
Creating the foundations of a
graphical SLAM application
in Modern C++

June 2019

M
as

te
r's

 th
es

is

M
aster's thesis

Torstein Grindvik

2019
Torstein Grindvik

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
De

pa
rt

m
en

t o
f E

ng
in

ee
rin

g
Cy

be
rn

et
ic

s

Creating the foundations of a graphical
SLAM application
in Modern C++

Cybernetics and Robotics
Submission date: June 2019
Supervisor: Tor Onshus

Norwegian University of Science and Technology
Department of Engineering Cybernetics

Foreword

The base of this master’s thesis has been made possible due to the access of

several valuable resources.

A shared workspace with Endre Leithe and Kristian Fjelde Pedersen has

been valuable in order to interact with- and have access to their experience and

knowledge about the robots used in the project. The powerful desktop machine

provided by NTNU eased the development process. Similarly, the testing of

the project would not be possible without the access to the hardware given by

Nordic Semiconductor, and the hardware available for purchase through Omega

Workshop.

The base of the graphical representation of this thesis is made possible by

the work of Laurent Gomila, the author of the Simple and Fast Multimedia

Library. Similarly, the user interface is entirely dependent on the work of Omar

Cornut, the author of the user interface library dear imgui. Pathfinding was

made possible by the authors of the Boost Graph Library : Jeremy Siek, Lie-

Quan Lee, and Andrew Lumsdaine. Lastly, the many authors of the C++

standard library are greatly appreciated.

The Java application created over several years by several authors proved a

great source of inspiration for the new C++ application. It helped clarify both

strong points of the current implementation such as a graphical representation

of the mapping process and friendly user interfaces, and weak points such as

the complex communication stack. The new C++ application has a flexible

graphical representation, a clear user interface, and a solid new communication

stack based on the latest technologies in the world of IoT.

A collaboration effort with Endre Leithe proved useful. I created a legacy

layer to allow his robot with legacy hardware to connect to the new server

application—which uses the Thread network protocol stack. The legacy layer

bridged the gap between Thread and a protocol available on his robot: I2C. He

then modified the robot software to understand the translated messages coming

to and from his I2C bus, proving a successful endeavour.

The work on this thesis has given me a very valuable experience as a de-

veloping programmer. I am happy that I sought to use modern C++ features

and proven design patterns, which allowed me to reflect on my choices through-

i

CHAPTER 0. FOREWORD

out the implementation of the application—and grow as a programmer in the

process.

I wish to thank my supervisor Tor Onshus for his guidance during the course

of the thesis.

ii

Problem Statement
A Java server has been written for NTNU’s SLAM (Simultaneous Localisation

and Mapping) project, which has been ongoing since 2004. Reportedly, students

have expressed the wish to port this to another language, as Java is not the most

familiar language to a majority of the students having participated in previous

work. Therefore, an initiative to rewrite the server in the more familiar language

C++ has been sought.

Today, several robots are using Bluetooth to communicate with a Java server

running on a desktop computer. The server accepts incoming connections, reads

and maps data, and replies with commands. The map is the currently sensed

and interpreted representation of the physical area by the robots. The com-

mands tell robots where to go next according to a path-finding algorithm, in-

tended to expose the surrounding area as efficiently as possible.

As much functionality as possible is to be ported onto the new C++ architec-

ture, and the transition from Java to C++ should be as painless as possible for

the future students taking on the project. The new server should be structured,

documented, and tested.

The rewrite from Java to C++ presents an opportunity: Characteristics

which have worked well for the Java application should be implemented and

used in the C++ version—problematic areas should be identified and avoided.

In the following chapters of this thesis, the student will:

• Inspect and analyse the server written in Java.

• Decide which components should be translated.

• Document the new server design.

• Implement the new C++ server.

• Use means of testing and profiling the server.

• Create guides and examples on using and extending the new server.

iii

CHAPTER 0. PROBLEM STATEMENT

iv

Summary

This thesis was tasked with rewriting a complete SLAM server application in

the C++ programming language, as the Java server application previously in

use was to be discarded. The task included creating a graphical application

for drawing measurements sent by robots, creating a user interface in order

to let users issue control over various tasks, and implementing a future-proof

communication method with robots.

The communication stack used by the Java server application built upon

Bluetooth Low Energy and user-implemented protocols. This implementation

was entirely discarded, as it was found to greatly hinder development progress

and provided several limitations. A case study was conducted in order to con-

sider the benefits of an alternative communication stack. The new stack used

Thread networking technology, and solves the limitations of the previous stack.

Robots did not have support for the new stack as newer hardware was required.

This has been mitigated to some degree by creating a legacy layer consisting

of hardware with support for the new technology and the software to control

it, although this solution is meant for the short term. It is advised to upgrade

robots to new hardware.

Experiments using robots proved the new server application to work as in-

tended by the scope of the thesis: A graphical C++ SLAM server application

built in modern C++ with easily extensible user interfaces and features success-

fully plotted robot measurements via a more sustainable software stack, with

documented examples on how to further extend the application. A simulated

software robot has been used to test the server and can be activated through

the user interface. This has allowed for testing the robustness of the server,

verifying robot control panel features, and profiling long-running tests without

the need of physical robot interaction. Tests using real robots were successful

as the new application plotted robot measurements and issued commands for

robots to move towards. Robots responded accordingly.

Compared to the Java server application, the new application is more flexible

in development and has more useful basic features, but does not yet have higher

level SLAM features. Several technological limitations are no longer present

due to the new application: An arbitrary number of robots can be connected,

v

CHAPTER 0. SUMMARY

communication is less brittle and greatly simplified, and the necessary hardware

and software setup is simplified for next generation robots.

vi

Oppsummering

Denne tesa hadde som oppg̊ave å omskrive ein komplett SLAM serverapp-

likasjon i C++ programmeringsspr̊aket, d̊a Java serverapplikasjonen tidlegere

i bruk skulle bli forkasta. Oppg̊ava innbefatta å lage ein grafisk applikasjon

for teikning av m̊alingar sendt fr̊a robotar, å lage eit brukergrensesnitt for å la

brukarar yte kontroll over forskjellege oppg̊aver, og å implementere ein framtid-

sretta kommunikasjonsmetode med robotar.

Kommunikasjonsoppsettet brukt av Java serverapplikasjonen bygde p̊a Blue-

tooth Low Energy og brukerimplementerte protokollar. Denne implementasjo-

nen vart forkasta, d̊a den forhindra framgang i utvikling og medfulgte fleire be-

grensningar. Eit eksempelstudie vart utført for å vurdere fordelar ved bruk av eit

alternativ kommunikasjonsoppsett. Det nye oppsettet brukte Thread nettverk-

steknologi og løyste begrensningane ved forrige oppsett. Robotane hadde ikkje

støtte for det nye oppsettet d̊a nyare maskinvare var p̊akrevd. Dette vart løyst

til ein viss grad ved å lage eit overgangslag som bestod av maskinvare med støtte

for den nye teknologien og programvara for å styre den, men denne løysinga er

kun meint som ei midlertidig løysing. Det er r̊ada å oppgrade robotar til ny

maskinvare.

Eksperimenter med bruk av robotar viste at den nye serverapplikasjonen

virka som tenkt gitt omfanget til tesa: Ein grafisk C++ SLAM serverapp-

likasjon bygd i moderne C++ med enkelt utvidbart brukergrensesnitt og eigen-

skapar plotta m̊alingar fr̊a robotar vellukka via eit meir berekrafig program-

varegrunnlag, med dokumenterte eksempler p̊a videreutvikling av applikasjo-

nen. Ein simulert programvarerobot har vore brukt til å teste serveren og kan

bli aktivert via brukergrensesnittet. Dette har tillatt testing av robustheita til

serveren, verifikasjon av eigenskapar til robot-kontrollpanel, og profilering av

langtidstestar utan behov for fysisk robotinteraksjon. Testar med ekte robotar

gikk bra, d̊a den nye applikasjonen plotta robotm̊alingar og ga kommandoar for

robotar til å bevege seg mot. Robotar reagerte i samsvar med dette.

Samanlikna med Java serverapplikasjonen er den nye applikasjonen meir

fleksibel i utvikling og har fleire nyttige grunnleggjande eigenskapar, men har

enno ikkje SLAM eigenskapar p̊a høgt niv̊a. Fleire teknologiske begrensningar

er no ikkje lenger til stades som følgje av den nye applikasjonen: Eit vilk̊arleg

vii

CHAPTER 0. OPPSUMMERING

antal robotar kan no bli tilkopla, kommunikasjonen er mindre skøyr og svært

forenkla, og den nødvendige maskinvara og programvareoppsettet er forenkla

for neste generasjons robotar.

viii

Conclusion

The new SLAM server written in modern C++ successfully builds a solid foun-

dation for solving higher level SLAM tasks, and has been created with extension

in mind.

A modern C++ approach is taken throughout the source code, which aids in

readability, maintainability, and is safer in terms of avoiding resource leaks. The

design has been clearly documented and reasoned about. The implementation

has also been documented and reasoned about on a file-by-file basis, expressing

the intent of every source file.

The current application has a number of features. The graphical window

supports drawing all basic graphical primitives. The window also support mov-

ing the user-view around the map, rotating, zooming in and out, and flipping

the vertical axis. These controls are available through the user interface. Sup-

port for MQTT is also built into the user interface, with manual publish and

subscribe controls, and an overview of incoming and outgoing messages. Various

other useful panels are available, such as panels which are dynamically created

when new robots connect, and control over robot pathfinding. Through this

control panel, robots can be issued to move towards any point on the appli-

cation grid. The application grid is an abstract representation of the physical

world the robots move in. Robots can be asked to move directly towards a

point, or to be sent towards waypoints which avoid obstacles using pathfinding

algorithms. Perhaps the most important change is the move to use the Thread

protocol for communication, and not reimplementing Bluetooth support. This

move has made mesh networking automatic, communication is encrypted, large

messages are handled automatically, checksums and retries are automatic, and

there are no limitations on the number of connected entities. The cost of this

move has been the fact that it requires new hardware. Robots are currently

using an older generation Nordic Semiconductor chip. This means a legacy

layer was needed in order to bridge the technology gap. This was successfully

created, but it has limitations which are not ideal. Therefore, a clear step to-

wards meaningful progress is to upgrade the robots by porting applications to

the new generation Nordic Semiconductor chips (or similar) which support the

Thread protocol. The additional benefit of this upgrade is the fact that robots

ix

CHAPTER 0. CONCLUSION

then do not need a dongle, as the required hardware support is built into the

robot’s CPU which also runs the robot application. Similarly, the computer

running the server application no longer requires a dongle; the Java application

required a Bluetooth dongle. This means the number of devices to maintain is

substantially reduced, which greatly reduces overall project complexity.

The Java application has been superseded and is not needed for the tasks

which can be handled by the new application. Some newer versions of the Java

application have experimented with higher level SLAM tasks such as algorithms

for traversing the map efficiently, and using techniques for mitigation of pose es-

timation errors which are inherently present in SLAM applications. These tech-

niques are not present in the new application, thus they need implementation.

Other tasks such as connecting robots, mapping measurements, and controlling

robots manually or by pathfinding is implemented and correctly working in a

more flexible manner and should now be the default way of approaching the

SLAM project.

x

Contents

Foreword i

Problem Statement iii

Summary v

Oppsummering vii

Conclusion ix

1 Introduction 1

1.1 Motivation . 1

1.2 Previous Work . 2

1.3 Scope . 3

1.4 Roadmap . 4

2 Background: C++ Programming and Environment 7

2.1 Integrated Desktop Environment 7

2.1.1 Visual Studio Community 7

2.2 Often Used Language Features 10

2.2.1 Namespaces . 10

2.2.2 Templates . 11

2.2.3 Inheritance . 12

2.2.4 Polymorphism . 13

2.2.5 Operator Overloading . 15

2.2.6 Smart Pointers . 16

2.2.7 Lambdas . 17

2.2.8 Keywords . 17

2.3 External Tools . 19

2.3.1 Vcpkg . 19

2.4 External Libraries . 20

2.4.1 Boost . 20

2.4.2 SFML . 23

2.4.3 imgui . 24

xi

CONTENTS

3 Background of Project: SLAM 27

4 Java Server Application 29

4.1 Codebase Summary . 29

4.1.1 Namespace: no.ntnu.et 30

4.1.2 Namespace: no.ntnu.hkm 33

4.1.3 Namespace: no.ntnu.tem 34

4.2 High-Level Overview of Features 42

4.2.1 Graphics, User Interface 42

4.2.2 Robot Handling . 43

4.2.3 SLAM . 43

4.2.4 Simulation . 43

4.2.5 Communication . 43

4.2.6 Miscellaneous . 44

4.3 Discussion . 45

5 Case Study: Thread 47

5.1 Thread . 47

5.1.1 IEEE 802.15.4 . 49

5.1.2 IPv6 . 50

5.1.3 6LoWPAN . 52

5.1.4 Nodes and Devices Types 52

5.1.5 Addressing . 54

5.1.6 Network Creation and Joining 56

5.2 OpenThread . 58

5.3 MQTT . 59

5.3.1 Quality-of-Service . 59

5.3.2 MQTT-SN . 60

5.4 In Practice: Nordic Semiconductor SoC and Raspberry Pi 61

6 Design of New Server 65

6.1 Major Goals . 65

6.2 Design Patterns . 66

6.2.1 Use Callbacks Generated By Events 66

6.2.2 Use Inheritance Where Appropriate 66

6.2.3 Single Responsibility . 66

6.2.4 Modern C++ . 67

6.2.5 Asynchronous Single-Threaded Until Avoidable 68

xii

CONTENTS

6.3 Main Ties Functionality Together 69

7 Results 71

7.1 Overview . 71

7.2 Codebase Structure . 73

7.2.1 Namespace Explanations 73

7.3 Codebase Walk-through . 74

7.3.1 Namespace: TG::gui . 74

7.3.2 Namespace: TG::graph 77

7.3.3 Namespace: TG::networking 78

7.3.4 Namespace: TG::utility 78

7.3.5 Namespace: TG::application 78

7.4 Callbacks and Events . 80

7.4.1 Enabling Class . 80

7.5 Various Design Goals . 81

7.5.1 Inheritance . 81

7.5.2 Single Responsibility . 82

7.5.3 Modern Codebase . 82

7.6 Asynchronous And Single-Threaded 83

7.7 Graphical Implementation . 84

7.8 User Interface . 88

7.9 Communication Stack . 94

7.10 Finding Paths . 95

8 Testing and Profiling 97

8.1 Testing . 97

8.2 CPU Usage . 98

8.3 Memory Usage . 100

9 Extending and Using The New Server 103

9.1 Running the Server . 103

9.2 Extending the Server . 104

9.2.1 Example: Adding Drawables 104

9.2.2 Example: Adding a Panel 106

9.2.3 Example: Adding Callbacks to a Class 108

9.2.4 Example: Running a Task 108

xiii

CONTENTS

10 Using a Legacy Robot 111

10.1 Connecting a Legacy Robot . 111

10.1.1 Overview . 111

10.1.2 Implementation . 112

10.1.3 Discussion . 114

10.2 Communication Protocol . 116

10.2.1 I2C . 117

10.2.2 MQTT . 118

10.3 Real World Use: Detecting a Circular Track 118

11 Discussion and Future Work 121

11.1 Discussion . 121

11.1.1 C++ Application Versus Java Application 121

11.2 Future Work . 125

Bibliography 127

A Files Overview 131

xiv

Chapter 1

Introduction

Aim of This Chapter

• Explain motivation for the thesis.

• Outline related previous work.

• Outline the scope of the thesis.

• Present a roadmap of the remaining content of the thesis.

1.1 Motivation

A graphical Java server application has been developed and can perform some

tasks with a few robots as of the start of this thesis.

Students have expressed a wish to use a more familiar language more suited

to the background of the students which tend to work on the SLAM project.

C++ is the language of choice for this task. There is an opportunity to use

modern features of C++—stemming from the advances in the language which

were introduced by the C++11, C++14, and C++17 standards. Using mod-

ern techniques in C++ inspires code which performs well—perhaps the most

defining characteristic of C++—but is also readable, maintainable, safe, and

extensible.

The robots currently rely on Bluetooth technology for communications.

There is an opportunity to assess the level of success this has had as well,

as there are other potential wireless technologies available if desired.

The overarching design goal of the server application is to create a modu-

larised implementation where extending the graphical part, the user interface,

and robot-interactions is easy for next generations of developers. This can be

achieved by creating logically separated classes, by having a high sense of cohe-

1

CHAPTER 1. INTRODUCTION

sion in classes, and by the use of design patterns which inspire decoupling.

1.2 Previous Work

This section will briefly outline previous work on the server side of the project.

For an overview of previous work related to the project robots, see [15] and [19].

In 2016, the server application in use was a MATLAB [18] application [28].

That year, the Java application was created. The authors ported most function-

ality from the MATLAB application, and created a graphical application via a

modularised system architecture, which also featured a user interface [28]. At

the same time, communication went from using Bluetooth to Bluetooth Smart.

The desktop application was given a Nordic Semiconductor [30] USB dongle

with a specialised firmware on-board in order to communicate with robots. [39]

added simulation, navigation, and mapping to the application. [17] added the

use of automatic repeat request (ARQ) in 2017. The intention was to allow

sending larger messages, avoid loss of messages, and to make robots address-

able. The communication layer was more or less completely overhauled at this

point. The interaction with dongles before this point was based around sending

commands between the server and the dongle (which was physically placed in

the USB port of the server machine). This command set was custom made and

performed tasks such as scanning for other dongles and connecting to them.

This system was discarded, and command sets are no longer in use. The don-

gles now continuously scan for other dongles and try to connect to any in range.

Sending messages at this point relies on a specific format. This format is seen

in Figure 1.1. Another required step at this point is to encode all outgoing mes-

sages via Consistent Overhead Byte Stuffing (COBS) [17] and similarly decode

all incoming messages via COBS, as well as to validate checksums.

[19] experimented with improving the mapping experience of robots server-

side. Instead of requiring each robot to specify an initial position in the global

coordinate system, separate reference frames were allowed. This then required

a map-merging algorithm. A particle filter was applied in an effort to improve

robot poses.

In 2018, [9] changed the Java application and the robots in use to use Carte-

sian coordinates. Before this, the server and robots had communicated via

relative polar coordinates. For example, a robot could be instructed to turn 45

degrees clockwise, and then travel a distance of 20 centimetres. An algorithm

to create lines from clouds of points was experimented with, for use on the

2

1.3. SCOPE

mapping side of the server.

Figure 1.1: Network frame as of [17].

1.3 Scope

The scope of the server application is large. Focus will be entirely on creating a

solid foundation for solving SLAM problems for future developers. Major goals

are:

• Java application inspection: Get a sense of how the system currently

works, and decide what should be rewritten in the new application.

• Graphics: Find a suitable library for drawing graphics on a screen. Sup-

port for drawing various primitives (triangles, circles, lines, and similar)

should be supported. Support for drawing higher-level entities such as

images could also be valuable.

• User interface: A library for graphics does not necessarily support user

interface elements such as menus, panels, nodes, buttons, and similar. If

support is not built in, a suitable user interface library should be found.

• Robot communications: The Java application communicates not directly

via Bluetooth, but via a serial interface to a USB dongle which in turn

communicates via Bluetooth. An evaluation of this roundabout setup

should be done.

3

CHAPTER 1. INTRODUCTION

• Robot interaction: When communication is solved, some manner of in-

teracting with the robots should be in place. For example, receiving data

about robot positions, obstacles, and instructing robots to move to a lo-

cation.

• Trial and error: Given a working new application, experiments with robots

should take place.

• Profiling: The working application should be profiled—its memory- and

CPU footprint should be inspected for potential issues.

• Document and instruct future developers: Weight should be placed on

instructing future generations of the project. This means providing ex-

amples and explanations of how to best approach development on the new

server application.

1.4 Roadmap

A roadmap is presented since the structure of the thesis is somewhat non-

traditional. After the design is presented, the results are given in the form of

a presentation of the implementation. Still, a few (content-)chapters after the

results are added—concerning the actual use of the application with robots,

testing and profiling, and a chapter specifically targeting use and extension of

the application.

The contents of the thesis is laid forth as follows:

• Chapter 2 and Chapter 3 provide background information. Chapter 2

explains various parts of the C++ language which might be unfamiliar.

Examples of modern C++ patterns often used in the project are given.

External tools and libraries are presented. Chapter 3 briefly introduces

the general context of the project—SLAM.

• Chapter 4 presents the Java application, and finds out which parts should

be rewritten in the new application and which parts should be left out (or

implemented later).

• Chapter 5 presents a case study performed in the early stages of the thesis

concerning an alternative approach to robot communication.

• Chapter 6 concerns the design principles and choices made for the new

application.

4

1.4. ROADMAP

• Chapter 7 presents the new application in its final state, and compares it

with the design principles made.

• Chapter 8 concerns testing the finished application in terms of perfor-

mance.

• Chapter 9 is targeted at future users of the application, and future devel-

opers. Running the application is covered. Weight is placed on showing

how to further develop the application.

• Chapter 10 presents the work done in order to connect a robot without

the necessary hardware to the new server, and the results which followed.

• Chapter 11 discusses parts of the new application which were successful,

and considers possible problem areas—and ties this together with guide-

lines on future work.

5

CHAPTER 1. INTRODUCTION

6

Chapter 2

Background: C++

Programming and

Environment

Aim of This Chapter

• Introduce the integrated desktop environment (IDE) used, and

project settings used within the IDE.

• Explain and show examples of C++ language features often used

in the source code of the project.

• Introduce C++ language features which might be new to pro-

grammers not having used more recent features of C++ such as

features introduced in the C++11, C++14, and C++17 stan-

dards.

• Familiarise the reader on external tools and libraries used.

2.1 Integrated Desktop Environment

2.1.1 Visual Studio Community

Visual Studio Community 2017 [10] was used as the integrated desktop envi-

ronment during development. Some important features are:

• Setting breakpoints for stopping code at certain points.

• Inspecting values and objects during paused run-time.

7

CHAPTER 2. BACKGROUND: C++ PROGRAMMING AND
ENVIRONMENT

• Refactor symbols and function prototypes project-wide.

• Profile memory- and CPU usage.

• View memory and registers during paused run-time.

• Create definitions from declarations.

• Go to definitions from declarations, and vica versa.

Using Visual Studio allows for quickly setting up projects via the integrated

New project... wizard, which creates project files describing the organisation

of files, compiler flags, and all other settings chosen via the IDE. This allows

developers to develop in an integrated manner as project settings can be shared

via the project files, and allows for quickly sharing setups without needing to

spend time on creating custom toolchains. This is also due to Visual Studio

bundling its own Visual C++ compiler. The drawback of this approach is

the tight integration; the development is now coupled with the IDE. This also

implies developing on Windows only. It should be noted that it is only the

build process that is Windows specific. The source files should be compilable

for other platforms, however the build process for those platforms must then be

set up.

Project Configuration

Some important configuration options are presented.

Figure 2.1 shows the setting for adding additional include paths to the com-

piler. This is used in order to let the compiler know where to look for include

files. This allows including headers via paths relative to the paths added. If

a user wanted to include the header C:/Thirdparty/Include/Lib/Lib.h, the

path C:/Thirdparty/Include could be added to the path setting. This would

allow including the header via the line #include "Lib/Lib.h" in source files.

8

2.1. INTEGRATED DESKTOP ENVIRONMENT

Figure 2.1: A relative path being used as an additional include directory.

Figure 2.2 shows the setting for adding additional preprocessor definitions.

It is common for thirdparty libraries to rely on preprocessor flags in order to let

the user choose between different behaviours of the library. Issues around pre-

processor definitions can be debugged by increasing the compilation verbosity

in the project settings, as the default verbosity is quite terse. When increased,

more output is presented when compiling—including all preprocessor definitions

and include paths.

Figure 2.2: A custom preprocessor definition added to the project.

9

CHAPTER 2. BACKGROUND: C++ PROGRAMMING AND
ENVIRONMENT

Figure 2.3 shows the setting for which language standard to compile for.

Figure 2.3: C++17 chosen as standard to compile for.

Notice no figures are included concerning the Configuration Properties—

Linker options. This is explained further in the section concerning external

tools, Section 2.3.

2.2 Often Used Language Features

This section provides small examples and descriptions of various C++ language

features. The C++ programming language is fairly large and is very intricate

when scrutinised. The aim of this section is to refresh concepts in a brief manner,

in order to aid in reading the project source code efficiently. Concepts which

will be encountered frequently or which are syntactically different from other

languages are focused on. More details can be found in online references [5] or

in book form [36].

2.2.1 Namespaces

Namespaces allows grouping code into logical categories, aiding in readability.

They also allow for avoiding collisions in symbol names. A thirdparty math

library using vectors could define a class vector which could collide with the

standard library’s vector class. However, the standard library uses the names-

10

2.2. OFTEN USED LANGUAGE FEATURES

pace std. This means the syntax std::vector is used to specify intent of which

version to use.

Namespaces can be entered by the syntax shown in Listing 2.1. Usage of

both single and nested namespaces are shown.

Listing 2.1: Using namespaces.

1 namespace vehicle {
2 void drive() {
3 // This function addressed by vehicle :: drive
4 ...
5 }
6 }
7

8 namespace vehicle ::air {
9 void fly() {

10 // This function addressed by vehicle ::air::fly
11 ...
12 }
13 }

Declaring a namespace deeper than a single level in one go as is done for names-

pace vehicle::air is a new feature of C++17.

One way to group code into namespaces are via a top-level namespace (e.g.

author, organisation), then module subject or topic, and then specialisation.

Examples are NTNU::pedagogy::presentation, NTNU::pedagogy::writing,

and Equinor::math::complex.

2.2.2 Templates

Templates are a key concept in generic programming, and widely used in C++

[36]. Templates allow several types to share the same business logic.

An example of a template function is given in Listing 2.2.

Listing 2.2: A template function.

1 template <class T>
2 bool is_strictly_larger(const T& t1 , const T& t2) {
3 return (t1 > t2);
4 }

The function is strictly larger(...) is declared to accept comparison of

any given class, and returns a boolean indicating the result. Note that usage of

this template function is checked at compile-time. This means that passing the

wrong type of class to the function would cause an error during compilation.

This would be the case for any class not supporting the operations performed

in the template function body. In this case this would mean any class not

supporting the comparison operator.

11

CHAPTER 2. BACKGROUND: C++ PROGRAMMING AND
ENVIRONMENT

A class can accept template parameters. An example of a template class is

given in Listing 2.3.

Listing 2.3: A template class.

1 template <class L, class R>
2 class Related {
3 public:
4 Related(L l, R r);
5 L left() const;
6 R right () const;
7 private:
8 L l_;
9 R r_;

10 };
11

12 template <class L, class R>
13 Related <L, R>:: Related (L l, R r) : l_(l), r_(r) { }
14

15 template <class L, class R>
16 L Related <L, R>:: left() const {
17 return l_;
18 }
19

20 template <class L, class R>
21 R Related <L, R>:: right() const {
22 return r_;
23 }

The example shows the use of several template parameters for a single class.

This abstraction shows the early stages of implementing a base class where two

generic classes have a left-right relationship.

This class could be used as seen in Listing 2.4. Notice the template class

Related is invoked with angle brackets, where the types of the template pa-

rameters are specified.

Listing 2.4: Template class usage.

1 #include "Related.hpp"
2 #include "Hands.hpp"
3 #include "Feet.hpp"
4

5 int main() {
6 LeftArm larm;
7 RightArm rarm;
8

9 LeftFoot lfoot;
10 RightFoot rfoot;
11

12 Related <LeftArm , RightArm > arms{larm , rarm};
13 Related <LeftFoot , RightFoot > feet{lfoot , rfoot};
14

15 ...
16

17 return 0;
18 }

2.2.3 Inheritance

Inheritance is a core object-oriented programming concept and allows code reuse

and grouping functionality for similar classes.

12

2.2. OFTEN USED LANGUAGE FEATURES

A class can inherit behaviour from a parent class (also called a super-class).

The functions and members of the parent class are now also a part of the child

class. The child class can add new functions and members. A given function

can also be overridden, allowing specialisation of parts of an interface.

Inheritance then allows several specialised child classes to share a common

set of functionality from a parent. An example is given in Listing 2.5.

Listing 2.5: Inheritance.

1 // File: Base.hpp
2 class Base {
3 public:
4 Base(float a) : a_(a) {}
5 float get_half () {return a_ / 2.0f;}
6 private:
7 int a_;
8 };
9

10 class Extension : public Base {
11 public:
12 Extension(float f) : Base(f), f_(f) {}
13 float get() {return f_;}
14 private:
15 int f_;
16 };
17

18 // File: Main.cpp
19 int main() {
20 Extension e {5.0f};
21 auto whole = e.get(); // whole is 5.0f
22 auto half = e.get_half (); // half is 2.5f
23 ...
24 }

The example shows a class Extension which inherits the functionality of its par-

ent Base, and simultaneously extends the behaviour by adding a new function.

An instance of an Extension is created and used.

2.2.4 Polymorphism

Polymorphism is further split into run-time polymorphism and compile-time

polymorphism.

Run-time polymorphism concerns using different types via some commonal-

ity. Listing 2.6 shows run-time polymorphism.

Listing 2.6: Run-time polymorphism.

1 #include <iostream >
2

3 struct Tool {
4 Tool() {};
5 virtual void use() const {
6 std::cout << "Using Tool" << std::endl;
7 }
8 };
9

10 struct Wrench : public Tool {

13

CHAPTER 2. BACKGROUND: C++ PROGRAMMING AND
ENVIRONMENT

11 Wrench () {};
12 void use() const override {
13 std::cout << "Using Wrench" << std::endl;
14 }
15 };
16

17 struct Screwdriver : public Tool {
18 Screwdriver () {};
19 void use() const override {
20 std::cout << "Using Screwdriver" << std::endl;
21 }
22 };
23

24 struct SomeTool : public Tool {
25 SomeTool () {};
26 };
27

28 void use_tool(const Tool& tool) {
29 tool.use();
30 }
31

32 int main() {
33 Wrench wrench;
34 Screwdriver screwdriver;
35 SomeTool sometool;
36

37 use_tool(wrench); // Outputs "Using Wrench"
38 use_tool(screwdriver); // Outputs "Using Screwdriver"
39 use_tool(sometool); // Outputs "Using Tool"
40

41 ...
42 }

The function use tool(...) shows that the three structures can all be treated

as Tools at run-time. Note that structures are simply classes with public as

the default access modifier of members. The example also shows the useful

pattern of treating specialised classes as their parent class.

Compile-time polymorphism refers to templates and overloading of func-

tions. Function overloading can be seen in Listing 2.7.

Listing 2.7: Compile-time polymorphism.

1 #include <iostream >
2

3 struct Hat {};
4

5 void typehint(int) {
6 std::cout << "Int!" << std::endl;
7 }
8

9 void typehint(double) {
10 std::cout << "Double!" << std::endl;
11 }
12

13 void typehint(float) {
14 std::cout << "Float!" << std::endl;
15 }
16

17 void typehint(Hat) {
18 std::cout << "Hat!" << std::endl;
19 }
20

21 int main() {
22 typehint (1); // Outputs "Int!"
23 typehint (1.0); // Outputs "Double !"
24 typehint (1.0f); // Outputs "Float!"
25 typehint(Hat {}); // Outputs "Hat!"

14

2.2. OFTEN USED LANGUAGE FEATURES

26

27 ...
28 }

As the function typehint(...) has the same base name for all its definitions,

it is overloaded. Overloaded functions can also have a different number of

arguments and different return types.

2.2.5 Operator Overloading

Overloading has been briefly visited through compile-time polymorphism. Still,

the specific case of operator overloading is given an example as it is widely

used and can be quite powerful. Listing 2.8 shows a class having two operators

overloaded.

Listing 2.8: Operator overloading.

1 #include <iostream >
2

3 struct Coffee {
4 Coffee(float temperature , float amount) :
5 temp_{temperature}, ml_(amount) {}
6

7 float temperature () const { return temp_; }
8 float amount () const { return ml_; }
9

10 Coffee operator +(const Coffee& coffee) {
11 auto total_ml = (ml_ + coffee.amount ());
12 auto final_temp = ((temp_ * ml_) + (coffee.temperature () ←↩

* coffee.amount ())) / total_ml;
13

14 return Coffee{final_temp , total_ml };
15 }
16 friend std:: ostream& operator <<(std:: ostream& os, const ←↩

Coffee& coffee) {
17 return os << "Temperature: " << coffee.temp_ << " C, ←↩

amount: " << coffee.ml_ << " ml";
18 }
19

20 private:
21 float temp_;
22 float ml_;
23 };
24

25 int main() {
26 Coffee coffee1 {80, 100};
27 Coffee coffee2 {50, 50};
28

29 Coffee mixed_coffee = coffee1 + coffee2;
30

31 // Outputs "Temperature: 70 C, amount: 150 ml"
32 std::cout << mixed_coffee << std::endl;
33

34 ...
35 }

A simple class Coffee has a temperature and an associated amount. The addi-

tion operator is overloaded to allow adding two coffees together. The returned

Coffee instance has the amounts added and the simplified approximate mixed

15

CHAPTER 2. BACKGROUND: C++ PROGRAMMING AND
ENVIRONMENT

temperature. The insertion operator is overloaded in order to let streams such

as std::cout accept a Coffee.

2.2.6 Smart Pointers

The most common smart pointers unique ptr and shared ptr will be discussed

briefly. Smart pointers are the recommended way to manage resources since

C++11. They should be used by default when resources are allocated [33][38].

Consider Listing 2.9.

Listing 2.9: Smart pointers.

1 void complex_thing ()
2 {
3 auto pobj = new SomeObject ();
4

5 ...
6

7 delete pobj;
8 }
9

10 void complex_thing_modern ()
11 {
12 auto pobj = std:: make_unique <SomeObject >();
13

14 ...
15 // Safe!
16 }

The first function allocates memory on the heap, and is responsible for manually

deleting it. A missed delete results in a memory leak. This can happen due

to a complex function having several return paths, or perhaps a rare exception

happens which does not cause the program to crash, but forgets an appropriate

deallocation of the memory via delete.

The second function uses the smart pointer of type std::unique ptr. This

is the most efficient smart pointer and does not cause additional overhead when

compared to traditional raw pointers. It deallocates the resource it owns when

going out of scope. Calls to new and delete are encapsulated away from the

user, and usage of smart pointers is exception safe with no memory leaks.

A unique pointer implies ownership of the resource pointed to. Transferring

ownership is possible via std::move(...). Transferring ownership is needed

when the intent is to keep the resource alive but the scope of the smart pointer

is about to expire. The memory must be given to a new owner in order to not

be invalidated. If shared ownership is required, a shared ptr is recommended.

A shared pointer has a slight cost increase in its use. It points not only to

the resource itself, but to a control block as well. The control block contains

a reference count. If another shared pointer is made (e.g. via copying the first

16

2.2. OFTEN USED LANGUAGE FEATURES

smart pointer), this shared pointer will point to the same resource and the same

control block. The reference count within the control block increases by one. If

the reference count reaches zero, the resource is deallocated.

2.2.7 Lambdas

Lambdas (also called closures) creates unnamed functions capable of capturing

variables in the surrounding scope by reference or copy. They are available since

C++11.

Listing 2.10 shows a simple lambda assigned to a variable. The lambda can

later be invoked by syntax equal to calling a ”regular” function.

Listing 2.10: A simple lambda function assigned to a variable.

1 #include <iostream >
2

3 int main() {
4 int value = 0;
5

6 auto fun = [&]() {
7 value += 10;
8 std::cout << "Value is: " << value << '\n';
9 };

10

11 fun(); // Outputs "Value is: 10"
12 fun(); // Outputs "Value is: 20"
13 fun(); // Outputs "Value is: 30"
14

15 return 0;
16 }

The lambda definition starts with a pair of hard brackets. These indicate

which variables from the surrounding scope should be captured and made avail-

able for use in the lambda function body. Placing ampersand here means every-

thing is available for use by reference—which means the changes are persistent

(i.e. non-local to the lambda). Placing an equals sign ([=] instead of [&]) cap-

tures everything by value instead. Individual variables can be named in order

to be more specific about what to capture. The parenthesis act the same as for

defining regular functions. This allows the lambda to be called with arguments.

Note that lambdas need not be assigned to anything. They are very useful

when constructed in place of an argument to a function call.

2.2.8 Keywords

Some commonly used keywords are presented briefly. The explanations and

examples are not exhaustive, but aims to target the most frequent uses of the

keywords.

17

CHAPTER 2. BACKGROUND: C++ PROGRAMMING AND
ENVIRONMENT

const

The const keyword is an important tool in aiding readability and protecting

against misuse. Consider Listing 2.11.

Listing 2.11: Using const.

1 struct Animal {
2 int legs();
3 int eyes() const;
4

5 private:
6 int num_legs;
7 int num_eyes;
8 };

The function-call eyes() of class Animal is expected to return the number of

eyes of the given animal instance. The function-call has been marked const.

The function legs() has not been marked as such. This means that the instance

might have its members changed as a result of the call to the function. As a

result, a user can not read this function and be sure of the intention of the API

creator. The function might return the number of legs, but it might also add a

leg, remove a leg, or change the instance in some other unpredictable manner.

As such, const should be used on any function not changing its underlying

instance.

Consider Listing 2.12.

Listing 2.12: Using const.

1 void InspectType(Type t) {
2 ...
3 }
4

5 void InspectType2(const Type& t) {
6 ...
7 }

The first function accepts some type for inspection. As the type is not accepted

by pointer or reference, the type is copied into the function body. This is poten-

tially an expensive operation. As such, the second function uses the frequently

seen pattern of using a const-reference. This allows a function to accept a type

without copying it. The function refers to the same memory via a reference,

but the compiler protects the passed object from being modified via the const

qualifier.

As a rule of thumb, if an object is larger than three to four sizes of the

system’s underlying pointer size it should be considered to be passed by reference

instead of by value for performance reasons [36].

18

2.3. EXTERNAL TOOLS

virtual

Consider Listing 2.6. The base class is Tool, and it has a virtual function

use(). The function use tool(...) accepts any Tool, and calls that tool’s

use() if appropriate. This captures the use of virtual functions. If non-virtual

functions are used, any child class passed as its parent (e.g. a saw passed as

a tool) will call its parent function instead of its own. Thus the removal of

the virtual keyword (the override keywords would have to be removed as

well in order to compile, as an error is generated when they no longer override

anything) would lead to the output ”Using Tool” three times in place of the

output seen in the original listing.

override

override is used for readability and to ensure safer refactoring. If a function

having the appended override keyword has no matching virtual function in

a parent class, an error is shown during compilation. This also then guards

against typographic errors.

auto

The auto keyword lets the compiler deduce the type of a variable when it is

being defined since C++11. The type is inferred from the right hand side of the

definition. This can save retyping type information and is the recommended

default when the result should be apparent [36]. Note that since that since

the type is deduced from the right hand side, the right hand side must not be

ambiguous in its type. If auto is used in such cases, an error will be given

during compilation. In other cases, implicit conversions might take place. This

can lead to unexpected behaviour.

2.3 External Tools

This section provides overview and use of third party tools used in the imple-

mentation stages of this thesis.

2.3.1 Vcpkg

Vcpkg is a freely available tool made by Microsoft [20]. The goal is to simplify

the distribution, installation, and use of C and C++ libraries. Installing new

19

CHAPTER 2. BACKGROUND: C++ PROGRAMMING AND
ENVIRONMENT

libraries is done in a single command line through Powershell (or other shells)

[22]. Git [11] is used to download Vcpkg locally. It is the recommended way

to use Vcpkg as it provides a way to update the available packages. To clarify,

Vcpkg frequently provides updates to the packaged libraries (and adds new

libraries). In order to update Vcpkg itself, a simple git pull command is

issued—this enables the access of new libraries and updates.

Example installation instructions and installing a package is shown in List-

ing 2.13.

Listing 2.13: Vcpkg installation example.

PS C:\Example > git clone https :// github.com/Microsoft/vcpkg.
git

PS C:\Example > cd vcpkg
PS C:\ Example\vcpkg > .\bootstrap -vcpkg.bat
PS C:\ Example\vcpkg > .\vcpkg integrate install
PS C:\ Example\vcpkg > .\vcpkg install boost

Note that the bootstrapping is only done once. Integrating the install is also only

done once. Thus, after the commands in the listing are issued once, additional

vcpkg install <library> commands are the most common use case (along

with updating Vcpkg). Also note that by default, 32-bit versions of libraries are

install as shared libraries. Static libraries and/or 64-bit version can be specified

if desired.

Integrating the install is optional but very useful. This command makes

all libraries downloaded automatically available in Visual Studio projects. The

user does not need to manually include folders containing headers or libraries,

and does not have to explicitly name library files for the linker. This greatly

simplifies package management.

2.4 External Libraries

Various third-party libraries were used in implementing the new application.

Some context for the majority of these is given here.

2.4.1 Boost

Boost [2] is a collection of open-source and peer-reviewed libraries. The libraries

are well renowned in the C++ community and tightly integrate with the C++

standard libraries. Boost libraries have previously been integrated into the

standard libraries, and more will be integrated in the future [37]. Boost consists

20

2.4. EXTERNAL LIBRARIES

of many libraries. Only the most relevant libraries to this thesis’ implementation

will be discussed.

Graph

Boost Graph [4] provides a generic interface for using graphs and provides some

common algorithms often used with graphs. These algorithms include depth-

and breadth-first search, Dijkstra’s shortest paths, topological sort, and several

others. The library offers ways to find vertices associated with an edge, all

edges in/out of a vertex, to allow or disallow directed edges, to allow or disallow

parallel edges, get vertex degrees, get all adjacent vertices, and so on. Iterators

are also central. These allow iterating over all vertices, or over all edges, and

similar. Dynamic properties allows putting and getting custom properties for

all edges and vertices.

An example of a useful graph built into the library is the grid graph. A

figure depicting a grid graph is shown in Figure 2.4. The figure indicates we

can create a two-dimensional grid of any size. Higher dimensions are possible.

It is also possible to make the edges wrap, such that the first column is adjacent

to the last column, and the top row is adjacent to the bottom row. The main

feature of a grid graph is that all vertices have edges in and out from their

horizontal and vertical neighbours.

The graph library is suitable for path-finding when it is possible to represent

the terrain to be traversed as a graph.

Figure 2.4: A grid graph.

Fiber

Boost Fiber [3] is a library that provides user-space threads. User-space stands

in contrast to kernel-space, which is a more privileged and potentially more

expensive mode of operation. Thus fiber-threads do not necessarily issue calls to

21

CHAPTER 2. BACKGROUND: C++ PROGRAMMING AND
ENVIRONMENT

the operating system. The fibers are scheduled cooperatively. This means fibers

are not preempted, and will have to explicitly yield. When yielding, a context

switch occurs. The context is restored when the yielding fiber is resumed at a

later point. Scheduling follows a round-robin scheme unless otherwise specified.

A fiber is bound to an underlying thread. Multiple fibers running on the

same thread are lock-safe, as they can not run concurrently. A fiber will always

run on the same thread, unless explicitly migrated. Note that fibers running

on different threads will have to use synchronisation primitives. Boost Fiber

primitives should be used, as using standard thread synchronisation would po-

tentially yield a whole thread, which can possibly contain a large amount of

fibers (we normally only wish to yield a single fiber at a time).

An example of usage is given in Listing 2.14. Note that some parts (e.g.

headers) are left out for brevity.

Listing 2.14: Boost fiber usage.

1 void chprinter(std:: string const& str)
2 {
3 for (auto c : str)
4 {
5 std::cout << "Character: " << c << std::endl;
6 boost:: this_fiber ::yield();
7 }
8 }
9

10 int main()
11 {
12 std::cout << "Begin!" << std::endl;
13

14 boost:: fibers ::fiber fiber_1(boost ::bind(chprinter , "ABC"));
15 boost:: fibers ::fiber fiber_2(boost ::bind(chprinter , "XYZ"));
16

17 fiber_1.join();
18 fiber_2.join();
19

20 std::cout << "End!" << std::endl;
21

22 ...
23 }

The associated output of running the program is given in Listing 2.15. This

briefly shows the main point of using fibers—execution is interleaved via explic-

itly yielding execution at appropriate times. This enables multiple tasks to run

more or less at the same time (assuming no task does any blocking which takes

more than several milliseconds without yielding).

Listing 2.15: Boost fiber output.

Begin!
Character: A
Character: X
Character: B
Character: Y
Character: C

22

2.4. EXTERNAL LIBRARIES

Character: Z
End!

2.4.2 SFML

SFML (Simple and Fast Multimedia Library) is a multi-platform multimedia

library used for graphics, networking, audio, system-related tasks, and spawning

windows (on which to e.g. draw graphics) [32].

SFML is a quick way to make a graphical application. The graphics module

is the most relevant module for this thesis. A bare-bones SFML graphical

application example is given in Listing 2.16.

Listing 2.16: SFML application.

1 #include "SFML/Graphics.hpp"
2 int main()
3 {
4 sf:: RenderWindow window(sf:: VideoMode (400, 300), "Example");
5

6 sf:: CircleShape circle1 (10); // radius is 10 px
7 sf:: CircleShape circle2 (20);
8 sf:: CircleShape circle3 (30);
9

10 circle1.setFillColor(sf::Color::Green);
11 circle2.setOutlineColor(sf:: Color::Red);
12 circle2.setOutlineThickness (3.f);
13

14 circle2.setPosition ({ 100, 100 });
15 circle3.setPosition ({ 250, 200 });
16

17 while (window.isOpen ())
18 {
19 sf:: Event event;
20 while (window.pollEvent(event)) { ; }
21 window.clear();
22 window.draw(circle1);
23 window.draw(circle2);
24 window.draw(circle3);
25 window.display ();
26 }
27 }

This example shows the core concepts of a graphical SFML application:

• Events: Each render loop, all spawned events are consumed. These can

be key- and button presses, resize events, sensors, text, and so on.

• Clear: The previously buffered draws are cleared.

• Draw calls: Each point, line, triangle, circle and so on is drawn onto a

buffer.

• Display: All buffered draws are now displayed onto the window being

rendered.

23

CHAPTER 2. BACKGROUND: C++ PROGRAMMING AND
ENVIRONMENT

Figure 2.5: Example of creating a window and drawing some circles.

The produced graphical application can be seen in Figure 2.5.

SFML/Graphics has many other useful features for graphical presentations.

Some are listed below.

• Scaling, rotating, and moving drawn elements.

• Displaying pictures (via sprites and textures)—not only primitives.

• Setting colours including alpha values of drawn elements.

• Setting frame rates, window sizes, and spawning additional windows.

• Drawing several thousands of elements with no considerable impact on

frame rates.

2.4.3 imgui

Dear ImGui provides a user interface framework for graphical applications [6].

It has a small compatibility layer which allows it to be directly used with SFML

[7]. Dear ImGui is self contained (no external dependencies), and can be used

24

2.4. EXTERNAL LIBRARIES

with any renderer. It is well suited for creating user interfaces for tools, with

menus, buttons, sliders, colour wheels, line plots, and many more built-in types.

An example of usage is given in Listing 2.17.

Listing 2.17: Imgui application.

1 // Create a window called "My First Tool", with a menu bar.
2 ImGui:: Begin("My First Tool", &my_tool_active , ←↩

ImGuiWindowFlags_MenuBar);
3 if (ImGui:: BeginMenuBar ())
4 {
5 if (ImGui:: BeginMenu("File"))
6 {
7 if (ImGui:: MenuItem("Open..", "Ctrl+O")) {/* Do stuff */}
8 if (ImGui:: MenuItem("Save", "Ctrl+S")) {/* Do stuff */}
9 if (ImGui:: MenuItem("Close", "Ctrl+W")) {my_tool_active ←↩

= false;}
10 ImGui:: EndMenu ();
11 }
12 ImGui:: EndMenuBar ();
13 }
14

15 // Edit a color (stored as ~4 floats)
16 ImGui:: ColorEdit4("Color", my_color);
17

18 // Plot some values
19 const float values [] = { 0.2f, 0.1f, 1.0f, 0.5f, 0.9f, 2.2f };
20 ImGui:: PlotLines("Frame Times", values , IM_ARRAYSIZE(my_values));
21

22 // Display contents in a scrolling region
23 ImGui:: TextColored(ImVec4 (1,1,0,1), "Important Stuff");
24 ImGui:: BeginChild("Scrolling");
25 for (int n = 0; n < 50; n++)
26 ImGui::Text("%04d: Some text", n);
27 ImGui:: EndChild ();
28 ImGui::End();

The produced user interface can be seen in Figure 2.6.

Figure 2.6: Example imgui usage producing a simple tool.

25

CHAPTER 2. BACKGROUND: C++ PROGRAMMING AND
ENVIRONMENT

26

Chapter 3

Background of Project:

SLAM

Aim of This Chapter

• Present the larger context of the thesis—SLAM.

• Contextualise this thesis’ relation to the larger problem.

• Outline some of the characteristics of tackling a SLAM problem.

This thesis intends to build a solid foundation to solve the simultaneous

localisation and mapping (SLAM) problem by creating a well-designed server

application in C++. As the scope of building such a foundation is quite large,

the SLAM problem will only be touched upon. However, SLAM is the core

context of the project as a whole, and as such it will be introduced briefly in

this chapter.

The SLAM problem involves placing a robot into an unknown area with no

prior knowledge of the surrounding environment [8]. The robot has sensors on-

board which are able to feed the robot with information about the environment,

for example distances to obstacles found. This enables the robot to gradually

estimate a map of the environment. As robots typically have a limited amount

of on-board resources, one common scenario is to communicate measurements

to an external device such as a desktop server. The robot’s local coordinate

system is known; it is defined by the robot itself. As errors in estimation

gradually grow, it becomes harder and harder to decide the true location of the

robot in global (”true”) coordinates. The SLAM problem is often divided into

two main categories: online and offline. The offline problem typically collects

all odometry results and all sensor results, and generates a probabilistic map

and path from the given data. The online problem typically estimates the robot

27

CHAPTER 3. BACKGROUND OF PROJECT: SLAM

position incrementally for each piece of sensor data and odometry measurement.

Note that uncertainties for SLAM robots lie both in estimating the movement

of the robot itself as encoders (or other types of sensors) have uncertainty, and

measuring distances to obstacles also carries uncertainties. During the SLAM

problem’s lifetime, only the observation of previously known landmarks leads

to a reduction of the aggregate uncertainty.

Theoretically, SLAM is considered a solved problem [8]. This holds for areas

which are small, closed and static. If the area of interest is open, changing, and

relatively large, the SLAM problem is still open for research [41]. There are

many features that distinguishes a particular SLAM problem, some of which

are [41]:

• Should the number of samples from sensors be high enough to be able to

generate a photo-realistic representation of the environment, or should a

more data-efficient approach be pursued—for example only collect data

of surrounding features?

• Should we attempt a topological, qualitative representation of the envi-

ronment where features are labelled, and try to relate features to each

other?

• Should we prepare some information about the environment to be mapped

beforehand, and try to identify key locations of this map while the problem

is being tackled?

• Should we assume the environment is non-changing, or do we allow a time

variant environment?

• How much uncertainty will we allow the robot to accumulate during the

lifetime of the mapping? This affects our ability to recognise a closed

loop—meaning we have arrived at some previous location we have already

visited. Do we allow the use of external data—for example GPS data—to

help us reduce uncertainty?

• Will we use a single robot to perform the SLAM problem, or will we use

multiple cooperative robots at the same time?

Solutions to the SLAM problem can be quite involved, and is out of scope

for this thesis.

28

Chapter 4

Java Server Application

Aim of This Chapter

• Get an overview of the scope of the current Java server applica-

tion by inspection of the entire codebase.

• Summarise the findings of looking into the codebase into a higher-

level overview.

• Locate positive and negative aspects of the Java application.

Based on availability of source files and the wish to inspect the most recent

version of the Java application possible, the Java source used is from [25]. This

source is also bundled with this thesis for completeness—see Appendix A.

The intent of looking at all the source files of the Java application is to

make sure no implemented features are missed, and as such the scope of the

implementation should be clear. This sets the stage for what the new application

should hope to achieve, and which parts should be left behind and which should

be kept.

4.1 Codebase Summary

This section provides a brief insight into the entire codebase of the Java applica-

tion as interpreted by manual inspection. Note that the previous authors of the

Java application have separated their contributions by prefixing their classes and

functions by short keywords—initials of names. This essentially creates names-

paces (see Section 2.2.1). This allows for a natural structuring of the summary,

and thus the overview of the individual three namespaces no.ntnu.et (Eirik

Thon [39]), no.ntnu.hkm (Henrik Kaald Melbø [19]), and no.ntnu.tem (Thor

Eivind Andersen and Mats Rødseth [28]) follows.

29

CHAPTER 4. JAVA SERVER APPLICATION

4.1.1 Namespace: no.ntnu.et

This namespace is further divided into general, map, mapping, navigation,

and simulator.

no.ntnu.et.general

Angle.java is a simple representation of an angle in degrees. It is also able to

draw a line with a given angle onto graphics.

Line.java represents lines, and has constructors for creating lines given a pair

of coordinates.

Position.java represents an (x, y) coordinate in the form of two doubles.

It can do common operations like summing positions, copying positions, get-

ting distances between positions, but also graphical operations like drawing a

circle or a cross at the given position.

Pose.java represents a robot’s position and orientation (or angle). It can be

moved, rotated, transformed, and more. It can also be drawn graphically.

Utilities.java is a collection of various functions with no particular com-

monalities. These include polar to Cartesian conversion, getting colours via

numbers, getting intersection points between lines and circles, and more.

Vertex.java is a short abstraction of a graph vertex.

Observation.java collects four coordinates corresponding to robots which use

four infrared sensors simultaneously.

Navigation.java contains a function for getting the angle towards a point.

no.ntnu.et.map

Cell.java represents cells in a grid map. It is used to give meaning to positions

in a given grid map, such as making a position free or occupied (for traversal).

30

4.1. CODEBASE SUMMARY

GridMap.java represents the map in the form of a grid of rows and columns.

This map is able to accept locations which then might get occupied, or might

get free. There is also functionality for higher-level compound tasks such as a

function which “Finds and returns the MapLocation of all cells that are free,

not restricted and has an unobserved neighbour”. The map is also dynamic in

size—it can change during runtime.

MapLocation.java represents a location within the map, as a (row, col) pair.

no.ntnu.et.mapping

MappingController.java runs the mapping process in a thread. It accepts

robots which are then mapped during the lifetime of the program (or until re-

moved). It also has general matrix operations, a line algorithm, and can initiate

docking (for robots with docking capabilities).

Sensor.java simply has a position (as an (x, y) pair), and a flag member

named isMeasurement.

MeasurementHandler.java accepts a robot with an initial pose. The class

has an array of four sensors. The main functionality of this class is updat-

ing measurements from robots. The measurements seem to be received not as

coordinate points, but as raw measurements from robot sensors. This means

measurements must be calculated by taking physical robot parameters into ac-

count, including several angles (of sensors) and offsets (sensors not located above

the robot’s center of mass).

TransformationAlg.java is credited to Lars Marius Strande [35], but is lo-

cated in this namespace. It has various operations on matrices, such as finding

the center of mass of a given matrix, getting the translation matrix, getting the

rotation, and more.

31

CHAPTER 4. JAVA SERVER APPLICATION

no.ntnu.et.navigation

CollisionManager.java this class checks if robots are about to collide with

walls or other robots, and attempts to navigate around such events.

MapNode.java this class represents a node in a graph, and is used for pathfind-

ing. It is a combination of a linked list and cost functions between nodes.

NavigationController.java this class can send commands to robots, stop

robots, resume robots, add and remove robots, controls the collision manager,

and similar.

NavigationRobot.java this class contains a list of the waypoints for a robot.

It also has a concept of priorityCommands, and has flags for setting and getting

collision status for a given robot.

PathPlanningFunctions.java this class has functions for pathfinding. Thus it

can accept a grid map, a starting location, and a target location, and generate

a path of waypoints from these parameters.

RobotTaskManager.java this class finds target locations for robots to move

towards.

SlamNavigationController.java this class is attributed to Geir Eikeland [9].

It is a simple handler of robots and measurements.

SlamPathPlanningFunctions.java is another set of functions for planning

robot paths. It largely overlaps with the previous path planning code.

SortedMapNodeList.java deals with keeping a sorted list of nodes based on

their cost.

no.ntnu.et.simulator

BoundaryFollowingController.java sets the simulated robots movement. It

randomises some behaviour. It can calculate shortest distances and headings.

32

4.1. CODEBASE SUMMARY

Drone.java simulates a drone, with fake headings and movement.

Feature.java implements features. A feature is a wall or obstacle. It is char-

acterised by its start and end positions; it is a line. It is paintable i.e. it can be

shown graphically.

GraphicContent.java shows all graphical content. This includes estimated

poses, targets, sensor beams, the map, robots, and similar.

InitialPoseDialog.java is a class which describes a dialog which pops up

and prompts the user for an initial pose of a robot.

SimRobot.java simulates a robot, with fake sensors, measurements, and com-

munication.

Simulator.java has a run loop which controls robots to some degree, and

adds simulated messages to the system’s inbox (to be seen later). It can pause

and unpause robots, set robot commands, turn on and off estimations, and

more. It also controls some aspects of the GUI.

SimulatorGUI.java represents the user interface of the simulator. Handles

mouse events, buttons, panels, and other related user interface features.

SimWorld.java has a list of robots, can create robots, can find intersections,

read maps from a file name, add features for borders, and more.

SlamRobot.java is a class inheriting from SimRobot but does nothing more.

4.1.2 Namespace: no.ntnu.hkm

This namespace has the single sub-namespace particlefilter.

33

CHAPTER 4. JAVA SERVER APPLICATION

no.ntnu.hkm.particlefilter

MapMatching.java accepts two hash maps (with strings as keys and integers

as values), and computes a score for how correlated they are. In other words,

finds out how similar two maps are.

MapMerger.java has algorithms and functions for taking two maps and merging

them into a single map.

Particle.java implements particles. The description in the source code com-

ments is “Each particle represents a pose and path hypothesis for the robots”.

The class has a pose, a vector of previous poses, a global map, a local map, can

match maps, and find a location given a map.

Particlefilter.java implements a particle filter. This class is the filter which

seeks to improve robot poses. It can find distances between points, propagate

particles forward in time (i.e. predict) via Gaussian noise, print to CSV (comma

separated value) file, create maps, and has a runner function which runs in a

thread.

4.1.3 Namespace: no.ntnu.tem

This namespace is further divided into application, communication, gui, and

robot.

no.ntnu.tem.application

RobotController.java keeps track of robots in the system. Adding a robot

requires specifying address (as an integer, i.e. an ID), a string name, width,

length, update rate, offset of the axle (and sensors), and sensor headings. There

are functions which only apply to a drone-type robot. There is also some func-

tionality related to battery management.

Installer.java has functionality for copying a file, and copying some .dll

files to some predefined paths.

34

4.1. CODEBASE SUMMARY

Application.java is the main class of the program. It has global flags such as

if the simulator is active, if the application is paused, and if the particle filter is

active. It has a navigation controller, a mapping controller, a robot controller,

and the world map. The GUI is also a member here, and the communication. It

can also open a PDF file, write commands to robots, set serial communication

ports, and more.

no.ntnu.tem.communication

ARQProtocol.java is a class implementing a protocol for sending and receiving

messages. It also maintains a map of integer IDs keys to connections. It expects

a reference to a network, and an inbox. It can be used to create connections,

send data, receive data, listen for new connections, and more.

A second class, ARQConnection, represents a stateful connection. It can

contain incomplete messages, has an integer address associated with it, has a

timeout, can receive and send, and more. Messages can be fragmented and have

to be reassembled when entirely received. Also, sequence numbers associated

with messages must be maintained, and acknowledge responses are expected.

A third class, ARQSegment, wraps itself around the actual payload being sent

to a reciever. This segment part indicates the intent of the payload, and has a

type field which is one of Data, Ack, Syn, SynAck, or Alive Test.

BatteryMessage.java is a simple class holding a battery level and an array

of bytes.

CRC8.java computes 8-bit checksums for arbitrary data.

CobsUtils.java encodes and decodes byte arrays with respect to the COBS

scheme.

Communication.java contains references to the protocols used in the Java ap-

plication, serial communication, message inboxes, an inbox reader, and more.

It also has functionality for displaying the available serial ports on the host

machine, sending orders to robots, confirming handshakes, pausing robots, and

more.

35

CHAPTER 4. JAVA SERVER APPLICATION

DroneUpdateMessage.java parses a message on the format expected of a drone

robot.

Frame.java represents a frame as used in the custom protocols used in the

application. A frame has a sender, a receiver, a protocol, data, and a checksum.

HandshakeMessage.java contains the definition of a handshake message which

is a message type exchanged when robots first connect as per the Java appli-

cation. It involves several fields: Robot name, width, length, offsets, headings,

and a deadline.

InboxReader.java implements an inbox. This class runs in a separate thread

when initiated. It reads from the system’s inbox. If a message is available, it

is parsed based on type. The different types handled here are battery update

messages, idle messages, handshake messages, and several others. It also adds

a robot to the system when it sees a successful handshake.

ListPorts.java lists the available serial ports on the host computer.

Message.java defines the available message types sent between the Java ap-

plication and the robots. These types are: Handshake, Update, Order, Idle,

Pause, Unpause, Confirm, Finish, Ping, Ping Response, Debug, Drone Up-

date, and Battery Update.

Network.java is responsible for sending messages over the serial communica-

tion port. It also pops messages from the frame inbox, and receives them.

Protocol.java is a protocol interface composed of the two functions send and

receive.

SerialCommunication.java puts bytes onto the output stream, which results

in putting actual data onto the serial port. It also listens to the serial port, and

streams incoming bytes into an array until delimited. Then the COBS layer is

decoded, and the message is put onto an inbox.

SimpleProtocol.java is a replacement protocol which can be used instead

36

4.1. CODEBASE SUMMARY

of ARQProtocol. It has functions for sending, receiving, and reassembling mes-

sages.

StatusMessage.java contains definitions for status messages. The possible

types here are Pause, Unpause, Idle, Confirm, Busy, and Finish.

UpdateMessage.java is the type expected regularly from a previously con-

nected robot during its lifetime. It contains the robot pose and various fields

related to sensor readings (data and angles).

no.ntnu.tem.gui

RobotPanel.java relates to Figure 4.1. When a new robot connects to the

application, an entry such as seen in the figure is added.

Figure 4.1: Robot entry in list.

RobotInfoGUI.java relates to a panel specific to a single robot after it has

connected and started running. See Figure 4.2.

Figure 4.2: Robot info panel.

ParticleMap.java relates to rendering a particle map.

ParticleFilterOptions.java relates to the various settings available for the

particle map, as seen in Figure 4.3.

37

CHAPTER 4. JAVA SERVER APPLICATION

Figure 4.3: Particle map settings.

ModeSelectionGUI.java relates to a panel shown at application start. See

Figure 4.4.

Figure 4.4: Choosing mode.

mapMergeOptions.java relates to controlling the merging of maps.

38

4.1. CODEBASE SUMMARY

MapGraphic.java controls the rendering of the map itself. An example is given

in Figure 4.5.

Figure 4.5: Map with a robot and some data.

InitialRobotParameterGUI.java prompts the user for setting initial robot

parameters, see Figure 4.6.

Figure 4.6: Setting initial robot pose.

ManualDrivePolarGUI.java chooses a point to manually drive to, in polar co-

39

CHAPTER 4. JAVA SERVER APPLICATION

ordinates. Similar to Figure 4.6.

ManualDriveCartesianGUI.java chooses a point to manually drive to, in Carte-

sian coordinates. Similar to Figure 4.6.

MainGUI.java holds the various elements of the main application. See Fig-

ure 4.7.

Figure 4.7: Main window.

AboutGUI.java concerns the About entry under the Help entry found on the

toolbar as seen in Figure 4.8. The menu shown is seen in Figure 4.9.

40

4.1. CODEBASE SUMMARY

Figure 4.8: Toolbar entries.

Figure 4.9: About menu.

no.ntnu.tem.robot

Robot.java is a monolithic class (over 40 member variables) for representing a

robot. Some of these include: An integer ID, a string name, offset of the axle,

offset of sensors, the infrared sensors, measurements, concurrency locks, flags,

and more. Member functions include adding measurements, getting transforma-

tion matrices, getting alignment, polling whether the robot is stuck, and more.

Measurement.java this class represents readings from sensors of a given robot.

It stored the orientation of an infrared sensor at the time of measuring, the data

itself, and robot pose.

41

CHAPTER 4. JAVA SERVER APPLICATION

IR.java is an abstraction of the infrared sensors which some of the robots

are equipped with. It stores the current heading of the sensors, the number of

infrared sensors, and more.

4.2 High-Level Overview of Features

4.2.1 Graphics, User Interface

Graphically, the application is quite simple. See Figure 4.5. Another example

is seen in Figure 4.10.

Figure 4.10: Robot in the process of mapping.

Here we see that generally, robots are circles with a rectangle indicating the

robot’s last known heading. Robots are labelled with their name. The white

area has been explored, grey areas are areas which the robots should not traverse

(e.g. due to the proximity to a wall), and black pixels indicated measurements

42

4.2. HIGH-LEVEL OVERVIEW OF FEATURES

from sensors, i.e. obstacles. The map can be zoomed in and out.

The user interface is unsurprising. It consists of labelled buttons, sliders,

and input fields. A toolbar is also present.

4.2.2 Robot Handling

Robots are appended to a list of Connected Robots. Robots can be disconnected,

paused, resumed, told to drive home, and sent to manual locations. Miscella-

neous information is available, such as position, orientation, and battery level

if applicable.

4.2.3 SLAM

Some higher level SLAM features have been attempted and are available. Robots

are automatically sent to explore new locations via the communications proto-

col and internal algorithms. There have been experiments with using particle

filters and merging maps for raising the level of quality of the mapping process

(as opposed to displaying only raw data from robots). The results have been

mixed [19].

4.2.4 Simulation

The simulation features include a whole separate graphical interface and sev-

eral in-depth features such as placing a robot within a map which has hidden

obstacles. The simulated robot will find these obstacles when traversing the

simulated world, and can be set to have errors in its pose and sensor outputs.

Simulated maps can be saved and loaded from disk in a textual format.

4.2.5 Communication

The communication layer is complex. Both the server and robots need to have

a physical dongle connected, providing Bluetooth connectivity. There is no sup-

port for using Bluetooth capabilities within a desktop computer, or Bluetooth

chips on the robots other than from Nordic Semiconductor, because a propri-

etary protocol is used for sending data over Bluetooth. Additionally, the use of

one of these dongles impose a limit of connecting three robots at the most at

any one time [28]. All robots, dongles, and servers will need to maintain and

implement checksumming, COBS encoding and decoding, and the ARQ proto-

43

CHAPTER 4. JAVA SERVER APPLICATION

col. These must be maintained in several programming languages, as both C

and Java is used in this communications stack.

In short, the checksum is generated by a stateful mathematical operation

over the contents of a message to be sent.

COBS encoding and decoding is necessary due to the fact that a serial

communication is involved in the communication stack at several levels. The

serial communication end-points do not use control signals when transferring

messages, and thus need to be delimited by a special character to indicate when

a message is completely transferred. However, as serial data streams are sent

byte-for-byte, only the values 0 to 255 are available, and all can potentially

represent valid data. Therefore, COBS transforms the data into a new format

which does not use the data value 0. Thus the value 0 can be used to signify

the end of a message.

The ARQ protocol is concerned with retaining a mapping between senders

and receivers to their respective connections in the application. It also initiates

sending data, receives data, divides data into several fragments, reassembles

data, puts type information onto payloads, retransmits lost data, verifies se-

quence numbers, and more. The division of data into several packets is neces-

sary due to the severe limitation of only sending 20 bytes in any one packet.

Additionally, a maximum of 60 bytes can be sent in total, which will then be

fragmented into three packets [28].

4.2.6 Miscellaneous

There are a number of miscellaneous functionality within the application. They

are mostly used internally and do not affect the high-level overview in any

meaningful way. However, they mentioned here for completeness. More details

can be found in Section 4.1.

• Various functions for dealing with angles, lines, coordinate conversions

(polar to Cartesian) exist.

• Representations of graph features such as vertices and nodes exist.

• Abstractions of the map into a grid with cells exist.

• Representations of robot features such as sensors and physical parameters

exist.

• Various operations on matrices exist.

44

4.3. DISCUSSION

4.3 Discussion

Graphically, the Java application is quite simplistic. Some more options to tune

the visual experience during the SLAM session could be beneficial. Panning

and changing the appearance of measurements and robots would improve the

experience. Visualisation of the path intended to take by robots could also be

useful for the SLAM server operator. The user interface works generally well.

The handling of robots could be improved. In source code, there are many

classes which reference or interact with the robots. As such, it is hard to get

an overview of the control flow of robot handling. Moreover, there are several

instances where hard-coded pieces of code targeting only a single type of robot.

This makes source code less general, less readable, and does not scale well. The

actual mapping of sensor data and pathfinding for robots seems to work well in

general.

Communication is the weakest part of the Java application. The complexity

is too high and there are too many limitations. The small message size possible

without fragmenting messages and the limitation of only three robots is severe.

Additionally, proprietary protocols are used at both the server side and on the

robots. This means the robots are tied to a single closed ecosystem. It is thus

unlikely that the robots are able to cooperate with other smart devices using

Bluetooth. There are also several thousand lines of user-made code related to

maintaining the communication stack in two different programming languages.

This is error prone and not very maintainable. As such, the communication

stack should be carefully considered before rewriting it in the new application—

a new approach is likely better.

45

CHAPTER 4. JAVA SERVER APPLICATION

46

Chapter 5

Case Study: Thread

Aim of This Chapter

• Introduce an alternative method of robot-server

communications—Thread.

• Detail the general workings of the Thread protocol stack.

• Present a widely used implementation of the Thread

specification—OpenThread.

• Introduce an application-layer messaging protocol which can run

on top of Thread—MQTT.

• Present the case study which takes all the above points into prac-

tice.

The state of the SLAM project at the start of this thesis has a heavy reliance

on Bluetooth [1] and vendor-specific communications (Nordic UART Service

[31]). A case study was made in order to look at a viable alternative, possibly

decoupling the software from having to use specific protocols, and not having

to rely on specific hardware.

This chapter will introduce an alternative to Bluetooth, and a well-established

reliable communication protocol. The pros and cons of this approach will be

discussed, as well as a possible migration plan. An example conducted early in

the thesis will be presented.

5.1 Thread

Thread [14] is a networking protocol intended for wireless low-power devices. It

is royalty free. The protocol specification is closed unless paid membership is

47

CHAPTER 5. CASE STUDY: THREAD

acquired with the Thread Group alliance.

Some features are [40]:

• IP-addressing: Through border routers, each device can be addressable

through the internet via its IPv6 address.

• Security: Authentication and encrypted communications are default.

• Reliability: Mesh networking is default, and devices in a Thread network

will automatically changes roles in order to heal itself after e.g. devices

disconnect.

• Low power: Up to years on normal household batteries.

• Reliable transmission: Each hop in the mesh network is ACKed and re-

tried if none is seen.

There are some considerations to be made based on the application which

Thread is intended to be used on. Bandwidth is limited to 250 kbps. Distances

of over 30 metres between devices is unlikely to perform well [12].

Consider Figure 5.1. It shows a simple overview of how Thread relates to

the Open Systems Interconnection (OSI) model [23].

A brief bottom-up explanation of how Thread relates to the model follows:

1. Physical: This layer is concerned with receiving and transmitting raw bits

over the available underlying physical medium. Thread does not specify

this layer, but uses IEEE 802.15.4 PHY here.

2. Data Link: This layer is concerned with the flow of data frames, ACKing,

retransmission in case of issues, error checking, and so on. Similarly,

Thread does not specify this layer but uses IEEE 802.15.4 MAC.

3. Network: This layer represents the network, and deals with address map-

ping, routing, reassembly, and so on. Thread specifies this layer and uses

IPv6 over 6LoWPAN here.

4. Transport: User Datagram Protocol (UDP) is used for the transport layer.

This is a lightweight protocol with less overhead than Transmission Con-

trol Protocol (TCP). UDP uses checksums (mandatory for IPv6, optional

for IPv4) to ensure data integrity on this layer.

48

5.1. THREAD

Figure 5.1: Simple Thread OSI model.

5. Session: This layer represents sessions between applications. A well-

known example of such a session is via sockets. Thread does not make

assumptions on this layer.

6. Presentation: This layer deals with serialising and deserialising data, such

that the above application can use its native data representations. Thread

does not interact with this layer.

7. Application: This layer deals with higher level software, such as e-mail,

databases, and so on. Thread does not specify this layer.

5.1.1 IEEE 802.15.4

IEEE 802.15.4 is a standard which has specifications on the data link- and

physical layers of the OSI model. It differs from e.g. WiFi which uses the set

of IEEE 802.11 standards specifying the same layers. WiFi was not developed

with the same low-power, low-bandwidth intentions which IEEE 802.15.4 has

been.

Some interesting features of this standard:

49

CHAPTER 5. CASE STUDY: THREAD

• Guaranteed time slots: This feature enables real-time applications by

guarantees of transmitting and receiving data.

• Collision avoidance. An algorithm sensing when others are speaking on

our channel is used. If idle, send our frame. If not, wait a random period

of time and retry. Control signals (ready to send, clear to send) might be

used.

• Several frequency bands. 868 MHz is used in Europe, 915 MHz in North

America, and 2540 MHz worldwide.

• Focus on power efficiency. Has a multitude of strategies to save on power

when possible.

The physical layer

Data transmission occurs on this layer. Different channels on the chosen fre-

quency are managed here. Signal strength and energy usage and monitoring

also happens here.

The data link layer

MAC frames are sent here. The layer acts as a higher level manager of the

physical layer, controlling access. Beaconing is also performed here. Beacons

are sent and received in order to exchange information about the network.

5.1.2 IPv6

The Internet Protocol version 6 (IPv6) is used in Thread. This means devices

may have global unique addresses which are reachable on the global internet.

An overview of the fixed IPv6 header [13] is given in Table 5.1. Note the

next header can also be used to point to another header—an extension header.

Extension headers can again point to other extension headers. This allows an

arbitrary number of headers to be used.

IPv6 allows Thread to use a standardised way of communicating with the

outside world such that routers, computers, smart-phones, and other devices

can understand it.

50

5.1. THREAD

Field Name Length (bits) Explanation

Version 4 This field states the version of the IP

used; for IPv6 this is simply the con-

stant 6.

Traffic Class 8 This field can label the type of traf-

fic categorically. For example, it

can specify the data as multimedia

streaming, telephony, low-priority,

and more.

Flow Label 20 A flow label can be used to group

packets into a flow. This can be used

by routers for optimisations and/or

avoiding reordering and more.

Payload Length 16 A number indicating the size of the

payload given in number of whole

bytes.

Next Header 8 This number indicates the type of

header following the current one. For

example, the value 17 indicates an

UDP header.

Hop Limit 8 This number is decremented each

time the packet is forwarded. If it

reaches 0, the packet is discarded.

Source Address 128 IPv6 address of the sender.

Destination Address 128 IPv6 address of the recipient.

Table 5.1: IPv6 header format.

51

CHAPTER 5. CASE STUDY: THREAD

5.1.3 6LoWPAN

IPv6 over Low-Power Wireless Personal Area Networks is shortened to 6LoW-

PAN. 6LoWPAN bridges devices using 802.15.4 radios with IPv6, allowing the

devices to both send and receive IPv6 packets [16]. Similar to IPv6 headers,

6LoWPAN uses stacked headers. IPv6 packet payloads might be too large for

use with 6LoWPAN. 6LoWPAN introduces fragmentation headers for this. This

allows large packets to be sent in pieces. 6LoWPAN then reassembles the packet

at the receiver. 6LoWPAN also compresses IPv6 headers as much as possible

for efficiency in use for low-power devices. 6LoWPAN also supports a mesh

header, which is utilised for very efficient link-layer forwarding between devices

in a mesh.

5.1.4 Nodes and Devices Types

Consider Figure 5.2. It shows two nodes found in a Thread network. A distinc-

tion is made between devices in a network based on how they act with respect

to packet transmission, mainly. An end device—or child—communicates with

Figure 5.2: Thread nodes overview.

52

5.1. THREAD

one router. Thus it can not forward packets from other routers or end devices.

This allows end devices to disable their transceivers, enabling high efficiency

and low power consumption for these devices. On the other hand, routers can

and will transmit—or forward—packets to other routers and end devices. The

transceiver is always on for a router. Additionally, routers allow new devices to

securely connect to the mesh network.

Now consider Figure 5.3. It shows the different types nodes can be. There

are four ways to be categorised an end device. You can be a full end device, a

router eligible end device, a minimal end device, or a sleepy end device. The

full Thread device router node is the only type which is not an end device.

Figure 5.3: Thread device types relationship.

Full Thread devices have their radio on at all times, are accessible through

a special multicast address, and contain mappings of various IPv6 addresses to

devices. The router eligible type can be promoted to a router if needed. The

full end device can not. Thus full Thread devices might take on the role of both

parent and child. When a new end device intends to join the network, a router

eligible node might be upgraded to a router to accommodate this. In contrast,

a router which has no children might dynamically become an end device.

Minimal Thread devices must pass all messages to parents and do not receive

multicast messages. A minimal end device keeps its transceiver on and thus gets

messages as soon as they are ready. On the other hand, sleepy end devices are

normally asleep, and must wake up periodically to ask their router for messages

via polling.

53

CHAPTER 5. CASE STUDY: THREAD

Another role is the Thread leader, which is a single router of the set of all

routers. It manages the routers. A device can also be a border router, which

allows the Thread network to interact with other types of networks, such as the

global internet.

Figure 5.4 shows the case of a Thread network after a crucial link has lost its

connection. The network is now partitioned into two pieces. If the connection is

restored, the network is automatically merged back together. After a partition,

new roles are automatically assigned as needed. Thus new Thread leaders might

be assigned, and nodes might become routers, or routers might become end

devices.

Figure 5.4: Thread network partitioned.

A Thread network is compromised of a single leader, up to 32 routers, and

up to 511 end devices per router. This limits the network to about 16,000

devices.

5.1.5 Addressing

A look into how Thread addresses its devices brings more clarity to the how the

protocol works.

54

5.1. THREAD

Figure 5.5 show the possible scopes available in a Thread network. The link-

local scope only needs a single radio transmission in order to pass on a message.

A mesh-local scope is the scope that encompasses an entire Thread network.

The global scope includes all devices that might be accessible from outside the

Thread network. The link-local scope uses IPv6 addressing prefix fe80::/16

Figure 5.5: Thread network scopes.

and mesh-local uses fd00::/8, while the global prefix is 2000::/3, which is the

address used when connecting to a device publicly outside the network itself.

Other addresses include a routing locator address which identifies a device

within the network based on the current topology (the parent of a child is

observable through the child’s address), a mesh-local endpoint identifier address

which identifies a device independent of the topology, and more.

It is also possible to send messages via multicast. The multicast address

differs based on if the user intends to send a message to all full thread devices

and minimal thread devices, only full thread devices, and if the message should

be link-local or mesh-local.

55

CHAPTER 5. CASE STUDY: THREAD

5.1.6 Network Creation and Joining

There is a slew of information attached to the Thread network itself. Three

identifiers are used. These are the personal area network ID (the PAN ID), the

extended personal area network ID (the XPAN ID), and the human readable

name which is much like the SSIDs known from WiFi. The PAN ID is specified

to be two bytes long, while the XPAN ID is eight bytes long.

A device scans for networks by performing the operation as shown in Fig-

ure 5.6. Notice the figure has labelled three steps.

Figure 5.6: Thread network discovery.

1. A device sends out beacon requests through its radio on a single channel.

The intent is to illicit responses from all other devices in range.

2. A device was in range. It responds to the beacon request with a beacon.

A beacon contains the PAN ID, the XPAN ID, and the human readable

name of the network.

3. The device has collected responses from all devices in range. It starts the

process over on step 1 on a new channel until it has exhausted its number

of channels.

Given the information about neighbouring networks, the device might not create

a new network or join one of the discovered ones. If a new network is created,

the device is now a leader and a router in the created network. The network is

automatically put on an appropriate channel—one which is not busy. The PAN

ID is also chosen such that it does not collide with other PAN IDs the device

has knowledge of.

Joining a network happens through a more involved handshake process.

Figure 5.7 illustrates this process. Note that the figure moves in time in the

56

5.1. THREAD

downwards direction: there is a single green node at three points in time, and

two blue nodes at two points in time. The steps in more detail are as follows:

Figure 5.7: Thread network joining.

1. A parent request is sent to all eligible devices in range via a multicast.

This includes routers and/or router eligible devices.

2. A parent response is sent to the attaching device via a unicast. The

message contents include information about the Thread protocol version

in use, a copy of the original request, the address of the device sending

the response, information about the leader, and more.

3. The attaching device now sends a child ID request, where the intent is to

57

CHAPTER 5. CASE STUDY: THREAD

establish a more permanent link. Message contents can now also include

a description of the child, a keep-alive duration, addresses to register, and

more.

4. The child ID response confirms the link. The address of the child is

given, timeout duration information, miscellaneous network information,

and more.

There are more details of how Thread works. This includes how roles dy-

namically change within the network (e.g. how routers are selected), how com-

missioning works (the secure acceptance of new devices), how the topology is

structured, and more. However, the explanation given thus far is sufficient for

the purposes of this thesis.

5.2 OpenThread

OpenThread is an implementation of Thread. OpenThread is open-source.

OpenThread is certified against the Thread 1.1.1 Specification. OpenThread is

used by several major actors in the industry, including ARM, Cascoda, Nordic

Semiconductor, NXP, Qorvo, Silicon Labs, and Zephyr [24].

The goal of OpenThread is to let developers use an open implementation

of Thread on embedded devices. An overview of a general OpenThread setup

is seen in Figure 5.8. OpenThread provides software for a border router which

bridges the gap between WiFi and Thread networks. The figure indicates two

common situations. The NCP (Network Co-Processor) setup indicates that the

hardware with WiFi capabilities does not have the radio hardware necessary to

communicate with Thread. Therefore, a co-processor with such a radio onboard

is used to mitigate this. If the hardware is present, the NCP is not necessary.

58

5.3. MQTT

Figure 5.8: OpenThread setup.

5.3 MQTT

MQTT is a messaging transport protocol. It lets clients subscribe to topics,

and then receives messages if other clients publishes to such a topic [26]. Topics

are strings, usually delimited by forward slashes. A typical example could be

sensors/kitchen/temperature/1 or mailbox/backend/update and so on. A

major advantage of using such a protocol is the ease of many-to-one and one-

to-many communications. An MQTT broker ensures message delivery to all

interested parties. This means that if a large number of clients subscribe to

some topic, they will all receive messages published to this topic. And a single

client subscribed to some topic will get messages from any number of publishers

to this topic.

MQTT uses TCP/IP to transport its messages. The overhead of the protocol

itself is designed to be small, with IoT in mind.

5.3.1 Quality-of-Service

MQTT has a concept of QoS (quality-of-service). There are three levels of QoS:

• QoS 0/”At most once”: This level indicates that messages are delivered

at best effort. Messages can be lost. This level has the least amount of

effort and traffic associated with it.

• QoS 1/”At least once”: This level assures that messages are delivered—

however more than one copy might arrive at the destination.

59

CHAPTER 5. CASE STUDY: THREAD

• QoS 2/”Exactly once”: This level ensures that messages arrive and only

once.

5.3.2 MQTT-SN

MQTT for Sensor Networks (MQTT-SN) is a close relative to MQTT which has

low-cost, low-power, low-bandwidth wireless devices in mind [34]. Emphasis is

placed on the fact that it is intended for wireless environments where bandwidth

is low, error rates are higher, and packet sizes are smaller. MQTT-SN was

created with the already discussed 802.15.4 standard in mind.

Differences to MQTT

The most relevant differences compared to MQTT are as such:

• UDP is now normally used instead of TCP, for reasons of efficiency and

reducing overhead.

• The topic of a message must be a part of every message from end-to-end

in MQTT. This can be a string of tens of bytes. If upwards of tens or

even hundreds of messages are sent per second this is a large overhead.

Therefore, MQTT-SN uses short two byte aliases (a topic ID) for topics.

• MQTT clients need to program the address of the MQTT broker into a

device’s firmware, or somehow communicate it to the device at runtime.

With MQTT-SN this is no longer needed—a discovery procedure now lets

devices find a MQTT-SN gateway dynamically.

• MQTT has a concept of a keep-alive duration. If a broker does not receive

any communication from a client within such a duration, it is considered

disconnected. MQTT-SN has extended this feature to accommodate sleep-

ing clients, which embedded battery powered devices often are.

MQTT-SN introduces the concept of an MQTT-SN gateway. This acts as an

intermediary between the actual MQTT broker. Figure 5.9 shows an overview

of a setup of both MQTT and MQTT-SN clients connected to a broker—notice

MQTT-SN clients speak to their gateways instead of the broker directly.

60

5.4. IN PRACTICE: NORDIC SEMICONDUCTOR SOC AND
RASPBERRY PI

Figure 5.9: MQTT and MQTT-SN overview.

5.4 In Practice: Nordic Semiconductor SoC and

Raspberry Pi

This section explains how the use case was done in practice, and what the results

were.

Nordic Semiconductor has a new lineup of SoCs which include radios sup-

porting the IEEE 802.15.4 standard—the nRF52840 [30]. This is the newest

SoC in the same family as the ones already in use for their Bluetooth technology

in the robots for the SLAM project. They are using the nRF52832, or older

(some are using the nRF51 family of products).

This new SoC can be used via either developing a custom printed circuit

board, or by using Nordic Semiconductor’s development kit as seen in Fig-

ure 5.10, or in a smaller form factor as seen in Figure 5.11. Note that any SoC

which supports a 802.15.4 radio can be used. Nordic Semiconductor was chosen

for its accessibility and the familiarity of its software stack based on personal

61

CHAPTER 5. CASE STUDY: THREAD

experience.

Figure 5.10: Nordic Semiconductor nRF52840 Development Kit.

Figure 5.11: Nordic Semiconductor nRF52840 Dongle.

The OpenThread border router software supports any Linux machine. A

Raspberry Pi 2 was setup to act as the border router. The Raspberry Pi 2 does

not feature a 802.15.4 radio. Therefore, an NCP setup was necessary. Addi-

tionally, the plan was to communicate with robots using the MQTT messaging

protocol. Nordic Semiconductor provide examples of MQTT-SN client exam-

ple firmware for their nRF52840 SoC. Therefore, a MQTT-SN gateway was

required. Nordic Semiconductor has released an image of a Linux installation

targeted to run on a Raspberry Pi. It fulfils our requirements as it comes with

the OpenThread border router software pre-installed. Out of the box it has an

MQTT-SN gateway which relays messages to a publicly (and freely) available

MQTT broker. If an nRF52840 dongle is placed in the Raspberry Pi’s USB

port, it will act as a NCP for the Thread network (the dongle must be flashed

with NCP firmware, also provided by Nordic Semiconductor). The complete

ready-to-use setup is shown in Figure 5.12.

Note that the on-board WiFi of the Raspberry Pi can be used for internet

62

5.4. IN PRACTICE: NORDIC SEMICONDUCTOR SOC AND
RASPBERRY PI

connectivity, but likely requires additional configuration. Thus the steps can be

summarised as:

• Flash an nRF52840 dongle with Nordic Semiconductor provided firmware.

• Flash an SD card with the Nordic Semiconductor provided image.

• Optionally change configuration files on the Raspberry Pi to use a custom

MQTT broker, or change Thread network configuration options.

When this setup is ready, Thread capable devices can join the network, and

MQTT-SN clients can subscribe and publish to topics on demand.

With this setup installed, Nordic Semiconductor’s MQTT-SN client exam-

ples from their nRF5 SDK for Thread and Zigbee v3.0.0 [29] were flashed onto

a Nordic Semiconductor nRF52840 development kit. This allowed verifying

Thread connectivity and MQTT usage. MQTT was verified by both publishing

and subscribing to various topics from a desktop computer running an MQTT

client, and inspecting this via logging on the development kit. Similarly, the

development kit firmware both published to topics and subscribed to topics,

which was all successful. Lastly, the Raspberry Pi was instructed to use a lo-

cally installed MQTT broker instead of the default publicly available one. This

was faster, as the publicly available one receives large amounts of traffic. This

concludes the use case of Thread.

63

CHAPTER 5. CASE STUDY: THREAD

Figure 5.12: OpenThread setup with devices. Note that the desktop running

the server application can be used instead of a dedicated Raspberry Pi.

64

Chapter 6

Design of New Server

Aim of This Chapter

• Provide an outline of the major goals of the new server applica-

tion.

• Outline some guidelines for software design patterns to follow in

the source code.

• Provide a general graphical representation of the intended design.

6.1 Major Goals

Based on the insight of what the Java application offers along with the general

context of the project as a whole, several goals can be stated. The major points

are:

• Plan some design patterns in advance to ensure code quality in the code-

base.

• Improve on the graphical aspect of the SLAM application. A user expe-

rience with more options graphically is sought.

• Keep the user interface at a similar quality level as the Java application—

clean, tidy, and self-explanatory.

• Provide a new communication stack based on the successful case study

seen in Chapter 5.

• Implement a way to automatically find paths given an map with obstruc-

tions and robots.

65

CHAPTER 6. DESIGN OF NEW SERVER

6.2 Design Patterns

Having laid out a few design patterns can help guide the process of creating a

clean code-base.

6.2.1 Use Callbacks Generated By Events

It is desired to decouple the various classes and functions of the implementation.

This means the various classes are as independent as possible. It is undesirable

to have a long chain of classes where one function or result leads to the invocation

of other functions which leads to deep nested code and spaghetti code. One way

to achieve this is to use events. If classes offer events, other classes can listen

to events via callback functions. This means that any class can independently

generate events when interesting things happen, and other classes can choose

to retrieve relevant data from such events or ignore it completely. This means

we have achieved a sense of independence in classes, since classes now have no

assumptions on how their events are going to be used.

Examples of interesting events can be mouse clicks, robots sending data,

button clicks on the user interface, and so on.

6.2.2 Use Inheritance Where Appropriate

The main uses of inheritance is to group objects together by some relationship,

and to derive more complex classes while reusing some or all of the super-

class functionality, or even customising super-class functionality by overriding

functionality [27][37].

During implementation, well-suited uses of inheritance should be looked for.

Refactoring of code into general base classes should be done whenever appli-

cable. When this is done, general principles are collected in general interfaces,

and specialisations come in the form of small specialised classes. This keeps

the sizes of individual classes low. A low line count in a class makes it more

maintainable and readable, and keeps the scope of the class focused.

6.2.3 Single Responsibility

The inspection of the Java codebase showed that while many classes were small

and had a single responsibility, there were also several which had many respon-

sibilities and as such low cohesion.

66

6.2. DESIGN PATTERNS

Here, a single responsibility refers to a clear single intent of the class. For

example a parser should only parse, and not interact with a network. Or a

network protocol should only deal with its inner workings as a protocol, and

not interact with the application layer (as in the OSI model [23])—which the

ARQ protocol seen in Chapter 4 is an offender of doing. There were other cases

of source files in the Java application which had tens of private variables, flags,

and functions in a single class. This is a counterexample of this design pattern.

Given a single responsibility, high cohesion is also sought. This means

the member functions within a class should be closely related. As a counter-

example, a class named math should not have the member functions add, multi-

ply, and calculateSalary. The last member function involves mathematics,

but is too unrelated to the other member functions and therefore lowers the

cohesion.

6.2.4 Modern C++

As seen in Chapter 2, modern C++ brings many tools to aid code quality and

safety. Some key points to keep in mind while implementing the application:

• Wrap resource management in smart pointers [36] to ensure no leaks.

• Use lambdas when appropriate for readability, and to avoid creating un-

necessarily large scopes for functions.

• Use the keyword auto when appropriate to make more terse and readable

code.

• The new template types std::tuple and std::pair can be valid alter-

natives to named structures.

• Use class enumerations instead of plain enumerations when possible. This

makes enumerations strongly typed.

• std::optional is a new feature which allows return optional values from

functions and is immensely useful.

• std::any can be used to allow having arbitrary parameter types. std::variant

can be used if the possible set of types is known.

• Structured bindings (for example unpacking a right-hand-side pair into

two left-hand-side variables) can improve readability.

• Using nested namespaces in a single declaration removes clutter.

67

CHAPTER 6. DESIGN OF NEW SERVER

6.2.5 Asynchronous Single-Threaded Until Avoidable

Experts argue that multi-threaded code should be avoided until it is actually

necessary [36]. However, for the sake of structuring code in a readable way, small

cohesive tasks should be created and should run as independently as possible.

This is achievable without using multiple threads. Consider Figure 6.1a and

Figure 6.1b. The synchronous loop is easy to read and understand and translates

well to code in simple cases. However, it has a few issues. If tasks get complex

and long, readability quickly withers. Secondly, if any task has a blocking call,

this would interrupt the whole user experience. As an example this could arise

due to wanting to wait for an event on a timeout. Therefore, the asynchronous

approach should be used. In an asynchronous context, a task wanting to wait

for a timeout can yield and let other tasks run in the meantime. This approach

both avoids the issue of waiting on events, and avoids the complexities of mutual

exclusion on shared data. The downside of the asynchronous approach is that

there are now several running contexts active at more or less the same time.

This can make it harder to get an overview of the application’s execution flow.

Note that the approach described here assumes the asynchronous tasks run on

the same thread, which simplifies design but is not strictly necessary.

If at any point calculations which take several tens of milliseconds (or so)

to perform are necessary, it is imperative to move towards a multi-threaded

approach. As such, the asynchronous approach should be implemented in such

a way that using multiple threads does not need any major rework. If a multi-

threaded approach is migrated towards in the future, there are several things

to consider. All shared data between threads must be validated to accessed

properly. For example, a std::lock guard can be used to safely and easily

access data in a multi-threaded context. Also, any access to shared data of a

temporal nature should have timeouts associated with it to mitigate live-locks.

As a last note, it is worth mentioning that the term asynchronous is used

loosely in this context— since tasks yielding execution on a single thread could

be argued to be synchronous. However, from the perspective of the programmer

the end result is largely the same (until a performance bound is reached).

68

6.3. MAIN TIES FUNCTIONALITY TOGETHER

(a) Synchronous loop. (b) Asynchronous loop.

Figure 6.1: Contrasting loop approaches.

6.3 Main Ties Functionality Together

The role of main.cpp should be clearly defined. Using the notion of events,

callbacks, and asynchronous tasks, the role of main.cpp will be to tie function-

ality together. That is, main.cpp will contain all the asynchronous tasks. Also,

most events should be handled here. main.cpp should orchestrate responses to

events and initiate further action, while classes provide the functionality which

is possible to initiate. The rationale of this is to have a defined place to put

the application logic and program flow, and not disperse it over many classes.

This was arguably a weak point of the Java application, where the equivalent to

main.cpp started various threads in various classes—thus making the developer

need to traverse many classes before getting an overview of the application flow.

One pitfall of having several tasks running in main.cpp is the danger of

global variables in order to share data between tasks, this should be avoided

[37]. One way to avoid this is to use a form of channels, which can pass data to

tasks, and retrieve data from tasks. This is also thread safe, which sets the stage

for later optimisation via multi-threading. Thus a way to visualise the design

69

CHAPTER 6. DESIGN OF NEW SERVER

Figure 6.2: Design overview.

is given in Figure 6.2. The figure shows the nature of using classes as services

which provide events. Only events which are interesting are registered with

callbacks. Also, the various example tasks encapsulate the generation of the

events themselves, hiding unnecessary complexity from users of the code-base.

70

Chapter 7

Results

Aim of This Chapter

• Introduce the implementation via a general introductory

overview.

• Showcase the implementation with regards to each major goal

given in the design—Chapter 6.

• Provide an insight into the entire implemented codebase, as was

done for the Java application in Section 4.1.

• Where needed, provide additional information and guidance with

regards to the implementation—this will help future developers

understand intent.

7.1 Overview

The codebase and various features will be explained in some depth. A general

overview of the C++ application is presented here to set the context of what

will be explained in more depth in sections to come.

A quick look into the graphical presentation is shown in Figure 7.1. It shows

a great deal of the features implemented in the new application:

• A control panel with various tabs. Currently the Robots tab is selected,

and a single robot sub-tab is shown.

• A simulated robot has added some data—256 points of Cartesian coordinates—

and these are displayed as circles in the same colour as the robot with a

given configurable radius.

71

CHAPTER 7. RESULTS

• The application grid is shown as a collection of green circular nodes, these

are traversable by pathfinding. If one or several measurements fall within

such a node it turns red—it is now obstructed and will not be considered

for pathfinding.

• A node has been set as target for the robot, and pathfinding has been

turned on. As such, a path connected by straight lines is shown for the

robot. The lines are connected by circles—these are the waypoints issued

by the application to the robots.

Figure 7.1: A general overview.

72

7.2. CODEBASE STRUCTURE

7.2 Codebase Structure

The application is structured via namespaces. These are as follows:
TG

application

SLAM

message

robot

robot simulation

robots

slam grid

utility

graph

base

grid

grid

obstructable grid

utility

vertex hash

pathfinding

gui

base

path

updatable

window

collections

circles

lines

elements

circle grid

panel

clicks

control panel

mqtt panel

panel

networking

protocols

MQTT

MQTT

utility

utility

callbacks

7.2.1 Namespace Explanations

The intention of the major namespace groups are explain here.

73

CHAPTER 7. RESULTS

Namespace: TG::application

For uses directly concerned with the actual application. Uses many of the

implemented classes in conjunction.

Namespace: TG::graph

Deals with graphs, in the sense of nodes, vertices, and algorithms using graph

constructs.

Namespace: TG::gui

Everything related to graphics is sorted here, including drawing of all primitives,

and all handling of panels (with buttons, sliders, and so on).

Namespace: TG::networking

All protocols and their usages are sorted under this namespace.

Namespace: TG::utility

Utility functions and classes of higher abstractions—not sorting under any other

namespace—sort here.

7.3 Codebase Walk-through

This section is thorough, which is provided as a service to future developers

of the application. A second purpose is to provide background to some of the

rationale for design choices explained in following sections.

7.3.1 Namespace: TG::gui

TG::gui::base::window

This file provides the actual window in which all the graphics is shown, including

primitives and panels. It allows a user to add panels, drawables, and updatables

to the window via polymorphism. If any of these are added via a single function

call, the given element will be shown as a part of the window.

Another part of the window is to generate events. Many events are available,

including an event if any keyboard key is pressed, a mouse button is pressed or

released, the window is resized or moved or closed, and more.

74

7.3. CODEBASE WALK-THROUGH

TG::gui::base::updatable

This file is a header-only class. It is a simple abstract class with a single virtual

function that must be defined in child classes: update. This function is given

a time delta since the last time it was called. By inheriting from this interface,

any class can add itself as an updatable via the TG::gui::base::window class,

and is then automatically updated each time the window refreshes. This allows

doing time-dependent work such as animations.

TG::gui::base::path

This class is graphically drawable. The path is composed of lines (via

TG::gui::collections::lines) which connects waypoints which are circles

(via TG::gui::collections::circles). Its intention is to graphically show a

path.

The main use-case intended is that a given robot can such a path associated

with it—showing the path of waypoints laid out for the robot.

TG::gui::collections::circles

This class is a helper class wrapping a collection of the basic drawable circle. It

has some functionality for acting on the whole collection, such as setting colours

and alpha values, which apply to the whole collection. Attributes such as radius

and point resolution of circles are settable.

TG::gui::collections::lines

Similar to TG::gui::collections::circles, this wraps a collection of lines.

Attributes such as line thickness and colours are settable.

TG::gui::elements::circle grid

This class represents a drawable grid of circles. It allows creating a grid with

the amount of rows and columns wanted, and a given separation. Separation

indicates the space between rows and columns, essentially being the diameter

of a given circle in the grid. The class can also have customisable colouring and

alpha values.

75

CHAPTER 7. RESULTS

TG::gui::panel::panel

This class acts as a parent class for all panels, allowing them to be grouped to-

gether via polymorphism. If the panel class is constructed with a title (that is,

a name as a string) it will become a stand-alone panel with its own window. If

no title is given, it is expected to be embedded within another panel. Therefore,

the user of panels should have one top-level panel with a title, and can option-

ally embed sub-panels within these. After a panel is constructed, the panel

contents can be added as a function with ImGui calls within (see Section 2.4.3

or Chapter 9).

During runtime, the panels are shown via calling the member function

TG::gui::panel::panel::show. This is automatically handled if the panel is

given to TG::gui::base::window, which is the intention in this application.

TG::gui::panel::clicks

This class is a panel used for control of what the mouse clicks do during the

runtime of the application. It can generate two events. The events are generated

when the left-click or right-click mode changes. The data passed to a registered

callback function is one of:

• nothing: Meaning the respective click should do nothing.

• set target: Meaning the respective click should set a target node for a

robot.

• obstruct: Meaning the respective click should obstruct a node in the

grid.

TG::gui::panel::mqtt panel

This class is a panel used as a helper for the MQTT communication in the ap-

plication. It allows manually publishing messages to arbitrary topics, manually

subscribing to topics, and monitoring the flow of in- and outbound messages.

TG::gui::panel::control panel

This panel holds other panels. The main feature of this class is that when a

panel is added to it, the child panel is automatically placed within a new tab

in the control panel.

76

7.3. CODEBASE WALK-THROUGH

7.3.2 Namespace: TG::graph

TG::graph::base::grid

This is the base grid abstraction in the context of graphs. It has a simple

interface. It can be constructed from a given number of rows and columns. It

can also be reset to other sizes during runtime.

TG::graph::grid::obstructable grid

This grid inherits from the base grid. The specialisation it offers is to allow

marking nodes as obstructed. Querying whether a node is obstructed is possible,

as well as unobstructing nodes.

TG::graph::grid::utility

This namespace has free functions relating to grid graphs. It contains a utility

function for converting integer row and columns accesses into vertex descriptors

as used internally by the Boost.graph library.

TG::graph::grid::vertex hash

Boost.graph requires a hashing function for placing vertices into an unordered

map, which is done as part of the pathfinding algorithm. This namespaces

provides this requirement.

TG::graph::pathfinding

This namespace is used by the file grid path solver.cpp. It has two free

functions.

1. solve(...) takes a grid graph, and two points in a grid. It returns a

vector of points which represents the points in the solved path between the

two points given. The returned vector is optional—if no path is possible

no vector is given.

2. reduce(...) takes a vector of points, and reduces it to simple lines.

This simplification means that any straight line will only have two points

after the reduction. This is used because the solved path might return a

solution containing any number of points on a straight line—this can be

inefficient when issuing waypoints to robots.

77

CHAPTER 7. RESULTS

7.3.3 Namespace: TG::networking

TG::networking::protocols::MQTT::MQTT

This class implements all the MQTT functionality. When searching for MQTT

C++ libraries, it was found that most clients use C libraries. Therefore,

this class wraps an asynchronous MQTT C library. It exposes a number of

events which can be used with callbacks: connect response, disconnect -

response, subscribe response, publish response, connection lost, mes-

sage arrived, and delivery complete.

The member functions of the C++ class have been reduced to the set of

most important functions such as connecting, disconnecting, setting the quality

of service, subscribing, and publishing. An important note of this class is that

the underlying C library uses threads to achieve asynchronicity. This means

that all callbacks are given in a multi-threaded context—which means special

care has to be taken when using these events.

TG::networking::protocols::MQTT::utility

This MQTT utility namespace introduces a structure representing an MQTT

topic. This application uses topics which are composed of a version, a sender,

an ID, and a command. This structure is arbitrary and need not be used in

the future if another scheme is desired. A function parse topic(...) takes

a string and parses it into the structure defined above. The output stream

operator << is also overloaded to accept such a topic structure and print it out

in a nice fashion.

7.3.4 Namespace: TG::utility

TG::utility::callbacks

This class is inherited by other classes in order to enable the event-callback

pattern. It is explained in detail in Section 7.4.

7.3.5 Namespace: TG::application

TG::application::SLAM::message

This class encapsulates the messages sent from robots. Messages include a

position (of the robot), and an optional arbitrary number of obstacles. Positions

78

7.3. CODEBASE WALK-THROUGH

and obstacles are given by their (x, y) coordinate in the form of two int16 ts.

TG::application::SLAM::robot

This class represents the abstraction of robots. They are drawable and intended

to be shown graphically. Robots can be added obstacles to (as a response to a

robot having sent a message with an obstacle to the server), and a path can be

set for showing the intended waypoints to follow. Other functionality is minor

and includes colouring and other minor features. All the added obstacles can

be cleared during runtime (essentially resetting the robot history), which will

produce an event POINTS CLEARED which can be used for callbacks.

TG::application::SLAM::robot simulation

This class simulates a robot. It does this by publishing messages (in the format

of TG::application::SLAM::message) exactly the same as a physical robot

would. The simulation works by simply randomising the robot position and the

measured obstacles in small steps. This simulation has been valuable in testing

the implementation of the server application, as the server application sees no

difference between a simulation and a real physical robot—this ensures testing

is as close to reality as possible.

TG::application::SLAM::robots

A robot is defined by the topic to which it publishes messages to. Messages are

not parsed directly in main.cpp. Messages are fed to this robots class, where

they are parsed. A new robot might then be found at any time, and this class

adds robots dynamically.

Functionality offered includes getting all the obstacles found by all robots,

getting all robot IDs, getting the target point of a given robot, and setting the

path of a robot.

There are some events put out by this class. These include ROBOT MOVED,

ROBOT FOUND OBSTACLE, and ROBOT CLEARED POINTS. These can be assigned to

callbacks as normal.

TG::application::SLAM::slam grid

This is the high-level grid used in the application. It combines

TG::graph::grid::obstructable grid and

79

CHAPTER 7. RESULTS

TG::gui::elements::circle grid. The result is a grid which can be shown

and represented graphically, and also be obstructed and navigated via pathfind-

ing.

TG::application::SLAM::utility

This namespace has a collection of various free utility functions. Functions

include converting to and from the global coordinate system and the rows and

columns found in the application grid drawn in the application, getting random

numbers and random colours, and converting from bytes to int16 t.

7.4 Callbacks and Events

The pattern of using callbacks based on events was readily used, and was one

of the design goals of the application. It is in use in the following classes:

• TG::application::SLAM::robot

• TG::application::SLAM::robots

• TG::application::SLAM::slam grid

• TG::gui::panel::clicks

• TG::gui::panel::control panel

• TG::gui::panel::mqtt panel

• TG::networking::protocols::MQTT::MQTT

Thus the pattern is a large component of the application.

7.4.1 Enabling Class

TG::utility::callbacks is the enabling class which provides a simply shortcut

to allow any class to use the pattern of event-callback. The enabling class is

very short; it is shown in its entirety (excluding preprocessor directives) in

Listing 7.1.

Listing 7.1: The callbacks class.

1 namespace TG:: utility
2 {
3 template <typename Key , typename FunParam = std::any >
4 class callbacks

80

7.5. VARIOUS DESIGN GOALS

5 {
6 using Fun = std::function <void(FunParam)>;
7

8 public:
9 void enable_callback(Key key , Fun fun) { cbs_.insert_or_assign(←↩

key , fun); };
10

11 void call_callback(Key key , FunParam param) {
12 if (auto cb = cbs_.find(key); cb != cbs_.end())
13 cb->second(param);
14 };
15

16 // Class should be inherited , not instantiated on its own.
17 virtual ~callbacks () = 0 {};
18

19 private:
20 std::map <Key , Fun > cbs_;
21 };
22

23 }

An explanation follows. For usage see Chapter 9. The class uses templates.

Thus when inheriting the callbacks class, the type of the template parameter Key

has to be specified. This parameter is intended to be e.g. an enumeration class

which specifies the type of events available to enable callbacks for. An example is

how TG::application::SLAM::robots inherits the callbacks class. It specifies

robots events as the type, which is an enumeration class consisting of the

events ROBOT MOVED, ROBOT FOUND OBSTACLE, and ROBOT CLEARED POINTS.

The second template parameter allows the user to specify the type which is

passed to the assigned callback function. This is by default std::any, which

allows the class producing the events to pass anything to the user callback.

A user of TG::application::SLAM::robots can then call enable callback

for any of the three available events, and pass the function to be called on those

events. This is done for all the events provided by TG::application::SLAM::robots

(and many of the other event-based classes) in main.cpp.

7.5 Various Design Goals

This section comments on the status of various design goals stated in Section 6.1.

7.5.1 Inheritance

Inheritance has been used to a large degree, and has been very helpful. At

the most basic level, the library used for drawing graphics—SFML—provides an

abstract class sf::Drawable which several of the classes in this application has

inherited from. This allows user-classes to be drawn to the screen.

Also, all classes which represent user interface panels, all classes which use

81

CHAPTER 7. RESULTS

callbacks, and the application grid which inherits the two other types of grids

all use inheritance.

7.5.2 Single Responsibility

The single responsibility adage has been followed as closely as possible. By

using namespaces with relatively deep nesting, a clear picture of each source

file’s role has been made clear. This has helped keep the single responsibility

goal in mind during development. However, this is a hard goal to maintain.

By identifying and reflecting on which classes have followed this goal well and

which have not, target classes for later refactoring are found.

Examples of classes which have a single responsibility and do nothing else

are the GUI collection classes, the panels, the MQTT wrapper, the abstract

callbacks template class, and more. An example of a class which should perhaps

be refactored is the robots class. It consumes messages arriving via MQTT, adds

robots, is drawable, can set robot paths, has a boolean flag which indicates if

robots should navigate towards paths or not, and some other functions. The

class is not huge (it only has two private member variables), but could possibly

be cleaned up as it is not as cohesive as it could be.

7.5.3 Modern Codebase

The codebase is modern—it can not be compiled with anything less than C++17

support. It has used several modern features:

• Smart pointers are used exclusively; no naked calls to new or delete.

• The keyword auto is used extensively.

• Structured bindings are used extensively.

• Lambdas are used extensively.

main.cpp uses lambdas very frequently in order to setup callbacks, fibers, and

various small anonymous functions. This language feature has been a major

contributor to the readability of the implementation.

The oldest part of the codebase is due to the dependency of paho-mqtt—

the MQTT C library. This part of the code has been encapsulated as much as

possible by wrapping it in a C++ class such that the application developer does

not need to interact with the legacy C code at all.

82

7.6. ASYNCHRONOUS AND SINGLE-THREADED

7.6 Asynchronous And Single-Threaded

The application has remained single-threaded, with the exception of the MQTT

class which has a multi-threaded MQTT C library at its base.

The application uses Boost.fiber to create small tasks which explicitly

yield their execution to other tasks when appropriate. Five tasks run in main.cpp:

1. GUI task. This task simply updates the graphical user interface, updating

animations, elements, panels, and also triggers any events related to UI.

2. MQTT task. Connects to the MQTT broker, and subscribes to a pre-

defined wildcard topic v1/robots/#. This means that anything published

to a topic starting with v1/robots/ is listened to by default. Messages

arrive by callback. This task also has two channels associated with it.

One channel has messages which are to be published, the other channel is

topics that the client should subscribe to.

3. Robots inbox task. This task checks if a message has arrived on its message

channel. If so, feed it to the handler of robots—which is the only consumer

of messages in the application.

4. Robots outbox task. This task publishes messages to robots known to

the system once a second. The message published is simply where the

system wants the robots to go next. If no such point exists, the task

sleeps another second.

5. Robot simulation task. Simply runs the robot simulation once, then yields.

Running it once means the simulated robot is updated by moving a small

bit, and adding a new obstacle.

83

CHAPTER 7. RESULTS

7.7 Graphical Implementation

This section shows the various implemented graphical aspects of the new appli-

cation.

Figure 7.2 shows the application after starting it and folding the control

panel. The application grid is shown in green. If robots publish measurements

within this grid, the corresponding node will get obstructed. Then, pathfinding

will navigate around this node.

Figure 7.2: Overview of application after start.

Figure 7.3 shows the application after a robot has reported some measure-

ments via MQTT. The points reported by the robot are added as small dots in

the same colour as the robot itself. The points—if not outside the grid—will

obstruct any node that correspond to the point. These nodes are then shown

as red.

84

7.7. GRAPHICAL IMPLEMENTATION

Figure 7.3: Application after robot has reported measurements.

Figure 7.4 shows the result of setting a node as the target node for pathfind-

ing. The figure shows the obstructed nodes are avoided.

Figure 7.4: A path of waypoints for a robot shown.

Figure 7.5 shows the same target node but without pathfinding turned on.

This can be useful for testing purposes. The obstructions in the grid are now

ignored, and the robot receives a waypoint directly towards the intended target.

85

CHAPTER 7. RESULTS

Figure 7.5: A straight manual path is shown.

Customisation of robot appearance is possible. Figure 7.6 shows the same

robot but with its size increased, the measurement points with increased radius,

and the colour set to a semi-transparent pink. All these options are available in

real-time while the application is running, and specified individually per robot.

Figure 7.6: Robot with changed appearance.

The grid can also be changed dynamically in various ways. Figure 7.7 shows

the same robot and the same data, but the grid has been changed to have less

86

7.7. GRAPHICAL IMPLEMENTATION

separation (and more rows and columns). The grid colour alpha value has also

been increased in order to decrease the transparency. The robot colour was

changed in order to be more visible.

Figure 7.7: Grid with changed appearance.

Figure 7.8 shows the effect of turning the grid alpha to zero. This can be

useful in order to get the clearest view of only the robot measurements and not

the underlying grid.

Figure 7.8: Grid with full transparency.

Lastly, Figure 7.9 shows the vertical axis flipped, the entire view rotated,

the application a bit zoomed, and a large grid separation. This shows that the

drawing of graphics is quite controllable in the new application.

87

CHAPTER 7. RESULTS

Figure 7.9: The application view can be controlled freely.

7.8 User Interface

Figure 7.10 shows the user interface via use of the control panel. The control

panel has seven tabs available for controlling various features of the application.

These will now be shown.

Figure 7.10: User interface overview.

Figure 7.11 shows the MQTT overview, showing four new tabs.

88

7.8. USER INTERFACE

Figure 7.11: MQTT panel overview.

Figure 7.12 shows the MQTT subscribe tab. As shown, v1/robot/# is

subscribed to by default. The topic test was subscribed to during runtime for

demonstration purposes. As more topics are subscribed to (if needed), the list

will dynamically grow.

Figure 7.12: MQTT subscribe tab.

Figure 7.13 shows the MQTT publish tab. A decision was made to not make

this tab a general MQTT client, as this can easily be achieved by any MQTT

client for desktop PCs, smart-phones, and similar. Rather, this tab lets a user

publish a valid SLAM message to an arbitrary topic, for purposes of testing.

89

CHAPTER 7. RESULTS

Figure 7.13: MQTT publish tab.

Figure 7.14 shows the MQTT messages tab. The figures have demonstrated

that we are subscribed to the topic test, and for demonstration the message

shown in Figure 7.13 was published via the interface. Since we were subscribed

to the same topic we published to, the message arrives in both the Incoming

and Outgoing interface windows. Two other messages were published to topics

not subscribed to—these only show up in the Outgoing section. Another useful

feature of this tab is the option to display the incoming messages as Raw data.

This is the default. This provides the output seen in the figure which is a byte

for byte interpretation of the data displayed as hexadecimal numbers. This was

shown to be very useful when interfacing with robots, as a debugging tool.

90

7.8. USER INTERFACE

Figure 7.14: MQTT publish tab.

Figure 7.15 shows the tab providing control over what mouse-button clicks

do. Currently, it allows choosing to set a button for making robots go towards

a target (in the grid), or manually obstructing nodes for testing purposes. Note

that the application has hard-coded the functionality of the mouse wheel. Press-

ing the mouse wheel and moving the mouse moves the view around. Scrolling

the mouse wheel zooms the view.

Figure 7.15: Clicks tab.

Figure 7.16 shows the robots tab. It has a global checkbox to select whether

robots are to move directly towards a point (the default option), or to move via

91

CHAPTER 7. RESULTS

pathfinding (that is, navigate around obstructed nodes).

A single tab named test is displayed, which is the topic previously published

to, which was also subscribed to. As such, it was interpreted as a robot which

presented a measurement, and is thus added to the grid as shown. Each robot

is added dynamically into a tab side-by-side. The Radius slider controls the

visual representation of the points measured by the robot. They are by default

quite small, and can be increased here for higher visual fidelity. The Angle

slider refers to the angle of the robot sprite. In the current application, this

slider automatically adjusts when a robot adds a measurement, such that the

robot looks towards the new measurement. The Robot Size slider adjusts the

visual size of the displayed robot sprite. The colour wheel adjusts the colour

of the robot and all its measurement. This is especially useful when several

robots are adding measurements at the same time, as contrasting colours can be

chosen. Another approach is to make a robot partly or completely transparent

to reduce visual noise when many robots are plotting simultaneously. Lastly, a

Reset button is available for removing all measurements added by a robot thus

far. The application grid is readjusted to unobstruct all affected points.

Figure 7.16: Robots tab.

92

7.8. USER INTERFACE

Figure 7.17 shows the manual drive tab. This was added by request of one

of the robot developers. A common task for the robots is to drive a simple

square path in order to test the calibration of on-board sensors (gyroscopes,

accelerometers, and similar). Therefore such a panel was created. A checkbox

enabling the feature can be checked when desired. This will overwrite the

manual targeting and pathfinding. The next checkbox makes it such that the

path of the square has a corner at the coordinate (0, 0). If unchecked, the

square’s centre point will be (0, 0) instead. The size of the square path can

be adjusted at will. Clicking one of the corner buttons will apply the point

specified as the next waypoint for robots. Lastly, Manual Input allows the user

to specify precisely a given coordinate to set as waypoint.

Figure 7.17: Manual drive tab.

Figure 7.18 shows the grid panel. It simply allows customisation of the

underlying application grid during runtime. Note that this is less trivial than

it appears. If the number of rows, columns, or the separation changes, the

underlying abstract obstructable grid might be invalid. The simplest solution

to this was to destroy and recreate the whole grid and recalculate all obstructions

if any of these parameters change. When a large number of measurements exist

in the application, dragging these sliders can be noticeably laggy, however this

is only a minor nuisance and does not affect the application in any meaningful

93

CHAPTER 7. RESULTS

way, as the sliders should be tuned once and do not make sense to continuously

move around during the application’s lifetime. Also, after the sliders have been

set, no performance impact occurs. Naturally, changing the alpha of the grid

does not warrant recreating it—only the visual appearance changes.

Figure 7.18: Grid tab.

Figure 7.19 shows the simulation tab. It simply has a checkbox to turn

on a simulated robot. When checked, a simulated robot starts moving around

randomly, with random measurements added as well. The simulated robot sends

a message every 10 milliseconds, to allow testing at high load. The simulated

robot sends valid messages to MQTT, and acts just as a physical robot would

from the perspective of the server application.

Figure 7.19: Simulation tab.

7.9 Communication Stack

The way communication happens with robots is the most drastic change of the

new application versus the Java application. Chapter 5 explains the background,

setup, and installation of the new communication stack. This setup is assumed,

94

7.10. FINDING PATHS

but the whole stack is not strictly required. As the server application uses

MQTT—an application layer protocol—as long as robots are able to use this

protocol somehow the application will be compatible. Currently, a Raspberry

Pi is used to act as the Thread border router. Naturally, any (Linux) machine

could be used.

7.10 Finding Paths

Pathfinding can be seen as a higher level SLAM task. The groundwork has been

implemented by using the abstraction of an obstructable resizable grid, which is

overlaid the actual physical geometry which the robots traverse. Since this grid

is implemented as a graph, algorithms for finding paths are readily available.

The pathfinding used in the implementation is uses the Boost.Graph library,

which does not only provide abstraction for graphs but also some common

algorithms. This library is extremely flexible. When an algorithm is applied to a

graph, the library allows callbacks to be issued at every vertex visited during the

course of the algorithm. Also, heuristics for determining what constitutes a good

path is customisable. The current implementation uses a A* search algorithm—

available in the library—and specifies that the distance from a given vertex

and the goal/target vertex as the heuristic. Thus, short paths are favoured as

solutions.

95

CHAPTER 7. RESULTS

96

Chapter 8

Testing and Profiling

Aim of This Chapter

• Inspect the finished server application’s performance.

• Show some insight into the CPU usage.

• Show some insight into the memory usage.

8.1 Testing

The feature of running a simulated robot proved useful as a means of testing

the server by adding many measurements and running tests for a long duration

of time.

Figure 8.1 shows the simulated robot after running several hours. The Robots

panel shows the simulated robot has added well over 270 000 measurements to

the application. Notice the simulated robot roams freely well outside the original

application grid and adds measurements very far away due to the nature of its

randomness. Notice the figure is zoomed far out—the robot is barely visible. Do

not mind the small control panel text, the point is to give an impression of the

large amount of points added to the application. This points to the application

being able to run for long amounts of time with stability.

97

CHAPTER 8. TESTING AND PROFILING

Figure 8.1: Testing a high number of measurements.

8.2 CPU Usage

Figure 8.2 shows a Visual Studio report of the CPU usage during the application

runtime. The report shows that the vast majority of CPU time goes to drawing

the robots and their measurements. As much as 96.75% of the used CPU time

goes to this drawing. Note that this is relative to the usage of the CPU of

the application itself, meaning that it always adds up to 100%—even if the

application as a whole does not demand a lot from from the total available

system CPU.

98

8.2. CPU USAGE

Figure 8.2: CPU relative usage.

Figure 8.3 shows a snapshot of the total CPU usage in relation to the total

available in the system, after starting the application. The graph generally

shows use between 0% and 7% during application runtime. Note that this is

not straight-forward to interpret. The desktop machine used for this testing

has a CPU with 12 logical cores. This means full utilisation of one logical

core would amount to 8.33% use in the chart shown. Additionally, the MQTT

clients run mostly on separate threads. As an indication, usage close to or at

8% over longer periods of time would indicate that the application has hit a

CPU bottleneck.

Figure 8.3: CPU usage versus total available in system after starting the appli-

cation.

Figure 8.4 shows CPU usage after the application has run for some time,

and has accumulated close to 20 000 measurements. The chart now shows use

between 5% and 9%. This is closer to the maximum available CPU use from a

single logical core (with some overhead added from other miscellaneous threads).

99

CHAPTER 8. TESTING AND PROFILING

Figure 8.4: CPU usage versus total available in system after some time.

Thus we see that CPU usage is mild at the early stages of the application,

and increases steadily with the addition of (thousands of) measurements.

8.3 Memory Usage

Figure 8.5 shows a built-in tool in Visual Studio aimed at inspecting the memory

usage of applications. It works by creating a snapshot of the memory heap in at

a given point in time, then creating another snapshot at a later point in time,

then inspecting the difference. The figure shows the heap difference of about

a minutes worth of running the simulated robot. Notice that the difference in

allocated memory is about 105 KB, and almost all of it is due to new allocated

circles—which essentially are the measurements added by the simulated robot.

Figure 8.5: Memory snapshot heap difference.

Figure 8.6 shows a memory snapshot after stopping the simulated robot from

sending messages, then taking a second snapshot at a time later. The figure

shows that no allocations are made, and as such the total heap size is unaffected

as well. This indicates that the application in its idle state seemingly does not

leak any resources.

100

8.3. MEMORY USAGE

Figure 8.6: Memory snapshot heap difference—simulation stopped.

Thus we see that the memory footprint of the application is very proportional

to the amount of measurements added to the application.

101

CHAPTER 8. TESTING AND PROFILING

102

Chapter 9

Extending and Using The

New Server

Aim of This Chapter

• Instruct users and future developers on how to run the developed

server application.

• Instruct future developers on what is needed to compile the server

application.

• Show future developers how four major tasks can be achieved

when developing new features: Drawing graphics, adding new

user interface panels, using the pattern of callbacks for events,

and running tasks in user-threads.

• Outline the work done in connecting a legacy robot to the server

application.

9.1 Running the Server

See Appendix A for an overview of the included files. The bin/ folder includes a

.zip file which when extracted contains an executable (the .exe file). Running

this on a Windows operating system should start the server. The server should

look like the figures shown in Chapter 7. If the server does not start, a require-

ment needed to run compiled applications on Windows might be missing. This

framework is called _NET Framework and should be bundled with Visual Stu-

dio [21]. This means users not having Visual Studio might need to download

it despite not intending to develop the application further. Alternatively, the

103

CHAPTER 9. EXTENDING AND USING THE NEW SERVER

framework can be downloaded separately.

9.2 Extending the Server

The src/ folder contains (after unzipping) the Visual Studio Solution file (end-

ing in .sln). Opening this file in Visual Studio presents the project ready to

build, run, and extend upon. Within Visual Studio, Debug (32-bit) and Release

(32-bit) configurations have been used.

Compiling the project will be successful if the dependencies are installed.

The project’s dependencies are:

• Boost

• SFML

• Thor

• imgui

• paho-mqtt

The recommended way to install these dependencies are via the tool vcpkg.

This method is explained in Section 2.3.1.

A few examples will now be presented. The examples show how to create

a drawable rectangle on the screen, how to create new panels, how to use the

user-created abstract callback base-class, and how to run new tasks in userland-

threads. These examples provide the base understanding for how the application

is designed. Understanding the examples will provide an easier transition into

understanding and extending upon the application source code.

9.2.1 Example: Adding Drawables

The application creates a window which displays all content. This is done

via the class TG::gui::base::window. A fiber runs a continuous loop calling

this class’ member function TG::gui::base::window::run, which draws and

renders all given drawables (and panels, etc.). Using this scheme, this example

shows how to add a new type of drawable to the screen.

Consider Listing 9.1.

Listing 9.1: Adding a drawable.

1 // Should split into e.g. rectangle.h and rectangle.cpp

104

9.2. EXTENDING THE SERVER

2 class Rectangle : public sf:: Drawable {
3 public:
4 Rectangle () : rect_({ 100, 200 }) {
5 rect_.setFillColor(sf::Color::Blue);
6 rect_.setPosition ({ -200, 100 });
7 }
8

9 void draw(sf:: RenderTarget& target , sf:: RenderStates states) ←↩
const {

10 target.draw(rect_ , states);
11 }
12

13 private:
14 sf:: RectangleShape rect_;
15 };
16

17 // Within main.cpp
18 struct Rectangle rect;
19 win.add_drawable (&rect);

A class intending to be drawn inherits from SFML’s sf::Drawable class.

A requirement is to implement (override) the draw(...) function with the

prototype as shown in the example. A reference to a render target is given,

which we can draw to. Here we draw all our drawables. This example has a

single draw call; a rectangle. This rectangle will be shown as a blue rectangle

with the position and size as given in the class’ constructor. See Figure 9.1. A

rectangle is displayed along a grid and a robot having found some obstacles.

Figure 9.1: Drawing a blue rectangle onto the application.

The states argument carries with it the transformations of this class’ par-

105

CHAPTER 9. EXTENDING AND USING THE NEW SERVER

ents. This means if we apply transformations to the whole window (e.g. a

zoom), the zoom effect will carry over to this class. This implies we can ignore

transformations to our parents by omission of this argument to the draw call if

this is our intention.

After we create a class implementing the required function, we can simply

add it to our window after creating an instance of it. This concludes the sim-

ple drawable example. For a more comprehensive example, browse the files

implemented in this thesis which are drawable. Examples are circles.cpp,

lines.cpp, and circle grid.cpp.

9.2.2 Example: Adding a Panel

There are two main ways of adding a panel to the project.

Adding to the Control Panel

A convenience class TG::gui::panel::control panel has been created for ease

of adding new panels in an orderly manner. Consider Listing 9.2. Here, a simple

panel with a button and a slider is created. This panel is embedded onto the

existing control panel. It will then automatically be placed in a new tab in

the control panel, as shown in Figure 9.2. Note that other panels have been

embedded which is not shown in the example source code presented.

Listing 9.2: Embedding a panel.

1 TG::gui:: panel::panel example_panel;
2 example_panel.set_fun ([&] {
3 static int slider_value = 0;
4 ImGui:: SliderInt("Some Value", &slider_value , -100, 100);
5

6 if (ImGui:: Button("Click me!"))
7 std::cout << "I was clicked! Slider has value: " << ←↩

slider_value << "\n";
8 });
9

10 TG::gui:: panel:: control_panel ctrl_panel;
11 ctrl_panel.embed_panel (& example_panel , "Example");
12 // Other panels embedded below ...

Adding a Separate Panel

The second way is to make a separate panel, which will not be embedded

within another panel. This is done in a very similar way. Consider List-

ing 9.3. Notice the instantiation of the panel now requires a title. This tells

the TG::gui::panel::panel class that this panel is to have a separate window.

106

9.2. EXTENDING THE SERVER

Figure 9.2: Panel embedded onto the control panel.

The other difference is that this panel is now added to the main window, instead

of embedded onto the control panel. Figure 9.3 displays this new panel.

This concludes examples of creating panels and adding them to the existing

project. See e.g. classes slam grid.cpp and MQTT panel.cpp for more detailed

examples.

Listing 9.3: A separate panel.

1 TG::gui:: panel::panel example_panel("Example Own Window");
2 example_panel.set_fun ([&] {
3 static int slider_value = 0;
4 ImGui:: SliderInt("Some Value", &slider_value , -100, 100);
5

6 if (ImGui:: Button("Click me!"))
7 std::cout << "I was clicked! Slider has value: " << ←↩

slider_value << "\n";
8 });
9

10 TG::gui::base:: window win;
11 win.add_panel (& example_panel);
12 // Other panels embedded below ...

Figure 9.3: A panel separate from other panels.

107

CHAPTER 9. EXTENDING AND USING THE NEW SERVER

9.2.3 Example: Adding Callbacks to a Class

Callbacks are widely used in the project. Callbacks allow for decoupling classes.

A class can emit events when interesting things happen, and the user of class

can attach functionality to these events from the outside. A template class

TG::utility::callbacks was created to let classes easily support this design

pattern. A class inherits this template class with an event type as template argu-

ment. This allows the user of this new class to enable callbacks for these events.

The new class must then call these events at appropriate times. Consider List-

ing 9.4. A simple class is created. It inherits from TG::utility::callbacks,

and specifies the data passed to callbacks will be of type std::string. This

can be skipped; the default type passed is std::any.

Listing 9.4: Adding callbacks.

1 // simple_class.h
2 enum class simple_class_events {
3 FOO_EVENT ,
4 OTHER_EVENT ,
5 };
6 struct simple_class : TG:: utility ::callbacks <enum ←↩

simple_class_events , std::string > {
7 simple_class () {};
8 void foo() {
9 call_callback(simple_class_events ::FOO_EVENT , "Foo called!");

10 };
11 };
12

13 // main.cpp
14 simple_class simple;
15 simple.enable_callback(simple_class_events ::FOO_EVENT , [&](std::←↩

string message) {
16 std::cout << "I am a callback. I was passed a message: " << ←↩

message << "\n";
17 });
18

19 simple.foo();

The simple class calls the event simple class events::FOO EVENT if an outside

user calls the member function simple class::foo. If the event has not been

enabled, the call to TG::utility::callbacks::call callback is ignored.

When the line simple.foo() is called, the message I am a callback. I

was passed a message: Foo called! is printed to console, indicating a suc-

cessful callback.

This concludes the example of adding callbacks to new classes created for

the project.

9.2.4 Example: Running a Task

Tasks are run in userland-threads via the library Boost.Fiber. These threads

have very little overhead. They do not run on different OS threads unless

108

9.2. EXTENDING THE SERVER

explicitly coded as such. They schedule cooperatively. This means they must

actively yield their execution to other userland-threads. An example is given in

Listing 9.5.

Listing 9.5: Adding a task.

1 auto example_ch_1 = boost:: fibers :: buffered_channel <std::string←↩
>(8);

2 auto example_ch_2 = boost:: fibers :: buffered_channel <int >(8);
3

4 fiber example_f ([&] {
5 for (;;)
6 {
7 auto result = example_ch_1.push("Data for you.");
8 if (result != boost:: fibers :: channel_op_status :: success)
9 std::cerr << "Could not push onto channel 1.";

10

11 auto next_time = system_clock ::now() + milliseconds (1000);
12 sleep_until(next_time);
13

14 int pop_value = 0;
15 const auto pop_wait_time = milliseconds (250);
16 auto result2 = example_ch_2.pop_wait_for(pop_value , ←↩

pop_wait_time);
17 if (result2 != boost:: fibers :: channel_op_status :: success)
18 std::cerr << "Could not push onto channel 2.";
19

20 yield();
21 }
22 });
23

24 example_f.join();

This example task is given as a lambda function during the instantiation of a

fiber. Communication to the outside world is done via channels. The push and

pop operations will instantly succeed if there is space on the given channel, else

they yield the fiber. The function sleep until will also yield until the specified

duration has expired, after which the fiber is put into a ready state. The explicit

call to yield naturally yields the execution to other fibers. Notice that the

lambda function in the example captures variables in the parent scope via the

& operator in the capture list. This is only safe on a single threaded application.

If several threads access variables used in a fiber, shared-access protection must

be used. See MQTT panel.cpp for an example of this using std::lock guard

for protection. Also note that using channels is safe even on multiple threads.

This concludes the example of adding a new simple task which is able to

safely pass data to outside channels.

109

CHAPTER 9. EXTENDING AND USING THE NEW SERVER

110

Chapter 10

Using a Legacy Robot

Aim of This Chapter

• Explain the need for special treatment of legacy robots.

• Present a legacy layer enabling legacy robots.

• Present an overview of the inner workings of the legacy layers via

figures.

• Discuss the benefits and drawbacks of using this approach.

• Show how communication in action works using the legacy layer.

• Present results of real world use.

10.1 Connecting a Legacy Robot

This section refers to a robot without the capabilities to connect to OpenThread

as a legacy robot. This means the required radio hardware is not present, and

this is the case for all robots as of the start of this thesis.

The complete source code running on the legacy layer can be found in the

delivered files. See Appendix A.

10.1.1 Overview

As this thesis created a server which is intended to connect to robots via ”next-

gen” technology, a way to use the old robots before porting them to new hard-

ware (or adding radios) is sought. As such, this thesis included helping create a

legacy layer which allows this. Note that the solution is intended to bridge the

gap between the technologies, and the bridge is obsolete as soon as the robots

111

CHAPTER 10. USING A LEGACY ROBOT

have the required hardware on board. As a consequence of this, only a limited

time was spent on ensuring robustness and code quality. This means future

generations should sooner port the hardware than to keep this solution. The

main reason for not using this solution is that it increases the overall complexity

of the project as a whole, whereas porting the hardware simplifies it.

Figure 10.1 shows an overview of the implemented solution.

Figure 10.1: Legacy layer overview.

The robot which this layer targeted had many peripherals on board, and

I2C was the most available communications bus. Using SPI or UART was de-

termined to be of higher complexity, either due to hardware complexities (sol-

dering, adapting to an already used bus) or software complexities (e.g. UART

without control signals), or both.

10.1.2 Implementation

Figure 10.1 shows the legacy layer which bridges the gap between the technolo-

gies. For this to work, an MQTT broker has to be available, and hardware com-

municating via OpenThread is needed. As such, the solution relies on a setup

similar to the one already discussed in Chapter 5. This setup is now assumed

available. Now, an overview of the source code that was implemented for the

legacy layer is given. Note that the implementation is largely callback-driven,

and as such asynchronous by nature. Thus state diagrams are represented in

separate disconnected trees, as this reflects reality more closely than a single

connected state tree.

Figure 10.2 shows the initialisation of MQTT on the legacy layer. Note that

error handling is not done. Debugging information is presented if a debugger is

connected.

112

10.1. CONNECTING A LEGACY ROBOT

Figure 10.2: Initialisation of MQTT.

This implies the legacy layer assumes working conditions, and if issues arise

a restart is likely required.

Figure 10.3: MQTT loop lifetime.

113

CHAPTER 10. USING A LEGACY ROBOT

Figure 10.3 shows the handling of MQTT during the lifetime of the legacy

layer. It is equally simplistic, and does likely not handle corner cases well.

One example is if several MQTT messages arrive before the master (i.e. the

connected robot) reads. The data will be overwritten as soon as a new message

arrives, and the previous content is then lost. The consequence is likely minimal

as the only data presented to the robot is the next coordinate to move towards,

but the limitation exists.

Figure 10.4: I2C loop lifetime.

Figure 10.4 shows how the legacy layer responds to a robot requesting to

read or write on the I2C bus. As the legacy layer acts as an I2C slave and no

additional control lines were available (for e.g. indicating new data available),

new data being available is indicated through the ”data ready token”, which

is the first byte presented before the data itself when the robot reads from the

legacy layer. This explains the setting of the token on MQTT message arrival

and clearing it on successful reads. When the robot I2C master writes onto the

I2C bus, the bytes are accepted and directly sent published onto MQTT as soon

as the I2C transmission finishes successfully.

10.1.3 Discussion

Table 10.1 shows an overview of the pros and cons of using such a legacy layer.

The additional increase in complexity should be weighed heavily. The one-time

114

10.1. CONNECTING A LEGACY ROBOT

Pros Cons

Allows robots with missing hard-

ware to use OpenThread indirectly.

Can possibly be made robust once

and then used forever, as the re-

sponsibilities are quite small.

Does not require porting the robot

to a new chip.

Adds complexity to the project.

Removes many of the benefits as-

sociated with a native OpenThread

solution.

Introduces additional hardware.

Needs a communication bus con-

nected to the additional hardware.

Source code must be recompiled

and reflashed in order to change

configuration parameters.

The legacy layer source code is

rudimentary. It needs testing and

higher code quality and likely con-

tains bugs.

If future generations wish to use

other protocols than MQTT, this

is difficult as the legacy layer is

tied to MQTT. It is simpler when

OpenThread is run natively.

Table 10.1: Pros and cons of using the legacy layer.

115

CHAPTER 10. USING A LEGACY ROBOT

cost of porting the robots to a chip which has the required radio hardware is

strongly advised.

10.2 Communication Protocol

As an additional layer of communication is present—I2C—communication is not

as simple as a native Thread approach is. A simple approach between server

and robots was sought in order to not complicate the task more than necessary.

Therefore, a very simple approach was taken:

• All communication happens in forms of coordinate pairs (x, y).

• Whenever a robot sends a message to the server, the first coordinate pair

is the position of the robot itself (in its own frame of reference, naturally).

• Whenever a robot sends more than a single coordinate pair, all pairs

except the first ones are parsed as positions of obstacles.

• The only message the server sends to a robot (or robots) is a single coor-

dinate pair: This is where the server wishes a robot to go to—a waypoint.

By request of one of the robot implementers, coordinates are stored in the

int16 t data type. This implies that the minimum message payload size is 4

bytes—2 bytes for x and 2 bytes for y. Note that all systems are little endian.

Thus an overview of this communication model is given in Figure 10.5. Here,

the pair (xw, yw) constitutes the waypoint issued to the robot from the server.

The pair (xr, yr) is the position of the robot as sent from the robot to the

server.

Figure 10.5: Server and robot communication overview.

116

10.2. COMMUNICATION PROTOCOL

Another example is given in Figure 10.6. Two additional pairs are now part

of the payload sent from the robot. These will be added as obstacles in the

server application map.

Figure 10.6: Robot sends optional obstacles.

A couple of notes:

1. The number of obstacles that can be sent from the robot is dynamic. 0

is a valid number of obstacles, and 10 at a time should be fine as well.

Currently, the dongle does not accept messages over 255 bytes at the I2C

level. A native Thread approach is not practically limited: The MQTT

specification allows up to 256 MB of data in a single message. Buffer sizes

in embedded devices are likely the limiting factor at that point.

2. Two-way communication is not a requirement. The robot can only lis-

ten to messages if desired, or completely ignore the server and only send

messages.

10.2.1 I2C

The dongle acts as a I2C slave at address 0x72. Always read 5 bytes from this

address when reading. The first byte is a byte indicating if new data has arrived

since the last read. If not, this byte will read 0x00. If new data is present, it

will read 0x72. This byte can be ignored at the receiver if desired. The next

four bytes are the two int16 t values composing the coordinate pair (x, y), in

that order.

117

CHAPTER 10. USING A LEGACY ROBOT

10.2.2 MQTT

Messages from the robot via I2C are published to MQTT topic v1/robot/Endre/adv.

Messages from the server arrive via the topic v1/server/Endre/cmd. This

scheme is arbitrary and need not be followed in future generations, but the

intention behind the fields was as follows:

• v1: This hints at the version of the communication scheme. This is not

uncommon in MQTT. If breaking API changes are made, a natural con-

sequence is to raise this version level. Clients then need to adapt to the

new version and update their subscriptions.

• robot/server: This field indicates the originator of the message.

• Endre: Robot name. This legacy layer was made with the Endre Leithe’s

robot in mind, and as such this field identifies his robot.

• adv/cmd: This field hints to the intent of the message. When a robot

sends adv, it advertises a new measurement. When a server sends a cmd,

a command is issued.

10.3 Real World Use: Detecting a Circular Track

The scheme laid forth in this chapter was put to use on a circular test track.

This track can be seen in Figure 10.7a. Figure 10.7b shows the raw data as

reported by the robot’s sensors during the duration of the test.

(a) Physical circular track. (b) Raw data from robot.

Figure 10.7: Physical and digital representation of a track.

118

10.3. REAL WORLD USE: DETECTING A CIRCULAR TRACK

Figure 10.8a shows the underlying grid along with the robot’s reported data.

Obstructed grid points are red, while unobstructed points are green. Notice the

grid serves its purpose: To downsample the resolution of the possible paths the

robot can be issued to travel to via pathfinding. This is made apparent by

several close points reported by the robot ending up inside a single grid-point.

Figure 10.8b shows the underlying grid after increasing the separation be-

tween adjacent grid entries. This effectively decreases the resolution of the grid

further. This shows the dynamic nature of the application, as this can be con-

figured in real-time while the application is running without affecting any data.

There is a slight optical illusion when the resolution is decreased like this: No-

tice the distances between the raw data-points issued from the robot have not

changed in the shown figures.

(a) Data from robot with underlying

grid.

(b) Grid with lower resolution.

Figure 10.8: Dynamically changing grid properties.

119

CHAPTER 10. USING A LEGACY ROBOT

120

Chapter 11

Discussion and Future

Work

Aim of This Chapter

• Contrast the state of the new application versus the old.

• Comment on weak points of the new application.

• Identify what to improve on concerning the new implementation

as future work.

• List some major goals to add to the application as future work.

11.1 Discussion

11.1.1 C++ Application Versus Java Application

Graphical Presentation

The Java application and the C++ application have both similarities and differ-

ences. Graphically, the C++ implementation has more flexibility and freedom.

Robots can be changed in various ways visually, as can measurements. Also,

the C++ version uses a sprite (essentially an image with a transparent back-

ground) to display robots. This can be swapped for other images—even images

of the real robots. The Java application uses black dots to place measurements,

and grey areas to indicate zones where the robot should not traverse due to

proximity to objects. The C++ application uses the grid instead, which blocks

out a radius equal to the size of a grid node when a measurement falls within

the node—this point is now obstructed. The C++ application is dynamic in

121

CHAPTER 11. DISCUSSION AND FUTURE WORK

that the nodes of the grid can be changed during runtime. The result is shown

visually, as well as having an actual effect on the pathfinding of the system.

User Interface

The two applications use different approaches when it comes to the user inter-

face. The Java application uses a more traditional approach of menus, several

windows, a toolbar, and pop-up windows. The visual theme of the interface is

close to what a typical user is familiar with from experience using other desktop

applications. The C++ application user interface collects everything into a com-

mon control panel. The style and theme is likely more unfamiliar. The different

options are grouped into logical categories and all categories can be found in

the same place via tabs. The control panel is very easily extended, and this has

been documented via examples. The programmatic approach to extending the

user interface in the C++ application is contrasted with the Java application—

it used a user interface editor which uses a drag-and-drop-programmatic mixed

approach. Which approach to programming user interfaces is better is up to

personal preference.

Code Quality

The C++ application uses a modern and safe programming style benefiting from

the newer C++ standards. This includes a code style aimed at readability and

safe resource management. Other main points have been to make classes have

a single responsibility, and try to achieve decoupling through an event based

system. The Java codebase walkthrough showed a varying degree of quality.

Several classes were small, readable, and had a single responsibility. Several

classes also had a large number of dependencies, private variables, and had too

much functionality. Too many classes had references to robots, and sensors, and

the control flow of the application is hard to get a sense of via its entry point.

The added complexity due to the communication layer degrades the quality of

the application.

Communication

The new approach to communication allows much more freedom and ease of de-

velopment. All the complexity of implementing a custom user protocol, main-

taining it in several programming languages, and having to reprogram every

device when a new message type is sought is no longer relevant. This is due

122

11.1. DISCUSSION

to using a standardised protocol widely used in industry—MQTT. MQTT is

most easily supported via the Thread stack. This communication stack offers

features such as default encrypted messaging and automatic mesh topology.

Another important benefit of using MQTT is the intrinsic pros of the publish-

subscribe model. Without changing the server application, robots (or any other

device supporting MQTT) can publish data to any topic. The server will not

notice—the previous ARQ protocol would have to handle any and all messages

somehow. Thus the server application and robots can be developed in parallel

without unnecessary overlap. When a new message type or a new data feature is

ready for use, the server application developer can be noticed. Then the relevant

topic can be subscribed to, and message parsing added for the new feature. The

same applies for robots—they will always be unaffected by changes done to the

server (as long as the server respects the data format a robot expects on a given

topic).

The most pressing issue with using the Thread approach is that the robots do

not currently have the necessary hardware to use it. As such, either legacy layers

which enable old hardware to use the new communication stack are needed, or

upgrading the robots to use new hardware—which is the more sane approach.

The Thread setup has the need for a border router as well, which ties together

the Thread network with the global internet. This has been shown possible via

a Linux machine (a Raspberry Pi) and a dongle providing the Thread radio. All

the firmware and installation files for this is provided externally, and minimal

setup is needed. This is contrasted by the old communication stack, where

any change in the stack would require flashing several dongles, whereas the

Thread stack only needs to be setup once. This issue highlights a key difference

between the old stack and the new. The old stack intermingles the application

layer and the deeper OSI model layers. A pure networking protocol should be

indifferent to the application layer—this is the case for the Thread stack. The

Java application ARQ protocol has types DATA, ACK, SYN, SYNACK, and ALIVE -

TEST. As an example, robots must be sure their implementation of the protocol

responds correctly to ALIVE TEST type messages, and also be sure the sequence

number is correct and so on.

The limitations of short messages before fragmentation and the low amount

of robots that could be connected simultaneously also disappear using the new

stack. The issue of robots randomly disconnecting [19] has not been observed

with the new server application. It is also noted that users of the Java appli-

cation noticed complexity and instability from the Java application, and the

123

CHAPTER 11. DISCUSSION AND FUTURE WORK

application throwing errors during running [9].

It is therefore argued that a key concern of the project is to overhaul the

robots by porting them to the new hardware which natively supports Thread

networking.

Features

The Java application has been developed by several generations of the SLAM

project, and has accumulated several features which the new C++ application

does not yet have. Some major ones are:

• Algorithms for steering robots towards points in an intelligent manner—

leading to room exploration. Currently, the C++ version allows manual

targeting, square path targeting, and click targeting.

• An intricate simulation. The Java robot simulation allows the user to

set a predefined map of the environment which the robot must navigate

through and discover, with configurable errors in pose and sensors. The

C++ application has a simple randomised robot behaviour with no set

map.

• Experiments with pose filtering. The Java application has seen use of

higher level SLAM techniques such as using a particle filter. The C++

application currently displays only raw measurements.

Thus, the Java application has more intricate features as of present. Arguably,

the C++ application has a better foundation for solving SLAM problems, as

it has greater flexibility graphically, a more solid communication stack, and is

written in a programming language more familiar to future developers—but

clearly there is a large amount of work to be done.

Still, there are some points the Java server had issues with that the cur-

rent application solves. One example is that is has been reported an issue that

robots can overwrite the other robots’ measurements. This happened because

the previous implementation erased data when old measurements were in be-

tween a robot and a new measurement [19]. Also, the previous server application

has run into both memory and CPU issues [19]. This happened when having

hundreds- to thousands of measurements ongoing in the application. The new

application has no memory issues, and only encounters issues when having hun-

dreds of thousands of measurements simultaneously—see Chapter 8. Users of

the Java application have reported an issue around the bad map resolution—the

124

11.2. FUTURE WORK

smallest point-resolution is 1 centimetre [35]. The new application has no such

limitation—the application currently makes no assumption on physical units.

11.2 Future Work

This section suggests some key points for the project to work on in the future.

• The most important point is to focus on the SLAM task, and try to

implement some higher-level features related to this. This means dealing

with issues concerning errors in pose- and sensor estimation. Thus particle

filters (or other approaches) should be considered.

• The major features (Section 11.1.1) of the Java application which are not

in the C++ application should be considered implemented.

• Setting the target for a robot applies to every robot—there is currently

no way to set a target for a single robot.

• Measurements should be abstracted into a class. Currently they are simply

added to a robot’s vector of measurements. This means the position of the

robot during measurement is not recorded. Such information can prove

useful and support is currently lacking.

• The user interface can be cleaned up a bit—the Main tab, Manual Drive

tab, and Robot Simulation tabs could be placed into separate files. They

currently live inside main.cpp.

• Some panels can be expanded with more features. The Main tab could

have a lot more information about general application statistics. Messages

sent, received, up-time, number of robots, and so on. The Clicks tab could

have more features and more buttons, and so on.

• There are some minor graphical issues. Graphical elements’ positions are

normally defined by their top-left corner in their invisible bounding box.

The effect is that e.g. a circle might visually look like it is not centred at

the intended point. This can be mitigated by redefining the local origin

of the element to the element’s centre.

• Performance profiling showed the application becomes CPU bound when

several tens of thousands of points are to be drawn simultaneously. This

situation can be improved in two ways. One is to move drawing to another

125

CHAPTER 11. DISCUSSION AND FUTURE WORK

thread. This would allow drawing to be handled on a separate core, thus

other operations are unaffected. However, that core would eventually be

CPU bottlenecked as well. A solution is to draw the last n measurements

of the robots only.

• The current robots should be upgraded to newer hardware stacks such

that they can take advantage of the recent developments in technology,

and benefit from the Thread stack. As soon as robots are connected via

Thread, they are accessible through the global internet. This means the

possibility of developing useful monitoring tools for smart-phones, web

interfaces, and other desktop applications becomes instantly available.

• Consider a more intricate simulation of robots. By having a hidden map of

walls and obstacles for simulated robots to discover, the SLAM techniques

are more easily tested.

• slam message.cpp now parses messages where the payload is robot po-

sition and an optional amount of obstacles. All information is given

via Cartesian coordinates. Consider using the MQTT topic structure

more heavily in order to support new future messages. Example could

be to have robots publish to topics like /robot/point/self, robot/-

point/obstacle, robot/line/obstacle, robot/cartesian/obstacle,

robot/polar/line and so on.

• The use of namespaces in the code-base is an important step in having

well-organised code. A review of the current namespace ordering should be

considered (Section 7.2). For example, TG::graph::base::grid can per-

haps be moved to TG::graph::grid::base, and TG::gui::base::path

should probably be an element, placed in TG::gui::elements::path.

The prefix TG could be renamed to e.g. NTNU or SLAM or similar, in order

to not alienate future developers.

126

Bibliography
[1] Bluetooth Technology Website. url: https://www.bluetooth.com/.

[2] Boost C++ Libraries. url: https://www.boost.org/.

[3] Boost Fiber. url: https://www.boost.org/doc/libs/1_70_0/libs/

fiber/doc/html/index.html.

[4] Boost Graph. url: https://www.boost.org/doc/libs/1_70_0/libs/

graph/doc/index.html.

[5] C++ language. url: https://en.cppreference.com/w/cpp/language.

[6] Omar Cornut. Dear ImGui. Apr. 2019. url: https : / / github . com /

ocornut/imgui.

[7] Elias Daler. Dear ImGui SFML Binding. Apr. 2019. url: https : / /

github.com/eliasdaler/imgui-sfml.

[8] H. Durrant-Whyte and T. Bailey. “Simultaneous localization and map-

ping: part I”. In: IEEE Robotics Automation Magazine 13.2 (June 2006),

pp. 99–110. issn: 1070-9932. doi: 10.1109/MRA.2006.1638022.

[9] Geir Henning Eikeland. “Implementation of Mapping and Navigation on

an Autonomous Robot ”. MA thesis. NTNU, 2018.

[10] Free IDE and Developer Tools — Visual Studio Community. url: https:

//visualstudio.microsoft.com/vs/community/.

[11] Git. url: https://git-scm.com/.

[12] Humberto Gonzalez Gonzalez. “Study of the protocol for home automa-

tion Thread.” Master’s Thesis. Catalonia, Spain: Polytechnic University

of Catalonia, 2017.

[13] Rick Graziani. IPv6 Fundamentals: A Straightforward Approach to Un-

derstanding IPv6. Cisco Press, 2017. isbn: 1587144778.

[14] Thread Group. Thread. url: https://www.threadgroup.org/.

[15] Konstantino Zuraris Helders. “Real-Time System Implementation on Au-

tonomous Lego-Robot”. MA thesis. NTNU, 2017.

127

https://www.bluetooth.com/
https://www.boost.org/
https://www.boost.org/doc/libs/1_70_0/libs/fiber/doc/html/index.html
https://www.boost.org/doc/libs/1_70_0/libs/fiber/doc/html/index.html
https://www.boost.org/doc/libs/1_70_0/libs/graph/doc/index.html
https://www.boost.org/doc/libs/1_70_0/libs/graph/doc/index.html
https://en.cppreference.com/w/cpp/language
https://github.com/ocornut/imgui
https://github.com/ocornut/imgui
https://github.com/eliasdaler/imgui-sfml
https://github.com/eliasdaler/imgui-sfml
https://doi.org/10.1109/MRA.2006.1638022
https://visualstudio.microsoft.com/vs/community/
https://visualstudio.microsoft.com/vs/community/
https://git-scm.com/
https://www.threadgroup.org/

BIBLIOGRAPHY

[16] Silicon Labs. UG103.11: Thread Fundamentals. Tech. rep. url: https:

//www.silabs.com/documents/public/user- guides/ug103- 11-

appdevfundamentals-thread.pdf.

[17] Kristian Lien. “Embedded utvikling p̊a en fjernstyrt kartleggingsrobot”.

MA thesis. NTNU, 2017.

[18] MATLAB. url: https://www.mathworks.com/products/matlab.html.

[19] Henrik Kaald Melbø. “Autonomous Multi-Robot Mapping”. MA thesis.

NTNU, 2017.

[20] Microsoft. Microsoft/vcpkg. Apr. 2019. url: https : / / github . com /

Microsoft/vcpkg.

[21] Microsoft. .NET — Free. Cross-platform. Open Source. url: https://

dotnet.microsoft.com/.

[22] Microsoft. PowerShell Documentation. url: https://docs.microsoft.

com/en-us/powershell/.

[23] Microsoft. Windows Network Architecture and the OSI Model. url: https:

//docs.microsoft.com/nb-no/windows-hardware/drivers/network/

windows-network-architecture-and-the-osi-model.

[24] Nest. OpenThread. url: https://openthread.io/.

[25] Simen Nilssen. “Navigation and control with Arduino robot”. MA thesis.

NTNU, 2018.

[26] OASIS. MQTT Version 3.1.1. Tech. rep. Oct. 2014. url: http://docs.

oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf.

[27] Fedor G. Pikus. Hands-On Design Patterns with C++: Solve common

C++ problems with modern design patterns and build robust applica-

tions. Packt Publishing, 2019. isbn: 1788832566. url: https://www.

amazon.com/Hands-Design-Patterns-reusable-maintainable/dp/

1788832566.

[28] Mats Gjerset Rødseth and Thor Eivind Svergja Andersen. “System for

Self-Navigating Autonomous Robots”. MA thesis. NTNU, 2016.

[29] Nordic Semiconductor. nRF5 SDK for Thread and Zigbee v3.0.0. Tech.

rep. url: https://infocenter.nordicsemi.com/topic/struct_sdk/

struct/sdk_thread_zigbee_latest.html.

[30] Nordic Semiconductor. nRF52840. Tech. rep. url: https://infocenter.

nordicsemi.com/pdf/nRF52840_PB_v1.0.pdf.

128

https://www.silabs.com/documents/public/user-guides/ug103-11-appdevfundamentals-thread.pdf
https://www.silabs.com/documents/public/user-guides/ug103-11-appdevfundamentals-thread.pdf
https://www.silabs.com/documents/public/user-guides/ug103-11-appdevfundamentals-thread.pdf
https://www.mathworks.com/products/matlab.html
https://github.com/Microsoft/vcpkg
https://github.com/Microsoft/vcpkg
https://dotnet.microsoft.com/
https://dotnet.microsoft.com/
https://docs.microsoft.com/en-us/powershell/
https://docs.microsoft.com/en-us/powershell/
https://docs.microsoft.com/nb-no/windows-hardware/drivers/network/windows-network-architecture-and-the-osi-model
https://docs.microsoft.com/nb-no/windows-hardware/drivers/network/windows-network-architecture-and-the-osi-model
https://docs.microsoft.com/nb-no/windows-hardware/drivers/network/windows-network-architecture-and-the-osi-model
https://openthread.io/
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf
https://www.amazon.com/Hands-Design-Patterns-reusable-maintainable/dp/1788832566
https://www.amazon.com/Hands-Design-Patterns-reusable-maintainable/dp/1788832566
https://www.amazon.com/Hands-Design-Patterns-reusable-maintainable/dp/1788832566
https://infocenter.nordicsemi.com/topic/struct_sdk/struct/sdk_thread_zigbee_latest.html
https://infocenter.nordicsemi.com/topic/struct_sdk/struct/sdk_thread_zigbee_latest.html
https://infocenter.nordicsemi.com/pdf/nRF52840_PB_v1.0.pdf
https://infocenter.nordicsemi.com/pdf/nRF52840_PB_v1.0.pdf

BIBLIOGRAPHY

[31] Nordic Semiconductor. UART/Serial Port Emulation over BLE. url:

https : / / infocenter . nordicsemi . com / index . jsp ? topic = /com .

nordic.infocenter.sdk5.v14.0.0/ble_sdk_app_nus_eval.html.

[32] Simple and Fast Multimedia Library. url: https://www.sfml-dev.org/

index.php.

[33] Smart Pointers (Modern C++). url: https://docs.microsoft.com/

en-us/cpp/cpp/smart-pointers-modern-cpp?view=vs-2019.

[34] Andy Stanford-Clark and Hong Linh Truong. MQTT For Sensor Net-

works (MQTT-SN). Tech. rep. Nov. 2013. url: http://www.mqtt.org/

new/wp-content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf.

[35] Lars Marius Strande. “Autonom retur og dokking av AVR robot”. MA

thesis. NTNU, 2017.

[36] Bjarne Stroustrup. A Tour of C++ (2nd Edition) (C++ In-Depth Series).

Addison-Wesley Professional, 2018. isbn: 0134997832.

[37] Bjarne Stroustrup. Bjarne Stroustrup’s C++ Glossary. url: http://

www.stroustrup.com/glossary.html.

[38] Herb Sutter. Writing modern C++ code how C++ has evolved over the

years. Oct. 2011. url: https://www.youtube.com/watch?v=Kghns7c8Ij8.

[39] Eirik Thon. “Mapping and Navigation for collaborating mobile Robots.”

MA thesis. NTNU, 2016.

[40] Thread Stack Fundamentals. Tech. rep. Thread Group, July 2015. url:

https://www.threadgroup.org/Portals/0/documents/support/

ThreadOverview_633_2.pdf.

[41] Sebastian Thrun and John J Leonard. “Simultaneous localization and

mapping”. In: Springer handbook of robotics (2008), pp. 871–889.

129

https://infocenter.nordicsemi.com/index.jsp?topic=/com.nordic.infocenter.sdk5.v14.0.0/ble_sdk_app_nus_eval.html
https://infocenter.nordicsemi.com/index.jsp?topic=/com.nordic.infocenter.sdk5.v14.0.0/ble_sdk_app_nus_eval.html
https://www.sfml-dev.org/index.php
https://www.sfml-dev.org/index.php
https://docs.microsoft.com/en-us/cpp/cpp/smart-pointers-modern-cpp?view=vs-2019
https://docs.microsoft.com/en-us/cpp/cpp/smart-pointers-modern-cpp?view=vs-2019
http://www.mqtt.org/new/wp-content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf
http://www.mqtt.org/new/wp-content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf
http://www.stroustrup.com/glossary.html
http://www.stroustrup.com/glossary.html
https://www.youtube.com/watch?v=Kghns7c8Ij8
https://www.threadgroup.org/Portals/0/documents/support/ThreadOverview_633_2.pdf
https://www.threadgroup.org/Portals/0/documents/support/ThreadOverview_633_2.pdf

BIBLIOGRAPHY

130

Appendix A

Files Overview
This overview shows the contents of the zip-file delivered alongside this doc-

ument. Archives are used to preserve the complete integrity of all necessary

files.
master thesis torstein grindvik.zip

application

src

src.zip

bin

bin.zip

documents

thesis.pdf

legacy layer

legacy layer.zip

java nilssen 2018

java nilssen 2018.zip

131

