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Problem description

Autonomous surface vehicles (ASVs) can use a variety of sensors for sense-and-avoid
and navigation purposes. To add important redundancy, the ASV should be equipped
with both active and passive sensors. Long wave infrared (LWIR) sensitive cameras are
important components of the sensor suite for the autonomous ferry MilliAmpere, and a
tailor-made 360 degree sensor rig including 5 LWIR cameras has therefore been developed
by Maritime Robotics (MR). The rich information from LWIR sensitive cameras might add
redundancy needed for safe autonomous operation.

The purpose of this project is to develop an object detection pipeline using the LWIR layer
of the MR sensor rig for sense-and-avoid purposes onboard MilliAmpere. The project
builds on the author’s specialization project [1] written during the Autumn 2018, where
data acquisition and methods for improving object detection performance in LWIR data
were studied. This Masters thesis shall address the following tasks:

• Become familiar with the LWIR-layer of the MR sensor rig for MilliAmpere and
complete necessary image reading software in collaboration with MR employees.

• Record LWIR data using the MR sensor rig at sea in collaboration with Autoferry
PhD candidates.

• Calibrate the LWIR sensitive cameras of the MR sensor rig and based on this make
a camera model that can translate pixels to rays of camera-frame coordinates and
vice versa.

• Based on the results in the author’s specialization project [1], implement a detector
for the LWIR data.

• Evaluate the uncertainties of the detections in terms of detection probabilities.
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Abstract

Autonomous transport is on the rise, both on land, in the air and at sea. Urban water
channels are however underused in today’s cities. The main ways of crossing channels
are either by bridge or by a manned passenger ferry. Both methods require expensive
investments, in short- as well as long-term. The world has yet to see a cost-effective, fully
autonomous and environmental friendly passenger ferry.

For any autonomous system, situational awareness is paramount. With the rapid advance-
ment in both camera technology, computing power and computer vision, new approaches
are attainable. In contrast to ordinary electro-optical cameras, long wave infrared (LWIR)
sensitive cameras are useful without illumination. While the resolution is more coarse than
for electro-optical cameras, it can still be superior to the resolution of a radar and is less
susceptible to weather detoriation than a lidar. The main weakness of LWIR cameras are
background clutter and the fact that it is a passive sensor, making direct range measure-
ments impossible with a mono setup. As a separate sensor layer, it might however add
important redundancy to an autonomous system.

Using cameras as sensors, electro-optical as well as LWIR sensitive, requires accurate cal-
ibration. While several methods for geometric calibration of LWIR cameras have been
proposed, a standardized method does not exist. Therefore, a new method for geomet-
ric calibration of cameras sensitive to LWIR radiation utilizing emissivity differences in
materials is proposed in this thesis. The method is based on Leslie’s cube [2] and mimics
the standardized method for electro-optical cameras and can be used with Matlab’s camera
calibration application among others. The average error in pixel length using distortion co-
efficients and intrinsic parameters from this method were 1.91 px or 1 px horizontally and
vertically. Based on this method, a camera model translating pixel coordinates to rays of
camera-frame coordinates is implemented as part of a real time object detection pipeline.
The pipeline uses data from a sensor rig with 5 wide angle LWIR cameras arranged in a
configuration resulting in full 360◦ field of view.

The thesis demonstrates a functional Robot Operating System (ROS) network publish-
ing normalized rays of camera-frame coordinates pointing to detected objects found in
infrared data from the sensor rig. The network is tailored to MilliAmpere, the prototype
autonomous passenger ferry developed as part of the Autoferry project.
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Sammendrag

Autonom transport blir stadig mer tilgjengelig, både landbasert, luftbasert og til havs.
Urbane vannveier er på den andre siden underutnyttet i dagens byer. Den vanlige måten
å krysse en kanal er enten via bro eller en bemannet ferge, som er dyrt på både kort og
på lang sikt. Verden har til overs å se en kost-effektiv, fullt autonom og miljøvennlig
personferge.

For ethvert autonomt system er situasjonsforståelse kritisk. Nyvinninger innen kamer-
ateknologi, beregningskraft og datasyn muliggjør nye framgangsmåter. I motsetning til
vanlige elektrooptiske kameraer, er langbølge infrarød (LWIR) sensitive kameraer nyttige
uten belysning. Selvom oppløsningen er lavere enn for elektro-optiske kameraer kan de
fortsatt utklassere oppløsningen til en radar og være mindre utsatt for dårlig vær enn en
lidar. Hovedsvakhetene til LWIR kameraer er bakgrunnsrot og faktum at det er passive
sensorer, som gjør direkte avstandsmålinger umulig med et mono oppsett. Som et separat
lag av sensorer vil det mulig kunne øke viktig redundans i autonome systemer.

Når kameraer, både elektro-optiske og LWIR-sensitive, skal brukes som sensorer er det
viktig med nøyaktig kalibrering. Selvom flere metoder for geometrisk kalibrering av
LWIR kameraer har blitt lagt fram finnes det ikke standariserte metoder. Derfor blir en ny
metode for geometrisk kalibrering av LWIR sensitive kameraer som utnytter emissivitets-
forskjeller i materialer lagt fram. Metoden er basert på Leslie’s kube [2] og etterligner den
standardiserte metoden for elektro-optiske kameraer og kan blant annet bli brukt med Mat-
lab sin kamera-kalibrerings applikasjon. Gjennomsnittlig feil i piksellengde ved bruk av
forvrengnings-koeffisienter og indre kameraparametre fra denne metoden var 1.91 px eller
1 px horisontalt og vertikalt. Basert på denne metoden har en kameramodell som over-
setter pikselkoordinater til stråler i kamerakoordinater blitt implementert som en del av
objekt-deteksjon samlebåndet. Samlebåndet bruker data fra en sensorrigg med 5 vidvinkel
LWIR sensitive kameraer arrangert i en konfigurasjon som resulterer i 360◦ synsvinkel.

Avhandlingen demonstrerer et funksjonelt Robot Operating System (ROS) nettverk som
publiserer stråler i kamerakoordinater som peker til detekterte objekter funnet i infrarød
data fra sensorriggen. Nettverket er skreddersydd MilliAmpere, prototypen til en autonom
personferge utviklet som en del av Autoferry prosjektet.
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• IR - Infrared

• EO - Electro Optical

• ROS - Robot Operating System
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Introduction

Motivation

Autonomous transport is on the rise, both on land, in the air and at sea. Urban water
channels are however underused in today’s cities. The main ways of crossing channels are
by bridge or by manned passenger ferries. Both methods require expensive investments,
in short- as well as long term. The world has yet to see a cost-effective, fully autonomous
and environmental friendly passenger ferry.

For any autonomous system, situational awareness is paramount. Situational awareness
can be broken down in three separate levels [3]; Perception of the elements in the environ-
ment, comprehension of the current situation and projection of the future situation. The
complexity of urban environments means that the rich information from cameras will be
important. With the rapid advancement in both camera technology, computing power and
computer vision, new approaches for enhancing the first level of situational awareness,
perception, are attainable.

LWIR sensitive cameras have a very promising potential in sense-and-avoid for autonomous
surface vehicles and have proven to increase detection and tracking performance as an ad-
ditional sensor layer [4]. From [1], LWIR sensitive cameras have shown promise in acting
as sensors for use in object detection. In contrast to ordinary cameras they are useful dur-
ing both day and night. While the resolution is more coarse than for ordinary cameras,
it can still be much more accurate than the resolution of a radar. LWIR is generally less
susceptible to weather deterioration than other sensors, e.g. LiDAR. The main weakness
is that it is a passive sensor, and therefore cannot measure range directly. However, this
may to some extent be remedied by sensor fusion, semantic information or georeferenc-
ing. Therefore, LWIR sensitive cameras are included as a separate passive exteroceptive
sensor layer of MilliAmpere, the prototype autonomous passenger ferry developed by the
Autoferry team.
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The Autoferry project

Autoferry is a cross-disciplinary NTNU project which aims to develop groundbreaking
new concepts and methods which will enable the development of autonomous passenger
ferries for transport of people in urban water channels [5]. The concept of small, au-
tonomous passenger ferries is a more flexible, cost-effective and environmental friendly
alternative to bridges and manned passenger ferries. The ferries can either be summoned
by the press of a button, or coordinated with public transport making urban commute more
effective. The project involves 19 researchers from three faculties and all three NTNU
campuses.

In Norway, there is a limited amount of cable ferries. The project aims to remove the cable
and enable autonomous operation. The scalability of the technology also opens up pos-
sibilities for coastal transport. A large part of Norway’s population lives along the coast.
Reducing the cost of ferry services using autonomous ferries will enable revitalization and
further development of the coastal areas. The development of autonomous ferries may
additionally create markets not existing currently due to high crew costs.

The goal of the project is safe autonomous operation of passenger ferries alongside other
vessels in confined and congested environments, e.g. water channels.

LWIR sensitive cameras are an important component of the sensor suite for MilliAmpere,
and a tailor-made 360 degree sensor rig including LWIR sensitive cameras have there-
fore been developed by Maritime Robotics. When using cameras as sensors, accurate
calibration is essential. As standardized methods for geometric calibration of LWIR sensi-
tive cameras does not exist, two methods were developed and thoroughly tested during the
work with the thesis. A ROS network tailored to the existing ROS network on MilliAmpere
were developed and implemented. The network needs to be able to sample relevant data
concerning camera-pose, detect and classify objects in LWIR data and calculate rays of
camera-frame coordinates to the resulting detections. This pipeline gathers data from all
five LWIR sensitive cameras and process it in real time to enable safe autonomous ferry
operation. A picture of MilliAmpere as sensor platform for the sensor rig is included in
Figure 1.
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Figure 1: MilliAmpere with the MR sensor rig mounted.

Contributions

The main contributions of this thesis are listed below.

• From the author’s specialization project [1], a dataset containing labeled IR data has
been created as well as techniques for improving object detection performance of
detectors utilizing IR data.

• All 5 LWIR sensitive cameras are geometrically calibrated, and a method for easy
and accurate calibration of such cameras is proposed. A camera model translating
detections to normalized rays of camera frame coordinates is formulated.

• Installation and integration of the IR layer of the sensor rig provided by MR into the
existing system onboard MilliAmpere.

• A lightweight model has been trained and implemented with a detector enabling real
time multiclass object detection using all 5 LWIR sensitive cameras.

• A series of experiments using a real target with ground truth world position have
been executed using MilliAmpere as sensor platform. The resulting datasets con-
tains all data published from the ROS network onboard as well as IR data from the
sensor rig. The dataset has the potential to be used in future research projects both
for Autoferry as well as other NTNU projects.
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Thesis outline

The structure of this thesis is separated into parts as follows.

Part 1 presents a literature review of work related to the areas explored in this thesis. Rel-
evant background theory concerning properties of infrared radiation and computer vision,
including the pinhole camera model and image processing techniques, are presented.

Part 2 presents the sensors utilized, calibration procedures of LWIR sensitive cameras as
well as the structure of the proposed object detection pipeline. The coordinate transforma-
tion to each camera given MilliAmpere pose are derived.

Part 3 presents the conducted experiments and the motivation behind them. The results are
presented and discussed. The last chapter concludes this thesis and gives suggestions for
areas which may benefit from further research given the results.
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Part I

Related work and theory
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Chapter 1
Literature review

1.1 Calibration of infrared cameras

There are two ways an infrared camera may need to be calibrated. This includes calibration
of pixel intensity in correlation to temperature, i.e. thermal calibration, and geometric
calibration.

• In [6] the authors proposed a method for calibration of IR-cameras utilizing a pas-
sive calibration field with 8x7 drilled holes. The plate was cooled to around 0◦C
to distinguish the holes from the plate in an infrared spectrum. Configuring the
IR-camera to be sensitive in the temperature range 0◦- 15◦C yielded images resem-
bling binary images. An OpenCV Calibration tool was used in order to calibrate the
camera.

• In [7] the authors calibrated an IR-camera using a passive calibration field of alu-
minium with adhesive coded targets, including elevated targets for a better geometric
configuration.

• In [8] the authors proposed a method for calibrating IR cameras using an active
calibration field consisting of an 8x8 grid of lamps embedded in a wooden board.
The calibration tool used was Photomodeler.

• In [9] the authors calibrated IR cameras using a very thin stainless steel plate with
marks of known size and locations etched into it. The plate was bonded on to a glass
support plate. Heating the glass from behind resulted in excellent targets in the IR
spectre.

• In [10] the authors tested both an active calibration field with burning lamps and a
passive calibration field made of aluminium which acts almost as a mirror in the IR
spectre. Target points were made of self-adhesive foil which only emits radiation
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Part I Chapter 1 – Literature review

relating to its own temperature.

1.2 Computer vision using infrared data

• In [4] the author demonstrated a working sensor fusion system for tracking and de-
tection of other vessels at sea using radar, lidar, electro-optical and infrared cameras.
It was found that adding an infrared camera always yielded positive results with re-
spect to long range performance and tracking accuracy.

• In [11], the authors presented a survey on maritime object detection and tracking
approaches. It was found that static background subtraction worked better with
LWIR sensitive camera than for visible spectrum cameras.

• In [12], the authors proposed a thermal-infrared simultaneous localization and track-
ing (SLAM) system enhanced by sparse depth measurements from LiDAR. It was
demonstrated that the system was robust under various lighting conditions as well
as overcoming the scale problem of monocular cameras.

9



Chapter 2
Infrared Radiation

Infrared radiation have several properties different to visible radiation. Some of these
properties will be presented in the following chapter. The information in this chapter is
based on work from the author’s specialization project [1].

2.1 Infrared and thermal radiation

IR radiation is EM radiation with wavelengths longer than visible red at 700 nm. There
are several subdivisions of IR radiation, a commonly used scheme is presented in the table
below [13].

Subdivision Wavelength [µm]
NIR (Near Infrared) 0.7 - 1
SWIR (Short Wave Infrared) 1 - 3
MWIR (Mid Wave Infrared) 3 - 5
LWIR (Long Wave Infrared) 8 - 12

Most of the electromagnetic radiation with wavelength between 5 µm and 8 µm are at-
tenuated by the atmosphere. Other definitions exists as well, such as LWIR and MWIR
being referred to as TIR (Thermal InfraRed). TIR cameras are more sensitive to emitted
radiation in everyday temperatures while NIR and SWIR cameras are more sensitive to
reflected radiation. NIR and SWIR cameras behave in a similar way as visual cameras as
they are more dependent on illumination.

When electromagnetic radiation interacts with matter, it can be absorbed, transmitted and
reflected. The radiation balance law [14] states that

1 = α + ρ + τ (2.1)
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Part I Chapter 2 – Infrared Radiation

where α is the absorbed radiation, ρ is the reflected radiation and τ is the transmitted ra-
diation and α, ρ, τ ∈ [0,1]. In addition, thermal energy can be converted to EM-radiation,
called thermal radiation. All bodies above absolute zero, 0 K, emit thermal radiation to
different extent depending on material and its temperature. Emissivity (ε) is the ratio of
actual emittance of an object to a black body, a hypothetical body with α = 1 used for
approximation, at equal temperature. Kirchoffs law of thermal radiation states that α = ε,
which in turn means that ε = 1 for a black body. Because emissivity is material de-
pendent, it is an important property when measuring temperatures via thermal radiation.
This means that an object composed of materials with different emissivity may read dif-
ferent temperature based on a thermal image even if the temperature is uniform. This is
exemplified by Leslie’s cube [2]. This was originally an experiment conducted by John
Leslie where a cube of metal with a cavity was filled with hot water. The sides of the cube
was coated with different materials with different emissivities. Even though all sides of
the cube had approximately uniform temperature, the thermal detector registered different
amounts of infrared radiation for each coating. Measured apparent temperature will also
vary with respect to distance due to scattering of radiation in the atmosphere.

2.2 Thermal imaging

Thermal images are displays of measured emitted, reflected and transmitted thermal ra-
diation within an area. The thermal radiation is often represented with pixel intensity.
It is common to map the gray scale intensity to a color map to better visualize details
[13]. Exact measurements of temperature can be challenging due to the amount of thermal
radiation emitted depends on the objects emissivity as discussed in section 2.1. In addi-
tion, thermal radiation from the surroundings can be reflected on the surface of the object.
Therefore, it is also important to know the reflectivity ρ of the object to be measured. If
measuring over longer distances through the atmosphere a noticeable amount of radiation
will be transmitted, absorbed and emitted by the atmosphere itself. This should be taken
into consideration for precise measurements.

2.3 Advantages and limitations of thermal imaging

Thermal cameras may be favourable over visual cameras in conditions where there is a
temperature differential connected to the object in question, e.g. humans, fire or animals.
Thermal cameras are especially advantageous in dark environments or difficult weather
conditions like snow or fog. This is again due to the sensitivity of emitted radiation as
opposed to visual cameras which fully relies on reflected EM radiation and are therefore
reliant on external illumination. The exception is objects hot enough to emit EM radiation
in the visible spectrum.

Thermal cameras are generally expensive and have relatively low resolution compared to
visual cameras. This means that details quickly vanish with increasing distance. Uncooled
thermal cameras can be sensitive to movement in the sense that they may capture blurry
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Part I Chapter 2 – Infrared Radiation

images if the camera is not steadily mounted or the object being imaged is in rapid move-
ment [15]. This is due to the electrical signal in the pixel of a microbolometer detector
decays exponentially, which may lead to a moving object being mapped to multiple pix-
els.

2.4 Infrared camera

Materials may have different properties in the infrared spectrum compared to the visual
spectrum. As an example, while glass is transparent in the visual spectrum, it is opaque
in the infrared spectrum. This is why infrared cameras have lenses made of germanium,
which is transparent in the infrared spectrum and opaque and reflective in the visible spec-
trum, rather than glass. This can be seen in Figure 2.1

(a) LWIR spectrum (b) Visible spectrum

Figure 2.1: Difference in transparency of glass in the IR and visible spectrum

Thermal cameras is either cooled or uncooled. High-end cooled cameras can deliver hun-
dreds of HD frames per second with a temperature sensitivity of 20 mK. Pixels are typi-
cally described by 16 bits to allow a large dynamic range. Uncooled cameras usually have
microbolometer detectors and operate in LWIR spectrum. While they produce more noisy
images at a lower framerate, they are smaller, silent and less expensive.
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Chapter 3
Computer vision

Computer vision is a field of computer science that enables computers to see, identify and
process visual data. The field has seen a rapid advancement and continues to do so after
the emergence of deep learning and artificial neural networks. The information in sections
3.5-3.9 is based on work from the author’s specialization project [1].

3.1 Pinhole camera model

A pinhole camera can be designed by placing a light-proof barrier with an aperture be-
tween the 3D object and a photographic film or sensor. Due to the barrier, only a few
rays of light passes through from each point from the 3D object. Therefore, a one-to-one
mapping between points on the 3D object and the sensor may be established. The result
is that the sensor gets exposed by an image of the 3D object by means of this mapping.
This model is known as the pinhole camera model [16]. An illustration may be seen in
figure 3.1 where the image plane is located at the image sensor. The image captured on
this sensor is equal to the inverted virtual image, located between the 3D object and the
pinhole. The virtual image is always located at the same distance to the pinhole as the
image sensor is to the pinhole, also known as the focal length.
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Figure 3.1: Visualization of the pinhole camera model. Originally published in [17]

3.2 Geometric camera parameters

World and camera coordinate systems are related by a set of physical parameters. These
parameters can be divided into subsets of intrinsic and extrinsic parameters. The intrinsic
parameters relates the camera’s coordinate system to the idealized coordinate system while
the extrinsic parameters relates the cameras coordinate system to a fixed world coordinate
system and specify its position and orientation in space.

3.2.1 Intrinsic parameters

A pinhole camera can be associated with two different image planes; The first is the nor-
malized plane located at a unit distance from the pinhole. This plane gets its own coordi-
nate system with origin located at the point Ĉ where the optical axis pierces it as shown in
Figure 3.2. [18]

Figure 3.2: Physical and normalized image coordinate systems. Originally published in [18].

In Figure 3.2, Ĉ is the origin of the normalized image plane, C0 is the origin of the physical
image plane and O is the origin of the camera 3D frame.
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The perspective projection equation can be written as in equation (3.1) in the normalized
coordinate system.

ũi =
xi
zi

ṽi =
yi
zi

⇐⇒ p̂ =
1
z
(

I 1
) (P

1

)
(3.1)

The physical retina of the camera is usually different in that it is located at a distance
f 6= 1 together with the image coordinates u and v of the image are generally expressed in
pixel units. Because pixels are usually rectangles instead of squares, the camera has two
additional scale parameters k and l as shown in equations (3.2)-(3.3).

ũi = k f
xi
zi

(3.2)

ṽi = l f
yi
zi

(3.3)

The parameters k, l and f are not independent and can be replaced by magnifications
α = k f and β = l f expressed in pixel units. The origin of the camera coordinate system
is at a corner C of the retina, usually upper or lower left corner, and not at its center.
The center of the CCD matrix usually does not coincide with the principal point C0, thus
(3.2)-(3.3) is now replaced by (3.4)-(3.5)

ũi = α
xi
zi

+ u0 (3.4)

ṽi = β
yi
zi

+ v0 (3.5)

where u0 and v0 defines the position of C0 in the retinal coordinate system in pixel units.
The camera coordinate system may also be skewed, implying the angle θ between the two
image axis is not equal to 90◦. Thus, (3.4)-(3.5) is replaced by (3.6)-(3.7)

ũi = α
xi
zi
− α cot θ

yi
zi

+ u0 (3.6)

ṽ =
β

sin θ

yi
zi

+ v0 (3.7)

Combining (3.1) and (3.6-3.7) results in

p = κ p̂, where p =

u
v
1

 and κ
def
=

α −α cot θ u0

0 β
sin θ v0

0 0 1
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giving

p =
1
z

MP, where M def
=
(
κ 0

)
(3.8)

where P denotes the homogenous coordinate vector of P in the camera coordinate system.
Homogenous coordinates allows representing the perspective projection mapping by the
3x4 matrix M. κ is the calibration matrix of the camera and the parameters α, β, θ, u0
and v0 are the intrinsic parameters of the camera. These are the parameters which are
identified when a camera is geometrically calibrated.

3.2.2 Extrinsic parameters

Consider the case where the camera frame C is distinct from the world frame W. With

CP =
(C

W R COW
) (W P

1

)
(3.9)

and substituting (3.8) yields

p =
1
z

MP, where M = K
(

R t
)

(3.10)

where R = C
W R is a rotation matrix, t =C OW is a translation vector and P denotes the

vector of homogeneous coordinates of P in the frame W. M determines the position of
the cameras optical center in the world frame W where R and t defines the six extrinsic
parameters and respective degrees of freedom. The general perspective projection from
(3.10) is often written zp = MP. Using homogeneous coordinates, it can be written as
p = MP when exploiting the fact that they are only defined up to scale. The actual image
coordinates of image point p is defined as u

v and v
w if p =

(
u, v, w,

)T in which M
is also is defined up to scale. M can be rewritten explicitly as a function of the cameras
intrinsic and extrinsic parameters as seen in equation (3.11)

M =

αrT
1 − α cot θrT

2 + u0rT
3 αtx − α cot θty + u0tz

β
sin θ rT

2 + v0rT
3

β
sin θ ty + v0tz

rT
3 tz

 (3.11)

where rT
1 , rT

2 and rT
3 denote the rows of the matrix R and tx, ty and tz are the coordinates

of the vector t in the frame attached to the camera. While the intrinsic parameters are typi-
cally found through a calibration routine, the extrinsic parameters depends on the location
and pose of the camera frame relative to the world frame.
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3.3 Distortion

Lens distortion is a form of optical aberration that causes lenses to deviate from rectilinear
projection. This phenomena is commonly caused by imperfect lenses and defects from
manufacturing. A typical camera will to a varying degree exhibit radial lens distortion. A
camera may also exhibit tangential distortion. Other abberations in lenses include chro-
matic aberration, which is wavelength-specific distortion, and spherical aberration, which
is imperfect focusing of light rays incident at lens periphery [19]. Radial and tangential
distortion will be discussed in the following sections.

3.3.1 Radial Distortion

Radial distortion takes form as either positive or negative radial distortion, called barrel
distortion and pincushion distortion respectively. Illustrations may be seen in Figure 3.3.

Figure 3.3: Illustration of no distortion, positive radial distortion and negative radial distortion.
Originally published in [? ]

By using the pinhole model, the projection of a point (x, y, z) to the image plane is ex-
pressed as (3.2)-(3.3). Radial distortion can be approximated by the following model [20]:[

δu(r)
i

δv(r)i

]
=

[
ũi(k1r2

i + k2r4
i + k3r6

i + ...)
ṽi(k1r2

i + k2r4
i + k3r6

i + ...)

]
(3.12)

where k1, k2, k3,... are coefficients for radial distortion and r = (x2 + y2)
1
2 . Typically,

two coefficients are used for correcting radial distortion. Three or more may be used for
wide angle lenses or in cases where the camera suffers from severe distortion.

3.3.2 Tangential Distortion

Tangential distortion is caused by imperfections in production of a camera. This can be
seen in Figure 3.4. If the image sensor is not perfectly parallel to the camera lens, tangen-
tial distortion will occur.
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Figure 3.4: Illustration of what causes tangential distortion. Originally published in [21].

Tangential distortion can be modelled as [20][
δu(t)

i
δv(t)i

]
=

[
2p1ũi ṽi + p2(r2

i + 2ũ2
i )

p1(r2
i + 2ṽ2

i ) + 2p2ũi ṽi

]
(3.13)

where p1, p2 are coefficients for tangential distortion. The coefficients for tangential dis-
tortion will typically have a significantly smaller value than the coefficients for radial dis-
tortion.

3.4 Camera calibration

In geometrical camera calibration the objective is to determine a set of camera parameters
that describe the mapping between 3D reference coordinates and 2D image coordinates.

Using equations (3.4)-(3.5), (3.12) and (3.13) the camera model for accurate calibration
can be modelled as [20]:

[
ui
vi

]
=

[
α(ũi + δur

i + δut
i)

β(ṽi + δvr
i + δvt

i)

]
+

[
u0
v0

]
(3.14)

where u′, v′ is the corrected pixel coordinates. While equation (3.14) expresses the pro-
jection of 3D points on the image plane, it does not give a direct solution to the back
projection problem where line of sight is recovered from image coordinates. When both
radial and tangential distortion is considered, there is no analytic solution to the inverse
mapping. The inverse mapping can however be approximated. An implicit inverse model
is

[
ũi
ṽi

]
=

1
G

[
ũ′i + ũ′i(a1r2

i + a2r4
i ) + 2a3ũ′i ṽ

′
i + a4(r2

i + 2ũ2
i
′)

ṽ′i + ṽ′i(a1r2
i + a2r4

i ) + a3(r2
i + 2ṽ2

i
′) + 2a4ũ′i ṽ

′
i

]
(3.15)
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where

ũ′i =
ui − u0

α

ṽ′i =
vi − v0

β

G = (a5r2
i + a6ũi + a7ṽi + a8)r2

i + 1

ri =
√

ũ2′ + ṽ2′

Comparing equations (3.14) and (3.15), the inverse model has components resembling
radial and tangential distortion. The counterparts for the distortion parameters k1, k2, p1
and p2 are a1, ..., a4. The parameters a1, ..., a8 can be solved either iteratively using least
squares, when the smallest fitting residual is obtained, or directly, when the result is very
close to optimal. In order to solve the unknown parameters for the inverse model, N tie-
points (ũi, ṽi) and (ũ′i, ṽ′i) covering the whole image area must be generated. Defining

ui =
[
−ũ′ir

2
i −ũ′ir

4
i −2ũ′i ṽ

′
i −r2

i − 2ũ′2i ũir4
i ũiũ′ir

2
i ũi ṽ′ir

2
i ũir2

i
]T

vi =
[
−ṽ′ir

2
i −ṽ′ir

4
i −2ũ′i ṽ

′
i −r2

i − 2ṽ′2i ṽir4
i ṽiũ′ir

2
i ṽi ṽ′ir

2
i ṽir2

i
]T

T =
[
U1 V1 ... Ui Vi ... UN VN

]T

p =
[
a1 a2 a3 a4 a5 a6 a7 a8

]T

e =
[
ũ′1 − ũ1 ṽ′1 − ṽ1 ... ũ′i − ũi ṽ′i − ṽi ... ũ′N − ũN ṽ′N − ṽN

]T

and using equation 3.15, the following relation is obtained

e = Tp (3.16)

The vector p is now estimated in a least squares in the following expression

p̂ = (TTT)−1TTe (3.17)

The parameters computed based on (3.17) are used in (3.15) to correct arbitrary image
coordinates (u, v). The actual coordinates are obtained through interpolation based on
generated coordinates (ũi, ṽi) and (ũ′i, ṽ′i).

3.5 Deep learning and neural networks

An artificial neural network is built up of connected layers of neurons, where each neuron
has one or more weighted inputs and a bias [22]. All the inputs are summed and processed
by an activation. The output of the activation function is the output of the neuron. The
structure is illustrated in Figure 3.5
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Figure 3.5: The structure of a single neuron in an artificial neural network
Figure taken from [22]

The output of a neuron is

yk = φ(
n

∑
i=1

xiwki
+ bk) (3.18)

where φ is the activation function, xi is input i, wki
is the weight to input i, and bk is the

bias. The subscript k notes that the weights and bias is updated through backpropagation.
This is discussed further in section 3.9. The activation function may vary from network
to network and within different layers in a network. Two of the most common activation
functions, the sigmoid and ReLU functions, are shown in Figure 3.6.

Figure 3.6: Two common activation functions, the sigmoid and the rectified linear. The rectified
linear (ReLU) is a linear function where values less than 0 is zero
Figure taken from [22]

The term "network" in artificial neural network comes from the way the neurons are con-
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nected together. A simple artificial neural network with two hidden layers is illustrated
in Figure 3.7. Hidden layers are layers of neurons that are neither input nor output lay-
ers. The illustrated network is a network with only fully connected layers, this means that
every neuron in a layer is connected to every neuron in the next.

Figure 3.7: A fully connected artificial neural network with two hidden layers.
Originally published in [23]

3.6 Convolutional neural networks

Much like an artificial neural network, a CNN have learnable weights and biases. The way
a CNN is distinguishing itself from an ordinary neural network, is that it assumes that the
input data has a grid-like topology [23]. In Figure 3.7, the layers are depicted as a one-
dimensional vertical line of neurons. In a CNN designed for computer vision, the input
layers can be thought of as a three-dimensional grid of neurons. The width and height of
the input neurons are represented by the pixels of the image, and the depth is the color
channels of the pixels, three for color images, and one for grey-scale images. The network
will now look like the one illustrated in Figure 3.8. Each sub-layer, represented by the
depth, in a layer, is called a feature map. CNNs uses three basic ideas; local receptive
fields, shared weights and pooling.
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Figure 3.8: Layers of a convolutional neural network represented as three dimensional matrices
with height, width and depth
Originally published in [23]

3.6.1 Local receptive fields

When dealing with high-dimensional inputs such as images, there will be an overwhelming
number of weights and biases to train if all layers are fully connected. In a CNN, each
neuron is only connected to a local region of the input volume, as illustrated in 3.9. This
local region is the neurons receptive field [24].

Figure 3.9: A neuron’s receptive field in the input layer
Originally published in [23]

The dimensions of the receptive field of a neuron is decided by the filter size in the previous
layer, a 5x5 filter yields a local receptive field of 25 neurons. To greatly reduce the number
of parameters to train, CNNs uses shared weights and biases, based on one assumption;
"If one feature is useful to compute at some spatial position (x,y), then it should also be
useful to compute a different position (x2,y2)"[23]. This assumption allows each depth
slice of a layer to be constrained to use the same weights and bias.
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3.6.2 Pooling layers

Pooling layers are commonly used in between successive convolutional layers. The func-
tion of pooling layers is to progressively reduce the spatial size of the representation to
further reduce the amount of parameters [23]. This amounts to less computational effort
required to train the CNN and it helps reduce overfitting. An example of the effect of
pooling can be seen in Figure 3.10. Feature maps, or depth, will always remain the same
after a pooling operation. However, depending on the filter size and stride, the height and
width will be condensed. From this figure, it can be calculated that the filter of the pooling
layer is of dimensions 2x2 and stride 2 by using equations (3.19)-(3.21). Pooling layers
with filters larger than 2x2 are usually too destructive, i.e. too many features are lost from
the feature maps.

W2 =
W1 − F

S
+ 1 (3.19)

H2 =
H1 − F

S
+ 1 (3.20)

D2 = D1 (3.21)

where F is the dimensions of the filter, which is always square. This mean a 2x2 filter
yields F = 2. S is the stride, which describes how many pixels we slide the filter from one
pool operation to the next.

Figure 3.10: The effect of a pooling layer with input 224x224x64.
Originally published in [23]

There exists different types of pooling operations, e.g. max-, average-, and L2-norm-
pooling. Because average pooling may "wash out" the features in the feature map, max-
pooling usually yields better results in practice. A max-pool operation will output the
maximum activation from the receptive field. An example of max-pooling is shown in
Figure 3.11.
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Figure 3.11: Max-pool
Originally published in [23]

3.6.3 Forward and backward pass

While the forward pass in a CNN traverses from input to output calculating all values,
the backward pass performs backpropagation with the goal of updating the weights in the
network minimizing the error for each output neuron, and the network as a whole [23].
This has originally been done by computing the gradient of a cost-function for a single
training example. However, in practice it is common to combine backpropagation with a
learning algorithm such as stochastic gradient descent where the gradient is computed for
a batch of training examples. Backpropagation through max pooling layers are performed
in the manner described by Figure 3.12.

Figure 3.12: Backpropagation in a max-pooling layer
Originally published in [25]
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3.7 Detector and models

Single shot multibox detector (SSD) [26] is an architecture using a single deep neural net-
work. What separates SSD from other architectures like Faster-RCNN (Recurrent Con-
volutional Neural Network) [27] is that it localizes and classifies objects with just one
forward pass, hence, single shot. In Figure 3.13, an implementation using VGG-16 [28] as
a base, but without the fully connected layers can be seen. These layers are replaced with
auxiliary convolutional layers enabling feature extraction at multiple scales and progres-
sively decreasing the size of the input to each subsequent layer [26].

Figure 3.13: Layers of the SSD architecture with 300*300*3 input. The mAP and FPS is the result
of the VOC2007 test.
Originally published in [26]

SSD may use several different models as a base instead of VGG-16. The general trend
has been designing deeper and more complex networks to achieve higher accuracy. Mo-
bileNets [29] is a class of more efficient models with respect to latency and size, at the cost
of accuracy. The models are designed to contribute to recognition tasks being carried out
in a timely fashion on computationally limited platforms. Instead of using standard con-
volutional filters, exemplified in Figure 3.14a, MobileNets utilizes a combination of two
layers; depthwise- and pointwise convolutional filters as seen in 3.14b and 3.14c respec-
tively. The combination is called a depthwise separable filter. The first layer is however a
full convolution.
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(a) Standard convolutional filters

(b) Depthwise convolutional filters

(c) Pointwise convolutional filters

Figure 3.14: Different convolutional filters. Originally published in [29]

Compared to VGG’s performance on the ImageNet benchmark, MobileNet is nearly as
accurate while being 32 times smaller and 27 times less computationally expensive [29].
When implemented for object detection using the SSD 300 framework, mobilenet scores
1.8% lower than VGG on the COCO challenge.

The multibox part of the architectures name comes from the bounding box regression
technique. In SSD, every feature map cell is associated with a default set of bounding
boxes of different dimensions and aspect ratios [30]. This results in fast computation
times of predicting bounding boxes at the expense of pixel wise precision.

Figure 3.15: SSD default boxes at 8x8 and 4x4 feature maps
Originally published in [31]
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The confidence loss Lc measures the networks confidence of the objectness, i.e. how sure
the network is that it has correctly classified an object. To compute the confidence loss,
categorical cross-entropy is used. This loss function increases as the predicted probability
diverges from the actual label. The location loss Ll measures how far away the predicted
bounding box is from the ground truth. To compute the location loss the L2-norm, or mean
squared error, is used. The expression for the loss, Lm, which states how good a prediction
it produced is, can be computed by combining Lc and Ll:

Lm = Lc + αLl

Where α is a parameter designed to help balance the contribution of the location loss Ll
[32, 33].

3.8 Datasets

When using a CNN for deep learning, it is important to split a labeled dataset into three
separate, non-overlapping subsets; a training set, a validation set and a test set. During
training on the CNN, it is trained on the training set and validated continuously on the
validation set. When testing the performance of the trained CNN, it is tested on the test-
set. It is important that all data contained in the test set is unseen data. This is to ensure
good generalization and will be discussed more in section 3.9.

A well designed dataset should have good representation of each class and diversity be-
tween classes. This will help the model generalize well and maintain a high precision in
classification of every class present. A common technique to create increased diversity in
the data is data augmentation. Data augmentation can for example be stretching of images
to give the objects a slightly different shape or filters can be applied.

3.9 Training

When training a CNN, considerations must be taken. One of the central challenges when
training a neural network is overfitting. One of the main strengths of neural networks
roots in the universal approximation theorem. No matter what a function f(x) is, there
is guaranteed to be a neural network so that for every possible input, the value f(x), or
at least a close approximation, is output from the network [24]. If a neural network is
trained for too long, the model is prone to overfit the data. That is, approximating the
function describing the training data too closely. This leads to bad generalization, usually
resulting in reduced performance. Consider the data presented in Figure 3.16. The goal is
to separate the blue and red dots, representing 2 different classes. While the green line will
separate the two classes with 100% accuracy during training, the better model would likely
be the black line. This is because the training set is only examples of real life instances
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of objects and in most use cases, the model will encounter variations of the classes trained
on.

Figure 3.16: The green line represents an overfitted model, while the black line represents a model
with good generalization
Originally published in [34]

One method to avoid overfitting would be early stopping [25]. During training, the ac-
curacy of the model tends to continue to increase indefinitely until it converges to near
100% accuracy. However, this is exactly why the data is split up into three separate sets
as discussed in section 3.8. The validation set will validate each set of weights generated
by the training. Due to overfitting, the validation set accuracy will begin to decrease, i.e.
the model is beginning to generalize increasingly poorly as seen in Figure 3.17. This is
when to stop training. The best performing model will likely come from the set of weights
where the validation set scores the best. Stopping too early will lead to an underfitted
model. This may be visualized as trying to separate the dots in Figure 3.16 with a linear
model. If the model is underfitting the data, adding more training data will not help. A
more complex model, better features or more training are needed. Another method for
constraining overfitting is utilizing dropout layers [24]. This is layers that force some of
the neurons to deactivate during a particular forward or backward pass. Dropout is usually
performed in fully connected layers, where some neurons may develop a co-dependence.
Deactivating some of them during training at random leads to higher influence of each re-
maining neuron in addition to forcing the network to explore new ways of lowering losses.
This way, overfitting is reduced.
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Figure 3.17: The validation set gives us a good idea of when to stop training to avoid overfitting.
Root mean square error (RMSE) is a metric describing the error. One epoch is one full iteration of
the training set. The numbers on the axis are case dependent.
Originally published in [35]

Another consideration to take when training a CNN is the problem with vanishing gradi-
ents [24]. At each backpropagation, each weight are updated proportionally to the partial
derivative of the error function with respect to the current weight in each iteration of train-
ing. Sometimes, the gradient becomes vanishingly small, and the weight is hindered in
learning.

3.10 Image processing

Image processing is a powerful tool for various tasks concerning both geometric calibra-
tion of IR cameras and computer vision. Thresholding and edge-map extraction are two
methods which have their own strengths and limitations, and will be presented.

3.10.1 Thresholding

Thresholding is a method of image segmentation typically used in grayscale images. In
the simplest implementation, the output is a binary image representing the segmentation.
In this implementation, each pixel of an image is compared with an intensity threshold
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T. For thresholding to work as intended, the image should contain two classes of pixels
following a bi-modal histogram, a histogram with only two distinct peaks. An example of
a bi-modal histogram can be seen in Figure 3.18.

Figure 3.18: A bi-modal histogram allowing for good separability of classes in thresholding. Orig-
inally published in [36]

A binary thresholding implementation changing each pixel to either black or white in an 8
bit grayscale image can be seen in (3.22).

g(x, y) =

{
255 , if f (x, y) ≥ T
0 , if f (x, y) < T

(3.22)

where x and y are pixel coordinates, g(x, y) is the thresholded image, f (x, y) is the input
image, and T is the intensity threshold. Determining T can be done manually, or techniques
like Otsu’s method may be used [37]. This algorithm assumes that the image contains two
classes of pixels following a bi-modal histogram. An optimal threshold is selected by
a discriminant criterion to maximize the separability of the classes. The steps in Otsu’s
method are presented below. Let the pixels of a given image be presented in L gray levels
[1, 2, ..., L]. The number of pixels at level i is denoted by ni and the total number of
pixels by N = n1 + n2 + ... + nL. The gray-level histogram is regarded as a probability
distribution:

pi =
ni
N

, where pi ≥ 0,
L

∑
i=1

pi = 1 (3.23)

The pixels are dichotomized into two classes C0 and C1 by a threshold level T where C0 is
the set of pixels with levels [1, ..., T] and C1 is the set of pixels with levels [T + 1, ..., L].

30



Part I Chapter 3 – Computer vision

Then the probabilities of class occurence are given by

ω0 = P(C0) =
T

∑
i=1

pi = ω(T) (3.24)

ω1 = P(C1) =
L

∑
i=T+1

pi = 1−ω(T) (3.25)

and class mean levels are given by

µ0 =
T

∑
i=1

iP(i|C0) =
T

∑
i=1

i
pi
ω0

=
µ(T)
ω(T)

(3.26)

µ1 =
L

∑
i=T+1

iP(i|C1) =
L

∑
i=T+1

i
pi
ω1

=
µτ − µ(T)
1−ω(T)

(3.27)

where

ω(T) =
T

∑
i=1

pi

µ(T) =
T

∑
i=1

ipi

is the zeroth and first order cumulative moments of the histogram up to the intensity thresh-
old T and

µtot = µ(L) =
L

∑
i=1

ipi

is the mean level of the input picture. The class variances are given by

σ2
0 =

T

∑
i=1

(i− µ0)
2P(i|C0) =

T

∑
i=1

(i− µ0)
2 pi

ω0
(3.28)

σ2
1 =

L

∑
i=T+1

(i− µ1)
2P(i|C1) =

L

∑
i=T+1

(i− µ1)
2 pi

ω1
(3.29)

In order to evaluate the goodness of the intensity threshold at level T in regards to class
separability, the following discriminant criterion is introduced

λ =
σ2

B
σ2

W
, κ =

σ2
tot

σ2
W

, η =
σ2

B
σ2

tot
(3.30)

where

σ2
W = ω0σ2

0 + ω1σ2
1

σ2
B = ω0(µ0 − µtot)

2 + ω1(µ1 − µtot)
2

σ2
tot =

L

∑
i=1

(i− µtot)
2 pi
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σ2
W are within-class variance, σ2

B is between-class variance and σ2
tot is total variance. Then,

this is reduced to an optimization problem to search for the intensity threshold T that
maximizes one of the object functions in (3.30). The following relation always holds

σ2
W + σ2

B = σ2
tot

As the within- and between-class variance both are functions of intensity threshold T while
total variance is independent of T together with between-class variance being first-order
statistics, η is chosen to evaluate the separability of the classes at intensity threshold T.
The optimal threshold T∗ that maximizes η is selected in the following sequential search
using (3.24)-(3.27)

η(T) =
σ2

B(T)
σ2

tot
(3.31)

σ2
B(T) =

(µtotω(T)− µ(T))2

ω(T)(1−ω(T))
(3.32)

with the optimal threshold T∗ being

σ2
B(T

∗) = max 1≤T≤L σ2
B(T) (3.33)

Examples of thresholding, both determining T manually and using Otsu’s method, can be
seen in Figure 3.19. From the histogram 3.19b of input image 3.19a, it is seen that it is
not perfectly bi-modal. However, Otsu’s method still works as intended as seen in 3.19d.
The same result can of course be obtained by manually determining intensity threshold T,
however, this may be time-consuming if multiple images are to be binarized correctly. The
binarized image in 3.19c was obtained after multiple guesses of T. The intensity threshold
from Otsu’s method was T = 119, while the manually set intensity threshold is T = 145.
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(a) Input image (b) Image histogram of input image

(c) Manually guessing
intensity threshold, T = 145

(d) Choosing T using Otsu’s method,
resulting intensity threshold T = 119

Figure 3.19: Examples of thresholding where intensity threshold T is determined manually and
using Otsu’s method

3.10.2 Edge map

An edge map is based on gradient-based edge detection where image gradients are com-
puted by convolution. Canny edge detection is a common edge detection algorithm, pro-
posed by John F. Canny in [38]. It is a multi-stage algorithm with the first stage being
noise reduction [39]. Because edges in images may be weakened by noise, edge detection
is susceptible to image noise. Therefore, a Gaussian convolutional filter is applied. The
standard deviation σ of the filter can be set high to detect more gradual edges, or low to
detect sharp edges. The next stage is finding the intensity gradient of the image. The
smoothed image is applied a Sobel kernel horizontally and vertically, obtaining the first
derivative Gx and Gy in both directions. From the two resulting images, the edge gradient
and direction for each pixel is computed.

Gxy =
√

G2
x + G2

y (3.34)

Θ = arctan
Gy

Gx
(3.35)

Note that the gradient direction is perpendicular to edges and is rounded to one of four
angles; vertical, horizontal and both diagonal directions.

33



Part I Chapter 3 – Computer vision

The next step is non-maximum suppression, a full scan of the image is performed to re-
move unwanted pixels not constituting an edge. The neighborhood of every pixel is con-
sidered to verify if it is a local maximum in the direction of the gradient. This is visualized
in Figure 3.20

Figure 3.20: Non-maximum suppression visualized. Originally published in [39].

Point A is on an edge in the image between point C and B, which represent high and low
intensity pixels respectively creating a gradient normal to the edge. When A is considered
a local maximum, it is considered for the next stage; Hysteresis thresholding. Otherwise,
it is suppressed and set to zero, i.e. not considered an edge. In the final stage, hystere-
sis thresholding, all edges from the previous stage are revisited and and classified using
two threshold values; a minimum value Tmin and a maximum value Tmax. If an edge has
a greater intensity gradient than the maximum value, it is considered a sure-edge, while
edges with smaller gradient intensities than the minimum value are considered non-edges
and are discarded. Edges falling in between the minimum and maximum value are classi-
fied as edges or non-edges depending on their connectivity. If an edge falling in between
the thresholds is connected to a pixel part of a sure-edge, it is classified as an edge. Oth-
erwise it is discarded. The two thresholds are therefore important to choose correctly
depending on the image to get a satisfying result. Examples of different input parameters
with identical input picture can be seen in Figure 3.21.
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σ = 1 σ = 5 σs = 10

Tmin = 6
Tmax = 10

Tmin = 1 Tmin = 6 Tmin = 9.9

σ = 3
Tmax = 10

Tmax = 7 Tmax = 15 Tmax = 25

σ = 3
Tmin = 6

Figure 3.21: Examples of edge maps using different parameters for σ, Tmin and Tmax. The effects
of increasing one parameter at a time may be seen in rows 1, 2 and 3 respectively. The input image
is shown at the top.
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Sensors and system

Figure 4.1: 360◦ sensor rig with 5 FLIR BlackFly 2 EO cameras and 5 FLIR Boson 640 IR cameras.
The upper row of cameras are IR cameras and the lower row are EO cameras. Originally published
in [40].

4.1 Sensor Rig Layout

Included in the sensor rig are ten cameras, five IR cameras and five EO cameras. They
are all connected to a NVIDIA TX2 carrier board. The angle between every neighbouring
camera is 72◦, such that five cameras together evenly covers 360◦. The infrared cameras
are interfaced through Video4Linux and configured with FLIRs Boson API [41]. The IR
cameras are connected via USB Type-c. The data rate per IR camera at 9 frames per
second is 30 Mbit/s. As the IR cameras are interfaced with USB 2.0, with around 480
Mbit/s theoretical and around 330 Mbit/s practical maximum data rate, all 5 IR cameras
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may transfer at full speed. The EO cameras have a maximum data rate of 380 Mbit/s at
22 FPS. The maximum total throughput between onboard TX2 and external computer is
1 Gbit/s which must be used for all 10 cameras. This means that unless processing is
being done onboard the TX2, then either the frame rate must be restricted, or some form
of compression must be applied if all cameras are used [40, 42].

The IR cameras in the sensor rig are FLIR Boson 640 cameras with specifications as shown
in table 4.1.

IR Camera FLIR Boson 640
Lens type Kowa LM6JC
Focal length 4.9 mm
Sensor size 2

3 ”
Image resolution 640 x 512
HFOV according to supplier 95◦

Interface USB 2.0
Max framerate 9 fps
Maximum data rate 30 Mbit/s at 9 fps

Table 4.1: Infrared camera parameters

4.2 GNSS

The GNSS onboard MilliAmpere is a Hemisphere VS330 GNSS receiver. It transmits
information to the OBC and receives RTK data via the Satel VHF receiver. This configu-
ration results in 10 mm + 1 ppm horizontal accuracy and 20 mm + 2 ppm vertical accuracy
[43]. Its heading accuracy depends on the separation distance of the two antennas, the
higher the separation distance, the more accurate the heading accuracy. Hemisphere spec-
ify heading accuracy for separation distance up to 5.0m, which is 0.02◦. On MilliAmpere,
the antennas are separated by almost 2.0 m, resulting in a heading accuracy close to 0.05◦.

4.3 IMU

The IMU onboard MilliAmpere is a Xsens MTi-20 with integration level VRU [44]. It has
a specified static and dynamic precision in roll and pitch of 0.2◦ and 0.5◦ respectively and
a resolution of 0.25mG with a specified latency of < 2ms.

4.4 Coordinate Transformations

To obtain the pose of each IR camera, the coordinates of MilliAmpere have to be trans-
formed. The coordinate transformation to each camera from the center of MilliAmpere is
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described in equation (4.1).

Cam
CO

T = RzRyRxtxtzRzcam tx

=


cψ −sψ 0 0
sψ cψ 0 0
0 0 1 0
0 0 0 1




cθ 0 sθ 0
0 1 0 0
−sθ 0 cθ 0

0 0 0 1




1 0 0 0
0 cφ −sφ 0
0 sφ cφ 0
0 0 0 1




1 0 0 x
0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 z
0 0 0 1




cσ −sσ 0 0
sσ cσ 0 0
0 0 1 0
0 0 0 1




1 0 0 A
0 1 0 0
0 0 1 0
0 0 0 1



=


cψcθcσ + sσ(sθcψsφ − sψcφ) cσ(sθcψsφ − sψcφ)− cψcθsσ

cθsψcσ + sσ(sθsψsφ + cψcφ) sσ(sθsψsφ + cψcφ)− cθsψsσ

cθsφsσ − sθcσ cθsφcσ − sθsσ

0 0

sψsφ + sθcψcφ cψcθcσ A + sσ(sθcψsφ − sψcφ)A + sψsθz + sθcθcσz + cψcθ x
−cψsφ + sθsψcφ cθsψcσ A + sσ(sθsψsφ + cψcφ)A + sθsψcφz− cψsφz + cθsψx

cθcφ cθsφsσ A− sθcσ A + cθcφz− sψx
0 1


(4.1)

where φ, θ and ψ denotes the angle of rotation around the x, y and z axis respectively,
which is the three rotational degrees of freedom of MilliAmpere. The angles φ, θ and ψ
corresponds to roll, pitch and yaw respectively. x and z is the translation along the x and
z axis to reach the coordinate system at the center of the sensor rig. No translation along
y is necessary. Translation along the x axis may be equal to zero depending on the final
placement of the platform, but is included in the equation in case it is not. σ denotes the
constant rotation about the z axis for each camera, e.g. σF = 0◦ and σFR = 72◦. Finally,
the arm A = 0.2m is the translation necessary to translate the coordinate system along
the x axis from the center of the sensor rig, to reach each camera. Cam

CO
T describes each

camera’s pose according to MilliAmperes pose. This is important to know to correctly
identify the position with respect to MilliAmpere of a detected object.

4.5 Robot Operating System

The implementation of the system is done through Robot Operating System, or ROS,
an open source framework for writing robot software [45]. It is a collection of tools,
libraries and conventions that aims to simplify the task of creating complex and robust
robot behavior across a wide variety of platforms.

ROS consists of several parts:
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• A set of drivers allowing for data sampling from sensors and issuing commands to
motors and other actuators.

• A large collection of fundamental robotics algorithms

• Computational infrastructure that allows moving data around and connect the vari-
ous components in a system

• Tools for visualizing the state of the system, debugging and recording sensor data
and other data.

• A wiki documenting many of the aspects of the framework.

The following paragraphs describe philosophical aspects of ROS:

• Peer to peer: ROS systems consist of numerous small programs connecting to one
another and continuously exchange messages. There are no central routing system,
which means the messages travel directly from one program to another.

• Tools based: Many small generic programs may result in complex software sys-
tems. ROS does not have a canonical IDE. Tasks such as navigating the source
code tree, visualizing system interconnections, graphically plotting data stream etc.
are performed by separate programs. This encourages creation of new improved
implementations as they can be exchanged for implementations better suited for a
particular task domain.

• Multilingual: ROS has chosen a multilingual approach, allowing for multiple script-
ing languages operating together in a single system. ROS software modules can be
written in any language for which a client library has been written. The libraries
communicate with one another by following a convention that describes how a mes-
sage has been "flattened" or "serialized" before being transmitted over the network.

• Thin: ROS conventions encourages contributors to create standalone libraries and
wrap those libraries so they can communicate with other ROS modules.

• Free and open source: Both noncommercial and commercial use of ROS is allowed.
ROS passes data using IPC, which means systems built using ROS can have fine-
grained licensing of their various components.
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A simple ROS network can be seen in Figure 4.2. At startup, nodes register with roscore,
and then query roscore to find other nodes and data streams by name. The roscore knows
what messages every node provides and which it subscribes to. Roscore provides the nodes
with adresses of relevant message producers and consumers. The talker and listener node
periodically make calls to the roscore while exchanging peer-to-peer messages directly
themselves.

Figure 4.2: Simple ROS network with two nodes and the roscore. Originally published in [45].
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Chapter 5
Calibration of IR cameras

The following chapter presents the production method of two calibration fields together
with the physical principles on which they rely to create gradients in the LWIR spectrum.
The respective calibration procedures used are also presented.

5.1 IR camera calibration

While tried and true calibration methods for EO-cameras exists, IR cameras lacks stan-
dardized methods for geometric calibration. Usually, a checkered pattern is printed on a
sheet of paper and pictured with the camera which is to be calibrated from several different
angles. Due to the properties of infrared radiation however, it is harder to create the gradi-
ents needed for corner detection on a two dimensional plane. To overcome this challenge,
emissivity differences in materials are utilized. The goal is to make a checkered calibration
field allowing standard calibration methods for EO-cameras to be used for calibration of
IR-cameras.

5.1.1 Calibration fields

Based on the findings in [7], passive, not actively heated, calibration fields were found
to generate higher gradients in the infrared spectrum than active, or heated, calibration
fields due to heat spread in the materials and to the surrounding air. The findings in [46]
however, showed that the active calibration field used produced good results. To compare
and explore strengths and weaknesses in calibration methods using active and passive
calibration fields, two methods are proposed. The method using passive calibration field is
based on Leslie’s cube [2] as well as the work done in [7] where low emissivity materials
were used and [6] where the authors cooled the calibration field to create gradients. Despite
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the authors of [6] achieving excellent gradients, they did not account for images captured
at sharper angles, which because of the three dimensional nature of the calibration field
resulted in vanishing gradients. The active calibration field is based on the method used in
[46], but with holes with smaller radius as proposed by one of the authors as well as some
quality of life changes.

5.1.2 Production and design of passive calibration field

To allow an IR-camera to see the checkered pattern, the difference in emissivity of the
materials used should be as large as possible. While highly polished aluminium has a
decently low emissivity of 0.039-0.057, nickel-plated (electroplated) copper boasts an even
lower emissivity of 0.03 [47]. This means that a nickel-plated copper plate will act almost
as a perfect mirror in the infrared spectrum. A gilded copper plate would be marginally
better with respect to emissivity. Because of the price however, nickel-plated copper was
the material of choice.

The second material needed to create contrast should be as close to a theoretical black
body with respect to emissivity as possible. Because of the low cost, practicality and high
emissivity of about 0.96, matte black spray paint was the material of choice. To enable a
sprayed checkered pattern, a plate of acrylic was laser cut as a more accurate alternative
to manually masking the nickel-plated copper plate with tape. Acrylic was the material
of choice as it is easily available, reasonably cheap and the fact that it is resilient against
expanding when exposed to heat. Because of the nature of the checkered pattern however,
none of the pieces are connected. To overcome this, thin crosses was left between each
square to hold it all together. The acrylic mask and finished calibration field can be seen i
figure 5.1.
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(a) Laser cut acrylic mask (b) Passive calibration field

Figure 5.1: The mask used for spray painting a checkered pattern along with the finsihed calibration
field

5.1.3 Production and design of active calibration field

A wooden plate was coated with Carbo e-Therm ACR120-200A.01, a conductive paint
which heats up when exposed to voltage. To create sufficient gradients, a plate was 3D-
printed with holes to expose the hot coating. The 3D-printed plate isolates from heat
reasonably well allowing for contrasts based on difference in temperature rather than emis-
sivity.
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Figure 5.2: Active calibration field. A wooden plate coated with thermally conductive paint with a
3D printed plate attached.

5.1.4 Calibration using passive calibration field

To create gradients between the high emissive paint and low emissive nickel plated cop-
per, the calibration field was cooled in a freezer. Technically, the calibration field could
be heated up as well, as long as there is a difference in temperature between it and the
surroundings. This would possibly create a shining effect however, which may reduce
gradients between the materials, and make corner detection less accurate. The infrared ra-
diation of the surroundings is reflected in the nickel plated copper while the high emissive
paint emits radiation according to its own temperature. To gather the images needed for
calibration, the field was filmed from different positions and angles, and relevant frames
were extracted as .jpg files. The calibration tool used was Matlab camera calibration app
[21]. Most of the frames were accepted, and corners were reliably detected correctly. An
example frame and corner detection on the same frame can be seen in Figure 5.3.
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(a) Frame from calibration set (b) Corner detection

Figure 5.3: An example of a frame captured with FLIR Boson 640 and corner detection of the same
frame in the Matlab calibration app.

Figure 5.4: Camera angle. Originally
published in [21].

Although frames of the calibration field captured at
sharp angles (θ ≥ 45◦) relative to the camera plane
is not advised, and not included in the calibration
procedure used, some examples can be seen in Fig-
ure 5.5 showing the robustness of corner detection
using this method. This is partly due to the cali-
bration field having all its features in the same 2-
dimensional plane. Corner detection also worked
well for varying distances between the camera and
the calibration field.

Figure 5.5: Correctly detected corners of the calibration field at sharp angles relative to the camera
plane

5.1.5 Calibration using active calibration field

The active calibration field was applied 12V, allowing it to heat up sufficiently. Frames
were gathered in the same way as the passive calibration field. As Matlabs camera calibra-
tion tool does not support circle detection, OpenCV calibration tool [48] was used. Circle
detection was done using the findCirclesGrid() function. This function did not manage to
detect circles correctly directly on the extracted frames, so thresholding was attempted.
This was not feasible due to non-bi-modal histograms, which can be seen in Figure 5.6.
As there are not just two distinct tops, the histogram is not bi-modal and thresholding may
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not work as intended. This is due to uneven heat signature where the calibration field were
supposed to have a uniform heat signature significantly lower than in the holes.

(a) Original frame (b) Image histogram (c) Threshholding

Figure 5.6: The original frame, its histogram and resulting binary image segmented using thresh-
olding

Extracting the edge-map however, enabled correct circle detection. An example can be
seen in Figure 5.7 where the original frame is the same as in 5.6a. Extracting the edges
and creating an edge-map does not require the image histogram to be bi-modal as the
operation uses local gradients rather than a global intensity threshold.

(a) Original frame (b) Edge map (c) Circle detection

Figure 5.7: An example frame of the active calibration field, its edge-map and circle detection based
on the edge map 5.7b projected onto the original frame 5.7a

This method was however less robust in respect to point detection, especially when the
calibration field was in the edges of the frames where the radial distortion is highest. This
is a problem because it is advised to include frames with the calibration field positioned
near the edges for calibration. Additionally, this method was not robust to changes along
the optical axis of the camera or changes in angles relative to the camera plane. Thus, most
of the pictures accepted for calibration were at similar distance along the optical axis, near
the center of the frame and normal to the camera plane.
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ROS pipeline

The full pipeline from image capturing to position estimation is implemented in ROS. The
pipeline is distributed over three nodes to obtain modularity. The following sections will
present each nodes function, and the reasoning behind it. An illustration of the system can
be seen in Figure 6.1. The existing ROS network implemented on MilliAmpere can be
seen in Appendix B.

Figure 6.1: An illustration of the different nodes in the ROS network
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6.1 Node 1 - Data sampling

The function of node 1, synced_data, is to grab a frame from the live stream of the IR
cameras using GStreamer [49] together with data from GPS and IMU to enable synchro-
nization of the image frame with global position, heading, roll and pitch of the vessel.
This is important to enable accurate calculation of each cameras pose in the world and
body frame. If the synchronization is off, a camera’s actual pose may deviate from the cal-
culated pose. Therefore, calculation of detected objects position in respect to the camera,
explained in section 6.3, may not coincide with the objects actual position in respect to the
camera.

As of time of writing, FLIR Boson 640 does not support external frame synchronization or
a time stamp feature. Due to this, time delays have to be estimated, and buffered together
with data from GPS and IMU. Fortunately, FLIR specifies the delay for the Boson 640
camera, which is 18-37ms [50] depending on camera settings. Additionally, the images
are undistorted using the intrinsic parameters and distortion coefficients found in chapter
5. The node subscribes to topics from other, preexisting nodes in the ROS-network. The
node publishes the undistorted frames, along with camera position, camera orientation and
gps-time in a Detection2D message. It publishes five topics, one for each IR camera.

6.2 Node 2 - Object detection

With modularity and the rapid advancement in computer vision in mind, object detec-
tion is done in a separate node- detector_node. This enables easy replacement with better
performing detectors or trained models in the future. The node uses an SSD detector de-
scribed in 3.7 together with mobilenet, a lightweight model which may enable real time
object detection without GPU accelerated computation with the trade off being perfor-
mance in respect to accuracy.

A Tensorflow implementation based on [51] is used and a mobilenet model was trained
using a custom classes with the dataset made in [1]. Despite [1] having shown that train-
ing a model with a dataset containing histogram equalized and bilaterally filtered IR im-
ages along with gray-scale images in the visible spectrum may increase performance, this
method was not used. This is due to the computational expensiveness of the image process-
ing in question, which needs to be applied to every input frame in real time for the detector
to take advantage of this training method. As there is five IR cameras which needs to run
in parallel with object detection performed at a sufficient frame rate, in addition to five EO
cameras, the model was trained using normalized IR-images, which require no real time
computationally expensive image processing.

This node subscribes to the topics published from node 1. When a detection is ready, it will
publish the coordinates for the bounding boxes, predicted class, confidence rate, camera
orientation, camera position in a NED frame and which camera the frame was captured
from. Publishing the image itself is not necessary and would apply an unnecessary load to
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the system. The data is published in a Detection2Darray message. Once again, it publishes
one topic per IR camera.

6.3 Node 3 - Calculation of object position

Node 3 subscribes to the topics published in node 2. It uses the received data to calculate
a body-ray to the detected objects position with respect to the camera. This is done using

r = κ−1 [x y 1
]T (6.1)

where κ is the camera matrix containing the intrinsic parameters and x and y are the pixel
coordinates of the center pixel of the bottom of the bounding boxes published in node 2.
The bottom is chosen as this will be the the world point closest to the camera, and may
be used to estimate distance with the mono camera setup. r is a body ray from the optical
center of the camera to the normalized image plane. From this, the angle between the
cameras optical axis and the detected object can be calculated. If distance to the detected
object is known, a scalar s may be multiplied with r to enable calculation of object position
in the camera frame, and therefore the NED frame. The node publishes one topic for each
camera in a Detection2Darray.
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Chapter 7
Conducted experiments

Several experiments were conducted to test the both individual components together with
the whole system. Descriptions of the experiments and the motivation behind them will be
presented in the following chapter.

Figure 7.1: Target vessel Telemetron to the left and MilliAmpere to the right
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7.1 Camera calibration

Firstly, the calibration accuracy of each calibration method have to be determined. To
quantify the precision of the camera calibration, "slangelabben" at NTNU were used. This
is a controlled environment equipped with a motion capture system using 16 cameras,
reporting the position and orientation of objects equipped with special markers. With
known camera pose in the same coordinate system, this enables accurate world point to
pixel projection which enables calculation of pixel error between projected pixel and the
pixel where the target is positioned in the image frame. Both the camera and target needs
to be marked with at least 3 markers to accurately extract pose. The target will be imaged
with several different poses in respect to the camera so that it appears in multiple positions
in the image.

Figure 7.2: "Slangelabben"

Markers were placed on the sensor rig with one marker above the tested camera’s mi-
crobolometer sensor as shown in Figure 7.3a. The target used for imaging was practically
invisible in the infrared spectrum, thus, the target was heated with a hairdryer. An example
can be seen in Figure 7.3, where the markers are clearly visible with an EO-camera and
only the heated marker can be seen in the image from the LWIR sensitive camera.
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(a) Camera markers (b) Target markers (c) Uncalibrated image in LWIR
spectrum with one of the markers
heated.

Figure 7.3: Comparison of the same target in visible and LWIR spectrum

Using a program called Motive:Tracker, the position of every marker can be extracted, and
multiple points can create a rigid body, which enables orientation extraction. A screenshot
from the program is presented in Figure 7.4. The green rigid body consisting of 3 markers
represents the camera. The position of the camera is extracted as the marker above the
microbolometer, with the estimated height difference of 0.06 m subtracted. The blue rigid
body represents the target. Technically, only one point was needed. Due to some objects
appearing as points however, it was easier to identify in the program after merging the
three markers to a rigid body.

Figure 7.4: A screenshot from Motive:Tracker
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7.2 Brattøra experiments

To test the system in practice, several experiments were conducted. Experiments were
conducted in Brattørabassenget in Trondheim. The sensor rig was mounted on top of
MilliAmpere. The target vessel was Telemetron, the red boat in the picture in Figure 7.1.
Both vessels has known longitude and latitude coordinates together with GPS time. This
combined with MilliAmpere having known attitude and camera position enables several
important experiments.

For the sake of the experiments, the target vessel will be manually pointed out rather
than having a detector make bounding boxes to increase accuracy. This is because it is
important to know where the GPS antenna is on the target vessel, such that it can be pointed
out in the images so it corresponds with the logged longitude and latitude coordinates on
the vessel.

By utilizing equations (3.10)-(3.11), an object in the 3D NED frame can be projected onto
the 2D virtual image plane. In the following experiments, the goal is to identify what
causes potential deviations between the projected 2D virtual image coordinates and the
actual image coordinates where the target is. All topics published by the ROS network
of MilliAmpere was recorded using rosbags. Each following experiment were conducted
twice. The experiments differ by the intrinsic matrix and distortion coefficients used for
image undistortion and perspective projection. The results from the experiment in 7.1, i.e.
which calibration method yields the better result, decides which datasets is to be analyzed
in the following experiments.

7.2.1 Experiment 1: Stationary imaging

To test the two calibration methods in practice, both vessels were stationary to negate
potential desynchronization in time stamps. Frames of Telemetron were captured both in
the center of the image to get a reference and in the very edges where the images originally
suffers the most from radial distortion. This experiment was conducted with intrinsic
matrices and distortion coefficients from both cameras. The goal of this experiment is to
quantify errors due to distortion and transformation from NED frame to the camera.

7.2.2 Experiment 2: Data synchronization

To test data synchronization, Telemetron was again stationary. MilliAmpere, while main-
taining near constant NED position, was spinning around its own axis with approximately
constant angular velocity. This enables comparison of ground truth data, i.e. ground truth
longitude and latitude, and GPS time for both vessels with where the target vessel appears
to be in the image frame. The purpose of this experiment is to quantify the potential la-
tency between the moment the image was captured and when it was sampled by the ROS
network.
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7.2.3 Experiment 3: Fast changing camera pose

To stress test the system, both in terms of data synchronization, coordinate transforma-
tion and camera calibration, fast changes in roll, pitch and heading were generated by
maneuvering and rocking MilliAmpere. The quick changes in attitude should reveal any
desynchronization present in the data. The rocking of MilliAmpere makes all six degrees
of freedom come into play in the transformation from NED to each camera, which will
reveal potential inaccuracies. Due to the pose of the cameras when MilliAmpere is ex-
posed to high values in roll and pitch, images with Telemetron in closer to the corners of
the image frame were captured.
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Chapter 8
Results and discussion

In the following chapter, results from the two calibration methods along with results from
experiments conducted in Brattørabassenget and object detection will be presented and
discussed.

8.1 Camera calibration

The results from the calibration of the IR cameras using the passive and active calibration
fields are discussed. This includes distortion, intrinsic parameters, reprojection error and
pixel errors. All parameters can be seen in appendix A.

8.1.1 "Slangelabben"

The pixel accuracy of the rear right camera is validated on an image set with 10 different
target positions. Most of the targets were positioned near the edges of the image frame.
The images are undistorted using both calibration methods, resulting in two sets of images.
Thus, the results are based on the same original images for a fair comparison. The images
presented in the following section have a red and a green cross. The red cross represents
the pixel position of the seen target in the image, while the green cross represents the
projected three-dimensional target coordinates projected onto the image.

Passive calibration field

The method utilizing the passive calibration field yielded an average pixel error of ∆x =
∆y = 1 px in both x and y direction. The average error in pixel length was 1.91 px. The
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images with the largest errors in x and y are presented in Figure 8.1. The horizontal error
in 8.1a is ∆x = −3 while the vertical error in 8.1b is ∆y = −3. In both images, the target
was positioned near the corners of the image.

(a) Largest horizontal error in the
image set of ∆x = −3

(b) Largest vertical error in the
image set of ∆y = −3

Figure 8.1: The image frames with largest errors in both directions using intrinsic parameters and
distortion coefficients from passive calibration.

Active calibration field

The method utilizing the active calibration field yielded an average pixel error of ∆x =
2 px horizontally and ∆y = 9 px vertically. The average error in pixel length was 10.20 px.
The images with the largest errors in x and y are presented in Figure 8.2. The horizontal
error in 8.1a is ∆x = 6 while the vertical error in 8.1b is ∆y = −14. Notice that while
in 8.1b, the target is close to the upper edge of the image frame, while in 8.1a, the target
is closer to the middle, where the distortion originally is moderate. This may be due to in-
accurate principal point, which differs greatly from the estimated principal point from the
calibration method utilizing the passive calibration field. Using the active calibration field,
the principal point is calculated to be (u0, v0) = (317.7474, 260.9770) while it from the
passive calibration field is (u0, v0) = (319.8949, 251.5129). The deviance in the vertical
component of the principal point contributes to the vertical error in both images in Figure
8.2.

59



Part III Chapter 8 – Results and discussion

(a) Largest horizontal error in the
image set of ∆x = 6

(b) Largest vertical error in the
image set of ∆y = −14

Figure 8.2: The image frames with largest errors in both directions using intrinsic parameters and
distortion coefficients from active calibration.

8.1.2 Distortion

A comparison between the two calibration routines may be seen in Figure 8.3, where
two images have been taken with the rear right camera. Image 8.3a are undistorted with
the intrinsic parameters and distortion coefficients from the calibration method using the
active calibration field while image 8.3b used results from the method utilizing the passive
calibration field. Consider the antenna to the very left in the images. This antenna is
straight, and should appear straight in the image if the camera is perfectly calibrated. In
image 8.3a however, it can be seen that the camera still inhibits some distortion after
calibration. Comparing it to image 8.3b, the antenna appears almost perfectly straight as
the left edge is almost parallel to the straight red line.

(a) Image from rear right camera
calibrated using active calibration field

(b) Image from rear right camera
calibrated using passive calibration field

Figure 8.3: A comparison between images captured with the same camera, but calibrated using
different methods
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8.1.3 Reprojection Error

Due to the distortion itself, the calibration method using the active calibration field strug-
gled with circle detection, resulting in an image set lacking accepted images with the
calibration field positioned near edges and corners of the image frame. While this have
affected the distortion coefficients and intrinsic parameters, it has directly affected the re-
projection error in a certain way. This can be seen when comparing the two calibration
methods. The average reprojection error using the passive calibration field is 0.2403 while
the average reprojection error using the active calibration field is 0.03288. The method
using the active calibration inhibits 13.68% overall reprojection error of the reprojection
error using the passive calibration field. While a lower reprojection error may seem like
a property belonging to the superior method, this is not always the case. The reprojec-
tion error is calculated from the same set of images used for calibration, thus, if the there
are few images with the calibration field positioned in the image frame where the radial
distortion is highest, the radial distortion coefficients may be inaccurate, and still provide
low reprojection error. This is exemplified by the distortion map in 8.4, where the pixel
shift is visualized. If every detected point is in the middle of the image frame, almost no
pixel shifting is necessary, and the reprojection error will consequently be low. Despite
the reprojection error during calibration being significantly lower for the active calibration
field than for the passive calibration field, the method using the passive calibration field
together with Matlab calibration tool yielded the better result.

Figure 8.4: Distortion map for front facing IR camera using the passive calibration field. The red
circle marks the center of the image, while the yellow cross marks the calculated principal point. The
further away from the principal point, the higher the effect of radial distortion. The corners suffers
the most.
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8.1.4 Discussion

Accurate calibration is important in this use case. Objects close to MilliAmpere will ap-
pear in the lower edge of the image frame where the pre-undistorted image suffers from
radial distortion. Objects close to MilliAmpere may be the most critical objects to classify
and locate correctly. The same objects may also be the hardest for the detector to de-
tect as the trained models learned features may not coincide with the potentially distorted
features present in the image. If the IR cameras inhibits sufficient distortion, it may also
result in incorrect body rays from MilliAmpere to an object, potentially causing dangerous
situations.

With an average error of 2.32 px, the calibration method utilizing the passive calibration
field yielded more precise calibration than the method using the active calibration field,
which had an average error of 9.91 px. The uncalibrated camera had an average error of
∆x = 14 px and ∆y = 11 px in x and y direction respectively and a total average error
of 21.23 px in pixel length. The points were projected onto the distorted image using
intrinsic parameters from the method using the passive calibration field as this yielded
results closer to ground truth. While active calibration had low errors in x, the error in y
was substantial, and close to the vertical pixel error of the uncalibrated camera. Using the
camera calibrated using the passive calibration field should in a worst case scenario inhibit
a margin of error of 0.26◦ horizontally and 0.33◦ vertically based on the results from 8.1.1.
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8.2 Brattøra experiments

From the results in 8.1, the dataset using parameters from the passive calibration field is
analyzed. When calculating the error between the actual pixel coordinates of Telemetron
and the pixel coordinates obtained from perspective projection, a pixel needs to be selected
as the position of Telemetron as it will occupy multiple pixels. Telemetrons longitude and
latitude is centered at the GPS-antenna at the rear end illustrated in figure 8.5.

Figure 8.5: Telemetrons GPS-antenna marked by the red circle

This coordinate is transformed into the same NED frame as MilliAmpere, illustrated in fig-
ure 8.6. The height of the antenna is estimated to be 0.5m above the deck of MilliAmpere,
which is z = 0 in the NED frame. The pixel selected is an attempt at aiming at the GPS-
antenna. This will be an uncertainty in this experiment as it is hard to point out the right
pixel, especially at distance. Another uncertainty may be the accuracy of the zeroing of
MilliAmpere’s orientation. The biggest uncertainty however would be desynchronization
between measurements. As the GPS connection to the sensor rig was not ready, image
timestamps with GPS time were not available.
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Figure 8.6: The NED frame in which MilliAmpere, its cameras and Telemetron coordinates are
represented. Origo is located at the pier as marked.

The following images presenting results from the experiments will contain a set of crosses,
one red and one green. The red cross represents the estimated location of Telemetrons
GPS antenna in the image, while the green cross represents the three dimensional NED
coordinate of Telemetron projected onto the image. The image coordinate system has its
origin located in the top left corner as illustrated in Figure 8.4

8.2.1 Experiment 1: Stationary imaging

Keeping both vessels stationary for this experiment was challenging due to high wind
speed. Thus, some unwanted changes in orientation were introduced along with positional
changes. Due to none constant camera orientation and position, potential desynchroniza-
tion of sensor data, especially the delay present from image grabbing may affect the results.
From inspection of the data gathered, the yaw and position of the cameras were fairly con-
stant. Based on this observation, the horizontal pixel error between projection and image
should be weighted heaviest, as roll and pitch which may contribute to vertical error were
harder to counteract.

A selection from the results using the distortion coefficients and the intrinsic matrix found
by using the passive calibration field is presented below. From the example in figure 8.7,
the observed pixel value was (x, y) = (312, 281) whereas the projected pixel was (x, y) =
(308, 244). A vertical pixel error of 37 px was one of the highest in this experiment and
corresponds to an error in angles of 5.21◦, or 4.69 m at the current distance. This is because
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of the fairly high camera pitch rate due to wind and waves. This may imply that there is a
latency in some of the data.

Figure 8.7: Telemetron captured in the center of the image frame. This minimizes the effects of
distortion and camera roll and establishes a baseline for the experiment.

The examples in 8.8 are captured at the same point in time, with two different cameras.
The horizontal and vertical pixel error in 8.8a is 1 px and 2 px respectively, while the error
in 8.8b is 18 px and 20 px.

(a) Image captured by the front camera (b) Image captured by the front right camera

Figure 8.8: Front and front right facing cameras capturing an image of Telemetron at the same time.

The difference between the errors in 8.8 may be due to sequential image sampling from the
cameras, the limited frame rate of the cameras or a combination. Any of the scenarios may
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lead to one of the frames being up to date, while the other frame is outdated with respect
to camera pose and target position. As the frames are captured with different cameras,
inaccurate calibration also may affect the error. Based on the results from 7.1 however,
this alone should not affect the pixel error this much.

8.2.2 Experiment 2: Data synchronization

Due to conservation of angular momentum, the same principle used in gyroscopes, the
roll and pitch of each IR camera remained low. This can be seen in Figure 8.9 where the
vertical pixel error is low. The horizontal pixel errors between the projected and selected
pixels is close to constant, as the yaw rate is close to constant. This error is however not
unsignificant. This speaks to a desynchronization between the images and the rest of the
data. By backtracking through the measurements of camera pose and target position, this
delay may be estimated.

(a) Frame from rear left facing camera
during rotation

(b) Frame from front facing camera
during rotation

Figure 8.9: The red crosses is where the antenna of Telemetron is positioned in the image frame and
the green crosses marks the pixel from the projection

Consider the image frame from the rear left camera in 8.9a. The vertical pixel error be-
tween the projected and seen pixel is 6. By calculating the body ray from the camera to
both pixels using (6.1), the angle between them can be calculated. The vertical error be-
tween the two body rays in degrees is 0.85◦. Considering the actual distance between the
target and camera, this translates to a vertical error of 0.57 m. The horizontal error of 58
pixels, or 8.18◦ results in a difference of 5.55 m in the camera coordinate system. Rotating
with an angular velocity of 0.176 rad/s = 10.084 deg/s, the delay between when the im-
age was taken and when it arrived as data may be estimated. Assuming constant angular
velocity, the camera will use 0.81 s rotating 8.18◦. Backtracking the gathered data and
extracting the image from 0.81 s earlier, the error is reduced to 1 pixel horizontally and 4
pixels vertically, corresponding to an error of 0.14◦ and 0.42◦ respectively. An illustration
can be seen in Figure 8.10a. In the camera coordinate frame, this gives an horizontal error
of 0.1 m and a vertical error of 0.29 m.
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In the case of 8.9b, the results are similar. Both errors are the same in pixels, and therefore
angles. The distance between camera and target is 3.68 m shorter. Therefore, the errors
in vertical and horizontal in meters are now 0.85 m and 5.03 m respectively. The angular
yaw velocity was in this case 0.128 rad/s = 7.334 deg/s. With this angular velocity,
again assumed constant, the camera uses 1.12 s rotating 8.18◦. Backtracking the data
and extracting the image 1.12 s younger, the horizontal and vertical pixel error is 2 and 3
pixels respectively, translating to 0.28◦ horizontal and 0.42◦ vertical body ray error. In the
camera coordinate frame, this gives an offset of 0.17 m horizontally and 0.26 m vertically.
An illustration may be seen in Figure 8.10b.

(a) Frame from rear left facing camera
during rotation corrected for time delay

(b) Frame from front facing camera
during rotation corrected for time delay

Figure 8.10: The red crosses is where the antenna of Telemetron is positioned in the image frame
and the green crosses marks the pixel from the projection.

Some error is still present, this may be due to small inaccuracies in transformations from
MilliAmpere to each IR camera or the sample rate of the data, especially the images. The
camera runs at 9 FPS, allowing for up to 0.11 s old images. During the experiments, the
RTK-GPS was in floating mode, allowing for lower accuracy than stated in section 4.2.

Buffering data and waiting a set amount of time before using it for calculations with an
image may reduce the error. It will however not work perfectly due to a variable time-
delay between image capturing and the image data being registered. To solve the problem,
relevant data should be actively synchronized with the camera. This requires the external
triggering feature not yet released by FLIR for the Boson 640 camera. When released and
implemented, the only latency between the cameras and NVIDIA TX2 should be close to
the specified delay mentioned in section 6.1. As the latency varied with 0.31 s between
only two measurements and was up to 1.12 s, there is another source of latency between
the cameras and the OBC. This may be gstreamer, the SSH connection between the OBC
and sensor rig, or a combination. When the GPS connection to the sensor rig is connected,
the image should be synchronized with GPS data and sent as a combined message. When
registered at the OBC, node 1 should grab data from a buffer time stamped with gps-time
to ensure proper synchronization. Then, all data will be synchronized, and the age of the
image can be accurately quantified for use in collision avoidance.
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8.2.3 Experiment 3: Fast changing camera pose

In this experiment it is expected to have large and variable errors between seen and pro-
jected point due to the non constant rate of roll, pitch and yaw. The results from the
reprojection before correcting for latency can be seen in Figure 8.11. From 8.11a, the
horizontal and vertical pixel error of 33 and 60 pixels corresponding to 3.18◦ and 7.07◦

respectively is fairly high. At the distance between target and camera, this leads to an error
of 3.19 m horizontally and 5.81 m vertically in the camera coordinate system. Depending
on the method used for distance estimation, this high of a vertical error may render the
calculations infeasible. Comparing the image with 8.11b, it can be seen that the vertical
error of 12 pixels corresponding to 1.53◦ is significantly lower. This is likely due to a
coincidence where the image latency closely matches the time it takes for the camera to
reach a similar pitch value as an earlier value again.

(a) Frame from front right facing camera
during fast changes in attitude

(b) Frame from front right facing camera
during fast changes in attitude

Figure 8.11: The red crosses is where the antenna of Telemetron is positioned in the image frame
and the green crosses marks the pixel from the projection

Assuming constant rate in the 3 rotational degrees of freedom will not be a feasible method
for estimating latency due to the variable rate of roll, pitch and yaw. Backtracking the
images until the best fit between projected points in Figure 8.11 and the new seen point
may give an indication of the image latency as the system seems accurate when corrected
for latency based on the results from the previous experiment. The result can be seen
in Figure 8.12. The image in 8.12a is 0.9 s younger than 8.11a. Pixel error is 7 and 2
pixels horizontally and vertically, making the errors in angles 0.97◦ and 0.19◦. In camera
coordinates, this is an error of 0.95 m and 0.23 m respectively. The image in 8.12b is 1.75 s
younger than 8.11b. The horizontal pixel error is 12 pixels, corresponding to a body ray
error of 1.28◦ and 1.08 m error in the camera coordinate frame. In this case, there were no
error in the vertical direction. Due to the pose of the target vessel in respect to the camera,
there marked pixel inhibits uncertainty as it is not directly seen in the images.
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(a) Frame from front right facing camera
during fast changes in attitude corrected
for latency

(b) Frame from front right facing camera
during fast changes in attitude corrected
for latency

Figure 8.12: The red crosses is where the antenna of Telemetron is positioned in the image frame
and the green crosses marks the pixel from the projection

Finding the best fit manually by backtracking in the image data is only a valid method
under the assumption that the image latency is the only desynchronized data and all other
parameters affecting the projection are correct. From the results when the system was
corrected for image latency in 8.2.2, roll and pitch were close to zero at all times, and
have not been thoroughly tested prior to this experiment. Therefore, this method may be
invalid. An image latency of up to 1.75 s is substantial. With estimated image latency of
0.81 s and 1.12 s in the previous experiment, this may indicate that manually backtracking
until the best fit is found is an invalid method. However, the variable image latency may
be due to a non optimal implementation of sequential image publishing, which has since
been resolved. Occasionally, a set of frames would not be published when sampled before
another frame was registered. As 1.75 s is about double the latency estimated from the
other examples, this seems to be what happened. If the images are synchronized with the
rest of the data, the errors are acceptable. However, with the setup described in 8.2.2, the
system output may still be outdated. A solution may be implementing a separate ROS
node locally on the NVIDIA TX2 rather than using gstreamer possibly resulting in less
latency.

Due to the fast changing attitude, not only image latency, but restricted frame rate may
affect the results. For example, before a new frame is sampled in 8.11a, MilliAmperes
roll changes by ∆φMA = 1.48◦. Using equation 4.1, this alone translates to a change in
front right camera attitude of ∆φFR = 0.46◦ and ∆θFR = 1.41◦. This is another example
speaking to the importance of accurate data synchronization when rapid changes in camera
pose are present.
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8.3 Detection

The dataset used for training may not result in optimal performance due to sparse diversity
between classes and similar images within some classes. For the purpose used in [1],
where every trained model were trained and tested on the same data with the exception
being data augmentation, the data set served its purpose. With a new data set containing
IR data set in maritime environments is to be created shortly after this thesis is due, the
existing data set was not expanded or modified. Therefore, metrics as mAP and precision
recall analysis will not be performed as it may not accurately reflect expected performance
in a live system. Based on the analysis done in [1], which used the same detector, but
a model typically slightly more accurate, a mAP of close to 86.04% could be expected.
Instead, with the system developed, it has been made easy to implement a new model
trained with new data set for better performance. Other models as VGG-16 or another
detector may also be implemented with minimal changes if desired.

On the data from the experiments, the detector usually detected Telemetron which has
characteristics of a typical boat, on distances within about 20 m from the cameras. For
reference, Telemetron is 17.8 m away from the camera in 8.13a. On longer distances, the
detector usually either misclassified it as "Sailboat w/sails down", or the confidence rate
was too low, < 50%, to count as a detection. Examples can be seen in Figure 8.13.

(a) Correct classification of boat. (b) Boat classified as "Sailboat w/sails down"

Figure 8.13: Extracted frames of boats from real time object detection.

The detector occasionally detects sailboats with sails down. When seen from an angle, or
at longer distances, the detection rate is good. When seen directly from the front or back
at short distance however, the detector struggled to correctly classify them. These results
suggest lack of representation of the class in question at sharp angles and shorter distances.
Example detections can be seen in Figure 8.14.
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(a) Correct classification of two
sailboats with sails down.

(b) Correct classification sailboat
with sails down at distance.

(c) Correct classification of one sailboat
with sails down. The bounding box is
however not precise.

(d) Confidence rate too low to count as
a classification.

Figure 8.14: Extracted frames of sailboats with sails down from real time object detection.
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The trained model made some false detections where none of the classes was present. In
8.15b, the detector classifies part of a pier with a pole as a sailboat with sails down. With
some similar features, as the pole and a mast, this is again suggests sparse training data of
sailboats with sails down.

(a) False detection of boat when no boat
is present in the bounding box.

(b) False detection of sailboat with
sails down

Figure 8.15: False positives.

Where objects were misclassified, the background usually was cluttered. Background
clutter may be a weakness in object detection in infrared data as the target objects usually
have a similar temperature to the background, and therefore a similar infrared signature.
As there is only one channel, pixel intensity, instead of three channels used in object
detection with RGB images, the detector have to classify objects with less information.
This results in weak edge-gradients making it challenging to discern the target object from
the background. An example can be seen in Figure 8.16, where the edge map has been
extracted from two images of the same ferry with different backgrounds. In 8.16b, the
silhouette of the ferry is broken due to background clutter. Comparing it to 8.16d, the full
silhouette of ferry is intact. For the detector, this may result in false, or no detection.
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(a) Ferry with background clutter (b) Edge map

(c) Ferry with less background clutter (d) Edge map

Figure 8.16: Edge maps of ferry with and without background clutter. 8.16b is the edge map of
8.16a, and 8.16d is the edge map of 8.16c. The same parameters were used.
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8.4 Effective field of view

The specified FOV per camera is 95◦. Due to calibration however, some FOV is lost per
camera. This can be seen in Figure 8.17, where most of the calibration field is present in
the image pre-undistortion and the edges suddenly appear out of frame post-undistorion.

(a) Pre-undistortion (b) Post-undistorion

Figure 8.17: A distorted frame and an undistorted frame. The FOV has shrunk due to undistortion.

While this still should cover all 360◦, the effective FOV is less due to the detector operating
better when not just part of an object is seen. 8.18 shows an example of effective FOV of
the current model. Consider the frame from the front facing camera in 8.18a. In this case,
the tip of the detected sailboat has an x value of 63 px in the frame. In the frame from
the same camera in 8.18b, the tip of the sailboat has an x value of about 563 px. In this
case, there are 500 "useful" pixels with respect to width, rather than 640. This translates
to 63.56◦ effective FOV for the front facing camera rather than 76.83◦ edge-to-edge post
calibration FOV or 95◦ specified FOV. Fortunately, the same sailboat is detected in the
frame in 8.18c which is captured from the front right facing camera at the same time as
the frame in 8.18b. The whole sailboat still cannot be seen in two frames at the same time,
which may result in effective blind spots where the detector cannot detect objects.
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(a) First frame the detector
managed to classify the
sailboat while rotating.
Captured with front facing
camera.

(b) Last frame the detector
managed to classify the
sailboat while rotating.
Captured with front facing
camera.

(c) Frame from front right facing
camera at the same point in time
as 8.18b

Figure 8.18: Images illustrating the effective FOV of IR layer of the sensor rig.

Objects at shorter distances, which are arguably the most critical objects to detect, the
effective blind spots may be larger. Consider Figure 8.19, where at distance, there are no
blind spots, but moving the object close renders it invisible for the cameras.

Figure 8.19: The green object is fully seen by both cameras, the orange object is partly seen by both
cameras and the red object is not seen by any of the cameras.

Adding together the post calibration FOV of each camera, the full FOV of the IR layer
of the sensor rig is 382.22◦ with overlapping FOV for each neighbouring camera. Be-
cause the cameras are configured in a circular orientation, the FOV overlaps at a longer
distance away from the cameras compared to Figure 8.19, and the overlap increases more
gradually with distance. Therefore, frame stitching might be a viable option to increase
detection performance when objects, especially longer objects, are "in between" cameras.
Again considering 8.18b and 8.18c, the full sailboat cannot be seen in any of the frames.
As there are shared points between the frames however, image stitching could produce a
representation of the full sailboat at the current distance.
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Chapter 9
Conclusion

Two methods for geometric calibration of LWIR sensitive cameras have been proposed.
Radial distortion was still present after calibration when utilizing the active calibration
field due to poor circle detection performance. The method utilizing the passive calibra-
tion field compatible with Matlab’s camera calibration app provided accurate calibration,
both in terms of distortion coefficients for undistorting images and intrinsic parameters for
undistortion and projection. From the experiment testing calibration precision, the average
error in pixel length between ground truth and seen target is 1.91 px.

A fully functional real time multi class object detection pipeline is proposed. The pipeline
is created using ROS and is tailored to MilliAmpere. Normalized rays of camera-frame
coordinates pointing to detected objects are published on the network for use in collision
avoidance. While some data desynchronization is present due to image latency, a method
is proposed to resolve data desynchronization utilizing the GPS-connection to the sensor
rig.

Several datasets in the form of rosbags have been created. All topics published from
MilliAmpere together with LWIR data from the sensor rig and time stamped Telemetron
position are recorded for future research and development.
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9.1 Further work

A working system for real time object detection with a camera model translating pixels
to rays of camera-frame coordinates using a new calibration method for IR cameras have
been designed, but there is still room for further research and improvement.

9.1.1 Calibration of infrared cameras

As a cheaper and easier available alternative, aluminium should replace nickel-plated cop-
per to test if it will yield sufficient gradients despite slightly higher emissivity. Because
the checkered pattern consists of individual pieces, small gaps between the corners of the
laser cut acrylic plate allowed spray paint to slightly blur the corners. To overcome this,
single pieces of low and high emissivity materials should be milled and puzzled together in
a checkered pattern in an immersed milled square, e.g., highly polished and spray-painted
aluminum. This may yield a more accurate calibration field allowing more accurate cali-
bration of the camera. The camera calibration routine should also be tested with 3 radial
distortion coefficients.

9.1.2 Data synchronization

The current system suffers from some data desynchronization due to image latency. The
IR images from the sensor rig should be time stamped with GPS-time locally before being
sent to the OBC. The relevant data should be buffered and stamped with GPS time as well
to allow synchronized data for accurate rays to the detected objects. Additionally, time
stamping the data will also quantify the age of the data, which may be useful information
in collision avoidance.

9.1.3 Object detection

While a model has been trained, the performance is likely not optimal due the existing
dataset lacking representation of some classes, while other classes lack variety. A new
model should be trained and implemented on a substantially larger dataset. Plans exist in
the Autoferry project to gather such a data set over the summer 2019. As objects may not
be fully seen by any individual camera when they are "in between" cameras depending on
the distance and size of the object, image stitching may increase detection performance in
such scenarios.
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Appendix A
The distortion coefficients, intrinsic parameters and reprojection errors from both calibra-
tion methods are presented in appendix A.

Front IR camera

- - Passive calibration field Active calibration field

Rad
[
k1 k2

] [
−0.3527 0.1081

] [
−0.3680 0.1148

]

Tan
[
p1 p2

] [
7.5873e− 04 −9.9092e− 04

] [
1.3074e− 03 6.9619e− 04

]

K

αx γ u0
0 αy v0
0 0 1

 403.5068 0 320.6654
0 403.5167 248.2110
0 0 1

 404.7162 0 317.6144
0 404.6830 246.7288
0 0 1



err - 0.2620 0.0310
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Front Right IR camera

- - Passive calibration field Active calibration field

Rad
[
k1 k2

] [
−0.3633 0.1160

] [
−0.3651 0.1208

]

Tan
[
p1 p2

] [
−6.5629e− 04 −8.3030e− 04

] [
4.1724e− 04 −6.7855e− 04

]

K

αx γ u0
0 αy v0
0 0 1

 406.4848 0 315.7331
0 406.3131 249.5483
0 0 1

 401.2662 0 318.3653
0 400.2694 249.6304
0 0 1



err - 0.2081 0.0348
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Rear Right IR camera

- - Passive calibration field Active calibration field

Rad
[
k1 k2

] [
−0.3582 0.1159

] [
−0.3805 0.1509

]

Tan
[
p1 p2

] [
0.0013 2.2999e− 04

] [
−3.0338e− 03 7.7260e− 05

]

K

αx γ u0
0 αy v0
0 0 1

 403.9308 0 319.8940
0 404.0541 251.5129
0 0 1

 400.0112 0 317.7474
0 399.8288 260.9770
0 0 1



err - 0.2467 0.0330
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Rear Left IR camera

- - Passive calibration field Active calibration field

Rad
[
k1 k2

] [
−0.3773 0.1527

] [
−0.4052 0.2192

]

Tan
[
p1 p2

] [
4.4258e− 04 0.0026

] [
8.1041e− 04 2.0027e− 03

]

K

αx γ u0
0 αy v0
0 0 1

 404.5471 0 309.1175
0 404.9005 259.6884
0 0 1

 403.7564 0 312.4088
0 404.1155 255.5701
0 0 1



err - 0.2446 0.0272
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Front Left IR camera

- - Passive calibration field Active calibration field

Rad
[
k1 k2

] [
−0.3601 0.1206

] [
−0.3872 0.1553

]

Tan
[
p1 p2

] [
2.1968e− 04 0.0015

] [
5.8773e− 04 2.8712e− 04

]

K

αx γ u0
0 αy v0
0 0 1

 404.5495 0 320.3003
0 404.5017 255.8629
0 0 1

 402.2561 0 319.1244
0 402.3386 250.9100
0 0 1



err - 0.2401 0.0384
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Appendix B
MilliAmpere

To launch the ROS network onboard MilliAmpere with the proposed object detection
pipeline using LWIR sensitive cameras, follow the steps below:

1. Establish a 5 SSH connections to the sensor rig with $ssh ubuntu@192.168.0.150

2. Start camera stream for each camera using one of the following commands in each
terminal:

• $gst-launch-1.0 v4l2src device=/dev/video-FLIR-F ! videoconvert ! omxh264enc
insert-sps-pps=true ! rtph264pay ! udpsink host=192.168.0.255 port=20 sync=false

• $gst-launch-1.0 v4l2src device=/dev/video-FLIR-FR ! videoconvert ! omxh264enc
insert-sps-pps=true ! rtph264pay ! udpsink host=192.168.0.255 port=21 sync=false

• $gst-launch-1.0 v4l2src device=/dev/video-FLIR-RR ! videoconvert ! omxh264enc
insert-sps-pps=true ! rtph264pay ! udpsink host=192.168.0.255 port=22 sync=false

• $gst-launch-1.0 v4l2src device=/dev/video-FLIR-RL ! videoconvert ! omxh264enc
insert-sps-pps=true ! rtph264pay ! udpsink host=192.168.0.255 port=23 sync=false

• $gst-launch-1.0 v4l2src device=/dev/video-FLIR-FL ! videoconvert ! omxh264enc
insert-sps-pps=true ! rtph264pay ! udpsink host=192.168.0.255 port=24 sync=false

3. Open a terminal in the root environment with $sudo su

4. If displaying images with bounding boxes is desired, uncomment the lines with
.imshow(...) in detect_ros.py

5. In the ROS workspace, launch the ROS network using $roslaunch milli.launch
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