
TTK4551 Specialization Project

Using computer vision to control a robotic welder

Department of Engineering Cybernetics
Supervisor: Ole Morten Aamo, ITK

Kristoffer Hermansen

June 10, 2019

Contents

1 Introduction 3

2 Theoretical Background 4
2.1 OpenCV . 4
2.2 Noise reduction . 4
2.3 Edge detection . 4
2.4 Transformations . 5
2.5 Optics . 6

3 Method 7
3.1 Computer Vision . 7
3.2 Feature detection . 8
3.3 3D-environment . 8
3.4 Camera calibration . 10
3.5 Transformations . 12

4 Results 14
4.1 Image processing . 14
4.2 Detecting features . 15
4.3 Estimated weld start . 19

5 Discussion 20
5.1 Image processing . 20
5.2 Detecting features . 20
5.3 Setup . 20
5.4 Transformation . 21

6 Conclusion and future work 22
6.1 Conclusion . 22
6.2 Future work . 22

Appendices 24

A Python code 25
A.1 Main code . 25
A.2 Transformation . 28
A.3 Camera calibration . 30

1

List of Figures

3.1 Window with trackbar for easy parameter tuning of the Gaussian blur 7
3.2 Smooth, textured and real drill pipe respectively . 8
3.3 Overall view of 3D-modeled system . 9
3.4 Inside view of 3D-modeled system . 9
3.5 Camera frame to start-point . 10
3.6 3D-modeled chessboard . 11
3.7 6:9 chess pattern recognized . 11
3.8 Some of the images used for the camera calibration, showing the input image and image

after recognizing the chessboards . 12

4.1 Drill pipe with smooth surface . 14
4.2 Drill pipe with textured surface . 14
4.3 Real drill pipe . 15
4.4 Drill pipe with smooth surface, threshold = 0.38 . 15
4.5 Drill pipe with textured surface, threshold = 0.38 . 15
4.6 Real drill pipe, threshold = 0.45. Note that shadow from the weld gun made the feature

detection on the right side of pipe to difficult for the current detector. Therefore another
feature detection image was used, which was the other quarter of a circle, which is why
the detected weld start is on the other side of the groove. 16

4.7 Result overlaid to original image . 16
4.8 Original image from inventor-camera, inventor zoom angle at 60 degrees 17
4.9 Detected start-point for welding, overlayed on original image 17
4.10 zoomed result . 18

2

Chapter 1

Introduction
This paper is being written on behalf of WellConnection Mongstad. WellConnection Mongstad is a
supplier of inspection, maintenance and repair (IMR) services on equipment for the oil and gas industry.
A substantial part of WellConnections work is related to IMR of drill pipes. The IMR work on the
drill pipes consists of several parts, and vary a lot depending on the state of the pipes received. The
work initially consists of cleaning the pipes before inspection, then the amount of work required on
maintenance and repair is decided on behalf of the inspection results. After this the pipes are sent
through the automatic production line where all of the maintenance and repair work is handled.

For this report, the main interest is the repair of the soft-legging layer under the hard-banding welds.
When the pipes are being mounted together, while drilling and when taken apart, a lot of wear and tear
happens on the tool joints. The tool joint is the section on the drill pipe with the enlarged diameter and
where iron roughneck attaches when screwing them together during operations. In order to extend the
lifetime of the drill pipe, repairing the hard-banding weld is essential. The pipes are first sent to a lathe
for machining to remove the old hard-banding. Sometimes it is enough to just remove the old layer and
then weld a new hardbanding layer. Other times the pipe has deeper pores under the weld, which require
a larger diameter to be removed until the surface is smooth and free of pores.

When the deeper pores are being removed, the diameter of the tool joint will decrease. Therefore the
drill pipe needs to have another layer of weld to get the diameter back up before the hard-banding is
welded. This layer of weld is called soft-lagging, which is a softer weld more similar to the quality of the
pipe. Welding the soft-lagging layer is time consuming due to the large amount of welding needed, and
a temperature restriction in order to not burn the coating inside the drill pipes.

With this in mind, WellConnection is therefore interested in creating an additional production line which
can handle the soft-lagging pipes such that they do not cause delays for the main production line. In
any large project, there are numerous ways to the end goal. In pursuit for the most beneficial solution,
this paper will, together with another paper ”Utilizing laser triangulation to extract spatial coordinates
of drill-pipe’s geometry”(Liavik (2018)) try to answer the most critical questions at an early stage. To
look at the possibilities for creating as much of the production line automated, a few key questions needs
to be answered. In the existing welding stations, manual chucks are used to clamp the pipes to allow
for rotation of the pipes. If this process is to be automated, there are substantial costs to the industry
standard pneumatic clamping chucks, therefore we wanted to make sure that it would be possible to
automate the control of the welding robot before the decision on clamping was chosen. If the welding
process can not be automated, there will be few benefits with the more expensive pneumatic chuck. Since
it needs to be an operator to control the welding robot either way, the operator could then easily operate
the manual chuck in addition to the welding.

Problem definition:
Create a program which can be used to identify where the soft-lagging weld should be started using computer
vision. Furthermore use the pixel coordinates to project the starting point of the weld to the 3D coordinates
for the robot arm. This information is then to be used as control input for the robot arm.

This is not intended to be a scientific paper on how to make the best edge detector and find to most
efficiently methods of interpreting this to generate 3D-coordinates. This report is however intended to
solve a real problem and make it possible for WellConnection to have the most benefit of my time. The
focus will be on proving concepts and trying to implement these concepts to some degree, making it as
realizable as possible for the company.

3

Chapter 2

Theoretical Background

2.1 OpenCV

In this paper OpenCV is used as the main library for computer vision. OpenCV is, in a more general
term; ”an open source computer vision and machine learning software library”. OpenCV has a python
interface and supports all the major operating systems. In this report the library is used to save a lot
of time by using well established functions. Since OpenCV is open source, all the code can be further
improved and tuned later without the need for any licenses. (OpenCV team (2018))

2.2 Noise reduction

Prior to the actual blurring, the image is read as a gray scale image. In order to detect edges in an
image, noise reduction (smoothing or blurring) the image is essential to get good results. Without the
initial blurring the edge detector will struggle to see the difference between textures and edges, making
the result less than helpful. Blurring an image can be viewed as using a low pass filter on the image, since
it reduces the noise in the image. There are several ways to blur an image, after looking at the mean
filter method, median filter method and the Gaussian filter method, the latter gave the better results.

The Gaussian filter looks at each pixel in the original image, and then the kernel used takes the sur-
rounding pixels and tries to make a weighted average which becomes the new pixel value for the blurred
image. It is the ability to easily prioritize the closest pixels more than the pixels further away that makes
the Gaussian blur so applicable for use before edge detection. This Gaussian weight in the kernel does
a better job preserving potential edges, which is why this method ended up being the preferred method
for image blurring in this report. (OpenCV team (2015))

2.3 Edge detection

To detect edges, the general concept is to apply a high pass filter to detect changes in neighbouring pixels,
which will be interpreted as edges. This can be done with a custom kernel which enlarges pixel values
with large gradients, indicating the presence of an edge. However, tuning this kernel will not create a
robust edge detector, and several steps are required to create an usable edge detector algorithm. There
are several algorithms and techniques to achieving edge detection in an image, the one used in this paper
is the Canny Edge Detection. The canny edge detection algorithm contains four steps:

1. Noise reduction to blur the image

2. Find the intensity gradients to locate edges

3. Non-maximum suppression in order to thin the edges.

4. Hysteresis thresholding in order to delete the unqualified edges.

(Alexander Mordvintsev, Abid K (2013))

4

CHAPTER 2. THEORETICAL BACKGROUND 5

2.4 Transformations

In order to express distances from one frame, to another frame with a different orientation, the different
frames need to be linked by the use of rotation matrix. From equation 2.1 we see the rotation matrices
which each describe a rotation around one axis, where Rx, Ry and Rz is the rotation around the x-axis,
y-axis and z-axis respectively.

Rx =


1 0 0

0 Cos(θ) −Sin(θ)

0 Sin(θ) Cos(θ)

 Ry =


Cos(φ) 0 Sin(φ)

0 0 1

−Sin(φ) 0 Cos(φ)

 Rz =


Cos(φ) −Sin(φ) 0

Sin(φ) Cos(φ) 0

0 0 1

 (2.1)

In addition, the different frames, might be located in different places. When this is the case, one also has
to take the distance between them into account when describing points from one frame to another. The
translation from a point A, to a point B seen from frame A, can then be described using a translation
vector tAAB = [x, y, z]T . By the combination of translation and rotation, one can easily go from one
frame to another and still be able to describe points and vectors from the other frame. The combination
of translation and rotation can be described in one single matrix, called the Transformation matrix.
(Egeland (2018a))

TA
AB =

[
RA

B tAAB

0 1

]
=


1 0 0 x

0 Cos(θ) −Sin(θ) y

0 Sin(θ) Cos(θ) z

0 0 0 1

 (2.2)

In 2.2 the rotation happens to be a rotation around the x-axis in this case. The notation used for the
transformation matrices is explained in equation 2.3:

TA
AB = T Seen from frame A

from point A to point B (2.3)

CHAPTER 2. THEORETICAL BACKGROUND 6

2.5 Optics

The camera parameter matrix is a matrix containing important parameters which describe the intrinsic
parameters of the camera. To obtain the intrinsic parameters, a camera calibration can be done. The
result after the calibration is the camera parameter matrix, denoted K.

K =


fx 0 u0

0 fy v0

0 0 1

 fx =
f

ρw
fy =

f

ρh
(2.4)

Where f is the focal length, ρw is the width of a pixel and ρh is the height of a pixel. Further u0 and
v0 are the pixel coordinates at the center of the image plane. The convention also gives the origin of the
image plane is the top left corner, and moving horizontally to the right is the positive u-direction, while
moving vertically down is the positive v-direction. (Egeland (2018b))

p =

[
u

v

]
, p̃ =


u

v

1

 (2.5)

Chapter 3

Method

3.1 Computer Vision

The first step prior to any image processing, was to read up on the image processing toolbox which was
to be used, OpenCv. The initial work was based on getting familiarized with the functions needed to
read, save and show images. After gaining a general understanding in OpenCv, the time was then spent
on research on how to detect edges in images, how have other people done it earlier and then trying to
make a program suitable for detecting edges on a drill pipe.

The approach used was to use a gray scale image, and an initial Gaussian filter on that image. The
Canny algorithm does involve a blurring step, but the results did not create a satisfying result without an
additional blurring filter, and the already blurred image was used as input for the canny edge detector.
In some cases this step might not be necessary, but as rust and other surface texture caused false edges
without the additional blurring, the initial blurring before the canny algorithm was used. The second step
was to use a canny edge detector function from the OpenCv library. To create appropriate edge detection
on the drill pipes, some tuning of both the blurring kernel and the canny parameters was necessary.

To simplify the tuning of the filters, a live trackbar was added to the image window, linked to key
parameters for the cv2.GaussianBlur() function, as well as for the parameters for cv2.Canny(). The use
of a trackbar was helpful in better understanding how the filters worked, as it enabled the ability to
continuously edit variables and immediately see the difference in the image. After some tuning a suitable
result was achieved.

Figure 3.1: Window with trackbar for easy parameter tuning of the Gaussian blur

7

CHAPTER 3. METHOD 8

To get suitable testing images, 3D-CAD software (Autodesk Inventor Proffesional 2019), hereafter called
autodesk inventor, was used to create an environment with a drill pipe. On the drill pipe, a machined
grove similar to the one made for the pipes in need of soft-lagging was created. After creating the 3D-
model it was given a smooth texture in order to make the initial detecting simpler. The first program
used a print screen of the pipe in the 3D-model environment to be used in the image input. After this,
the 3D-model was applied a more realistic texture, to see how the program would handle detecting edges
on a pipe while a texture provides unwanted edges. Finally a real image of a drill pipe in a welding
station where tested. The three pipes before image processing can be seen in figure 3.2.

Figure 3.2: Smooth, textured and real drill pipe respectively

3.2 Feature detection

To create a simple feature detector, the first task is to figure out how the desired feature can be detected.
In this case, the cutting inserts used to create the machined grove is circular to improve its strength.
This lead to the idea to search for a quarter of a circle, since this would represent the visible start of the
machined grove. To create the detection image, an image containing a half circle was obtained, and it
was processed the same way as the drill pipes to detect a white edge on a black background, similar to
the processed drill pipe images. Then the cv2.matchTemplate function was used to look for similarities
in the drill pipe image compared to the detection image. Some tuning was necessary to decide which
features was actually similar. This tuning was done by using a parameter called threshold, with a value
between 0 and 1.

The program then returns an image with colored rectangles at the location of the detected features. The
position of the location of the feature is also returned in pixel coordinates. To improve the detection
function, some logical barriers was added to prevent the program detecting features at unexpected places
in the image, such as the bottom half of the image, which makes the tuning a bit easier and the program
more robust.

3.3 3D-environment

After the computer vision program can detect the weld-start, the next part was to calculate the 3D
position of the weld-start with the pixel coordinates generated from the detected weld-start. To do this
without having any data from the location of the camera from the actual images of the drill pipes, trying
to calculate the 3D location from these images did not make sense. The next step was therefore to
improve the 3D model and use this model in the calculations.

The ability to use 3D models for initial testing have been essential for being able to validate the code
while working. This specially yields for ensuring that the transformation from the detected start point in
pixel coordinates can be transformed to 3D coordinates, since the location of both camera frame, world
frame and the wanted start-point can be extracted with exact precision. The setup can be viewed from
figure 3.3 and 3.4

CHAPTER 3. METHOD 9

Figure 3.3: Overall view of 3D-modeled system

Figure 3.4: Inside view of 3D-modeled system

The distances between the frames and to the start-point have been measured in inventor and are shown
in figure 3.5, and where done similarly for the rest. Note that the measurement box shows lengths from
inventors default coordinate system, which has a different orientation than the one chosen for the world-
frame in the machine. All the distances are also given here in their correct frame representations in the
results.

CHAPTER 3. METHOD 10

Figure 3.5: Camera frame to start-point

3.4 Camera calibration

In order to calculate any positions using the images taken for this project, we need to know the camera
calibration matrix from the camera used for the images. In this case the images used was saved images
from Inventor, and therefore the images used for the calibration also had to be saved in the same way
from inventor. The calibration chessboard was created in Autodesk inventor, a print screen of the 3D-
model can be seen from figure 3.6. To find the camera calibration matrix, a total of 20 images saved
from different angles was used. Further these images was run through a calibration code used to locate
the chessboard 6:9 size in this case. Figure 3.7 shows the pattern recognized by the calibration program.
Interpreting these findings and using cv2.calibrateCamera OpenCv function, a calibration matrix K, was
derived. The K-matrix had the usual from as seen in equation 3.1, and the actual numbers are given in
the results. A collection of the images used in the calibration is shown in figure 3.8. The code used for
this calibration was adapted from (Lars Tingelstad (2018)).

K =


fx 0 u0

0 fy v0

0 0 1

 (3.1)

CHAPTER 3. METHOD 11

Figure 3.6: 3D-modeled chessboard

Figure 3.7: 6:9 chess pattern recognized

CHAPTER 3. METHOD 12

Figure 3.8: Some of the images used for the camera calibration, showing the input image and image after
recognizing the chessboards

3.5 Transformations

To get the 3D position of the starting point, some calculations is needed. From the feature detection in
the computer vision program, the pixel coordinates can be found, given as:

p =

[
u

v

]
, p̃ =


u

v

1

 (3.2)

Where p is the pixel coordinates and p̃ is the homogeneous pixel coordinates.

To be able to use the pixel coordinates, the relative position of the camera is needed to calculate the
position of the weld start. The translation from the camera frame to the world coordinate frame is
denoted as tccw, where the world frame is located at the face of the chuck, which can be seen from figure
3.5. tccw is an input we provide depending on the camera location.

tccw =


x

y

z

 (3.3)

The camera parameter matrix from 3.4 is also needed since it has parameters linking the physical prop-
erties of the camera to the image. The camera parameter matrix is given by:

CHAPTER 3. METHOD 13

K =


fx 0 u0

0 fy v0

0 0 1

 , fx =
f

ρw
, fy =

f

ρh
(3.4)

The next step is to find the position from the camera to the weld start, as seen from the camera, denoted
rccp, see equation 3.5. To find rccp the pixel coordinates is rewritten to the same form as the normalized
image coordinates, which can be see from equation 3.6. Further the equation 3.8 shows the connection
between rccp and the now homogeneous normalized image coordinates.

rccp =


x

y

z

 , r̃ccp =


x

y

z

1

 (3.5)

sx =
(u− u0)

fx
sy =

(v − v0)

fy
(3.6)

s =

[
sx

sy

]
=

[
x/z

y/z

]
(3.7)

s̃ =


sx

sy

1

 =


x/z

y/z

1

 =
1

z
rccp (3.8)

To align the camera frame with the same orientation as the world frame, two rotation matrices is necessary,

first a rotation θ =
pi

2
radians around the x-axis, followed by a rotation φ = −pi

2
around the z-axis of

the rotated frame. The combined rotation matrix is given below.

Rc
cw =


Cos(φ) −Sin(φ) 0

Cos(θ)Sin(φ) Cos(θ)Cos(φ) −Sin(θ)

−Sin(θ)Sin(φ) Sin(θ)Cos(φ) Cos(θ)

 (3.9)

The transformation matrix T c
cw connects the pose of the camera frame and the pose of the world frame.

T c
cw is further given by:

T c
cw =

[
Rc

cw tccw

0 1

]
=


Cos(φ) −Sin(φ) 0 x

Cos(θ)Sin(φ) Cos(θ)Cos(φ) −Sin(θ) y

−Sin(θ)Sin(φ) Sin(θ)Cos(φ) Cos(θ) z

0 0 0 1

 (3.10)

and finally, r̃wwp, the position of the weld start relative to the world frame can be found:

r̃wwp = T c
cw

−1r̃ccp (3.11)

r̃wwp =


x

y

z

1

 , rwwp =


x

y

z

 (3.12)

Chapter 4

Results

4.1 Image processing

Results after the image processing, the images used are print screens from inventor as well as an acutal
drill pipe for the last image.

Figure 4.1: Drill pipe with smooth surface

Figure 4.2: Drill pipe with textured surface

14

CHAPTER 4. RESULTS 15

Figure 4.3: Real drill pipe

4.2 Detecting features

The results from taking the results from the edge detection, and running it through the feature detector
can be seen below.

Figure 4.4: Drill pipe with smooth surface, threshold = 0.38

Figure 4.5: Drill pipe with textured surface, threshold = 0.38

CHAPTER 4. RESULTS 16

Figure 4.6: Real drill pipe, threshold = 0.45. Note that shadow from the weld gun made the feature
detection on the right side of pipe to difficult for the current detector. Therefore another feature detection
image was used, which was the other quarter of a circle, which is why the detected weld start is on the
other side of the groove.

Figure 4.7 show the detected feature overlaid to the original image.

Figure 4.7: Result overlaid to original image

CHAPTER 4. RESULTS 17

The final results are from an image taken at the known camera location in inventor.

Figure 4.8: Original image from inventor-camera, inventor zoom angle at 60 degrees

Figure 4.9: Detected start-point for welding, overlayed on original image

CHAPTER 4. RESULTS 18

Figure 4.10: zoomed result

The feature detection program located the weld-start at the following pixel coordinate:

p =

[
1539

417

]
(4.1)

CHAPTER 4. RESULTS 19

4.3 Estimated weld start

From Autodesk inventor, all the distances from frames to other frames as well as from frames to points
is given below. Note that the w denotes the world frame, p denotes the point of the weld start, while c
denotes the camera frame.

rwwp =


0

0.207157

0.078

 , rccp =


0.007157

0.078

0.7

 , rccw =


−0.2

0

0.7

 (4.2)

The camera calibration in autodesk inventor gave the following results, note that u0 and v0 was placed
manually from looking at image size.

K =


fx 0 u0

0 fy v0

0 0 1

 =


2609.543 0.00 1508.5

0 2607.044 747

0 0 1

 (4.3)

The camera calibration function also returned the mean Re-projection error, RMS = 0.5172

Calculating the steps from the transformation part in section 3.5, yields the following result for the weld
start position seen from the world frame:

rwwp =


x

y

z

 =


0

0.20818

0.0886

 (4.4)

The error between the actual position and the estimated position in meters is then given by:

rwwp error =


0

0.207157

0.078

−


0

0.20818

0.0886

 =


0

−0.001023

−0.0106

 (4.5)

Chapter 5

Discussion

5.1 Image processing

From the results in section 4.1, we can see that the current edge detector does not have any problems
with the images taken from the 3D-model. The additional disturbances from the texture in figure 4.1
is no problem after some tuning of parameters. When we look at the image of the real drill pipe in
figure 4.3, we see some disturbances from the light reflecting as well as the rough texture of the drill
pipe. However, some of these disturbances could be addressed by additional tuning, or by changing the
actual light setting and camera position in the setup. The image from figure 4.3 is far from an optimal
setting, with some trial and error, a better setup might improve the results substantially. It would also
be possible to try different edge detection algorithms in combination with different settings to get an
optimal result.

5.2 Detecting features

The feature detection was successful for all the images in the paper. The method of looking for a quarter
of a circle, is a very simple way to detect the beginning and end of the grove left after the carbide cutter.
The method proved rather reliable for the images of the 3D-model, but not for the ideal noises in the real
image of the drill pipe seen in figure 4.6, the method will most likely not be as robust. As mentioned in
section 5.1, if the edge detection managed to erase more noise, the method might still be a viable option.

It might be a good idea to mount a stationary camera in the existing weld-stations, and take images as
the operators work. First, one could take an image of the pipe without the weld gun being close to the
weld start, and then take another image just before the operator starts the weld, with the weld gun at
the correct position provided by the operator. Then these images could be used to train a neural network
to detect the correct weld start and stop. The position of the weld gun would work as the solution to
which the neural network checks its own guess. This could also be tried in Autodesk Inventor, where one
could generate several images with realistic variations, and use a visible point in Inventor as the correct
answer to where the optimal weld start is located.

5.3 Setup

The use of Inventor was critical to be able to test how well the program worked. One of the challenges
with the real images of the drill pipes, was that the location from where the image was taken is unknown.
As the transformation from pixel coordinates to the 3D coordinates depends on the intrinsic parameters
of the camera used, the intrinsic parameters from the Inventor camera needed to be found. The ability
to use a camera view in Inventor allowed for a precise setup at the desired location. Arriving to the
camera parameter matrix was not done inside the camera function of Inventor, as the precise location
from where these images was taken, is not essential for the calibration part. In hindsight, these images

20

CHAPTER 5. DISCUSSION 21

for the calibration should all be taken within the camera function in Inventor due to the fact that the
Inventor camera has a different zoom angle than the regular environment in Inventor. When using the
camera function, one has to set factors such as the zoom-angle. Since the zoom angle in the regular
Inventor environment view was not necessarily the same as the default in the camera function, this could
create some errors.

5.4 Transformation

The transformation from the pixel coordinates to the actual 3D coordinates was rather straight forward,
as can be seen from section 3.5. When looking at the final result, we see that there was an error between
the actual position and the estimated position from the pixel coordinates. This might be the result of the
way the camera parameter matrix was derived, as explained in section 5.3. Some tuning of the camera
zoom angle was tested, and naturally, it did have an impact on the final error. A solution might be to
create the camera parameter matrix one more time, ensuring that the zoom angle is the same for the
chessboards images and the test image.

Additionally, the placement of the camera, which was looking at the centre of the pipe, might cause
deviations in the estimated height of the weld-start due to the curvature of the pipe. This could be
improved by raising the camera higher so that it is more aligned with the height of the weld-start.
Another source for the height error is the fact that the pixel coordinates are located at the center of the
located feature, which is the center of the green rectangle seen in figure 4.10. While the actual position is
located at the minimum diameter of the grove. The sum of the mentioned potential errors might explain
the positional error from the final result.

Chapter 6

Conclusion and future work

6.1 Conclusion

This paper is part of a larger project, to create a new production line for handling most of the time
consuming process of soft-legging drill pipes. The paper address and test how computer vision could be
used as a tool to help automate the process of welding the soft-legging layer on drill pipes. One of the
main focuses of the work has been to create feasible solutions, which could be implemented with as little
difficulty as possible.

To summarize, in this paper the following has been achieved:

• Create a program for detecting the edges of a drill pipe which can be tuned easily.

• Create a program for detecting features such as detecting the start and stop position of the machined
groove for the soft-lagging weld.

• Create a program for transforming pixel coordinates to actual 3D coordinates

Neither of the programs have been optimized, and more work is required before it can be put to use in
a production line. However, the programs clearly work as a proof of concept as to how computer vision
can be an option for controlling a welding robot. The results are promising, and with some corrections
to eliminate the error between the actual position and the estimated position, the use of computer vision
in the production might create advantages in both repeatability and optimizing the weld process.

6.2 Future work

Based on the programs created in this paper, additional applications can be added. The location of the
weld start and stop, as well as the diameter difference of the grove and tool joint, can be utilized to
optimize welding parameters. The start and stop of the weld will indicate the region of interest for the
grove. From here, a search for horizontal lines can be used and the grove diameter can be estimated from
the pixel coordinates of the two lines.

Computer vision should also be considered to control the lathe machining the groves. The program
should also be able to validate the surface finish of the grove to look for pores and decide whether or not
the machined grove is deep enough. The physical design of the system can also be continued, with the
insights from the two papers written on the subject. This includes the logistics of the drill pipes on their
way to the weld station, the rotation of the drill pipe while welding, and the cooling of the drill pipes to
prevent damage to the inner coating.

22

Bibliography

Alexander Mordvintsev, Abid K. Canny edge detection. web page, december 2013. URL
https://opencv-python-tutroals.readthedocs.io/en/latest/py tutorials/
py imgproc/py canny/py canny.html. Last checked: 16.10.18.

Olav Egeland. A note on robot kinematics. Unknown, 2018a.

Olav Egeland. A note on vision. unknown, 2018b.

Lars Tingelstad. Camera calibration. web page, october 2018. URL
https://github.com/tingelst/tpk4170-robotics/blob/master/tpk4170/
camera calibration/CameraCalibration.ipynb. Last checked: 30.11.18.

Espen Liavik. Utilizing laser triangulation to extract spatial coordinatesof drill-pipe’s geometry”. un-
known, 2018.

OpenCV team. Smoothing images. web page, december 2015. URL
https://docs.opencv.org/3.1.0/d4/d13/tutorial py filtering.html. Last checked:
16.10.18.

OpenCV team. About opencv. web page, November 2018. URL https://opencv.org/about.html.
Last checked: 23.11.18.

23

Appendices

24

Appendix A

Python code

A.1 Main code

1 # −∗− coding : utf−8 −∗−
2 ”””
3 @author : K r i s t o f f e r Hermansen
4 ”””
5

6 import cv2
7 import sys
8

9 # Read image
10 path = ”C:\\ Users \\Kr i s t o f f e r \\Documents\\NTNU\\Prosjektoppgave \\TTK4551

Sp e c i a l i z a t i o n Pro j e c t \\Code\\Main code \\”
11 f i l ename = ” dp texture . png” #Filename Input
12 s a v e f i l e = ” dp tex tu r e save . png” #Savename image with edges
13 d e t e c tF i l e = ” d e t e c t s t a r t . png” # Feature to de t e c t
14 s a v e r e s u l t = ” dp t e x t u r e r e s u l t . png”#Savename image detec ted f e a tu r e
15 th r e sho ld = 0.35
16 image = path + f i l ename
17

18 img = cv2 . imread (image , 0) # image i s grey s c a l e due to (, 0)
19 img1 = cv2 . imread (image , 1) # used to over l ay r e s u l t on o r i g i n a l image
20

21 # Creat ing Trackbars , mostly u s e f u l l f o r tuning new images
22 de f nothing (x) :
23 pass
24 cv2 . namedWindow(’ b lured ’)
25 cv2 . createTrackbar (’ Sigma ’ , ’ b lured ’ , 1 ,50 , nothing)
26 cv2 . createTrackbar (’ Kernel ’ , ’ b lured ’ , 1 ,50 , nothing)
27

28 cv2 . namedWindow(’ canny ’)
29 cv2 . createTrackbar (’ canny1 ’ , ’ canny ’ ,100 ,300 , nothing)
30 cv2 . createTrackbar (’ canny2 ’ , ’ canny ’ ,250 ,300 , nothing)
31 pr in t (’ s t a r t tuning , p r e s s e s c to cont inue ’)
32 whi le True : # whi le loop which a l l ows f o r tuning us ing trackbar
33 # as s i gn parameter sigma to the trackbar in b lu r ing window
34 sigma = cv2 . getTrackbarPos (’ Sigma ’ , ’ b lured ’)
35 # prevent ing sigma from becoming 0 and crash program
36 sigma = sigma+1
37 # as s i gn parameter ke rne l to the trackbar in b lu r ing window
38 ke rne l = cv2 . getTrackbarPos (’ Kernel ’ , ’ b lured ’)
39 # making sure ke rne l i s always odd
40 ke rne l = 2∗ kerne l−1
41

42 # as s i gn i ng parameter canny1 to trackbar in canny window

25

APPENDIX A. PYTHON CODE 26

43 canny1 = cv2 . getTrackbarPos (’ canny1 ’ , ’ canny ’)
44 # as s i gn i ng parameter canny2 to trackbar in canny window
45 canny2 = cv2 . getTrackbarPos (’ canny2 ’ , ’ canny ’)
46

47 # apply ing gaus ian f i l t e r to the image
48 GaussianBlur = cv2 . GaussianBlur (img , (kerne l , k e rne l) , sigma)
49 # apply ing canny edge de t e c t i on to the blured image
50 canny = cv2 . Canny(GaussianBlur , canny1 , canny2)
51

52 # Showing images
53 cv2 . imshow(’ image ’ , img)
54 cv2 . imshow(’ b lured ’ , GaussianBlur)
55 cv2 . imshow(’ canny ’ , canny)
56

57 # While loop stopper
58 key = cv2 . waitKey (1)
59 i f key == 27 :
60 pr in t (’ whi l e loop stpped ’)
61 break
62 # wait ing f o r user to i n sp e c t images , p r e s s e s c to break whi l e loop
63 pr in t (’ Press ” e sc ” to c l o s e program or pr e s s ” s ” to cont inue ’)
64 k = cv2 . waitKey (0) & 0xFF
65

66 # Terminate programme
67 i f k == 27 : # wait f o r ESC key to e x i t
68 pr in t (’ Program terminated by user ! ’)
69 cv2 . destroyAllWindows ()
70 sys . e x i t ()
71 e l i f k == ord (’ s ’) : # wait f o r ’ s ’ key to save and ex i t
72 cv2 . imwrite (s a v e f i l e , canny)
73 pr in t (’Edge detec ted image saved ’)
74 cv2 . destroyAllWindows ()
75

76 ###
77

78 # Detect ing the s t a r t o f weld
79 import numpy as np
80 de f de t e c t o r (search , detect , thresho ld , c o l o r) :
81 # Import image to search in
82 pr in t (’ Search ing in : ’ , s earch)
83 pr in t (’ Looking f o r : ’ , d e t e c t)
84

85 image = path + search
86 # Import f e a tu r e to search f o r
87 image search = path + detec t
88

89

90 img bgr = cv2 . imread (image)
91 img gray = cv2 . cvtColor (img bgr , cv2 .COLORBGR2GRAY)
92

93 X 0 = cv2 . imread (image search , 0)
94 X 0 Blur = cv2 . GaussianBlur (X 0 , (1 , 1) , 2)
95 # apply ing canny edge de t e c t i on to the blured image
96 canny = cv2 . Canny(X 0 Blur , 100 , 200)
97 X 0 = canny
98 # Get the s i z e o f image
99 w, h = X 0 . shape [: : − 1]

100 w1 , h1 = img gray . shape [: : − 1]
101 pr in t (’ Image width in p i x e l s ’ ,w1)
102 pr in t (’ Image he ight in p i x e l s ’ , h1)
103

104 r e s = cv2 . matchTemplate (img gray , X 0 , cv2 .TMCCOEFFNORMED)
105 l o c a t i o n = np . where (res>= thre sho ld)

APPENDIX A. PYTHON CODE 27

106

107 # pr in t (’The detec ted f e a tu r e i s l o ca t ed at p i x e l s : ’ , l o c a t i o n)
108

109 # Note the i f statment i gno r i ng f a l s e po ints , l im i t s depend on image
110 u l im = w1/2
111 v l im = h1/2
112 f o r po int in z ip (∗ l o c a t i o n [: : − 1]) :
113 i f po int [1] > v l im or po int [0]< u l im : # choses which po in t s to i gnore
114 pass
115 e l s e :
116 pr in t (’ Feature detec ted at p i x e l c oo rd ina t e s : ’)
117 pr in t (’u = ’ , po int [0])
118 pr in t (’ v = ’ , po int [1])
119 cv2 . r e c t ang l e (img1 , point , (po int [0]+w, po int [1]+h) , (c o l o r) , 3)
120 # img bgr = cv2 . r e s i z e (img bgr , (1280 , 900))
121 cv2 . imshow(’ detec ted ’ , img1)
122 cv2 . imshow(’ image search ’ ,X 0)
123 cv2 . imwrite (s ave r e su l t , img1)
124 pr in t (’ Image saved ’)
125 # cv2 . waitKey (0)
126 # While loop stopper
127 key = cv2 . waitKey (1)
128 i f key == 27 :
129 pr in t (’ whi l e loop engaged ’)
130 # break
131 cv2 . destroyAllWindows ()
132

133

134 de t e c t o r (s a v e f i l e , d e t e c tF i l e , thresho ld , (0 , 2 5 5 , 0))
135

136 cv2 . waitKey (0)
137 cv2 . destroyAllWindows ()

APPENDIX A. PYTHON CODE 28

A.2 Transformation

1 # −∗− coding : utf−8 −∗−
2 ”””
3 @author : K r i s t o f f e r Hermansen
4 ”””
5

6 import numpy as np
7 pi = np . p i
8 de f rotx (theta) :
9 ct = np . cos (theta) ;

10 s t = np . s i n (theta) ;
11 R = np . array ([[1 , 0 , 0] ,
12 [0 , ct ,− s t] ,
13 [0 , st , c t]])
14 re turn R # theta r o t a t i on about x−ax i s
15 de f roty (theta) :
16 ct = np . cos (theta) ;
17 s t = np . s i n (theta) ;
18 R = np . array ([[ct , 0 , s t] ,
19 [0 , 1 , 0] ,
20 [− st , 0 , c t]])
21 re turn R # theta r o t a t i on about y−ax i s
22 de f r o t z (theta) :
23 ct = np . cos (theta) ;
24 s t = np . s i n (theta) ;
25 R = np . array ([[ct ,− st , 0] ,
26 [st , ct , 0] ,
27 [0 , 0 , 1]])
28 re turn R # theta r o t a t i on about z−ax i s
29 de f tran (R, v) :
30 T = np . array ([[R [0] [0] ,R [0] [1] ,R [0] [2] , v [0]] ,
31 [R [1] [0] ,R [1] [1] ,R [1] [2] , v [1]] ,
32 [R [2] [0] ,R [2] [1] ,R [2] [2] , v [2]] ,
33 [0 , 0 , 0 , 1]])
34 re turn np . round (T, 3)
35

36 # In s e r t K matrix from c a l i b r a t i o n
37 K = np . array ([[2 6 0 9 . 5 4 3 , 0 , 3017/2] ,
38 [0 , 2607 .044 , 1494/2] ,
39 [0 , 0 , 1]])
40

41 empt = []
42 # z i s d i s t anc e between camera and po int along op t i c a l ax i s
43 z = 0 .7
44 # Pixe l c oo rd ina t e s der ived from Main code :
45 p = np . array ([[1 5 3 9] ,
46 [4 1 7]])
47 t c c o = np . array ([[− 0 . 2] ,
48 [0] ,
49 [0 . 7]])
50

51 pr in t (’ Given p i x e l c oo rd ina t e s from computer v i s i o n : \n ’ ,p)
52 s x = (p[0]−K[0] [2]) /K[0] [0]
53 s y = (p[1]−K[1] [2]) /K[1] [1]
54 s = np . append (empt , [s x , s y])
55 s = np . reshape (s , (2 , 1))
56 pr in t (’ \n Normalized image coo rd ina t e s : \n ’ , s)
57 s t i l d e = np . append (s , 1)
58 s t i l d e = np . reshape (s t i l d e , (3 , 1))
59 r c cp = (s t i l d e) ∗z
60 pr in t (’ \n Star t pos i ton from camera frame : \n ’ , r c cp)
61 r c c p t i l d e = np . append (rc cp , 1)

APPENDIX A. PYTHON CODE 29

62 r c c p t i l d e = np . reshape (r c c p t i l d e , (4 , 1))
63 Rx = rotx (p i /2)
64 Rz = rotz (−pi /2)
65 RT = Rx@Rz
66 T = tran (RT, t c c o)
67 T inv = np . l i n a l g . inv (T)
68 r o o p t i l d e = T inv@rc cp t i l d e
69 pr in t (’ \n Star t pos i ton from world frame : \n ’ , r o o p t i l d e)

APPENDIX A. PYTHON CODE 30

A.3 Camera calibration

1 # −∗− coding : utf−8 −∗−
2 ”””
3 Created on Thu Nov 22 06 : 14 : 16 2018
4 Or ig ina l author : https : // github . com/ t i n g e l s t / tpk4170−r obo t i c s / blob /master / tpk4170/

camera ca l i b r a t i on /CameraCal ibration . ipynb
5 Edited by : K r i s t o f f e r
6 ”””
7

8 ############################## Camera Ca l i b r a t e i on ############################
9 import os

10 from glob import g lob
11 import numpy as np
12 np . s e t p r i n t o p t i o n s (suppres s=True)
13 import cv2
14 import matp lo t l i b as mpl
15

16 mpl . rcParams [’ f i g u r e . dpi ’] = 150 # s e t t e r o p p l s n i n g e n t i l 150
17

18 de f s p l i t f n (fn) :
19 path , fn = os . path . s p l i t (fn)
20 name , ext = os . path . s p l i t e x t (fn)
21 re turn path , name , ext
22

23 img mask = ”C:\\ Users \\Kr i s t o f f e r \\Documents\\NTNU\\Prosjektoppgave \\TTK4551
Sp e c i a l i z a t i o n Pro j e c t \\Code\\Ca l ib ra t i on \\Chess 0 ? ? . png”

24 img names = glob (img mask)
25 pr in t (img names)
26

27 #28.50 i s chessboard r e c t ang l e width
28 # squa r e s i z e = 1
29 s q u a r e s i z e = 0.0285
30 pa t t e r n s i z e = (9 , 6)
31 pa t t e rn po in t s = np . z e ro s ((np . prod (p a t t e r n s i z e) , 3) , np . f l o a t 3 2)
32 pa t t e rn po in t s [: , : 2] = np . i n d i c e s (p a t t e r n s i z e) .T. reshape (−1 , 2)
33 pa t t e rn po in t s ∗= squa r e s i z e
34 pr in t (pa t t e rn po in t s [3 4 : 4 0])
35

36 de f proces s image (fn , debug=False) :
37

38 # Read image from f i l e
39 img = cv2 . imread (fn , 0)
40 i f img i s None :
41 pr in t (” Fa i l ed to load ” , fn)
42 re turn None
43

44 # Locate chessboard co rne r s in images
45 found , co rne r s = cv2 . f indChessboardCorners (img , p a t t e r n s i z e)
46 i f found :
47 term = (cv2 .TERM CRITERIA EPS + cv2 .TERM CRITERIA COUNT, 30 , 0 . 001)
48 cv2 . cornerSubPix (img , corners , (5 , 5) , (−1 , −1) , term)
49

50 # Debug : Draw chessboard on image
51 i f debug :
52 v i s = cv2 . cvtColor (img , cv2 .COLORGRAY2BGR)
53 cv2 . drawChessboardCorners (v i s , p a t t e r n s i z e , corners , found)
54 path , name , ex t = s p l i t f n (fn)
55 o u t f i l e = os . path . j o i n (path , name + ’ ch e s s . png ’)
56 cv2 . imwrite (o u t f i l e , v i s)
57

58 # Return None i f the chessboard i s not found
59 i f not found :

APPENDIX A. PYTHON CODE 31

60 pr in t (’ Chessboard not found ’)
61 re turn None
62

63 # Print s t a tu s
64 pr in t (’ { } . . . OK’ . format (fn))
65

66 re turn (co rne r s . reshape (−1 , 2) , p a t t e rn po in t s)
67

68 chessboards = [proces s image (fn , debug=True) f o r fn in img names]
69 chessboards = [x f o r x in chessboards i f x i s not None]
70

71

72 # Sp l i t image po in t s and ob j e c t s po in t s
73 img po ints = []
74 ob j po i n t s = []
75 f o r (corners , p a t t e rn po in t s) in chessboards :
76 img po ints . append (co rne r s)
77 ob j po i n t s . append (pa t t e rn po in t s)
78

79 # Find the s i z e o f the image
80 img s i z e = cv2 . imread (img names [0] , 0) . shape [: 2]
81 pr in t (’ Image s i z e : \n ’ , img s i z e)
82

83 rms , camera matrix , d i s t c o e f f s , rvecs , tvec s = cv2 . ca l ibrateCamera (ob j po in t s ,
img points , img s i ze , None , None)

84 pr in t (’RMS: \n ’ , rms)
85 pr in t (’Camera parameter matrix : \n ’ , camera matrix)

