Kristoffer Hermansen

Automating parts of the hardbanding
process using computer vision and
ROS

Master’s thesis in Industrial Cybernetics
Supervisor: Ole Morten Aamo

June 2019

=}
z
-
z

>
[=2]
S
o
c
=
o
—
©
[
@
[J]
o
c
@
(8
wn
“—
o
>
=
n
[
[
2
[
o]
c
.0
[=2]
(]
2
c
o
P

_
o
©
O£
s o
o o
@ <
TTCY
C
S uw
©
>
(=2}
o
S
o
C
e
(8]
(0]
'_
C
o
b=
©
—
o
o
C
=
o
>
=
35
(&)
®
i

n
o
=
()
c
[
[
o
>
(@]
[=2]
c
[
()
[J)
c
(2]
c
NN}
y—
o
—
c
()
£
[
@
o
[
[m]

@NTNU

Kunnskap for en bedre verden

Kristoffer Hermansen

Automating parts of the hardbanding
process using computer vision and ROS

Master’s thesis in Industrial Cybernetics
Supervisor: Ole Morten Aamo
June 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

@NTNU

Norwegian University of
Science and Technology

Acknowledgements

In all the work I have done with my master thesis, it would not have been possible
to achieve the same quality of result without the help of my supervisors from NTNU,
Ole Morten Aamo and Lars Tingelstad, as well as my supervisor from WellConnection
Mongstad, Henrik Meland Madsen. I would like to thank Heine Pedersen at InCon, Tom
Trones at WellConnection and Joakim Linge at Goodtech for assisting in the research
regarding the PipeFlow database. In addition I would like to direct a special thanks to
Tor Andre Kjgrlaug for the initial idea for this thesis. As with most kinds of work, the
opportunity to get constructive feedback and discuss the challenges at hand with the right
people is an important key for success.

I would also like to take the opportunity to give a special thanks everyone at WellCon-
nection Mongstad, formerly known as Frank Mohn Mongstad. For all the support you
have given me during the last nine years on my journey from apprenticeship, to industrial
mechanic, to bachelor’s degree in Subsea Technology and now finally to the end of my
master’s degree in Industrial Cybernetics at NTNU. I am truly grateful.

Finally I would like to thank my family and loved ones for all the support and encour-
agement I have received during my time as a student.

Kristoffer Hermansen
10.06.2019

IT

Preface

This report is my master’s thesis within Engineering Cybernetics (TTK4900) and rep-
resent what [have learned as a student at the Norwegian University of Science and
Technology. The work done in this report is a combination of independent development
and research. Where the research consists of both online research and a lot of conversa-
tions and discussions with colleagues at WellConnection Mongstad. From WellConnection
Mongstad, managing director Henrik Meland Madsen, has been my internal supervisor
and has provided important feedback throughout the report. The initial idea for the
report came from workshop supervisor and technician Tor Andre Kjgrlaug, a lot of the
fundamentals for the system I have designed around, has been based on discussion with
him. WellConnection Mongstad has also supplied me with an office, from which I have
spent the majority of the semester working from. Ole Morten Aamo and Lars Tingelstad
has been my supervisors from NTNU and have been available for guidance with both
technical and formal matters.

During the report, I have created an environment in which the validation of the computer
vision code could be done. This was done using Autodesk Inventor Professional 2019. The
environment is based on the work performed in the specializing project (Hermansen, 2018),
with some modifications, such as using exact measurements from the drill-pipe data-sheet
to create the new drill-pipes for the computer vision. The vast majority of code in this
report has been written in the programming language python 2.7 and parts of the feature
detection program is based on prior work in python 3.7 from the specialization project
(Hermansen, 2018). The scripts are developed from scratch with inspiration from the
large OpenCV and ROS communities as well as the standard documentation available.
OpenCV has been the library which has been used for all computer vision and image
processing, and ROS kinetic has been used to structure the different scripts to work
together. During the semester, the operating system was switched from Windows 10 to
Ubuntu 16.04 LTS to achieve desired compatibility between Python, OpenCV and ROS.
A thermal camera, FLIR One Pro was also purchased to test the abilities of using thermal
images together with computer vision.

IT1

Summary

This master thesis takes a dive into some of the engineering needed to create a new auto-
mated production line for repair welding on worn drill-pipes at WellConnection Mongstad.
The main motive for this thesis is related to a current bottleneck in the existing semi au-
tomated production line. Some of the drill-pipes which is to be repaired require a larger
amount of welding to replace impurities removed during the machining process. This
creates a challenge because the amount of welding needed quickly heats the pipes to tem-
peratures where the inner coating is exposed to temperatures capable of destroying the
inner coating. Therefore a lot of waiting is required between the strings of weld to avoid
damaging to the coating. This causes an entire welding station to be set on hold, and not
produce while the pipe cools, this is the bottleneck.

The new production line is planned to have a welding robot which is able to move from
pipe to pipe and weld depending on the temperatures of the pipes to avoid damage to the
pipe and ensure a more continuous production.

The work done in this report is based on the report (Hermansen, 2018) where it was
investigated if the use of computer vision could be used to control a welding robot au-
tonomous. Some of the work done in this report is upgrading the former feature detection
program through improved search algorithms and added the functionality to detect two
grooves in the drill-pipes instead of just the start of one groove. Computer vision has
been used to estimate the different diameters needed to then create a welding planner
which calculates the appropriate weld build structure and the needed rotational speed
to achieve the desired weld height. A thermal camera was tested and showed promising
results as a thermal sensor aided by computer vision. Finally parts of the code where
implemented to a ROS network to create a better interface between the programs and
the future hardware needed to realize the new production line.

IV

Sammendrag

Denne masteroppgaven tar ett dypdykk inn i noe av ingenigrarbeidet som trengs for
a skape en ny autonom produksjonslinje for reparasjonssveis av slitte borergr hos Well-
Connection Mongstad. Hovedmotivasjonen for denne masteroppgaven er knyttet til en
eksisterende flaskehals i den eksisterende halvautomatiske produksjonslinjen. Noen av
borergrene som ma repareres trenger stgrre mengder sveis for a erstatte urenheter som er
fjernet under maskineringsprosessen. Dette skaper en utfordring fordi den store mengden
sveis vil raskt tilfgre varme til rgret, som medfgrer at beskyttelsesbelegget inne i rgret kan
bli gdelagt. Derfor er det idag mye venting mellom sveisestrengene for a unnga a skade
beskyttelsesbelegget innvendig. Dette medforer at en hel sveisestasjon blir satt pa vent,
og vil ikke kunne produsere noe mens rgret kjgles, dette er flaskehalsen.

I den nye produksjonslinjen planlegges det a ha en sveiserobot som kan bevege seg fra
ror til ror og sveise avhengig av rgrtemperatur for a unnga a skade rgrene samt sikre en
kontinuerlig produksjon

Arbeidet gjort i denne rapporten er basert pa rapporten (Hermansen, 2018) hvor det ble
undersgkt om bruk av datasyn kunne bli brukt til a kontrollere en sveiserobot autonomt.
Noe av arbeidet som er gjort i denne rapporten er a oppgradere det tidligere gjenkjen-
nelses programmet ved a forbedre sgkealgoritmen og legge til funksjonalitet som a kunne
oppdage to maskinerte groper istedenfor en. Datasyn har blitt brukt til a estimere de
ulike diametre som trengs for a lage en sveiseplanlegger i python som regner ut passende
sveiseoppbygning samt ngdvendig rgrrotasjon for oppna en gnsket sveisehgyde. Et ter-
misk kamera ble testet og viste lovende resultater innen bruk som termisk sensor assistert
av datasyn. Til slutt ble deler av koden implementert til et ROS nettverk for a lage en
bedre overgang fra programmene laget til fremtidig utstyr som trengs for a realisere den
nye produksjonslinjen.

Contents

Introduction

Theoretical Background

2.1 Computer visiono
2.1.1 OpenCV . . . o
2.1.2 Noise reduction
2.1.3 Edge detectiono
2.1.4 Optics

2.2 Transformations

2.3 Databases

2.4 ROS . . e

2.5 MIG welding

2.6 Drill-pipe

2.7 Heat transfer

2.8 Thermal camera specifications

Method

3.1 PipeFlow database oo

3.2 Improvements of the feature detectioncode

3.3 Diameter estimationo

3.4 Weld planningo

3.5 Temperature measurements

3.6 ROS . . . e

Result

4.1 PipeFlow database oo

4.2 Detect starts and stops in 3D coordinates

4.3 Diameter estimationo

4.4 Weld planning

4.5 Thermal measurements

4.6 ROS . . . e

Discussion

5.1 PipeFlow database o

5.2 Detect starts and stops in 3D coordinates

5.3 Diameter estimation

54 Weld planning

5.5 Thermal measurements

56 ROS e

11
11
11
13
13
15
18

23
23
24
29
35
37
40

CONTENTS VI

6 Conclusion 47
7 Future work 48
Appendices 51
A Python code 52
Al Maincode 52
A2 ROSNodes e 68
A.2.1 Camera service node 68

A.2.2 Edged image processing service node 70

A.2.3 Cropimage servicenode L. 72

A.2.4 Feature detection service node 76

A.2.5 Feature detection client 82

A.3 CMakeList for services 83
A4 package file services 87
A.5 Thermal measurements with computer vision 88
A.6 Service message files 89
A6.1 imagesrvfile 89

A6.2 twodnt.srvfile. 90

A.6.3 imagecoord.srvfile oL 90

A.7 CMakeList.txt file for custom messages 90
A.8 package.xml file for custom service messages 94
A9 Launchfiles 96
A.9.1 launch file camera_service 96

A.9.2 launch file edges image processing L. 96

A.9.3 launch file crop imageo 96

A.9.4 launch file feature detection 96

List of Figures

2.1

2.2

2.3

2.4

3.1

3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21

ROS Master, node and topic connection, self made with inspiration from

(Noel Martignoni, 2019) 6
ROS service client and server connection, self made with inspiration from

(Raymond Chen, 2019) Lo 7
ROS action client and action server connected by standard topics, self made

with inspiration from (Alberto Ezquerro, 2019) 8
Iron roughneck from NOV, collected from (NOV, 2019) 9
Drill-pipe welded by the author in the summer of 2018, notice the rather

flat top as a result of several individual strings 15
Test images of FLIR One Pro camera 16
Custom service message: image.Stv 19
The sweet sight of a successful build 19
Initializing the camera_service 20
Calling the camera_service from python 20
Initializing the edged_image_processing_service from python 21
Saving the response to the edged_image_processing_service from python . . 21
Example of a launch file o000 22
Drill-pipe image input L 24
Drill-pipe edges 24
Drill-pipe tool joint line L. 25
Drill-pipe neck detectiono L 25
Drill-pipe image Region Of Interest 26
Drill-pipe 1 Detected weld start and stops for multiple grooves 26
Drill-pipe 2. Detected weld start and stop for a single groove 26
Drill-pipe 3. Detected weld start and stops for multiple grooves 27
Drill-pipe 4. Detected weld start and stops for multiple grooves 27
Drill-pipe 5. Detected weld start and stops for multiple grooves 28
Drill-pipe 1. Estimation tool joint diameter. 29
Drill-pipe 2. Estimation tool joint diameter. 29
Drill-pipe 3. Estimation tool joint diameter. 29
Drill-pipe 4. Estimation tool joint diameter. 30
Drill-pipe 5. Estimation tool joint diameter. 30
Drill-pipe 1. Estimation groove 1 diameter 31
Drill-pipe 2. Estimation groove 1 diameter 31
Drill-pipe 3. Estimation groove 1 diameter 31
Drill-pipe 4. Estimation groove 1 diameter 32
Drill-pipe 5. Estimation groove 1 diameter 32
Drill-pipe 1. Estimation groove 2 diameter 33

VII

LIST OF FIGURES VIII

4.22
4.23
4.24
4.26
4.27
4.28
4.29
4.30

Drill-pipe 3. Estimation groove 2 diameter 33
Drill-pipe 4. Estimation groove 2 diameter 33
Drill-pipe 5. Estimation groove 2 diameter 34
Thermal image scaled between 20-200 degrees Celsius 38
Thermal image scaled for pixel value to match degrees Celsius 38
Closeup on the region of interest 39

Further closeup of the pixel values which represent temperature in Celsius 39
Generated temperature results using computer vision with thermal image . 40

Chapter 1

Introduction

This paper is being written on behalf of WellConnection Mongstad. WellConnection
Mongstad is a supplier of inspection, maintenance and repair (IMR) services on equipment
for the oil and gas industry. A substantial part of WellConnection’s work is related to
IMR of drill pipes. The IMR work on the drill pipes consists of several parts, and vary a
lot depending on the state of the pipes received. The work initially consists of cleaning
the pipes before inspection, then the amount of work required on maintenance and repair
is decided on behalf of the inspection results. After this the pipes are sent through
the automatic production line where all of the maintenance and repair work is handled
(Hermansen, 2018).

For this report, the main interest is the repair of the soft-legging layer under the hard-
banding welds. When the pipes are being mounted together, while drilling and when
taken apart, a lot of wear and tear happens on the tool joints. The tool joint is the
section on the drill pipe with the enlarged diameter and where iron roughneck attaches
when screwing them together during operations. In order to extend the lifetime of the
drill pipe, repairing the hard-banding weld is essential. The pipes are first sent to a lathe
for machining to remove the old hard-banding. Sometimes it is enough to just remove
the old layer and then weld a new hardbanding layer. Other times the pipe has deeper
pores under the weld, which require a larger diameter to be removed until the surface is
smooth and free of pores (Hermansen, 2018).

When the deeper pores are being removed, the diameter of the tool joint will decrease.
Therefore the drill pipe needs to have another layer of weld to get the diameter back up
before the hard-banding is welded. This layer of weld is called soft-lagging, which is a
softer weld more similar to the quality of the pipe. Welding the soft-lagging layer is time
consuming due to the large amount of welding needed, and a temperature restriction in
order to not burn the coating inside the drill pipes (Hermansen, 2018).

This temperature restriction causes great time-delays as the drill-pipe need several breaks
to cool down between the welding, effectively preventing a welding station to produce as
much as it otherwise could. This is the fundamental reason for WellConnection Mongstad
to create a new production line, which uses a different setup where a welding robot is
mobile and can move between several drill-pipes to do work while the former drill-pipes
are cooling down. Additional cooling is not considered in this report due to the risk of
the weld cracking as a result of too rapid cooling.

CHAPTER 1. INTRODUCTION 2

In the autumn of 2018 the author wrote the paper ”Using computer vision to control
a robotic welder” (Hermansen, 2018) as the TTK4551 Specialization Project at NTNU.
Based on that work, the problem definition for this master thesis was created by the
author together with WellConnection Mongstad.

Problem definition

In this thesis, the task at hand will be to discretize the soft-lagging welding process into
sub tasks which will be solved individually in python programs before they are combined
to work together as one. The sub tasks are as follows:

Investigate the possibilities for retrieving existing information on the pipes from
existing PipeFlow database

Upgrade the python program created with the paper (Hermansen, 2018) to locate
two grooves instead of only one groove, and increase the robustness of the feature
detection

Use computer vision to estimate the pipe diameter at the machined groove as well
as the tool joint diameter.

Create a program which uses the geometry of the machined groove to adjust the
needed pipe rotational speed to control desired weld height.

Investigate whether thermal cameras can be used as a method for measuring pipe
temperatures for drill-pipes between welding.

Use ROS to divide the upgraded python program into nodes and connect these
nodes.

Chapter 2

Theoretical Background

2.1 Computer vision

This is a clarification to specify that the whole computer vision theory chapter is copied
from the previous paper from the same author (Hermansen, 2018)

2.1.1 OpenCV

In this paper OpenCV is used as the main library for computer vision. OpenCV is, in
a more general term; ”"an open source computer vision and machine learning software
library”. OpenCV has a python interface and supports all the major operating systems.
In this report the library is used to save a lot of time by using well established functions.
Since OpenCV is open source, all the code can be further improved and tuned later
without the need for any licenses.(Hermansen, 2018)

2.1.2 Noise reduction

Prior to the actual blurring, the image is read as a gray scale image. In order to detect
edges in an image, noise reduction (smoothing or blurring) the image is essential to get
good results. Without the initial blurring the edge detector will struggle to see the
difference between textures and edges, making the result less than helpful. Blurring an
image can be viewed as using a low pass filter on the image, since it reduces the noise
in the image. There are several ways to blur an image, after looking at the mean filter
method, median filter method and the Gaussian filter method, the latter gave the better
results. (Hermansen, 2018)

The Gaussian filter looks at each pixel in the original image, and then the kernel used
takes the surrounding pixels and tries to make a weighted average which becomes the new
pixel value for the blurred image. It is the ability to easily prioritize the closest pixels
more than the pixels further away that makes the Gaussian blur so applicable for use
before edge detection. This Gaussian weight in the kernel does a better job preserving
potential edges, which is why this method ended up being the preferred method for image
blurring in this report. (Hermansen, 2018)

CHAPTER 2. THEORETICAL BACKGROUND 4

2.1.3 Edge detection

To detect edges, the general concept is to apply a high pass filter to detect changes in
neighbouring pixels, which will be interpreted as edges. This can be done with a custom
kernel which enlarges pixel values with large gradients, indicating the presence of an edge.
However, tuning this kernel will not create a robust edge detector, and several steps are
required to create an usable edge detector algorithm. There are several algorithms and
techniques to achieving edge detection in an image, the one used in this paper is the
Canny Edge Detection. The canny edge detection algorithm contains four steps:

1. Noise reduction to blur the image

2. Find the intensity gradients to locate edges

3. Non-maximum suppression in order to thin the edges.

4. Hysteresis thresholding in order to delete the unqualified edges.
(Hermansen, 2018)

2.1.4 Optics

The camera parameter matrix is a matrix containing important parameters which describe
the intrinsic parameters of the camera. To obtain the intrinsic parameters, a camera
calibration can be done. The result after the calibration is the camera parameter matrix,
denoted K.(Hermansen, 2018)

fm 0 Uo f f
K=10 f, v fo= on fy = on (2.1)
0 0 1 ‘

Where f is the focal length, p,, is the width of a pixel and p;, is the height of a pixel. Fur-
ther ug and v, are the pixel coordinates at the center of the image plane. The convention
also gives the origin of the image plane is the top left corner, and moving horizontally
to the right is the positive u-direction, while moving vertically down is the positive v-
direction. ((Egeland, 2018b))

D= H C p= (2.2)

CHAPTER 2. THEORETICAL BACKGROUND 5

2.2 Transformations

In order to express distances from one frame, to another frame with a different orientation,
the different frames need to be linked by the use of rotation matrix. From equation 2.3
we see the rotation matrices which each describe a rotation around one axis, where R,,
R, and R, is the rotation around the x-axis, y-axis and z-axis respectively. (Hermansen,
2018)

0 0 Cos(¢) 0 Sin(¢) Cos(¢) —Sin(¢) 0
R, = |0 Cos(f) —Sin(0)| R,= 0 0 1 R. = |Sin(¢) Cos(¢) 0
0 Sin(d) Cos(0) =Sin(¢) 0 Cos(p) 0 0 1

(2.3)

In addition, the different frames, might be located in different places. When this is the
case, one also has to take the distance between them into account when describing points
from one frame to another. The translation from a point A, to a point B seen from frame
A, can then be described using a translation vector t4; = [x,v,2]7. By the combination
of translation and rotation, one can easily go from one frame to another and still be
able to describe points and vectors from the other frame. The combination of translation
and rotation can be described in one single matrix, called the Transformation matrix.
(Egeland (2018a))

1 0 0 x
A _ R} thp 0 Cos(f) —Sin(0) y 54
ap = = . (2:4)
0 1 0 Sin(f) Cos(0) =z
0 1

0 0

In 2.4 the rotation happens to be a rotation around the x-axis in this case. The notation
used for the transformation matrices is explained in equation 2.5 (Hermansen, 2018):

A Seen from frame A
TAB - Tfrom point A to point B (25)

2.3 Databases

A database, in its most simple terms, is a collection of data. Therefore a database can be
anything from your shopping list to the phone books to customer data for large companies.
(Robert Latek, 2004) There are a lot of RDBMS - Relational DataBase Management
Systems available, the one relevant for this paper is the Microsoft SQL server (Microsoft,
2019). SQL is a data manipulation language used to interact with relational database
systems.(Maier, 1983)

CHAPTER 2. THEORETICAL BACKGROUND 6

2.4 ROS

ROS, which stands for Robot Operative System is licensed under an open source, BSD
license. It is used to make the creation of robot applications easier by providing essential
libraries and tools.(Open Source Robotics Foundation, 2019)

Nodes are specialized programs used to execute some desired task. A node could operate
by itself, but is most useful when it is set to operate with other nodes, effectively creating
a network of nodes working together. Topics is essential for large networks of nodes to
communicate with each other. A topic is a line of communication which is published by
one node, this communication line can be subscribed to by any other node(TullyFoote,
2019). Each node can both subscribe and publish to several other nodes. ROS-master is
the master which connects all the nodes so that they are publishing and subscribing to
the correct node/nodes.(YanqingWu, 2019)

A simple example of how a topic works is shown in figure 2.1 All software in ROS is
organized in packages, each package contains nodes, a data-set, configuration files and
third-party piece of software among other things. (IsaacSaito, 2019b) For topics to be
able to transport messages it is essential that the message type used is of the correct
type. This is specified by a .msg file, where several message types can be added, such as a
string, int8 or int8[] which define the type of data for ROS to handle. The different parts
of the message also needs to have an individual variable for the specific parts of the .msg
file to be extracted from the topics. (AustinHendrix, 2019)

Advertising Subscription

ROS Master

Topic

Publication Callback

Figure 2.1: ROS Master, node and topic connection, self made with inspiration from (Noel
Martignoni, 2019)

In addition to topics, there are two additional ways for nodes to communicate. The first
one is ROS services. ROS services consists of a node containing the actual service, which
is like a regular node by the fact that it often contains specialized programs. In order to
actually get a response from the service, it needs to be called either by a client or directly
from the terminal. ROS services allows nodes to respond only when the service is called,
unlike topics which constantly publish if they have something to publish (AnisKoubaa,
2019). For services to be able to communicate, there has to be a clearly defined message
that is to be sent, like for topics. For ROS services a .srv file needs to be created. A
srv file is different from the .msg file by the fact that all .srv files are divided into two

CHAPTER 2. THEORETICAL BACKGROUND 7

parts, a request and a response. This means that all ROS services require an input called
a request in order to call on the service. When the ROS service has been called with the
request it does whatever it is assigned to do, and then responds with a message defined
in the response part of the .srv file. (DirkThomas, 2019)

Response
Service Client [N Scrvice server
Request
| |
| Request : Request
a Service a |
[p—— S
Response Response

<> .51V r
v

Response

Figure 2.2: ROS service client and server connection, self made with inspiration from
(Raymond Chen, 2019)

The second addition to topics is the ROS actions, which are quite similar to ROS services
in some matters, but different in the fact that ROS actions are asynchronous, meaning
that they can do several sub tasks at once. While ROS services are synchronous and
have to wait until a service has finished before it continues. One important difference
between the ROS service and the ROS actions would be that the ROS action could cancel
an operation before it has been finished. The message used by actions are .action file.
This is a more complex type than the two former message types. The .action files are
divided into three parts; goal, result and feedback. The goal message describes what the
client expects the server to do, this could be coordinates for a robot arm to move to. The
feedback message is used to keep the action client updated on how the action server is
doing on the way to the goal sent earlier, this might be the current robot pose. The result
message is sent once from the action server to the action client when the goal has been
completed, and might contain the final robot pose. (IsaacSaito, 2019a)

CHAPTER 2. THEORETICAL BACKGROUND 8

Goal

Cancel

Action Client Action Server

Status
Feedback

Result

Figure 2.3: ROS action client and action server connected by standard topics, self made
with inspiration from (Alberto Ezquerro, 2019)

2.5 MIG welding

MIG (metal inert gas) is a sub type of Gas metal arc welding which uses an inert shielding
gas, most common for welding steel is a semi-inert gas, often a mixture between argon
and carbon dioxide. The electrode used in MIG welding, often referred to as the MIG
wire is a metallic alloy wire. The MIG wire feeder feeds the MIG wire through the weld
gun and closes the circuit when it contacts the grounded work piece.(Wikipedia, 2019)
The MIG wire is referred to as the welding rod later in the report.

2.6 Drill-pipe

The drill-pipe is an essential part of the oil and gas industry. When drilling for oil and
gas, the drill bit is connected to the rotor by several drill-pipes. When drilling the drill-
pipes are connected together as the drilling depth is increased. Each drill-pipe is one
continuous pipe but it can be categorized into three section: The Pin end has the male
threaded connection, and is connected to a tool joint. The tool joint has an enlarged
outer diameter which is where the Iron Roughneck grips the pipes when torquing up the
pipes, see figure 2.4.

CHAPTER 2. THEORETICAL BACKGROUND 9

Figure 2.4: Iron roughneck from NOV, collected from (NOV, 2019)

The tool joint on the Pin side sometimes also includes hardbanding, a hardened weld
which is to prevent the tool joint from wearing down during drilling operations. The
Box end has the female thread connection and connects to the Pin threads of the next
drill-pipe. The Box is also connected to a tool joint like the Pin end, however this end
always has the hardbanding weld. The main body is the mid-section of each drill-pipe,
this section has a smaller outer diameter than the tool joint and is the convention for
specifying the size of the drill-pipe. For instance the 6-5/8” drill-pipe has a main body
outer diameter of 6-5/8”.

2.7 Heat transfer

The transformation of heat from an object can be divided into three main types of heat
transfer, conductive heat transfer, convection heat transfer and radiation heat transfer.
Further the transfer of heat energy require a temperature difference, where the energy
always flow from the medium with higher temperature to the medium with the lower
temperature. (the, 2015)

Conductive heat transfer is the transfer of energy from more energetic particles to the
less energetic ones within a substance. The rate of heat conduction through a layer of
constant thickness is proportional to the difference in temperature across the layer. And
the cross-section area is normal to the direction of heat transfer and inversely proportional
to the layer thickness, this yields the equation:

(T, —Th)

Qconductive = _ktA Ax

(2.6)

Where k; is the thermal conductivity of the material, A is the area of the cross-section,
T, and T5 are the different temperatures and Az is the layer thickness

CHAPTER 2. THEORETICAL BACKGROUND 10

Convection heat transfer is the transfer of energy between a solid surface and the liquid
or gas in contact with the surface. Convection is the combined effect of convection and
fluid motion.

Qconvective = _hA(Ts - Tf) (27)

Where h is the convection heat transfer coefficient, A is the surface area, T is the surface
temperature while T} is the fluid temperature in the surrounding fluid. The convection
heat transfer coefficient is an experimental value and needs to be determined either by
experiments or by comparing the situation to earlier experiments conducted.

Radiation heat transfer if the transfer of heat energy emitted as a result of electromagnetic
radiation as waves (or photons). The equation for the radiation heat transfer rate is given
below

Qradiation = —ecoA T4 - T4 2.8
surf surr

Where € is the emissivity of the surface, and lies between 0 and 1, where € = 1 is con-
sidered to be black-body. o is the Stefan-Boltzmann constant where o = 5.67 - 1075.
Tsurf and Ty, is the surface and surrounding temperature respectively. Note that these
temperatures needs to be given in Kelvin for this equation since the temperatures are in
fourth power.

2.8 Thermal camera specifications

The thermal camera used in the Flir one pro with the USB-¢ connector which connects
directly to the charging port of a suitable android phone. The camera is operated via an
app developed by Flir.

FLIR ONE Pro Specifications

Scene Dynamic Range -20°C - 400°C

Visual resolution 1440x1080

Thermal resolution 160x120

Focus Fixed 15cm - Infinity
Frame rate 8.7 Hz

Table 2.1: FLIR ONE Pro thermal camera (FLIR, 2019) specifications

Chapter 3

Method

3.1 PipeFlow database

To get a better idea of what kind of data is available through the inspection, the foreman
for the inspection company InCon Mongstad, Heine Pedersen was contacted. From con-
versations with Heine Pedersen it became clear which kind of measurements was being
conducted on the drill-pipes as well as how the inspection was performed. A list of the
relevant measurements taken will be given in the results.

After gaining the information about the types of measurements, Heine referred me to Tom
Trones, which further referred me to Joakim Linge at Goodtech whom is the maintainer
of the database. The findings of this conversation can be found in the results.

3.2 Improvements of the feature detection code

The first objective was to improve the reliability of the feature detection, this was done
in several steps, where the first was to improve the edge detected image. This was done
by using several edge detected images at different settings, and then summing all images
together and dividing on the number of images used in the setup. The edge detected
images generated from using the canny edge detection algorithm has two parameters used
to tune what is considered an edge and what is not. The first parameter was placed in
a for loop and the second parameter was then placed in a nested for loop. At the end of
the nested for loop a canny edge detector generated an image and added together with
any former images generated. In order to sum together gray-scale images it is necessary
to change the data type to int32, thus allowing values higher than 255 to be stored. after
the average image was generated, the data type was returned to int8. The averaged image
was then filtered through a threshold filter, where any pixel values under a user specified
value was replaced with the pixel value of zero, also known as black.

To determine whether an object in the image is the feature which is being searched for,
the program from the report (Hermansen, 2018) used the cv2.matchTemplate function.
The function takes three arguments, the image to be searched, also referred to as the
source image, the image to be searched for, also referred to as the template image and

11

CHAPTER 3. METHOD 12

finally the matching method. The value returned from the function is a number from
0 to 1 describing how close the match between location in the source image and the
template image. In this report the searching algorithm has been altered by having a
dynamic threshold. By dynamic threshold the search algorithm is running through a for
loop within the desired user specified threshold, starting at the highest threshold value
and running the loop until the first detection has been made.

After detecting the weld start, the cv2.matchTemplate receives a new template image to
locate the weld end. A new constraint was inserted to pass any matches with more then
10 pixels of difference in the v image coordinate. Any matches found to the right side of
the weld start was also ignored by the algorithm. The search will go on until a match
that approves the new constraint is found, or no matches is found.

The next improvement to be done was allowing the cv2.matchTemplate function to have
access to more template images. The first step was done by creating a folder for weld
start template images and a folder for weld stop template images. Then a listdir was
imported from the python "os” package, which enabled a function to list all the filenames
in a directory, such as the new folders just created and then the save the result as a list of
several strings. This list of filenames is then inserted via a for loop which runs the feature
detection algorithm described above. This was done for both the weld start template
images and for the weld stop template images. If a template does not get approved by
the threshold and the constraints, the template image is skipped and the next template
image is tested.

To allow for several groves to be located, the feature detection algorithm can run again,
this time with additional input on the former groove located and constraints are given to
avoid findings to close to the former grove. Additional constraints also gives that if the
new groove located is with a higher image coordinate in the v-direction, that is lower on
the image, then the groove must be within the former grove. Likewise if the new groove
is located at a higher diameter, it needs to have the weld start and end located outside
the former groove.

The images used to test the code are generated in Autodesk Inventor Professional 2019,
and in order to get consistent images a JPEG image is exported from a camera inside
inventor. This image is of size 3017x1704 pixels. To reduce the time spent searching
the image for the different templates, a region of interest was derived. The region of
interest was determined from the tool joint neck, which is a recognizable part of all
drill-pipes considered in this report. A functionality searching for angled lines through
the cv2.HoughLinesP function is used in combination with constraints ignoring all lines
which is outside the user specified angle, for this report the angle was set to be between 15
and 25 degrees. In combination with this another cv2.HoughLinesP function was created
to detect the tool joint diameter and generate a line following this diameter. A final
function was created to calculate the intersection between the tool joint line and the neck
line, which then gives a point for the neck location. This image coordinate is then used
to generate the relevant region of interest by drawing a rectangle which will later become
the region of interest.

With the known neck position and the desired size of the region of interest, the image is
then cropped by creating a new image which consists of only the data inside the rectangle
described above. This image is the introduced as the new source image for the feature
detection algorithm and the pixel offset is saved to be able to translate the location back

CHAPTER 3. METHOD 13

to the original image. To transform the image coordinates to 3D coordinates the same
function that was used in (Hermansen, 2018) was used.

3.3 Diameter estimation

To estimate the diameter of the different grooves, the cv2.HoughLinesP function is used
in combination with constraints to filter out the non-relevant lines. The first constraints
used is to ignore all lines with an angle greater then a user specified vale, for instance +-
1 °, this was done using the expression given in equation 3.1. Further the positional data
from the weld start and stop is also known at this part of the code and is used to decide
how long lines which are to be considered. As well as the location of the line start and
end point additionally reducing the allowed height locations of located lines depending
of the weld start and stop location. Finally the image coordinates of the located groove
diameter is transformed to 3D coordinates using the same function mentioned in the
former paragraph.

— 1
a = arctan <M> 180 (3.1)

|ug — uy | s

Where u; and us is the horizontal start and stop pixel coordinate respectively, while vy
and vy is the vertical start and stop pixel coordinate respectively. The tool joint diameter
has already been detected in the detection software, further the horizontal lines are found
by searching with the cv2.HoughLinesP within the different weld start and weld stop
locations.

3.4 Weld planning

The weld program uses several parameters to calculate the relevant information which is to
be given to the hardware. From the feature detection software the start and stop locations
are given. Depending on the number of features in the feature detection program, the
weld planner decides how many grooves which is actually present on the drill-pipe. This
will split the program in two, where one part is designed to handle pipes with only one
groove and the other is designed to handle pipes with two grooves. In the respective
programs the feature detection results is also used to calculate the Groove width, which
is further used combined with the welding string width to get the needed number of weld
strings to fill the groove.

Groove width
Stri = 3.2
rngs String width (32)

The diameter estimation is used to calculate the needed weld height to fill each groove.
The program has a maximum allowed weld height, and the needed number of layers to

CHAPTER 3. METHOD 14

fill the groove is calculated by the program to make sure no layer gets above the user
specified maximum layer height.

When the different layer heights and the numbers of strings in the different layers have
been calculated, the program calculates the rotational speed needed to achieve the desired
height for each layer. The rotational speed is calculated by using the volume of weld which
is applied by the welder and the cross-section for each welded string. The applied weld
volume is given from the feed rate of the welding machine and the weld rod diameter.
The applied weld volume per time:

V=t df (3.3)
Where V is the applied weld volume per minute, d is the diameter of the weld rod and f
is the feed rate of the weld rod.

Further we can convert the weld flow to a volume by dividing by the number of rotations
per minute.

V= (3.4)

v
n
Where n is the rotations per minute. To connect the applied weld volume to the welded
cross-section a model for the weld geometry is needed. The model to be used is a simplified

one where the weld cross-section is assumed to be rectangular. Weld volume per revolution
is then:

V:%-(DZ—d%.w (3.5)
Where D is the desired diameter after the weld and d is the initial diameter while w is
the weld string width. Note that a new D and d is applied for each layer so that the
difference in height is accounted for, this is needed to achieve the correct weld height.

Finally we can connect the two formulas together and solve for the rotational speed n,
which is the parameter that is to be adjusted to control the weld height since the welders
feed rate is assumed constant.

vV

E:Z.(DQ 'd2)-w (3.6)
4 \%

TR w (3.7)

s

4 7 f

”_;'(gz_dz).w (3.8)
n dzod'f (39)

CHAPTER 3. METHOD 15

The output from the weld planner depend on the number of grooves as well as the number
or layers needed. Either way the number of strings needed for the layer is given, the height
of the layer, the pipe rotational speed, the estimated use of welding rod and the effective
welding time, not considering any cooling breaks. A pipe welded in the soft-lagging
progress can be seen in figure 3.1.

Figure 3.1: Drill-pipe welded by the author in the summer of 2018, notice the rather flat
top as a result of several individual strings

3.5 Temperature measurements

The temperature is an important control parameter in order to make the production line
profitable. The temperature decides which pipe it is preferable to weld on in order to
avoid burning the coating inside, as well as optimizing the number of transitions between
the drill-pipes to complete the welds.

The use of a thermal camera combined with computer vision is intended to create a flexible
sensor solution. The location of the camera and the precision of this location is essential
to achieve accurate measurements. Since the feature detection program already holds the
location of the weld start and stop in 3D coordinates, transforming these coordinates to
the camera frame of the thermal camera gives the ability to calculate the image coordinates
of each relevant pipe-section seen from the thermal image. This transformation is done
by the existing code from the paper (Hermansen, 2018). From this, the region of interest
can be found for each pipe and further the temperature of the each region of interest can
be found from interpreting the thermal image.

In order to generate the thermal image, a FLIR one pro camera was used. To get familiar-
ized with thermal images some initial testing was performed and a thermal image taken
was taken of a cup of tea, as can be seen below. The image is a combination of both the
thermal image and a normal image overlapped to provide more detailed contours. This
image can be transformed to different types within the FLIR app. The standard in the

CHAPTER 3. METHOD 16

app is the iron palette as shown below in figure (b) below. To simplify the image process-
ing and to be able to retrieve temperatures from the image, a grey-scale heat palette can
be specified as shown in figure (c¢) below. The highest temperature of the object in the
image can be determined from the app and the IR-scale can be adjusted manually. This
means that one can define a maximum temperature which is linked to the pixel value of
255 (white) and a minimum temperature which is linked to the pixel value of 0 (black).

(b) Iron palette underlined with original

N li f f
(a) Normal image of a cup of tea image

(¢) Thermal image using only grey palette

Figure 3.2: Test images of FLIR One Pro camera

To test how the thermal camera works on the drill-pipes, a thermal image was taken
of a drill-pipe which had just been welded on. This image was then given the grey-scale

CHAPTER 3. METHOD 17

palette and inserted in a python-script. From the Flir app its was given that the maximum
temperature in the image was 200 °C. Inside the Flir app, the maximum temperature was
set to 200 °C and the minimum temperature was set to 20 °C. This means that a pixel
value of 255 equals 200 °C and a pixel value of 0 gives 20 °C. This was then translated
inside the script so that the pixel value matches the actual temperature. This could also
be done by initially setting the thermal scale in the Flir app from 0 °C to 255 °C. The
script then creates a region of interest of which the script finds the highest pixel value,
which then also gives the highest temperature. The location of this value is also collected
and marked with a blue rectangle. The average temperature is the calculated inside the
region of interest which is inside the red rectangle displayed on the image. Finally the
result is displayed on the image for convenience.

CHAPTER 3. METHOD 18

3.6 ROS

Integrating all the programs created above is the next step, this is to be done using
ROS. As mentioned in section 2.4, ROS is useful to create a framework to connect nodes.
The first step to start using ROS was installing it on a computer. ROS is available for
windows 10, however the author decided to switch operating system to the Linux based
Ubuntu 18.04 LTS. Together with this version of Ubuntu the ROS Melodic distribution
was acquired. After extensive problems with compatibility between different OpenCV
modules such as cv_bridge and ROS modules such as rospkg and image_transport the
author was forced to change from Ubuntu 18.04 LTS to Ubuntu 16.04 LTS as well as
changing from ROS melodic to ROS kinetic. Still there was some initial problems with
PYTHONPATH since the former code used python3 and the packages in ROS kinetic
is created for python2, or more specifically python 2.7. This challenge was resolved by
editing the _setup_util.py file inside the catkin workspace and the devel directory.

As explained in the theoretical background section 2.4, ROS has three main ways for
nodes to communicate together. The method chosen is critical for how the ROS network
is going to function. It was chosen to use ROS services for dividing the programs into
several smaller nodes. More on why ROS services was chosen will be explained later in
the discussion.

The camera_service was the first ROS service created for this report. To create a ROS
service, first a new package is created using the catkin_create_package command in the
terminal, followed by giving the package a name. In order to send an image from the
camera service, it is needed to specify the message type so that ROS understands what
we are sending and how to interpret it. For the camera_service, no existing .srv file seemed
to work properly with the code, and therefore a custom service message had to be created.
To create the new service message another package was created to hold all future custom
service messages.

Within this new package a new directory called srv needs to be created, followed by the
srv file to be created inside this srv directory. The file created was called image.srv, and
contained a simple string called ”"camera” as the request. The response was more com-
plicated and contained several pieces of information, such as; width, height, is_bigendian,
encoding and data in order to describe the image. See figure 3.3 to see a print screen of
the file.

CHAPTER 3. METHOD 19

string camera

uint32 width
uint3?2 height

uint8 is _bigendian
string encoding
uint8[] data

Figure 3.3: Custom service message: image.srv

After the file was created, all the dependencies needed to be updated. In ROS, a few files
are created every time a new package is created. These files are placed inside the package
to tell ROS information it needs in order to interact with anything inside the package.
The files which are always generated by ROS is the CMakeList.txt and Package.xml. It
is inside these files we must specify the dependencies for which the package depends on.
For this package containing the custom .srv files the important dependencies can be seen
in code A.7 and A.8. When all the necessary edits have been saved on the files, the
package can be built by using the terminal command catkin_make, this hopefully returns
something similar to what can be seen in figure 3.4. Similarly all the same has to be done
for the camera_service package after it’s dependencies have been edited.

kristoffer@HP: ~/catkin_ws 92x33

Figure 3.4: The sweet sight of a successful build

CHAPTER 3. METHOD 20

The functionality of the camera_service is to send either a snapshot from the computers
web camera or get a local file from a given path and send either as an image. To do this
any images must be converted from cv2 images into images which ROS can understand,
this is done by using the CvBridge() module and the cv2_to_imgmsg function, which
takes two arguments, the image and the encoding. Similarly the function imgmsg to_cv2
transforms an image the other way.

To use the actual server functionality of ROS services, a server was called using the
rospy.Service() followed by a rospy.loginfo(” Server is running”) to indicate that the server
is running seen from the terminal and a rospy.spin() is added to keep the server running
in standby mode until it is called by a client. A code snippet is added for convenience in
figure 3.5

rospy.init_node(, anonymous=)
.5V = rospy.Service(,image, .callback)

rospy.Loginfo(
rospy.spin()

Figure 3.5: Initializing the camera_service

The next part was to create a new package called edged_image_processing. This package
will contain the part of the code that creates the edge detected image with threshold.
Similarly to the earlier packages it has to get its dependencies edited and then be built
by catkin_make. Inside the auto generated src folder the new script was added. The new
python script was equipped with a service client which calls the camera_service created
earlier, to get the image from either the camera or the file system, depending on the
request delivered in the client. For this case the string passed into the service call is
"file”, which will choose to get the image from file and not the camera by the use of an if
statement. The service call can be seen in figure 3.6

):
(
.path =
.savefile =
.bridge = CvBridge()

rospy.wait_for_service(

spy. ServiceProxy(,image)
e = info()
esponse.encoding)
5 ur = .bridge.imgmsg_to_cv2(response,desired_encoding=
rospy.ServiceException, e:

Figure 3.6: Calling the camera_service from python

To get a better impression on how the ROS services work, two more figures are included
below, figure 3.7 is the initialization of the edged_image_processing_service, and figure 3.8
is how the response is stored to the service from inside the callback function.

CHAPTER 3. METHOD 21

rospy.init_node(, anoONymous=)

.5rv = rospy.Service(,image, .callback)
rospy . logi [i
rospy.spin()

Figure 3.7: Initializing the edged_image_processing_service from python

img = .bridge.cv2_to_imgmsg(fin_1img,)]
()
response = imageResponse(img.width,img.height,img.is_bigendian,img.encoding,img.data)

L J

response

Figure 3.8: Saving the response to the edged_image_processing_service from python

The next step was to crop the image as described earlier in section 3.2. To manage
this, the new crop_image package was created together with the script crop_image.py.
This script requires two images as input, the original image from the camera_service and
the edged image from the edge_image_processing_service, both are sent via the image.srv
service message. The script creates three services with each a relevant output. First, the
cropped edged image, then the cropped original image. Until now all service messages
have been of the custom image.srv. For the last message a second custom message was
created, the "two_int.srv” which takes an empty request and responds with two integers,
the pixel coordinates from the neck. This is needed to transform the potential findings
back to the image coordinates of the original image, and further transform the image
transformation to 3D coordinates based on this.

At this point it became very apparent why roslaunch exists, without the roslaunch method
each service server and service client had to be run individually in separate terminals.
To allow for the use of roslaunch, each package needs to have another directory called
"launch” created inside. Then a .launch file has to be created inside this directory. In the
launch file it has to be specified the parent package name, the name of the python script,
in this case these scripts contain both service clients and service servers, the name of the
node and the output source, usually ”"screen” in this case. When all packages contain a
launch file, these files can then be called from inside another launch file. This is done by
using the include file functionality, and thus allowing the launch file to access the other
launch files outside the package. A print screen of a launch file is shown in figure 3.9.

CHAPTER 3. METHOD 22

pka "feature_detector”

type = "feature_detection.py"”
name = "feature_detector_node"
output = "screen">

-:.," node>

<include
file="/home/kristofferfcatkin_ws/src/Thesis/camera_service/launch/camera_service_launch.launch"=>
</include=
<include
file="/home/kristofferfcatkin_ws/src/Thesis/edged_image_processing/launch/edged_image_processing.launch"=>
- ," include=
<include
file="/home/kristoffer/catkin_ws/src/Thesis/crop_image/launch/crop_image.launch”=>
< ," include=

</launch=>

Figure 3.9: Example of a launch file

The next package that had to be created was the feature detection package, the depen-
dencies and the building is done in a similar matter to the earlier packages. Inside this
package the python script ”feature_detection.py” was created, and inside a node called
"feature_detector_node”. This script has both the cropped edged image and the cropped
original image as input as together with as the image coordinates from the neck location
discovered earlier. The edged cropped image is the image which is used for the actual
feature detection, and the cropped original image is only used to display the results. As
mentioned earlier the neck image coordinates is used for transform the locations discovered
in the cropped image back to the pixel coordinates of the original image. The output for
this function is the image displaying the located weld starts and stops as well as the pixel
coordinates of the weld start and stops relative to the original image. Furthermore the
following step is to create a package for the diameter estimation. Due to time limitations
this is as far as the creation of ROS services got for this report.

Chapter 4

Result

4.1 PipeFlow database

From the inspection, the following information in PipeFlow is relevant for the welding
program:

e Tong space

— The distance between hardbanding and the seal face, the available space for
gripping when connecting drill-pipes.

e Tool joint outer diameter
e Pipe wall thickness
e Overall pipe length

From discussion with Joakim Linge at Goodtech it became clear that the server is of the
type relational database, and can be connected to python using a SQL-library for python
called pyodbc.

23

CHAPTER 4. RESULT 24

4.2 Detect starts and stops in 3D coordinates

The original input image taken from Autodesk Inventor environment:

Figure 4.1: Drill-pipe image input

After the original image has been distributed the improved canny edge detector finds the
edges deemed relevant.

Figure 4.2: Drill-pipe edges

The edged image is then searched for the tool joint diameter and it detects the highest
horizontal line within the given constraints.

CHAPTER 4. RESULT 25

Figure 4.3: Drill-pipe tool joint line

The neck is then found using the highest line within the desired angle interval matching
the neck constraints.

Figure 4.4: Drill-pipe neck detection

Based on the intersection of the tool joint line and the neck line the crop the image is
created to avoid searching in non-relevant places.

CHAPTER 4. RESULT 26

Figure 4.5: Drill-pipe image Region Of Interest

From the former figure 4.5 the features within the region of interest is found, and then
displayed on the cropped color image as seen in figure 4.6. Below is the detected features
of five different test pipes, with the locations of the weld starts and weld stops.

Figure 4.6: Drill-pipe 1 Detected weld start and stops for multiple grooves

Drill-pipe 1 X Y Z

Weld start 1 0 mm 324.7 mm 49.9 mm
Weld stop 1 0 mm 307.9 mm 49.3 mm
Weld start 2 0 mm 361.5 mm 53.9 mm
Weld stop 2 0 mm 281.6 mm 54.1 mm

Table 4.1: Weld locations drill-pipe 1

Figure 4.7: Drill-pipe 2. Detected weld start and stop for a single groove

CHAPTER 4. RESULT

Drill-pipe 2 X Y Z
Weld start 1 0 mm 307.6 mm 50.4 mm
Weld stop 1 0 mm 227.7 mm 51.4 mm

Figure 4.8: Drill-pipe 3. Detected weld start and stops for multiple grooves

Table 4.2: Weld locations drill-pipe 2

Drill-pipe 3 X Y Z

Weld start 1 0 mm 290.0 mm 75.8 mm
Weld stop 1 0 mm 259.8 mm 76.5 mm
Weld start 2 0 mm 306.6 mm 79.6 mm
Weld stop 2 0 mm 227.1 mm 80.4 mm

Figure 4.9: Drill-pipe 4. Detected weld start and stops for multiple grooves

Table 4.3: Weld locations drill-pipe 3

Drill-pipe 4 X Y Z

Weld start 1 0 mm 291.3 mm 72.9 mm
Weld stop 1 0 mm 261.1 mm 73.8 mm
Weld start 2 0 mm 307.4 mm 78.2 mm
Weld stop 2 0 mm 228.9 mm 77.9 mm

Table 4.4: Weld locations drill-pipe 4

27

CHAPTER 4. RESULT 28

Figure 4.10: Drill-pipe 5. Detected weld start and stops for multiple grooves

Drill-pipe 4 X Y Z

Weld start 1 0 mm 308.1 mm 54.3 mm
Weld stop 1 0 mm 291.3 mm 53.9 mm
Weld start 2 0 mm 356.8 mm 61.8 mm
Weld stop 2 0 mm 278.4 mm 61.4 mm

Table 4.5: Weld locations drill-pipe 5

Where the coordinate system referred to is the same as in the former report (Hermansen,
2018), having the origo just in the center of the clamping chuck, the X-axis orthogonal of
the image plane, the Y-axis along the drill-pipe, and the Z-axis is up. The complete code
can be seen in the appendix as ”Main code”, this also include the diameter estimation
and weld planner.

CHAPTER 4. RESULT 29

4.3 Diameter estimation

Using the data from the feature detection, the diameter is found by setting constraints
eliminating lines in between any of the start and stops, searching for the highest lines.
Results are given in figure 4.11 to 4.15:

Figure 4.11: Drill-pipe 1. Estimation tool joint diameter

Figure 4.12: Drill-pipe 2. Estimation tool joint diameter

Figure 4.13: Drill-pipe 3. Estimation tool joint diameter

CHAPTER 4. RESULT

Figure 4.15: Drill-pipe 5. Estimation tool joint diameter

30

CHAPTER 4. RESULT 31

When estimating the diameter at the groove, all lines outside the final weld start and
weld ends are ignored. The "groove 17 line is found by looking for lines lower than the
tool joint but higher than the deepest weld start and stop, including potential offsets to
compensate for the height of the template image. There are also constraints on the length
of the detected line, results are given in figure 4.16 to figure 4.20:

Figure 4.16: Drill-pipe 1. Estimation groove 1 diameter

Figure 4.18: Drill-pipe 3. Estimation groove 1 diameter

CHAPTER 4. RESULT

Figure 4.20: Drill-pipe 5. Estimation groove 1 diameter

32

CHAPTER 4. RESULT 33

The final groove diameter is estimated by the line detected in figures 4.21 to 4.24. Here
the former lines are used to eliminate false lines and the line needs to be located between

the first weld start and end.

Figure 4.23: Drill-pipe 4. Estimation groove 2 diameter

CHAPTER 4.

RESULT

Figure 4.24: Drill-pipe 5. Estimation groove 2 diameter

34

Drill-pipe Tool Joint diameter | Groove 1 diameter | Groove 2 diameter
Drill-pipe 1 110.1 mm 98.6 mm 92.4 mm
Drill-pipe 2 100,5 mm 93.2 mm NA

Drill-pipe 3 158.0 mm 150.7 mm 143.1 mm
Drill-pipe 4 158.4 mm 149.6 mm 137.3 mm
Drill-pipe 5 131.9 mm 113.9 mm 101.3 mm

Table 4.6: Weld locations drill-pipe 3

CHAPTER 4. RESULT

4.4 Weld planning

35

The results from the weld planner has been summarized in the following tables. Note that
the pipe rotational speed is highly dependent on the dimensions of the pipe, meaning that
a weld height of 3mm will result in a very different pipe rotational speed for a 4” drill-pipe
and a 6-5/8” drill-pipe.

Drill-pipe 1
1st 1st 2nd 2nd Effective | Meters
Groove Strings | Layers | layer Pipe layer Pipe weld of weld
height | rpm height | rpm time rod
Groove 2 | 2 1 3:06 301 NA NA 0.6 min | 54 m
mm rpm
Groove 1 | 11 2 2.88 3.12 2.88 2.81 7.4 min | 68.2 m
mm rpm mm rpm
Table 4.7: Weld program. Drill-pipe 1
Drill-pipe 2
1st 1st 2nd 2nd Effective | Meters
Groove | Strings | Layers | layer Pipe layer Pipe weld of weld
height | rpm height | rpm time rod
Groove 2 | NA NA NA NA NA NA NA NA
Groove 1 | 11 2 3.64 2.56 NA NA 4.3 min | 39.2 m
mm rpm
Table 4.8: Weld program. Drill-pipe 2
Drill-pipe 3
1st 1st 2nd 2nd Effective | Meters
Groove Strings | Layers | layer Pipe layer Pipe weld of weld
height | rpm height | rpm time rod
Groove 2 | 4 1 3.84 1.62 NA NA 2.5 min | 22.7m
mm rpm
Groove 1 | 11 2 3.64 1.63 NA mm | NA 6.8 min | 61.4 m
mm rpm

Table 4.9: Weld program. Drill-pipe 3

CHAPTER 4. RESULT

36

Drill-pipe 4

1st 1st 2nd 2nd Effective | Meters
Groove Strings | Layers | layer Pipe layer Pipe weld of weld
height | rpm height | rpm time rod
Groove 2 | 4 2 U7 2.13 307 1.96 3.9 min | 35.5 m
mm rpm mm
Groove 1 | 11 1 4.41 L34 NA mm | NA 8.2 min | 74.6 m
mm rpm
Table 4.10: Weld program. Drill-pipe 4
Drill-pipe 5
1st 1st 2nd 2nd Effective | Meters
Groove Strings | Layers | layer Pipe layer Pipe weld of weld
height | rpm height | rpm time rod
Groove 2 | 2 2 316 2.75 2.75 2.46 1.5min | 13.7m
mm rpm mm rpm
Groove 1 | 11 5 4.51 1.69 4.51 1.47 14..0 197 4 m
mm rpm mm rpm min

Table 4.11: Weld program. Drill-pipe 5

CHAPTER 4. RESULT 37

4.5 Thermal measurements

The following image has been taken of a drill-pipe just after it has been welded with new
hardbanding.

(a) Normal image (b) Thermal and normal image

(c) Grey thermal and normal image (d) Grey-scale thermal image

Collecting thermal data from the images: Input image was an image where the scale was
set to 20-200 °C from the app. The image can be seen in figure 4.26.

CHAPTER 4. RESULT 38

Figure 4.26: Thermal image scaled between 20-200 degrees Celsius

The thermal image was further scaled to make the pixel values read the measured values,
the result can be seen in figure 4.27

Figure 4.27: Thermal image scaled for pixel value to match degrees Celsius

CHAPTER 4. RESULT 39

The program then allows for regions of interests which can be specified, here the region
focused on is the hardbanding area of the tool joint.

Figure 4.28: Closeup on the region of interest

When any area of the scale thermal image from figure 4.29 is in close focused, it is easy
to see that the pixel values correspond to the measured temperature of the pixel area.

Figure 4.29: Further closeup of the pixel values which represent temperature in Celsius

CHAPTER 4. RESULT 40

Finally the program finds the max temperature inside the region of interest and marks
it with a small blue square. The average temperature within the red region of interest is
also calculated, as shown on the image.

Figure 4.30: Generated temperature results using computer vision with thermal image

4.6 ROS

The results for the ROS implementation can be seen in the appendix

Chapter 5

Discussion

5.1 PipeFlow database

All the pipes which are to be welded, are first cleaned and inspected. During inspection,
all results are reported and automatically stored in a database for customers to see. When
the pipes are inserted into the existing production-line, the pipes are loaded in while the
operator assigns the pipe identity to the pipe, so that relevant information is available.
Since this is already being done in other parts of the existing production, it was not highly
prioritized to spend time on this during the investigation of the PipeFlow database in this
report.

A lot of time was spent learning about the different types of databases and their differences
before Joakim Linge from Goodtech was contacted. The conversation with Joakim was
very informative and rendered some of the prior work unnecessary in this report.

The research done to see whether there are any information which might be used in the
feature detection program as well as the later parts of this process was useful. From the
inspection, there are several measured dimensions which might be of interest these are
all mentioned in the results. These measured dimensions could work as additional input
in the other programs such as the diameter estimator, where one could use the measured
diameter together with the tool joint diameter derived from computer vision to validate
the computer vision result.

When the PipeFlow database is to be implemented in the future, it would be possible to
implement with all existing python code via the pyodbc library. The PipeFlow database
is a relational database which uses SQL to interact. In order to interact with relational
databases using SQL, the python module pyodbc can be used to query the database with
SQL from python. During the research on the PipeFlow database, it was created an
additional user with read access which is available to be used to read from the database.
This additional user was not tested during this report due to time limitations.

41

CHAPTER 5. DISCUSSION 42

5.2 Detect starts and stops in 3D coordinates

After some work on the new weld parameter code, it became very apparent that the
complexity of the detection software from the (Hermansen, 2018) needed to be upgraded.
The code was not able to conclude how many grooves was present, and the detected weld
start and stop was an average of the detected features at the set threshold. Meaning that
several grooves or miss readings made the detection software give wrong readings.

The challenge was to keep the important contours which describes the tool joint and the
machined groves, while discarding textures and other misreadings. To do this the canny
edge detection algorithm was used in a loop where the tuning parameters where variables
within some specified set points. All the images from the loops was then combined to
an average, finally thresholding was applied to the averaged image to filter out the lower
pixel values as not edges. Further there was some challenges with the number of features
detected, as long as all detected features where in close proximity of the actual feature,
it could easily be averaged. However, one misreadings could offset the average enough to
completely miss the target. One of the root causes for this problem was the fact that the
searching algorithm used to discover the weld start and stop depended on comparing an
image of the start or stop to all areas on the edged image. Whether the start or stop was
detected depended only on how similar the pixels in the search area are to the detection
input. This was given with another threshold, a number between 0.00 and 1.00, where
0.00 would approve anything as a feature and 1.00 would demand an perfect similarity to
approve a feature.

This was remedied with the use of a simple algorithm which searched for the feature in the
image with a decreasing threshold value, starting at a perfect match at 1.00 and decreasing
the value until a feature was detected. Still there where some issues where the program
would detect the start just fine, and miss on the stop. To avoid most of these issues
a constraint was added to the program where the height difference between the start
and stop was set to a maximum, where larger differences in height made the software
ignore any features found and continue the search until a feature within he allowed height
difference was detected.

The next issue needed to be solved was that all weld starts and weld stops does not
necessarily look alike, different locations compared to the camera location yield different
results. Therefore a new functionality had to be implemented. Two new directories was
created, one containing several images of different weld starts, and the other containing
several weld stops. The search algorithm then completed all steps above within a set
threshold, first, weld start image one was used, if any features was detected, the algorithm
took the next weld stop image and searched for a feature which had all requirements from
above, if no weld features was approved, then the algorithm takes the next weld start image
and the loop continues. The break conditions is either by fulfilling feature requirements
or by not detecting any features fulfilling all requirements.

The latest addition has the potential to greatly increase the run-time of the program. Since
the images used was generated in Autodesk Inventor had a large pixel size (3017x1704),
the image needed to be cropped to reduce run-time. The cropping of the image was done
by first locating the neck of the pipe, this gave a logical input to where it was logical to
look for features, anything behind the neck of the pipe it irrelevant. The neck was found

CHAPTER 5. DISCUSSION 43

by looking for places where continuous lines had an angle between 15 and 25 degrees, then
looking for horizontal lines. Finding the highest intersection between the angled line and
the horizontal lines gave the neck location. From the neck location, a region of interest
could be decided, the highest horizontal line gave the tool joint diameter, and any point
higher than this would not be logical to search through. Further the pixel location of
the inner diameter of the tool joint can be calculated, and any points lower than this can
also be ignored. Further the length of the tool joint can be collected and any points to
the left of this is ignored. The sum of the tool joint diameter, neck location, tool joint
inner diameter and tool joint length gives a logical area to search. This greatly reduced
the run-time. Further some translations or offset was however needed to reconnect the
location of the region of interest to the image coordinates which then is connected to
camera the location.

5.3 Diameter estimation

The diameter detects the wanted diameter on most occasions. It is dependent on the work
of the feature detector to be successful, since it uses the weld start and stop locations
to categorize the approved lines. Based on the length and placement of the lines, it is
logically determined if the line is of interest and further which line it should represent.
The program deliver consistent results, even though there will be an increasing error
with larger pipe diameters as the curvature seen by the camera looking at the center of
pipe. It was initially attempted to tune the camera settings for inventor such that actual
dimensions of the 3D model could work as a reference to which the result could be tested.
However insufficient calibration made this difficult.

From the former paper (Hermansen, 2018) a precisely 3D modelled chessboard was created
in Autodesk Inventor, and then with the same camera setting as the pipe images several
images was taken from different angles, and these were used in a camera tuning program
to create the intrinsic camera matrix. This camera tuning camera was lightly modified
from (Lars Tingelstad, 2018). The K-matrix did not yield satisfactory camera tuning, and
therefore it did not make sense to compare the derived result to the dimensions in the 3D
model. This might be problems related to the images collected from Autodesk Inventor.
The use of the PipeFlow database could assist the estimator by accurately giving the tool
joint diameter which was measured in the inspection earlier. This could help calibrate
the image to achieve satisfactory results.

Given more time and improvement of the precision, the use of computer vision to measure
parts might rapidly speed up the inspection time by having a camera taking an image of
the drill-pipes which are being loaded into the inspection area. An approach might be
using this computer vision in parallel with the existing inspection and using the traditional
measurements as training data to a machine learning program.

CHAPTER 5. DISCUSSION 44

5.4 Weld planning

The weld planner seem to deliver both reliable and consistent results. The rectangular
model might be a poor simplification for one single weld string. Meanwhile, when welding
several strings after one another, the finished result can appear to be rather straight with
correct settings and therefore producing a better model for multiple strings, this can be
seen from figure 3.1. As one would expect, it is possible to change this model for a more
precise model in the future, or to tune the result from this model based on experience,
which might give a desired result. It is assumed that the welding rod is solid, this could
be adjusted with an experimental coefficient

Moreover the benefits of having a clear and specified weld program allows for more consis-
tent results. This provides a more traceable weld, making it possible to improve the weld
results in the long run by analysing the pipes which come back for later repairs within the
pipes lifetime, and thereby improving the weld program to correct any apparent errors
discovered.

Another benefit from the use of this welding program is the potential savings by having
the consistent weld height. A good weld height, meaning just a little higher than level
with the rest of the tool joint. When welding in the existing production line it is difficult
to get the height just right, and therefore, the safest bet is to ensure that the weld
height surpass the tool joint height, so than one does not have to add jet another layer of
weld. Any excessive height is then grinded back to be level with the tool joint. By using
computer vision to derive the needed weld height and a mathematical model adjusted
from experience, the amount of grinding could be reduced to a minimum. The weld time
and applied heat is also going to be affected by a well functional weld planner.

5.5 Thermal measurements

The use of thermal images as a thermal sensor is an intriguing idea for a setup containing
several pipes. This is especially so with the geometrical differences on the drill-pipes,
such as different diameters, different tool joint lengths and the subsequent different groove
locations. This means that the area needed to be measured changes from pipe to pipe.
Using conventional sensors would either depend on a great number of sensors to cover all
relevant areas, or the thermal sensor needs to be able to move from pipe to pipe.

When using a thermal camera as a thermal sensor, the optical resolution gives the num-
ber of optical pixels available to read. For the consumer product which where used in
conjunction with this report, this results in 160x120 pixels, which results in 19200 mea-
surements. In order to be able to use the thermal camera as a sensor, it is essential to be
able to recognize the parts of the image to the objects of interest.

Unfortunately a lot of time was spent trying to generate a computer vision program which
could discover the relevant regions to be used together with the thermal image to extract
temperature data. However, by using the existing data from the feature detection, one
could simply calculate how this portrays from the original camera frame to the thermal
camera frame. This would make it rather straight forward to extract the temperatures in
the relevant region as seen in figure 4.30.

CHAPTER 5. DISCUSSION 45

Some challenges with using the thermal camera is the different emissivity on the sections
of the pipes as can be seen from figure 4.28. This result might come as a consequence of
the welding slag creating less reflective surfaces in some places. The inconsistency of the
reflective surfaces yields different measurements since the emissivity is set as a constant
in the FLIR app for this device. For the result in figure 4.30 both the maximum and the
average temperature is calculated. Actual measurements with a calibrated probe showed
results just around 200 °C, indicating that the maximum temperature in the region gave
the best result with the emissivity settings. A possible work around to this could be to use
computer vision to estimate how reflective the different parts of the pipe by the ”shine”
seen in the regular image. Another possibility could be to use a better thermal camera,
in which this might not be similar program due to internal software.

The cooling of the pipes is still an unresolved issue, which makes it difficult estimate
the rate of cooling. Further the different rate of heating and cooling in the different
pipe dimensions is rather complex to derive mathematically with the formulas given in
equations 2.8, 2.7 and 2.6. The drill-pipes that are welded today all use internal air
cooling to shorten the cool-down time and preserve the inner coating from burning. For
the new system with one robot changing which drill-pipe to weld on to allow the other
pipes to cool might be viable without internal cooling. Further data of a drill-pipe cooling
down and analysing the data derived from the thermal camera is necessary to derive the
number of drill-pipes which it is possible to weld without additional cooling.

5.6 ROS

The use of ROS together with robotics and computer vision from OpenCV is a powerful
setup, making it possible to link the software to the hardware of any robotics system.
In this report ROS has been vital to finding a way in which to implement the programs
created to future hardware. In a simple way this has already been achieved in this report
accessing the computers camera and sending the image over either a ROS topic of a ROS
service followed by analysing the image.

The former work from (Hermansen, 2018) has been improved earlier in the report, and
the work of transforming the program into ROS services has been implemented on all the
steps including deriving the feature detection image coordinates result as well as a visual
representation, see figure 4.6. Time limitations due to the complexity of learning to use
ROS as well as the modifications needed to make programs " ROS-friendly” led to the fact
that all parts of the programs created has not been implemented in ROS.

Future work on this system will allow more of ROS to be explored. For this report most
of the parts of the code which has been turned into nodes and services has been of the
kind that only needs to happen once, and then having the ability to access the derived
results later. This means that both ROS topics and ROS actions has been left somewhat
unexplored. The logical implementation to come will depend heavily on both topics and
actions.

Topics will be useful for all sensor which needs to constantly update a value to give input
which allows the welding robot and surrounding system to make decisions. These sensors
might be the thermal camera monitoring the temperatures, the encoder counting the
revolutions of the drill-pipe as it is being welded as well as the pose of the robot welder.

CHAPTER 5. DISCUSSION 46

Actions will be crucial for any moving robotics as it allows for goals and operations to
reach the goal to be canceled. This is especially useful for both the pipe rotation and
the trajectory of the robot welder. Each action contains several topics, which allow you
to send goals over a specific topic, it allows you to get some sensory feedback from the
feedback topic and one gets the result from the robot telling whether or not the goal was
successful.

Chapter 6

Conclusion

This report has continued the work completed in the former report by the same author
(Hermansen, 2018). The report is part of a larger project conducted by WellConnection
Mongstad to evaluate the possibility for creating a new automated production line for
welding soft-lagging on drill-pipes.

The following is a summary of what has been achieved in this report:

The retrieval of information from the PipeFlow database is realizable by the use
of the python package pyodbc. Several of the measurements found in PipeFlow is
relevant and should be integrated as part of the system.

The improvements of the existing code from (Hermansen, 2018) was successful. The
program can differentiate between pipes that has one or two grooves and give the
3D location of all weld starts and weld stops discovered.

A program using computer vision to both detect the different diameters of the tool
joint and grooves was created and the use of the transformation program converting
pixel coordinates to 3D-coordinates returns the different diameters.

A welding program to calculate the needed pipe rotational speed was created. This
program uses the weld start and weld stop information together with the estimated
diameter to ensure that the finished weld has the correct height. This should reduce
the material cost linked to welding rod, it will reduce the welding time and heat
applied to the pipe and it will decrease the time spent grinding excessive weld.

The use of a thermal camera to measure the temperature of several pipes is both
possible and desirable as the needed data to locate the individual pipes in the
thermal image is available in this setup.

Most of the upgraded python program has been implemented into ROS using ROS
services. The use of ROS in this solution is considered by the author as a very good
method to ensure that the code can be implemented with hardware as smoothly as
possible.

47

Chapter 7

Future work

As this report is only a part of a larger project at WellConnection Mongstad, it is only
natural to include how the results of this report has impacted the future work in the
topics it concerns.

The following is a summary of the recommended continued work from the view of the
author:

Creating a python script to collect data from PipeFlow and have it available for the
rest of the system via ROS.

Create a database to collect all the images used for feature detection to generate
training data to create an improved feature detection program in the future.

Create a database for weld data generated from each drill-pipe to allow for the weld
procedure to be evaluated when repaired drill-pipes come back for inspection or
repair after use offshore.

Further testing of the feature detection algorithm on real images.

Continue the work of modifying the existing programs into ROS nodes

48

Bibliography

Thermodynamics. Mc Graw Hill Education, 2015.

Alberto Ezquerro. How to create a custom action message. webpage, 4 2019. URL
http://www.theconstructsim.com/custom—-action-message-ros—actions/.
Last checked: 26.04.19.

AnisKoubaa. Services. wiki, 4 2019. URL http://wiki.ros.org/Services. Last
checked: 23.04.19.

AustinHendrix. msg. wiki, 4 2019. URL http://wiki.ros.org/msg. Last checked:
21.04.19.

DirkThomas. Creating a ros msg and srv. wiki, 4 2019. URL
http://wiki.ros.org/msg. Last checked: 21.04.19.

Olav Egeland. A note on robot kinematics. Unknown, 2018a.

Olav Egeland. A note on wvision. unknown, 2018b.

FLIR. Flir one pro. Nettside, 5 2019. URL
https://www.flir.com/products/flir-one-pro/?model=435-0007-02.
Last checked: 28.05.19.

Kristoffer Hermansen. TTK/551 Specialization Project, Using computer vision to control
a robotic welder. January 2018.

[saacSaito. actionlib. wiki, 4 2019a. URL http://wiki.ros.org/actionlib. Last
checked: 26.04.19.

[saacSaito. Packages. wiki, 4 2019b. URL http://wiki.ros.org/Packages. Last
checked: 21.04.19.

Lars Tingelstad. Camera calibration. web page, october 2018. URL
https://github.com/tingelst/tpk4l170-robotics/blob/master/tpk4170/
camera_calibration/CameraCalibration.ipynb. Last checked: 30.11.18.

David Maier. The Theory of Relational Databases. Unknown, 1983.

Microsoft. Introducing sql server 2019. webpage, 3 2019. URL
https://www.microsoft.com/en-us/sgl-server/sgl-server-2019.
Last checked: 10.03.19.

Noel Martignoni. Packages. wiki, 4 2019. URL
https://commons.wikimedia.org/wiki/File:ROS-master—-node-topic.png.

Last checked: 21.04.19.

49

BIBLIOGRAPHY 50

NOV. St-120 iron roughneck. webpage, 6 2019. URL
https://www.nov.com/Segments/Rigrechnologies/Rigpquipment /O f f shore/Irongoughnec
120;rongoughneck.aspx. Lastchecked : 05.06.19.

Open Source Robotics Foundation. About ros. webpage, 4 2019. URL
http://www.ros.org/about-ros/. Last checked: 21.04.19.

Raymond Chen. Ros client. webpage, 4 2019. URL
https://medium.com/raymonduchen. Last checked: 23.04.19.
Robert Latek. What is a database? Published Lecture, 2004. URL

http://barc.wi.mit.edu/education/biocinfo-mini/dbd4bio/lecturel.pdf.
Last checked: 10.03.19.

TullyFoote. Topics. wiki, 4 2019. URL http://wiki.ros.org/Topics. Last checked:
21.04.19.

Wikipedia. Gas metal arc welding. wiki, 4 2019. URL
https://en.wikipedia.org/wiki/Gasyetal,rceldings. Lastchecked
12.02.19.

YanqingWu. Master. wiki, 4 2019. URL http://wiki.ros.org/Master. Last
checked: 21.04.19.

Appendices

51

- w N -

o0 -~ =] vt

9
10
11
12
13
14
15
16
17
18
19
20

21

36

37

Appendix A

Python code

A.1 Main code

#!/usr/bin/env python
—x— coding: utf—-8 —x—

9N

Created on Wed Jan 30 13:19:55 2019

@author: Kristoffer

from __future__ import division # allows python 2.7 to use true division
import cv2

import numpy as np

from os import listdir

import time

import math

start_time = time.time ()

pi = np.pi
Read image
path = ’/home/kristoffer /catkin_ws/src/Thesis/pipe_images/’

#filename = ” Weld_station_coord_4_35.png” #Filename Input OK done 2

#filename = " Weld _station_coord .png” #Filename Input OK LOOKS best! 3

#filename = " Weld_station_coord_two_grooves_4_5.png” #Filename Input OK
done 1

filename = 7" Weld_station_coord_two_grooves_5_5.png” #Filename Input OK 5

#filename = ” Weld_station_coord_deeper.png” #Filename Input OK done 4

savefile = ”"savefile.png” #Savename image with edges

saveresult = "dp_texture_result.png”’#Savename image detected feature

image = path + filename

img = cv2.imread (image,0) # image is grey scale due to (,0)

imgl = cv2.imread (image,1) # used to overlay result on original image

resize_img = cv2.resize (img,(1920,1080))
resize_imgl = cv2.resize (imgl,(1366,768))
cv2.imshow(’Original image:’ ,resize_imgl)

cv2.waitKey () & OxFF
cv2.destroyAllWindows ()

Blurring tuning:

52

38

10

12

APPENDIX A. PYTHON CODE 53

[sigma , kernel] = [2,3]
39 # applying gausian filter to the image

GaussianBlur = c¢v2.GaussianBlur (img, (kernel , kernel) ,sigma)
11 # Edge detector tuning

cnt = 0

canny_sum = 0

43
44
15
16
17
48
49
50

51

90

92
93

94

[start ,stop ,step] = [80,240,20]
for 1 in range(start ,stop,step):
cannyl = i

print ('Loading:

)

,cannyl , "out of’ stop)

for j in range(start ,stop,step):
cnt +=1
canny2 = j
canny = cv2.Canny(GaussianBlur ,cannyl,canny2)

canny_-int32 = np.int32 (canny)
canny._sum += canny_-int32
print (’cnt’,cnt)

canny_avg = canny_sum/cnt
print (’canny avg’ , canny.avg)
7 canny-avg = canny_avg.astype(np.uint8)

ret ,canny_thr = cv2.threshold (canny_avg,150,255,cv2.THRESH BINARY)#
Thresholding

print ('ret’,ret)

resize_canny_thr = cv2.resize (canny_thr,(1366,768))

cv2.imshow ('resized bluh’ resize_canny_thr)

cv2.imwrite (path+savefile ,canny_thr)# Saving generated canny image

canny_path = path+savefile

print (canny_path)

final _canny_avg = cv2.imread (canny_path ,0)

resize_canny_avg = cv2.resize (final_canny_avg ,(1366,768))

print (’zups’)
c¢v2.imshow (’Final Canny avg ’,resize_canny_avg)

cv2.waitKey () & OxFF
cv2.destroyAllWindows ()

def neck (image,minValue ,maxValue) :
print ('Inside Neck detector’)
Copy canny image to overlay colored lines
copy-canny = cv2.cvtColor (image , cv2.COLOR.GRAY2BGR)
Detect lines
lines = c¢v2.HoughLinesP (image,1,1%np.pi/180,1,None,50,10)

x1_list = []
y1l_list = []
x2_list = []
y2_list = []
u, v = image.shape[:: —1]

if lines is not None:
for i in range(0,len(lines)):

1 = lines[i][0]
print (1)
delta_u = float (np.abs(1[2]=1[0]))
delta_v = float (np.abs(1[3]=1[1]))
radangle = math.atan2(delta_v ,delta_u)
print radangle
degangle = radanglex180/np. pi
print degangle

95
96
97
98
99
100
101
102
103
104
105
106
107

108

109

110
111
112
113

114

129

132
133
134
135
136
137
138
139
140
141
142
143
144

145

146

147

APPENDIX A. PYTHON CODE

def

if np.abs(degangle) < 35 and np.abs(degangle) > 17:
Draw lines
print ('approved’)
print (1)
print (degangle , "deg’)

x1_list .append (1]
y1_list .append (1|
x2_list .append (1|
y2_list .append (1]
d-u = 2x(np.abs(1
d_v = 2x(np.abs (1
if 1[1]<v/2 and 1[3]<v/2:

cv2.line (copy-canny,(1[0],1[1]),(1[2],1[3]),(0,0,255)

cv2.line (copy-canny ,(1[0]—d-u,l[1]—d-v) ,(1[2],1[3])
,(255,0,0) ,2)

resize_copy_canny = cv2.resize (copy_canny,(1366,768))

X2 = 1[2]
Y2 = 1[3]
else:

cv2.line (copy-canny ,(1[0],1[1]),(1[2],1[3]),(0,0,255)

’3)
cv2.line (copy-canny ,(1[0]—d-u,1[1]+d-v),(1[2],1[3])
,(255,0,0) ,2)

resize_copy-canny = cv2.resize (copy_canny,(1366,768))

pass
cv2.imshow ('neck ’ ,resize_copy_canny)
else:
print ("'neck pass’)
pass
return d_u,d_v,X2,Y2

minimum (aList) :
minPos = aList.index (min(aList))
maxPos = alList.index (max(aList))

return minPos, maxPos

print ('neck lines:’)
print ('————_—_—_—_—_—_"%3)
def tool_joint_top (image):

#

Copy canny image to overlay colored lines
copy-canny = cv2.cvtColor (image, cv2.COLOR.GRAY2BGR)
print ('Inside Tool Joint detector’)
Detect lines
lines = cv2.HoughLinesP (image,1,1+np.pi/180,100,None,80,40)
x1_list = []
yl_list = []
|

x2_list = |
y2_list = []
u, v = image.shape[:: —1]

if lines is not None:
for i in range(0,len(lines)):
1 = lines[i][0]
degangle = np.arctan ([np.abs(1[3]—=1[1]) ,np.abs(1[2]—=1[0])])
x180/np. pi
print (degangle)
if np.abs(degangle[1]) <0.5:

54

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

164

165
166
167
168
169

170

APPENDIX A. PYTHON CODE

print ('pass’)
else :# Draw lines
print (’x1’,1[0], y17,1[1], x27,1[2], y2’,1[3])
print (degangle[0], degangle[1])
x1_list .append(1[0])
y1_list .append(1[1])
x2_list .append(1[2])
y2_list .append(1[3])
minPos, maxPos = minimum(y1_list)
print (’Minimum element location ’,minPos)
minValue = y1_list [minPos]
print ('minValue’ ,minValue)
maxValue = y1_list [maxPos]
print (’maxValue’ ,maxValue)
cv2.line (copy-canny ,(0,y1l_list [minPos]) ,(u, y2_list [minPos])
,(0,255,0) ,1)
resize_copy_-canny = cv2.resize (copy-canny,(1366,768))
cv2.imshow(’tool_joint ’,resize_copy-canny)
return minValue , maxValue
def ignorator (image):
minValue ,maxValue=tool_joint_top (image)
cv2.waitKey (0) &O0xFF
cv2.destroyAllWindows ()
[d_u,d_v,X2,Y2]=neck (image , minValue , maxValue)
cv2.waitKey (0) &O0xFF
cv2.destroyAllWindows ()
print (d_u,d-v,X2,Y2)
d_v = float (d_v)
dou = float (d.u)
a = (((dov/d.u)*X2)-Y2)
b = float (d-v/d-u)
print (’a’,a,’b’ b)
X = (atminValue) /b
print ('X’ X)
return X, minValue
ign_u,tj = ignorator (final_canny_avg)

crop_img = final _canny_avg[tj —150:tj+150,int (ign_u)—1000:int (ign_u) |

cv2
cv2
cv2
cv2

.imshow (’cropped ’ ,crop_img)
.waitKey (0)&0xFF
.destroyAllWindows ()

.imwrite (savefile+path,crop_img)

crop-imgl = imgl[tj —150:tj+150,int (ign_u)—1000:int (ign_u)]

def

loadImages (path) :
returns an array of images
imagesList = listdir (path)
loadedImages = []
for image in imagesList:
image = path+image
img = cv2.imread (image ,0)

55

APPENDIX A. PYTHON CODE 56

205 loadedImages . append (img)

206 return loadedImages ,imagesList

207

20s start = ’/home/kristoffer /catkin_ws/src/wem/Master/Code/start/’
200 imgs, imgsList = loadImages(start)

210 print (imgsList)

211 end = ’/home/kristoffer/catkin_ws/src/wem/Master/Code/end/’

212 imge, imgeList = loadImages (end)

213 print (imgsList)

214

215 width = []

216 height = []

217 # Detecting the start of weld

215 def detectorstart (search, imgs, imge, VO, Ul, ign_u, tj, color):

219 # Import image to search in

220 print (’Searching in: ’,search)

221

222 image = path + search

223

224 img_bgr = cv2.imread (image)

225 img_gray = cv2.cvtColor (img_bgr , cv2.COLORBGR2GRAY)

226 #

227 cnt = 0

228

229 for img in imgs:

230 X0 = img

231 cnt +=1

232 print type(X.0)

233 print ('DETECT START: ’,cnt)

234

235 #

236 X_0_Blur = c¢v2.GaussianBlur(X.0,(1,1) ,2)

237 # applying canny edge detection to the blured image

238 canny2 = cv2.Canny(X_0_Blur,100,200)

239 X0 = canny2

240 # Get the size of image

241 w, h = X_0.shape[:: —1]

242 wl, hl = img_gray.shape[:: —1]

243 threshold = np.linspace (0.7,0.4 ,num=20)

244 res = c¢v2.matchTemplate(crop_img ,X_0, cv2.TM.CCOEFF NORMED)

245

246 for element in threshold:

247 location = np.where(res>= element)

248 # Note the if statment ignoring false points, limits depend on
image

249 t,p.u,p-v = [0,0,0]

250 for p in zip(xlocation [:: —1]):

251 if p[1]<V0+20 and p[1]>V0—20: # choses which points to
ignore

252 pass# ignore

253 else:

254 print (’Feature detected at pixel coordinates:)

255 print (’u = 7,p[0])

256 print (v = 7 ,p[1])

1

o~

MO N NN NN
I RN N TN N
© 1

o

281
282
283
284
286
287
288
289
290
291

292
293
294
295
296
297
298
299
300
301

302
303
304
305
306
307
308
309
310
311

312

APPENDIX A. PYTHON CODE 57

t 4= 1
p-u += p[0]
p-v += p[1]

While loop stopper
key = cv2.waitKey (1)
if key = 27:
print ('while loop engaged’)
cv2.destroyAllWindows ()
if t = 0:
Found = False
pass
else:
print ('Detected at:’ element)
U.s = int (p-u/t)
V_s = int(p_v/t)

[Ue,V_e,we,he]=detectorend (savefile ,imge,(0,0,255) ,Us,V_s

if Ue =1 and Ve = 1:
Found = False
print (’Not found’)
break
else:
Found = True
cv2.rectangle (crop-imgl ,(U.s,V_s) ,(U_s+w, V_s+h) ,(color)

u3)
cv2.imshow (detected ’, crop-imgl)
height .append ([h, he])
width . append ([w,we])
break
if Found True:
print ('t’,t)
break
if Found = True: # stopper leite gjennom flere bilder
break
try:

return U.s,V_s,U_e,V_e,width , height ,Found
except:

print (’except start’)

a,b,c,d = [1,1,1,1]

return a,b,c,d,width, height , True

Detecting the end of weld
def detectorend (search ,imge, color ,u,v):
Import image to search in

print (’Searching in: ’,search)
image = path + search
img_bgr = c¢v2.imread (image)

img_gray = cv2.cvtColor (img_bgr , cv2.COLORBGR2GRAY)
Processing detection image
cnt =0
for img in imge:
cnt +=1
print ('DETECT END: ', cnt)
X0 = img

313
314
315
316

317

320

335
336
337
338
339
340
341

342
343
344
345
346
347
348
349
350
351

352
353

354

356
357
358
359
360

361

362
363

364

366

367

APPENDIX A. PYTHON CODE

X_0_Blur = cv2.GaussianBlur (X.0,(1,1) ,2)
X_0 = c¢v2.Canny(X_0_Blur,100,200)
Get the size of image
w, h = X_0.shape[:: —1]
wl, hl = img_gray.shape[:: —1]
threshold = np.linspace (0.7,0.3 ,num=20)
res = cv2.matchTemp1ate(crop img ,X_0, cv2.TM CCOEFF NORMED)
for element in threshold:
location = np.where(res>= element)
t,p-u,p-v = [0,0,0]
for p in zip(xlocation[:: —1]):
if p[1] > v+5 or p[l]<v—5 or u—p[0] <20: # choses which
points to ignore
pass
else:
print (’Image saved’)
print (’Feature detected at pixel coordinates:)
print ('u = *,p[0])
print (v = ’,p[1])
t = t+1
p-u = pu + p[0]
p-v = p_v + p[1]
key = cv2.waitKey (1)
if key = 27:
print (’while loop engaged’)
cv2.destroyAllWindows ()
if t = 0:
print ('No features detected ’)
pass
clse 8
U.e = int(p-u/t)
V_e = int(p_v/t)
cv2.rectangle (crop_imgl ,(U.e,V_e) ,(U_et+w,V_eth) ,(color) ,3)
cv2.imshow (’detected ’, crop-imgl)
break
it t = 0:
break
try:
return U_,e,V_e,w,h
except:
print (’except’)
a,b,c,d = [1,1,1,1]
return a,b,c,d
print('— — — — — — — —_"%3)
print ("Weld start and end detector:’)
print ('—— — — — — — —_"%3)

print (’Detecting first round: 7)
[U0,V0,U1,V1,w,h,Found]=detectorstart (savefile ,imgs,imge,10,1,ign_u,tj
,(0,255,0))

print (’width

",w, "height ’ h)

print (’Detecting second round: 7)
[U2,V2,U3,V3,w,h,Found]=detectorstart (savefile ,imgs,imge,V0,Ul,ign_u ,tj
,(0,255,0))

print (’width’

,type(w), height’ h)

58

APPENDIX A. PYTHON CODE

s6s 1f np.abs(U0-U2)<2 and np.abs(Ul-U3) <2
369 V_stopl =1

1
s72 def rename(U_startl , V_startl ,U_stopl,V_stopl,U_start2,V_start2 ,U_stop2,
V_stop2 ,w,h):

373 if V_startl < V_start2:

374 # first detected start is lower

375 x1,yl,x2,y2 = [U_startl ,V_startl ,U_stopl, V_stopl]

376 U_startl , V_startl ,U_stopl,V_stopl = [U_start2 ,V_start2 ,U_stop2,
V_stop2]

377 U_start2 ,V_start2 ,U_stop2,V_stop2 = [x1,yl,x2,y2]

378 U = list ([U_startl ,U_stopl, U_start2 ,U_stop2])

379 V = list ([V_startl ,V_stopl, V_start2 ,V_stop2])

380 if V_stopl = 1 or V_stop2 = 1:

381 W: w

382 H=nh

383 else:

384 [wO,wl] ,[w2,w3] =w

385 W= list ([w2,w3,w0,wl])

386 [hO,h1] ,[h2,h3] = h

387 H = list ([h2,h3,h0,h1])

388 else:

389 U = list ([U0,U1,U2,U3])

390 V = list ([V0,V1,V2,V3])

391 ~ V_stop2 = 1:

392 W: w

393 H=nh

394 else:

395 [wO,wl] ,[w2,w3] = w

396 W= list ([WO,Wl,W?,Wg])

397 [hO,h1] ,[h2,h3] = h

398 H = list ([h0,hl,h2,h3])

399 pass

100 return U,V,WH

101

w2 U,V,W,H = rename (U0,V0,U1,V1,U2,V2,U3,V3,w,h)
103 print (’U” ,U)

404

w5 def translator (U,V,tj,ign_u):

106 if Found == True:

107 U=1U + ign_u—1000

108 U = [int (U[0]) ,int (U[1]) ,int (U[2]) ,int (U[3])]
409 V=V+ tj—150

110 else:

11 U2 = int (U[2] + ign_u — 1000)
112 U3 = int (U[3] + ign_-u — 1000)
113 V2 = V[2] + tj — 150

414 V3 =V[3] + tj — 150

415 U = [int(U[0]) ,int (U[1]) ,U2,U3]
116 V = [V][0],V[1],V2,V3]

117 return U, V
s U,V = translator(U7V,tj ,ign_u)

419 prlnt(U)

420 print (’ Flrst weldgun position from: [’,U[0],’,’,V[0],]to: [’,U[1],’,” .,V
(1],°]7)

21 print (’Second weldgun position from: [’,U[2],’,",V[2],]Jto: [’,U[3],, .,V
[31,°17)

129
430
131
432
433
134
435
136
437
438
439
440
141

142

443
144
445
146
447
448
149

450

176

APPENDIX A. PYTHON CODE

2 cv2.waitKey (0) &O0xFF
3 cv2.destroyAllWindows ()

s print ('—— — — — — — —_ 7%3)
; print (’Diameter estimation:’)
7 print ('—_——_—_—_—_—_—_"x3)

def tool_joint (image,U,V, ign_u ,W,H):
Copy canny image to overlay colored lines
copy-canny = cv2.cvtColor (image , cv2.COLOR.GRAY2BGR)
print ('Inside Tool Joint detector’)
Detect lines
lines = c¢v2.HoughLinesP (image,1,l*np.pi/180,30,None,100,20)

x1_list = []
y1l_list = []
x2_list = []
y2_list = []

if lines is not None:
for i in range(0,len(lines)):
1 = lines [i][0]

degangle = np.arctan(np.abs(1[3]—1[1]) /np.abs(1[2]—1[0]))*180/

np. pi
if np.abs(degangle)>0.5 or 1[1]>V+5 or 1[1]<V—-50:
pass
else:# Draw lines
print (’x1’,1[0], y1’
x1_list . append(l [O])
y1l_list .append(1[1])
x2_list .append(1[2])
y2_list .append(1[3])

cv2.line (copy-canny ,(1[0],1[1]),(1[2],1[3]),(255,0,0),3)
resize_copy_canny = cv2.resize (copy_canny ,(1366,768))

cv2.imshow (' tool_joint ' ,resize_copy_canny)
return x1_list ,y1_list ,x2_list ,y2_list

def groovel (search ,U3,U2,V,a,tj,ign_u ,W1,W2,H):# Last weld
Copy canny image to overlay colored lines
copy_canny = cv2.cvtColor (search , cv2.COLOR.GRAY2BGR)
Detect lines
length = (U2-U3)%5/10
gap = int (length)

lines = c¢v2.HoughLinesP (search ,1,1%np.pi/180,30,None,length ,(gap))

x1_list = []
y1l_list = []
x2_list = []
y2_list = []

if lines is not None:
print ("tj’,tj, U3’ , U3, U2’ ,U2, "W’ W1, "'W2’ ,W2, "H’ ,H)
for i in range(0,len(lines)):
1 = lines [1][0]
print (1)

degangle = np.arctan(np.abs(1[3]—1[1]) /np.abs(1[2]—=1[0]))*180/

np. pi

if np.abs(degangle)>0.5 or 1[1]<tj or 1[1]>tj+150 or

—4sW1 or 1[2]>=U2+4xW2 or 1[1]>tj+3*H:#or 1[1]<V_stop2—15
pass

1[0]<=U3

60

477
478
179
180
181

482

189
190
191
492
493
194
195
196
497
498
199
500
501
502
503

504

506
507
508
509
510
511
512
513
514
515

516

518

519

¥}

o

o

S
L NG JCR Ot

w

o
~

0

ut ut
NONON NN N NN N

ot

530

531

APPENDIX A. PYTHON CODE

else :# Draw lin(S

print ('x17,1[0], y17,1[1], %27, 1[2], y2",1[3])
x1_list . append(l[O])
y1_list.append(1[1])
x2_list .append(1[2])
y2 list .append(1[3])

print ("tj’,tj, U3’ ,U3, U2’ ,U2, "W’ W1, "'W2’ ,We2, "H’ H)
minPos, maxPos = minimum(y1_list)

cv2.line (copy-canny ,(x1_list [minPos], y1_list [minPos]) ,(x2_list |

minPos], y2_list [minPos]) ,(255,0,0) ,3)
resize_copy-canny = cv2.resize (copy-canny,(1366,768))
c¢v2.imshow ('groove_1’ resize_copy_canny)
return x1_list ,y1_list ,x2_list ,y2_list

def groove2(search ,U,V, gl ign_u ,W1,W2,H):# First weld
Copy canny image to overlay colored lines
copy_canny = cv2.cvtColor (search , cv2.COLOR.GRAY2BGR)
Detect lines
length = (U[0]-U[1]) /4

gap = 10

lines = c¢v2.HoughLinesP (search ,1,1%np.pi/180,30,None,length ,(gap))
x1_list = []

y1l_list = []

x2_list = []

y2_list = []

if lines is not None:
for i in range(0,len(lines)):
1 = lines[i][0]

degangle = np.arctan (np.abs(1[3]—1[1]) /np.abs(1[2]—1[0]))*180/

np. pi
if np.abs(degangle)>0.5 or 1[1]<gl+5 or 1[1]>gl+200 or 1[0]
[3] =W1 or 1[2]>U[2]+W2:

pass
else :# Draw lian
print (’x17,1[0 J[L], =27, 1(2], 'y27,1(3])

I
x1_list . append(l
y1_list .append(1
x2_list .append (1
y2_list .append (1

cv2.line (copy_canny ,(1[0],1[1]),(1[2],1[3]),(255,0,0),3)

resize_copy-canny = cv2.resize (copy_canny ,(1366,768))
cv2.imshow (’groove_2’ ,resize_copy-canny)
return x1_list ,y1_list ,x2_list ,y2_list

def transformation (U,V):
pi = np.pi
def rotx(theta):
ct = np.cos(theta);
st = np.sin (theta);
R = np.array ([[1, 0, 0],
[0,ct,—st],
[0,st, ct]])
return R # theta rotation about x—axis
def rotz(theta):
ct = np.cos(theta);
st = np.sin(theta);
R = np.array ([[ct,—st,0],

<U

61

APPENDIX A. PYTHON CODE 62

532 [St, C'E,O]7

533 [07 0, 1]])

534 return R # theta rotation about z—axis

535 def tran(R,v):

536 T = np.array ([[R[0][0] ,R[0][1] ,R[0][2], float (v][O])],
537 [R[1][0] ,R[1][1],R[1][2], float(v[1])],
538 [R[2][0] ,R[2][1] ,R[2][2], float (v[2])],
39 [070,071”)

540 return np.round(T,3)

541

542 K = np.array ([[3250, 0, 3017/2],

543 [0, 3650, 1704/2],

544 [0, 0, 1]])

545

546 empt = []

47

548 z = 0.7 # z is distance between camera and point along optical axis
549 p = np.array ([[U],

550 V]])

551 tc_co = np.array ([[—0.3],

552 (0],

[2]])

54 s-x = (p[0]-K[0][2]) /K[0][O]

s sy = (p[1—-K[1][2]) /K[1][1]

556 s = np.append (empt,[s_x,s_y])

557 s = np.reshape(s,(2,1))

558 s_tilde = np. append(s,l)

559 s_tilde = np.reshape(s_tilde ,(3,1))

560 rc_cp = (s,tilde)*

561 rc_cp_-tilde = np.append(rc-cp,1)

562 rc_cp-tilde = np.reshape(rc_cp_tilde ,(4,1))

563 Rx = rotx(pi/2)

564 Rz = rotz(—pi/2)

565 RT = np.dot (Rx,Rz)

566 # RT = Rx@Rz

567 T = tran (RT, tc_co)

568 T_inv = np.linalg.inv (T)

569 ro_op_tilde = np.dot(T.inv,rc_cp_tilde)

570 return ro_op_tilde[0],ro_op_tilde[1],ro_op_tilde [2]

1
2 # Welding programme
s73 def layer (soft_height ,max_weld_height ,d):

| if soft_height/max_weld_height <=(1.01):
5 string _height = soft_height

576 layers = 1

577 D = d+2«string_height

578 weld_area = (pi/4)*(Dxx2—d*%2)

579 print ('Need one layer of weld, ’,np.round(string_height=*1000,3), mm
each layer”)

580 elif soft_height/max_weld_height >(1.01) and soft_height/max_weld_height
=(2.01):

581 string_height = soft_height /2

582 layers = 2

583 D = d+2xstring_height

584 weld_areal = (pi/4)*(Dxx2—d**2)

585 D1 = d+2%2xstring_height

586 weld_area2 = (pi/4)*(D1lxx2—Dxx2)

587 weld_area = [weld_areal ,weld_area?2]

APPENDIX A. PYTHON CODE 63

588 print ('Need two layers of weld, ’,np.round(string_height=*1000,3),’
mm each layer’)

589 elif soft_height/max_weld_height >(2.01) and soft_height/max_weld_height
<=(3.01):

590 string_height = soft_height /3

591 layers = 3

592 D = d+1%2xstring_height

593 weld_areal = (pi/4)*(Dxx2—dxx2)

594 D1 = d+2%2xstring_height

595 weld_area2 = (pi/4)*(D1xx2—Dx%x%2)

596 D2 = d+3*2xstring_height

597 weld_area3 = (pi/4)*(D2xx2—D1%x%2)

598 weld_area = [weld_areal ,weld_area2 ,weld_area3]

599 print ('Need three layers of weld, ’,np.round(string_height=*1000,3),
mm each layer’)

600 else:

601 string_height = soft_height /4

602 layers = 4

603 D = d+1x2xstring_height

604 weld_areal = (pi/4)*(Dxx2—d*%2)
605 D1 = d+2+2«string_height

606 weld_area2 = (pi/4)*(Dlxx2—Dxx2)
607 D2 = d+3*2xstring_height

608 weld_area3 = (pi/4)*(D2xx2—D1%x%2)
609 D3 = d+4%2xstring_height

610 weld_aread = (pi/4)*(D3xx2—D2x%2)

611 weld_area = [weld_areal ,weld_area2 ,weld_area3d ,weld_area4]

612 print ('Need four layers of weld, ’,np.round(string_height=*1000,3),’
mm each layer’)

613 return layers ,string_height ,weld_area

614

615 def weld_strings (aksial_start ,aksial_stop ,weld_width):

616 weld_length = aksial_start —aksial_stop
617 strings = int (weld_length / weld_width)
618 return strings

619
620 def grooveLogic(U,V,tj):
621 weld_feed = 9.1 # 8—9.1 [m/min]

622 max_weld_height = 0.005 # 5—6um [m]

623 rod_dia = 0.0012 # 1.2mm [m]

624 rod_area = pix(rod_diaxrod-dia)/4 # m"2
625 weld_width = 0.007 # ca 7nm

626 print (’'U’,U)
627 print (’'V’,)V)

628 print (’tj’,t])

629

630 if np.abs((V[0]+V][1])/2—=(V[2]+V][3])/2)<=b or V[3] = 1 or V[1] = 1 or
V[2]-V[3] = O0:

631 print ('Pipe has only one groove’)

632 V[1] = V[3]

633 print ('tool joint’)
634 [tjx1 ,tjyl ,tjx2 ,tjy2]=tool_joint (canny_avg ,U, tj ,ign_u ,W,H)

635 cv2.waitKey () &O0xFF

636 cv2.destroyAllWindows ()
637 print ('groovel 7)

638 print (W)

639 print (W[0])

640 print (W[0][1])

641

642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663

664

665
666
667
668
669
670
671

672

679
680
681
682
683
684
685

686

687
688
689
690

691

692
693

694

APPENDIX A. PYTHON CODE 64

[glx1,glyl, glx2,gly2]=groovel (canny_avg ,U[1] ,U[0],tj,50,tj ,ign_u ,W

[0][1],W[0][0] ,H[0][O])

elif

cv2.waitKey () &O0xFF

cv2.destroyAllWindows ()

print ("glyl’,glyl,type(glyl))

[wsl x,wsly,wsl_z] = transformation (U[0],V[0])

[wel x,wel_y,wel_z] = transformation (U[1],V[1])

print(’Start position for weld gun: 7)

print (’ ,wsl_x%1000,’\n Y: 7, wsl_yx1000,’\n Z: ’,wsl_zx1000)
print (End p051t10n for weld gun:)

print (7 X: 7 ,wel x%1000,’\n Y: ’,wel_yx1000,’\n Z: ’,wel_zx1000)

groove_dia = (glyl[0]+gly2][0]) /2

print ("Machined groove pixel ’,groove_dia)

[¢e-x,g.yv,g-z] = transformation (glx1[0],groove_dia)

print ("Machined groove diameter: ’,g_z%1000%2, mm’)
tool_joint_dia = (tjyl[0]+tjy2[0])/2

[tj-x,tj_y ,tj_z] = transformation (tjx1[0], tool_joint_dia)
print ('Tool joint diameter: ’,tj-z+1000%2, mm’)

weld program

soft_height = tj_z—g_z

print ('soft —lagging height: ’,np.round(soft_height*1000,3), 'mm’)
layers ,string_height , weld_area = layer (soft_height ,max_weld_height ,

strings = weld_strings (wsl_y,wel_y,weld_width)

print ('Number of weld strings per layer: ’, strings)
weld_volume_pr_min = rod_areaxweld_feed

weld_volume_pr_rev = weld_areaxweld_width

pipe_rev = weld_volume_pr_min/weld_volume_pr_rev # rev/min
print (’Pipe rotational speed: ’,np.round(pipe_rev ,3),’rev/min’)

string_time = 60/pipe_rev

print ('time per string’,np.round(string_time ,1),’ seconds’)
layer_time = string_timexstrings

print ("time per layer’ ,np.round(layer_time /60,1), minutes’)
weld_time = layer_timexlayers

print (’Total weld time’ ,np.round(weld_time/60,1), minutes’)
rod_used = weld_time /60xweld_feed

print ('Meters of wire used: ’,np.round(rod_used,l))

(V[0]+V[1]>V[2]4+V[3]) and np.abs(U[1]-U[0])<np.abs(U[3]-U[2]) :
print ('Pipe has two grooves’)
[tjx1 ,tjyl ,tjx2 ,tjy2]=tool_joint (canny_avg ,U,V[2],ign_u ,WH)
cv2.waitKey () &O0xFF
cv2.destroyAllWindows ()
print (’groovel ’)
[glx1,glyl, glx2,gly2]=groovel (canny_avg ,U[3],U[2],V,15,tj ,ign_u ,W

[3] ,W[2],2xH[0])

cv2.waitKey () &O0xFF

cv2.destroyAllWindows ()

print ('gly2’ ,gly2)

print (’groove2’)

[g2x1,g2yl,g2x2,g2y2]=groove2 (canny_avg ,U,V,gly2[0],ign_u ,W[3] W

(2] ,H)

cv2.waitKey () &O0xFF
cv2.destroyAllWindows ()

695
696
697
698
699
700
701
702
703
704
705
706
707
708
709

710

712
713
714
715
716
717

718

719

APPENDIX A. PYTHON CODE

[ws2_x,ws2_y,ws2_z] = transformation (U[0] ,V]
[we2_x,we2_y,we2_z] = transformation (U[1],V]
print ('First start position for weld gun: 7)
print (7 X: 7 ,ws2_x%1000,’\n Y: ’,ws2_yx1000, \n
print ('First end position for weld gun:)

print (7 X: 7 ,we2_x*x1000,’\n Y: ’ ,we2_y*1000, \n

[wsl-x,wsl_y,wsl_z] = transformation (U[2],V[2])
[wel_x,wel_y,wel_z] = transformation (U[3],V[3])
print (’Last start position for weld gun:)
print (7 X: 7 ,wsl_x%1000,’\n Y: ’,wsl_yx1000, \n
print ('Last end position for weld gun:)
print (7 X: 7 ,wel x*x1000,’\n Y: ’ ,wel_y*1000, ' \n

groove_dia = (glyl[0]+gly2][0]) /2

[¢-x,g.v,g-z] = transformation(glx1[0],groove_dia)

groove_dia2 = (g2y1[0]+g2y2][0]) /2

7, ws2_z%1000)

T, we2_z%1000)

7, wsl_z%1000)

" ,wel_z%1000)

[¢e-x,g.y,g-2z2] = transformation (g2x1[0],groove_dia2)

tool_joint_dia = (tjyl[0]+tjy2][0]) /2

[tj-x ,tj_y ,tj-z] = transformation (tjx1[0],tool_joint_dia)

print ('Tool joint diameter: ’,tj_z+1000%2, mm’)

print ('Machined groove diameter highest diameter:

print (’"Machined groove diameter lowest diameter:

weld program

print ('— — — — — — —_—_7%3)
print (’Welding programme: ’)
print ('—— — — — — — —_"x3)

lowest diameter groove:

g-22)

soft_height = g.z—g_z2

65

7, g-z%1000%2, mm’

7,g-22%1000%2, 'mm’

print ('soft—lagging height: ’ np.round(soft_height*1000,3), mm’)
layers ,string _height , weld_area = layer (soft_height ,max_weld_height ,
strings = weld_strings (ws2_y,we2_.y ,weld_width)
print ('Number of weld strings smaller groove: ’,strings)
weld_volume_pr_min = rod_areaxweld_feed
if layers = 1:
weld_volume_pr_rev = weld_area [0]* weld_width
pipe_-rev = weld_volume_pr_min/weld_volume_pr_rev # rev/min
print (’Pipe rotational speed: ’ ,np.round(pipe_rev ,3),’rev/min’)

string_time = 60/pipe_rev
weld_timel = string_timexstrings

print ("time for first groove’ ,np.round(weld_timel/60,1),’

minutes)

elif layers = 2:
weld_volume_pr_rev = weld_area [0]* weld_width
pipe_rev = weld_volume_pr_min/weld_volume_pr_rev # rev/min

)

print (’Pipe rotational speed:
string_time = 60/pipe_rev
layer_timel = string_timexstrings

print ("time first layer’,np.round(layer_timel /60,1), minutes’)

,np.round (pipe_rev ,3), ’rev/min’)

802
803
804

805

APPENDIX A. PYTHON CODE

elif

66
weld_volume_pr_rev = weld_area[1]* weld_width
pipe_-rev = weld_volume_pr_min/weld_volume_pr_rev # rev/min
print (’Pipe rotational speed: ’,np.round(pipe_rev ,3),’rev/min’)
string_time = 60/pipe_rev
layer_time2 = string_timex*strings
print ("time first groove’,np.round(layer_time2 /60,1), minutes’)
weld_timel = layer_timel + layer_time2
layers = 3:
weld_volume_pr_rev = weld_area [0]* weld_width
pipe.rev = weld_volume_pr_min/weld_volume_pr_rev # rev/min

print ('Pipe rotational speed:

)

,np.round (pipe_rev ,3), ’rev/min’)

string_time = 60/pipe_rev

layer_timel = string_timexstrings

print ("time first layer’,np.round(layer_timel /60,1), minutes’)
weld_volume_pr_rev = weld_area[l]*weld_width

pipe_rev = weld_volume_pr_min/weld_volume_pr_rev # rev/min

print ('Pipe rotational
string_time = 60/pipe_rev
layer_time2 = string_timexstrings

print ('time second layer

)

speed: ’,np.round(pipe_rev ,3),’rev/min’)

)

,np.round (layer_time2/60,1), minutes’)

weld_volume_pr_rev = weld_area [2]* weld_width
pipe_-rev = weld_volume_pr_min/weld_volume_pr_rev # rev/min
print (’Pipe rotational speed: ’ ,np.round(pipe_rev ,3),’rev/min’)

string_time = 60/pipe_rev
print ("time per string’ ,np.round(string_time ,1),’seconds’)

layer_time3d = string_timexstrings
print ("time third layer’,np.round(layer_time3 /60,1), minutes’)
weld_timel = layer_timel+4layer_time2+layer_time3

Larger diameter groove

soft_height = tj.z—g_z

print (’soft—lagging height:

", np.round (soft_height«1000,3) , mm’)

layers ,string _height , weld_area = layer (soft_height ,max_weld_height ,

strings = weld_strings (wsl_y ,wel_y,weld_width)
print ('Number of weld strings larger groove: ’,strings)
weld_volume_pr_min = rod_areaxweld_feed
if layers = 1:
weld_volume_pr_rev = weld_area [0]* weld_width
pipe_-rev = weld_volume_pr_min/weld_volume_pr_rev # rev/min
print (’Pipe rotational speed: ’ ,np.round(pipe_rev ,3),’rev/min’)
string_time = 60/pipe_rev
weld_time2 = string_timexstrings
print ("time second groove’ ,np.round(weld_time2/60,1), minutes’)
elif layers = 2:
weld_volume_pr_rev = weld_area [0]* weld_width
pipe.rev = weld_volume_pr_min/weld_volume_pr_rev # rev/min
print (’Pipe rotational speed: ’,np.round(pipe_rev,3),’rev/min’)
string_time = 60/pipe_rev
layer_timel = string_timexstrings

print ("time first

layer’

,np.round (layer_timel /60,1), minutes’)

806
807
808
809
810
811
812
813

814

816

APPENDIX A. PYTHON CODE 67

weld_volume_pr_rev = weld_area[l]*weld_width
pipe_rev = weld_volume_pr_min/weld_volume_pr_rev # rev/min
print ('Pipe rotational speed: ’,np.round(pipe-rev,3),’rev/min’)
string_time = 60/pipe_rev
layer_time2 = string_timex*strings
print ('time second layer’,np.round(layer_time2/60,1), minutes’)
weld_time2 = layer_timel + layer_time2

elif layers = 3:
weld_volume_pr_rev = weld_area [0]* weld_width
pipe.rev = weld_volume_pr_min/weld_volume_pr_rev # rev/min
print (’Pipe rotational speed: ’,np.round(pipe_rev ,3),’rev/min’)
string_time = 60/pipe_rev
layer_timel = string_timexstrings

print (time first layer’,np.round(layer_timel /60,1), minutes’)

weld_volume_pr_rev = weld_area[1]* weld_width

pipe_.rev = weld_volume_pr_min/weld_volume_pr_rev # rev/min
print ('Pipe rotational speed: ’,np.round(pipe_rev ,3),’rev/min’)
string_time = 60/pipe_rev

layer_time2 = string_timexstrings

print (’time second layer’,np.round(layer_time2/60,1), minutes’)

weld_volume_pr_rev = weld_area [2]* weld_width

pipe_-rev = weld_volume_pr_min/weld_volume_pr_rev # rev/min
print (’Pipe rotational speed: ’,np.round(pipe_rev ,3),’rev/min’)
string_time = 60/pipe_rev

print (’time per string’,np.round(string_time ,1),’seconds’)

layer_time3d = string_timexstrings
print ("time third layer’,np.round(layer_time3 /60,1), minutes’)
weld_time2 = layer_timel+4layer_time2+layer_time3

weld_time = weld_timel4+weld_time?2

print (’Total weld time’ ,np.round(weld_time/60,1), minutes’)
rod_used = weld_time /60xweld_feed
print ('Meters of wire used: ’,np.round(rod_used,l))

else:
print (’Kristoffer is confused’)

grooveLogic (U,V, tj)

print (’—— %s seconds ——’ % np.round ((time.time()— start_time) ,2))

APPENDIX A. PYTHON CODE 68

A.2 ROS Nodes

A.2.1 Camera service node

1 #!/usr/bin/env python

2 # —*— coding: utf—8 —x—

3

4 import rospy

5 import cv2

¢ from cv_bridge import CvBridge

7 from custom_srvs.srv import image, imageResponse
8

o class Camera_service () :

10

11 def callback (self, request): # request is just a string from client to
initialize service

12 while not rospy.is_shutdown () :

13 if request.camera =— "cam” :

14 print "requested camera”

15 camera_tag = 0 # 1ls —ltrh /dev/videox (Find Cam in terminal
)

16 cap = cv2.VideoCapture(camera_tag)

17

18 if not cap.isOpened():

19 print (’Camera not opened!’”)

20 rval ; frame = cap.read()

21 if rval:

22 rval ; frame = cap.read()

23 print frame

24 img = self.bridge.cv2_to_imgmsg (frame, "bgr8”)

25 print (”Sending image...”)

26 response = imageResponse (img.width ,img.height ,img.
is_bigendian ,img.encoding ,img.data)

27 print (’Image sent ’)

28 elif request.camera = " file”:

29 print "requested image from file”

30 camera_tag = str(self.path+self.filename)

31 print camera_tag

32 imgur = cv2.imread (camera_tag,1)

33 img = self.bridge.cv2_to_imgmsg (imgur,” bgr8”)

34 print (’Sending image... ")

35 response = imageResponse (img.width ,img.height ,img.

is_bigendian ,img.encoding ,img.data)
36 print (’Image sent’)

37 else:

38 print ”Request error”

39 return response

40

a1 def main(self):

42 print (’inside main camera_service’)

13 self .path = 7 /home/kristoffer /catkin_ws/src/Thesis/pipe_images/”
a4 # self . filename = ” Weld_station_coord_two_grooves_5_5.png” # ok
a5 F# self.filename = ”Weld_station_coord_deeper.png” # ok

a6 F# self . filename = ”Weld_station_coord_two_grooves_4_5.png” # not
a7 self .filename = ” Weld_station_coord .png” # ok

a8 # self . filename = ” Weld_station_coord_4_35.png” # not

APPENDIX A. PYTHON CODE

self.bridge = CvBridge()

rospy .init_node(’camera_service_node’, anonymous=True)
self .srv = rospy.Service(”/camera_service” ,image, self.callback)
rospy . loginfo (’Service is running’)

rospy . spin ()

if __name_. = ’'__main__":
try:
camera_service = Camera_service ()
camera_service . main ()
except rospy.ROSInterruptException:
cv2.destroyAllWindows (0)
pass

69

APPENDIX A. PYTHON CODE 70

A.2.2 Edged image processing service node

1 #!/usr/bin/env python
2 # —x— coding: utf—8 —x—

1 Service

7 import rospy

s import cv2

o import numpy as np

10 from cv_bridge import CvBridge

11 from custom_srvs.srv import image, imageResponse
12

15 class Edged_image_processing_service () :

15 def callback (self, request): # request is just a string from client to
initialize service

16 while not rospy.is_shutdown ():

17 # Do stuff to the info

18 img_in = self.imgur

19 img = img_in

20 # Blurring tuning:

21 [sigma , kernel] = [2,3]

22 # applying gausian filter to the image

23 GaussianBlur = c¢v2.GaussianBlur (img,(kernel , kernel) ,sigma)
24 # Edge detector tuning

25 cnt = 0

26 canny_sum = 0

27 [start ,stop,step] = [80,240,20]

28 for 1 in range(start ,stop,step):

29 cannyl = i

30 print (’Loading: ’,cannyl, ’out of’ stop)
31 for j in range(start ,stop,step):

32 cnt 4= 1

33 canny2 = j

34 canny = cv2.Canny(GaussianBlur ,cannyl ,canny2)
35 canny_int32 = np.int32 (canny)

36 canny_sum 4= canny_-int32

37 print (’cnt’,cnt)

38 canny_avg = canny._sum/cnt

39 print (’canny avg’ , canny.avg)

10 canny_avg = canny-avg.astype(np.uint8)

11 ret ,canny_thr = cv2.threshold (canny_avg,130,255,cv2.
THRESH BINARY)# Thresholding

12 print ('ret’,ret)

13 cv2.imwrite (self.path+self.savefile ,canny_thr)# Saving
generated canny image

14 canny_path = self.path+self.savefile

45 print (canny_path)

46 fin_img = cv2.imread (canny_path ,0)

47

18 img = self.bridge.cv2_to_imgmsg(fin_img ,” mono8”)

19 print (’Sending image ... ")

50 response = imageResponse (img.width ,img. height ,img.is_bigendian ,

img. encoding ,img.data)
51 print (’Image sent’)

66

69

4

I IS B |
=2} ut S

N

APPENDIX A. PYTHON CODE

if

return response

def main(self):
print (’inside main edged image processing service’)
self .path = ’/home/kristoffer /catkin_ws/src/Thesis/pipe_images/’
self .savefile = ’saved_canny_avg.png’
self.bridge = CvBridge()

print ”Waiting for camera service”
rospy . wait_for_service (”/camera_service”)

try:
info = rospy.ServiceProxy(”/camera_service” ,image)
response = info (" file”)
print (response.encoding)
self .imgur = self.bridge.imgmsg_to_cv2(response

desired_encoding="passthrough”)
except rospy.ServiceException, e:
print ”Service call failed: %s”%e

rospy . init_node (’edged_image_processing_node’, anonymous=True)
Sending result to callback
self.srv = rospy.Service(”/edges_image_processing_service” ,image,

self.callback)
rospy . loginfo (’Edges Service is running’)

rospy . spin ()

__name__ =— ’'__main__":
try:
edged_image_processing_service = Edged_image_processing_service ()
edged_image_processing_service . main ()
except rospy.ROSInterruptException:
cv2.destroyAllWindows (0)
pass

71

APPENDIX A. PYTHON CODE

A.2.3

Crop image service node

1 #!/usr/bin/env python

2

12

3

NN NN NN NN

w0

»

—x— ¢

import
import
import
import

oding: utf—-8 —x—

rospy
cv2

numpy as np
math

from cv_bridge import CvBridge
from custom_srvs.srv import image, imageResponse
from custom_srvs.srv import two_int, two_intResponse

class Crop_image_service():

def

def

7(07

1[2]

__init__(self):
self.bridge = CvBridge ()

neck (self |image , minValue ,maxValue) :
print ('Inside Neck detector’)
Copy canny image to overlay colored lines
copy-canny = cv2.cvtColor (image , cv2.COLOR.GRAY2BGR)
Detect lines
lines = c¢v2.HoughLinesP (image,1,1+np.pi/180,1,None,50,10)
x1_list = []
yl_list = []
]

x2_list = |
y2_list = []
u, v = image.shape[:: —1]

if lines is not None:
for i in range(0,len(lines)):

1 = lines [1][0]
print (1)
delta_u = float (np.abs(1[2]=1[0]))
delta_v = float (np.abs(1[3]=1[1]))
radangle = math.atan2(delta_v ,delta_u)
print radangle
degangle = radanglex180/np. pi
print degangle

if np.abs(degangle) < 35 and np.abs(degangle) > 17:

Draw lines

print ("approved ’)
print (1)

print (degangle , "deg’)

x1_list .append (
y1_list .append (
x2_list .append (
y2_list .append (1
self .d_u = 2*(np.abs(1[0]—1[2]))
self .d_v = 2x(np.abs(1[1]—1[3]))
if 1[1]<v/2 and 1[3]<v/2:

cv2.line (copy-canny ,(1[0],1[1]),(1[2],1[3])

1[0
1[1
1[2
1[3

0,255) ,3)

72

cv2.line (copy-canny,(1[0]—self.d.u,l[1]—self.d_v) ,(

,113]) ,(255,0,0) ,2)
self.X2 = 1[2]
self.Y2 = 1[3]

APPENDIX A. PYTHON CODE 73

55 else:

56 cv2.line (copy_canny ,(1[0],1[1]),(1[2],1[3])
,(0,0,255) ,3)

57 cv2.line (copy-canny,(1[0]—self.d-u,l[1]+self.d_v) ,(
1(2],1[3]),(255,0,0) ,2)

58 pass

59 else:

60 print ('neck pass’)

61 pass

62

63 def minimum(self , aList):

64 minPos = alist.index (min(aList))

65 maxPos = aList.index (max(aList))

66 return minPos, maxPos

67

68 print ('neck lines:’)

69 print('— — — — — — — —_"%3)

70 def tool_joint_top (self, image):

71 # Copy canny image to overlay colored lines

72 copy-canny = cv2.cvtColor (image, cv2.COLOR.GRAY2BGR)

73 print ('Inside Tool Joint detector’)

74 # Detect lines

75 lines = c¢v2.HoughLinesP (image,1,1+np.pi/180,100,None,80,40)

76 x1_list = []

77 y1l_list = []

78 x2_list = []

79 y2_list = []

80 u, v = image.shape[:: —1]

81 if lines is not None:

82 for i in range(0,len(lines)):

83 1 = lines [1][0]

84 degangle = np.arctan ([np.abs(1[3]=1[1]) ,np.abs(1[2]—=1[0])])
x180/np . pi

85 if np.abs(degangle[1]) <0.5:

86 print ('pass’)

87 pass

88 else :# Draw lines

89 print (’x1’,1[0], ’y1’,1[1], 'x2",1[2], y2,1[3])

90 print (degangle[0], degangle[1])

91 x1_list .append(1[0])

92 y1l_list .append(1[1])

93 x2_list .append(1[2])

94 y2_list .append(1[3])

95 minPos , maxPos = self . minimum(y1_list)

96 print (’Minimum element location ’ ,minPos)

97 self .minValue = y1_list [minPos]

98 print (’minValue’, self . minValue)

99 self .maxValue = y1_list [maxPos]

100 print ('maxValue’ , self.maxValue)

101

102 cv2.line (copy-canny ,(0,yl_list [minPos]) ,(u, y2_list [minPos])
,(0,255,0) ,1)

103 self.resize_copy_-canny = cv2.resize (copy-canny,(1366,768))

104 print ("end of tool joint top”)

105

106

107 def ignorator(self ,image):

108 print (”Inside ignorator”)

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

128

129
130

131

132
133
134

135

136
137
138
139
140
141
142

143

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

160

161

APPENDIX A. PYTHON CODE 74

print (type (image))

self.tool_joint_top (image)

print (" Going for mneck!”)

self .neck (image, self .minValue, self . maxValue)
print (self.d.u,self.d_v,self.X2,self.Y2)
self .d_v = float (self.d_v)

self .d.u = float (self.d_u)

a = (((self.d.v/self.d-u)*xself .X2)—self.Y2)
b = float (self.d_v/self.d_u)

print (’a’,a,’b’,b)

self X = (at+self.minValue)/b

self.ign_u = self .X

self . tj = self.minValue

print ('X’,self .X)

def callbackO (self ,request):

final_canny_avg = self.bridge.imgmsg to_cv2(self.edge_resp)

print (type(final_canny_avg))

self .ignorator (final_canny_avg)

crop_-img = final_canny_avg[self.tj —150:self.tj+150,int (self.ign_u)
—1000:int (self.ign_u)]

img = self.bridge.cv2_to_imgmsg(crop_img, ”monol”)
print (’Sending image... ")
crop-resp = imageResponse (img.width ,img.height ,img.is_bigendian ,img

.encoding ,img. data)

print (’Image sent’)

org_-res = self.bridge.imgmsg_to_cv2(self.org_resp)

print (” after org res”)

crop_imgl = org_res[self.tj—150:self.tj+150,int (self.ign_u)—1000:
int (self.ign_u)]

self.im = self.bridge.cv2_to_imgmsg (crop_-imgl ,”bgr8”)

print (’end of callback0 ")

return crop-resp

def callbackl (self request):

print (’Sending image... ")

crop_resp_col = imageResponse(self.im.width, self.im.height ,self.im.
is_bigendian , self .im.encoding ,self.im.data)

print (’Image sent’)

return crop-resp-_col

def callback2(self ,request):
print ('sending tj and ign_u’)
two_int_resp = two_intResponse(self.tj, self.ign_u)
print (”tj and ign_u sent!”)
return two_int_resp

def main(self):
print (’inside main crop image service’)
#Insert how to get the info
print ”Waiting for edges image service”
rospy . wait_for_service (7 /edges_image_processing_service”)
try:
print ('"Found edge service’)
edge_client_node = rospy.ServiceProxy (”/
edges_image_processing_service” ,image)
print (" Request sent”)

APPENDIX A. PYTHON CODE

162 self.edge_resp = edge_client_node ("Run Forrest, Run!”)

163 print (" Server responded”)

164

165 7 edge_img = self.bridge.imgmsg_to_cv2(self.edge_resp,
desired_encoding="passthrough”)

166 # r_edge_img = cv2.resize (edge_img ,(1366,768))

167 # c¢v2.imshow (” service image” ,r_edge_img)

168 F# cv2 . waitKey ()

160 # cv2.destroyAllWindows ()

170 print”does stuff!”

171 # return self.edge_resp

172 except rospy.ServiceException, e:

173 print ”Service call failed: %s”%e

174 # TEST Below

175 print ”Waiting for original image service”

176 rospy . wait_for_service (”/camera_service”)

177 try:

178 print (’"Found original service’)

179 cam_client = rospy.ServiceProxy (”/camera_service” ,image)

180 print (" Request sent”)

181 self.org_resp = cam_client (” file”)

182 print (" Server responded”)

183

184 F# org_img = self.bridge.imgmsg_to_cv2(self.org_resp ,
desired_encoding="passthrough”)

185 # rorg_img = cv2.resize (org_img,(1366,768))

186 # c¢v2.imshow (” original image” ,r_org_img)

187 # cv2 . waitKey ()

188 # cv2.destroyAllWindows ()

189 print”does stuff!”

190 # return self.edge_resp

191 except rospy.ServiceException, e:

192 print ”Service call failed: %s”%e

193 # TEST Above

194 # end new info

195 print (7 create node”)

196 rospy . init_node (’crop_image_node’, anonymous=True)

197 # Sending result to callback

198 self .s = rospy.Service(”/crop_image_service” ,image, self.callback0)

199 rospy . loginfo (’Crop image Service is running’)

200

201 self.sr = rospy.Service(”/crop_col_image_service” ;image, self.
callbackl)

202 rospy . loginfo (’Crop color image Service is running’)

203

204 self.sr = rospy.Service(”/tj-ign_u” ,two_-int ,self.callback?2)

205 rospy . loginfo (’Tool joint and ign_u Service is running’)

206

207 rospy . spin ()

208

200 if __name__. = ’__main__":

210 try:

211 crop_-image_service = Crop_image_service ()

212 crop-image_service .main ()

213 except rospy.ROSInterruptException:

214 cv2.destroyAllWindows (0)

215 pass

1
2
3
1

3

NN NN NN NN

w0

»

30

APPENDIX A. PYTHON CODE

A.24

76

Feature detection service node

#!/usr/bin/env python
—*— coding: utf—-8 —x—

import rospy
import cv2
import numpy as np

from os

import listdir

from cv_bridge import CvBridge

from custom_srvs.srv import image, imageResponse

from custom_srvs.srv import two_int

from custom_srvs.srv import img_coord, img_coordResponse

class Feature_detector_service ():

def

def

__init__(self):
print (”creating node”)
rospy . init_node (’feature_detector_node’, anonymous=True)
self.bridge = CvBridge()
self .path = ’'/home/kristoffer /catkin_ws/src/Thesis/pipe_-images/’
self.savefile = ’'saved_canny_avg.png’
loadImages (self ,path):
returns an array of images
self .imagesList = listdir (path)
self .loadedImages = []
for item in self.imagesList:
item = path+item
img = c¢v2.imread (item ,0)
self .loadedImages.append (img)

Detecting the start of weld

def
tj,

detectorstart (self ,crop_-img, crop_imgl, imgs, imge, VO, Ul, ign_u,

color):

Import image to search in
print ('Searching in crop_-img: ’)
img_gray = crop-img

cnt = 0

for img in imgs:
X0 = img
cnt +=1
print (’'DETECT START: ’,cnt)

X_0_Blur = cv2.GaussianBlur (X.0,(1,1) ,2)

applying canny edge detection to the blured image
canny2 = cv2.Canny(X_0_-Blur,100,200)

X_0 = canny?2

Get the size of image

w, h = X.0.shape[:: —1]

wl, hl = img_gray.shape[:: —1]

threshold = np.linspace (0.7,0.4 ,num=20)

res = c¢v2.matchTemplate(crop_-img ,X_0,cv2.TM.CCOEFFNORMED)

for element in threshold:
location = np.where(res>= element)
Note the if statment ignoring false points, limits depend

66
67
68
69

70

~

-
N

N]

T e |
> o o

-
o ~

~

[0

APPENDIX A. PYTHON CODE

on image
t,pu,p.v = [0,0,0]
for p in zip(xlocation [:: —1]):
if p[1]<V0+20 and p[1]>V0—20: # choses which points to

ignore
pass# ignore
else:
print ('Feature detected at pixel coordinates:)
print ('u = ’,p[0])
print (v = 7,p[1])
t =1
p-u += p[0]
p-v += p[1]

While loop stopper
key = cv2.waitKey (1)
if key = 27:
print (’while loop engaged’)
cv2.destroyAllWindows ()
if t = 0:
Found = False
pass
else:
print (’Detected at:’, element)
U.s = int(p-u/t)
V.s = int(p-v/t)

[Ue,V_e,we,he]=self.detectorend (crop_img ,crop_imgl ,
imge,(0,0,255) ,U.s,V_s)
if Ue =1 and V_.e = 1:
Found = False
print (’Not found’)
break
else:
Found = True
cv2.rectangle (crop-imgl ,(U.s, V_.s) ,(U_s+w, V_s+h) | (

color) ,3)
self.height .append ([h,he])
self .width.append ([w,we])
break
if Found = True:
print ('t ,t)
break
if Found = True: # stopper leite gjennom flere bilder
break
try:

return Us,V_s,U.e,V_e,self.width, self.height ,Found
except:

print (’except start’)

a,b,c,d = [1,1,1,1]

return a,b,c,d, self.width, self.height , True

Detecting the end of weld
def detectorend (self ,crop_-img,crop_imgl ,imge, color ,u,v):
Import image to search in
print (’Searching in: crop_img’)
img_gray = crop-img
Processing detection image
cnt = 0

7

143
144
145
146
147
148
149
150
151
152
153
154

155

156
157
158

159

160
161
162

163

APPENDIX A. PYTHON CODE

for img in imge:
cnt +=1
print ('DETECT END: ’,cnt)
X0 = img
X_0_Blur = cv2.GaussianBlur (X.0,(1,1) ,2)
X_0 = c¢v2.Canny(X_0_Blur,100,200)
w, h = X_0.shape[:: —1] # Get the size of image
wl, hl = img_gray.shape[:: —1]
threshold = np.linspace (0.7 ,0.3 ,num=20)

res = cv2.matchTemplate(crop_-img ,X_0,cv2.TM.CCOEFFNORMED)

for element in threshold:

a,b,c,d = [1,1,1,1]
return a,b,c,d

def rename(self ,U_startl ,V_startl ,U_stopl,V_stopl, U_start2 ,V_start2,

U_stop2,V_stop2 ,w,h):
if V_startl < V_start2:
first detected start is lower
x1,yl,x2,y2 = [U_startl ,V_startl ,U_stopl, V_stopl]

78

location = np.where(res>= element)
t,pu,p.v = [0,0,0]
for p in zip(xlocation [:: —1]):
if p[1] > v+5 or p[l]<v—=5 or u—p[0] <20: # choses which
points to ignore
pass
else:
print ('Feature detected at pixel coordinates:
print(’u = ’,p[0])
print (v = 7 ,p[1])
t = t+1
p-u = p_u + p[0]
p-v =pv + p[l]
key = cv2.waitKey (1)
if key = 27:
print (’while loop engaged’)
cv2.destroyAllWindows ()
if t = 0:
pass
else:
U, = int(p-u/t)
V_e = int(p-v/t)
cv2.rectangle (crop_imgl ,(Ue,V_e) ,(U_e+w,V_et+h) ,(color)
:3)
cv2.imshow (’detected ’, crop-imgl)
self.img_res = crop_imgl
break
if t 1= 0:
break
try:
return U_,e,V_e,w,h
except:
print (’except ’)

U_startl ,V_startl ,U_stopl,V_stopl = [U_start2 ,V_start2 ,U_stop2,

V_stop2]
U_start2 ,V_start2 ,U_stop2,V_stop2 = [x1,yl,x2,y2]
U = list ([U_startl ,U_stopl, U_start2 ,U_stop2])
V = list ([V_startl ,V_stopl, V_start2 ,V_stop2])
if V_stopl = 1 or V_stop2 = 1:

164
165
166
167
168
169

170

214

215

216

APPENDIX A. PYTHON CODE

W=w
H=nh
else:
[wO,wl] ,[w2,w3] =w
W= list ([w2,w3,w0,wl])
[hO,h1],[h2,h3] = h
(

H = list ([h2,h3,h0,h1])
else:
U = list ([self.U0, self.Ul,self.U2,self.U3])
V = list ([self.V0,self.V1,self.V2, self.V3])
if V_stopl =— 1 or V_stop2 — 1:
W=w
H=nh
clse 8
[wO,wl] ,[w2,w3] =w
W= list ([wO,wl,w2,w3])
[h0,h1],[h2,h3] = h
H = list ([hO,hl,h2,h3])
pass

return U,V,W,H

def tramnslator(self ,U,V,tj,ign_u):
if self.Found = True:
U=1U + self.ign_-u—1000
w = self.ign_u—1000
U = [int (U[0]4+w),int (U[l]4+w),int (U[2]+w) ,int (U[3]+w)]
print U
q = self.tj—150
V=V+ tj—-150
V = [int (V[0]+q) ,int (V[1]4+q) ,int (V[2]+q) ,int (V[3]+q)]

print V
else:
U2 = int (U[2] + self.ign_-u — 1000)
U3 = int (U[3] + self.ign_u — 1000)
V2 = V[2] + tj — 150
V3 = V[3] + tj — 150
U= [int (U[0]) ,int (U[1]) ,U2,U3]
V = [V[0],V[1],V2,V3]

return U, V

Insert code above
def callbackl (self ,request):

start = ’/home/kristoffer /catkin_ws/src/wem/Master/Code/start/’
self.loadImages (start)

imgs = self.loadedImages

end = ’/home/kristoffer /catkin_ws/src/wem/Master/Code/end/’
self.loadImages (end)

imge = self.loadedlmages

end move to detector part

self . width = []
self . height = []

[self. U0, self.V0, self.Ul, self.V1l,self.w,self.h,self.Found]=self.
detectorstart (self.gray_img,self.col_img ,imgs,imge,10,1,self.ign_u,self

79

APPENDIX A. PYTHON CODE

NN NN N
SIS B S <

tj,(0,255,0))
print (’width’,self .w, *height’,self.h)

print (’Detecting second round:)

[self . U2, self.V2,self.U3,self.V3, self.w,self .h,self.Found]=self.
detectorstart (self.gray_img,self.col_img ,imgs,imge, self.V0, self.Ul, self.
ign_u,self.tj,(0,255,0))

print (’width’ ,type(self.w), height’,self.h)

if np.abs(self.U0-self.U2)<2 and np.abs(self.Ul-self.U3)<2:
self.V_stopl =1

U,VWH = self .rename(self.U0, self.V0,self .Ul,self.V1l, self.U2, self.
V2, self.U3,self . V3, self .w,self.h)

print ('U’ ,U)

U,V = self.translator (U,V,self.tj,self.ign_u)

print (U’ ,U)

self . UO0,self.Ul,self.U2,self.U3 =TUJ[0],U[1],U[2],U][3]

self .V.0,self.V_1,self. V2 self.V.3 =V][0],V[1],V[2],V][3]

print ('First weldgun position from: [’,U[0], , ,V[0],]to: [’,U[1],
777’V[1]’7] 7)

print (’Second weldgun position from: [’,U[2],’,’,V[2], Jto: [’,U

[31,7,7,VI3],"]")
cv2 . waitKey (0) &O0xFF
cv2.destroyAllWindows ()
self.im = self.bridge.cv2_to_imgmsg(self.img res, ”bgrd”)
print (’Sending image... ")
crop_resp_col = imageResponse(self.im.width, self.im.height ,self.im.
is_bigendian , self .im.encoding ,self.im.data)
print (’Image sent’)
return crop._resp_col

def callbackO(self ,request):

print (’Sending coordinates ...)
print self.U.0
image_coordinates = img_coordResponse(self.U0,self.U.1,self. U2,

self . U3,self.V.0,self.V_1,self.V_2 self.V.3)
print (’Coordinates sent’)
print (’end of callback0’)
return image_coordinates

def main(self):

HHHARRHARA AR Calling Crop Gray

print ”Waiting for crop image service”
rospy . wait_for_service (”/crop_image_service”)
try:
print (’Found crop image service’)
edge_client_node = rospy.ServiceProxy(”/crop_image_service” |
image)
print (" Request sent”)
self.gray_resp = edge_client_node (”Run Forrest, Run!”)
print (” Server responded”)
self.gray_img = self.bridge.imgmsg_ to_cv2(self.gray_resp,
desired_encoding="passthrough”)
cv2.imshow (” service image” ,self.gray_img)
cv2 . waitKey ()

80

268

269

286
287

288

290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

306

307
308
309
310

311
312
313
314

316
317

318

APPENDIX A. PYTHON CODE

#

H I3

if

cv2.destroyAllWindows ()

print” does stuff!”

except rospy.ServiceException, e:
print ”Service call failed: %s”%e

S))) L)

T i i i i i i i 11 i 1t Ca]‘llng Crop COlor

S)) L]

T A A i i it i it i i i i i 11t

print ”Waiting for crop color image service”
rospy . wait_for_service (”/crop-col_image_service”)

try:

print (’Found crop color image service’)

crop-col_client = rospy.ServiceProxy(”/crop_col_image_service”

image)
print (" Request sent”)

self.col_.resp = crop-col_client (” file”)
print (" Server responded”)

self.col_img = self.bridge.imgmsg_to_cv2(self.col_resp,

")

desired_encoding="passthrough’

cv2.imshow (” original image” self.col_img)

cv2 . waitKey ()

cv2.destroyAllWindows ()

print”does stuff!”

except rospy.ServiceException, e:
print ”Service call failed: %s”%e

/'/'//'///'/'/////'/// Calllng Crop Color
/ /

7 7
print ”Waiting tJ,lgn u service”

rospy . wait_for_service (”/tj_ign_u”)

try:

print (’Found tj and ign_u service’)
twoint = rospy.ServiceProxy (”/tj_-ign_u” ,two_int)

print (" Request sent”)

tj_ign_u_resp = twoint ()
print (" Server responded”)
self . tj = tj_ign_u_resp.t]

print (self.tj)

self.ign_u = tj_ign_u_resp.ign_u

print (self.ign_u)
print” does stuff!”

except rospy.ServiceException, e:
print ”Service call failed: %s”%e

S))))) L)

Sy)))))))

THI i i1t

it
Sending image.srv result from client to

function

self .s = rospy.Service(”/detected_image”

THIT I i i 111t Activating service
/

rospy . loginfo (’Feature detection Service is running’)

Sending image.srv result from client to

function

self.sr = rospy.Service(”/image_coord” ,img_coord ,

rospy . loginfo ('Image coordinate service is running’)

rospy . spin ()

__name__. — __main__"
try:
feature_detector_service

Feature_detector_service ()

service with callback

,image , self . callbackl)

service with callback

self.callback0)

81

)

7 if

try:

APPENDIX A. PYTHON CODE 82
feature_detector_service .main ()
except rospy.ROSInterruptException:
cv2.destroyAllWindows (0)
pass
A.2.5 Feature detection client
#!/usr/bin/env python
—x— coding: utf-—-8 —x—
import rospy
import cv2
; from cv_bridge import CvBridge
7 from custom_srvs.srv import image
from custom_srvs.srv import img_coord
class Detect_image_client () :
def __init__(self):
self.bridge = CvBridge()
def main(self):
print ”Waiting for detect service”
rospy . wait_for_service (”/detected_image”)
try:
print (’Found service ’)
detected_image = rospy.ServiceProxy(”/detected_image” ,image)
self.detect_-resp = detected_-image (”Run Forrest, Run!”)
print (” Request sent”)
self.detect_resp = detected_image(”Run Forrest, Run!”)
print (” Server responded”)
img = self.bridge.imgmsg_to_cv2(self.detect_resp
desired _encoding="passthrough”)
cv2.imshow (” service image” ,img)
cv2 . waitKey ()
cv2.destroyAllWindows ()
print”does stuff!”
return self.crop_resp
except rospy.ServiceException, e:
print ”Service call failed: %s”%e
print ”Waiting for image_coord service”
rospy . wait_for_service (”/image_coord”)
try:
print ('Found service)
detected_position = rospy.ServiceProxy(”/image_coord” ,img_coord
)
print (” Request sent”)
self.pos_resp = detected_position ()
print (” Server responded”)
print self.pos_resp
print”does stuff!”
return self.crop_col_resp
except rospy.ServiceException, e:
print ”Service call failed: %s”%e
__name__. =— ’__main__":

APPENDIX A. PYTHON CODE 83

19 detect_image_client = Detect_image_client ()
50 detect_image_client . main ()

51 except rospy.ROSInterruptException:

52 cv2.destroyAllWindows (0)

53 pass

A.3 CMakelList for services

1 cmake_minimum_required (VERSION 2.8.3)
> project (feature_detector)
3

1 ## Compile as C++11, supported in ROS Kinetic and newer

5 # add_compile_options(—std=c++11)

6

7 ## Find catkin macros and libraries

s ## if COMPONENTS list like find_package (catkin REQUIRED COMPONENTS xyz)
9 ## is used, also find other catkin packages

10 find_package (catkin REQUIRED COMPONENTS

11 OpenCV

12 custom_srvs

13 cv_bridge

14 image_transport

15 message_generation

16 TOSpYy

17 Sensor_msgs

18 std_msgs

19)

20

21 ## System dependencies are found with CMake’s conventions

22 # find_package (Boost REQUIRED COMPONENTS system)

23

24

25 ## Uncomment this if the package has a setup.py. This macro ensures
26 ### modules and global scripts declared therein get installed

27 ## See http://ros.org/doc/api/catkin/html/user_guide/setup_-dot_py.html
28 # catkin_python_setup ()

29

S)))))))]

30 /I/I/IIII/I/I/I//I/I/I/I/II/I/I/I//I/I/I/I/II/I/I/I/II/I/I/I/II/I/I/I/I//I/I/I/II/I/I/I/I//I/I/I
31 ## Declare ROS messageb, services and actions ##

3a ## To declare and build messages, services or actions from within this

35 ## package, follow these steps:

56 ## * Let MSG.DEP SET be the set of packages whose message types you use in

37 ## your messages/services/actions (e.g. std_msgs, actionlib_msgs, ...).

38 ## * In the file package.xml:

39 HH x add a build_depend tag for ”"message_generation”

10 HH * add a build_depend and a exec_depend tag for each package in
MSG_DEP_SET

a1 HHE x If MSGDEPSET isn’t empty the following dependency has been pulled
in

a2 HH but can be declared for certainty nonetheless:

43 HH * add a exec_depend tag for ”message_runtime”

1 ## « In this file (CMakeLists. txt):

a5 FH * add "message_generation” and every package in MSG.DEPSET to

46 find_package (catkin REQUIRED COMPONENTIS ...)

a7 x add "message_runtime” and every package in MSG_DEPSET to

APPENDIX A. PYTHON CODE

18 FHH catkin_package (CATKIN.DEPENDS ...)

19 HH x uncomment the add_x _files sections below as needed

50 FHF and list every .msg/.srv/.action file to be processed

51 FHH x uncomment the generate_messages entry below

52 FHH * add every package in MSGDEPSET to generate_messages (DEPENDENCIES
)

53

54 ## Generate messages in the ’'msg’ folder

55 # add_message_files (

56 # FILES

57 # Messagel . msg

58 Message2 . msg

50 #)

60

9

61 ## Generate services in the ’srv’ folder

o2 # add_service_files (

63 # FILES

64 F Servicel .srv

65 Service2.srv

o6 #)

67

6s ##+ Generate actions in the ’action’ folder

6o # add_action _files(

70 # FILES

71 F# Actionl . action

72 # Action2.action

)

74

75 ## Generate added messages and services with any dependencies listed here
76 # generate_messages (

77 # DEPENDENCIES

78 F# std_msgs # Or other packages containing msgs

79 #)

s2 ## Declare ROS dynamic reconfigure parameters ##

S L)) L

8¢ T i i i i i i i i i i i i i i i i i i it i i i 11t
84

s5 ## To declare and build dynamic reconfigure parameters within this

s6 ## package, follow these steps:

s7 ## * In the file package.xml:

88 FH x add a build_depend and a exec_depend tag for ”"dynamic_reconfigure”
so ## * In this file (CMakeLists.txt):

90 F#H * add "dynamic_reconfigure” to

o1 find _package (catkin REQUIRED COMPONENTS ...)

92 FHF x uncomment the ”generate_dynamic_reconfigure_options” section below
93 and list every .cfg file to be processed

94

95 ## Generate dynamic reconfigure parameters in the ’cfg’ folder
96 # generate_dynamic_reconfigure_options (

o7 # cfg /DynReconfl . cfg

98 # cfg /DynReconf2. cfg

9 #)

100

102 ## catkin specific configuration ##

NN NI RN NI Ie eI

103 T i i1t 1t
104 ## The catkin_package macro generates cmake config files for your package

84

APPENDIX A. PYTHON CODE 85

105 ## Declare things to be passed to dependent projects

106 ### INCLUDE_DIRS: uncomment this if your package contains header files

107 ## LIBRARIES: libraries you create in this project that dependent projects
also need

10s ## CATKIN DEPENDS: catkin_packages dependent projects also need

100 ## DEPENDS: system dependencies of this project that dependent projects
also need

110 catkin_package (

111 # INCLUDE_DIRS include

112 # LIBRARIES feature_detector

113 CATKIN_DEPENDS

114 cv_bridge

115 TOSPY

116 Sensor_msgs

117 std_msgs

118 custom_srvs

119 # DEPENDS system_lib

120)

123 ## Build ##

124 FHHHHHAHAHF

125

126 ## Specify additional locations of header files

127 ## Your package locations should be listed before other locations

125 include_directories (

120 # include

130 ${catkin INCLUDE_DIRS}

131)

132

133 ## Declare a C++ library

134 # add_library (${PROJECT NAME}

135 # src/${PROJECTNAME}/feature_detector .cpp

136 #)

137

138 ## Add cmake target dependencies of the library

139 ## as an example, code may need to be generated before libraries

140 ## either from message generation or dynamic reconfigure

141 # add_dependencies (${PROJECTNAME} ${${PROJECT NAME} EXPORTED TARGETS} ${
catkin EXPORTED_TARGETS })

142

143 ### Declare a C++ executable

122 ## With catkin_make all packages are built within a single CMake context

145 ## The recommended prefix ensures that target names across packages don’t
collide

146 # add_executable (${PROJECTNAME} -node src/feature_detector_node.cpp)

147

148 ## Rename Ci+ executable without prefix

120 ## The above recommended prefix causes long target names, the following
renames the

150 ## target back to the shorter version for ease of user use

151 ## e.g. "rosrun someones_pkg node” instead of "rosrun someones_pkg
someones_pkg_node”

152 # set_target_properties (${PROJECTNAME} node PROPERTIES OUTPUTNAME node
PREFIX 77)

153

151 ## Add cmake target dependencies of the executable

155 ### same as for the library above

APPENDIX A. PYTHON CODE 86

156 # add_dependencies (${PROJECTNAME} node ${${PROJECT NAME} EXPORTED_TARGETS}
${catkin EXPORTED_TARGETS})

157

158 ## Specify libraries to link a library or executable target against

150 # target_link _libraries (${PROJECTNAME} -node

160 # ${catkin LIBRARIES}

161 #)

162

V63 U
63 i

164 ## Install ##

Lo UL
OO T T I I T 1T 1T 1T 11 11 1117

166

167 # all install targets should use catkin DESTINATION variables
168 # See http://ros.org/doc/api/catkin/html/adv_user_guide/variables.html
169

170 ## Mark executable scripts (Python etc.) for installation

171 ## in contrast to setup.py, you can choose the destination
172 # install (PROGRAMS

173 F# scripts/my_python_script

174 # DESTINATION ${CATKIN_ PACKAGE BIN_DESTINATION }

175 #)

176

177 ## Mark executables and/or libraries for installation

178 # install (TARGETS ${PROJECTNAME} ${PROJECTNAME} _node

179 # ARCHIVE DESTINATION ${CATKIN_PACKAGE_LIB DESTINATION }

1850 # LIBRARY DESTINATION ${CATKIN_PACKAGE_LIB_DESTINATION }

151 # RUNTIME DESTINATION ${CATKIN_PACKAGE_BIN DESTINATION}

182 #)

183

184 ## Mark cpp header files for installation

185 # install (DIRECTORY include/${PROJECTNAME}/

156 # DESTINATION ${CATKIN PACKAGE_INCLUDE DESTINATION}

187 F# FILES MATCHING PATTERN ”x.h”

1ss # PATTERN ”.svn” EXCLUDE

189 #)

190

191 ## Mark other files for installation (e.g. launch and bag files , etc.)
192 # install (FILES

193 # # myfilel

194 # # myfile2

195 # DESTINATION ${CATKIN_.PACKAGE_SHARE DESTINATION}

196 #)

197

108 FHAHHHAHHAHAHE

199 ## Testing ##

200 HHEHHEHAHEHFH

201

202 ## Add gtest based cpp test target and link libraries

203 # catkin_add_gtest (3{PROJECTNAME}—test test/test_feature_detector.cpp)
200 # if (TARGET ${PROJECTNAME}—test)

205 # target_link_libraries (${PROJECTNAME}—test ${PROJECTNAME})
206 # endif ()

207

208 ## Add folders to be run by python nosetests

200 # catkin_add_nosetests(test)

APPENDIX A. PYTHON CODE

A.4 package file services

1 <?xml version="1.0"7>

<package format="2">
<name>feature_detector </name>
<version >0.0.0</version>
<description >The feature_detector package</description>
<l—— One maintainer tag required, multiple allowed, one person per tag
—_—>
<!—— Example: —>
<!—— <maintainer email="jane.doe@example.com”>Jane Doe</maintainer> —>
<maintainer email="kristoffer@todo.todo”>kristoffer </maintainer>
<!—— One license tag required, multiple allowed, one license per tag —>
<l—— Commonly used license strings: —>
<l—— BSD, MIT, Boost Software License, GPLv2, GPLv3, LGPLv2.1, LGPLv3
—_—>

<license >TODO</license >

<!l—— Url tags are optional, but multiple are allowed, one per tag —>
<l—— Optional attribute type can be: website, bugtracker, or repository
-

<!l—— Example: —>

<l—— <url type="website”>http://wiki.ros.org/feature_detector </url> —>

87

<!—— Author tags are optional, multiple are allowed, one per tag —>

<!—— Authors do not have to be maintainers, but could be —>

<!—— Example: —>

<!—— <author email="jane.doe@example.com”>Jane Doe</author> —>

<!—— The *xdepend tags are used to specify dependencies —>

<!—— Dependencies can be catkin packages or system dependencies —>

<!l—— Examples: —>

<l—— Use depend as a shortcut for packages that are both build and exec
dependencies —>

<l—— <depend>roscpp </depend> —>

<l—— Note that this is equivalent to the following: —>

<l—— <build_depend>roscpp </build_depend> —>

<l— <exec_depend>roscpp </exec_depend> —>

<l—— Use build_depend for packages you need at compile time: —>

<!l—— <build_-depend>message_generation </build_depend> —>

<!l—— Use build_export_depend for packages you need in order to build
against this package: —>

<!—— <build_export_depend >message_generation </build_export_depend > —>

<l—— Use buildtool_depend for build tool packages: —>

<!l—— <buildtool_depend >catkin </buildtool_depend > —>

<!l—— Use exec_depend for packages you need at runtime: —>

<l—— <exec_depend>message_runtime </exec_depend> —>

<!—— Use test_depend for packages you need only for testing: —>

<l—— <test_depend>gtest </test_depend> —>

<l—— Use doc_depend for packages you need only for building documentation

>

APPENDIX A. PYTHON CODE

50 <l—— <doc_depend>doxygen</doc_depend> —>

51 <buildtool_depend >catkin</buildtool_depend>

52 <build-depend>cv_bridge </build_depend>

55 <build-depend>rospy </build_depend>

54 <build_depend>sensor_msgs </build_depend>

55 <build_depend>std _msgs</build_depend>

56 <build_depend>message_generation </build_depend>

57 <build-depend>custom_srvs </build_depend >

55 <build_export_depend>cv_bridge </build_export_depend >

50 <build_export_depend >rospy</build_export_depend>

60 <build_export_depend >sensor_msgs</build_export_depend>
61 <build_export_depend>custom_srvs</build_export_depend>
62 <exec_depend>cv_bridge </exec_depend>

65 <exec_depend>rospy</exec_depend>

61 <exec_depend>sensor_msgs</exec_depend>

65 <exec_depend>std_msgs</exec_depend>

66 <exec_depend>message_runtime </exec_depend>

60 <!l—— The export tag contains other, unspecified , tags —>

70 <export>

71 <!l—— Other tools can request additional information be placed here —>
s </export>

71 </package>

A.5 Thermal measurements with computer vision

1 #!/usr/bin/env python
2 # —%— coding: utf—-8 —x—
3 import cv2

. import numpy as np

¢ path = ” /home/kristoffer /catkin_ws/src/Thesis/pipe_images/”
7 filename = ”thermal.png”

s impath = path+filename

o thermal_img = cv2.imread (impath,0)

10 thermal_img = c¢v2.resize (thermal_ img ,(1366,768))

11 ¢v2.imshow ("bluuh’ thermal_img)

12 cv2.waitKey (0)&0xFF

15 ¢v2.destroyAllWindows ()

15 delta = 200—20 # change in temperature for image
16 scale = float (delta)/float (255)

17 twenties = np.ones ((768,1366))*20

15 imgfloat = thermal_img.astype(np.float32)

v imgfloat = imgfloat * scale

20 imgint = imgfloat.astype (np.uint8)

1 imgint = imgint+twenties

> imgint = imgint.astype(np.uint8) #compansated thermal image celsius

s print imgint

cv2.imshow ('bluuh ’,imgint)

5 cv2 . waitKey (0)&0xFF
cv2.destroyAllWindows ()

crop_img = imgint [300:530,400:600]
pixelsum = 0

maxvalue = 0

~

NN N NN NNN N
B & S Bt

64

66
67

68

B W N

APPENDIX A. PYTHON CODE 89

row = 0
for array in crop_img:
row +=1
col =0
for pixel in array:
pixelsum 4= pixel

col 4+=1

if pixel > maxvalue:
maxvalue = pixel
maxrow = row
maxcol = col

height , width = crop_img.shape[:2]

; pixels = widthxheight

print maxvalue, ”at location”, maxrow ,”x” ,maxcol

5 print pixels
; print pixelsum
7 avg_temp = pixelsum/pixels

print avg_-temp

c¢v2 .imshow ('cropped’,crop-img)
cv2.waitKey (0)&0xFF
cv2.destroyAllWindows ()

» bgr_img = cv2.cvtColor (thermal_img , cv2.COLORGRAY2BGR)

cv2.rectangle (bgr_img,(400,300) ,(600,530) ,(0,0,255) ,3)

5 cv2.rectangle (bgr_img,(400+ maxcol —5,300+maxrow—5) ,(4054+ maxcol ,305+ maxrow)

,(255,0,0) ,3)

font = c¢v2.FONT_HERSHEY SIMPLEX

ul = 330

vl = 610

string = str(avg_temp)

string2 = str (maxvalue)

cv2.putText (bgr_img ,” Avrage temperature: "+string+” C”, (100,100), font, 1,
(0,0,255))

cv2.putText (bgr.img ,”Max temperature: "+string24” C”, (100,150), font, 1,
(255,0,0))

c¢v2.imshow ('with rectangle’ bgr_img)
cv2.waitKey (0)&0xFF
cv2.destroyAllWindows ()

A.6 Service message files

A.6.1 image.srv file

string camera

uint32 width
uint32 height
uint8 is_bigendian

; string encoding

uint8 [] data

APPENDIX A. PYTHON CODE

A.6.2 two_int.srv file

5
uint32 tj
uint3d2 ign_u

A.6.3 image_coord.srv file

,
3 int32 U0
1+ int32 Ul
5 int32 U2
¢ int32 U3
7 int32 VO
s int32 V1
9 int32 V2

10 int32 V3

A.7 CMakeList.txt file for custom messages

1 cmake_minimum_required (VERSION 2.8.3)
> project (custom_srvs)

1 ## Compile as C++11, supported in ROS Kinetic and newer
5 # add_compile_options(—std=c++11)

7 ## Find catkin macros and libraries

s ## if COMPONENTS list like find_package (catkin REQUIRED COMPONENTS xyz)
9 ## is used, also find other catkin packages

10 find_package (catkin REQUIRED COMPONENTS

11 std_msgs

12 Sensor_msgs

13 message_generation

14)

16 ## System dependencies are found with CMake’s conventions

17 # find _package (Boost REQUIRED COMPONENTS system)

18

19

20 ## Uncomment this if the package has a setup.py. This macro ensures

21 ### modules and global scripts declared therein get installed

20 ## See http://ros.org/doc/api/catkin/html/user_guide/setup_dot_py .html
23 # catkin_python_setup ()

24

or N N N N R eI NI R eI
<9 /l/l // // I/ 17 I/ // 71 /I 17 // // I/ Il 17 // // /I 17 // // I/ I/ 17 // // /I 17 /I // 71 Il 17 // // /I /I 17 // // I/ 17 I/ // /I /I 17

26 ## Declare ROS messages, services and actions ##

. /II/ /] L 1] /I L 1/ L 1]] L 1/ L /I 1] L /]] L 1] L /] /] L 1] /I L1 I/
T i i i i i i i i i i i i i i i i i i it i i i 11t

28

20 ## To declare and build messages, services or actions from within this

30 ## package, follow these steps:

31 ## *x Let MSGDEPSET be the set of packages whose message types you use in
32 ## your messages/services/actions (e.g. std_msgs, actionlib_msgs, ...).
33 ## % In the file package.xml:

APPENDIX A. PYTHON CODE

34 FH * add a build_depend tag for ”"message_generation”

35 FHF * add a build_depend and a exec_depend tag for each package in
MSG_DEP_SET

36 FHH x If MSGDEPSET isn’t empty the following dependency has been pulled
in

37 but can be declared for certainty nonetheless:

38 HH *+ add a exec_depend tag for ”"message_runtime”

30 ## * In this file (CMakeLists. txt):

10 FH# x add "message_generation” and every package in MSGDEPSET to

11 #HE find _package (catkin REQUIRED COMPONENTS ...)

12 FH# * add ”"message_runtime” and every package in MSGDEPSET to
13 catkin_package (CATKIN.DEPENDS ...)

14 FHE x uncomment the add_x _files sections below as needed

15 HH and list every .msg/.srv/.action file to be processed

16 HH * uncomment the generate_messages entry below
a7 * add every package in MSGDEPSET to generate_messages (DEPENDENCIES

-)

19 ## Generate messages in the ’'msg’ folder
50 # add_message_files (

51 # FILES

2 F# Messagel . msg

3 F# Message2 . msg

)

(9

w

S

[S I B
ot

)

6 ## Generate services in the ’srv’ folder
57 add_service_files (

58 FILES

59 custom_service.srv
60 image . srv

61 image_to_image.srv
62 two_int .srv

63 img_coord.srv

64)

65

66 ## Generate actions in the ’action’ folder
67 # add_action _files (

68 F FILES

69 F Actionl . action

70 F# Action2.action

0)

72

73 ## Generate added messages and services with any dependencies listed here
72 generate_messages (

75 DEPENDENCIES

76 std_msgs

77 sensor_msgs

s)

79

s1 ## Declare ROS dynamic reconfigure parameters ##

JUg) g gy gy gy g gy g) g g) g g g g gy g g g g))))) g) g g g)))))))

82 FHHATH AT 1T T 111 1T T 1 T 7711 717 11 711 11 7 1 T 1 11 11 1 11 117 11

83

sa ## To declare and build dynamic reconfigure parameters within this

s5 ## package, follow these steps:

s6 ## * In the file package.xml:

87 FHF x add a build_depend and a exec_depend tag for "dynamic_reconfigure”
ss ## x In this file (CMakeLists.txt):

APPENDIX A. PYTHON CODE 92

89 FHH * add "dynamic_reconfigure” to

90 find _package (catkin REQUIRED COMPONENTS ...)
91 FHF x uncomment the ”generate_dynamic_reconfigure_options” section below
92 and list every .cfg file to be processed

93

oa ## Generate dynamic reconfigure parameters in the ’cfg’ folder
95 # generate_dynamic_reconfigure_options (

96 # cfg /DynReconfl . cfg

o1 # cfg /DynReconf2. cfg

101 7%# catkln spe01f1c conflguratlon #:#

103## The catkin_package macro generates cmake config files for your package

104 ## Declare things to be passed to dependent projects

105 ## INCLUDE_DIRS: uncomment this if your package contains header files

106 ## LIBRARIES: libraries you create in this project that dependent projects
also need

107 ## CATKIN. DEPENDS: catkin_packages dependent projects also need

10s ## DEPENDS: system dependencies of this project that dependent projects
also need

100 catkin_package (

110 # INCLUDE_DIRS include

111 # LIBRARIES custom_srvs

112 CATKIN.DEPENDS rospy

113 # DEPENDS system_lib

114)

115

116 FHAHAHAHAH

117 ## Build ##

s HHHHHAHAHF

119

120 ## Specify additional locations of header files

121 ## Your package locations should be listed before other locations

122 include_directories (

123 # include

124 # ${catkin INCLUDE_DIRS}

125)

126

127 ## Declare a C++ library

128 # add_library (${PROJECTNAME}

120 # src/${PROJECTNAME}/custom_srvs.cpp

130 #)

131

132 ## Add cmake target dependencies of the library

133 ## as an example, code may need to be generated before libraries

134 ## either from message generation or dynamic reconfigure

135 # add_dependencies (${PROJECTNAME} ${${PROJECT NAME} EXPORTED_TARGETS} ${
catkin EXPORTED _TARGETS})

136

137 ## Declare a G+ executable

138 ## With catkin_make all packages are built within a single CMake context

1390 ## The recommended prefix ensures that target names across packages don’t
collide

10 # add_executable (${PROJECTNAME} _node src/custom_srvs_node.cpp)

141

142 ### Rename C++ executable without prefix

APPENDIX A. PYTHON CODE 93

123 ## The above recommended prefix causes long target names, the following
renames the

144 ## target back to the shorter version for ease of user use

145 ## e.g. "rosrun someones_pkg node” instead of "rosrun someones_pkg
someones_pkg _node”

146 # set_target_properties (${PROJECTNAME} node PROPERTIES OUTPUTNAME node
PREFIX 77)

147

148 ## Add cmake target dependencies of the executable

149 ## same as for the library above

150 # add_dependencies (${PROJECTNAME} node ${${PROJECT NAME} EXPORTED_TARGETS}
${catkin EXPORTED_TARGETS })

151

152 ## Specify libraries to link a library or executable target against

153 # target_link_libraries (${PROJECTNAME} _-node

154 # ${catkin LIBRARIES}

156

L7 A
2 T T TT

158 ## Install ##

L9 HHHHA
OF T I T T 1T 1T 1T 11 11 1117

160

161 # all install targets should use catkin DESTINATION variables
162 # See http://ros.org/doc/api/catkin/html/adv_user_guide/variables.html
163

164 ## Mark executable scripts (Python etc.) for installation
165 ## in contrast to setup.py, you can choose the destination
166 # install (PROGRAMS

167 F# scripts/my_python_script

16s # DESTINATION ${CATKIN_PACKAGEBIN DESTINATION}

169 #)

170

111 ## Mark executables and/or libraries for installation

172 # install (TARGETS ${PROJECTNAME} ${PROJECTNAME} node

173 # ARCHIVE DESTINATION ${CATKIN_PACKAGE_LIB.DESTINATION}
174 # LIBRARY DESTINATION ${CATKIN_PACKAGE_LIB DESTINATION }
175 # RUNTIME DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}
176 #)

177

178 ## Mark cpp header files for installation

179 # install (DIRECTORY include /${PROJECT NAME}/

1850 # DESTINATION ${CATKIN PACKAGEINCLUDE DESTINATION}

151 # FILES MATCHING PATTERN ”x%.h”

152 # PATTERN ”.svn” EXCLUDE

183 #)

184

185 ## Mark other files for installation (e.g. launch and bag files , etc.)
156 # install (FILES

187 # # myfilel

188 # # myfile2

150 # DESTINATION ${CATKIN_.PACKAGE_SHARE DESTINATION}

190 #)

191

L9 UL Yy
- T rTriIrTy

193 ## Testing ##
101 FHAHHHAFHAHEHE
195

106 ### Add gtest based cpp test target and link libraries

APPENDIX A. PYTHON CODE 94

17 # catkin_add_gtest (${PROJECTNAME}—test test/test_custom_srvs.cpp)
108 # if (TARGET ${PROJECTNAME}—test)

199 # target_link_libraries (${PROJECTNAME}—test ${PROJECTNAME})

200 # endif ()

201

202 ##+ Add folders to be run by python nosetests

203 # catkin_add_nosetests(test)

A.8 package.xml file for custom service messages

1 <?xml version="1.0"7>

2 <package format="2">

3 <name>custom_srvs </name>

1 <version >0.0.0</version>

5 <description>The custom_srvs package</description>

7 <!—— One maintainer tag required , multiple allowed, one person per tag
—>

s <!—— Example: —>

9 <!—— <maintainer email="jane.doe@example.com”>Jane Doe</maintainer> —>

10 <maintainer email="kristoffer@todo.todo”>kristoffer </maintainer>

15 <!l—— Omne license tag required, multiple allowed, one license per tag —>

11 <!—— Commonly used license strings: —>

15 <l— BSD, MIT, Boost Software License, GPLv2, GPLv3, LGPLv2.1, LGPLv3
—_—>

16 <license >TODO</license >

17

18

19 <!—— Url tags are optional , but multiple are allowed, one per tag —>

20 <!—— Optional attribute type can be: website, bugtracker, or repository
—_—>

21 <!l—— Example: —>

22 <l—— <url type="website”>http://wiki.ros.org/custom_srvs</url> —>

5 <!—— Author tags are optional , multiple are allowed, one per tag —>

26 <!—— Authors do not have to be maintainers, but could be —>

o7 <!—— Example: —>

25 <l—— <author email="jane.doe@example.com”>Jane Doe</author> —>

29

30

31 <!—— The *xdepend tags are used to specify dependencies —>

32 <!—— Dependencies can be catkin packages or system dependencies —>

33 <!l—— Examples: —>

34 <!—— Use depend as a shortcut for packages that are both build and exec
dependencies —>

35 <l=— <depend>roscpp</depend> —>

36 <l—— Note that this is equivalent to the following: —>

37 <l—— <build-depend>roscpp </build_depend> —>

38 <l—— <exec_depend>roscpp </exec_depend> —>

30 <!—— Use build_depend for packages you need at compile time: —>

10 <l—— <build_depend >message_generation </build_depend> —>

11 <!—— Use build_export_depend for packages you need in order to build
against this package: —>

po <l— <build_export_depend>message_generation </build_export_depend> —>

66

APPENDIX A. PYTHON CODE

<l—— Use buildtool_depend for build tool packages: —>
<!l—— <buildtool_depend >catkin </buildtool_depend > —>
<l—— Use exec_depend for packages you need at runtime: —>
<l—— <exec_depend>message_runtime </exec_depend> —>

<!—— Use test_depend for packages you need only for testing: —>

<l—— <test_depend>gtest </test_depend> —>

95

<!—— Use doc_depend for packages you need only for building documentation

5 =>
<l—— <doc_depend>doxygen</doc_depend> —>
<buildtool_depend>catkin </buildtool_depend >
<build_depend>rospy </build_depend>
<build_depend>sensor_msgs </build_depend >
<build_depend>std_msgs </build _depend>
<build-depend>message_generation </build_depend>
<exec_depend>rospy </exec_depend>
<exec_depend>sensor_msgs </exec_depend>
<exec_depend>std_msgs</exec_depend>
<exec_depend>message_runtime </exec_depend >

<!—— The export tag contains other, unspecified, tags —>
<export>

<!l—— Other tools can request additional information be placed here —>

</export>

o7 </package>

1
2
3
4
5

6

7

8

1

~

3

1
2
3
1

5

6

7
8

1
2
3
4

APPENDIX A. PYTHON CODE

A.9 Launch files

A.9.1 launch file camera_service

<launch>
<node
pkg = ”"camera_service”
type = "camera_service_node.py”
name = " camera_service_node”
output = ”screen”>
</node>

</launch>

A.9.2 launch file edges image processing

<launch>
<node
pkg = "edged_image_processing”
type = ”"edged_image_processing.py”
name = "edged_image_processing_node”
output = ”screen”>
</node>

</launch>

A.9.3 launch file crop image

<launch>
<node
pkg = 7crop_image”
type = ”crop_image .py”
name = ”crop_image_node”
output = "screen”>
</node>

</launch>

A.9.4 launch file feature detection

<launch>
<node
pkg = 7feature_detector”
type = ”feature_detection .py”
name = " feature_detector_node”
output = "screen”>
</node>
<include

file=" /home/kristoffer /catkin_ws/src/Thesis/camera_service/launch/

camera_service_launch .launch”>
</include>
<include

file=" /home/ kristoffer /catkin_ws/src/Thesis/edged_image_processing/
launch /edged _image_processing .launch”>

</include>
<include

96

APPENDIX A. PYTHON CODE

16 file=" /home/ kristoffer /catkin_ws/src/Thesis/crop_image/launch/
crop_image . launch”>

17 </include>

15 </launch>

97

AUtomating parts or the harabanding process using computer vision and RU>

@NTNU

Kunnskap for en bedre verden

