 1
185 4 0 1
186 4 2 0
187 4 0 1
188 1 1 0
189 1 0 1
190 2 1 0
191 4 0 1
192 4 0 1
193 2 0 1
194 2 0 1
195 2 0 1
196 3 0 1
197 5 1 0
198 6 3 0
199 3 0 1
200 2 1 1

Table C.2: Number of unpacked boxes for the dataset with maximum height of 800 mm.
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Heuristic packing strategy Bin packing problem Robotic bin packing
1 0 0 3
2 3 0 3
3 3 0 2
4 6 3 1
5 1 0 1
6 11 0 0
7 5 0 3
8 4 1 2
9 6 0 1
10 6 0 2
11 6 0 0
12 7 0 3
13 4 0 3
14 4 0 2
15 3 0 1
16 3 0 2
17 11 0 0
18 7 0 7
19 1 0 2
20 3 0 1
21 3 0 1
22 5 0 3
23 3 0 0
24 3 0 1
25 6 0 1
26 3 1 1
27 5 0 1
28 5 0 2
29 7 0 3
30 7 0 9
31 5 0 5
32 11 0 0
33 5 0 0
34 6 1 1
35 10 0 6
36 5 0 3
37 5 0 1
38 2 0 2
39 3 0 3
40 6 0 0
41 2 0 0
42 9 0 3
43 9 0 9
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Heuristic packing strategy Bin packing problem Robotic bin packing

44 6 0 6
45 8 0 6
46 5 0 5
47 5 1 1
48 3 0 2
49 5 0 2
50 2 0 0
51 2 0 2
52 8 0 3
53 6 0 1
54 6 0 1
55 4 0 2
56 5 0 1
57 7 0 6
58 2 0 3
59 3 0 3
60 12 0 1
61 7 1 7
62 4 0 2
63 8 0 1
64 4 0 1
65 6 0 3
66 5 0 0
67 5 0 3
68 5 0 2
69 5 0 5
70 1 0 2
71 7 0 3
72 1 0 1
73 3 0 0
74 9 0 12
75 9 0 2
76 6 0 0
77 9 0 0
78 5 0 0
79 4 0 1
80 7 0 0
81 6 0 2
82 1 0 3
83 4 0 3
84 6 0 1
85 5 0 1
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Heuristic packing strategy Bin packing problem Robotic bin packing

86 5 0 1
87 4 0 1
88 11 0 2
89 3 1 1
90 5 0 2
91 5 0 0
92 7 0 3
93 7 0 9
94 5 0 0
95 11 0 0
96 5 0 3
97 6 1 1
98 10 0 6
99 5 0 3
100 5 0 1
101 2 1 1
102 3 0 2
103 6 0 0
104 2 0 2
105 9 0 0
106 9 0 9
107 6 0 6
108 8 0 8
109 5 0 5
110 5 2 2
111 3 0 2
112 5 0 2
113 2 0 0
114 2 0 2
115 8 0 8
116 6 0 0
117 6 0 1
118 4 0 2
119 5 0 3
120 7 0 2
121 2 0 3
122 3 0 3
123 12 0 0
124 7 0 1
125 4 0 1
126 8 0 1
127 4 0 1
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Heuristic packing strategy Bin packing problem Robotic bin packing

128 6 0 3
129 5 0 0
130 5 0 2
131 5 0 2
132 5 0 5
133 1 0 2
134 7 0 3
135 1 1 1
136 3 0 2
137 9 0 9
138 9 0 2
139 6 0 6
140 9 0 0
141 5 0 2
142 4 0 3
143 7 0 2
144 6 0 2
145 1 0 3
146 4 0 3
147 6 0 1
148 5 0 1
149 5 0 1
150 4 0 3
151 11 0 2
152 3 0 1
153 5 0 1
154 5 0 1
155 7 0 3
156 7 0 9
157 5 0 5
158 11 0 0
159 5 0 0
160 6 1 1
161 10 0 10
162 5 0 3
163 5 0 1
164 2 1 1
165 3 0 1
166 6 0 2
167 2 0 0
168 9 0 1
169 9 0 1
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Heuristic packing strategy Bin packing problem Robotic bin packing

170 6 0 6
171 8 0 6
172 5 0 5
173 5 3 3
174 3 0 2
175 5 0 2
176 2 0 0
177 2 0 1
178 8 0 3
179 6 0 0
180 6 0 1
181 4 0 2
182 5 0 0
183 7 0 7
184 2 0 2
185 3 0 3
186 12 0 1
187 7 1 2
188 4 0 0
189 8 0 1
190 4 0 1
191 6 0 3
192 5 0 1
193 5 0 2
194 5 0 1
195 5 0 5
196 1 0 2
197 7 0 3
198 1 1 1
199 3 0 0
200 9 0 12

Table C.3: Number of unpacked boxes for the dataset with maximum height of 1200 mm.
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