
Vuk K
rivokapic

A
utom

atic landning of m
ilti-rotor on m

oving platform

N
TN

U
N

or
ge

s
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e

un
iv

er
si

te
t

Fa
ku

lt
et

 fo
r

in
fo

rm
as

jo
ns

te
kn

ol
og

i o
g

el
ek

tr
ot

ek
ni

kk
In

st
itu

tt
 fo

r
te

kn
is

k
ky

be
rn

et
ik

k

M
as

te
ro

pp
ga

ve

Vuk Krivokapic

Automatic Landning of Multi-Rotor on
Moving Platform

Masteroppgave i Kybernetikk og Robotikk
Veileder: Tor Arne Johansen
Co-veileder: Martin Lysvand Sollie

Juni 2019

Vuk Krivokapic

Automatic Landning of Multi-Rotor on
Moving Platform

Masteroppgave i Kybernetikk og Robotikk
Veileder: Tor Arne Johansen
Co-veileder: Martin Lysvand Sollie
Juni 2019

Norges teknisk-naturvitenskapelige universitet
Fakultet for informasjonsteknologi og elektroteknikk
Institutt for teknisk kybernetikk

NTNU Faculty of Information Technology
Norwegian University of and Electrical Engineering
Science and Technology Department of Engineering Cybernetics

PROJECT DESCRIPTION SHEET

Name: Vuk Krivokapic
Department: Engineering Cybernetics
Thesis title (Norwegian): Automatisk landing av multirotor på bevegelig plattform
Thesis title (English): Automatic landing of multi-rotor on moving platform

Thesis Description: One of the most dangerous parts of an offshore autonomous unmanned aerial

vehicle (UAV) mission is the landing. To perform a safe landing in rough weather conditions, reliable

control and error managing algorithms are crucial. It is also important to know the limits of the system,

in order to set necessary weather requirements for a successful mission.

The goal of this project is to develop reliable control algorithms possible to carry out a safe landing in

rough weather conditions and test the algorithm performance, both in simulations and in the field. In

addition, limits of the developed system has to be tested.

The following tasks should be considered:

1. Perform a literature review on UAV modeling and control system design.

2. Develop control and landing algorithms.

3. Implement a simulation environment for UAV landing on a moving platform in DUNE.

Simulate landing sequences for several weather conditions and find weather requirements that

has to be fulfilled in order to perform a safe landing. Find minimal size requirements for the

landing platform.

4. Build the field testing system by connecting all necessary hardware. Install software needed

for the communication.

5. Test the developed and simulated algorithms in the field, using the Real Time kinematics

(RTK) positioning. Compare test results with simulation results and check if the requirements

from the simulation are match requirements found during field testing.

6. Discuss results and error sources.

7. Conclude your results and suggest future work.

Start date: 2019-01-27
Due date: 2019-06-03

Thesis performed at: Department of Engineering Cybernetics, NTNU

Supervisor: Professor Tor Arne Johansen, Dept. of Eng. Cybernetics, NTNU
Co-Supervisor: PhD Cand. Martin L. Sollie, Dept. of Eng. Cybernetics, NTNU

Abstract

The use of unmanned aerial vehicles (UAV) in autonomous offshore missions has increased
drastically in recent years. The UAVs have made it possible to carry out missions in rough
weather conditions, without risking human injuries. The main parts of a UAV mission are
takeoff, cruise and landing. All three parts are equally important to carry out a successful au-
tonomous mission. This thesis presents the development of a system for autonomous UAV
landing based on the software developed by Laboratório de Sistemas e Tecnologia Subaquática
(LSTS).

All software and hardware needed for the landing system, and connection between those are
presented in the thesis. Mathematical equations of the hexarotor model and environmental dis-
turbances affecting the landing process are derived. High-level velocity control algorithms are
developed and used as input to ArduPilot, the low-level control software. Several error handling
algorithms are developed, in order to make sure that the landing is carried out efficiently and
safely.

The simulation environment is implemented in DUNE: Unified Navigation Environment. Sim-
ulations are used to test the performance of developed algorithms, and prepare for the field test.
Results of the simulations are presented and discussed in the thesis.

Two field tests are performed. The tests are performed using a 3DR Hexacopter, with DUNE
running on a BeagleBone black and ArduPilot running on a PixHawk. All algorithms used for
simulations are used in the field as well. Results from the field test are presented, discussed and
compared with the simulation results. The vehicle was able to land in the field test environment.
Some deviations in the developed algorithms are noticed and a proposal for further development
is made.

Sammendrag

Bruk av ubemannede luftfartøyer (UAV) i autonome offshore-oppdrag har økt drastisk de siste
årene. UAVene har gjort det mulig å utføre oppdrag i tøffe værforhold uten å risikere men-
neskeskader. Hoveddelene av et UAV oppdrag består av letting, cruise og landing. Alle tre de-
lene er like viktige i utførelsen av ett autonomt oppdrag. Denne oppgaven presenterer utvikling
av et system for autonom UAV landing basert på programvarene utviklet av Laboratório de Sis-
temas e Tecnologia Subaquática (LSTS).

All programvare og maskinvare som trengs for landingssystemet, og forbindelsen mellom disse
presenteres i avhandlingen. Matematiske ligninger av hexarotormodellen og miljøforstyrrelser
som påvirker landingsprosessen er avledet. Hastighetsstyringsalgoritmer er utviklet og brukt
som input til ArduPilot, programvaren for lavnivåkontroll. Flere feilhåndteringsalgoritmer er
utviklet for å sikre at landingen utføres effektivt og trygt.

Simuleringsmiljøet er implementert i DUNE: Unified Navigation Environment. Simuleringer
brukes til å teste ytelsen til de utviklede algoritmene, og forberedelsene til forsøkene i feltet.
Simuleringsresultatene er presentert og diskutert i avhandlingen.

To feltforsøk er utført. Forsøkene er utført med et 3DR Hexacopter, med DUNE som kjører på
en BeagleBone black og ArduPilot som kjører på en PixHawk. Alle algoritmer som brukes i
simuleringene, brukes også i feltet. Resultater fra feltforsøkene er presentert, diskutert og sam-
menlignet med simuleringsresultatene. Luftfartøyet var i stand til å gjennomføre landing i felt-
forsøkene. Noen avvik i de utviklede algoritmene er loppdaget, og et forslag til videreutvikling
er utarbeidet.

Preface

The work presented in this thesis concludes my master degree in Cybernetics and Robotics at
Norwegian University of Science and Technology (NTNU). This thesis builds on the special-
ization project, written by the author the previous semester, where the main focus was building
a simulation environment in Matlab.

All hardware needed to carry out the work presented in the thesis is provided by the UAVlab at
NTNU. The software used to build the system is developed by the Laboratório de Sistemas e
Tecnologia Subaquática (LSTS), Porto. Besides the physical laboratory, there exists a commu-
nity at the UAVlab sharing previous projects and helping new students to get started with their
projects. Being a part of such community helped a lot, as information about LSTS software was
hard to find because of the limited use. The physical laboratory was available for use during the
entire project.

I would like to thank my co-supervisor Martin L. Sollie for helping me connect all hardware and
install the software necessary to make the system work, as well as giving me valuable advice
through the entire semester. I would also like to thank my supervisor Tor Arne Johansen for
making this project possible, and for providing fast answers to my questions. Artur Piotr Zolich
helped me organizing and preparing field tests, which I appreciate. Finally, I would like to
thank Pål Kvaløy and Henricus van Rijt for being patient with me and helping me during the
field tests.

Vuk Krivokapic Trondheim, June 2019

Table of Contents

Abstract I

Summary II

Preface III

Table of Contents VI

List of Figures VIII

List of Tables IX

Notation X

1 Introduction 1
1.1 Motivation . 1
1.2 Specialization Project . 2
1.3 Related Work . 3
1.4 Outline . 4

2 System Overview 5
2.1 Software . 5

2.1.1 DUNE . 5
2.1.2 IMC . 6
2.1.3 Neptus . 6
2.1.4 ArduPilot . 7
2.1.5 Real-Time Kinematic Positioning . 7
2.1.6 RTKLIB . 8

2.2 Hardware . 9
2.2.1 Hexacopter . 9
2.2.2 PixHawk . 9
2.2.3 Beaglebone Black . 10
2.2.4 Cape . 10
2.2.5 GNSS Antennas . 11
2.2.6 Rocket . 11

IV

2.2.7 Ground Station . 12
2.3 Communication . 12

2.3.1 Simulation System . 12
2.3.2 Total System . 14

3 Modeling 16
3.1 Theory . 16

3.1.1 Coordinate Frames . 16
3.1.2 Rotation . 17
3.1.3 Transformation . 18
3.1.4 Pierson-Moskowitz Spectrum . 18

3.2 Dynamics . 19
3.2.1 Rotation . 19
3.2.2 Forces . 20
3.2.3 Torques . 21

3.3 Mathematical Model . 21
3.3.1 Translational dynamics . 22
3.3.2 Rotational Dynamics . 22

3.4 Wind . 25
3.5 Waves . 26

4 Control 29
4.1 Theory . 29

4.1.1 PID . 29
4.1.2 Ziegler-Nichols Tuning Method . 30

4.2 Method . 31
4.2.1 Altitude Controller . 31
4.2.2 Horizontal Controllers . 31
4.2.3 Filter . 32

5 Implementation 35
5.1 Simulation . 35

5.1.1 System . 36
5.1.2 Wind . 37
5.1.3 Waves . 39

5.2 Filter . 41
5.3 Controllers . 42
5.4 Landing Algorithms . 43

5.4.1 Boundaries . 43
5.4.2 Landing Permission . 45
5.4.3 State Machine . 46

6 Simulation 49
6.1 Software in the Loop . 49
6.2 Tuning . 50

6.2.1 Altitude Controller . 50
6.2.2 Horizontal Controllers . 53

6.3 Limitations . 56
6.3.1 Velocities . 56
6.3.2 Platform Size . 56
6.3.3 Maximal Wind . 57

6.4 Filter . 60
6.5 Results . 61

7 Field Testing 67
7.1 Preparation . 67
7.2 Setup . 67
7.3 Results . 70

7.3.1 Test 1 . 70
7.3.2 Test 2 . 73

8 Discussion 81
8.1 Control . 81
8.2 Land Permission . 83
8.3 Filter . 84
8.4 State Machine . 84
8.5 Platform Size . 85
8.6 Reflection . 85

9 Closing Remarks 86
9.1 Conclusion . 86
9.2 Future Work . 87

Appendices 89
A Discretization . 89
B Flow chart - State Machine . 92
C Flow Chart - Land Permission Algorithm . 94
D Simulation Results . 96
E Mission Acceptance Form . 100

Bibliography 102

List of Figures

2.1 Neptus interface . 6
2.2 Hexa 3DR . 9
2.3 PixHawk 1 . 10
2.4 BeagleBone black . 10
2.5 Novatel GPS-702-GG and HX-CH3602A . 11
2.6 Ubiquti M5 rocket . 11
2.7 Ground Station . 12
2.8 Communication during a simulation . 13
2.9 Hardware communication . 15

3.1 Coordinate frames . 17
3.2 PM spectra for different V19.4 velocities . 18
3.3 Thrust forces and rotation of propellers . 20
3.4 Response of the Dryden gust wind model . 26
3.5 PM spectrum for sea state 4 . 27
3.6 Wave response in x-direction for sea state = 4 28

4.1 PID block diagram . 30
4.2 PID block diagram using velocity feedback 32
4.3 Frequency spectras of different sea states . 33
4.4 Bode diagram of the low-pass filter . 34

5.1 Sea state changes in Neptus . 41
5.2 Change of tuning parameters in Neptus . 43
5.3 Boundaries reprensented by cylinders . 44
5.4 Landing permission algorithm performance during a simulation 46
5.5 State machine performance during a simulation 48

6.1 Four terminals running SIL . 50
6.2 Tuning of altitude controller . 51
6.3 Anti wind-up block diagram . 52
6.4 Altitude controller with anti-windup implemented 52
6.5 Tuning x-direction controller . 53
6.6 Tuning y-direction controller . 55
6.7 Total horizontal error in simulations . 57

VII

6.8 Roll and pitch response on the constant wind 58
6.9 Test of maximal wind threshold . 59
6.10 Filter performance . 60
6.11 Straight line landing . 61
6.12 Moving path for target vehicle during simulations 62
6.13 Simulation results with only wind present . 62
6.14 Simulation results with only waves present, without wave filter 63
6.15 Simulation results with only waves present, with wave filter turned on 64
6.16 Simulation results of the complete system . 65
6.17 Simulation results of the full system i rough weather conditions 66

7.1 Coordinate frame setup for the field test . 68
7.2 Field test setup . 69
7.3 Position response using parameters from Section 6.2 70
7.4 Mid-air controller tuning . 71
7.5 Response with parameters from Table 7.1 and Table 7.2 72
7.6 Filter performance in test 1 . 73
7.7 Horizontal response in test 2 . 74
7.8 Roll and pitch response in test 2 . 75
7.9 Altitude response in test 2 . 76
7.10 State machine problem in test 2 . 77
7.11 Control output in test 2 . 78
7.12 Landing permission algorithm performance in test 2 79
7.13 Filter performance in test 2 . 80

8.1 Horizontal plane of a simulation using parameters that worked for the field test 82
8.2 X-controller tuning during the test 2 . 83

List of Tables

2.1 Hexacopter parameters . 9

3.1 Parameters for different sea states . 28

4.1 Ziegler - Nichols table . 30

6.1 Altitude controller parameters found by Ziegler-Nichols tuning approach 50
6.2 Final tuning parameters altitude controller . 51
6.3 X-direction controller parameters found by Ziegler-Nichols tuning approach . . 54
6.4 Final tuning parameters x-direction controller 54
6.5 Y-direction controller parameters found by Ziegler-Nichols tuning approach . . 55
6.6 Final tuning parameters y-direction controller 55
6.7 Velocity limitations of the hexarotor . 56
6.8 Decreased vertical velocity limitations . 56

7.1 Horizontal control parameters found after mid-air tuning 72
7.2 New altitude controller parameters . 72
7.3 Final altitude controller parameters . 74

IX

Abbreviations

AUV Autonomous Underwater Vehicle
DUNE DUNE: Unified Navigation Environment
ECEF Earth-Centered, Earth-Fixed
etc Et cetra
GLONASS Globalnaja Navigatsionnaja Sputnikovaja Sistema
GNSS Global Navigation Satellite Systems
GPS Global Positioning System
HIL Hardware-in-the-loop
I2C Inter-Integrated Circuit
IMC Inter-Module Communication
LOS Line-of-Sight
LQR Linear Quadratic Regulator
LSTS Laboratório de Sistemas e Tecnologia Subaquática
MPC Model Predictive Control
NED North-East-Down
NTNU Norwegian University of Science and Technology
PID Proportional Integral Derivative
PIV Proportional Integral Velocity
PM Spectrum Pierson-Moskowitz Spectrum
RTK Real-Time Kinematic
SIL Software-in-the-loop
SPI Serial Peripheral Interface Bus
UART Universal Asynchronous Receiver-Transmitter
UAV Unmanned Arial Vehicle

Chapter 1
Introduction

1.1 Motivation
In recent years, the use of UAVs has increased significantly, both onshore and offshore. The
autonomous vehicles are performing tasks that earlier were difficult and dangerous for human
beings. Offshore missions are often marked as difficult and dangerous, as the weather condi-
tions can get rough when the location is far from the coastline. UAVs have increased the weather
condition threshold on offshore missions, but the efficiency of the vehicles are far from perfect.

One of the most critical parts of a UAV in offshore missions is the landing. Rough weather
conditions imply strong wind, bad visibility, and high waves. Therefore, it is important to de-
sign a robust control system that can handle all the difficulties rough weather conditions bring,
and carry out a safe landing. Today’s control systems, designed for offshore UAV landings, are
giving satisfying results, but there is still room for improvements, especially on wind and wave
prediction.

Following the increasing usage of the UAVs, NTNU has established its own UAV laboratory.
The UAVlab is mainly used by master and Ph.D. students. Many research missions are initi-
ated in order to find solutions to the control problems associated with UAVs. Every student
associated with the UAVlab is contributing to a common solution to UAV problems. A huge
motivation for this task is to make a contribution to the UAV lab community at NTNU, which
can be used to help others solve their problems.

1

1.2 Specialization Project

1.2 Specialization Project
This project is a continuation of the specialization project, written the semester before [1]. The
specialization project emphasizes modeling of the hexacopter and environmental disturbances.
Control and landing algorithms are developed in the project as well. All simulations in the spe-
cialization project are done in Matlab. Proportional - Integral - Velocity (PIV) control is used
for the horizontal control, while Proportional - Integral - Derivative (PID) control is used for
the vertical control. The air force modeling presents a problem in the specialization project, as
the roll and pitch response behaves strangely when the constant wind is present.

There were developed three landing algorithms in the specialization project: state machine algo-
rithm, parameter allocation algorithm, and landing timing algorithm. The parameter allocation
algorithm requires two sets of parameters, depending on the desired controller aggressiveness
level. The state machine and the landing timing algorithms are responsible for the error handling
during a landing procedure. The error is measured using a set of requirements, determined be-
forehand. It is suggested to investigate the algorithms, as they together led to too many aborted
landings.

In addition to the high-level controllers, there were developed low-level control algorithms in
the specialization project. The algorithms are controlling roll and pitch movement, using PID
control. A systematic tuning approach is suggested for the control algorithms, as they are tuned
by a trial-error approach.

A list for future work is made at the end of the specialization project:

• Investigate modeling of air forces

• Tune horizontal controllers by using a systematic tuning approach

• Investigate other control strategies

• Do a stability analysis of the whole system

• Improve the landing permission algorithm

• Investigate the possibility of developing a wave estimator

• Adjust landing boundaries

2

1.3 Related Work

1.3 Related Work
The research work regarding modeling, controller choice and landing algorithms is done in the
specialization project [1]. Most of the research for this project is associated with the implemen-
tation part, including use of software such as DUNE, Neptus, ArduPilot, and RTKLIB.

A thesis about the automatic landing of a X8 Skywalker flying-wing into a net is written in [2].
The interesting part of the thesis is that it is describing software and hardware that is used in
this project. Software and hardware communication is described in detail. The same software
is used by [3] and [4]. [3] is using the software for nature research in Arctic areas, while [4] is
using the software for search and rescue missions. [4] is having problems with DUNE acting
differently on experimental testing compared to simulations, and suggest a deeper investigation
of the problem.

An example of ArduPilot software use can be found in [5] and [6]. The software - in - the -
loop simulations, which are going to be used in this project, is the reason for ArduPilot use in
[5]. The ArduPilot is used as an autopilot for dynamic drone positioning in [6], which is also
suggesting the use of RTK GPS together with the ArduPilot.

A detailed description of the RTKLIB, with a performance test, is presented in [7]. The RTK-
LIB is also investigated in [8], where the RTK GNSS performance is compared to the IMU
performance. In addition, [8] uses DUNE for Hardware - in - the - loop testing.

A total system for multirotor landing on a moving platform is developed by [9]. The author
is using a vision system to detect the landing platform and PID algorithms for control of the
multirotor. An interesting idea of the vehicle flying through different states on the way down
to the platform is also introduced in [9] and [10]. A work on autonomous landing on moving
platform using Model Predictive Control (MPC) is done by [11].

3

1.4 Outline

1.4 Outline
Chapter 2 - System Overview: The chapter gives an overview of software and hardware form-
ing the system, and connection between those.

Chapter 3 - Modeling: Mathematical models of forces and torques acting on the system are
presented. Environmental disturbances modeling is also presented in the chapter. Big parts of
the chapter are written in the specialization project.

Chapter 4 - Control: Presents development of the control algorithms used in the project.

Chapter 5 - Implementation: This chapter presents implementation of the simulation environ-
ment and controllers in DUNE. The landing algorithms are also described in the chapter.

Chapter 6 - Simulation: Simulation results of the system and tuning of the controllers are
presented in this chapter.

Chapter 7 - Field Testing: Presents field test results.

Chapter 8 - Discussion: This chapter discusses results from Chapter 6 and Chapter 7.

Chapter 9 - Closing Remarks: Concludes the work and results. A suggestion for future work
is also presented in this chapter.

4

Chapter 2
System Overview

2.1 Software

2.1.1 DUNE
DUNE is a software that is a part of the LSTS toolchain, developed by the University of Porto
[12].

The software is designed for communication between different tasks. The tasks are different
programs with specific functions. Typical functions for a task are: sensor reading, sensor data
management, control, maneuvering, mission planning and communication between other tasks
[13].

In DUNE, the connection between tasks is done through configuration files. Configuration files
include all tasks that are supposed to communicate with each other. The communication hap-
pens through IMC messages, described later in this Section. The tasks are dispatching and
consuming specific IMC messages. The IMC messages from a specific task are available for all
other tasks that are included in the same configuration file.

It is also common to include other configuration files to a configuration file. The result is a hier-
archy of several configuration files, which often makes troubleshooting easier. Another benefit
of having a hierarchy of configuration files is that it gets easier to remove and add parts of the
system, simply by removing and adding the specific configuration file in the hierarchy.

DUNE is running on an onboard computer, both on the UAV and the base station. In addition,
it is used for the simulation.

5

2.1 Software

2.1.2 IMC
IMC (Inter-Module Communication) protocol is a protocol designed by LSTS to build reliable
real-time communication between the DUNE tasks.

As mentioned in Section 2.1.1, IMC messages are used to send information between DUNE
tasks that are included in the same configuration file. All IMC messages available for a system
are listed in a .xml file. A developer can easily create new messages to the system by adding
the message information to the .xml file.

2.1.3 Neptus
Neptus is a ground station software used to monitor and control vehicles that communicates by
IMC messages [14].

The monitoring is performed by utilizing a specific IMC message that sends the exact vehicle
position and orientation. Neptus shows the position graphically on a world map pre-chosen by
the user (Figure 2.1).

Mission planning is an important part of the Neptus software. The user can click on the differ-
ent points on the map and plan a desired path for the next mission. Besides, the user can also
choose which of the available controllers that are going to be used between the different parts of
the mission. It is worth mentioning that the user has full control of a mission from Neptus. By
clicking on different buttons presented on the screen, one can switch, edit or abort the mission.

Figure 2.1: Neptus interface

6

2.1 Software

Multiple vehicle control is another possibility that can be carried out in Neptus. It involves con-
trol of several vehicles at once, which is used a lot in this project because the UAV is one moving
vehicle supposed to land on a platform that can be considered as another moving vehicle[15].

Neptus also provides a mission analysis tool (MRA). The MRA software lists up a log of all
active IMC messages during a mission. The IMC messages can further be plotted, which makes
the analysis easy. It also provides a possibility of exporting IMC logs to different formats, where
Matlab (.mat) is one of the possible formats.

2.1.4 ArduPilot
ArduPilot is an open-source autopilot developed for unmanned vehicles. An onboard com-
puter on the vehicle is running ArduPilot software. The ArduPilot provides reliable real-time
communication between the vehicle and the ground station. The software can also be used for
simulation.

This project uses ArduPilot, both for simulation and field tests. The main task of the ArduPilot
in this project is converting velocity control commands to Euler angles, and actual angular
velocities of the motors. An explanation follows later in the thesis [16].

2.1.5 Real-Time Kinematic Positioning
Real-Time Kinematic (RTK) positioning is the position measurement technology used in this
project. The technology is using two receivers, one mounted on the base station and the other
mounted on the rover. The reason for the use of RTK positioning in this thesis is the precise
relative positioning the technology can provide. By differencing receiver measurements, a lot of
signal errors are eliminated. Equation 2.1 shows differentiation of receiver measurements. All
errors associated with GPS positioning, presented in (2.1), are explained on page 136 in [17].

7

2.1 Software

∆φ = φrover − φbase (2.1a)

=
∆r

λ
+ ∆N −

�
��

��c

λ
∆Tiono +

�
��

��c

λ
∆Ttropo −

��
��

��c

λ
δtsat clock +

c

λ
∆δtrec clock (2.1b)

−����
��

∆δφsat bias + ∆δφrec bias + ∆δφLOS dependent + ∆δφmultipath + ∆ω

=
∆r

λ
+ ∆N +

c

λ
∆δtrec clock + ∆δφrec bias + ∆δφLOS dependent + ∆δφmultipath + ∆ω

(2.1c)

where

φ = measurement
λ = carrier wavelength
c = vacuum speed of light
r = distance to satellite

Tiono = ionospheric delay
Ttropo = tropospheric delay

trec clock = receiver clock error
tsat clock = satellite clock error

φsat bias, φrec bias = carrier phase delays with respect to code, independent of LOS
φLOS dependent = LOS-dependent phase wind up error

φmultipath = multipath error
ω = tracking noise

Further, the RTK subtracts satellite measurements. This is called double differencing and is
showed in (2.2). Double differencing removes systematic errors, common to several satellites
and receivers.

∇∆φ = ∆φsat1 −∆φsat2 (2.2a)

=
∆r

λ
+∇∆N +

���
���

��c

λ
∇∆δtrec clock +((((

(((∇∆δφrec bias +∇∆δφLOS dependent (2.2b)

+∇∆δφmultipath +∇∆ω

=
∇∆r

λ
+∇∆N +∇∆ω (2.2c)

Double differencing and correct integer ambiguities eliminates errors, such that the mm/cm
procession level is reached. It is important to mention that the precision level only holds for the
rover measurements relative to the base, and not rover position in general [18].

2.1.6 RTKLIB
RTKLIB is an open-source program package. It is developed to convert raw GNSS data to a
readable position. It provides both real-time processing and post-processing of the GNSS data.
The RTKLIB is running on the onboard computer[19].

8

2.2 Hardware

2.2 Hardware

2.2.1 Hexacopter
The vehicle used in this project is a 3DR Hexacopter, developed and manufactured by 3D
Robotics. The UAV frame is made of aluminium, which makes it robust and suitable for devel-
opment projects. Specifications of the hexacopter can be found in Table 2.1[20].

Figure 2.2: Hexa 3DR

Table 2.1: Hexacopter parameters

Frame weight without electrics 1.36 kg
Fully loaded frame weight 2.73 kg
Frame length 0.4 m
Frame width 0.28 m
Frame heigth 0.18 m
Arm length 0.30 m

2.2.2 PixHawk
PixHawk is an open-hardware project provided by 3D robotics. The PixHawk version used in
this project is PixHawk 1. The PixHawk is designed to support several autopilot software. In
this project, the ArduPilot is running on the PixHawk (Section 2.1.4)[21].

9

2.2 Hardware

Figure 2.3: PixHawk 1

The PixHawk provides several communication possibilities. It provides support for protocols,
such as: SPI, CAN, USB, UART, and I2C. The UART is the communication protocol used
mostly in this project. The connection between Beaglebone and PixHawk is going through the
UART protocol.

2.2.3 Beaglebone Black
BeagleBone Black is a low-cost, open-source computer produced by the American manufac-
turer Texas Instruments. It has 512 MB RAM and has a flash memory size of 2 GB. The
BeagleBone Black runs Linux Kernel version 3.14 [22]. In this project, the BeagleBone black
is used to run DUNE (Section 2.1.1) and RTKLIB (Section 2.1.6) on-board.

Figure 2.4: BeagleBone black

2.2.4 Cape
A cape for the BeagleBone black is developed at the UAVlab at NTNU using Circuit Studio
software[23]. The cape is added to the BeagleBone in order to distribute 5V battery power to
other onboard components and provide contacts with lock for I/O.

10

2.2 Hardware

2.2.5 GNSS Antennas
On-board on the UAV a HX-CH3602A antenna is used. It can receive signals from three dif-
ferent constellations (GPS, GLONASS and BDS). It can only receive L1 frequencies from GPS
and GLONASS[24].

Figure 2.5: Novatel GPS-702-GG and HX-CH3602A

The ground station, described later in this section, uses a Novatel GPS-702-GG antenna. It
has better performance than the onboard antenna. The ground station antenna supports dual-
frequency GPS and GLONASS signals, which means that it can receive signals from both L1
and L2 frequencies. It also supports Galileo and BeiDou signals.

2.2.6 Rocket
Ubiquti Rocket M5 is used for the radio communication between the vehicle and the ground
station. The rockets communicate with a frequency of 5GHz [25]. A user manual follows with
the rockets, making the configuration and setup easy.

Figure 2.6: Ubiquti M5 rocket

11

2.3 Communication

2.2.7 Ground Station
The ground station is equipped with a BeagleBone black with a cape, router, rocket, and a
GNSS antenna. All communication between the user and the UAV goes through the ground
station. The router on the ground station is working like a switch, distributing signals between
the components. The user PC is directly connected to the router during a mission. The IMC
messages, sent in between BeagleBones in the system are also distributed from the router.

Figure 2.7: Ground Station

2.3 Communication
All components mentioned in Section 2.2 and Section 2.1 constitute a complex system for
simulation and control of an UAV. The system can be divided into two parts, the simulation and
the field testing system, as they are different on several points.

2.3.1 Simulation System
The main purpose of a simulation is to test different scenarios as close to reality as possible,
and avoid damaging hardware. Therefore, the simulation system only deals with the communi-
cation between software mentioned in Section 2.1. The UAV simulations are running Software-
in-the-Loop (SIL), meaning that a series of software are running together, in a loop, to create a
simulation.

DUNE tasks (Section 2.1.1) are constantly running during a UAV simulation. Tasks with differ-
ent purposes are communicating through IMC messages (2.1.2). There are developed tasks for
the UAV control. The tasks that are responsible for the control are sending velocity control com-
mands to the ArduPilot via MAVLink, a protocol developed for the drone communication[26].
ArduPilot transforms the velocity control commands to actual motor rotations and sends the
position of the vehicle back to DUNE, also via MAVLink. DUNE tasks convert MAVLink po-
sition messages received from the ArduPilot to the IMC messages. The messages are read by
Neptus, and the position is then presented graphically.

12

2.3 Communication

To get a better understanding, one can follow a specific IMC messages. Control tasks in DUNE
are developed to send velocity commands to the tasks that are developed for ArduPilot com-
munication. The commands are sent via IMC::DesiredVelocity message. The message consists
of four parts: timestamp, velocity in the x-direction of the NED frame (explained later in the
report), velocity in the y-direction of the NED frame and velocity in the z-direction of the
NED frame. The task transforms IMC::DesiredVelocity message to MAVLink message, and
sends information to the ArduPilot via TCP protocol. Further, ArduPilot transforms control
commands to actual vehicle movement and sends back the vehicle position to the same com-
munication task in DUNE. The DUNE communication task transforms the position message
to IMC::EstimatedState message, which contains information about vehicles geodetic position.
IMC::EstimatedState message gets sent back to the control tasks, and used by the controller. It
is also transported to Neptus, via several other DUNE transport tasks, and represented graphi-
cally.
Figure 2.8 describes the communication system during a simulation.

Figure 2.8: Communication during a simulation

13

2.3 Communication

It is important to mention that other types of control commands like force and acceleration can
be produced in DUNE as well. The reason why velocity commands are chosen in this project is
that the original ArduPilot firmware does not support force and acceleration control commands.

2.3.2 Total System
The total communication system is the system that is going to be used in real-life operations.
The communication system is more complex than the communication system during a simula-
tion. The reason is that the hardware communication has to be included as well. A communi-
cation system containing several hardware components are vulnerable to errors.

The raw GNSS measurements are transformed to position data using RTKLIB (Section 2.1.6),
which is installed on the BeagleBone black (Section 2.2.3), both on the vehicle and the base
station. The reason why raw GNSS measurements are sent to both vehicle and the base station
is the working principle of the RTK positioning, that is described later in the report.

DUNE is running on both BeagleBones in the system. The control system, pre-tested in simula-
tions, is transferred to the BeagleBone black board on the vehicle. Specific DUNE tasks on the
board are transforming GNSS position measurements to the IMC::EstimatedState message used
further in the DUNE system, as described in Section 2.3.1. The control system running on-board
is consuming IMC::EstimatedState messages and calculating new velocity control commands,
dispatched as IMC::DesiredVelocity messages (Section 2.3.1). The IMC::DesiredVelocity are
consumed by DUNE tasks responsible for the communication with the ArduPilot, and trans-
formed to MAVLink messages. Further, MAVLink messages are sent to the ArduPilot, that is
running on a PixHawk onboard, via UART Protocol. The ArduPilot is then controlling the UAV
motors through the PixHawk.

At any time, the UAV is connected to the ground station via a Rocket radio. The ground station
is connected to the user PC, containing Neptus, via ethernet. Neptus reads IMC::EstimatedState
messages from the BeagleBone black on the ground station, and shows the position graphically.
Missions can also be planned on Neptus, on the user PC, and sent back to the UAV.

The whole communication system for field testing is shown in Figure 2.2.

14

2.3 Communication

Figure 2.9: Hardware communication

15

Chapter 3
Modeling

3.1 Theory

3.1.1 Coordinate Frames
A coordinate system consist of two or three axes, depended on the dimension of the coordinate
system. The position of an object within a coordinate system can be described by coordinates
of that specific system. A vehicle is often described as an own frame, called the vehicle body-
frame. In the vehiclew body-frame the x-axis points out the front of the vehicle, the z-axis
points straight up, whiler the y-axis completes the right-hand coordinate system. Environmen-
tal forces acting on the vehicle are often described relative to the vehicle body frame, like in
[17], while vehicle movement is described relative to another frame. For example, the move-
ment of a long-distance airplane can be described relative Earth-Centered-Earth-Fixed frame
(ECEF). The origin of the ECEF frame is at the Earth center, while the x-axis is pointing at the
cross point between zero-meridian and equator. On the other hand, wind forces acting on the
airplane are described relative to the airplane body frame. A transformation between frames
can be done to describe environmental forces acting on the airplane relative to the ECEF frame.

North-East-Down (NED) is a coordinate frame used for local navigation. The x-axis of the NED
frame is pointing north, the z-axis is pointing to the earth center, while the y-axis is completing
the right-hand coordinate system. When the NED frame is used for local navigation, which is
the case in this project, all forces are described relative to the NED frame. The frame can not be
used for global navigation because the relation between north and earth center varies depending
on the position on the earth surface. Figure 3.1 illustrates an example of NED frame relative to
ECEF frame.

16

3.1 Theory

Figure 3.1: Coordinate frames

3.1.2 Rotation
The rotation of a coordinate frame relative to another can be described as a series of rotations of
every single axis. Explained, rotation from a given frame A to a given frame B can be described
as rotation about x, y and z-axis of frame A relative to frame B. Rotation about coordinate axis
can be described with following matrices:

R
x

=

1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

R
y

=

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

R
z

=

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

(3.1)

Total rotation matrix is,

R
b

a
= R

z
R
y
R
z

(3.2)

The following rule holds for rotation matrices.(
R
b

a

)−1
=
(
R
b

a

)T
= R

a

b
(3.3)

17

3.1 Theory

3.1.3 Transformation
The transformation of a point from one frame to another can be described as a transformation
matrix. The transformation matrix contains the total rotation matrix (3.2) and coordinates of the
point in the original frame. Equation 3.4 describes transformation between a point from frame
A to frame B.

T
b

a
=

Rb

a

xa

ya

za

000 1

 (3.4)

3.1.4 Pierson-Moskowitz Spectrum
Pierson-Moskowitz Spectrum (PM spectrum) is a model for energy distribution in the sea, de-
veloped in 1964. An assumption made for the model is that wind blows steady for a long time
over a large area, and that the waves will eventually reach the point of equilibrium with the
wind. Model is depended on two parameters, A and B.[27][28]

A = 8.1 · 10−3 · g2

B = 0.74(
g

V19.4
)4 =

3.11

H2
s

(3.5)

where V19.4 is wind velocity at height of 19.4 meters, g is the gravity constant and Hs is the
wave height. Wave height is depended on sea state, and can be roughly estimated using Table
8.5 in [28].

Figure 3.2: PM spectra for different V19.4 velocities

Figure 3.2 shows fully developed PM spectra for different V19.4 velocities.

18

3.2 Dynamics

3.2 Dynamics
Hexacopter dynamics can be derived from the Euler angles. The reason why this can be done is
that the hexacopter is assumed as a symmetrical and rigid body.

3.2.1 Rotation
Rotation from body to NED frame is described by using series of rotations ψ − θ − φ, also
known as yaw-pitch-roll. The result of the series of rotation is following rotation matrix:

R
N

B
=

 cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1

cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

1 0 0
0 cos(φ) sin(φ)
0 − sin(φ) cos(φ)

=

cos θ cosψ cosψ sin θ sinφ− sin θ cosφ cosψ sin θ cosφ+ sin θ sinφ
cos θ sinψ sinψ sin θ sinφ+ cos θ cosψ cosφ sin θ sinψ − cosψ sinφ
− sin θ sinφ cos θ cos θ cosφ

 (3.6)

By using property from (3.3) it is possible to find a rotation matrix from NED to the body frame.

R
B

N
=

 cos θ cosψ cos θ sinψ − sin θ
cosψ sin θ sinφ− sin θ cosφ sinψ sin θ sinφ+ cos θ cosψ sinφ cos θ
cosψ sin θ cosφ+ sin θ sinφ cosφ sin θ sinψ − cosψ sinφ cos θ cosφ

 (3.7)

The angular velocity of the body frame relative to the NED frame is described using the same
series of rotations.

ω
b

ib
= Rx,−φRy,−θ

0
0

ψ̇

+ Rx,−φ

0

θ̇
0

+

φ̇0
0

=

 − sin θψ̇ + φ̇

sinφ cos θψ̇ + cosφθ̇

cosφ cos θψ̇ − sinφθ̇

=

1 0 sin θ
0 cosφ sin θ cosφ
0 − sinφ cosφ cos θ

φ̇θ̇
ψ̇

(3.8)

19

3.2 Dynamics

3.2.2 Forces
All forces acting on the hexacopter can be decomposed in three directions, x,y, and z, of the
NED frame. Beginning the force decomposition by decomposing gravity force, which is only
acting in the z-direction of the UAV, decomposed in the NED frame.

Fgravity =

 0
0
mg

 (3.9)

When the propellers of the hexacopter are rotating, they are creating a force that makes hexa-
copter fly. That force is called thrust. The thrust force is directly depended on the speed of each
propeller. Total thrust is the sum of all thrust forces produced by each propeller. Differences in
the thrust produced by each propeller yield torque around the vehicle center of mass, resulting
in rotation. The thrust force can be described as

Fthrust =

 0
0

RI
B

∑6
i=1 bΩi

 (3.10)

where b is the thrust constant in eq. 3.10.

Figure 3.3: Thrust forces and rotation of propellers

The vehicle movement in the air creates drag forces in x, y, and z-direction. A mathematical
model presenting the induced drag is,

Fdrag =

1
2
CdρV

2
xAx

1
2
CdρV

2
y Ay

1
2
CdρV

2
z Az

 (3.11)

20

3.3 Mathematical Model

where Cd is the drag coefficient, found to be 1.05 by considering the shape of the hexacopter
[29]. Ax, Ay and Az are surface areas pointing in x,y and z-direction respectively, while ρ is the
air density. V represents the air velocity in a given direction.

3.2.3 Torques
Torques are created by UAV’s rotation about its body axis. Moments about the body axis of the
UAV are created by adjusting the angular velocity of each propeller independently. Moments
in roll, pitch, and yaw can be modeled from the geometrical structure of the hexacopter, and
angular velocities of the propellers (Figure 3.3).

τφ = bl
[
− Ω2

2 + Ω2
5 +

1

2
(−Ω2

1 − Ω2
3 + Ω2

2 + Ω2
6)
]

(3.12)

τθ = bl

√
3

2
(−Ω2

1 + Ω2
3 + Ω2

4 − Ω2
6) (3.13)

τpsi = d(−Ω2
1 + Ω2

2 − Ω2
3 + Ω2

4 − Ω2
5 + Ω2

6) (3.14)

where b is the thrust constant, l is the distance from propellers to the center of gravity and d is
the drag factor.

3.3 Mathematical Model
The mathematical model of the hexacopter can be divided into two parts, translational dynamics
and rotational dynamics. Translational dynamics represent hexacopter movement along x,y and
z-axis of the inertial frame, while rotational dynamics represent rotation about x,y and z-axis
of the body frame. The frame of the landing platform is considered as the NED frame in this
project, which makes sense since all controllers, described later in the report, are designed to
minimize the error between the inertial and body frame.

21

3.3 Mathematical Model

3.3.1 Translational dynamics
Translational dynamics are modeled by considering all forces acting on the body, described in
Section 3.2.2.

ma =
∑

F = Fdrag + Fthrust + Fgravity (3.15)

which gives following translational equations of motion:

ẍ =
1

m

[
(cosφ cosψ sin θ + sinφ sinψ)(

6∑
i=1

Fi) + fdragxẋ

]
(3.16a)

ÿ =
1

m

[
(cosφ sinψ sin θ − sinφ cosψ)(

6∑
i=1

Fi) + fdragy ẏ

]
(3.16b)

ẍ =
1

m

[
(cosφ cos θ)(

6∑
i=1

Fi) + fdragz ż

]
(3.16c)

3.3.2 Rotational Dynamics
Rotational dynamics are modeled by considering all moments acting on the body, described in
Section 3.2.3.

φ̈ =
1

Jxx

[
θ̇ψ̇(Jyy − Jzz) + bl

[
− Ω2

2 + Ω2
5 +

1

2
(−Ω2

1 − Ω2
3 + Ω2

2 + Ω2
6)
]]

(3.17a)

θ̈ =
1

Jyy

[
φ̇ψ̇(Jzz − Jxx) + bl

√
3

2
(−Ω2

1 + Ω2
3 + Ω2

4 − Ω2
6)

]
(3.17b)

ψ̈ =
1

Jzz

[
φ̇θ̇(Jxx − Jyy) + d(−Ω2

1 + Ω2
2 − Ω2

3 + Ω2
4 − Ω2

5 + Ω2
6)

]
(3.17c)

Relation between control inputs and angular velocities of propellers

The system is controlled by four control inputs, u1, u2, u3 and u4. The first control input is used
to control the vertical movement of the hexacopter, while the others are controlling roll, pitch
and yaw movements, respectively.

Thrust force acting in the z-direction of the body frame is induced by the angular velocity of all
the propellers. The velocity of the vertical movement depends on the force produced by the pro-
pellers. Control input u1 directly controls thrust in body z-axis by controlling angular velocities
of the propellers. Roll, pitch, and yaw movement about body axis are obtained by combinations

22

3.3 Mathematical Model

of different angular velocities of the six propellers. Mapping between control inputs u1, u2, u3
and propellers angular velocities are presented in this section.

u1
u2
u3
u4

 =

b b b b b b
− bl

2
−bl − bl

2
bl
2

bl − bl
2

− bl
√
3

2
0 bl

√
3

2
bl
√
3

2
0 − bl

√
3

2

−d d −d d −d d

Ω2
1

Ω2
2

Ω2
3

Ω2
4

Ω2
5

Ω2
6

 (3.18)

Equation 3.18 presents control inputs as functions of the propeller velocities. By taking the
pseudo-inverse of the 4x6 matrix in (3.18), it is possible to find propeller velocities as function
of control inputs.

Ω2
1

Ω2
2

Ω2
3

Ω2
4

Ω2
5

Ω2
6

 =
1

6bl

l 2 0 − bl
d

l 1 −
√

3 bl
d

l −1 −
√

3 − bl
d

l −2 0 bl
d

l −1
√

3 − bl
d

l 1
√

3 bl
d

u1
u2
u3
u4

 (3.19)

23

3.3 Mathematical Model

Total System Equations

Model for the total system is presented by combining the translational dynamics of the system,
the rotational dynamics of the system and control inputs [30].

φ̈ =
1

Jxx

[
θ̇ψ̇(Jyy − Jzz) + bl

[
− Ω2

2 + Ω2
5 +

1

2
(−Ω2

1 − Ω2
3 + Ω2

2 + Ω2
6)
]]

=
1

Jxx

[
θ̇ψ̇(Jyy − Jzz) + u2

]
(3.20a)

θ̈ =
1

Jyy

[
φ̇ψ̇(Jzz − Jxx) + bl

√
3

2
(−Ω2

1 + Ω2
3 + Ω2

4 − Ω2
6)

]

=
1

Jyy

[
φ̇ψ̇(Jzz − Jxx) + u3

]
(3.20b)

ψ̈ =
1

Jzz

[
φ̇θ̇(Jxx − Jyy) + d(−Ω2

1 + Ω2
2 − Ω2

3 + Ω2
4 − Ω2

5 + Ω2
6)

]

=
1

Jzz

[
φ̇θ̇(Jxx − Jyy) + u4

]
(3.20c)

ẍ =
1

m

[
(cosφ cosψ sin θ + sinφ sinψ)(

6∑
i=1

Fi) + fdragxẋ

]

=
1

m

[
(cosφ cosψ sin θ + sinφ sinψ)u1 + fdragxẋ

]
(3.20d)

ÿ =
1

m

[
(cosφ sinψ sin θ − sinφ cosψ)(

6∑
i=1

Fi) + fdragy ẏ

]

=
1

m

[
(cosφ sinψ sin θ − sinφ cosψ)u1 + fdragy ẏ

]
(3.20e)

z̈ =
1

m

[
(cosφ cos θ)(

6∑
i=1

Fi) + fdragz ż

]

=
1

m

[
(cosφ cos θ)u1 + fdragz ż

]
(3.20f)

24

3.4 Wind

3.4 Wind
It is important to consider wind disturbances while creating a simulation environment. There
exist many techniques for modeling wind. Dryden gust wind model is used in this project.

Vtotal wind = Vconstant wind + Vwind gust (3.21)

Dryden gust model consists of three transfer functions, one for each wind direction (x, y, and z).
Input to the transfer functions is white noise, while the output is wind gusts. To make the model
realistic, a constant wind has to be added. Transfer functions contain three parameters. Va is the
nominal airspeed of the vehicle, which is typically 2-4 m/s for the hexacopter used in this task.
The same nominal airspeed is used in all three directions. Intensities of turbulence in each direc-
tion are represented by σx, σy and σz, and their values can be found in Table 4.1 in [17]. Lx, Ly
and Lz are representing the spatial wavelengths, their values can also be found in the same table.

Usually, the transfer function for the wind in the x-direction, which is often defined as the
forward direction of a vehicle, is a first-order transfer function, while transfer functions in y
and z directions are second-order functions. The reason is that the UAV’s usually moves with
higher velocity in the x-direction. In this project, the x-direction of the vehicle body frame is
not necessary the forward direction of the vehicle movement, therefore second-order transfer
functions will be used for wind gusts in all three directions.

Hx(s) = σx

√
3Va
Lx

(
s+ Va√

3Lx

s+ Va
Lx

)
(3.22a)

Hy(s) = σy

√
3Va
Ly

(
s+ Va√

3Ly

s+ Va
Ly

)
(3.22b)

Hz(s) = σz

√
3Va
Lz

(
s+ Va√

3Lz

s+ Va
Lz

)
(3.22c)

Wind gusts are given in body frame, according to [17], while constant winds are given in the
inertial frame. Since the whole system is modeled relative to the inertial frame, wind gusts have
to be transformed from the body to the inertial frame. Transformation is done by multiplying
wind vector with rotation matrix from (3.6).

V I
wind gust = RI

B · V B
wind gust (3.23)

25

3.5 Waves

0 50 100 150 200 250 300

Time [sec]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

V
e
lo

c
it
y
 [
m

/s
]

Wind
x

Wind
y

Wind
z

Figure 3.4: Response of the Dryden gust wind model

3.5 Waves
Waves are modeled according to chapter 8.2.6 in [28]. A linear approximation is done during
wave modeling. Waves are modeled as second-order transfer functions.

hwave(s) =
Kws

s2 + 2λω0s+ ω2
0

(3.24)

where

Kw = 2λω0σ

Parameters in (3.24) can be found by looking a Pierson-Moskowitz Spectrum (Section 3.1.4).
To create a spectra plot, which is later used to compute parameters, V19.4 has to be computed.
The formula used is,

Hs =
2.06

g2
V 2
19.4

V19.4 ≈ V20 = g ·
√

Hs

2.06

(3.25)

26

3.5 Waves

where Hs is average wave height value, depending on chosen sea state. The values of wave
height intervals of different sea states are based on Table 8.5 in [28]. Further, wave spectra is
created by slightly modifying functions from MSS toolbox.[31]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 [rad/s]

0

0.01

0.02

0.03

0.04

0.05

0.06

S
(

)
[m

2
 s

]

Pierson-Moskowitz Spectrum

Vwind @20m ASL =6.3935 [m/s]

Figure 3.5: PM spectrum for sea state 4

Figure 3.5 shows PM specter for sea state 4. The specter is further used to calculate parameters
for (3.24).

σ2 = m0 = S(w0) = Smax

σ =
√
Smax

(3.26)

Further, λ can be calculated by using Matlab command:

lscurvefit(’Slin’,0.1,\omega,S)

where Slin is a function from MSS toolbox.

Table 3.1 shows parameters found for different sea states.

27

3.5 Waves

Table 3.1: Parameters for different sea states

Sea State Kw λ ω0

1 0.00005 0.1 0.0001
2 0.998 0.1 4.99
3 1.1977 0.2604 2.3
4 0.6932 0.2567 1.3501
5 0.4719 0.2564 0.9201
6 0.3583 0.2559 0.7001
7 0.2884 0.2574 0.5601

Wave densities are assumed to be equal in all directions. One transfer function is developed for
each direction, but parameters inside functions are equal. A constant value is added in all three
directions, representing current.

0 20 40 60 80 100 120 140 160 180

time [s]

-0.4

-0.2

0

0.2

0.4

V
e
lo

c
it
y
 [
m

/s
]

Wave velocity

0 20 40 60 80 100 120 140 160 180

time [s]

-1.5

-1

-0.5

0

0.5

P
o
s
it
io

n
 [
m

]

Wave position

Figure 3.6: Wave response in x-direction for sea state = 4

Figure 3.6 shows response of wave simulation for sea state = 4.

28

Chapter 4
Control

4.1 Theory

4.1.1 PID
The Proportional Integral Derivative (PID) controller is one of the most applied control algo-
rithms today. In fact, more than 95 % of the process control loops today are using the PID type
control [32].
The control algorithm itself is based on the feedback control. The error between the actual value
and the desired value is the input of the control algorithm. The error value then goes through
three different parts of the control algorithm, that contribute to the output signal (Figure 4.1),
each part having its own characteristic. Following three parts constitute the PID algorithm,

Proportional The proportional part of the algorithm multiplies error value with a pre-tuned
parameter Kp, trying to remove the error. It is common to only use the proportional part of the
PID algorithm as an own controller. Such controllers are called P-controllers.

Integral The working principle of the integral part of the PID algorithm is summing up error
values over time in order to remove the stationary offset. The summed up error is multiplied
by the pre-tuned parameter Ki. Using an integral part alone in a control algorithm is not that
common, but combinations like PI and PID are widely used today.

Derivative The derivative part of the algorithm calculates error slope, based on the derivative
of the error value. The derivative of the error value is multiplied with the pre-tuned parameter
Kd, in order to remove the error. Common combinations of the control algorithm where the
derivative part is used are PD and PID.

U = Kp · e(t)Ki

t∫
0

e(t) dt+Kd ·
de(t)

dt
(4.1)

As all three mentioned parts are contributing to the control signal (4.1), it is important to find a
balance that gives the desired control signal. The desired balance can be found by tuning Kp,

29

4.1 Theory

Ki and Kd parameters. There exist many tuning methods designed to find the perfect parameter
values [32]. Two tuning methods worth mentioning are Ziegler-Nichols and Cohen-Coon, as
their use is the most prevalent today. Still, finding the perfect parameter values is a difficult
accomplishment, and the process often ends as a trial and error approach.

Figure 4.1: PID block diagram

4.1.2 Ziegler-Nichols Tuning Method
The Ziegler-Nichols tuning method is a method used to tune a PID controller (Section 4.1.1). It
gives a suggestion of tuning parameters based on the critical gain and the critical period. The
critical gain Kc is the lowest proportional gain that gives oscillations that do not get damped
out with time. The critical period Tc is the period of the oscillations. After the parameters are
found, Table 4.1 is used to find a suggestion to the tuning parameters of the controller. There is
often a need for adjustments of the parameters found using the Zeigler-Nichols table.

Table 4.1: Ziegler - Nichols table

Controller type Kp Ki Kd

P 0.5Kc

PI 0.45Kc 0.54Kc/Tc
PD 0.8Kc KcTc/10
PID 0.6Kc 1.2Kc/Tc 3KcTc/40

PID - some overshoot Kc/3 0.66Kc/Tc KcTc/10
PID - no overshoot 0.5Kc 0.4Kc/Tc KcTc/15

Ziegler-Nichols tuning method in steps:

1. Turn off the integral and derivative part of the controller.

2. Increase the proportional gain till the response signal is oscillating with oscillations that
do not damp. The proportional gain that gives such oscillations is called critical gain Kc.

3. Measure the period of the oscillations and find Tc.

4. Use Table 4.1 and find a suggestion to controller gains.

5. Adjust the gains.

30

4.2 Method

4.2 Method

4.2.1 Altitude Controller
As mentioned in Section 2.1, controllers are designed to calculate velocity control commands.
The altitude PID controller uses altitude error as input, and calculates desired velocity in z-
direction of the NED frame (Section 3.1.1). The transformation between the NED and the
vehicle body-frame is done by the ArduPilot software (Section 2.1.4). The control algorithm
for the altitude PID controller is presented in (4.2).

uz = Kpzez(t) +Kdz ė(t) +Kiz

T∫
0

ez(t)dt (4.2)

where

ez(t) = zd − z

Values of tuning parameters Kpz, Kiz and Kdz are shown later in the report.

4.2.2 Horizontal Controllers
In order to perform a successful landing, it is important to hold a satisfying horizontal position
relative to the landing target. The horizontal control system is divided into two controllers, one
for each horizontal direction, x and y. Like altitude controller (Section 4.2.1), the horizontal
controllers also calculates desired control velocity (Section 2.1).

The control design for x and y controller are equal, with variations in the tuning parameters.
The control design is also similar to the PID controller from Section 4.1.1, with the difference
being the input of the derivative part of the controller.

As the target (landing platform) velocity is known, it will improve the result including the ve-
locity into the control algorithm. Therefore, horizontal controllers are designed to use error
between vehicle velocity and desired velocity as input to the derivative part of the PID con-
troller instead of position error derivative used in (4.1) and (4.2).

Also, a velocity feedforward is added to the controllers, with target velocity being the fed sig-
nal. The purpose of the velocity feedforward is to get a faster response, especially in direction
changes. Equation 4.3 shows the PID algorithm used for the horizontal controllers mathemati-
cally.

ux = Kpx(xd − x) +Kix

∫
(xd − x)dt+Kdx(vxd − vx) + vx (4.3)

31

4.2 Method

From (4.3) it can be noticed that the derivative part of the horizontal controllers actually is a
velocity P controller added to the PI position controller (Section 4.1.1). The equation for the y
direction controller is equal (4.3) with index being the only difference.

Figure 4.2: PID block diagram using velocity feedback

4.2.3 Filter
To provide a smooth reference input to the altitude controller, a wave filter is designed. The idea
with the filter is to only provide the significant changes in wave height to the altitude controller,
and damp put the small changes. Damping out small waves will lead to the altitude controller
reference without many oscillations.

The filter is designed as a first-order low-pass filter, because the large waves have a lower fre-
quency than the small waves. A first-order low-pass filter is passing frequencies lower than a
specific frequency, and damping frequencies higher than the same specific frequency. The spe-
cific frequency is called the cutoff frequency. To find the cutoff frequency, frequency specters
from all sea states described in Section 3.5 are used. The frequency specters are presented
in Figure 4.3. The frequency spectras are computed using the Fourier transform function in
Matlab. It is worth mentioning that the frequency specters are obtained by looking at wave
frequencies. Heave frequencies for a ship will look slightly different, as the ship will not follow
every wave movement. The problem is discussed later in the report.

32

4.2 Method

-0.1 -0.05 0 0.05 0.1

Frequency (in hertz)

0

1

2

M
a
g
n
it
u
d
e

10
-4 Seastate 1

-0.1 -0.05 0 0.05 0.1

Frequency (in hertz)

0

0.05

0.1

M
a
g
n
it
u
d
e

Seastate 2

-0.1 -0.05 0 0.05 0.1

Frequency (in hertz)

0

0.2

0.4

0.6

0.8

M
a
g
n
it
u
d
e

Seastate 3

-0.1 -0.05 0 0.05 0.1

Frequency (in hertz)

0

0.2

0.4

0.6

0.8

M
a
g
n
it
u
d
e

Seastate 4

-0.1 -0.05 0 0.05 0.1

Frequency (in hertz)

0

0.5

1

M
a
g
n
it
u
d
e

Seastate 5

-0.1 -0.05 0 0.05 0.1

Frequency (in hertz)

0

0.5

1

1.5

M
a
g
n
it
u
d
e

Seastate 6

Figure 4.3: Frequency spectras of different sea states

By studying the frequency spectra from Figure 4.3, the desired cutoff frequency is found to be
f = 0.38 Hz.

The standard transfer function for a low-pass filter is:

Hfilter(s) =
1

Ts+ 1
(4.4)

Inserting the cutoff frequency found by investigating Figure 4.3:

Hfilter(s) =
1

1
f
s+ 1

=
1

2.63s+ 1
(4.5)

Equation (4.5) implies that all frequencies lower than 0.38Hz will pass through the filter, while
higher frequencies will be damped by the filter. A frequency diagram of the filter is presented
in Figure 4.4.

33

4.2 Method

-30

-25

-20

-15

-10

-5

0

M
a
g
n
it
u
d
e
 (

d
B

)

10
-2

10
-1

10
0

10
1

-90

-60

-30

0

P
h
a
s
e
 (

d
e
g
)

Bode Diagram

Frequency (rad/s)

Figure 4.4: Bode diagram of the low-pass filter

34

Chapter 5
Implementation

The implementation part of this project can be divided into two parts. The first part is set up
and configuration of the hardware described in Section 2.2, while the second part is the imple-
mentation of the control systems and the simulation environment set up in DUNE.

There exist a wiki web site developed by students associated with the UAV lab at the NTNU
[33], with the purpose to help a beginner to prepare their UAV for field testing and set up a
simulation environment. The web site contains elaborated set up and configuration guides for
every hardware component needed to perform the field tests. The elaborated guides from the
web site are used to set up all parts of the system listed up in Section 2.

When it comes to the implementation of the control system and the simulation environment,
everything is done by editing and adding tasks to the already existing DUNE system (Sec-
tion 2.1.1). As the programming language in DUNE is C++, all the implemented code in this
project is written in the named language. Of course, the configuration files in DUNE are mod-
ified during the implementation, in order to add new tasks to the system (see Section 2.1.1 for
explanation).

5.1 Simulation
The whole landing task is about the UAV’s ability to track platforms horizontal position, at the
same time as it moves safely downwards. To simulate and design algorithms for the landing
process, several parts have to be implemented in DUNE.

35

5.1 Simulation

5.1.1 System
Roughly, the simulation environment for the landing process has to contain:

• UAV movement simulation

• Platform movement simulation

• Wind disturbances acting on the UAV

• Wave disturbances acting on the landing platform

• Communication between the landing platform and the UAV

There exist an additional file package to DUNE, developed by NTNU, that contains simulation
packages for several vehicles. Simulation packages for 4 hexacopters are developed. There also
exist 4 configuration files, one for each hexacopter, that are including all necessary DUNE tasks
to simulate the movement of the hexacopter (Section 2.1.1). The configuration files are named
after the pre-assigned number of the given hexacopter, ntnu-hexa-00x.

The configuration files are including tasks that are considering all forces and torques acting on
the UAV, described in Section 3.2. Therefore, there is no need for implementing new files for
the vehicle model.

The landing platform is supposed to be located on a ship. There exist files for ship simulations as
well in the named addition package for DUNE. Still, much time at the beginning of the project
was spent on getting a better knowledge of the UAV simulation files, while files for ship sim-
ulation were overlooked. Besides, a communication system for coordinate flight is developed
at the UAVlab, focusing on relative positioning between several hexacopters. It is working in
the way that one hexacopter is assigned the master role, and the others are assigned slave roles.
UAV assigned the master role gets it’s position through ArduPilot and IMC::EstimatedState
messages, as described in Section 2.3. On the other hand, UAVs assigned the slave role are
getting their position relative to the master UAV through IMC::EstimatedLocalState message.

For a simulation, the only thing that is necessary to know is the UAV position relative to another
object representing the landing platform. The object representing the landing platform does not
necessarily have to be a ship, as long it represents ship motion properly. Therefore, simulation
files for a hexacopter are utilized in order to simulate the landing platform, meaning that a hex-
acopter is actually landing on another hexacopter in the simulations. Another reason for using
hexacopter files to simulate the landing platform is that the already developed communication
system for coordinated flights can be utilized for communication between the "platform" and
the UAV. In the communication system, the UAV simulating the landing platform is assigned
the master role and the UAV assigned the slave role will search for the zero position relative to
the master.

36

5.1 Simulation

5.1.2 Wind
To make the simulation as realistic as possible, environmental disturbances have to be added to
the system. The wind is the disturbance having the most impact on a UAV in the air. The wind
disturbance, modeled as described in Section 3.4, is implemented by developing own DUNE
task for wind simulation. The task is developed in C++ and included in the configuration file of
the UAV.

PM wind model requires Gaussian white noise as input. In the specialization project, there
exist own blocks in Simulink for white noise generation. For this project, the random number
function from C++ is assumed to be good enough for white noise recreation.

Wind model from Section 3.4 is estimating wind gusts by sending white noise through a transfer
function. Transfer functions are easy to implement in Matlab, simply by using already existing
transfer function blocks. The implementation procedure is more difficult in C++. To implement
the model, the transfer function has to be transformed into a state-space model.
Transfer function from (3.22):

H(s) =
y(s)

u(s)
= σ

√
3V

L

s+ V
L
√
3

(s+ V
L

)2
(5.1a)

= K
s+ a

(s+ b)2
(5.1b)

= K
s+ a

s2 + 2bs+ b2

/
· x(s)

x(s)
(5.1c)

= K
(s+ a)x(s)

(s2 + 2bs+ b2)x(s)
(5.1d)

where

K = σ

√
3V

L
, a =

V

L
√

3
, b =

V

L

Separating numerator and denominator.

y(s) = K(s+ a)x(s) (5.2)
= Kx(s) · s+Kax(s)

Calculating the inverse Laplace of (5.2).

y(t) = Kẋ+ ax (5.3)

37

5.1 Simulation

The same procedure is done for the denominator.

u(s) = (s2 + 2bs+ b2)x(s) (5.4)
= x(s) · s2 + 2bx(s) · s+ b2x(s) (5.5)

Calculating the inverse Laplace of equation (5.4).

u(t) = ẍ+ 2bẋ+ b2x (5.6)

Using (5.3) and (5.6) and transforming to state space equations where x1 = x and x2 = ẋ.

ẋ1 = x2 (5.7a)
ẋ2 = u− 2bx2 − b2x1 (5.7b)
y = Kx2 + a (5.7c)

Signal u is the Gaussian white noise signal, implemented by using a random number generator
in C++.

Equation 5.7 is described in continuous time. In order to implement the state-space equations
in C++, the equations have to be discretized. There exist many discretization methods, with
varying precision and complexity. Forward Euler method, described in Appendix A, is chosen
because of its low complexity and satisfying precision for this case.

Discretizing (5.7) by the approach described in Appendix A and getting the discrete state-space
equation.

x1[k + 1] = x2[k]h+ x1[k] (5.8)
x2[k + 1] = h(u− 2bx2[k]− b2x1[k]) + x2[k] (5.9)

y[k] = Kx2[k] + a (5.10)

Start values x1[0] and x2[0] are assumed to equal zero.

Equation 5.10 is generating estimated wind gust velocities in three directions of the vehicle
body frame (Section 3.1.1). The velocities are then transformed to the inertial frame (Section
3.1.1). After transformation to the inertial frame, constant velocities in all three directions are
added, to get a realistic wind model.

38

5.1 Simulation

Then, the complete wind velocity estimate in NED frame is integrated, to get the position in the
same frame. The integration is implemented by simply multiplying velocity value with the time
difference between steps, and adding the calculated value to the previous integrated value.

p o s i t i o n += v e l o c i t y ∗ d t

The position in the inertial frame is further transformed to the geodetic frame. As described in
Section 2.1.1, IMC::EstimatedState message is sending position information in geodetic coor-
dinate frame. That is the reason why the estimated wind is transformed to the geodetic frame.
After the transformation, the wind estimate is dispatched to IMC::EstimatedWind message. The
message is then consumed by the task responsible for the generation of the IMC::EstimatedState
message. The wind implementation to the whole system is done simply just by adding content
from the IMC::EstimatedWind message to the IMC::EstimatedState message, and sending it to
the whole system.

5.1.3 Waves
Wave disturbances are important to include in order to make a simulation for the landing plat-
form as realistic as possible. The implementation of wave disturbances is done in the same way
as the implementation of wind disturbances (Section 5.1.2). That means that an own DUNE
task (Section 2.1.1) is developed to estimate wave disturbances. Like the task estimating wind
disturbances, task estimating wave disturbances is written in C++.

The principle for modeling wave disturbances is explained in Section 3.5. It is based on a Gaus-
sian white noise going through a transfer function (filter), giving wave disturbances as output.
Gaussian white noise is implemented in the same way as described in Section 5.1.2.

First, the transfer function from (3.24) is transformed to state-space equations, in order to im-
plement in C++.

H(s) =
y(s)

u(s)
=

Kws

s2 + 2λω0s+ ω2
0

/
· x(s)

x(s)
(5.11a)

=
Kwsx(s)

(s2 + 2λω0s+ ω2
0)x(s)

(5.11b)

where

Kw = 2λω0σ

Separating numerator and denominator in order to perform the Laplace transform.

y(s) = Kwsx(s) (5.12)

39

5.1 Simulation

Inverse Laplace of (5.12) gives:

y(t) = Kwẋ (5.13)

Same procedure for the denominator:

u(s) = (s2 + 2λω0s+ ω2
0)x(s) (5.14)

= s2x(s) + 2λω0sx(s) + ω2
0x(s) (5.15)

Inverse Laplace of (5.14) gives:

u(t) = ẍ+ 2λω0ẋ+ ω2
0x (5.16)

Using (5.13) and (5.16) and transforming to state-space equations where x1 = x and x2 = ẋ.

ẋ1 = x2 (5.17a)
ẋ2 = u− 2λω0x2 − ω2

0x1 (5.17b)
y = Kwx2 (5.17c)

where u is the white noise signal generated using random number function in C++.

Like (5.7), (5.17) has to be discretized before implementation in C++. Discretizing by the
approach described in Appendix A and getting the discrete state-space equation.

x1[k + 1] = hx2[k] + x1[k] (5.18)
x2[k + 1] = h(u− 2λω0x2[k]− ω2

0x1[k]) + x2[k] (5.19)
y[k] = Kwx2[k] (5.20)

Start values are assumed equal zero.

The estimated wave velocities in x,y and z directions are added to IMC::EstimatedState mes-
sages the same way as wind velocities, shown in Section 5.1.2. Drifting currents are also added,
to make the simulation as realistic as possible. One difference from Section 5.1.2 is that wave
velocities are modeled in the inertial frame, meaning that they are directly transformed to geode-
tic coordinate frame according to the approach shown in Section 3.1.1. The wave contribution is

40

5.2 Filter

transported inside IMC::EstimatedWave message, and added to the IMC::EstimatedState mes-
sage of the hexacopter simulating the landing platform.

Table 3.1 shows the parameters of different sea states, depending on how rough weather con-
ditions one wants to simulate. Sea states are implemented as DUNE task arguments. Shortly
explained, task arguments are variables that can be changed through task execution. They are
also displayed in Neptus (2.1.3), and can be changed during task monitoring. This is useful for
simulations that are supposed to test robustness through different weather conditions. Figure
5.1 shows how the sea states can be changed in Neptus.

Figure 5.1: Sea state changes in Neptus

5.2 Filter
The filter is implemented as a function at the beginning of the control algorithm task. As the
filter function is a transfer function, it has to be transformed into state-space in order to be im-
plemented.

H(s) =
y(s)

u(s)
=

1

Ts+ 1

/
· x(s)

x(s)
(5.21)

=
x(s)

(Ts+ 1)x(s)
(5.22)

Separating denominator and numerator.

y(s) = x(s) (5.23)
y(t) = x(t) (5.24)

u(s) = (Ts+ 1)x(s) (5.25)
= Tsx(s) + x(s) (5.26)

The inverse Laplace of (5.25) is:

u(t) = T ẋ+ x (5.27)

41

5.3 Controllers

The state-space equation made from (5.23) and 5.27 is:

ẋ =
1

T
(u− x) (5.28)

y = x (5.29)

Discretizing (5.28) in order to implement in C++. Using approach described in Appendix A to
get the final, discrete functions.

x[k + 1] =
h

T
(u[k]− x[k]) + x[k] (5.30)

y[k] = x[k] (5.31)

5.3 Controllers
The velocity controllers for all three directions are implemented as one task, and included to
the hexacopter configuration file. The psaudocode of the PID controller is presented in Algo-
rithm 1. The controller uses IMC::EstimatedLocalState message as the signal feedback. The
IMC::EstimatedLocalState messages provides geodetic position of the other vehicle in the sys-
tem, which is considered as the target in simulations (Section 2.3.1). Eigen library in C++ [34]
is used to translate the geodetic position to the inertial frame. The translation algorithm requires
a reference in order to translate geodetic position to the NED frame. The reference input to the
algorithm is the geodetic position of the target, meaning that the position feedback of the PID
controller is error in the NED frame relative to the target. Velocity input to the PID algorithm
is taken directly from IMC::EstimatedLocalState, as it provides the velocity messages directly
in the NED frame.

Set tuning parameters: Kp, Ki and Kd ;
Set saturation values: satmin and satmax ;

dt = current time - time measured previous time step ;

position error = target position - UAV position ;
velocity error = target velocity - UAV velocity ;

control output = Kp · position error + Ki · position error · dt + Kd · velocity error ;

if control output > satmax then
control output = satmax ;

end
else if control output < satmin then

control output = satmin ;
end

Algorithm 1: PID controller
The control task is designed to first compute the output of the x-controller, second from the
y-controller, and the output of the altitude controller at the end. All outputs are dispatched to-
gether in the IMC::DesiredVelocity message. The message is further consumed by the task that
communicates with the ArduPilot, and sent to the ArduPilot through MAVLink.

42

5.4 Landing Algorithms

The tuning parameters and the desired position are implemented as task arguments of the land-
ing controller task. That allows the user to change parameters during the flight, making in-flight
tuning process easy. Figure 5.2 shows where the parameters can be changed in Neptus during a
flight.

Figure 5.2: Change of tuning parameters in Neptus

5.4 Landing Algorithms
The idea of a state machine is continued from the specialization project. The state machine
in this project is simplified compared to the main idea in the specialization project. The main
reason for the simplification is that the state machine in the preparation project had too many
states and rules, resulting in many landings aborted unnecessary.

5.4.1 Boundaries
The state machine works on the principle that the controller always sees imaginary boundaries.
The boundaries are formed by two imaginary cylinders. The large cylinder is extending straight
up from the center of the platform, while the small cylinder lays inside the large cylinder, start-
ing 2m above the platform and ending 4m above the platform. The diameter of both cylinders is
sat to be 3m, because of the platform size explained in Section 6.3.2. Both cylinders are shown
in Figure 5.3.

43

5.4 Landing Algorithms

Figure 5.3: Boundaries reprensented by cylinders

The height of the largest cylinder is 15m, which is set to be the hover height. Boundaries of
the red cylinder in Figure 5.3 are not strict, and can be violated during a landing, as long as
the UAV manages to stay within the boundaries when entering the height of the blue cylinder.
On the other hand, the boundaries of the blue cylinder are strict and can not be violated when
performing a landing. Violation of the horizontal boundaries of the blue cylinder results in an
aborted landing.

44

5.4 Landing Algorithms

5.4.2 Landing Permission
It is important to make sure that the platform is not moving towards the vehicle when the land-
ing is performed. Landing on a platform moving towards the vehicle can cause damages to the
vehicle. Such movement is mainly caused by the waves. An algorithm is developed, to make
sure that the landing can be performed without risking any damages.

Flow chart of the algorithm can be found in Appendix C.

The algorithm is activated when the vehicle starts the landing operation. The working principle
of the algorithm is that it takes four measurements of the platform height. There is one second
delay between every measurement. To give landing permission to the vehicle, the algorithm cal-
culates if the second measurement has a value lower than first measurement + 0.2. Explained,
the algorithm checks if the second measured platform height has moved more than 0.2m over
the first measured platform height. If that statement is true, the algorithm waits one second and
takes the third measurement. On the other hand, if the statement is false, the algorithm moves
back and takes the first measurement again. That means that the algorithm allows platform
movement towards the vehicle up to 0.2m/s. A consideration is made, implying that upwards
velocities up to 0.2 m/s are harmless for the vehicle. For second platform height measurements
lower than the first platform height measurements, the algorithm goes further to the third mea-
surement.

When the algorithm takes the third platform height measurement, the same requirements has to
be fulfilled between third and second measurement as for the first and second measurements. If
requirements are fulfilled, the algorithm goes further to the fourth measurement. For third height
measurements that do not fulfill requirements, the algorithm goes back to the first measurement.

The same requirements are set for the height difference between the fourth and the third mea-
surement. The only difference is that the landing permission is finally given after the fourth
measurement. After given permission, the algorithm starts over again. Once requirements be-
tween two measurements are not fulfilled, the landing permission is removed.

45

5.4 Landing Algorithms

0 50 100 150 200 250

Time [sec]

-0.5

0

0.5

1

1.5

2

2.5

H
e
ig

h
t
[m

]
Target height

Landing permission flag

Figure 5.4: Landing permission algorithm performance during a simulation

Figure 5.4 shows landing permissions for a 200 sec simulation on sea state 4. It can be seen that
the landing permission is given at reasonable times. Still, there are some points where the target
height starts to curve upwards right after the landing permission is given, meaning that there is
one second where the landing permission is given and it is dangerous to perform a landing at
the same time. The problem will be discussed later in the report.

5.4.3 State Machine
A state machine is developed in order to handle the errors during a landing efficiently, depended
on the error size and effect. The state machine is designed to have four different states, that the
vehicle has to go through during a landing. Every state has it’s requirements for entrance, and
own error handling. When an error occurs, the vehicle is sent back to the previous state, de-
pending on the error handling designed for the state the error happened. The states are designed
as follows:

46

5.4 Landing Algorithms

State 1 - when inside this state, the vehicle is just waiting for the land command. The altitude
controller is holding the position 15m above the target, using the wave filter (Section 6.4).
The wave filter is used because it is unnecessary for the vehicle to follow every single wave
movement in the z-direction, making it easier for the altitude controller to follow a smooth,
filtered reference. The horizontal controllers still have to follow every movement, because of
the importance of the vehicle being as close to the target as possible in the horizontal plane.
Once the land signal is given by the user, the vehicle starts the landing procedure, and the next
state is entered.

State 2 - the state where the first descent happens. The descent velocity in this state is set
to 1 m/s. The descent velocity value could possibly be changed to a higher value, but to make
the landing as safe and controlled as possible 1 m/s is chosen. State 2 lasts from the moment
the landing signal is given until the moment the vehicle enters the blue cylinder in Figure 5.3.
Because the vehicle is in State 2 when the altitude relative to the target is higher than 4m, the
filtered reference signal for the altitude controller is used. While in State 2, the state machine
counts the time the vehicle is inside the horizontal boundaries of the red cylinder in Figure 5.3.
If the sate machine counts 3 seconds outside the horizontal boundaries of the red cylinder, the
state machine sends the vehicle back to State 1. Before reaching the height of 4m above the
target, the vehicle has to stay 3 continuous seconds inside the red cylinder to enter State 3. If
the landing flag is turned off by the user, the state machine sends the vehicle back to State 1
automatically.

State 3 - this is the state where the vehicle waits for the land permission signal by the algo-
rithm described in Section 5.4.2. The boundaries of this state are presented by the blue cylinder
in Figure 5.3. When entering State 3, the descent velocity changes to 0.3 m/s. Such low descent
velocity is chosen to give the land permission algorithm time to send the permission signal. The
descent velocity only holds until the altitude of 2m above the target is reached. Once the 2m
altitude is reached, the altitude controller turns on, with 2m being the reference altitude. Also,
the wave filter is turned off in this state. Being so close to the target requires strict following
of every wave movement. If the vehicle violates horizontal boundaries of the blue cylinder in
Figure 5.3, the state machine sends the vehicle back to State 3. If the land flag is turned off by
the user, the vehicle gets sent back to State 1. To enter the next state, the permission signal is
needed from the algorithm described in Section 5.4.

State 4 - when entering this state, there is no way back. The descent velocity is set to 0.1 m/s
and the landing is performed.

Figure 5.4 shows how the state machine changes state in different situations.

47

5.4 Landing Algorithms

0 50 100 150 200 250 300 350
0

50

100

3D plot landing

Target

UAV

0 50 100 150 200 250 300 350
0

5
Total horizontal error

Error

0 50 100 150 200 250 300 350
1

2

3

4
State machine output

State

0 50 100 150 200 250 300 350
0

0.5

1
Land permission

Land permission

0 50 100 150 200 250 300 350
0

0.5

1
Land flag

Flag

Figure 5.5: State machine performance during a simulation

48

Chapter 6
Simulation

6.1 Software in the Loop
The SIL simulation means that hardware components in a system are simulated by several
software in loop. In the specific case of this project, there exist one task in DUNE for every
hardware component on the real-life UAV. Running all existing software together, in a loop, a
simulation system of the real-life UAV can be created. The advantage of such a system is the
ability to run the tests without being afraid of damaging any components.

SIL can be achieved by running several configuration files in the Linux terminal. When the con-
figuration files are running, different parts of the systems are sharing information, and a larger
system is formed (see Section 2.3). The way the simulator is built in this project requires the
execution of four different terminal commands in order to set up a full simulation system.

1. sim_vehicle.py -I0 -l LOCATION - this is a command for execution of the ArduPilot
simulation software. The ArduPilot simulation software is communicating with DUNE
through a TCP connection (Section 2.3). The instance number and the location has to
be included in the execution command as well. The instance number is important when
several TCP ports are used, which is the case when simulating several vehicles. Every
instance is listening to a specific TCP port. The location can be set by writing geodetic
coordinates of the desired location.

2. sim_vehicle.py -I2 -l LOCATION - same command as above, with the only difference
being the instance number. In this project, ntnu-hexa-004 is communicating with ArduPi-
lot as instance 0, while ntnu-hexa-003 is communication as instance 2. This is of course
just configuration settings, and can be changed any time.

3. ./dune -c ntnu-hexa-003 -p AP-SIL - execution command for the ntnu-hexa-003 config-
uration files. This vehicle is simulating the landing platform (Section 5.1).

4. ./dune -c ntnu-hexa-004 -p AP-SIL - execution command for the ntnu-hexa-004 config-
uration files. This vehicle is simulating the actual UAV in the system.

49

6.2 Tuning

Figure 6.1: Four terminals running SIL

6.2 Tuning

6.2.1 Altitude Controller
The altitude controller is tuned using the Ziegler-Nichols tuning method, described in Section
4.1.2. In the first step, both the integral part and the derivative part of the controller are set to
zero, to find the critical gain of the proportional part that gives standing oscillations. The criti-
cal gain found to give standing oscillations is Kc = 2.9. The first subplot in Figure 6.2 shows
the response of the standing oscillations. The critical period of the oscillations is found to be
Tk = 5.2 sec.

Further, Table 4.1 is used to find possible tuning parameters for the altitude controller. The
possible parameters are listed in Table 6.2.1.

Table 6.1: Altitude controller parameters found by Ziegler-Nichols tuning approach

No overshoot Some overshoot
Kp 0.97 0.58
Ki 0.22 0.37
Kd 1.01 1.51

It is more important having an accurate altitude controller, than having a controller giving fast
response. Therefore, tuning variables from Table 6.2.1 giving a response with no overshoot
are chosen for further tuning. Still, an overshoot was hard to avoid just by tuning controller
parameters. Table 6.2 shows final variables found for the altitude controller. The response of
the final tuning variables is represented in the second subplot in Figure 6.2.

50

6.2 Tuning

Table 6.2: Final tuning parameters altitude controller

Parameter Value
Kp 1.3
Ki 0.3
Kd 0.7

0 20 40 60 80 100 120

Time [sec]

-10

0

10

20

30

40

50

Critical values z-controller, K
c
 = 2.9

Response

Controller output

Setpoint

0 5 10 15 20 25 30 35 40 45

Time [sec]

-5

0

5

10

15

20

25

30

35

Tuned altitude controller, K
p
 = 1.3, K

i
 = 0.3, K

d
 = 0.7

Response

Controller output

Setpoint

Figure 6.2: Tuning of altitude controller

Overshoot can be noticed in the response represented in Figure 6.2. To remove the overshoot,
anti-windup is implemented to the altitude controller. The wind-up, or overshoot, occurs when
the integral term of the PID controller (Section 4.1.1) contributes to a higher output than the
physical system can provide (Section 6.3). To prevent the wind-up, one can feedback signal to
the integrator as soon as it starts to saturate. The anti-windup block diagram is shown in Figure
6.3.

51

6.2 Tuning

Figure 6.3: Anti wind-up block diagram

The signal feedback is preventing the integrator from providing a higher output than allowed
in the system. The important part when implementing anti-windup is knowing the exact limits
of the system. Limitations of the system used in this project are investigated, and represented
in Table 6.7. The controller response after the anti-windup implementation is represented in
Figure 6.4.

0 10 20 30 40 50 60 70

Time [sec]

-5

0

5

10

15

20

25

30

35
Tuned altitude controller - anti wind-up

Response

Controller output

Setpoint

Figure 6.4: Altitude controller with anti-windup implemented

52

6.2 Tuning

6.2.2 Horizontal Controllers
The horizontal controllers are tuned separately, giving one set of tuning variables for each hor-
izontal direction. Like for the altitude controller, the Ziegler-Nichols method is used to find a
suggestion for the values of the tuning parameters. In the specialization project, the horizontal
controllers were tuned with two sets of parameters. One set was resulting in an aggressive re-
sponse, while the other set was resulting in a slow, but a more robust response. The idea was
to use the slow parameters while hovering and the aggressive parameters when getting closer
to the target. That idea is not used in this project. The reason is too uncertain behavior when
switching between controllers. Therefore, the horizontal controllers are only be tuned with one
set of parameters each.

For the x-direction controller, the critical oscillations were triggered by the critical gain Kc =
1.8. The response is shown in the first subplot of Figure 6.5. The critical period of the critical
oscillations is Tc = 7.2 sec.

0 20 40 60 80 100 120 140

Time [sec]

-10

-5

0

5

10
Critical values x-controller

Response

Controller output

Setpoint

0 10 20 30 40 50 60 70

Time [sec]

-2

0

2

4

6

8

10

12

14

Tuned x-controller, K
p
 = 0.87, K

i
 = 0.06, K

d
 = 0.79

Response

Controller output

Setpoint

Figure 6.5: Tuning x-direction controller

Table 4.1 is used to find suggestions for the controller parameters.

53

6.2 Tuning

Table 6.3: X-direction controller parameters found by Ziegler-Nichols tuning approach

No overshoot Some overshoot
Kp 0.36 1.08
Ki 0.1 0.3
Kd 0.86 0.97

The final tuning parameters are found by a mix between suggestions for the parameters sup-
posed to give a response with some overshoot, and the parameters supposed to give response
without overshoot. The mix is chosen because the horizontal controllers have to respond fast
to wind gusts and sudden wave occurrences. At the same time, the overshoot has to be limited
such that the UAV does not drift far away from the target. The final parameters are listed in
Table 6.4.

Table 6.4: Final tuning parameters x-direction controller

Parameter Value
Kp 0.87
Ki 0.06
Kd 0.79

The response of the parameters from Table 6.4 is presented in the second subplot of Figure
6.5. An overshoot can be noticed in the response. The maximal value of the overshoot is 30%
above the desired value. It was not possible to implement an anti-windup solution to remove the
overshoot, because the controller output never saturates. One has to keep in mind that the step
response presented in Figure 6.5 is from 0 to 10 meters. Such large responses will not occur
in real life. Still, the overshoot can represent a problem in some cases, and a different tuning
approach may be necessary.

The y-direction controller is tuned using the same approach as the x-direction controller. Be-
cause of similar equations of motion of the horizontal directions (3.20), tuning parameters were
expected to be similar for the horizontal directions. The critical oscillations for the y-direction
controller were triggered by the critical gain Kc = 1.62. The oscillations are presented in the
first subplot of Figure 6.6.

54

6.2 Tuning

0 20 40 60 80 100 120 140 160 180 200
-4

-2

0

2

4

6

8

10

12

T
im

e
 [
s
e
c
]

Critical values y-controller

Response

Controller output

Setpoint

0 10 20 30 40 50 60 70 80 90
-10

-5

0

5

10

15

20

T
im

e
 [
s
e
c
]

Tuned y-controller, K
p
 = 0.92, K

i
 = 0.05, K

d
 = 0.75

Response

Controller output

Setpoint

Figure 6.6: Tuning y-direction controller

Suggestions for tuning variables are listed in Table 6.5.

Table 6.5: Y-direction controller parameters found by Ziegler-Nichols tuning approach

No overshoot Some overshoot
Kp 0.36 1.08
Ki 0.1 0.3
Kd 0.86 0.97

The same requirements as for the x-direction holds for the y-direction. A mix of the suggested
variables is used to find the final values, which are listed in Table 6.6.

Table 6.6: Final tuning parameters y-direction controller

Parameter Value
Kp 0.92
Ki 0.05
Kd 0.75

The response of tuning parameters from Table 6.6 is presented in the second subplot of Figure
6.6. Comparing to response of the x-controller (Figure 6.5), the y controller oscillates more, but
has a faster response.

55

6.3 Limitations

6.3 Limitations

6.3.1 Velocities
Velocity limitations of the hexarotor (Section 2.2.1) are investigated by the Norwegian Defence
Research Establishment [20] and the parameters found are presented in Table 6.7.

Table 6.7: Velocity limitations of the hexarotor

Max ascent velocity 4 m/s
Max descent velocity 2.5 m/s
Max flight velocity 10 m/s

Horizontal velocity limitations from Table 6.7 are used in this project, while the vertical lim-
itations are decreased, to get better vehicle control during the landing process. The vertical
velocity limitations used in this task are presented in Table 6.8.

Table 6.8: Decreased vertical velocity limitations

Max ascent velocity 4 m/s
Max descent velocity 2.5 m/s

6.3.2 Platform Size
One of the parts of the project was to find the necessary size of the landing platform, based
on the simulation results of the controllers. The preferred size of the landing platform is as
small as possible. In order to find the minimum requirement for the landing platform size, total
horizontal error during the simulations is investigated closer. A collection of horizontal errors
during simulations is presented in Figure 6.7. Simulations in Figure 6.7 are simulated with 4
m/s constant wind speed, and sea state 4.

56

6.3 Limitations

0 50 100 150 200 250

Time [sec]

0

1

2

3

4

5

6

7

8

D
is

ta
n
c
e
 [
m

]

Simulation 1

Horizontal error

Average error

0 50 100 150 200 250 300

Time [sec]

0

1

2

3

4

5

6

D
is

ta
n
c
e
 [
m

]

Simulation 2

Horizontal error

Average error

0 50 100 150 200 250 300 350

Time [sec]

0

1

2

3

4

5

D
is

ta
n
c
e
 [
m

]

Simulation 2

Horizontal error

Average error

Figure 6.7: Total horizontal error in simulations

The platform radius can not be smaller than the average horizontal error. Studying Figure 6.7,
error peaks can be noticed. The peaks occur due to sudden turns of the ship carrying the plat-
form. The path of the ship during the simulations will be presented later in the report.

Average horizontal error of the simulations in Figure 6.7 varies from 0.81m to 1.75m. The
figure shows that the average error is highly influenced by the peaks. There are about 50 seconds
between each peak, which is enough time to perform a landing. Explained, as long the landing
is performed in the periods between error peaks, it is enough to decide platform size based on
the horizontal error between peaks. Simulation 1 has the largest average horizontal error. Still,
looking at the figure it is noticeable that the error is under the average value most of the time.
Based on the simulations, a decision is made that the minimal platform radius should be 1.5m.

6.3.3 Maximal Wind
It is important to investigate the system behavior when the wind is applied to find constraints
for the maximal allowed wind to perform a flight. First, the relation between the roll and pitch
response and the wind is investigated. This relation is important to investigate, having in mind
that the errors were discovered on this topic in the specialization project. The error was that
pitch and roll did not respond to the constant wind in order to keep the desired position. The
position was kept the same, without any response in the pitch and roll, which is physically
impossible.

57

6.3 Limitations

0 20 40 60 80 100 120

time[sec]

-10

-5

0

5

10

15

20

25

R
e
s
p
o
n
s
e
 [
d
e
g
]
([

m
/s

]
fo

r
c
o
n
s
ta

n
t
w

in
d
)

Constant wind x (NED) = 3 m/s

Wind x direction

0 20 40 60 80 100 120 140 160 180

time[sec]

-25

-20

-15

-10

-5

0

5

10

R
e
s
p
o
n
s
e
 [
d
e
g
]
([

m
/s

]
fo

r
c
o
n
s
ta

n
t
w

in
d
)

Constant wind y (NED) = 3 m/s

Wind y direction

Figure 6.8: Roll and pitch response on the constant wind

Figure 6.8 shows roll and pitch response to constant wind in x and y direction of the NED frame
(Section 3.1.1). A response in both roll and pitch can be noticed in the figure. For example,
for constant wind in the x-direction of the NED frame, the vehicle responds with a pitch value
oscillating slowly about 12 degrees. Responses presented in Figure 6.8 indicates that the roll
and pitch response problem is fixed.

The maximal allowed wind is investigated by slowly increasing the constant wind velocity in
both horizontal directions. At some point, the UAV has to give up for the wind forces, due to
physical limits. The response of slowly increasing the wind is shown in Figure 6.9.

58

6.3 Limitations

0 50 100 150 200 250 300

Time[sec]

0

5

10

15

20

25

30

35

40

45
Wind

Total wind [m/s]

Total position error[m]

0 50 100 150 200 250 300

Time[sec]

0

10

20

30

40

Wind
x
 and Error

x

Wind
x
 [m/s]

Position
x
 [m]

0 50 100 150 200 250 300

Time[sec]

-40

-20

0

20

40

Wind
y
 and Error

y

Wind
y
 [m/s]

Position
y
 [m]

0 50 100 150 200 250 300

Time[sec]

-50

0

50

R
e
s
p
o
n
s
e
 [
d
e
g
]

Roll and pitch response

Figure 6.9: Test of maximal wind threshold

Figure 6.3.3 presents results showing that the UAV, with the control system tuned as described
in Section 6.2, can handle total horizontal wind up to 15 m/s. According to the Beaufort scale,
15 m/s wind has number 7[35].

Number 7 on the Belfort scale is known as High wind, with a characteristic behavior of setting
whole trees in motion. The maximal wind advise from the Norwegian Defence Research Estab-
lishment is 8 m/s. The total horizontal wind is measured as windtotal =

√
wind2x + wind2y. The

contribution from each direction is 7.5 m/s, which is close to the Norwegian Defence Research
Establishment advise.

59

6.4 Filter

6.4 Filter
Figure 6.10 shows a simulation of filter performance test. The filter design is described in
Section 6.4. The tests considers sea states 2 to 7 from Section 3.5.

0 50 100 150 200

time [s]

0.1

0.2

0.3

0.4

W
a
v
e
 h

e
ig

h
t
[m

]

Seastate 2

Unfiltered

Filtered

0 50 100 150 200

time [s]

0

0.5

1

1.5

W
a
v
e
 h

e
ig

h
t
[m

]

Seastate 3

Unfiltered

Filtered

0 50 100 150 200

time [s]

-1

0

1

2

3

W
a
v
e
 h

e
ig

h
t
[m

]

Seastate 4

Unfiltered

Filtered

0 50 100 150 200

time [s]

-2

0

2

4

W
a
v
e
 h

e
ig

h
t
[m

]

Seastate 5

Unfiltered

Filtered

0 50 100 150 200 250

time [s]

0

1

2

3

4

W
a
v
e
 h

e
ig

h
t
[m

]

Seastate 6

Unfiltered

Filtered

0 50 100 150 200

time [s]

-2

0

2

4

6

W
a
v
e
 h

e
ig

h
t
[m

]

Seastate 7

Unfiltered

Filtered

Figure 6.10: Filter performance

Timulation results shows that the low-pass filter performance on damping high frequencies is
satisfying. Looking at lower state simulations, it is clear that the filter damps all the high-
frequency oscillations, giving a smooth input to the altitude controller. A drawback is the time
delay of the filter. The delay is easy to recognize looking at the sea state 7 simulations. The
filter time delay is measured to be 1.2 seconds. A solution to the delay problem is to implement
another type of filter. Still, the delay is not considered as a big problem, as the filter is only
going to be used when the height distance between the vehicle and platform is large.

60

6.5 Results

6.5 Results
The simulations presented in this chapter will start with simulations where the target ship is
moving in a straight line, with constant velocity, without any disturbances present. The envi-
ronmental disturbances are added gradually to the later presented simulation results. The reason
is to give the reader an idea in which disturbances are affecting the controller most.

Figure 6.11: Straight line landing

Figure 6.11 shows the results of a straight line landing simulation where the target is moving
forward with constant velocity, without any environmental disturbances present. As the plot
shows, the landing is performed without any problems. The horizontal error is close to zero,
with a noticeable error in the beginning, when the target suddenly starts moving. The result is
expected, as there are no disturbances present to challenge the controllers.

For the next simulation results that are going to be presented in the report, the target ship is
following the path showed in Figure 6.12.

61

6.5 Results

Figure 6.12: Moving path for target vehicle during simulations

Figure 6.13: Simulation results with only wind present

62

6.5 Results

The results of a simulation with only wind present are shown in Figure 6.13. In addition to wind
gusts, 4m/s constant wind is added in both horizontal directions. The large error peaks at the
beginning of the simulation is a result of the wind getting turned on suddenly. The horizontal
error peaks that occur periodically can be noticed in the plots. The reason is the velocity di-
rection changes of the target (Figure 6.12). Overall, the simulation results are satisfying as the
total horizontal error rarely exceeds 1m, which is acceptable considering the landing platform
size. It is also worth mentioning that the state machine is not a part of the shown simulation.
The focus is on horizontal controllers.

Figure 6.14: Simulation results with only waves present, without wave filter

Figure 6.14 presents the results of a landing approach with only waves present. The wave filter
is not used for this simulation. Like in Figure 6.13, horizontal error peaks due to target velocity
change can be noticed. There are also many small altitude oscillations. The reason is that the
wave filter is not turned on and the vehicle follows every single wave movement.

63

6.5 Results

Figure 6.15: Simulation results with only waves present, with wave filter turned on

The simulation results of a landing approach with only wave disturbances present and wave
filter turned on are shown in Figure 6.15. Compared to Figure 6.14, the altitude oscillations are
removed, and the vehicle only follows the large wave movements. A small time delay between
the wave movements and the UAV response can be noticed. The reason for the delay is the time
delay of the filter. Still, the delay is acceptable as the filtered reference is only going to be used
when the UAV is located high above the target.

64

6.5 Results

Figure 6.16: Simulation results of the complete system

The full system landing, with all environmental disturbances and state machine implemented
is presented in Figure 6.16. The presented result is simulated with a constant wind velocity of
4m/s in both x and y direction, and sea state 4. As in all other simulation results presented in
this chapter, horizontal error peaks can be noticed on the points where the target changes the
velocity direction (Figure 6.12). The state machine reliability is tested by two manual landing
abortions by the user, which can be recognized after 200 and 250 seconds of the altitude subplot
in Figure 6.16. The state machine response on manual landing abortions is satisfying, as the
vehicle returns quickly and smoothly to the hover altitude.

Analyzing the state machine, the result seems satisfying between State 1 and State 2. The state
machine is changing states as expected on users landing commands. About 300 seconds, when
the vehicle is located about 4 meters above the target, the state machine goes directly from State
2 to State 4. The reason is that all the counters and the landing permission requirements were
fulfilled at the point the State 3 was entered. The state skip is deeper discussed later in the report.

More simulations of the full system are presented in Appendix D.

65

6.5 Results

Figure 6.17: Simulation results of the full system i rough weather conditions

Figure 6.17 presents results of a simulation under rough weather conditions. Constant wind
in x and y direction is 8 m/s. That makes the total horizontal wind varying about 12 m/s,
which is close to the maximal wind (Section 6.9). The sea state simulated was 8 (Section
3.4). As expected, the average horizontal error was larger than the error in previous simulations
in this section because of the rougher environmental disturbances. The land permission flag
requirements are less satisfied than other simulations presented in this section. The reason is
that sea conditions. Sea state 8 involves frequent wave height changes compared to sea state 4,
used in the other simulations presented in this section.

66

Chapter 7
Field Testing

7.1 Preparation
The tests are held at Udduvoll, a small airport close to Trondheim, Norway. As a normal
procedure for all tests involving UAVs at NTNU, a mission acceptance form has to be filled out.
The form is a formal contract between the student and the university. An example of the Mission
Acceptance form can be found in Appendix E. As a part of the preparation, all components have
to be proven working. It is extremely important to check the GPS precision, and confirm RTK
positioning software accuracy. In addition, a certified pilot has to go through the system and
approve that it is ready for testing.

7.2 Setup
Compared to the simulation system (Section 6), small modifications are done for field testing.
The idea of using another hexacopter simulating the landing platform (Section 5.1) is used for
the field testing also. It is done by installing ntnu-hexa-004 software to a BeagleBone black
(Section 2.2.3). The BeagleBone is connected to the ground station via an Ethernet cable. A
GNSS antenna is attached to the GNSS receiver, which is attached to the BeagleBone using a
6m long wire. The software of ntnu-hexa-003 is installed on the hexarotor’s Beaglebone black.
The rest of the connections and communication between the UAV and ground are done as de-
scribed in Figure 2.9. According to the idea from Section 5.1, ntnu-hexa-004 is assigned the
master role in the system, while ntnu-hexa-003 is assigned the slave role in the system. The
reason why the field testing is done by using two vehicles in addition to the ground station is
that the ground station frame can be used as a reference frame. Figure 7.1 shows coordinate
frames from the field test relative to each other.

One option is to use the ground station as both the landing platform and reference frame. The
drawback with that option is that the vertical platform movement is not accurate enough, and
the velocity cannot be measured in the NED frame.

67

7.2 Setup

Figure 7.1: Coordinate frame setup for the field test

A third GNSS antenna for the landing platform will provide the landing platform position and
the velocity measurements relative to the ground station, using the RTK positioning. Using the
RTK positioning between the ground station and the UAV will provide position and velocity
measurements of the UAV relative to the ground station as well. As the ground station is a NED
frame (Figure 7.1), all measurements given relative to the ground station can be read by the
ArduPilot.

Section 5.1 describes, among other things, how IMC::EstimatedLocalState messages transports
IMC::EstimatedState messages from the master vehicle to the slave vehicle. A modification
is done in the way that IMC::EstimatedState messages are replaced with IMC::GpsFixRtk
messages, meaning that IMC::EstimatedLocalState messages are sending messages of posi-
tion and velocity relative to the ground station, which can be used as input to the controllers.
The controllers are also using IMC::GpsFixRtk messages during the field testing, instead of
IMC::EstimatedState messaged used during the simulation. Again, the reason is because all
coordinates has to be given relative to the same frame, which is chosen to be the ground station
frame.

68

7.2 Setup

For safety reasons, the field tests are not performed over water. The landing platform is imitated
by attaching the GNSS antenna at the end of a 6m long fishing rod (Figure 7.2). The fishing
rod gets swayed in all directions, imitating waves. The movements are not the perfect copy of
actual wave movements, but the imitation is good enough to make an error in all directions, and
test the PID controller. The controllers implemented on the UAV are described in Section 5.3.

Figure 7.2: Field test setup

69

7.3 Results

7.3 Results

7.3.1 Test 1
The initial test was carried out using parameters from Table 6.4, 6.6 and 6.2. Figure 7.3 shows
the UAV position response from the test. The test is performed with stationary target, without
any target movement. For the initial test, an offset of 15m in the North direction was included
to have a reasonable safety distance between the hexacopter and the landing platform hardware.
All controller outputs presented in Figure 7.3 are the velocity outpus form the PID controllers
presented in Section 4.

0 20 40 60 80 100 120 140 160 180

Time [sec]

0

5

10

15

20

Response north

north [m]

output
x
 [m/s]

0 20 40 60 80 100 120 140 160 180

Time [sec]

-5

0

5

Response east

east [m]

output
y
 [m/s]

0 20 40 60 80 100 120 140 160 180

Time [sec]

0

10

20

30

D
is

ta
n
c
e
 [
m

]

Response altitude

altitude [m]

output
z
 [m/s]

Figure 7.3: Position response using parameters from Section 6.2

It is noticeable that the horizontal responses are dominated by oscillations. The amplitude of the
oscillations can be considered as equal, meaning that the system is marginally stable. Looking
at the phase between the controller output and the response, the phase difference can be roughly
measured to 200◦, for both x- and y-direction. A 200◦ phase difference between the controller
output and the response is indicating something in between P and I oscillations, according to
[36], meaning that Kp and Kd values used for the test are too high.

The altitude does not consist of any recognizable patterns. Still, it can be noticed that the
controller is working aggressively when trying to hold hover height (first 80 seconds). The con-
troller is consequently calculating outputs leading to saturation. Saturation may be an indication

70

7.3 Results

that the controller is too aggressive tuned, meaning that the tuning variables are too high. The
period from 80 to approximately 110 seconds is the descending period of the vehicle. During
the descent period, the desired descent velocity is constant (Section 5.4), which is working well
based on teh results from Figure 7.3. The period from 110 to 160 seconds is affected by re-
peating sequences caused by a state machine stuck between two states because of the horizontal
controllers not being able to hold the desired position.

The anti wind-up, implemented as described in Section 4.2.1, is having a large impact on the
control output in Figure 7.3. The constantly saturating control output values are trigging the
anti-windup, affecting the integral output. Wrong tuning may lead to a loop of anti-windup
feedback to the integral controller, causing wrong integral output.

Since the horizontal response from Figure 7.3 indicated too aggressive tuning parameters, a
decision was made to try decreasing parameters mid-air to get a better response. The response
from the mid-air tuning process is shown in Figure 7.4.

0 50 100 150 200 250

Time [sec]

-10

-5

0

5

10

15

20

25

Response north

north [m]

output
x
 [m/s]

0 50 100 150 200 250

Time [sec]

-8

-6

-4

-2

0

2

4

6

8

Response east

east [m]

output
y
 [m/s]

Figure 7.4: Mid-air controller tuning

The tuning in Figure 7.4 is done by trial-error approach, having in mind that the oscillations
in Figure 7.3 are caused by too high Kp and Kd parameters. In the beginning, the variables
were decreased gradually. After approximately 100 seconds, a decision was made to drastically
decrease all variables of the x-controller, ending up with parameters listed in Table 7.1. After
approximately 150 seconds, y-controller variables were replaced with parameters from Table

71

7.3 Results

7.1, meaning that equal tuning parameters were assigned to the horizontal controllers. The
response with the new parameters gave a satisfying horizontal response, within the landing
platform boundaries found in Section 6.3.2.

Table 7.1: Horizontal control parameters found after mid-air tuning

Parameter Value
Kp 0.2
Ki 0.01
Kd 0.2

The response from Figure 7.4 gave an indication that the vertical response could be improved
by simply decreasing tuning parameters. The new altitude controller parameters are listed in
Table 7.2 and the response using the parameters is presented in Figure 7.5. In addition, the anti
wind-up was turned off for the test presented in Figure 7.5.

Table 7.2: New altitude controller parameters

Parameter Value
Kp 0.6
Ki 0.1
Kd 0.3

0 20 40 60 80 100 120 140 160

Time [sec]

0

5

10

15

Response north

north [m]

output
x
 [m/s]

0 20 40 60 80 100 120 140 160

Time [sec]

-4

-3

-2

-1

0

Response east

east [m]

output
y
 [m/s]

0 20 40 60 80 100 120 140 160

Time [sec]

0

10

20

30

Response altitude

altitude [m]

output
z
 [m/s]

Figure 7.5: Response with parameters from Table 7.1 and Table 7.2

72

7.3 Results

The occurrence of the altitude peak after 10 seconds in Figure 7.5 happens because the anti-
windup was switched off during the test. This time, the controller was able to hold the hover
height, but the problems started again after entering the 4 meter height. The controller was
not able to switch from constant velocity output to position control. Saturation of the altitude
controller outputs are also present, indicating that tuning parameters from Table 7.2 are still too
aggressive. On the other hand, horizontal responses shown in Figure 7.5 are satisfying.

0 20 40 60 80 100 120 140 160

Time [sec]

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

H
e

ig
h

t
[m

]

Target height

Filtered target height

0 20 40 60 80 100 120 140 160 180

Time [sec]

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

H
e

ig
h

t
[m

]

Target height

Filtered target height

Figure 7.6: Filter performance in test 1

Filtered target height values from tests shown in Figure 7.3 and Figure 7.5 are showed in Figure
7.6. Although the GNSS antenna of the landing platform was standing still during the sim-
ulations, some signal noise was produced. The noise amplitude is not affecting the position
measurements, as the noise oscillations are no more than 3 cm. Still, the noise is a good test for
the low-pass filter, implemented as described in Section 6.4. Figure 7.6 shows that the low-pass
filter is able to filter out oscillations, giving a smooth reference input to the altitude controller.

7.3.2 Test 2
The second test was held a few days after the first test. The tuning parameters were decreased
drastically before the second test, since the results of the first test indicated too aggressive
parameters. During the first test, a set of horizontal control parameters were tuned. The same
set of parameters is used for the second test (Table 7.1). The altitude control parameters, listed
in Table 7.3, are changed and tuned to give a slow response, because of the experience from the

73

7.3 Results

first test. Also, the anti-windup and the derivative part of the altitude controller is removed to
make the controller as simple as possible.

Table 7.3: Final altitude controller parameters

Parameter Value
Kp 0.4
Ki 0.01
Kd 0

0 20 40 60 80 100 120 140 160 180 200

Time [sec]

-15

-10

-5

0

5

D
is

ta
n
c
e
 [
m

]

Response north

UAV

Target

0 20 40 60 80 100 120 140 160 180 200

Time [sec]

-10

-5

0

5

D
is

ta
n
c
e
 [
m

]

Response east

UAV

Target

0 20 40 60 80 100 120 140 160 180 200

Time [sec]

-15

-10

-5

0

5

D
is

ta
n
c
e
 [
m

]

Total horizontal error

Error

Figure 7.7: Horizontal response in test 2

Figure 7.7 presents the horizontal response from the second test. The fishing rod, representing
the target platform (Figure 7.2), was moved through the whole test, in order to induce an error
between the target position and the UAV position. It is clear that the horizontal response is
slow, as the UAV reaches the target position several seconds after the target itself gets there.
Although the horizontal response is slow, the total horizontal error rarely exceeds 3m, which is
the minimal landing platform size (Section 6.3.2). The reason for the first 15m large error is
that the set-point was changed -15 meters at the beginning of the test, and then changed back to
0m, to test the control systems ability to track larger distances.

74

7.3 Results

0 20 40 60 80 100 120 140 160 180 200

Time [sec]

-20

-15

-10

-5

0

5

10

A
n
g
le

 [
d
e
g
]

Roll

Pitch

Figure 7.8: Roll and pitch response in test 2

The roll and pitch response from the horizontal response in Figure 7.7 is presented in Figure
7.8. The angle values never exceeds±15◦, because of the slowly tuned control parameters form
Table 7.1. The roll and pitch values are not close to saturation, which is ±45◦[20], meaning
that the controller parameters can be tuned more aggressively. Greater roll and pitch response
leads to a faster horizontal response, leading to the possible removal of the response delay from
Figure 7.7. Still, one has to be aware of the fact that greater roll and pitch response can lead to
an overshoot and unstable system.

75

7.3 Results

0 20 40 60 80 100 120 140 160 180 200

Time [sec]

0

5

10

15

20

A
lt
it
u
d
e
 [
m

]

Altitude response

UAV

Target

Land signal

0 20 40 60 80 100 120 140 160 180 200

Time [sec]

0

0.5

1

1.5

2

2.5

3

3.5

4

Land permission

State

Figure 7.9: Altitude response in test 2

Interaction between the land permission algorithm (Section 5.4), the state machine (Section 5.4)
and the altitude response is tested and presented in Figure 7.9. As the first subplot of the figure
shows, the landing command is given after 60 seconds, and that aborted after 70 seconds, to
checks the vehicle’s ability to respond to lading abortion by the user. The oscillations in the tar-
get signal are made to test the filter and lading permission algorithm, which are presented later
in the report. It is noticeable that the altitude response overshoots after the aborted landing. In
addition, it takes almost ten seconds to get from the overshoot peak to the hover height although
the peak height is only a few meters above the hover height. The explanation of the slow re-
sponse lays in the tuning parameters from Table 7.3. For example, Kp = 0.01 minimizes the
integral contribution, leading to slow diverging to the reference altitude. The overshoot itself
could possibly be removed implementing anti-windup form Section 4.2.1, but the results from
test 1 tell that the control system should be as simple as possible.

Oscillations in the altitude response occur after 100 seconds, and after 110 seconds in the first
subplot. The reason for the first oscillations is that the controller changes from constant descent
velocity to PID control, as the state machine, described in Section 5.4, changes from State 2
to State 3. Oscillations are significantly smaller than in the first test (Figure 7.3). Again, the
reason for the undesired oscillations lies in bad control parameter tuning. The second set of
oscillations, after 110 seconds, is caused by an upward target movement. What happens in the
first oscillation is that the controller actually overshoots, trying to follow the upward movement
of the target. In addition, the state machine changes from State 2 to State 3, leading to one

76

7.3 Results

additional oscillation after 120 seconds.

The interaction itself works as desired. Although there occur few undesired oscillations, the
controller actually responds on state changes in the state machine. After 110 seconds in Figure
7.9, the state machine changes from State 3 to State 2 because of the horizontal error from Fig-
ure 7.7 exceeds allowed boundaries of the cylinder from Section 5.4.1.

An error regarding the State Machine was experienced during the test. Figure 7.10 shows the
response of a test with the horizontal error value manually set to be 4. Such horizontal error
value is violating boundaries from Section 5.4.1, meaning that the state machine should not
enter State 3. Analyzing Figure 7.10, one can see that some standing oscillations occur in the
altitude response. The reason for the oscillations is that the state machine is stuck between
state 2 and 1. As the total horizontal error constantly exceeds boundaries, the state machine
counts three seconds outside boundaries, and sends the vehicle back to State 1. State 1 sends
the vehicle back to State 2, since the landing flag is still turned on by the user. A solution to the
problem is discussed later in the report.

0 20 40 60 80 100 120 140 160 180 200

Time [sec]

0

5

10

15

20

A
lt
it
u
d
e
 [
m

]

Response altitude

UAV

Target

Land signal

0 20 40 60 80 100 120 140 160 180 200

Time [sec]

0

0.5

1

1.5

2

2.5

3

3.5

4

Land permission

State

Figure 7.10: State machine problem in test 2

77

7.3 Results

0 20 40 60 80 100 120 140 160 180 200

Time [sec]

0

5

10

15

20

D
is

ta
n
c
e
 [
m

]

Response north

north

output
x

0 20 40 60 80 100 120 140 160 180 200

Time [sec]

-10

-5

0

5

D
is

ta
n
c
e
 [
m

]

Response east

east

output
y

0 20 40 60 80 100 120 140 160 180 200

Time [sec]

0

5

10

15

20

D
is

ta
n
c
e
 [
m

]

Response altitude

altitude

output
z

Figure 7.11: Control output in test 2

Figure 7.11 presents the control output form the responses presented in Figure 7.7 and Figure
7.10. The figure confirms the fact that the control output values are low for all controllers.
Comparing with control output values from test 1 (Figure 7.3), it is clear that the control outputs
in Figure 7.11 can be gained more, meaning that tuning variables from Table 7.1 and Table 7.3
could be increased. The tuning variable increase is discussed later in the report.

78

7.3 Results

0 20 40 60 80 100 120 140 160 180 200

Time [sec]

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

A
lt
it
u
d
e
 [
m

]
Target height

Land permission flag

Figure 7.12: Landing permission algorithm performance in test 2

The land permission algorithm performance is presented in Figure 7.12. The algorithm response
is satisfying. One of the main points with the algorithm is to deny landing, where the danger is
obvious. An example of such a case can be observed between 60 and 80 seconds.

79

7.3 Results

0 20 40 60 80 100 120 140 160 180 200

Time [sec]

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

A
lt
it
u
d
e
 [
m

]
Target height

Filtered target height

Figure 7.13: Filter performance in test 2

Figure 7.13 shows the performance of the filter algorithm during test 2. The filter is tested for
wave movement with large altitude, compared to Figure 7.6, where only signal noise filtering is
tested. The performance is slow, as expected, because of the time constant (Section 6.4). The
amplitude of high-frequency oscillations are damped, as well as the signal noise.

80

Chapter 8
Discussion

This section discusses results presented in Chapter 6 and Chapter 7.

8.1 Control
Both horizontal and vertical controllers implemented in this project are PID controllers (Figure
4.1). The horizontal controllers use velocity feedback on the derivative part, while the altitude
controller calculates the velocity by taking the derivative of the position. The main reason for
using the velocity feedback is to get more precise reference input to the derivative part of the
PID controller. Horizontal PIV control was used in the specialization project. The output of
the PIV controller was desired acceleration, and seemed to work in the simulations. The reason
why PIV control was changed to PID control is that the original ArduPilot low-level controller
does not support force input. There exist a modified version of the ArduPilot flight stack, devel-
oped at the UAVlab at NTNU, supporting force input, but is not recommended using because
of the difficulties of keeping the modified codes up-to-date with the original ArduPilot project.
An example of the use of the modified ArduPilot version, supporting the force input, is written
about in [37].

Figure 6.16 shows simulation results of a landing process. The results are showing a vehicle
able to hold both the horizontal and the vertical position. Some error peaks occur when the tar-
get changes the direction of the forward velocity. The peaks are expected looking at the tuning
response from Figure 6.5 and Figure 6.6. Both figures show an overshoot, indicating the error
peaks on steps in control reference values. The figures also show that the controller is able to
recover the error peaks fast. The fast error recovery gives an illusion of very aggressive control
parameters.

Figure 7.3 shows the response of the same control parameters as used in Figure 6.16 for a field
test. It is clear that parameters that worked for the simulation, did not work for the field test.
The reason is that the simulation model does not fit the real-world model perfect. Also, a more
correct approach would be to start with slow control parameters and find faster parameters by
tuning in the field. To show the model difference, a landing is simulated with parameters from
Table 7.1 and Table 7.3, which gave a satisfying response during the field test, presented in
Figure 7.7 and Figure 7.9. The simulation results of the parameters are presented in Figure 8.1.

81

8.1 Control

-120 -100 -80 -60 -40 -20 0 20

East [m]

-20

-10

0

10

20

30

40

50

N
o
rt

h
 [
m

]
UAV

Target

Figure 8.1: Horizontal plane of a simulation using parameters that worked for the field test

From Figure 8.1 it is clear that the UAV is not able to follow target moving in the path presented
in Figure 6.12. The controller gains are so low, that the controllers do not produce enough out-
put to move the vehicle fast enough to follow the target movement. The figure confirms the fact
that simulation model does not fit the real-world model.

The possibility of increased tuning parameters giving better field test results is mentioned many
times in Section 7.3.2. Figure 8.2 shows the x-direction response for a field test with increased
tuning parameters. The Kp parameter is increased from 0.2 to 0.4 after 200 seconds and from
0.4 to 0.6 after 270 seconds. The increased values did not give a better and faster response
as expected from Section 7.3.2, but the opposite. The controller performance got worse with
increased values.

82

8.2 Land Permission

0 50 100 150 200 250 300 350 400 450

Time [sec]

-2

-1

0

1

2

3

4

D
is

ta
n
c
e
 [
m

]

UAV

Target

Figure 8.2: X-controller tuning during the test 2

The problem may lay in the simplicity of the PID controller. One solution could be trying
another control algorithm to get a better control response. LQR is one of the control algorithms
that could be tried in the future. The argument for the PID algorithm is that it does not require a
perfect model, which definitely is a benefit when it is suspected that the simulation model does
not fit the real world model perfect. Therefore, one has to have in mind that the use of other
algorithms may lead to improvements in the simulation model.

8.2 Land Permission
Figure 5.4 and 7.12 shows the performance of the land permission algorithm developed in this
project (Section 5.4.2). It can be seen that the algorithm results are partly successful. The prob-
lem lies in the parts where the algorithm gives landing permission, and the waves are moving
fast towards the vehicle. The reason why that happens is that the landing algorithm needs one
second from the upwards wave movement starts till it the algorithm denies a landing. On the
other hand, it takes three seconds from the downwards movement start until the permission sig-
nal is given.

The problem of the landing algorithm needing one second from the upwards movement starts
till the permission signal is given can be solved by taking more measurements. More measure-
ments can possibly lead to instability of the algorithm, using the existing design from Section

83

8.3 Filter

5.4. The allowed upwards velocity of the platform is 0.2 m/s. There is no scientific research
backing up the chosen velocity, just a guess and use of sense. The threshold target velocity
should be investigated deeper, and changed.

One of the suggestions from the specialization project is the development of a more success-
ful landing permission algorithm. Results from Figure 5.4 and 7.12 shows that improvements
are made, compared to the specialization project, but there is still a lot of room for further
improvement.

8.3 Filter
The low-pass filter, designed as described in Section 6.4 is able to filter out high-frequency
signals, as desired. Filter performance is presented in Figure 6.10, Figure 7.6 and Figure 7.13.
All figures show the filter’s ability to filter out high frequencies. Still, there exists a time delay
between the input signal and the output signal of the filter. The time delay value is measured to
be τ ≈ 1.2sec. Since the purpose of the filter is to filter out small wave movements from the
altitude controller’s reference signal at hover altitude, the time delay is considered as negligible.

The advantage of using a first-order low-pass filter is that the implementation of the filter is
easy. The filter also does not require much computational power, as only two equations have
to be computed (Section 5.2). A huge disadvantage of the filter is, of course, the time delay.
Although the delay can be neglected at hover altitude, the matter is different at lower altitudes.
The time delay makes the filter use dangerous at lower altitudes, as waves can reach several
meters on 1.2 seconds. A solution is of course implementation of a filter without such large
time delay. An example of such filter is described in [38], using the Kalman filter design.

Another fact that has to be considered is that the filter cutoff frequency is found by looking at the
frequency spectra of pure waves (Figure 4.3). Normally, the heave motion of a ship is damped
compared to wave motions [39]. The bigger the ship is, the more will the wave oscillations
be damped out. Therefore, frequencies of a real ship will be different than presented in Figure
4.3. The high-frequency oscillations, that the filter is damping out in the simulations, will be
damped by the ship itself.

8.4 State Machine
The state machine, described in Section 5.4, gave satisfying results in both simulations and
field tests, except one bug. State machine performance is presented in Figure 5.5 and Figure
7.9. Figure 7.10 shows an altitude response during a field test, where the state machine bug is
visible. The bug occurs when the horizontal error has a constant value greater than 3m. In that
specific situation, the state machine gets stuck between state 1 and state 2. It happens because
the state machine sends the vehicle to state 1, when the horizontal error is larger than 3m for
over 2 seconds. As long the land flag is given by the user, the state machine tries to send the
vehicle back to state 2, once state 1 is entered, creating a loop between two states.

The problem can be fixed in several ways. One option is to always send the vehicle back to a
given height when the horizontal error has exceeded 3m for over 2 seconds, and try the landing

84

8.5 Platform Size

once again. For example, after exceeding 3m horizontal error over 3 seconds, the vehicle could
be sent to 10 m height, and the landing process could start over again from 10m height. A huge
drawback with this method is that a landing sequence will last much longer when an error, that
is quickly fixed, occurs.

The reason why the problem with the state machine was not fixed during the project is the
limited time schedule. The field tests were performed only 2 weeks before the deadline for the
thesis delivery, not giving enough time to fix problems discovered during test 2 (Section 7.3.2).

8.5 Platform Size
The minimal platform diameter was found to be 3m, based on simulation results presented in
Figure 6.7. Looking at the total horizontal error form field test (Figure 7.7), it can be concluded
that 3m is more than enough. Still, one has to have in mind that no significant vehicle movement,
like the path in Figure 6.12, was tested in the field. Such movement may cause a larger error,
especially on turns, producing the same error peaks that were noticed in simulations (Figure
6.7).

8.6 Reflection
The working process was good in the way that all work in the specialization project was done
in Matlab and Simulink, and a great part of the Master’s thesis was to implement the work in
C++. It felt natural to do the work that way, as it was not enough time during the specialization
project to get known with the DUNE system.

Working with DUNE was challenging, but educational. The main problem was the difficulty
of finding information, because of the limited use of the system. Fortunately there exist a wiki
page, developed by the UAVlab students, with information about the system. The wiki page
was used a lot during the project.

The surprise of the real-life model not matching the simulation model could be avoided if the
first test was performed earlier. In fact, an early test was scheduled, but had to be canceled
because the hexacopter was not ready. The idea at the beginning of the project was to get a
ready hexacopter and just focus on software development. Since the working hexacopters were
in use by a different project, I and my co-supervisor had to connect all hardware together, install
software and deal with the hardware issues. Dealing with hardware issues affected the project,
as it took a lot of time away from the software development focus. Still, dealing with hardware
was very educational and enriched the project.

85

Chapter 9
Closing Remarks

9.1 Conclusion
This thesis presents the development of control algorithms, simulation environment in DUNE,
landing algorithms and field test system. All developed parts are connected to a large system
for the automatic landing of multi-rotor on moving platform.

A simulation environment for the automatic lading is developed and implemented in DUNE.
The simulation environment is adequate for landing simulations, as it includes all necessary en-
vironmental disturbances. Algorithms for high-level velocity control are developed and tuned
using the developed simulation environment. The results are presented. Based on the simulation
results, a suggestion of minimal weather requirements needed to carry out a successful landing
is presented. The results are also used for the suggestion of the minimal landing platform size.

All hardware necessary for the field test, and connection between those are presented in the
thesis. The specific solution developed for the field test is detailed explained. The field test
results are compared with the simulation results and the differences are discussed.

Algorithms for error handling during a landing approach are developed. The algorithm per-
formance is tested, both in the field and in the simulations. The results are presented. Some
problems related to the algorithms are discovered and discussed. Suggestions for the discovered
problems are presented in the thesis.

86

9.2 Future Work

9.2 Future Work
As slow response and tuning problems were experienced during the project, it is recommended
to test other control algorithms ability to carry out a landing task. A recommendation is to test
the LQR algorithm. When implementing other algorithms, it is important to be aware of the
difference between the simulation model and the real-world model. A suggestion, that unfortu-
nately was not followed in this project because limited time schedule, is to perform early field
tests, and get to know differences between the simulation model and the real-life model. Know-
ing differences early in the process will help in the algorithm design and the controller tuning.
It should also be considered investigating the simulation model, and making it more realistic
than the existing one.

As mentioned in Section 8.2, the land permission algorithm has to be further developed. First,
a test has to be performed to find the threshold of the maximum allowed upward velocity of the
platform during a landing. The one second gap between the algorithm giving the landing signal
and the sudden upward movement of the landing platform has to be removed as well.

The change of the filter has to be considered, if one wants to use the filter when the vehicle
is getting closer to the landing platform. Ideas for implementing a filter without time delay is
written about in [38]. Besides, the filter time constant has to be found from real ship motion,
and not pure wave motion, as discussed in Section 8.3.

The state machine bug from Figure 7.9 has to be eliminated. Suggestion of how the bug can be
eliminated is described in Section 8.4.

A list of suggestions for future work:

• Investigate other control algorithms than PID.

• Consider further development of the existing hexa models in DUNE, to get more realistic
simulations.

• Perform tests and find the correct threshold for the maximum upward velocity of the
landing platform during a landing.

• Fix the state machine bug.

• Find the filter cutoff frequency by using a real ship model.

• Perform tests on the water.

87

A Discretization

Appendices
A Discretization
All digital machines are discrete, meaning that they are not computing continuously, but given
amount of time per second. Working frequency tells how many computations per second a ma-
chine is performing. As an example, a machine working on 5Hz is performing 5 computations
per second.

Most of the mathematical models are designed for continuous time, meaning that the compu-
tation happens continuously. The model has to be discretized, in order to be more realistic.
Many discretization methods exist, but some are more used than others. Forward Euler method
is chosen in this task, mainly to find an estimate of the derivative value.

The method is finding an estimate of the next value by looking at the tangent line of the current
point. The tangent line itself can be used as an derivative estimate.[40]

Forward Euler method

An estimate of the derivative at current point is:

ẋ ≈ xn+1 − xn
h

The next example is showing how forward Euler method is used to discretize state-space equa-
tions.

A simple state-space equation can look like this:

ẋ = K

89

A Discretization

Using Euler derivative estimate:

ẋ ≈ xn+1 − xn
h

= K

Leading to:
xn+1 − xn

h
= K

The final discretized equation is:
xn+1 = hK + xn

The showed procedure can be used for discretization of every state space equation.

90

B Flow chart - State Machine

B Flow chart - State Machine

92

C Flow Chart - Land Permission Algorithm

C Flow Chart - Land Permission Algorithm

94

D Simulation Results

D Simulation Results

Simulation 1 - Full system

96

D Simulation Results

Simulation 2 - Full system

97

D Simulation Results

Simulation 3 - Full system

98

UAV-Lab Mission Acceptance Form

 Ver. 1.1 Rev. 1.0 Date 01.11.2017 UAV-Lab - MAF Side 1 av 2

Client/Customer/Scientific responsible

Mission / Project name

Project leader name and role
– email

Other key payload personnel
- emails

Mission specific

Scientific purpose

Description

Success criteria

Least acceptable result

Best possible result

Approved by director
(Yes/No)

Payload specific requirements

Description

Size

Weight

Modifications to airframe
(Antennas, camera etc)

Onboard computer
(BeagleBone/Odroid/Other)

Need radio link to ground for
payload

Payload voltage and current
consumption

Flight specific requirements

Min/max height

Min/max airspeed

Max range from GCS

Flight plan specifics

Minimum endurance

Other (over land, sea etc)

Specific weather conditions

Preferred date(s)

Latest date

E Mission Acceptance Form

E Mission Acceptance Form

100

UAV-Lab Mission Acceptance Form

 Ver. 1.1 Rev. 1.0 Date 01.11.2017 UAV-Lab - MAF Side 2 av 2

For operations and technical manager

Platform

Vehicle ID

Registration number

Mission date(s)

Payload ready at lab date

Payload ready, mounted and tested in UAV date

UAV and avionics ready date

Flight plans ready date

Mission specific – operations manager

Airfield / Area

Landowners permission needed

ATC / CAA permission needed

NOTAM needed

Remarks

Mission specific risk analysis
 – mission specific risks not covered elsewhere in POH or operations manual

Approvals Date Signature

Customer / project leader

Operations Manager

UAV ready (Technical Manager)

Specific Risk Analysis Done
(Director / Operations Manager)

NOTAM / ATC approved

Landowners permission

Bibliography

[1] Vuk Krivokapic. Automatic landing of multi-rotor on moving platform - specialization
project. Master’s thesis, NTNU, 2018.

[2] Marcus Frølich. Automatic ship landing system for fixed-wing uav. Master’s thesis,
NTNU, 2015.

[3] Artur Zolich. Systems integration and communication in autonomous unmanned vehicles
in marine environments. 2018.

[4] Håvard Lægreid Andersen. Path planning for search and rescue mission using multi-
copters. Master’s thesis, Institutt for teknisk kybernetikk, 2014.

[5] Rubén Vega Astorga. Simulation of a quadrotor unmanned aerial vehicle. B.S. thesis,
2016.

[6] Robin Hofset Vattøy, Inge Nilsen, and Eirik Strøm Fagerhaug. Drone: Dynamic position-
ing in relation to a given object. B.S. thesis, 2016.

[7] Martin Lysvand Sollie. Estimation of uav position, velocity and attitude using tightly
coupled integration of imu and a dual gnss receiver setup. Master’s thesis, NTNU, 2018.

[8] Bjørn Amstrup Spockeli. Integration of rtk gps and imu for accurate uav positioning-
integrasjon av rtk gps og imu for nøyaktig uav-posisjonering. Master’s thesis, NTNU,
2015.

[9] Vegard Line. Autonomous landing of a multirotor uav on a platform in motion. Master’s
thesis, NTNU, 2018.

[10] Joel Hermansson, Andreas Gising, Martin Skoglund, and Thomas Schön. Autonomous
landing of an unmanned aerial vehicle. Linköping University Electronic Press, 2010.

[11] Yi Feng, Cong Zhang, Stanley Baek, Samir Rawashdeh, and Alireza Mohammadi. Au-
tonomous landing of a uav on a moving platform using model predictive control. Drones,
2(4):34, 2018.

[12] FL Pereira, J Pinto, JB Sousa, RMF Gomes, GM Goncalves, and PS Dias. Mission plan-
ning and specification in the neptus framework. In Proceedings 2006 IEEE International
Conference on Robotics and Automation, 2006. ICRA 2006., pages 3220–3225. IEEE,
2006.

102

[13] Dune. http://eigen.tuxfamily.org/index.php?title=Main_Page.

[14] Neptus. https://lsts.fe.up.pt/toolchain/neptus.

[15] Sigurd Andreas Holsen. Dune: Unified navigation environment for the remus 100 auv.
Norwegian University of Science and Technology, 2015.

[16] Ardupilot. http://ardupilot.org/ardupilot/index.html.

[17] Randal W Beard and Timothy W McLain. Small unmanned aircraft: Theory and practice.
Princeton university press, 2012.

[18] Martin Lysvand Sollie. Estimation of uav position, velocity and attitude using tightly
coupled integration of imu and a dual gnss receiver setup. Master’s thesis, NTNU, 2018.

[19] Rtklib. https://wiki.openstreetmap.org/wiki/RTKLIB.

[20] Thomas Thoresen, Jonas Moen, Sondre A Engebråten, Lars B Kristiansen, Jørgen H Nord-
moen, Håkon K Olafsen, Håvard Gullbekk, IT Hoelster, and Lorns H Bakstad. Distribuerte
cots uas for pdoa wifi geolokalisering med android smarttelefoner. Technical report, Tech-
nical report, Forsvarets forskningsinstitutt, FFI-rapport 14/00958, 2014.

[21] Pixhawk. https://www.suasnews.com/2013/08/
px4-and-3d-robotics-present-pixhawk-an-advanced-user-friendly-autopilot/.

[22] Beaglebone. https://beagleboard.org/black.

[23] Circuit studio. https://www.altium.com/circuitstudio/.

[24] User manual gnss antenna. https://www.orbitica.com/harxon/
pdf-harxon/HX-CH3602A.pdf.

[25] Rocket. https://www.ui.com/airmax/rocketm/.

[26] Mavlink. https://mavlink.io/en/.

[27] Pm spectra. https://www.dune-project.org/.

[28] Thor I Fossen. Handbook of marine craft hydrodynamics and motion control. John Wiley
& Sons, 2011.

[29] Drag coefficient. https://www.engineeringtoolbox.com/
drag-coefficient-d_627.html.

[30] Mostafa Moussid, Adil Sayouti, and Hicham Medromi. Dynamic modeling and control of
a hexarotor using linear and nonlinear methods. International Journal of Applied Infor-
mation Systems, 9(5), 2015.

[31] Mss toolbox. http://www.marinecontrol.org/.

[32] Karl Johan Åström and Tore Hägglund. Automatic tuning of PID controllers. Instrument
Society of America (ISA), 1988.

103

http://eigen.tuxfamily.org/index.php?title=Main_Page
https://lsts.fe.up.pt/toolchain/neptus
http://ardupilot.org/ardupilot/index.html
https://wiki.openstreetmap.org/wiki/RTKLIB
https://www.suasnews.com/2013/08/px4-and-3d-robotics-present-pixhawk-an-advanced-user-friendly-autopilot/
https://www.suasnews.com/2013/08/px4-and-3d-robotics-present-pixhawk-an-advanced-user-friendly-autopilot/
https://beagleboard.org/black
https://www.altium.com/circuitstudio/
https://www.orbitica.com/harxon/pdf-harxon/HX-CH3602A.pdf
https://www.orbitica.com/harxon/pdf-harxon/HX-CH3602A.pdf
https://www.ui.com/airmax/rocketm/
https://mavlink.io/en/
https://www.dune-project.org/
https://www.engineeringtoolbox.com/drag-coefficient-d_627.html
https://www.engineeringtoolbox.com/drag-coefficient-d_627.html
http://www.marinecontrol.org/

[33] Uavlab wiki. http://uavlab.itk.ntnu.no/wiki/doku.php?id=guides:
start_guide.

[34] Eigen library. http://eigen.tuxfamily.org/index.php?title=Main_
Page.

[35] Beufort scale. http://www.tranoy.net/stavanger/weather/beauforts.
htm.

[36] Kare Bjørvik and Per Hveem. Reguleringsteknikk, 2007.

[37] Chris Meissen, Kristian Klausen, Murat Arcak, Thor I Fossen, and Andrew Packard.
Passivity-based formation control for uavs with a suspended load. IFAC-PapersOnLine,
50(1):13150–13155, 2017.

[38] Héctor P Rotstein. Optimal filtering with delayed and non-delayed measurements. In 15th
IFAC Triennial World Congress, 2002.

[39] Thor I Fossen. Handbook of marine craft hydrodynamics and motion control. John Wiley
& Sons, 2011.

[40] Bernt Lie, David Di Ruscio, Rolf Ergon, Bjørn Glemmestad, Maths Halstensen, Finn Hau-
gen, Saba Mylvaganam, Nils-Olav Skeie, and Dietmar Winkler. Modeling, identification
and control at telemark university college. 2009.

104

http://uavlab.itk.ntnu.no/wiki/doku.php?id=guides:start_guide
http://uavlab.itk.ntnu.no/wiki/doku.php?id=guides:start_guide
http://eigen.tuxfamily.org/index.php?title=Main_Page
http://eigen.tuxfamily.org/index.php?title=Main_Page
http://www.tranoy.net/stavanger/weather/beauforts.htm
http://www.tranoy.net/stavanger/weather/beauforts.htm

Vuk K
rivokapic

A
utom

atic landning of m
ilti-rotor on m

oving platform

N
TN

U
N

or
ge

s
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e

un
iv

er
si

te
t

Fa
ku

lt
et

 fo
r

in
fo

rm
as

jo
ns

te
kn

ol
og

i o
g

el
ek

tr
ot

ek
ni

kk
In

st
itu

tt
 fo

r
te

kn
is

k
ky

be
rn

et
ik

k

M
as

te
ro

pp
ga

ve

Vuk Krivokapic

Automatic Landning of Multi-Rotor on
Moving Platform

Masteroppgave i Kybernetikk og Robotikk
Veileder: Tor Arne Johansen
Co-veileder: Martin Lysvand Sollie

Juni 2019

	Abstract
	Summary
	Preface
	Table of Contents
	List of Figures
	List of Tables
	Notation
	Introduction
	Motivation
	Specialization Project
	Related Work
	Outline

	System Overview
	Software
	DUNE
	IMC
	Neptus
	ArduPilot
	Real-Time Kinematic Positioning
	RTKLIB

	Hardware
	Hexacopter
	PixHawk
	Beaglebone Black
	Cape
	GNSS Antennas
	Rocket
	Ground Station

	Communication
	Simulation System
	Total System

	Modeling
	Theory
	Coordinate Frames
	Rotation
	Transformation
	Pierson-Moskowitz Spectrum

	Dynamics
	Rotation
	Forces
	Torques

	Mathematical Model
	Translational dynamics
	Rotational Dynamics

	Wind
	Waves

	Control
	Theory
	PID
	Ziegler-Nichols Tuning Method

	Method
	Altitude Controller
	Horizontal Controllers
	Filter

	Implementation
	Simulation
	System
	Wind
	Waves

	Filter
	Controllers
	Landing Algorithms
	Boundaries
	Landing Permission
	State Machine

	Simulation
	Software in the Loop
	Tuning
	Altitude Controller
	Horizontal Controllers

	Limitations
	Velocities
	Platform Size
	Maximal Wind

	Filter
	Results

	Field Testing
	Preparation
	Setup
	Results
	Test 1
	Test 2

	Discussion
	Control
	Land Permission
	Filter
	State Machine
	Platform Size
	Reflection

	Closing Remarks
	Conclusion
	Future Work

	Appendices
	Discretization
	Flow chart - State Machine
	Flow Chart - Land Permission Algorithm
	Simulation Results
	Mission Acceptance Form

	Bibliography

