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Summary

Aquaculture is an ever-increasing important industry worldwide. As scale of operations

increases, so does the biomass, the risk, and the cost. The industry faces many challenges

today, including problems such as sea lice, algae, site overexposure, and production related

diseases. If the industry wants to grow and thrive, a greater understanding of the inner

workings of the fish is needed.

Internet of Fish (IoF) is an option to aid in this challenge. IoF is a concept that enables

transport of acoustic tag data from subsurface environments to a front-end application,

subsequently enabling real-time monitoring. The network architecture of this concept

can be defined in three layers: perception, network, and application. Earlier work has

developed the perception and network layer of the architecture. The main goal of the thesis

was therefore to design and implement application layer software, specifically back-end

and front-end code that enabled real-time monitoring of IoF data. Additionally, the study

aimed to implement positioning based on time of arrival difference (TDOA), and to design

and improve network transport protocol from the perception layer to the application layer.

These goals are considered achieved as the concept was proven and tested with a case

study. The project work has shown that the Internet of Fish concept is a viable concept for

real-time monitoring of live fish in commercial sea cage situations. A new IoF message

protocol was implemented, greatly saving on the amount of data being transmitted. The

data collected in the case study has been explored, but not in great depth, as it was only

meant to illustrate the power of IoF in the context of this thesis. The culmination of the

work done has resulted in a useful tool to have for both commercial implementations and

research.
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Sammendrag

Akvakultur er en verdensomspennende og voksende industri, og særlig viktig er indus-

trien i Norge. Ved økende omfang blir det samtidig økning i biomasse, risiko og kostnader.

Det ermange utfordringer knyttet til til akvakulturindustrien, inkludert sjølus, alger, overek-

sponering av lokasjoner og produksjonsrelaterte sykdommer. Dersom industrien videre

skal blomstre må fisken forstås på et enda grundigere nivå.

Internet of Fish (IoF) er et alternativ som bistå i denne utfordringen. IoF er et kon-

sept som muliggjør transport av akustisk tag data fra undervannsmiljø til en front-end

applikasjon, noe som muliggjør sanntidsovervåkning. Nettverksarkitekturen til dette kon-

septet kan defines i tre lag: persepsjon, nettverk, og applikasjon. Tidligere arbeid har

utviklet persepsjon- og nettverk-laget til arkitekturen. Hovedmålet med denne oppgaven

var derfor å designe og implementere applikasjonslag-programvare, mer spesifikt back-end

og front-end kode som muliggjøre sanntidsovervåkning av IoF data. I tillegg, så var det

et mål å implementere posisjonering basert på difference av ankomsttid (TDOA), og å

designe og forbedre nettverkstransport-protokoll fra persepsjonslaget til applikasjonslaget.

Disse målene regnes som oppnådd ettersom konseptet var bevist og testet med et

case study. Prosjektarbeidet har vist at IoF-konseptet er et passende verktøy for san-

ntidsovervåkning av levende fisk i kommersielle oppdrettsmerd-situasjoner. En ny IoF

meldingsprotokoll ble implementert, svært besvarende i mengde data som blir overført.

Dataen samlet i case studyet har blitt utforsket, men ikke i detalj, da det kun var ment til

å illustrere mulighetene til IoF i kontekst av denne oppgaven. Kulminasjonen av arbeidet

som har blitt gjort har ført til et nyttig verktøy både kommersielt og forskningsrelatert.
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Preface

This master’s thesis is the culmination of my last year as a master student on the 5-year

Cybernetics andRoboticsMaster of Technology programme at theNorwegianUniversity of

Science and Technology (NTNU), first laying the groundwork in my specialization project,

and then finishing the complete IoF system Spring semester 2019. Jo Arve Alfredsen was

my main supervisor, and Waseem Hassan was my co-supervisor.

NTNU provided me with the tools needed for the software development of this thesis,

and my supervisors provided me with equipment to develop and test the system. The

development was carried out with the following equipment:

• A Dell Optiplex 7040 computer with 32 GB of RAM, accompanied with a desk and

two large screens.

• All software development was written in python 3.7.

• Jo Arve provided me with a SLIM module, two tags, and a TBR I could use to

develop and test new SLIM software in office.

• Waseem provided me with code developed for the SLIM module, cables to aid in

debugging, as well as a gateway for testing locally in the office. He was also of great

help, providing me with insight into how the SLIM software was structured.

• The mechanical workshop of ITK provided us with waterproof casings and railings

to use for instrumentation of SLIMmodules for the case study done during the thesis

period.

• Åsmund Stavdahl helped me by setting up a virtual server with a MQTT server

running on it. He also made it easy to modify and install my own code, giving access

to the server through SSH.

• Paho Eclipse was used for the back-end MQTT client.

• Dash by Plotly was used for the front-end web application implemented during the

project.
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All components of the IoF system and their respective usage in the network architecture

are described in detail in chapters 3 and 4.

The goal of the final system was mostly up to me to decide. I was given a pre-existing

system, a SLIM module working with a Thelma BioTel TBRs and tags, and an overall

goal: “Make it possible to plot data interactively in a web browser”. The process allowed

me to learn how the full IoF system works from the lowest network layer (tags) to the

highest (application code). Researching how to best utilize the data from the tags in a high-

level application design, choosing which libraries to use, and how to solve the different

challenges was entirely up to me.

I would like to thank Jo Arve Alfredsen and Waseem Hassan for their supervision of

this project. It has been challenging to make this system, and I have been able to develop

individual software writing skills in a great way. I would also like to thank Midt-Norsk

Havbruk AS for allowing us to run an experiment in their very exciting Aquatraz cage.

I have always had a fascination for visual mediums and data science, and combining

these in order to understand more about the behavior of fish has been a truly interesting

task. I am grateful to have been able to take on this assignment. To explore data from real

fish in an application I have designed and implemented on my own has been a gratifying

experience.
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Chapter 1
Introduction

1.1 Problem description

Fish is an important protein source, and with rising health awareness, population increase,

overfishing, and advancements in technology and logistics, importance of farmed fish

as a protein source will only grow. However, unlike land-based farming, aquaculture is

a comparatively young endeavour, and there are several additional challenges related to

farming fish both on land and in open sea.

How to collect continuous individual data from fish with acoustic telemetry, and

how this can be enhanced with Internet of Things technology is a problem that will be

explored in this project thesis.

1.2 Problem context

The first conceptual framework of Precision Livestock Farming (PLF) was established in

2004 [5]. This framework is concerned with principles of using automated sensing and

detection of farm animal responses, and mathematical modelling of animal behavioural

and physiological dynamics. In 2017, a framework for commercial aquaculture inspired

by PLF, called Precision Fish Farming (PFF), was introduced [12]. In this framework,

operational processes are considered to consist of four phases: Observe, Interpret, Decide

1



Chapter 1. Introduction

and Act. Figure 1.1 shows a cyclic representation of these phases. Quickly summarized,

the observe phase wants to observe animal variables that describe bio-responses. From

these animal variables, the following phases want to extract feature variables that can

be used as target variables to be acted upon, manipulating system and eliciting desired

bio-response. From here the cycle repeats, and subsequently you have the potential for

closed-loop feedback applications.

Figure 1.1: A cyclical representation of PFF where operational processes are considered to consist
of four phases: Observe, Interpret, Decide and Act. The inner cycle represents the present state-
of-the-art in industry, with manual actions and monitoring, and experience-based interpretation and
decision-making. The outer cycle illustrates how the introduction of PFF may influence the different
phases of the cycle. Figure credits: Andreas Myskja Lien, SINTEF Ocean. Reproduced here with
permission.

In the context of PFF, acoustic telemetry is presented as the only viable method for

obtaining continuous data series from individual fish in commercial sea-cages, with the

added benefit of potentiallymonitoring physiology such as heart rate and blood composition

[12]. The first acoustic telemetry tag equipment for biomonitoring fish was developed

in 1956 by the U.S. Bureau of Commercial Fisheries and the Minneapolis-Honeywell

Regulator Corporation [39]. Since then several advancements have been made. Today,

2



1.3 Aims of the present study

acoustic telemetry is a technology that can be used in commercial salmon aquaculture for

biomonitoring, and it is favorable to Data Storage Tags (DSTs), as it is able to provide

data in real time which enables farmers to respond to the received information with farm

management measures [11]. Acoustic telemetry have for example been used to monitor

effects of crowding and delousing procedures on Atlantic Salmon (salmon salar) [13].

These papers were based on usage in commercial sea cages, but acoustic telemetry for fish

monitoring has traditionally been used extensively in wild fish research, where [18], [27],

[41] are a few recent examples. With this in mind, it is interesting to explore how this

method of observation can be elevated.

Traditionally, the data obtained through acoustic telemetry is logged to a stationary

hydrophone in water, and then at a later date, the data is retrieved. From here, researchers

can do offline analysis of the time period where acoustic tags were active. For acoustic

telemetry to be used as as an observation method in PFF, it is important to facilitate online

monitoring of fish. A potential solution to facilitate real-timemonitoring is what this article

hopes to present, in the form of the IoF concept. This is interesting both to researchers

for analysis and monitoring of fish in real-time, as well as commercial sea cage farmers

wanting to gain insight into how fish behave on a day-to-day basis.

1.3 Aims of the present study

The Internet of Fish (IoF) alludes to the Internet of Things (IoT) and constitutes a concept

where information generated by acoustic sensor transmitters carried by fish, or attached

to other underwater objects, is made available for humans and machines through the use

of digital hydrophones, LPWAN and Internet technologies. Here we intend to make a

first implementation of the IoF concept where novel SLIM units (Synchronization and

LoRa Interface Modules) augment the TBR700RT acoustic telemetry receiver with accu-

rate GNSS-based time synchronization and low-power LoRaWAN connectivity, thereby

providing a bridge between the wireless underwater sensors and the realm of the Internet.

The project includes the following tasks:

• Identify and describe requirements to the IoF system by revisiting the main results

3



Chapter 1. Introduction

and experiences made in the preceding Specialization Project (Fordypningsprosjekt)

[19]. Describe the network architecture and make a refined high-level design of the

system from the perception layer to the application layer

• Identify all relevant data types generated by the SLIM/TBR700RT and define corre-

sponding message formats, protocols and network transports from the end-device to

the IoF back-end. Select and implement a flexible solution for persistent back-end

storage of IoF data.

• Make a working implementation of the full protocol on the SLIM. Data compression

methods should be explored and implemented to optimize utilization of LoRaWAN

bandwidth.

• Demonstrate IoF functionality by implementing a IoF web-based application front-

end for the use-case targeting 2/3D visualization of fish space usage in aquaculture

sea-cages.

• Plan and conduct tests to validate the IoF concept with the described use-case.

1.4 Previous work

The IoF concept aims to realize real-time real-time monitoring of fish through a three-

layer network architecture: perception, network, and application. An end-device in the

perception layer is needed to facilitate communication to the network layer, where a link is

needed to forward the received data to the application layer. NTNUPhD candidateWaseem

Hassan has developed a perception layer module, the Synchronization and LoRa Interface

Module (SLIM), to facilitate the communication link between perception and network.

The perception layer and network layer of the concept has been well defined and tested.

Recently, two papers he has written on the IoF concept have been accepted for publication,

one in-press at time of writing [17], [16]. In the application layer, a software interface is

needed to make data easily accessible by end-users. Here, not much work as been done

previously. Previous implementations have only stored raw bytes data to txt-files, and

used MATLAB for offline analysis.

A specialization project on the IoF concept was done in the Fall semester 2018 [19].

For the project, back-end software was written to handle the then used SLIM IoF message
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format, and a case study was done to validate the system. The case study made it clear that

better message compression was needed, and so a design for more efficient compression

of IoF data was suggested. Lastly, a simple webpage containing fixed non-interactive plots

was created to showcase case study data.

The project was summarized in a report detailing the IoF concept, background theory,

network architecture, design and implementation of back-end software, a case study, results

from the case study and a short discussion about it. The report concluded with what should

be done in future work. Firstly, designing a new IoF protocol based on the suggestions

of the report, and implementing said protocol in both SLIM and back-end. Secondly,

to include GPS packet as part of the data SLIM sends. Thirdly, to implement TDOA-

positioning in back-end for incoming messages. Finally, to implement a fully working

front-end web application to access data in real-time. These challenges has been the focus

of the development work done during the Master thesis Spring 2019.

This thesis is in otherword the continuation of the groundwork done in the specialization

project. It was natural to heavily base the overall structure and some of the content of this

thesis on the previous report. Several aspects have therefore been kept or only modified,

such as the broader context of IoF, the background theory, and the parts of the project

that remained the same, namely the network architecture, equipment and tools, and the

case study. Most of the thesis time was spent on developing new software, and so the

software is the main focus of this thesis. Note that there is no need to read the previous

report, as the whole implemented system is fully explained and detailed in this report.

This section is only to clarify for the reader what has been done before, and to properly

self-reference previous work. The specialization project was never published, and it is not

publicly available.

1.5 Structure of the thesis

The article begins with background on principles the IoF concept is built upon in chapter 2.

Details about how acoustic transmission work is given in section 2.1. Further, principles of

positioning based on acoustic transmission is included in section 2.2, and some definitions

of network and communication protocols are given in section 2.3.
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In chapter 3 the network architecture requirements of the IoF concept is identified and

presented. Structured requirements to the application layer is also defined and presented

in ordered lists.

Design and implementation of the IoF concept is presented in chapter 4. The chapter

starts with identifying data types and describing the corresponding message formats and

protocols for the IoF system. Following that, in section 4.2 a discussion on persistent

storage options and solutions is given. Thereafter components of the system are presented

in section 4.3 and software tools and libraries utilized in back-end and front-end is listed

in section 4.4. Finally, details on how the back-end was implemented, as well as how

front-end code functions, is presented in more detail in section 4.5. The IoF source code

structure is given in Appendix A, while TDOA positioning and timestamp drift adjustment

implementation is given in Appendix B and C.

The project was realized with a case study done in cooperation with Midt Norsk

Havbruk AS. The setup and execution of this case study is presented in chapter 5. The case

study started during the specialization project period. No other implementation code has

been included, but the full source code can be found on a open GitHub repository [20].

The requirements of the IoF application layer defined in chapter 3 is validated in

chapter 6, addressingwhether each requirements was fulfilled or not. Section 6.3 showcases

all the different plot types the implemented front-end web application supported, and

section 6.4 presents more figures of the case study data.

Chapter 7 gives a discussion on how well the aims of the study were met, and some

discussion is given on the observed data in the case study.

Finally, chapter 8 concludes the findings of the paper, and presents some suggestions

to what should be done in future work.
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Chapter 2
Background

This chapter presents some background for the principles and research that the work of this

thesis is based on. The chapter is divided into three sections:

• Section 2.1 covers components of acoustic fish telemetry, compromises to keep in

mind when designing acoustic tags, possibilities of the tags, and differential pulse

modulation.

• Section 2.2 presents principles on positioningwith hydrophones and acoustic tags, an

analytical solution to determine transmission origin, resolving ambiguity of position

candidates, and dilution of precision.

• Section 2.3 covers definitions of communication protocols and concepts used in the

system, namely Internet of things (IoT), MQTT, and LoRa.

2.1 Acoustic fish telemetry

2.1.1 Components of fish telemetry

First of all, an acoustic tag is needed. As the name implies, this is a small sound-

emitting device, designed to send out sound signals in specific frequencies in subsurface

environments. The sound transmits omnidirectionally from the tag, and its components
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Chapter 2. Background

generally consists of a battery, sensor(s), a modulator, and a transmitter. Tags have a

couple of desired characteristics that must be kept in mind, as it is important to make some

compromises when designing them (section 2.1.2).

Second, to make use of the signals transmitted by a tag, a receiver, or rather a hy-

drophone, is needed to detect them. The hydrophone will listen for sound signals in a

specific frequency or a range of frequencies, converting and storing digitally any recog-

nized signals it perceives within those frequencies. Several types of hydrophones exist with

varying use cases. Some simply log the data internally until the hydrophone is retrieved

manually. Others can communicate digitally, for example with the RS-485 standard. While

historical analysis is useful, real-time data communication is of great value and potential

for day-to-day operations and remote monitoring (section 2.1.4).

Third, the data collected needs to be transferred to a device that can be used for

monitoring and/or analysis. For a logging hydrophone, the data can be transferred to a

desktop computer after retrieval through for example Bluetooth and then analyzed offline.

For hydrophones that can communicate, a second option would be to connect it directly to a

desktop computer for offline/online viewing, depending on internet access on-site. A third

option would be to connect the hydrophone to a device that can forward the data another

way, such as low-power radio.

The last two configurations are the only viable solutions for real-time monitoring.

Connecting a computer directly to a hydrophone alleviates the need of developing custom

hardware. However, in situations where it is desirable to monitor wild fish, neither power,

internet or good infrastructure is readily available. The environmental conditions are also

generally exposed and challenging at farming sites, making instrumentation difficult: To

stretch a cable 200 meters and have it securely connected to a hydrophone is not necessarily

desirable or viable. In addition, power outages happen, and internet access can be limited.

Therefore, a more viable option would be to have a wireless device close to the

hydrophone, running on battery, forwarding the data through for example low-power radio.

It would also need to be designed for low-power usage to optimize battery life time. While

the battery would have to be replaced regularly, it is not susceptible to power outages.

And it is not limited by internet infrastructure or lack thereof, assuming long distance
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2.1 Acoustic fish telemetry

low-powered radio is a viable option in the environment it is located. This option of a

low-powered wireless device is used for the IoF project.

2.1.2 Compromises to keep in mind when designing tags

Acoustic tags have a couple of desired characteristics, such as low weight, small size, long

transmission range, long operating life, low cost, and reliable performance. To meet all

of them simultaneously is difficult, so some compromises are to be expected. This in turn

often means that individual projects will require customized tags suitable for that project.

Batteries are important in terms of weight and size of the tag, and naturally they

determine the length of operation life. The size and weight of the tag determines what

species of fish the tags can be used with, and in what stage of life. A small fry should

not be instrumented with a large tag, as it will impede the normal functioning of the fish,

nullifying the integrity of the data. Smaller batteries will therefore be better suited for

smaller fish, but the operation time is consequently shortened.

One way to increase the battery longevity is to use pulsed transmitters rather than

continuous transmitters. This way, a fraction of the required powered is needed. Another

benefit of transmitting pulses is less disturbance between messages, as the front of each

message will be clear (assuming the previous message has had time to break down). How

often the tag transmits a message, as well as how much power it uses also impacts the

battery life of the tag. Here a trade-off must be made in different projects, whether high

update speed is valued for more continuous detection, or if longer-term tracking with less

frequent updates is desired.

The material of the tag casing is also important, as it will be inserted inside the fish

(tags placed outside the fish also exist). Choosing the wrong materials can potentially lead

to reduced welfare and affect fish behaviour. In addition, the insertion of tags requires

surgery, which in itself can affect the fish negatively. Welfare is closely linked to behaviour

of the fish, and is an important animal variable to keep in mind when designing any type

of technology for observation of fish.
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2.1.3 Differential pulse modulation

Acoustic tags usually use a differential pulse modulation scheme for improved battery

efficiency and transmission. This means that data is contained in the time between pulses,

rather than continuous transmission where the pulses are the data.

One way to implement a scheme like this can be seen in fig. 2.1. In this case, the length

between the first two pulses determine code type. Several code types can be used, like S256

and R64K, which are standardized protocols. Each code type will have a specific guard

time, used to tackle issues such as interference from other messages and propagation delay,

but most importantly allowing potential reflections of the pulse to break down. In this

modulation scheme, a byte is encoded as two pulses within two windows of 16 time slots

each. Each window represents 4 bits, one of them left-shifted by 4. Each slot in a window

is of predefined length, and each slot represents a lookup in a binary table, such as the one

given in table 2.1. Two windows together will be equal to a value between 0 and 255 (1

byte). To send more information, more pairs of windows like this can be appended to the

message, keeping the code specific guard time in-between. At the end of the message, a

checksum of some form should be provided, coded in the same manner.

Code type Code speci�c

guard time

16 time slots

gives 4 bits

Code speci�c

guard time

16 time slots

gives 4 bits

Figure 2.1: Differential pulse modulation scheme example. The time between the first two pulses
represents code type. The code type determines the length of the guard time. Following that are
windows of 16 time slots in pairs. Each window represents 4 bits, and combining two provides 1
byte of information.

Here a full example on how to use and decode the coding scheme is presented, based on

fig. 2.1 and table 2.1. There is 360 ms between the first two pulses, so it is code type S256.

In context of acoustic tags, S256 is used to send 1 byte tag id and 1 byte tag data. The code

specific guard time is 360 ms, and each time slot of a window is 20 ms. Had fig. 2.1 been
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2.1 Acoustic fish telemetry

a full S256 message, 8 pulses would be shown: 2 for codetype and guard time, 2 for tag id,

2 for tag data, and 2 for checksum. Here only 1 byte of information is included. Assuming

the first window is the most significant bits (MSB), it will be equal to 96, since it is in

the 7th time slot (140 ms) of the window. Notice that the guard time starts immediately

after the pulse. This is for shorter total transmission time, and is also why messages will

have varying message lengths. In the second window, the pulse is in the 13th time slot

(260 ms), i.e. the least significant bits (LSB) are equal to 12. Combining them, it can be

determined that the byte is equal to 06 + 12 = 108. Figure 2.2 shows actual recordings of

S256 messages using this scheme of pulse modulation. Noise is more dominant further

away from the tag, making decoding more difficult.

Table 2.1: Example of binary table for decoding two 4-bit numbers as one byte in a pulse modulated
scheme

Slot Time Binary LSB MSB

1 20 ms 0 0 0 0 0 0

2 40 ms 0 0 0 1 1 16

3 60 ms 0 0 1 0 2 32

4 80 ms 0 0 1 1 3 48

5 100 ms 0 1 0 0 4 64

6 120 ms 0 1 0 1 5 80

7 140 ms 0 1 1 0 6 96

8 160 ms 0 1 1 1 7 112

9 180 ms 1 0 0 0 8 128

10 200 ms 1 0 0 1 9 144

11 220 ms 1 0 1 0 10 160

12 240 ms 1 0 1 1 11 176

13 260 ms 1 1 0 0 12 192

14 280 ms 1 1 0 1 13 208

15 300 ms 1 1 1 0 14 224

16 320 ms 1 1 1 1 15 240
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Figure 2.2: Audio data from a digital hydrophone filtered with a 10th order Butterworth filter around
67 000 Hz with ± 500 Hz width. The 8 spikes represent the pulses, the time between them the data
of the message. The sound detected originates from an acoustic tag sending data with the S256
protocol. (a) Shows a minute of audio recording containing two messages transmitted 300 meters
away. (b) shows a zoomed-in view of the first message in (a). (c) Shows a minute of audio recording
containing two messages transmitted 700 meters away. (d) Shows a zoomed-in view of the first
message in (c)
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Figure 2.2: Audio data from a digital hydrophone filtered with a 10th order Butterworth filter around
67 000 Hz with ± 500 Hz width. The 8 spikes represent the pulses, the time between them the data
of the message. The sound detected originates from an acoustic tag sending data with the S256
protocol. (a) Shows a minute of audio recording containing two messages transmitted 300 meters
away. (b) shows a zoomed-in view of the first message in (a). (c) Shows a minute of audio recording
containing two messages transmitted 700 meters away. (d) Shows a zoomed-in view of the first
message in (c). (cont.)
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2.1.4 Advantages and limitations of fish telemetry

A multitude of sensors can be used in the tags for fish observation: Temperature, depth,

pressure, conductivity, movement, heartbeats, and more. To have this breadth of data types

available for monitoring individual fish is clearly valuable. Other observation methods are

mostly limited to extrapolation of individual behavioural data from populations or groups

of fish, and cannot provide physiological data directly. In addition, acoustic telemetry

works over long distances, providing continuous data. In contrast, other technologies such

as underwater camera systems, are limited to specific locations, only observing groups of

fish that happen to swim by. Also, positioning of the fish can be done by having at least 3

hydrophones around the sea cage (section 2.2), a viable option for commercial sea cages.

Fish telemetry, however, has some limitations in addition to the ones already mentioned

in this chapter. Data collected from acoustic tags can never be representative of a complete

sea cage population. Sea cages often has populations consisting of 150 000 - 200 000

individuals, requiring manual surgery of large number of fish to be representative. Thus it

requires high costs in manpower, equipment and time, while also increasing risk of reduced

fish welfare.

The amount of tags possible to use simultaneously is limited, as the sound environment

must be clear for minimal message collision. A single message can be 3-4 seconds in

length, requiring minimal noise within that time-frame. As the number of tags increase,

so does the risk of interference from other tags when detecting transmissions. Tags are

typically coded to transmit data at pseudo-random intervals, such as once every 20-40

seconds, or once every 60-90 seconds, in a specific frequency. This minimizes collision

danger, but data loss to some degree is inevitable. By using hydrophones that is able to

listen to multiple frequencies simultaneously, the number of tags can be increased.

Tags are expensive considering they are designed for a limited lifetime. Recovering

tags after use is challenging as the fish can die naturally during its lifetime, escape from the

sea cage, be taken out manually without farmers noticing marks of a tag, or it can simply

never be discovered during slaughtering.
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2.2 Positioning of fish

2.2 Positioning of fish

A use case for the system developed in this paper is positioning of fish. Specifically,

implementing 3D plotting of fish positions in the end-user web app tool. This section

outlines the background theory of how positioning can be done with acoustic tags in sea

cages, before more details on the underlying mathematics is presented in. In chapter 4,

positioning algorithm pseudocode and considerations are presented, and in chapter 6 results

from project use-case is presented. For more details on the theory behind these principles,

or experiments done with them, see [10] and [24].

2.2.1 Principle of positioning of fish

There exists several positioning techniques that can be used to locate where a message

is transmitted from. One technique is trilateration, where a transmitter and receiver are

synchronized in time, and so the distance between them can be measured by comparing

the time of arrival of the signal. Using this technique, it is possible to locate the source as

a point on a circle (in 3D it will be a sphere). Using only one receiver will not be accurate

enough, as the source can be on any point of that circle. Having two receivers, the possible

locations are limited to only two locations. Adding a third receiver, one of the solutions can

be eliminated, and the point where all three circles (spheres for 3D) intersect is determined

as the original transmission location.

However, this cannot be used in situations where it is not viable to have synchronized

time between receiver and transmitter, or where two-way communication is simply not

possible, or desirable. Hyperbolic positioning, also known as time difference of arrival

(TDOA) positioning, does not require synchronization of the transmitter and receivers.

TDOA requires the location of each receiver to be known, and that the receivers clocks

are accurately synchronized with each other. Rather than knowing when the source was

transmitted, and looking at time of arrival, TDOA is looking at the difference between

arrival times. In two dimensions, the difference of arrival between two receivers will

provide a hyperbolic curve. Adding another receiver will give another hyperbolic curve.

Ideally, solving the hyperbolic curves will provide a single intersection between them, less

ideally two positions, and worst case no solution. This can be extended to three dimensions,
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but the hyperbola will then be hyperboloids, meaning a minimum of 4 receivers are needed

to give a single 3D position as a solution. In the general case, at least one more receiver is

needed than the number of coordinates desired.

C B

A

P

(a)

tSource
Transmitting

P

A

B

C

Time Difference
of Arrival

Node A
Receiving

Node B
Receiving

Node C
Receiving

(b)

Figure 2.3: Principle behind TDOA. P is the location of a tag that is transmitting a message, while
A, B, and C are the locations of hydrophones listening. TDOA requires known location of A, B, and
C, as well as synchronized times between them. (a) The pink arrows represents the length of time
before reaching the hydrophone. Blue circle going through the hydrophones represents a commercial
sea cage setting. The gray triangle represents an area of high accuracy when localizing transmitter
source. (b) Showing how the time difference of arrival is determined. It is these two differences that
are used, between A, B and A, C, regardless of which hydrophone received it first. The locations are
used to create a local coordinate system, so one should order the hydrophones the same each time, at
least for the cage TDOA setting, to have compatible coordinates.

In the context of a sea cage and acoustic telemetry, it is possible to use hyperbolic po-

sitioning to locate the location of a tag. Assuming a situation where at least 3 hydrophones

are on the same level vertically, a two dimensional solution can be found. This will give

the horizontal coordinates of the tag. The acoustic tag can transmit the third dimension, for

example using a pressure sensor to transmit depth, which is linearly correlated to pressure,

thus eliminating the need for a 4th receiver. A device is required to synchronize the clock

of each hydrophone, for example GPS. Also, how they are positioned in relation to each

other matters. Figure 2.3 shows a setup of a sea cage, three hydrophones, and a tag trans-

mitting a message. Any message originating within the triangle in fig. 2.3 will have the

highest accuracy. One exception is the area in close proximity to the receivers, but there

exists a potential solution for this case (section 2.2.2). Outside the triangle, more dilution

of precision will happen, reducing the accuracy of potential solutions. In principle, this
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problem stems from a large area of potential solutions (section 2.2.4). If receivers are

placed relatively close to each other, and the time difference of arrival is relatively small,

this will give a large area of potential solutions. An optimal setup would therefore be

a setup where the sea cage is contained within a equilateral triangle spanned out by the

hydrophones. Together with IoT-technology, this allows fast real-time 3D tracking of fish

given fast enough message transmissions from the tag and processing power in the end

receiver.

2.2.2 Details on TDOA positioning for fish

Given three hydrophones A, B, and C with known positions and synchronized clocks,

and an acoustic tag transmitting its own depth, we can set-up the necessary equations to

determine tag position fix. Assuming they share the same depth zc , the hydrophones will

span out a xy-plane. In this plane, we can set A as the reference receiver, located in (0, 0).

Defining the distance between A and B as b, we can place B on the x-axis (b, 0). Finally,

the distance between A and C can be defined as c =
√

c2
x + c2

y , so that C has coordinates

(cx, cy). This will give us a local coordinate system for positioning, making the following

equations easier to work with. Next, we need to define time of arrival of tag signal at

location A, B, and C. Defining these as Ta, Tb , and Tc , we can further define difference

of time of arrival in B and C, compared to A, as Tab = Ta − Tb and Tac = Ta − Tc .

Underwater, our signal transmission medium, is commonly assumed to have a constant

speed of sound V of 1500 m/s. Multiplying time difference of arrival with sound speed,

we have converted measured difference in time of arrival to range difference Rab and Rac

from the transmission position to the stations.

Two stationary points in a plane will be the foci points of a hyperbola (hyperboloid

in three dimensions). A hyperbola is a set of points such that for any points of the set,

the absolute difference of distance between the points and the two stationary points, is

constant. We have three stationary hydrophones where the difference in distance to all

possible tag locations will be constant. Furthermore, our range differences, time of arrival

[s] multiplied with signal velocity [m/s], is the distance between tag location and stationary
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hydrophones. With this in mind, we can define the following equations:√
x2 + y2 + z2 −

√
(x − b)2 + y2 + z2 = V · Tab = Rab (2.1)√

x2 + y2 + z2 −

√
(x − cx)2 + (y − cy)2 + z2 = V · Tac = Rac (2.2)

Transposing, squaring and simplifying eqs. (2.1) and (2.2), we can write them as:

R2
ab − b2 + 2bx = 2Rab

√
x2 + y2 + z2 (2.3)

R2
ac − c2 + 2cx x + 2cy y = 2Rac

√
x2 + y2 + z2 (2.4)

Bertrand T. Fang [10] demonstrated that a solution for eqs. (2.1) and (2.2) can be obtained

with eqs. (2.5) to (2.13):

y = gx + h (2.5)

Substituting eq. (2.5) into eq. (2.3), one obtains:

z = ±
√

dx2 + ex + f (2.6)

z2 = dx2 + ex + f (2.7)

where

g =

(
Rac

b
Rab
− cx

)
/cy (2.8)

h =

(
c2 − R2

ac + RacRab

(
1 −

b
Rab

2))
/2cy (2.9)

d = −
(
1 −

b
Rab

2
+ g2

)
(2.10)

e = b
(
1 −

b
Rab

2)
− 2gh (2.11)

f =
R2
ab

4

(
1 −

b
Rab

2)
− h2 (2.12)

Finally, we can define the tag position vector, depending on a single unknown parameter
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x, as follows:
®R = x®i + (gx + h)®j ±

√
dx2 + ex + f ®k (2.13)

With these polynomial equations, we will achieve two candidate points representing

possible locations for the transmission source. There are some special cases to be aware

of. If Rab = 0, eqs. (2.8) to (2.12) will contain division by zero. However, geometrically,

Rab = 0 implies x = b/2, and so we can solve eq. (2.13) by expressing it in terms of

y instead of x. Similarly, when Rac = 0, the position will be on the line perpendicular

to the midpoint between A and C, i.e. y = −cx/cy · x + c2/(2cy). However, there is

no need to handle this case separately, as there is no division of Rac . In the case where

Rab = Rac = 0, the solution is trivial, as the position will be equally distant to all three

stations, i.e. y = (c2 − bcx)/2cy . The only other special case to handle when solving the

equations is therefore when Rab = 0 and Rac , 0. We already know that x = b/2 in this

case, so all that remains is to find the y-candidates. If we square and transpose eq. (2.4),

putting it on quadratic form, we get:

a2y
2 + a1y + a0 = 0 (2.14)

where

a2 = 4
(
c2
y − R2

ac

)
(2.15)

a1 = 4cy
(
R2
ac − c2 + 2cx x

)
(2.16)

a0 =
(
R2
ac − c2 + 2cx x

)2
− 4R2

ac

(
x2 + z2) (2.17)

The roots of the polynomial in eq. (2.14) will be the y-candidates of the position in this

case.

2.2.3 Resolving position fix

There are in principle two ways to determine position candidate ambiguity. First, to use

knowledge of which hydrophone received the message first. Second, to use a radius from

the sea cage center to which you limit valid position fixes to. In this section, it is assumed
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that the hydrophones are located in the same plane for an easier 2-dimensional argument.

The same argument will hold for three dimensions.

Given a sea cage with three hydrophones A, B, and C with synchronized clocks placed

on its circumference. We know time of arrival of each hydrophone, Ta, Tb , and Tc , and

we know their locations, PA = (Ax, Ay), PB = (Bx, By), and PC = (Cx, Cy). With two

position candidates, P0 = (x0, y0) and P1 = (x1, y1), we can calculate their distance from

the receivers. These distances can be defined as:

dNi =

√
(xi − Nx)

2 + (yi − Ny)
2 (2.18)

where N = A, B, C and i = 0, 1 (P0, P1).

Let us say that hydrophone A received the tag message first, C received it last: Ta <

Tb < Tc . This means that if position P0 is correct, then dA0 < dB0 should be true since

Ta < Tb , but at the same time, dB1 < dA1 must be true to determine it unambiguously.

This is a good starting point for determining position, but what if Ta = Tb? We still

know that Ta < Tc , and so we can follow the same argument for this pair of hydrophones.

Sorting the time of arrival of each hydrophone in ascending order, we get: TF , TS , TT , and

consequently: dF0 , dS0 , dT0 , dF1 , dS1 , dT1 (F = First, S = Second, T = T hird). Using

this, we get the procedure defined in algorithm 1.

Resolve-position-based-on-TOA(d, P0, P1)

1 // d contains distances between P0, P1, and F , S , and T

2 if d.F0 < d.S0 and d.S1 < d.F1
3 position = P0
4 elseif d.F1 < d.S1 and d.S0 < d.F0
5 position = P1
6 elseif d.S0 < d.T0 and d.T1 < d.S1
7 position = P0
8 elseif d.S1 < d.T1 and d.T0 < d.S0
9 position = P1
10 else
11 position = None // Further resolving of position needed

Algorithm 1: Time of Arrival based resolving of position ambiguity
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If we are still unable to determine the correct transmission origin, we can further

try to resolve the position fix with a sea cage radius argument. The cage has center

cg = (cgx, cgy) and radius r . The position candidates have distances dcg0 and dcg1

from the center. With this we can use the procedure outlined in algorithm 2 to hopefully

unambiguously determine a position candidate.

Verify-position-within-sea-cage(position, P0, P1)

1 Threshold = 1.1 // or any other value
2 rmax = r · Threshold
3 if position , None // Check if a position candidate has already been chosen
4 dcg = distance(position, cg)
5 if dcg ≥ rmax

6 position = None // Chosen position is invalid
7 else // Resolve ambiguity with distance to cage center
8 if dcg0 < rmax or dcg1 < rmax

9 if dcg0 < dcg1

10 position = P0
11 else
12 position = P1
13 else
14 position = None // No position fix could be found

Algorithm 2: Sea cage radius based resolving of position ambiguity

In section 2.2.1 it was mentioned that it is difficult to find position fixes in close

proximity to the receiver locations. However, the signal strength for that particular receiver

will be very strong due to the short distance, and it should be stronger than the signal

strength of the other two receivers by a good margin. So if no position fixes can be found,

but the signal strength at one receiver is great and much larger than the other two, one

could set the position to be at the location of the receiver, or a short distance away from the

receiver.

2.2.4 Positioning Dilution of Precision

The accuracy of TDOA if affected by several factors, such as relative geometry of receivers,

and timestamp accuracy. By placing the hydrophone receivers in a equilateral triangle
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around a sea cage, minimal distortion due to geometry can be achieved. If the receiver

clocks support 1 millisecond resolution, the upper bound of accuracy will be 1.5 m since

sound speed underwater is assumed constant 1500 m/s. This should be sufficient for the use

case of sea cages. Dilution of precision (DOP), also called geometric dilution of precision

(GDOP), describe errors caused by the relative position of GPS satellites. This can be

expressed as eq. (2.19) [8].

GDOP =
∆(Output Location)
∆(Measured Data)

(2.19)

∆(Measured Data) is term to describe changing errors on a measurements. So, in ideal

situations, small changes will not lead to large changes in ∆(Output Location). There

are different types of DOP, like VDOP (vertical), PDOP (position 3D), TDOP (time) and

HDOP (horizontal). The MATLAB code provided in appendix B of [9] simulates HDOP

effect of a sea cage setting. The code provided was translated to Python, and similar

simulation visualization was produced to give section 2.2.4. Here the effect of receiver

geometry is clearly seen. The triangle of the visualization show optimal HDOP for the

cage. One can see how the position accuracy quickly deteriorates beyond the triangle area.

For this simulation, the transmission source locations are placed in the same plane as the

receivers.

A challenge of positioning of fish using underwater acoustic signals, is the complexity

involved. Acoustics produce a very complex environment with different speeds depending

on depth, reflections of object such as the sea floor, and the sound waves propagating

through water bend in certain paths. The simplification normally used is that sound moves

in a straight line with constant sound speed, but this is not accurate for the truly complex

acoustic picture underwater. Additionally, the signal a tag sends out is a spherical energy

signal produced by a small transmitter. The hydrophone in turn detects a very small

pinpoint of the sphere, meaning a very small amount of energy. How does the hydrophone

determine time of arrival? Exactly when the energy started to hit the sensor? Directly after

the signal has passed? In this regard, determining good ways to perform signal processing

(FFT) is a challenge. This too affects the resulting positioning of fish. Positioning is in

other words not a trivial matter, despite a relatively simple analytical solution. It has many
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2.2 Positioning of fish

challenges, and several sources of error. Despite this, it is still a highly valuable insight

that provides insight into how fish behaves. Perhaps not with pinpoint accuracy, but with

accuracy good enough to see generally which part of a sea cage, and which depth, a fish is

in.

(a) (b)

(c) (d)

Figure 2.4: PDOP simulation in cage setting. (a) shows an ideal setup with a equilateral triangle, in
this case with a threshold set to 7.5 meters. (b) shows a zoomed out version of (a), but with threshold
set to 50. (c) shows a non-ideal setup with threshold set to 7.5. (d) shows a zoomed out version of
(c), but threshold set to 50.
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2.3 Communication protocols and connectivity

In this section, some definitions for communication protocols used in the system are defined.

In chapter 4, these definitions will be used to explain the design of the system.

2.3.1 Internet of things (IoT) definition

There are many different ways to define IoT, and a simple definition to cover all ways the

term can be interpreted is not an easy task. Different definitions can be defined depending

on whether the system in question is a global system, bound to a region, or a small local

system. Whether it is controlling actuators in an interconnected network of things, or only

forwarding data. However, there are some definitions more prominent than others. For a

small environment scenario, the following definition is an apt description:

Internet of things (IoT) An IoT is a network that connects uniquely identifiable "Things"

to the Internet. The "Things" have sensing/actuation and potential programmability

capabilities. Through the exploitation of unique identification and sensing, informa-

tion about the "Thing" can be collected and the state of the ’Thing’ can be changed

from anywhere, anytime, by anything [25].

2.3.2 MQTT connectivity protocol

The client server publish/subscribe format is well-suited for IoT-applications. An IoT-

device can connect to a server and subscribe to a topic. It can then publish messages to the

server using this topic, as well as listen for messages on topics it subscribes to. The server

will forward any messages it receives on a topic to all clients subscribing to that topic. This

means that several users can use the data decoupled from each other. MQTT is a protocol

based on this format, well-suited and often used in IoT devices:

MQTT - MQTT is a Client Server publish/subscribe messaging transport protocol. It

is light weight, open, simple, and designed so as to be easy to implement. These

characteristics make it ideal for use in many situations, including constrained en-

vironments such as for communication in Machine to Machine (M2M) and Internet
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2.3 Communication protocols and connectivity

of Things (IoT) contexts where a small code footprint is required and/or network

bandwidth is at a premium [4].

2.3.3 LoRaWAN

Communication is important for IoT-devices, as they are designed to be connected. Many

devices, such as those used in so-called smart homes, can simply connect to a local wireless

LAN that provides internet. However, many devices are meant to be used far away from

internet infrastructure, so intermediate links are needed for the data to flow to the internet.

LoRaWAN is such a link, well-suited for IoT:

LoRaWAN - The LoRaWAN specification is a Low Power, Wide Area (LPWA) networking

protocol designed to wirelessly connect battery operated ‘things’ to the internet

in regional, national or global networks, and targets key Internet of Things (IoT)

requirements such as bi-directional communication, end-to-end security, mobility

and localization services [1].
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Chapter 3
Requirements

This chapter presents the requirements of the IoF concept in the different network archi-

tecture layers. The complete network architecture is described in section 3.1 together with

a high-level design of the system from the perception layer to the application layer. In sec-

tions 3.2 to 3.4 the requirements of the system components in each layer of the architecture

is identified and presented. For the application layer, detailed requirements are defined

in the form of functional requirements (FR), nonfunctional requirements (NFR), and UI

requirements (UIR).

3.1 Network architecture

A natural network architecture abstraction for an IoT system is to divide it into three layers:

perception, network and application. In turn, the same division is natural for IoF. Figure 3.1

presents a high-level design of the IoF concept. The arrow heads indicate which way data

is transferred. Technically, several of the links could support two-way communication, like

the gateway and MQTT server, but in practice this communication path is unused, as the

perception layer only serves to push data to the application layer. In future implementations

of the IoF concept, this option could be utilized to update perception layer firmware, or

to control operations with actuators. However, this is some way into the future, until the

interpretation, decision, and act phases of PFF is more developed industry-wide, and a
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closed feedback-loop with acoustic telemetry is possible.

Hydrophone

Surf. Module Surf. Module

Surf. Module

Acoustic
Tag

Hydrophone

Hydrophone

Gateway

Acoustic link

Internet

RS-485 link
LPWAN radio link

Half duplex
Full duplex

MQTT Server

MQTT Client

Storage

Web app

Web browser

Subsurface

Perception Layer Network Layer Application Layer

Figure 3.1: Network architecture of IoF concept. Full duplex represents two-way communication,
while half duplex is only one-way. Technically, some of the half duplex links support two-way
communication, but in this case direction of data flow is prioritized, as the perception layer and
network layer only serve to push data to the application layer. Web browser represents end-user(s).

3.2 Perception layer

3.2.1 Acoustic tag requirements

Acoustic tags need to reliably and accurately transmit desired data types in chosen pseudo-

random intervals for a designated operation time. The most important task in relation to

the IoF concept is to identify characteristics, i.e. which type of fish, what data, operation

time, etc. After identifying the appropriate setup, tags with characteristics close to these

parameters can be ordered from a company producing acoustic tags.
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3.2 Perception layer

Transformation and transport of IOF message

Arrows indicate processing, 
i.e. packing/unpacking of IOF data
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IOF Data Unpacked raw data

 Application layer
(back-end & front-end) ↑IOF Header IOF Data
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 Network layer
(Gateway)

MQTT Header IOF Header IOF Data MQTT packed data
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LoRa Header IOF Header IOF Data LoRa packed data

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

 Perception layer
(SLIM)

LoRa Header IOF Header IOF Data LoRa packed data

↑IOF Header IOF Data

IOF Data Raw data

Figure 3.2: IoF message transport through network architecture with corresponding transformation.

3.2.2 Hydrophone requirements

For positioning, at least three hydrophones are required. Having another hydrophone could

be good for redundancy, but it is not required. The hydrophones needs to be able to

listen for tag messages on at least one frequency, preferably more. It needs to decode tag

messages, and support two-way communication to the synchronization and LoRa interface

module through RS-485. Naturally, the hydrophone should be designed for reliable use

underwater over longer periods of time, but similarly to the tags, there exists many available

hydrophone solutions from a multitude of companies.

3.2.3 Synchronization and LoRa Interface Modules requirements

The synchronization andLoRa interfacemodule (SLIM) needs accurateGPS to synchronize

the clock of the hydrophone it is connected to. This is as mentioned in section 2.2 essential
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in positioning of fish. In sea cage settings, the hydrophones are likely to be stationary, so a

one-time accurate GPS read of the SLIM / hydrophone location can be done. However, an

added benefit of GPS in the SLIM is that it can report its own position, which is especially

useful for wild fish use-cases. SLIM also needs a LoRaWAN interface, to transmit data

to a nearby internet-connected gateway, and a RS-485 interface to communicate with the

attached hydrophone. The SLIMmust be able to read TBR data and pack it into a predefine

data protocol, which it in turn forwards through the LoRaWAN interface. Besides this,

the module needs to be power efficient to maximize run-time, and it needs to be physically

robust to withstand difficult environments. Effectively compressing data is a trade-off

between more processing and less LoRa transmission. Compressing will require more

power, but transmitting less will reduce power usage, and will also allow more data to be

transferred before reaching LoRa limitations.

3.2.4 LoRaWAN requirements

LoRaWAN has a couple of rules built-in determining the legal limit of broadcasting data

when using the LoRaWAN network. These rules determine the frequency channels and

data rates to be used, where the data rate of a node is a trade-off between range and duration

of messages. This means that there are limitations in how much data a LoRaWAN node is

allowed to send per day. This clearly creates a need for compression of data, to maximize

amount of data a node can send. Therefore the design of the IoF message packets is an

important requirement. With the configuration that is intended to be used for the IoF

concept, a maximum message size of 128 bytes can be attained, sent each minute.

3.3 Network layer

3.3.1 Gateway

A gateway is required to unpack the LoRa messages from SLIMs, pack them to MQTT,

and send to the MQTT server. The gateway requires power and a solid internet connection,

either in the form of a wall socket and internet modem, or as batteries and a mobile network

sim-card. The latter is less susceptible to power outages and bad internet infrastructure at
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remote locations, and should be preferred in situations where mobile network connection

is available. The gateway needs to be able to send the messages on appropriate MQTT

topics, either a topic for each ID in the local project (can be the hydrophone serial numbers

for example), or following a predefined topic configuration.

3.4 Application layer

3.4.1 Back-end requirements

To explain the requirements of the back-end, it is useful to first follow the data flow of

the whole system: (1) An acoustic tag message is detected in a hydrophone, and it is sent

over RS-485 to a synchronization and LoRa module (SLIM). (2) The SLIM periodically

compress new tag detections and hydrophone sensor readings into LoRa-messages which

it broadcasts to a gateway on-site. (3) The gateway unpacks the LoRa-message, packs it

into the MQTT message format, and forwards it to a MQTT server on a predefined topic.

(4) The server will then forward the MQTTmessage to any appropriate subscribing MQTT

clients.

This is where the back-end enters. The first requirement of the back-end will therefore

be to function as a MQTT client. By subscribing to the wildcard # topic, every message

the server receives will be forwarded to the MQTT client. However, the main advantage

of a MQTT server is that one server can be used across multiple projects. By subscribing

to the # topic, mixing of different projects will occur. So it is advisable to have each

back-end client subscribe to specific project topics. Next, the back-end should successfully

decode the bytes of the MQTT message into readable data, following a predefined data

protocol. Consequentially, both the SLIM and back-end client needs to know the same data

protocol. While doing so, the back-end should also be able to perform tag or project specific

formatting of data, like converting bytes data to depth data. The second requirement of

the back-end is therefore to unpack and convert incoming messages. After successfully

unpacking the data, it should be converted to a reasonable format and stored in persistent

storage. This is the third requirement of the back-end. Lastly, the back-end should be able

to perform positioning of all triplets of tag detections received, and store the results to
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persistent storage. By having MQTT as the entry-point, and some sort of storage as output,

the back-end will have modularity built-in.

These are the requirements the back-end absolutely must meet. Any additional re-

quirements are for better performance, expected behaviour, or desirable behaviour. The

most important requirements are listed again as functional requirements (FR) below, while

additional requirements for back-end are listed as non-functional requirements (NFR). FR

requirements are generally focused on what the software must do, while NFR requirements

focus more on how it should do it. Finally, any user interface requirements are listed as UI

requirements (UIR). UIR requirements are functional requirements.

Functional back-end requirements (FRs)

• FR1 - MQTT client: able to handle and serve incoming MQTT messages.

• FR1.1: Able to subscribe to different project-specific MQTT topics.

• FR1.2: Support user/password authentication and ssl.

• FR1.3: Support MQTT version 3.1.1 or newer.

• FR2 - IoF message parsing: able to take IoF bytes messages as input and parse

them to retrieve IoF data.

• FR2.1: Use predefined protocol format to unpack.

• FR2.2: Able to convert raw data to appropriate formats while unpacking.

• FR3 - Store IoF data to persistent storage: store raw, converted, and positional

data to storage.

• FR4 - Perform TDOA positioning: solve TDOA algorithm to find positions for

incoming IoF data.

Non-Functional back-end requirements (NFRs)

• NFR1 - Fault tolerance: restart back-end if it crashes (for example process pairs).

• NFR2 - Redundancy: store a backup of data received in case of data corruption,

wrongful conversion of data, or other unpredictable events.

• NFR3 - Persistent storage: should be reasonable, flexible, and easily maintain-

able.
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• NFR3.1: Define structure and format of persistent IoF data.

• NFR3.2: Database solutions such as SQL databases preferred over simple

solutions like storing raw bytes in .txt-files, or niche file formats not widely

adopted.

• NFR4 - Error handling: use of typical error handling methods (try-except).

• NFR4.1: Log errors to file with included error metadata.

• NFR4.2: Support different levels of errors, for example. ’warning’ and ’criti-

cal’.

• NFR4.3: Discard IoF data in case of corrupt or incorrect message structure,

but store raw message in backup storage.

• NFR5 - Able to apply metadata conversion: which should be read from a file-

system file.

• NFR5.1: A standard format for metadata file structure.

• NFR5.2: Storing data like temperature, depth, and acceleration directly in

addition to raw data in persistent storage.

• NFR6 - Perform positioning: solve TDOA positioning for IoF system.

• NFR6.1: Be able to use metadata to set positioning parameters such as TBR

locations.

• NFR6.2: Persistent storage of found positions in a local XYZ-coordinate sys-

tem.

• NFR6.3: Persistent storage of latitude-longitude coordinates (or other standard

format) of found positions.

• NFR6.4: Ability to find triplets in database fast and efficiently.

• NFR6.5: Ability to find and adjust timestamps that have drifted fast and effi-

ciently.

• NFR6.6: Perform positioning on messages as they come in.

• NFR6.7: Perform positioning on a complete database.

• NFR6.8: Flexible back-end, allowing multiple ways to set-up positioning

(metadata file, code context, source).

33



Chapter 3. Requirements

• NFR7 - Convert raw hydrophone data: to the IoF format, i.e. ability to input

data logged locally in hydrophones to back-end to get IoF data format out.

UI back-end requirements (UIRs)

• UIR1 - GUI or command-line interface to setup MQTT connection.

• UIR2 - GUI or command-line interface to initialize new project.

• UIR3 - GUI or command-line interface to reset and/or delete current project.

• UIR4 - GUI or command-line interface to enable or disable varying levels of inter-

face printing / error log writing.

3.4.2 Front-end requirements

The main general requirement for the front-end of IoF is to be accessible in a web browser

without the need for end-users to install or configure anything, allowing them to interact

with graphs that they can customize as they please, and to view data in real-time. It also

needs to be responsive, i.e. not using a couple of minutes to plot large amounts of data. It

should be project agnostic and require minimal configuration to work for new projects. To

accomplish this, a standard format and procedure to configure and set-up projects needs to

be defined.

These are the requirements the front-end should meet. Any additional requirements are

for better performance, expected behaviour, or desirable behaviour. Especially front-end

have many desired characteristics that can be defined in addition to the main requirements.

The most important requirements are listed again as functional requirements (FR) be-

low, while additional requirements for front-end are listed as non-functional requirements

(NFR). Finally, any user interface requirements are listed as UI requirements (UIR).

Functional front-end requirements (FRs)

• FR1 - Accessible through most web-browsers: the application should be web-

based, and be possible to access and use in common web browsers, without any

additional installations in the end-user device.surface support modules
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• FR2 - Ability to view real-time data: end-user should be able to graph plots that

update in real-time.

• FR3 - Responsive interface: when clicking buttons and using menus, the response

should be instantaneous, and when plotting graphs, it should be reasonably fast (<

30 seconds).

• FR4 - Project agnostic: The application should be easy to implement for different

experiments, requiring minimal configuration and change in code and structure.

• FR4.1: Documentation explaining how to set-up front-end should be written.

• FR4.2: Standard format of metadata files, and procedure to set-up.

• FR5 - Wide variety of plot types: should be able to support several basic, scien-

tific, statistical, and 3D charts.

• FR5.1: Scatter, line, filled area plots.

• FR5.2: Boxplots, histograms.

• FR5.3: Contour plots and heatmaps.

• FR5.4: 3D scatter, animation, and surface plots.

• FR5.5: Timeseries plot

• FR6 - Plot customization: The user should be able to use basic controls to cus-

tomize how the look is structured and its design.

• FR6.1: Tools for zooming, panning, and selecting data etc.

• FR6.2: Allowing the user to choose their own x-axis, y-axis, and/or z-axis.

• FR6.3: Allowing the user to change styling of the plots, like axis labels, titles,

data colors, marker and line sizes etc.

surface support modules

• FR7 - Data filtering: giving user controls to filter the dataset(s) of the application

to further customize desired visualization of data.

Non-Functional front-end requirements (NFRs)

• NFR1 - Simple and flexible deployment of application: easy set-up of webpage

so that it can be accessed from anywhere.
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• NFR2 - Authentication: at least username/password base, preferably an advanced

and robust solution to hinder unwanted user access.

• NFR3 - Table view: of both filtered and raw data.

• NFR4 - Data export: of both filtered and raw data, and in multiple formats.

• NFR5 - Export of plots: in multiple formats and configurations.

• NFR5.1: Formats such as pdf, svg, tiff, and png.

• NFR5.2: Custom sizing of figures.

• NFR6 - Allowing data upload: to allow end-users to provide their own datasets

for analysis.

• NFR6.1: Beneficial if able to store uploaded data persistently, so that users

can come back and continue their analysis without needing to re-upload.

UI front-end requirements (UIRs)

• UIR1 - Dynamic webpage sizing: adapting to the different devices end-user might

want to use.

• UIR2 - App gallery: for separation of projects and/or applications, for example

a separate application for real-time monitoring, and a separate application for table

view and download of data.

• UIR3 - Dashboard functionality: for project management and potentially set-up

of back-end too.

• UIR4 - Webpage controls: should be distinct, clearly labelled, and intuitive to

use.

• UIR5 - Navigation: navigation between different data from IoF system should be

implemented and easy to follow.

3.4.3 Shared requirements between front-end and back-end

Both the front-end and back-end share some desired traits and optimal behaviour, as they

are software tools intended to work together. The persistent storage will be the end-point

for back-end and the entry-point for front-end. Interfacing here should be modular, so that
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any back-end and front-end configuration can work together. However, in practice, it would

be beneficial for back-end to optimize storage for front-end, and communication between

them could benefit performance of the overall system. While improving usefulness, it could

make them completely dependent on each other. As development continues, this might

make the whole system break functionality if tools of either underlying system break, and

it would also limit the future of IoF to specific implementations, making the system less

flexible.

Below are some shared desired characteristics, or non-functional requirements, of both

back-end and front-end, that should be kept in mind when developing the IoF software:

• NFR1 - Limit the code to Python - and use a minimal amount of libraries and

tools.

• NFR1.1: Minimal number of dependencies on third-party libraries and tools.

This helps to avoid breaking functionality as development progress.

• NFR1.2: Small code footprint by limiting code to only python. The required

knowledge and installation for developers and users become less complicated.

Maintainability should consequentially be easier. It also enables easier com-

munication between front-end and back-end, and less chance of library/tool

updates breaking compatibility.

• NFR2 - Use a new version of Python: and keep in mind future development

overhead when using tools and features.

• NFR2.1: Avoid relying on modern tools that break or change functionality

with each update.

• NFR2.2: Avoid using tools/versions that will be obsolete in the near future.

• NFR3 - Documentation of code: preferably with a html/pdf-based companion.

• NFR3.1: Should follow standard documentation practices, i.e. following a

documentation style like the google style [14]). Good documentation improves

maintenance, readability, and updateability. Any coding project benefits from

good documentation, but it is especially important in projects where multiple

people will end up working on the code, spread across years.
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• NFR3.2: Documentation in html-format/pdf-format as part of the code source,

generated by a tool like sphinx [36]. This makes it even easier to configure and

work with the code.

• NFR4 - Able to operate independently from each other: Front-end and back-end

code not depending on runtime of the other)

• NFR5 - Open-source based.

• NFR5.1: IoF code available in an open-source repository.

• NFR5.2: IoF should use open source software, as open source software is free

to use and generally well documented.

• NFR5.3: Minimal use of proprietary libraries and tools. While they can be

used, the benefits of both using and making code open-source is that feature

requests can more easily be added, and help can be gained from tool developers

and/or communities.
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Design and implementation

The description of the IoF concept has been in general terms, as the principles could easily

be applied to several solutions in the perception layer. This is by intention to allow readers

to form ideas on how to implement their own system. However, this chapter will discuss

design choices and implementation, and so the focus will shift to what has been done for

this specific implementation and thesis. The chapter is divided in the following sections:

• Section 4.1 explains the data types generated by the SLIM and defines the corre-

sponding message formats and protocol.

• Section 4.2 covers the solution chosen for persistent storage with an accompanying

discussion on the alternatives, and the benefits and disadvantages of them.

• Section 4.3 presents the materials and components used for the implementation,

amongst them the Thelma BioTel TBR700 RT hydrophone (TBR for short).

• Section 4.4 gives details on the software tools and libraries used in both back-end

and front-end.

• Section 4.5 presents howback-end and front-endwas implemented. For back-end, the

program flow, positioning, and fixing drifted timestamps. For front-end, Dash and

MVC, typical dash app structure, the challenges of sharing data between callbacks,

performance, and construction of the case-study apps. Figure 4.17 shows how the

front-end webpage looked.
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4.1 Message formats

As mentioned in chapter 3, compression of data is important to not exceed the limits

of the LoRaWAN-network. Smaller messages means less bandwidth usage, which can

quickly become a bottleneck if the amount of data sent from acoustic tags is higher than the

available capacity. This was experienced first-hand during the case study in the previous

implementation of IoF back-end. A number of messages were not sent because LoRaWAN

capacity was reached.

4.1.1 Message data types and packets

First we have the tag detection packet. The acoustic tags produce data which they transmit

to the TBRs. The data can be a multitude of things, depending on the used sensor(s),

but it will most likely be in an unsigned byte format with some sort of compression.

The burden of converting raw data should be left to the back-end, which is not battery-

dependent. The tag data is transmitted with a certain codetype, an unsigned byte, which

tells the TBR which frequency and which communication protocol scheme the tag is

following. The TBR is constantly listening for signals, and determines a SNR value for

each detection. The TBR also has a clock with millisecond precision, allowing it to store

time of arrival. So in principle, the tag only produces data from its own sensors, which it

transmits in some predefined manner on a predefined frequency, and then the TBR detects

the transmission, store the data from it, and adds metadata to each detection. The added

metadata is considered part of the tag data type. Together, these data types are grouped in

a tag detection packet for the IoF protocol.

Second is the TBR sensor packet. The TBR has an internal temperature sensor, and

as mentioned, it is constantly monitoring for new tag messages. This allows the TBR to

measure ambient noise in the area, which it stores both as an average value and a peak

value every predefined time period. The TBR does not use a communication scheme like

the tags, but to distinguish the TBR messages from tag messages when transmitting to

back-end, it is useful to give the TBR a distinct codetype value. Having the time of sensor

reading as a timestamp is useful. There is however no need to have it in milliseconds, and

so no millisecond value is needed. Lastly, the frequency in which the TBR listens for noise
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can be included. The combination of these are considered as the TBR data type. Together,

these data types are grouped in a TBR sensor packet for the IoF protocol.

Third is the SLIM packet. The SLIM supports GPS for clock synchronization of

the TBR, and it can use the GPS to report its own position. The position is needed for

positioning (section 2.2), and it could be especially useful in wild fish projects, or AUV

situations [24]. A GPS reading includes several parameters, like PDOP, GPS fix, number

of satellites it is tracking, and of course latitude and longitude values. All of these are

useful for the IoF system, and they are considered to be the GPS data type. In addition to

this, it would be useful for the end-user/site operators to know how much battery is left.

Similar status updates from the SLIM module would also be good to include. Together,

these data types are grouped in a SLIM status packet for the IoF protocol.

4.1.2 IoF Message frame

While there is only need for at most 1 TBR sensor packet and 1 SLIM packet in a IoF

message, a packet of these types is only needed every 10th message or so. In contrast, there

should, and can, be a multitude of tag detection packets in each IoF message. The SLIM is

designed to broadcast a new message through LoRa every minute, and within one message

there can theoretically be over 15 tag detections. So, when considering compression to

keep bandwidth usage low, there is most to gain in compressing tag packets. The IoF

message frame can be seen in fig. 4.1, and it is coded with the big endian byte format,

i.e. the most significant bits come first. The difference between big and little endian can

be seen in fig. 4.3. The header of the IoF message consists of 6 bytes where the first 2

bytes contains 14-bits dedicated to the TBR serial number, and 2 bits for a header flag.

The remaining 4 bytes are for a reference UNIX UTC timestamp. Figure 4.2 shows the full

design of the message header.

4.1.3 Tag detection packet

The first byte of the tag detection packet is a byte that gives the number of seconds

passed since the reference timestamp set in header. If this is the packet used to set the

reference time, it will always be equal to 0. The next byte is the most important one,
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IOF message frame

Header Payload (SLIM / TBR / TAG)

6 bytes 5 ... 120 bytes

Figure 4.1: IoF message frame. Typically each tag packet will be 6 bytes. TBR and SLIM packets
will only be sent once every predefined time interval. TBR packets can be unpacked with a codetype
field shared with tag packets. SLIM packets will be first in the payload if the header flag has been set
to 1.

Message header

Field name TBR serial number
Header flag

Reference timestamp (UTC UNIX)

Allowed values [0, ..., 16383]
[0, 
..., 
3]

[0, ..., 4294967295] ⤏

Field bit value 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 0 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Byte bit value 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte Byte 00 Byte 01 Byte 02 Byte 03

Reference timestamp (UTC UNIX) 
[continued]

⤏ [0, ..., 4294967295]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 04 Byte 05

Figure 4.2: IoF message header. While the TBR supports a full 2 bytes for their serial numbers,
14-bits should provide plenty of range to cover possible numbers for a long time to come. The flag
is set to 0 if there is no SLIM packet, and it is set to 1 if the first packet of the payload is a SLIM
packet. Flag value 2 and 3 are reserved for potential future flags. The reference timestamp is set to
be the first detection registered from the TBR, but if there has been no detections, and SLIM packet
is set to send, the reference timestamp is set to the GPS timestamp.

namely the codetype. This is a single byte that contains both the frequency transmitted

on, and the communication protocol the tag has used to do so. The encoding of this byte

is proprietary and belongs to Thelma BioTel. The communication protocols are however

standard. Currently, none of the supported protocols usemore than 3 bytes, but in the future

there will most likely be introduced new protocols supporting more complex checksums.

Table 4.1 shows how the different protocols use bytes to send tag ID and optionally tag data.
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Big endian byte format
MSB LSB

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Byte 0 Byte 1 Byte 2 Byte 3

Little endian byte format
LSB MSB

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Byte 0 Byte 1 Byte 2 Byte 3

Figure 4.3: Big byte order is user for the IoF messages.

Signal-to-noise ratio (SNR) is calculated using eq. (4.2), where the values will range from

6 to 60, depending on signal strength and noise conditions. 6 means very weak signals,

and 30 and above is very strong. The scale is logarithmic, and can be covered by using

6 bits. Lastly, the millisecond precision of time of arrival is included as 10 bits, ranging

from 0 to 999. Figure 4.4 shows the bit and byte usage of the tag packet, which typically

is 6 bytes large when using the S256 protocol (most common).

Table 4.1: Byte usage of different transmission protocols. In the future, new protocols using more
complex checksums, or larger ID/data, might be added.

Combinations of tag ID and tag Data
Communication 

Protocol
Byte 00 Byte 01 Byte 02

R256 Tag ID   empty

R04K Tag ID (12-bit)   empty

R64K         Tag ID   empty

S256 Tag ID Tag Data   empty

R01M         Tag ID (20-bit) empty

S64K         Tag ID Tag Data

HS256 Tag ID     Tag Data

DS256 Tag ID Tag Data 1 Tag Data 2
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SNR [dB] = 10 log10

(
Average peak signal power in pulse train

Average noise power

)
(4.1)

= 20 log10

(
Average peak signal amplitude in pulse train

Average noise amplitude

)
(4.2)

Tag detection packet

Field name 
Seconds passed 
since reference 

timestamp
Codetype Tag ID Tag Data

[Optional]

Allowed values [0, ..., 255] [0, ..., 255] 
*proprietary [0, ..., 1048575] [0, ..., 65535]  →

Field bit value 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 ..................... ....................

Byte bit value 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte Byte 00 Byte 01 Byte 02 - Byte n Byte n+1 - Byte m

SNR Millisecond

 → [6, ..., 60] [0, ..., 999] n = 2, 3, 4

5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 m: n ≤ m ≤ 4

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte m+1 Byte m+2

Figure 4.4: Tag detections packet. If it is the first packet in the payload, byte 00 will be equal to 0.
And as can be seen, tag detection packets will at least be 5 bytes, and at the most 7 bytes, depending
on the communication protocol.

4.1.4 TBR sensor packet

Like the tag packet, the first byte of the TBR detection packet is a byte that gives the

number of seconds passed since the reference timestamp set in header, and it will likewise

be 0 if the TBR packet is the first (i.e. reference timestamp set as TBR timestamp). The

second byte is also the same as the tag packet, codetype, just that for TBR it is always set

to 255, an otherwise unused codetype value, to indicate that it is a TBR message. This is

followed by 2 bytes temperature, measured by a factory calibrated temperature chip inside

the TBR housing, which is converted in back-end using eq. (4.3). Finally, the TBR packet
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consists of 1 byte ambient noise average, 1 byte ambient noise peak, and 1 byte frequency.

Figure 4.5 shows the bit and byte usage of the TBR packet, which is 7 bytes long.

Temperature [℃] =
data − 50

10
(4.3)

TBR sensor packet

Field name Seconds passed 
since ref. timestamp

Codetype Temperature

Allowed values [0, ..., 255] [255] [0, ..., 65535]  →
Field bit value 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Byte bit value 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte Byte 00 Byte 01 Byte 02 Byte 03

Noise avg Noise peak Frequency [kHz]

 → [0, ..., 255] [0, ..., 255] [63, ..., 77]

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 04 Byte 05 Byte 06

Figure 4.5: TBR sensor data packet. If it is the first packet in the payload, byte 00 will be equal to
0. The packet is 7 bytes long, and there are no fields that require bit manipulation.

4.1.5 SLIM packet

The SLIM packet involves the most bit manipulation of the three packet types, in order to

reduce the total size. This is partly due to precision of longitude and latitude not fitting

naturally within complete bytes. Longitude goes from −180 to 180 degrees, so at least

9 bits are needed to cover the 360 possible values. Of course, one could do a sort of

optimization where you limit the longitude to one hemisphere, or even smaller areas, but

this requires specialized implementations. To have precise positioning, the GPS should be

accurate to around 1 meter. 4 decimal places gives around 11 meters accuracy, while 5

gives accuracy up to around 1.1 meters [38]. To have 360 degrees with 5 digits precision,

26 bits is needed. Similarly, for latitude, which goes from −90 to 90, 25 bits is needed (8
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for degree, 17 for precision). 14 bits have been set aside for SLIM status messages, like

battery status, but currently it only sends a static number until this is implemented in SLIM

software. This was not a priority during the project development. When getting a GPS fix,

other parameters are also set, like a measure of position dilution of precision (PDOP). A

lower value is good, and after a certain point most GPS messages can be discarded if they

have higher PDOP values (above 10 is only for rough estimates of location, above 20 is

poor). Setting the threshold to 12.7, we can represent the value with 1 decimal precision

using 7 bits. Ideal is in that case 1, while 12.7 is worst-case scenario. We also get a measure

on the fix quality, where the ideal possible values can be seen in table 4.2. 5 numbers can

be represented with 3 bits. Lastly we have a measure of the number of satellites tracked

for the position fix. 5 bits will cover up to 32, which cover all possible Navstar satellites.

Figure 4.6 shows the bit and byte usage of the SLIM packet, which is 10 bytes long.

Table 4.2: Possible GPS fix values. The table of values is from [40].

0 No fix
1 Dead reckoning only
2 2D-fix
3 3D-fix
4 GNSS + dead reckoning combined
5 Time only fix

4.1.6 New IoF protocol vs previous version

In the previous version, the header was 2 bytes (no reference timestamp), SLIM packets

were not implemented, and tag and TBR packets were always 11 bytes long [19]. This

made unpacking easier, as you could separate each IoF message in equal 11 bytes long

parts. The packets were 11 bytes long because timestamp was included as a 4 byte value

in each packet, and for tag packets, tag ID and Data were allocated as 4 bytes every time, 2

each, covering all possible communication protocols (except R01M). In addition, TBR had

an empty byte to make it 11 bytes long. This meant that 10 S256 tag detections as payload

with the old protocol would use 112 bytes: 2 · 1 + 10 · 11 = 112 [bytes].

In the new protocol, the header is always 6 bytes, the SLIM packet is always 10 bytes,

and TBR is always 7 bytes. Tag detection packets size depend on communication protocol
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SLIM packet

Field name Battery Status Longitude

Allowed values [0, ..., 16383] [0, ..., 36000000]  →
Field bit value 13 12 11 10 9 8 7 6 5 4 3 2 1 0 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

Byte bit value 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte Byte 00 Byte 01 Byte 02 Byte 03

Longitude
[continued]

PDOP Latitude

 → [0, ..., 36000000] [0, ..., 127] [0, ..., 18000000]  →
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 04 Byte 05 Byte 06 Byte 07

Latitude
[continued]

Number of tracked

FIX satelittes

 → [0, ..., 18000000] [0, 
..., 5] [0, ..., 31]

7 6 5 4 3 2 1 0 2 1 0 4 3 2 1 0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 08 Byte 09

Figure 4.6: SLIM packet.

used. Currently, the most commonly used protocol is S256, meaning that the tag packets

will be 6 bytes. Given that the SLIM is set to send a new message each minute, and that

an S256 message takes approximately 4 seconds, the maximum amount of tag detections

for a minute is 15. This will of course be in very favourable conditions, for the TBR to

successfully detect each packet straight after the other without disturbance from other tags.

Add in a SLIM and a TBR sensor packet, and we get the approximate maximum size of an

IoF message: 6 · 1 + 10 · 1 + 7 · 1 + 6 · 15 = 113 [bytes]. So, 5 more tag detections, plus

TBR sensor and SLIM packets, while using only 1 more byte than the previous protocol.

This is a great improvement. A more involved communication protocol like HS256 would

take longer to transmit per message, and so you would not achieve 15 messages within a
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minute, but for argument’s sake we could allow it. Then the payload would be 122 bytes,

making the total message size 128 bytes, which is exactly the data limitation per message

for the chosen LoRa setup. 15 HS256 detections and a TBR sensor packet in the old format

would use 178 bytes, still without SLIM packet.

A benefit of the old protocol is the ease of unpacking equal-sized packets. The greatest

advantage with this approach being that you can keep unpacking the rest of an IoF message

if one of the packets are corrupt. Unfortunately, you cannot do that with the new protocol,

as the sizes vary depending on the communication protocol used. Say a packet is corrupted,

and the codetype is set to another communication protocol than the actual protocol used,

i.e. R256 instead of S256. That would mean that the parser unpacking the message would

think there is no tag data, only 1 byte tag ID, and would unpack the rest of the message

accordingly, effectively shifting all the other values 1 byte off. If really unlucky, the

corrupted packet is first in the payload, making the whole payload unreadable.

However, corruption of packets does not happen often, so the amount of lost messages

are acceptable. This was verified for a separate experiment based on the same case study

as the one of this thesis, where packet error rate (PER) of the IoF concept was defined as

the ratio of packets lost in transmission from nodes (SLIM) to server (MQTT server). PER

is based on two types of losses, one due to radio interface (perception to network layer),

and one due to internet loss (network layer to application layer). All SLIM nodes achieved

a PER of less than 8% [17]. The ratio is made by comparing the amount of messages

transmitted to the amount of messages that was received successfully in the application

layer. The number of actual corrupted messages is lower.

4.2 Persistent storage

There exists a vast amount of solutions for persistent storage, like storing bytes di-

rectly to txt-files, relational databases (typically SQL), non-relational databases (NoSQL

databases), in-memory databases, and navigational databases to name a few. These are all

different principles behind how to store data persistently, and for each there exists many

solutions open-source and commercial, spread across a number of programming languages.

Focusing on databases, a normal way to describe expected properties of database transac-
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tions is ACID (Atomicity, Consistency, Isolation, Durability) [15]. If you stop persisting a

database, Durability is lost. Atomicity is used for committing changes to a database as an

all or nothing operation. Isolation is describing what part of transnational changes is seen

by other processes, which in this context means that processes should never see partial

transactions. The last attribute, Consistency, is that the description of the structure and

relationship of the data in the database should be maintained for all writers and readers of

the database.

Relational and non-relational are probably the two most widespread. The main differ-

ence worth noting between them is that non-relational databases do not require a predefined

schema to store data, and thus allows dynamic changes to a database structure. Rather

than scaling up, i.e. increasing server size to tackle more data load, non-relational scales

out: the database can be distributed across multiple servers as load increased. This makes

non-relational databases great for scaling, consequently becoming increasingly popular in

big data, which is also typically more dependent on dynamic changes to data structur-

ing. Non-relational databases are however often not compatible with ACID. Relational

databases are mostly all compliant with the ACID principle. This alone can be reason to

choose a relational database solution, network distributed if necessary.

Another solution, in-memory databases, is typically not ACID-compatible either, since

they are not persistent. So durability of ACID is lost, making it susceptible to data loss

in case of faulty operation. Most implementations have however some sort of persistent

storage backup or underlying database. RAM is more expensive than disk storage, as most

computers have much less RAM than disk space, but RAM is on the other hand much

faster than disk. For smaller amounts of data, which is read and handled often, in-memory

database solutions might be a great way to handle the data. This is given that enough RAM

is available, and that backup data in disk storage or are willing to risk loosing data. When

it comes to loss of persistence, in-memory databases can run at full speed and maintain

data with the introduction of non-volatile random access memory technology [26].

Data amount in an IoF concept implementation will most likely not be of immense

size, considering the amount of tags possible in a sea cage or wild setting is limited. The

operational life of the tags are also limited. If a commercial sea cage would like to keep
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hydrophones and SLIMs in place, only replacing batteries and tagging new fish, then the

data would grow over time, although it would also be reasonable to have separate storage

for the separate instrumentation periods. Something else to keep in mind is that as of now,

there is no apparent reason for allowing end-users to write to the database. The back-end

is the only permitted writer to the database, anyone else would be readers. Lastly, the

application will run in one location, and be accessed by potentially multiple end-users, but

the amount of end-users will in most cases be quite limited. These are some important

factors to consider when choosing an appropriate storage solution.

So, while there are clear advantages with a distributed non-relational database when

it comes to web applications, relational databases will cover the IoF use case without

trouble. Considering that the data load is relatively small, even simple SQL databases can

be utilized, i.e. databases that do not support concurrent writers or distributed storage.

Another interesting and relativelymodern solution is asmentioned the in-memory database.

While there is no need for critical response-times, the end-users will want to perform

analysis on a relatively large time frame of data, an expensive process to do multiple times

if reading from disk each time. Utilizing multi-core processor which can address RAM

concurrently, the performance gains can be significant. On the other hand, end-users will

probably not access the data constantly, making the cost of keeping data in-memory less

valuable than reading from database, if RAM usage is a limiting factor.

4.2.1 Database table structure

Tables 4.4 to 4.6 shows the database table construction chosen for each data message. For

the IoF implementation, SQLite was chosen, which is a relational SQL database. SQLite

supports 5 data types: NULL, INTEGER, REAL, TEXT, and BLOB [37]. For the tag table,

all columns is of the INTEGER type, except Tag Data, which is REAL. Similarly, for the

TBR table, all columns are INTEGER except Temperature, which is also REAL. In the SLIM

table, Slim Status are TEXT, and since the integer value of GPS fix is converted in back-

end, so is the Fix column. Latitude, longitude, and PDOP are all REAL. The remaining

columns are INTEGER. Lastly, for the positions table, the timestamp, Tag ID, Frequency,

and Millisecond is INTEGER. X, Y, Z, Latitude, and Longitude are REAL. The last column,
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Cage Name, is naturally of type TEXT.

Table 4.3: Tag detection database table.

Tag detections Database Table

Message ID Timestamp
Tbr Serial
Number

Comm
Protocol Frequency Tag ID Tag Data

Tag Data
Raw SNR Millisecond

5 1538823331 110 S256 69 35 7.6 38 10 330

5 1538823347 110 S256 71 100 5.2 26 25 450

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

5000 1539523337 112 R256 69 34 Null Null 32 713

Table 4.4: TBR sensor database table.

TBR sensor Database Table

Message ID Timestamp
Tbr Serial
Number Temperature

Tempreature 
Raw Data

Amb. Noise 
Average

Amb. Noise 
Peak Frequency

25 1538823600 112 7.8 128 15 45 69

52 1538824200 112 7.7 127 15 39 69

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

5031 1539523800 110 7.3 123 52 87 69

Furthermore, SQL supports constraints, like the PRIMARY KEY constraint, which re-

quires that each record of a table can be uniquely defined. They cannot be NULL (they can

in SQLite), and each table can only have one primary key, consisting of a single column

or multiple columns. PRIMARY KEY requires that unique values are contained within the

column(s). There are no primary keys defined for any of the IoF tables, as there are no

columns that are uniquely defined. However, this is a flaw in the database implementation

design. While developing, it was believed that PRIMARY KEY is only possible for a single

column. It was close to the end of the thesis period that it was discovered that multiple

columns can be used. For single columns it does not work, since multiple tag detections

share the same message ID, and timestamp too can be shared. However, including TBR
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Table 4.5: SLIM database table.

SLIM Database Table

Message ID Timestamp
Tbr Serial
Number Slim Status Latitude Longitude PDOP Fix

# Sat. 
Tracked

25 1538823600 112 75% 63.41850 10.39946 1.4 3D-Fix 12

52 1538824200 112 74% 63.41849 10.39945 2.3 3D-Fix 8

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

5031 1539523800 110 60% 63.41846 10.39941 13 2D-Fix 3

Table 4.6: Positions database table.

Positions Database Table

Timestamp Tag ID Frequency Cage Name Millisecond X Y Z Latitude Longitude

1538823331 35 69 IOF Cage A 325 12 13 12 63.41852 10.39949

1538823347 100 73 IOF Cage B 100 21 8 4 63.41849 10.39953

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1539523337 34 69 IOF Cage A 700 7 30 18 63.41851 10.39951

information would and for example tag ID would make it possible. The advantage of using

primary keys are quicker search results, and more powerful cross-table filtering, since it can

be used together with FOREIGN KEYS. Foreign keys is a column or a collection of columns

in a table that refers to the primary key in another table. So one could use the message id

as a primary/foreign key pair for example. Message ID is determined by back-end, and is

a single upwards counting number for each full IoF message that is received. SQLite also

has an internal RowID column by default, which automatically increments for each row in

a table.

Another SQL constraint is NOT NULL, which as the name implies rejects database

transactions if there is no data inserted for the column(s) with the constraint. All the
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columns in all the IoF tables use this constraint, except the latitude and longitude columns,

tag data, and the converted temperature column. This is in case no latitude and longitude

is provided in error cases, and in case of missing metadata conversion factor for tag data,

or project implementations using tag ID only tags. Finally, the UNIQUE constraint is used

in the positions table to require that any database insertion has a unique combination of tag

ID, timestamp and frequency. This is in case of multiple attempts at positioning the same

set of data.

4.3 Components of the system

In this section, the materials and methods used for the implementation of the IoF system is

described in more detail.

4.3.1 Thelma BioTel tags and hydrophones

For this system, Thelma BioTel acoustic tags and hydrophones are utilized (fig. 4.7). The

tags can transmit data such as: ID, pressure/depth, temperature, acceleration, tilt, dissolved

oxygen, conductivity, and salinity. The acoustic receiver, TBR-700 Real-time acoustic

receiver, is designed to operate at 69 kHz. However, it supports full multi-frequency

reception in the 60-80 kHz band [6].

4.3.2 Synchronization and LoRa Interface Module (SLIM)

A custom surface module is used for this system. The module includes GPS for precise

positioning and time synchronization, a LoRaWAN interface for LoRa communication, and

a RS-485 interface for communication with a TBR 700. In addition, the module has a small

low-powered screen for easy information gathering while running / debugging. These are

put together on a PCB board and in a water-proofed box (fig. 4.8). The GPS is important for

positioning of the acoustic tags, as it will allow the different hydrophones to synchronize

their time accurately, counteracting clock drift, and it gives known positions needed for the

positioning principle described in section 2.2. The module currently supports the new IoF

protocol format described in section 4.1. The module is still in development.
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(a) (b)

(c)

Figure 4.7: Thelma BioTel acoustic tags and hydrophone. Images from [6]. (a) Acoustic tags of
varying sizes. (b) A 9 mm acoustic tag of type LP-9. (c) A TBR 700 RT

4.3.3 Gateway

The surface module provides a connection to the hydrophones in the water from the on-

site location. The data received there needs to be forwarded until it reaches the MQTT

server. As mentioned before, the surface module has a LoRaWAN interface, which it uses

to send LoRa messages to the gateway on-site. The gateway should preferably be placed

somewhere stationary with a constant internet connection. Due to power outages and poor

internet connections at site locations, this could preferably be done using a battery and

mobile network card, rather than power and an Ethernet cable. Naturally, the gateway

should be placed within listening range of the surface modules. The gateway needs to be

capable of receiving LoRa messages, unpacking them and sending them onwards as an

MQTT message to the server. The gateway will work as a MQTT publisher in the network.

For this implementation, the MultiConnect© Conduit™ from Multitech Systems is used

(fig. 4.9) [3].

54



4.3 Components of the system

Figure 4.8: Image of surface module designed by PhD candidate Waseem Hassan and associate
professor Jo Arve Alfredsen. The module is still in development. Photo by Per Arne Kjelsvik, the
author of this article.

Figure 4.9: MultiConnect© Conduit™

4.3.4 MQTT Server

A MQTT server is needed for receiving the data in the end of the system. A Mosquitto

MQTT broker for Python was set up on a 18.04 Ubuntu LTS virtual server at NTNU.

Any MQTT client of choice can then connect and subscribe to the server. Mosquitto was

chosen because it is developed and run in Python, and is a stable and established version

of a MQTT broker.
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4.4 Software tools and libraries

For the system implementation, a Python MQTT client was written using the paho-mqtt

library. Here, the client unpacks the data and stores it in a readable manner in a SQLite

database. For the front-end of the system, the Python library dash, developed by Plotly.

was used to create a web interface. The end-product is a website the end-user can use

to plot data interactively. Figure 4.10 shows all the libraries chosen for IoF. Below is a

description on the reasoning behind choosing the different libraries, and what they do.

4.4.1 Back-end libraries

As mentioned in chapter 3, it was desired to keep the code footprint minimal, relying

on a minimal amount of libraries and tools, preferably open-source. Another desired

requirement was to avoid relying on program features / tools that would quickly become

obsolete, but also avoid libraries early in development where support is limited and updates

might break functionality often. Python released the first stable release of version 3.7

summer 2018. While fairly new, this is a good place to base the software since it will

mean small amounts of maintenance for a long time to come. Upgrading to new releases

of Python will in turn also be easier.

The chosen MQTT client and broker are native to Python, and are both developed

open-source under the Eclipse foundation. While other MQTT client libraries exist, of the

open-source ones, paho-mqtt is one of the most popular with a long stable history and

development team behind it. The major version ofMQTT currently widely in use is version

3.1.1. The next major version, version 5 (version 4 was skipped), was released spring 2019,

becoming an official OASIS standard [29]. This version brought many needed changes, like

better error reporting, message metadata, load balancing, and most importantly improved

security. This is a fresh release, and it is not fully supported in all MQTT brokers and

clients. For example, only the C version of paho-mqtt supports version 5 at time of

writing. Version 3.1.1 was therefore used, which is true and tested to work, but upgrading

to version 5 should be done when it is possible to do so.

SQLite is a simple database that is built directly into Python (sqlite3). Considering

the needs of the IoF concept discussed in section 4.2, SQLite should be sufficient. While
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simple, it is capable of handling large amounts of data and a fairly large amount of traffic

when used for a web application. Since the database resides in one file, it is easy to transfer,

should the need to view the data offline for end-users come up. If there is a need for many

concurrent writes, big data, or if the web application is located in another network, then a

client/server database (for example PostgreSQL) would be more suited. Otherwise SQLite

is a fast and reliable solution.

TOML is short for Tom’s Obvious, Minimal Language. It aims to be a minimal

configuration file format that is easy to read, designed to map unambiguously to a hash

table. It is supported by many programming languages, including Python. For IoF, toml

was chosen for metadata and configuration files. MQTT broker settings, database location

and names, and metadata such as tag IDs used in a project is stored in toml-files.

(a) Virtual linux server (b) Python 3.7.1 (c) mosquitto broker

(d) paho MQTT client (e) SQLite (f) toml

(g) Flask (h) plotly (i) plotly Dash

(j) NumPy (k) pandas (l) Apache arrow

Figure 4.10: Tools and libraries used for the software development of this system, all contained to
the Python programming language (except the virtual server which is a Linux operating system).
Several libraries and tools are shared between both front-end and back-end. (g) - (i) and l are unique
to front-end, and (c), (d) and (f) are unique to back-end.
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NumPy is a well-established Python library for scientific computing in Python. It

provides support for multidimensional array objects, and several fast operations on arrays.

For IoF, Numpy was used in the back-end for positioning, but mostly simple functions were

used. However, more importantly, pandas is based on NumPy. Pandas stands for Python

Data Analysis Library, and it provides easy-to-use data structures and analysis tools with

high performance. It is arguably one of the most used data analysis tools used with Python,

especially when it comes to transforming and mapping data from one format to another.

Typical workflow for Pandas is to take data, like a CSV file or SQL database, and create a

Python object with rows and columns which make up a so called DataFrame. Dataframes

are similar in structure to spreadsheet tables, making it easier to work with than lists or

dictionaries that needs for-loops to go through. Vectorization is therefore key when it

comes to Pandas, meaning to execute operations on entire arrays simultaneously. For the

chosen web framework, Dash, it is common to use dataframes such as the one provided by

Pandas. Pandas is well suited for the purpose of filtering, searching, and transforming the

IoF data. It was also used in positioning, more details on that in section 4.5.

4.4.2 Front-end libraries

Finally, for interactive plotting, Python hasmultiple open-source solutions and visualization

libraries (fig. 4.11). Bokeh is a popular library developed by Anaconda. It offers rich and

interactive graphs, and has been available for use since 2013. It is using D3 (JavaScript

visualization library) for its front-end, and Tornado (Python web framework) for back-end.

Dash by Plotly was launched in 2017, uses React (JavaScript library for user interfaces)

and Plotly (a visualization library also based on D3) for front-end, and Flask (Python

web framework) for back-end. Dash is fairly new, and thus it does not support the same

breadth of features as Bokeh. However, it is being developed by Plotly, and uses the Plotly

library in its core, which is a powerful library that has been developed since 2012 with

wide community support. The development speed of Dash is rapid, adding new features

often. This increases risk of updates breaking functionality, but it seems more promising

long-term than Bokeh. Shortly before finishing this paper, dash v1.0.0 was released

[33]. This release of Dash formalizes a commitment from the dash developer-team to not
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introduce any breaking changes until the next major release (2.0).

@jakevdpJake VanderPlas
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Figure 4.11: Python’s Visualization Landscape. Figure shows some of the available options for
visualizing data in Python. Not all of these are interactive and web-supported, but one could build
interactivity on top. This figure is from Jake VanderPlas of University of Washington, from his speak
at PyCon 2017 [30]

For Dash, everything is contained within Python. Dash allows you to use custom data

structures such as pandas DataFrames, and you have full control of CSS. Adding or

writing custom React components can easily be done too. With Bokeh on the other hand,

it is designed to use their own data structure ColumnDataSource (common structures

like pandas DataFrames and NumPy Arrays are supported too), and some interaction

functionality must be written in JavaScript. Dash is based on Flask, a widely used web

framework, and since Dash is in principle only a Flask app with somemodification, one can

easily customize and control all parts of the app. Bokeh is based on Tornado, which is not as

widely adopted as Flask, meaning less documentation and less features and customization

options. In the end both libraries offers tools that will meet the requirements of IoF well,
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but Dash was chosen for these reasons, in addition to being very easy to approach for

writing applications neatly and effectively. There exists many more interactive libraries,

pygal, HoloViews, Chartify, Tableau, Microsoft PowerBI, and Altair to name

a few. And new ones are announced and released often too. It is a rapidly developing

landscape of options, but Bokeh and Dash stands out as the two most viable open-source

options, with the greatest support for web interactivity and chart types in Python.

4.5 Code structure and implementation

In this section, details on how the code for back-end and front-end is structured and written

will be given. However, low-level details on specific implementation is partially omitted.

A general structure of the IoF software is presented briefly, as well as logical flow of the

system. The project code has been written with Python Enhancement Proposal (PEPs) in

mind, such as PEP8 that describe a style guide for Python code [42]. Using the relatively

new Python type hints has also been attempted, but it has not been prioritized to have the

code work with static type checkers like pytype, although this would be beneficial to do

in the future. The back-end code is generally more well documented, as more development

time of front-end was spent on showcasing the specific case study. The full project code is

available in a GitHub repository, see [20].

4.5.1 Back-end

In the previous implementation of back-end, the unpacking of IoF messages relied on

fixed-size packets. It proved to be difficult to extend it to work with the new format, and so

it was better to completely redo the message handling of IoF messages in back-end. The

general flow of the program remains the same however. The back-end is constructed as

a Python package, with three main files to run the back-end, and two sub-packages. The

three files are main, initbackend and mqttclient. main initializes back-end (creating

databases, configuring MQTT) with initbackend through a command-line interface and

arguments parsed when calling main from the terminal. Any configuration files used in

the back-end are coded with the TOML format [34]. After initialization is complete, main
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spawns mqttclient as a subprocess. Should mqttclient crash for some reason, main

spawns a new client, similar to a process pair solution.

Figure 4.12: Figure showing control logic in back-end software. The front-end would then poll the
storage database for the web application.

mqttclient is the main process responsible for the back-end, as it is responsible for

accepting new MQTT messages, unpacking the raw data, transforming it, and storing it to

persistent storage. The client initializes by connecting to the MQTT server and subscribing
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to the # topic (subscribing to all topics of the MQTT server). Figure 4.12 shows a

simplified view of the logic flowof the mqttclient. Themessage handling is asmentioned

separated into a sub-package (msgHandler), and so is database management (dbManager).

Positioning Python modules are coupled together inside the database management sub-

package.

Positioning

Positioning is an important component of the IoF system, and quite some time was spent

on developing the code for this particular part. The TDOA algorithm is based on [10].

Algorithm 3 shows a pseudocode representation of how the algorithm is implemented. In

Appendix B the full implementation is shown with well documented code. Note that there

is no need for a separate case for Rac = 0 when Rab , 0, like explained in section 2.2.

TDOA-hyperbola-positioning(timestamps, stationData, depth)
1 // Initialize algorithm variables from input
2 positions = None
3 if Rab == 0
4 x = b/2
5 x-candidates = [x, x]
6 if Rac == 0
7 y = (c2 − 2cx x)/2cy
8 y-candidates = [y, y]
9 positions = Array

(
[x, y, depth]

)
// positions is a 1D array

10 else
11 // Calculate factors a2, a1, a0 and find roots of y-polynomial
12 y-candidates = roots

(
[a2, a1, a0]

)
13 else
14 // Calculate variables g, h, d, e, and f
15 x-candidates = roots

(
[d, e, f − z2]

)
16 y-candidates = g · x-candidates + h
17 if positions == None
18 positions = Array(x-candidates, y-candidates) // positions is a 2D array
19 // If positions is defined and not complex⇒ valid candidates have been found

Algorithm 3: TDOA based positioning. See Appendix B for the full Python implementation with
documentation.

62



4.5 Code structure and implementation

Adjusting drifted timestamps of tag detections

When a new message has been stored to persistent storage, positioning can be performed.

Back-end uses the message, reads the last n numbers of messages, and looks for a matching

pair of each tag ID in the current message. It then performs TDOA-positioning using

algorithm 3. Another use-case is to perform positioning for a complete database. This is

a bit more involved because it has to to find all triplets for a given tag ID within relatively

large amounts of data. Should one try to loop through all data for each tag ID it would be

very resource-demanding and slow.

Here Pandas is a good fit, to use vectorized operations to search the database data

quickly. However, one issue is that the GPS synchronization can have a timestamp drift of

1 or 2 seconds. This is a flaw in SLIM that should not occur. The issue has not been fully

resolved at time of writing. In most cases it will be perfectly synchronized, but in some

cases one of the timestamps will be off by a second, and in a few worst cases, all three are

off, so the largest is 2 seconds ahead of the smallest.

Hence it became apparent that a method to identify normal triplets, as well as drifted

triplets (that we adjust to the middle timestamp) was needed. One needs to be careful

to not adjust valid "drifts", meaning cases where the detection occurred right around

the timestamp rolling over to a new second. This can be avoided by assuming that tag

detections cannot reach farther than a given distance, for example 1 km. 1 kmwith 1500m/s

sound speed underwater maps to 667 milliseconds. Figure 4.13 illustrates the DataFrame

transformation we want to achieve for these cases.

During the thesis development a procedure was implemented that finds tag triplets. The

full code implementation with documentation of this procedure is included in Appendix

C. Bear in mind, the core challenge is to find triplets fast and efficiently. To adjust

the timestamps at the same was an added challenge. The procedure accepts a pandas

DataFrame as argument, which it operates on to extract triplets. In the case of a new

message, the input data will be a single triplet. If it is a valid triplet, no adjustment is

made. In the database case, the input data will be a large object with all detections of a

given tagID as separate rows. It will then proceed to find triplets.

First the dataframe is sorted by timestamp in ascending order, and the row index is
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Timestamp drift fix illustration

Timestamp Millisecond TBR Serial ID Tag Data

0 1556555369 325 45 3.5

1 1556555370 330 47 3.5

2 1556555371 335 49 3.5

⇓
Timestamp Millisecond TBR Serial ID Tag Data

0 1556555370 325 45 3.5

1 1556555370 330 47 3.5

2 1556555370 335 49 3.5

Figure 4.13: Timestamp drift adjustment. Here the data is structure like a pandas DataFrame,
meaning a row index on the left, and column index at the top. The tables illustrate the fix of a worst
case drift scenario of a tag detection triplet. Tag Data means depth in this case.

reset. The timestamps are then extracted as a series, and a function is used on the series

to find all rows where the difference between that row and two rows ahead is less than a

threshold (2 seconds). The indices of the highest row is stored in a list. Another list is

made with the same indices, and the indices of the other rows as well. A mask column is

then added to the dataframe, where the rows with the triplet indices are set to an increasing

number. So, in the mask column, triplet number one will have mask value 0, triplet number

two will have 1, and so on. All rows with no value in the mask column are removed from

the dataframe, keeping only the triplets. We are now ready to adjust the timestamps.

Next, another column drift is added to the dataframe, which consists of timestamp +

millisecond/1000 for each row, and the difference between rows in drift is extracted as a

new series. Each row keep the index in the original frame, and each row contain the drift

difference between that index and the next one. By comparing the drift differences to the

millisecond threshold (0.667), we can extract all indices where the third row of a triplet

is drifted 1 second after the middle row, and all indices where the first row of a triplet is
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drifted 1 second before the middle row. These indices are stored in separate lists, and then

used to adjust all matching timestamp columns in the dataframe to be ± 1 second (set equal

to the middle row timestamp of a triplet). Figure 4.13 shows how the dataframe looks in

this stage of the procedure (invalid triplet columns are kept in the illustration for clarity,

though they would be removed before adding drift).

Triplet mask and drift dataframe

Timestamp Millisecond TBR Serial ID Tag Data Mask Drift

0 1556555369 325 45 3.5 0 NaN

1 1556555370 330 47 3.5 0 1.005

2 1556555371 335 49 3.5 0 1.005

3 1556555440 405 47 7.5 NaN 69.070

4 1556555440 415 49 7.5 NaN 0.010

5 1556555519 473 49 17.2 1 79.058

6 1556555519 483 45 17.2 1 0.010

7 1556555520 485 47 17.2 1 1.002

Figure 4.14: Triplet mask and drift dataframe. The first row of a triplet is never checked, since it
will always be large. Row index 0-2 the first triplet in the dataframe and so mask is set to 0. As can
be seen in the drift column, both row index 1 and 2 are 1.005 in difference, meaning both are greater
than 667 milliseconds. This means that timestamp of row 0 is set +1, and timestamp of row 2 is set
−1. Row index 3 and 4 is lacking a third detection, and so the mask is not set, since it is not a valid
triplet. These invalid rows are removed after masking in the actual implementation, and thus the drift
would never be calculated for them, improving performance for large dataframes. Row index 5-7 is
the next triplet (mask value 1), but here it is only row index 7 with a timestamp with more than 667
milliseconds drift. So, timestamp of row 7 is set −1.

Finally, a list ismadewith each triplet as a separatepandas DataFrame. The extraction

is achieved by grouping the rows by the mask value, extracting each unique mask value as

a separate from, dropping the mask and drift columns at the same time. By placing the

triplets in separate dataframes, we have the same structure of the triplets as the case for

each message that comes in, i.e. a dataframe for each single triplet. Positioning is then a

65



Chapter 4. Design and implementation

matter of looping through the list of triplets and performing TDOA on each one.

4.5.2 Front-end

This section is used to explain the general principle of how a Dash application works. And

here a brief discussion on some of the challenges with Dash faced during development

is explained in more detail too. Two shorter subsections are presented on the design and

construction of the IoF application. The main result of the front-end web application can

be seen in fig. 4.17, and [21] provides a short Youtube playlist demonstrating the app live.

The MVC model and Dash

Dash and the underlying Flask library, is like many other web frameworks based on the

MVC model (Model-view-controller), first generalised as a concept in [22]. MVC is a

principle where the application is divided into interconnected parts, increasing modularity

since internal handling of data and functions is hidden within each part. The controller

takes input and uses it to send commands to the model or view. The model stores and

manages the data. It is the core of the application. The view is what the users see, so

for example the visualization of data in the form of graphs. Figure 4.15 shows a simple

illustration of the MVC principle.

While developing the back-end code, an attempt was made to decouple the different

packages so that it would be easy to change internal handling without breaking the other

parts of the back-end. This approach resembles in some ways the MVC model, but it is

not directly translatable, as there is no clear definition of the view, and controller is spread

across the model and view.

Front-end is on the other hand following the MVC pattern. A typical Dash application

is structured in three parts. First is initialization of data sources, parameters, and data

manipulation functions. Second is the app layout, which needs to be predefined for all

Dash apps. The layout supports full html and css customization through dash-html.

Third is the Dash callbacks. Dash is built with callbacks in mind, so that every time a

user interacts with the web application, a callback function is triggered to execute desired

changes and feedback the result. This is what gives the interactivity Dash thrives on.
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Model
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Updates
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Action
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Figure 4.15: Model-View-Controller (MVC) principle. User sends input to controller through view,
controller commands model to update data. Model updates controller of new data, controller updates
view with new data.

With this it should be clear that Dash is directly translatable to the MVC pattern.

The view is represented by the Dash layout, hosting all the html code that the end-users

see like graphs and menu buttons. The view sends user inputs as input to the callback

functions. They act as the controller of MVC, transforming the inputs to commands for

data manipulation. The functions that deal with filtering and other data manipulation is

then representing the model of MVC. They return the results to the callback functions. The

callback functions proceed to convert the results to html code and returns it to the view

again.

Dash has two core principles. The first is that UIs are assembled with declarative

components. The components are completely described by their properties. The second

principle is that UIs are updated with reactive, functional callbacks. This gives a simple

interface for observing and updating any property of any component. Since the callback

functions are normal programming language functions, they can do mostly anything. The

declarative UI components are defined in the app layout code (view), and the same com-

ponents are updated with the callbacks (controller) calling or executing underlying data

processing methods (model).
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The callbacks functions of Dash accept three inputs: Output, Input, and State. One

can have multiple of all of these in a single callback, but there can only be one Output in

total for each html layout component. The Output is what the callback function returns

to, specifically which property or which component. The Input are components in the

webpage that will immediately trigger the callback function to execute. State is the

current setting of a component. An example use-case of State is to include the current

value of a dropdown value as State to a callback, so that it is used for processing there.

Had it been included as Input, the callback would be triggered immediately after the user

selected the dropdown option. Simplified generalized Python code illustrating the general

Dash app structure is included in listing 1.

Sharing data between callbacks

Global variables will break a Dash app. In the Dash documentation, it is explained well:

“Dash is designed to work in multi-user environments where multiple people

may view the application at the same time and will have independent sessions.

If your app uses modified global variables, then one user’s session could set the

variable to one value which would affect the next user’s session. Dash is also

designed to be able to run with multiple Python workers so that callbacks can

be executed in parallel. [...] When Dash apps run across multiple workers,

their memory is not shared. This means that if you modify a global variable in

one callback, that modification will not be applied to the rest of the workers.”
[7]

The documentation goes on to explain that in order to share data safely it is needed to store

it somewhere accessible for each process, and that there are three main places to store this

data:

1. In the user’s browser session

2. On the disk (e.g. on a file or on a new database)

3. In a shared memory space like with Redis

It is relatively easy to handle and avoid in small applications, but as data size grows, it can
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import dash # Core dash application API

import dash_core_components as dcc # Core components (dropdown menus etc.)

import dash_html_components as html # Used to declare app layout

from dash.dependencies import Input, Output, State # Used in callbacks

import plotly.graph_objs as go # Plotly visualization library

app = dash.Dash(__name__)

# Part 1: Model

# |-- Data processing methods, parameters initilization etc.

def retrieve_advanced_dropdown_options(optionType, variables)
# Perform processing of data

return advancedOptions[optionType][variables]

# Part 2: View

# |-- The app layout (webpage design) is declared in a html.div

app.layout = html.Div([

dcc.Dropdown(id="options-selection-dropdown", value=basicOptionsList),

html.Div(id="display-text-box", children="Basic options enbaled"),

# [...] more code that declares further layout

])

# Part 3: Controller

# |-- The callback functions updating the app layout

@app.callback(

[

Output("options-selection-dropdown", "options"),

Output("display-text-box", "children"),

],

[Input("enable-advanced-options", "value")],

[State("options-filter", "value")],

)

def update_plot_options(advancedOptions, optionsFilter):
# [...] code to handle the callback

return advancedList, "Advanced plot options enabled!"

if __name__ == "__main__":
app.run_server() # Starts app locally: http://127.0.0.1:8050

Listing 1: The code only illustrates app structure. In this case it does not do anything, and it is
non-logical advanced handling of a dropdown, but general app flow is seen in this example.
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become a challenge to solve. The challenges involved with this problem were experienced

during the development of the use-case Dash app, where the data grew to 10 million rows

in an SQLite database from 10th of November 2018 to 10th of may 2019. The Dash

documentation also provided some examples on how to solve the issue using the three

places of storing data. For the IoF application a similar approach to the shared memory

place was chosen.

The standard way to implement this application would be to read from the database each

time a user wants to plot something, but when a user for example want to plot multiple tags

for the whole time period, it will take quite some time to read all the data from the database

and then transform it to the appropriate format. This was tested, and it took over a minute

to retrieve a graph for large amounts of data, which is not desirable. NB, it is important

to note that it was discovered late in the development that the definite slowest part of this

process is conversion of datetime-objects to string inside pandas DataFrames. It would

be beneficial to store the datetime as a string when receiving new messages to avoid this

problem. Besides transforming timestamps to datetime, and then transforming datetime

to string, there was no particular need for post-processing, except setting the column data

types to uint8, uint16 and so forth for better memory optimization. Still, the speed

problem of reading from database will only increase as the data source keeps growing, but

it could perhaps perform a lot better than previously assumed.

To get around the issue, a Apache Pyarrow Plasma store was used [2]. Apache Arrow is

a cross-language development platform for in-memory data, where pyarrow is the Python-

specific implementation. Plasma is an in-memory object store and is a part of Apache

Arrow, holding immutable objects in shared memory. The flow of the Dash application

implemented was as follows:

First a process is started to allocate memory to a Plasma store that is kept running.

Second a start-up script is started that reads all current data from database, performs post-

processing and transformation to the appropriate pandas DataFrame format, and then

sends the dataframes to the plasma store. The ID to retrieve them again from the store

is then stored in a pickle-file on disk. Finally the Dash application is started. Every

time a graph is to be updated, the complete dataframe of the chosen data set is retrieved
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from the plasma store and then filtered appropriately. A separate interval component in

the Dash layout triggers every n seconds and polls the database for any new messages. If

there are any, it retrieves new messages from database and perform post-processing. Then

it reads the complete dataframe from the plasma store, appends the new data, and sends

the dataframe back to shared memory.

By serializing and deserializing the data this way it is assured that all threads and

workers have access to the most current version of the data, already processed for faster

expedition. This approach greatly improved the Dash app, reducing the processing time

from over a minute down to a couple of seconds.

Performance considerations

A default Plotly scatter plot will use vector graphics (SVG) to render the graphics of

the plot. A limitation with SVG is increased rendering overhead as number of elements

increase. This is a limitation with all interactive web visualizations using vector graphics

for large amounts of data. While one might be able to load the inital plot, interactivity will

be sluggish and hard to use. Plotly state that they have a hard time with more than 500k

data points for line charts, or 40k points for other types of charts [31]. In the IoF use case,

one might wish to see the lifetime of a tag in a single scatter plot, and likely more than just

one tag at the time.

Luckily Plotly also support WebGl, a Javascript web API made to render 2D and 3D

graphics in web browsers. WebGl uses the GPU to render graphics instead. Using WebGl

to make scatter plots, or other supported plot types, we increase speed, interactivity, and

amount of data greatly. WebGL can easily plot 1 million points in scatter plot at once, or

multiple line traces with large amounts of data. The 2D and 3D scatter plots employed in

the Dash application is utilizing the WebGl counterpart for these reasons. The drawback

is that the graph will be rasterized should one wish to export the graph to an image format.

As mentioned, sharing data between callbacks is one of the major challenges in Dash.

An in-memory object store like the Plasma store used made in the IoF app improves

performance of Dash apps in terms of speed. However, it will clearly decrease RAM

performance. A solution to increase speed without the cost of large in-memory stores is
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file-system memoization caching. Setting a function be cache memoized, it will return

the same output for an input it has received before. One could for example store the full

project post-processed data in a file-system cache every 24 hours. A callback updating the

front-end figure would then fetch all previous data (complete cache), and then only read

new data since the caching point from database, post-process it, and append to the existing

dataframe. Caching is not as speed-efficient as the RAM-based Plasma solution, and the

total amount of processing is increased. Nevertheless, it can be a good method to improve

performance, especially if RAM is limited.

Construction of the case-study app

Figure 4.17 shows the implementation of the Dash IoF application. It wasmainly developed

for the case-study, and is therefore not directly applicable to other experiments. However,

generalizing it should not be too difficult. Functionality was prioritized over design and

optimization, and so the app supports several options and customizations. Since Dash is

designed to abstract away web development, it is fairly simple to apply styling and structure

of the webpage. In this case, the design was based on css-files from the dash-bio com-

ponent [32]. In regards to security, Plotly offers robust authentication ready-made for Dash

for commercial users, but there exists a multitude of open-source authentication options

for Flask apps, that can also be used for Dash. Basic authentication was implemented in

the IoF app through the free and basic dash-auth plugin. Figure 4.16 shows a simple icon

designed for the IoF webpage that illustrates the IoF concept.

The webpage is designed to give the user three tabs with a control interface on the

left-hand side: data, plot, and filter. On the right-hand side a large frame for the graph

is placed. The elements of the page are declared as separate html <div> components,

which can be rendered invisible or visible at any time by accessing the display property.

The underlying layout code was written so that whenever the user switches datasets in the

app, the currently rendered components would be turned invisible, and rendering newly

selected components visible. Data tab remains the same, but the plot and filter tabs are

interchangeable, as well as the graph container. In addition there is an About tab on the far

left side of the controls that is static, and a Submit Changes button below the controls. The
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Figure 4.16: IoF illustration icon. Made as ’branding’ of the IoF concept, used in webpage header.

button is also unique for each dataset as separate html components, and it too is rendered

invisible depending on the current dataset.

So each dataset has a group of components tied to them, that are rendered in the

webpage or invisible when changing dataset. Each component therefore also have separate

callback functions, although some of them will be direct duplicates of each other, only

the component they return to will change. The submit button for each dataset is the only

Dash Input to all three graph figure callbacks. This way, the active graph is only updated

whenever the user wants it to, by pressing the button. This reduces delay and performance

issues greatly compared to changing the graph on every interface input change. Another

benefit to this approach is that only one graph is handled each the button is pressed, instead

of performing a callback for each graph even though only one of them is visible. The

other callbacks of the app is fed as State to the graph callbacks, but Input in their

own callbacks, making other changes in the app instantaneous, like switching values in a

dropdown menu.

The alternative approach would be to have only one html component for each part of the
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webpage, and use internal logic in the callbacks to change the contents of the components

(i.e. calculating and returning a tag graph by checking if tag is the currently selected

dataset). This reduces duplication of code, but increases complexity of each callback.

Another approach would be to render all of them at the same time, but this decreases

performance, especially if each graph is displaying a complex plot. Additionally, one

could separate the different datasets in separate Dash apps. By importing shared callbacks

are regular functions, duplication can be avoided, and each appwould be less interconnected

and complex. However, the current design was chosen to allow the user to freely switch

between datasets within the same webpage, while also remembering plot configurations

when switching back, at least in the same active session.

In the data tab, the user can switch between tag, tbr, and positional data. Switching

from tag to TBR would make the tag graph, submit button, and plot and filter tabs, inactive

and invisible. TBR graph, submit button, and plot and filter tabs, would immediately be

rendered active. This design allows Dash applications to remember configurations for a

dataset. Also, the changes happen in the background, so the user would not notice anything

going on.

In the plot tab, the user could select which type of plot they wanted, which data

they wanted on the axes, and customizations of some plot types. These customizations

were marker size, line width, and line type (solid, dot, dash, etc.) for scatter and line

plots. For boxplots one could choose whether to group boxplots or overlay them. By

using the aforementioned callbacks, all of these changes were connected, interactive and

instantaneous. To illustrate the great usability of this, the available data types for plot axes

were automatically changed when switching datasets (temperature only available for TBR

for example). In addition, axis options and customization options were disabled if not valid

for the chosen parameters. Choosing z-axis data was for example only possible for 3D

plots.

The filter tab was used to filter the current data, by setting options that were later used

in the graph callback. Specifically, the callback would use the filter parameters as State

and apply them to the dataset dataframe, before creating and returning the figure object.

All datasets shared some filters, like a start date to end date filter and a time of day filter.
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The tag dataset had a unique SNR filter option as a slider, and shared tag ID selection filters

with the positional data. TBR had unique filters for average and peak ambient noise, as

well as temperature, all implemented as sliders. By "shared" filters it is implied identical

filters, but each had a unique copy when running the Dash code, operating individually of

each other.

Separate real-time monitoring app

Taking the main IoF app as a starting point, a separate simplified app showing tag data

from the last 24 hours was also made to support real-time monitoring of fish. Only basic

scatter plot was available in the app, and only tag detection data, but the customizations

were available, like choosing to have markers, markers+lines, or only lines. All the filter

options too. However, in this app, where the focus was to monitor fish in real-time, there

was no button to update the graph. Instead, an interval component was triggered every n

seconds to update the figure.

In this application, the Apache arrow plasma in-memory object stored was not used. In-

stead, cache memoization was used to store post-processed data from the previous 24 hours

in file-system cache every hour. When the interval callback function was triggered, it would

read from cache by calling a read-data function with the current hour as input. Because of

memoization, the function would immediately return the post-processed dataframe from

file-system. The callback proceeded by calling a similar read-data function that retrieved

all data from start of this hour until current time. The callback combined the dataframes,

created a figure, and returned the updated figure. Notice that the new data is not saved in

any capacity using this solution. Saving would defeat the purpose of caching, since the

read-data function would be called with unique inputs each time, making it impossible to

retrieve the same cache. With the chosen set-up, the app would at most have to post-process

59minutes and 59 seconds of data. When calling the memoized function with a new unique

hour, the function would overwrite the cache of the same hour the previous day.
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Chapter 5
Case study - Aqautraz

To validate the IoF concept, a use case and test was planned and conducted. Work has

been done in cooperation with Midt-Norsk Havbruk AS on their site positioned in Nærøy,

Eiterfjorden, north-east of Kolvereid. They have developed a new sea cage concept called

Aquatraz [28]. The Aquatraz system is designed as a solution to the problem of sea lice

and fish escaping cages. The first meters below water are made of rigid steel (a so-called

lice-skirt), with windows in the frame below 8 meters (fig. 5.1). The water inside the cage

is pumped up from deeper underneath, where the lice is less prominent, and circulated

down and out of the cage through the net further down in the cage. The whole cage can

be raised and lowered on the water surface, potentially easing the process of removing fish

that should be harvested and general operation. The cage is 160 meters in circumference,

8 meters steel skirt, 18 meters net depth, with the lowest net point 32 meters down (when

lowered). When raised, highest structure of the Aquatraz cage is 21.2 meters above the

water level (4.6 meters when lowered).

The IoF system was instrumented at Aquatraz the 5th and 6th of November as part of

co-supervisor Waseem Hassan’s work [17] and for the specialization project prior to this

thesis work [19]. The Aquatraz cage and a normal sea cage was instrumented with 60

acoustic tags, 30 in each. 40 of the tags (20 in each) alternated between sending depth

and acceleration. They transmitted approximately every 60-90 seconds, and had a battery

life of around 9 months. They were sending with frequency 69 KHz. 20 of the tags (10
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in each) sent only depth, every 20-40 seconds, on two separate frequencies different from

the alternating tags. They were sending with frequency 71 and 73 KHz. 3 SLIMs and 3

LAMs with a TBR each were placed in the Aquatraz cage, and 3 SLIMs with 3 TBRs were

placed in the reference cage. LAM stands for LoRa Add-on Module, which is a separate

hardware for IoF which the SLIM module is based on. The LAMs were only there for

redundancy as the SLIM module had not been tested in a full-scale experiment yet. The

cage has metal spokes across that were practical to use for attaching the SLIMs and to

lower the hydrophones some distance away from the cage walls. Figures 5.4 and 5.5 show

images from the instrumentation work, the sea cages, and the equipment used.

Figure 5.1: The Aqautraz sea cage concept by Midt Norsk Havbruk AS and Seafarming Systems
AS. Reprinted from [28]. Copyright of image belongs to Seafarming Systems.

The initial instrumentation was using old software with the old IoF protocol, sending

each packet with fixed 11 bytes. The old LAMmodules and the gateway was removed from

the site early 2019. This was to investigate issues with the gateway, the SLIM modules

were functioning fine, so the LAMs were no longer needed. 10th of May the gateway

was brought back to the site, and set online again. The SLIM modules in both cages was

also updated with new software supporting the newmessage protocol. And the SLIM-TBR

pairs in Aquatraz was moved outside the cage. This was becauseMidt-Norsk Havbruk were
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set to lift the cage 20th of may. If they had been left in their original position, the TBRs

would be hanging in the air high above the water, loosing valuable data of fish behaviour

when lifting the cage frame.

Figure 5.2 shows how the SLIMs and hydrophones were setup on the Aquatraz cage,

where fig. 5.2a shows the original set-up, and fig. 5.2b shows the set-up after 10th of may.

The triangles in fig. 5.2 shows the area of high accuracy for positioning, originally close

to a unilateral triangle. Figure 5.3 shows how the cages are positioned in relation to each

other and the feeding barge (not to scale). In the reference cage, there are 60 support beams

(fig. 5.5) around the cage. Three SLIMs with a TBR each were placed with 20 support

beams between each.
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A

BC

(a)

A

B

C

(b)

Figure 5.2: Setup of SLIMs and TBRs on Aquatraz farm. The thick horizontal blue line in the
middle, and the gray area around the water, shows where it is possible to walk. The blue lines leading
to the middle are metal spokes, which were used to attach and lower down the TBRs from in 1, 2
and 3. The cardinal directions are for reference, where the feeding barge is located approximately
directly south. The triangle illustrates area of most reliable positioning.
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Figure 5.3: Setup of SLIMs and TBRs on Aquatraz farm. The thick horizontal blue line in the
middle, and the gray area around the water, shows where it is possible to walk. The blue lines leading
to the middle are metal spokes, which were used to attach and lower down the TBRs from in 1, 2
and 3. The cardinal directions are for reference, where the feeding barge is located approximately
directly south. The triangle illustrates area of most reliable positioning.
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(a)

(b)

(c) (d)

Figure 5.4: (a) Panorama image of Aquatraz sea cage. (b) Old LAM module to the left, new SLIM
module to the right, connected to a TBR each. (c) TBRs being lowered into Aquatraz cage, about 3
meters deep. (d) Acoustic tags from Thelma BioTel used for instrumenting fish in both Aquatraz and
reference cage. Photos taken by Per Arne Kjelsvik, the author of this paper.
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(a)

(b)

(c) (d)

Figure 5.5: (a) Panorama image of reference sea cage. (b)Debugging on the edge. (c) Barge on-site
as seen from the reference farm. Gateway placed behind window on left corner wall visible in the
image. (d) Acoustic tag being inserted into a salmon. Photos taken by Per Arne Kjelsvik, the author
of this paper.

83



Chapter 5. Case study - Aqautraz

84



Chapter 6
Results

In this chapter, results for implementing IoF back-end and front-end is presented. Both

parts of the application are validated following the lists of requirements defined in chapter 3.

Section 6.3 presents the various plot types that the Dash app supported using case study

data. Section 6.4 shows more plots from the case study to further illustrate visualization

and showcase data from the case study. All figures are generated in the Dash application,

or through a simplified command-line interface. In both cases they are exported as vector

graphics, except the 3D scatter plots which contain rasterized scatter traces, and the 2D

histogram plots without contours. This is a limitation for these plot types in Plotly.

No measures have been taken to eliminate underlying factors in the dataset for the

presentation of data from the case study. This should be kept in mind when assessing what

the data means. The data these figures are based on was collected from the various TBRs

manually, not through the IoF system. This means that all available data from the case

study has been used. This was a natural choice, as the gateway was not on site February -

May, and was offline intermittently after 10th of may before going completely offline 10th

of June. In all figures, the data used is from 6th of November until 10th of May, unless

otherwise stated in the figure text.

85



Chapter 6. Results

6.1 Back-end software

The back-end software was written using Python 3.7.3 and was run in a Python virtual

environment on a Linux Ubuntu Server 18.04 LTS virtual server. The server ran

the main back-end program with a shell script, ensuring that operation would resume if

problems such as power outages cropped up. No apparent issues with the back-end client

surfaced while receiving messages, both when testing in-office and live from the case study.

The back-end successfully unpacked incoming MQTT messages, and subsequently IoF

messages, before inserting them to a database. The incoming MQTT messages were JSON

strings, in the following format:

mqttMessage = {'data': base64-byte-string, 'snr': float}

The 'data' in this context is an IoF message, and 'snr' is a SNR value for the LoRa

transmission of said IoF message. The client unpacked the data, decoded the base64 string

to get the IoF bytes message, processed the bytes to retrieve IoF data, and inserted the

results to database. When finished, the back-end inserted the original base64-string and

snr-value to a backup database. The SNR values of the LoRa transmissions have not been

used or analyzed in any capacity during the project period. If unrecoverable problems arose

while processing an IoF message, the back-end would not attempt to insert the message to

the main database, and when inserting backup of the mqtt message, it would not include a

message ID for that message. This way, all successful messages in the main database could

easily be found in the backup database to inspect the SNR value or look through the IoF

message manually.

A fully working logging system was implemented for the back-end client using the

built-in Python logging package. The logger was set-up as a timed rotating file handler

logger. Midnight each day, the software would create a new log-file in the back-end file

path. This way log files did not grow exponentially in size as time passed on. Every time

a message would fail in unpacking, the software would log the full message, the interval

rowID of the message in backup database, and an accompanying error message. By using

typical try-except-else patterns, the software was able to maintain operation when

faced with errors, and at the same time provide insightful error messages. The logger also
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included traceback information for critical exceptions. There were not observed many

errors per day running back-end, and all errors that did happen, happened as a result of

corrupt messages. An example of this would be a message with an invalid codetype value,

making unpacking impossible.

The main pip-packages used for the development of the IoF back-end are listed below.

They can all be installed through the pip package manager. A specific NumPy version is

installed when installing pandas, as it is built on NumPy.

• paho-mqtt 1.4.0
• pandas 0.24.2

– numpy 1.16.4

• toml 0.10.0
• utm 0.4.2

6.1.1 Validation of back-end

In this section, the requirements defined for back-end in section 3.4.1 are used to validate

the back-end software. To which degree the requirements were met is addressed in the

following lists. The shared requirements (section 3.4.3) for back-end and front-end are

validated in section 6.2.2.

Functional back-end requirements (FRs)

• FR1 - back-end used paho-mqtt as MQTT client, an established and widely

adopted MQTT client for Python .

• FR1.1: Back-end was able to subscribe to specific project-specific topics, but

in the implementation of the case study app, the app was set to subscribe to the

wildcard topic # for simplicity. No method to feed topics through an interface

or file was implemented in the back-end, so any specific topics would have to

be hardcoded in.

• FR1.2: The chosen MQTT broker, mosquitto, handled authentication set-up

such as SSL and username/password. The client enabled these options, and so
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SSL was used with an accompanying username and password. The gateway in

the network layer was not using SSL for mqtt communication.

• FR1.3: paho-mqtt fully supports MQTT version 3.1.1. At time of writing,

only the C library version supports the new MQTT version 5.0.

• FR2 - IoF message parsing was successfully implemented as a sub-package in the

back-end source code.

• FR2.1: The sub-package used the protocol format defined in chapter 4 to parse

messages.

• FR2.2: By using toml-metadata files, the back-end successfully converted raw

data while unpacking IoF messages.

• FR3 - Back-end stored raw, converted and positional data to an SQLite-database

file.

• FR4 - Back-end solved TDOA for incoming messages to find positions.

Non-Functional back-end requirements (NFRs)

• NFR1 - The main run program spawned the client, which is the core of the back-

end, in a subprocess. If the subprocess died, the main program would respawn the

process. In addition, the main program was run as with a shell script on a virtual

server, ensuring that it would restart should a power outage or similar happen.

• NFR2 - Backup of datawas stored in a separate database than themain IoF database.

All messages was stored in backup, but if message parsing or insertion to database

failed, the backup insertion would not include the message ID of the message.

• NFR3 - SQLite was chosen for the persistent storage, a reasonable, flexible, and

easily maintainable solution.

• NFR3.1: Structure and format of persistent IoF data defined in section 4.2.1.

• NFR3.2: Storing raw bytes of the message is only done in backup, and storage

in SQLite database files ensures a widely adopted storage solution.

• NFR4 - All code in back-end was implemented with solid try-except-else

patterns.
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• NFR4.1: Errors were logged with Python ’s built-in logging package. Errors

were logged in separate log-files for each day that changed to the next day at

midnight.

• NFR4.2: The logging package supports 5 levels of logging: ’debug’, ’info’,

’warning’, ’error’, and ’critical’. Only level ’warning’ to ’critical’ was included

in log files by default. All levels were printed to terminal by default.

• NFR4.3: Using the try-except-else blocks, corrupt and invalid IoF mes-

sages were detected, and handled appropriately. Errors were written to log,

and information was printed to terminal. Normal operation of back-end was

unaffected by this.

• NFR5 - Metadata file-system file handling was successfully implemented in the

various modules of the back-end software.

• NFR5.1: A standard format and structured was defined using toml-files.

• NFR5.2: Conversion of data was done in message handling, and it was subse-

quently stored in database along raw data.

• NFR6 - TDOA positioning was implemented in back-end (Appendix A).

• NFR6.1: Back-end initialization would create a separate metadata toml-file

from the main metadata file, that could be used for positioning. In this file,

parameters such as cage radius, center coordinates, TBR locations was saved.

Thus the positioning module could use this to position tag detection triplets.

• NFR6.2: Positional data was stored persistently with XYZ coordinates.

• NFR6.3: Positional data was stored persistently with latitude-longitude coor-

dinates. Back-end would first convert latitude-longitude positions of TBR to

UTM, and then use UTM to create a local coordinate system. When done, the

coordinates would be rotated and translated back to UTM, and then converted

to latitude-longitude. The simple pip-package utm 0.4.2 was used for the

conversion between UTM and latitude-longitude.

• NFR6.4: A method to find triplets fast and efficiently in a complete database

set was developed, see section 4.5.

• NFR6.5: A method to adjust triplets timestamps fast and efficiently was de-
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veloped, see section 4.5.

• NFR6.6: Positioning was performed on each message after it was successfully

handled and stored in database.

• NFR6.7: Positioning on complete IoF database was also implemented suc-

cessfully.

• NFR6.8: Code was written so that one could use the aforementioned metadata

file, or one could use the database GPS information from SLIMs to determine

TBR locations, and not use cage radius and center (no resolving position with

distance from cage center). The changes did however require the developer to

manually go in and change source. No fluent system to automatically switch

over to simpler sources if no metadata was present.

• NFR7 - Conversion of raw Thelma BioTel TBR databases was implemented and

used to convert their format to the IoF format. However, this code can not be shared,

as the structure and inner workings of Thelma BioTel databases are proprietary.

UI back-end requirements (UIRs)

• UIR1 - Command-line interface to setup MQTT connection was implemented.

• UIR2 - Command-line interface to initialize new project was implemented.

• UIR3 - Command-line interface to reset and/or delete current project was imple-

mented.

• UIR4 - No GUI or command-line interface was implemented to enable or disable

varying levels of interface printing / error log writing. It could change manually in

two locations of the code, and a simple command-line option would not be hard to

be implement, but nothing of the sort has currently been implemented.

6.2 Front-end application

The application was developed and run on a linux Ubuntu 18.04 LTS computer that

had 32 gigabytes of RAM. The application was written using dash v0.43.0 in Python

3.7.3. A virtual environment using the default venvwas created to contain code libraries.
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The display screen used to develop the application was a 16:10 1900x1200 display, and this

was also the only resolution the app was tested for. It should scale to different screens, but

smaller resolutions will not maintain the same design, like phone screens, due to limitations

in resolution size.

The application successfully supported multiple users at once using controls to cus-

tomize graphs to analyze, connecting from remote computers. The application was tested

by running the app locally on the development computer. Remote access was given by

opening up the application ip-port to the complete NTNU subnet. No thorough tests were

done to check performance with multiple users, but serving three users at once did not

raise any apparent issues. As detailed in section 4.5.2, basic authentication was imple-

mented with the dash-auth plugin, and the design of the app was based on the dash-bio

component library. The app supported multiple plot types, such as scatter-plot, line-plot,

box-plot, histogram, 2D histogram, 2D histogram contour, 3D scatter, and animation of

3D scatter.

A separate simplified app showing data from the last 24 hours was also made to support

real-time monitoring of fish, where the application automatically polled the database for

new data every 10 seconds, and updated the graph without user interaction if new data was

present. This app only supported basic scatter and line plots. There were no apparent issues

with the real-time application, but extensive testing could however not be performed, since

the gateway went offline intermittently. Eventually the gateway went offline permanently,

making further testing impossible.

The main pip-packages used for the development of the IoF app is listed below. They

can all be installed through the pip package manager. The nested lists indicate the most

important dependencies this version of the package installs. The other dependencies of the

packages are not included for brevity.

• dash 0.43.0

– dash-core-components 0.48.0
– dash-html-components 0.16.0
– dash-renderer 0.24.0
– dash-table 3.7.0
– Flask 1.0.3
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– plotly 3.10.0

• dash-auth 1.3.2
• pandas 0.24.2

– numpy 1.16.4

• pyarrow 0.13.0

The app supported offline download of multiple figure formats, but only to the local

computer it was running on. This requires either the plotly-orca package (not available

through pip), or by installing psutil and using plotlyAPI to export figures. A modified

copy of the app was used to generate figures, where some options were changed to increase

printed readability. For this version psutil 5.6.3 and plotly API was used, which can

be installed through pip. The download option was implemented using a dropdown menu

and a button. This export option ignores any user modification to the active graph, such

as zooming or panning. Normal dash figures support download of graphs as compressed

png files, but in the modified version, that option was changed to SVG. This method only

attainable for files smaller than 2 megabytes, meaning large vectorized scatter traces could

not be downloaded. Nevertheless, this option allowed the user to include modifications,

such as zooming, before saving the vectorized figure.

6.2.1 Validation of front-end

Functional front-end requirements (FRs)

• FR1 - Front-end was implemented as a Dash app, a library that supports a wide

range of browsers by default. No extensive testing was performed, but no issues were

experienced in Google Chrome, Opera, Firefox, or Safari. No additional installations

was required to use the application.

• FR2 - A separate simplified app was created for live updating real-time data graph.

It was operational for around 1 week before gateway went offline. During that time,

the app worked as intended.

• FR3 - The menus was instantaneous to use, while the plotting would take below 10

seconds for the simplest graph, around 10-20 seconds for more involved figures, and

around 30 seconds for the most involved plot (3D animation).
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• FR4 - The implemented applicationwas not project agnostic. It was custom tailored

to the case study, and would not work with any other projects. The majority of the

app could however be reused in other projects, requiring some refactoring of code.

• FR4.1: No documentation for setup of front-end was written.

• FR4.2: No metadata files were used, and so no format or procedure on how to

set-up metadata was defined.

• FR5 - The application supported a wide variety of basic, scientific, statistical, and

3D charts. Section 6.3 showcases all plot types that the app supported.

• FR5.1: Scatter and line plots was implemented (fig. 6.1), filled area was not.

• FR5.2: Boxplots (fig. 6.4), horizontal (fig. 6.3) vertical histograms (fig. 6.2),

and 2D histograms (fig. 6.5) were implemented.

• FR5.3: Contour plots was implemented (fig. 6.6). The heatmap plot type that

plotly provides was not implemented.

• FR5.4: 3D scatter was implemented (fig. 6.7), and for positional data, 3D

animation was implemented (fig. 6.8). Surface plots were not implemented.

• FR5.5: Timeseries plot was implemented (fig. 6.1). The user could simply

choose ’Date’ as the x-axis, and it would be a timeseries plot. A button was also

implemented that would create a rangeslider and navigation buttons to simply

timeseries plot navigation.

• FR6 - The app supported plot customization with controls on the left-hand side of

the application (fig. 4.17). The user had options to customize the look of scatter and

line plots, and boxplots. There was no options implemented to select colors of the

plots, or speciality features such as choosing custom bin sizes for histograms.

• FR6.1: Dash provides several tools for zooming, panning, and other controls

by default in all figures.

• FR6.2: Tools for zooming, panning, and selecting data etc.

• FR6.3: The user could freely choose x-, y-, and z-axis.

• FR6.4: The user could not change axis labels, plot titles, or colors. Function-

ality to adjust marker size and opacity, line width, and line style was however

implemented.
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• FR7 - The user could freely filter the different datasets with multiple inputs.

Non-Functional front-end requirements (NFRs)

• NFR1 - No steps was taken to deploy and host the application. The application was

run on a local computer, opening up access to the port of the app to specific computers.

For testing, the app was opened up to the subnet of IP-addresses belonging to NTNU.

• NFR2 - Basic authentication was implemented with dash-auth, requiring a user-

name/password present in a file on the local computer running app.

• NFR3 - No table view was implemented.

• NFR4 - No data export options was implemented.

• NFR5 - Export of plots was implemented, but only to the local computer running

the application. Dash supports download of compressed png-files of any plot by

default.

• NFR6 - Export of plots: in multiple formats and configurations.

• NFR6.1: The host download of figures supported pdf, eps, svg, webpage, and

jpeg.

• NFR6.2: Figure sizing could not be customized, and the download option

would also disregard any interactive changes to the figure. It would only

download the first view of the graph that the user was served. A Python

script was written using code from the app to export figures manually. This

application has been used to create some of the figures of this chapter.

• NFR7 - The app does not have any option for end-users to provide their own

datasets.

• NFR7.1: No option to upload dataset, so no option to remember user datasets

in-between sessions either.

UI front-end requirements (UIRs)

• UIR1 - No steps were taken to ensure proper dynamic sizing of webpage to differ-

ent devices. No testing was done for other displays than the development display

(1900x1200).
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• UIR2 - No app gallery was created, but a separate application for real-time was

implemented.

• UIR3 - No dashboard functionality was made for the front-end.

• UIR4 - Controls of the app was clearly labelled and intuitive to use.

• UIR5 - Navigation / switching between data sets was done with a single dropdown

menu.

6.2.2 Validation of shared requirements

• NFR1 - All code was written in Python with minimal dependencies.

• NFR1.1: Both back-end and front-end relied on the same version of pandas

and numpy. Front-end relied on three more libraries, dash, dash-auth, and

pyarrow. Back-end also relied on three more libraries, paho-mqtt, toml, and

utm.

• NFR1.2: All code written in Python , with the exception of css-files used for

webpage layout.

• NFR2 - Python 3.7.3 was used for both back-end and front-end. At the time of

writing, this is the newest stable full release of Python . Version 3.7.3 was released

25th of March 2019, while Python 3.7.0 was released 27th of June 2018 [[35]].

• NFR2.1: dash 1.0.0 was released shortly after development of application

was finished, which formalizes the developers promise to not introduce any

breaking changes until the next major version release. All other tools and

libraries are fairly established and stable.

• NFR2.2: None of the chosen libraries and tools have announced plans to stop

development in the near future. Most are relatively modern tools.

• NFR3 - html documentation was produced with the pip-package sphinx. How-

ever, the documentation was incomplete as not all parts of the back-end was doc-

umented, and none of the front-end code was documented beyond simple inline

comments.

• NFR3.1: Documentation in back-end followed for the most part the Google
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styleguide for documentation. Most of the code was well-documented, both

with docstring comments, and type hinting. Front-end was not documented

at all, beyond sensible function and variable naming.

• NFR3.2: Documentation generated with sphinx is included in the source

code as a html webpage.

• NFR4 - Both back-end and front-end needed access to the same database, but only

back-end needed to write to the database. No other dependencies between them.

• NFR5 - All libraries and code used is open-source. Only proprietary parts was in

the form of extra code to translate Thelma BioTel databases to IoF database.

• NFR5.1: IoF is available in an open-source repository [20]. At time ofwriting,

the front-end application cannot be run, as it depends heavily on the case study.

• NFR5.2: All code used is open-source.

• NFR5.3: No proprietary libraries or tools used.

6.3 Front-end plot types

In this section, the various plot types supported by the Dash application are presented.

Some plots of each type the app supports are presented. Figures 6.1 to 6.8 show examples

of all plot types supported in the front-end application. Section 6.4 presents additional

figures showcasing data from the case study.

Figure 6.1 show examples of scatter and line plots in Dash, in this case the depth of

two fish in Aquatraz 1 week in march (12.03.2019 - 19.03.2019). A similar pattern such as

the one these two exhibited was observed in most of the fish, namely a pattern where the

fish stay at a certain depth for most of the day, before swimming to another depth, and then

returning to the same depth. Regardless of which way the fish swam, the time window they

fish swam around was seen to be from 7 to 16 in the start of the project period. However,

as the case study progressed, this window of activity was gradually shifted to a window of

activity closer to 6 in the morning and 18 in the afternoon.

Figure 6.2 shows examples of vertical overlaid histograms in Dash, in this case dis-

playing the SNR value of all tag detections in both case study cages. Figure 6.2 shows the
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Figure 6.1: Scatter and line plots. (a) Scatter plot for the depth of two fish 1 week in march. (b)
Line plot showing a zoomed in view (March 15th) of the same chart.
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total SNR, fig. 6.2b shows SNR from 7 in the morning to 16 in the afternoon, and fig. 6.2c

shows SNR from 16 in the afternoon until 7 in the morning. Aquatraz was seen to have

worse SNR values, with the total histogram centered around 23, while reference cage was

centered around 26. However, take note of how reference SNR varied in figs. 6.2b and 6.2c.

Figure 6.3 shows examples of non-overlaid horizontal histograms in Dash, in this case

the depth distribution of three tags in Aquatraz. As can be seen in the histograms, the three

tags were observed with distinct depth distributions. In the data from the beginning of

project period (first month), several fish in Aquatraz were observed to be distributed around

two depths, more aligned to a bimodal distribution than a unimodal one. Figure 6.3b shows

some resemblances to a distribution like this, but the lower peak is clearly not as well-

defined. In reference cage no tags were observed have a bimodal distribution. Reference

tags were also observed to have varying depth distributions.

Figure 6.4 shows examples of boxplots in Dash, in this case boxplots of TBR data in

both Aquatraz (fig. 6.4a) and reference (fig. 6.4b). The boxplots show how ambient noise

average measurements vary with the hour of day. Notice that one TBR in Aquatraz, TBR

735, had a consistently higher boxplot noise average than the other two TBRs, and with

slightly larger standard deviation too. In reference, one can see that two TBRs (730 and

734) had higher noise averages, and a greatly increased standard deviation from 8 until 16

in the day. The last TBR in reference, TBR 836, can also been seen to have had increased

noise average in these hours, but much less pronounced. Figures 6.10 and 6.11 in the next

section show a more detailed view of the same boxplots.

Figure 6.5 shows examples of 2D Histograms in Dash, in this case 2D histograms

of time of day and SNR value in both case study cages. This plot type is at the time of

writing not possible to export from Dash or plotly in vector graphics format. In fig. 6.5a

the SNR and time of day relation in Aquatraz, fig. 6.5b in reference. From the plots, it can

be perceived that Aquatraz had a less varying SNR value, with only a slightly degradation

during midday. Reference had on the other hand a wider span of values centered around

a higher SNR value, with a much more drastic degradation in SNR quality in the midday

below Aquatraz in the same day window. A significant difference in intensity can also be

observed between midday and the rest of a day for the reference cage.
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Figure 6.2: Histogram plots with two histograms overlaid. (a) shows the SNR value of all tag
detections from 6th of November until 10th of may i both cages. (b) shows the same, but only for
tag messages between 7 in the morning and 16 in the afternoon. (c) shows the same, but only for tag
messages between 16 in the afternoon until 7 the next morning.
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Figure 6.3: Horizontal histogram plots of depth data for three tags in Aqautraz.
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Figure 6.4: Boxplots with hour of day on the x-axis and average ambient noise value on the y-axis.
(a) Boxplots for the Aquatraz cage (b) Boxplots for the reference cage
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Figure 6.5: 2D histogram of SNR and time of day. Each column in the graphs is one hour of the
day. (a) 2D histogram for Aquatraz cage (b) 2D histogram for Reference cage
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Figure 6.6 shows examples of 2D Histogram contour plots in Dash, in this case 2D

histogram contour plots of time of day and depth in both case study cages. These plots

show a similar trend to fig. 6.5, where the values midday are different from the rest of the

day. Again, the reference cage plot can be seen to have less intensity during midday as

well. For these plots, depths below 25 in Aquatraz were ignored in an effort to maintain

equal axes between the two graphs. The tag messages with a lower depth than 25 did not

affect the contour plot of Aquatraz, so no valuable information was lost due to this filtering.

Figure 6.12 in the next section shows a similar plot, but for ambient noise average over the

project period, and fig. 6.13 shows a time of day depth contour plot of all detections with

the lowest possible SNR value, 6.

Figure 6.7 shows an example of a 3D scatter plot in Dash, in this case a 3D position

plot of found positions of two tags (10 and 97) in the Aquatraz cage. This plot type is at the

time of writing not possible to export from Dash or plotly in vector graphics format. The

cage model is accurate in and also its relation to the location of the Aquatraz TBRs. The

cage model was plotted as three circles (line plots), and several line plots originating in

that circle, leading down to the lowest circle, before meeting in the bottom center point of

the cage. The middle circle in the plot, best seen in figs. 6.7c and 6.8, is located at 8 meters

depth, indicating that the windows in the steel frame of Aqauatraz were located below this

circle. The triangle shows optimal locations in terms of PDOP (section 2.2.4). A similar

cage model without the middle circle was implemented for the reference cage. Tag 10 was

rarely found at a depth above 5 meters or below 25 meters. Tag 97 on the other hand was

evenly distributed around the whole cage. The position fixes were filtered both by using

time of arrival, and distance from center of cage. The distance threshold was set to 1.1×

cage radius. As seen in the figure, this allowed some locations to fall outside the cage.

Figure 6.8 shows an example of a 3D scatter animation plot in Dash, in this case

showing one frame of a 3D position animation for one tag. This plot type is at the time of

writing not possible to export fromDash or plotly in vector graphics format. The animation

plot allowed the user to play and pause as they pleased, and while paused, the user could

rotate, pan, zoom etc. as they desired. The rangeslider below could also be dragged to

manually adjust the current frame. The animation was limited to 15 points per frame
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Figure 6.6: 2D contour histogram plots of depth and time of day. (a) 2D contour histogram for
Aquatraz cage. There was data for depth 25 to 32 meters too, but they were not included for this plot.
Does not make a visual difference, so equal axis between the two subfigures was prioritized. (b) 2D
contour histogram for Reference cage
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Figure 6.7: 3D scatter plot of two tags. (a) shows a view far-off. (b) shows the cage from down
under. (c) show a zoomed-in view from the same angle as (a).
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to better follow the movement of most recent position, highlighted in yellow. The user

would be warned with a pop-up to avoid selecting large date periods, as this would increase

processing time greatly. The steps of the rangeslider are nonlinear due to the nature of

positioning in this system.

Time: 2019-04-09 05:53:38

2019-04-05 00:15:20 2019-04-05 23:39:44 2019-04-07 04:18:29 2019-04-08 13:04:09 2019-04-09 10:49:12 2019-04-09 23:11:52 2019-04-11 01:02:10 2019-04-12 08:03:07 2019-04-12 22:40:29

3D fish (tag 10) position animation

Play Pause

Figure 6.8: A 3D animation was also implemented in the app. Buttons allowed the user to play and
pause the animation. One could also pause the animation at any time, zoom around, rotate, and also
drag the animation slider manually.
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6.4 Additional case study figures

Additional graphs building on the figures presented in section 6.3 is presented in this

section, showcasing insightful data from the case study. These figures, figs. 6.9 to 6.23,

are included to fully demonstrate the versatility a tool like the IoF app can offer. A brief

discussion on the main results of the data in the figures of this chapter is given in chapter 7.

Figure 6.9 shows how temperature developed through the case study period, from 6th

of November 2018 to 10th of May 2019. By comparing figs. 6.9b and 6.9c, one can see

that the temperature was more stable in the Aquatraz cage than the reference cage, where

the difference in temperature between each TBR was greater. The spikes of the graphs

are from removing the TBRs from the water due to changing batteries and offloading data

from them. When a TBR is lowered back into the water, the internal temperature sensor

needs to readjust to the water temperature, thus creating spikes on plots like these.

Figures 6.10 and 6.11 reveal zoomed-in views of fig. 6.4. In fig. 6.10 the boxplots

go from midnight until 5 in the morning. Again, one can see more clearly that one TBR

in Aquatraz had a consistently higher noise average value. This is the TBR located to the

"north-east" in fig. 5.3. The boxplots go from 10 in the morning until 15 in the afternoon

in fig. 6.11. The noise average is unchanged for the Aquatraz cage, but the observed noise

average in reference has increased greatly for two of the TBRs, with slightly higher values

in the third. The boxplot with lower values was the one located "south" (downwards) in

fig. 5.3.

Figure 6.12 shows how the noise average has developed over the project period in both

cages. As one can see in fig. 6.12a, the noise averageAqautraz increased inNovember before

it slowly decreased until early February, where it stabilized, and then further decreased

somewhat after passing into March. The average noise value was also varying less as

time passed. In contrast, fig. 6.5b shows an unchanging noise average in reference. The

average noise was quite low compared to the Aquatraz cage throughout, becoming even

more concentrated and stable in March.

Figure 6.13, like fig. 6.5, shows a contour plot of hour of day and depth of tags.

However, in this figure, only tag detections with the lowest SNR value possible is included.

So the data use are all observed tag detections in both cages with SNR 6. As both plots
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Figure 6.9: Line plots of temperature in both cages. The spikes in the plots are from removing the
TBRs from the water to offload local data and change batteries. (a) Shows temperature readings for
all TBRs from 06.11.2018 - 10.05.2019. (b) shows temperature in Aquatraz 25.12.2018-25.01.2019.
(c) shows temperature in reference 25.12.2018-25.01.2019.
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Figure 6.10: Boxplots with hour of day on the x-axis and average ambient noise value on the y-axis.
(a) Boxplots for the Aquatraz cage (b) Boxplots for the reference cage
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Figure 6.11: Boxplots with hour of day on the x-axis and average ambient noise value on the y-axis.
(a) Boxplots for the Aquatraz cage (b) Boxplots for the reference cage
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Figure 6.12: 2D contour histogram plots of ambient noise average and date. (a) 2D contour
histogram for Aquatraz cage. (b) 2D contour histogram for Reference cage.
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show, these signals are typically occurring aroundmidday. In addition, far less tag detection

with this poor SNR was observed in reference, where less than 5 were observed before 7

and after 16 on any given day.
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Figure 6.13: 2D contour histogram plots of depth and time of day of all tag detections. Data
visualized are only from tag detections with the lowest possible SNR value, 6. (a) 2D contour
histogram for Aquatraz cage. (b) 2D contour histogram for Reference cage. Notice that for the
reference cage the x-axis only goes from 7 in the morning to 16 in the afternoon
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Figure 6.14 is a line plot based on data received through the IoF back-end after 10th

of May. It is included here to showcase how the gateway lost connectivity several times,

before going completely dark 10th of June.
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2019
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Figure 6.14: Line plot showing periods of gateway offline after reinstalling gateway 10th of may
through a timeseries depth plot for a tag. The gaps in data are due to gateway going offline. The
gateway did not come online again after June 9th.

Figure 6.15 consists of two histograms that shows number of detections throughout the

case study, where each column represent number of detections 6 hours of a day. The first

column starts at 9 in the morning 6th of November. An oscillating pattern was observed in

the reference cage detections (fig. 6.15b), that gradually became less pronounced as time

went on. Other than that, both cages showed similar number of tag detections in a similar

trend, although the reference cage had less sharp drops and rises, and had higher peaks

than Aqautraz.

Figure 6.16 shows number of tag signals from Aqautraz successfully detected in the

reference cage. In other words, this figure shows the leakage of data from Aquatraz to

reference that was present. While leakage did occur the other way around, not nearly as

many detections were found.

Figure 6.17 shows the noise average distribution in both cages, where fig. 6.17a shows

the distribution from 06.11.2018 - 07.02.2019, and fig. 6.17b shows the distribution from
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Figure 6.15: Histogram of all tag detections in both cages. Each bar represents all tag detections
within 6 hours, starting at 9 in the morning for the first bar 6th of November. number of detections
that day. (a) Histogram detections in Aquatraz cage. (b) Histogram detections in reference cage.
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Figure 6.16: Horizontal histogram of Aquatraz leakage to reference cage. This plot shows tag
signals with origin in Aquatraz that have been successfully received in the reference TBRs. The bars
represent number of times a signal has been detected at that particular depth.

07.02.2019 - 10.05.2019. Reference was observed, like in fig. 6.12, to be more or less

constant, whileAquatraz became less prone to high noise, though still higher than reference.

Figure 6.18 shows how SNR values developed for tags with frequency 69 throughout

the project period. Both figures, i.e. both cages, was observed to have a decrease in SNR

from December until mid-February, where they stabilized.

Figure 6.19 show number of successful TDOA positions found with one day for each

column. For Aquatraz (fig. 6.19a), a sharp drop happened 18th of December, before

regaining positioning 16th of January. 10th of February they positions died out again,

before more solutions started to be found 02. April. For the reference cage (fig. 6.19b), a

similar story, except nothing between 18th of December and 2th of January, except a few

in early March.

Figures 6.20 and 6.21 shows the xy contour plots of tags that had frequency 71 and 73,

i.e. tags that in this case study sent only depth data, but did so around every 40 seconds,

from start 06.11.2018 until around 7th of February 2019. Figure 6.20g is an example of a

tag that there was found many positions for. Figure 6.21i is an example of a tag that there

was not foundmany positions for. The xy-coordinates are defined as outlined in section 2.2,
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Figure 6.17: Histogram showing number of times different noise averages have been detected. Noise
average values over 60 is not included in the graph, as there were few occurrences compared to the
the rest. (a) Shows noise average histogram from 6th of November until 7th of February (b) Shows
noise average histogram from 7th of February until 10th of May.
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Figure 6.18: 2D histogram contour that shows SNR compared to dates of tags with frequency 69.
(a) SNR development Aquatraz cage. (b) SNR development reference cage.

117



Chapter 6. Results

Dec 2018 Jan 2019 Feb 2019 Mar 2019 Apr 2019 May 2019 Jun 2019
0

1000

2000

3000

4000

5000

6000

7000

Histogram

Date

'F
re

qu
en

cy
'

(a)

Dec 2018 Jan 2019 Feb 2019 Mar 2019 Apr 2019 May 2019 Jun 2019
0

2k

4k

6k

8k

10k

Histogram

Date

'F
re

qu
en

cy
'

(b)

Figure 6.19: Histogram of date of found positions in both cages. Each bar represent 2 days, the
height being number of positions found in those 2 days. (a) Shows found positions in Aquatraz (b)
Shows found positions in reference
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with TBR A, B, and C following the setup in fig. 5.3. As fig. 6.19 shows, no positions were

found in reference between 18th of December 2018 and 2. April 2019. This means that

there was far fewer positions underlying the reference cage plot in fig. 6.21. Figures 6.22

and 6.23 shows the same, but this time for all tags with frequency 69, which sent depth

around every 2 minutes.
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Figure 6.20: XY contour plot of tags with frequency 71 and 73 in Aquatraz.
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Figure 6.21: XY contour plot of tags with frequency 71 and 73 in reference.
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Figure 6.22: XY contour plot of tags with frequency 69 in Aquatraz
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Figure 6.23: XY contour plot of tags with frequency 69 in Aquatraz
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Discussion

Details on the design and chosen implementation of the IoF system was given in chapter 4,

with accompanying discussion for the various parts. In this chapter, the main results of the

development of IoF is discussed through the lens of the project goals presented in chapter 1.

Improvements for future work on the IoF system is also presented.

7.1 The IoF concept

Acoustic telemetry has been deemed feasible in commercial sea cages to monitor depth

of fish in real-time by [11], where acoustic communication in the sea-cages were not

strongly impaired by factors such as fish density and local noise. While the results of data

transmission in the reference cage are not as favorable in this use case, the performance

overall is quite good, and it provides valuable data not possible to obtain without acoustic

telemetry. Acoustic telemetry has long proved its usefulness in research on wild fish, and

it has proven its place in commercial sea cages too. The sound environment is important,

and an unforeseen consequence of instrumenting fish for the case study was tag leakage.

A potential factor to reduce corruption of data is a stronger checksum in the acoustic

transmissions.

When viewing the data from the case study from the original back-end application, it

was clear that the capacity of LoRa was breached several times. This problem has been
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alleviated with a new protocol that is able to send many more messages per minute, most

likely more than the TBRs are able to detect within each transmission. The configuration of

LoRa can also be modified to allow more transmission, but this will be at the cost of spread

factor and range. Alternatively, one could modify the SLIM to transmit data in periods of

lower tag interference, to better optimize the bandwidth usage, but this somewhat defeats

the purpose of using acoustic telemetry to monitor fish in real-time. LoRa is generally not

well-suited for real-time application due to the limitations on data rate, but in an acoustic

tag setting, the bottleneck of data rate will often be in the acoustic messages. The battery

performance using LoRa is great, and so the networking protocol is well-suited for IoT-

devices in conditions where battery is important. In comparison, using mobile network

solutions from telecommunication providers drains battery life greatly. Considering the

issue of reaching data limits solved, one can be comfortable with LoRa as a solution for

the IoF system.

7.2 Aims of the thesis

The first goal was to identify and describe the requirements to the IoF system. Having no

knowledge about acoustic telemetry, LoRaWAN, and MQTT at project start, Fall semester

2018, this was an important step. A NTNU specialization course on oceanographic

instrumentation and biotelemtry [23] was of great help in this regard, and by self-studying,

the concept of MQTT and LoRaWAN was also approached. Hands-on experience with

hardware from Thelma BioTel was gained through the case study. With a SLIM module

and TBR already designed to function as the perception layer, and a chosen gateway for

the network layer, the requirements of these two layers were easy to define. The overall

network architecture was also quite clear, but some refinements to better explain the flow

of data from a tag in a fish to a hard drive far away was done during the thesis development.

The requirements of the application layer is however another story.

As an cybernetics engineering student there was no background or experience to lean

on when it came to web technology and web development. In addition, having close

to no experience with Python, or large application software development alone, a lot of

topics needed to be delved into. A new world of best practices, programming language
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specific features, and principles and tools needed to be understood. Spending time to

research what options exists to fill the vacant spot of the application layer, finding out

their differences, experimenting with implementing simple versions of them, and learning

concepts such as SQL and the MVCmodel. While the back-end software developed during

this periodworkedwith the then current perception and network layer, themessage handling

was poorly developed, and it needed thorough rework when implementing new message

formats. While very valuable experiences were gained during this period, the goal and

purpose of the application layer was less clear, exemplified in loosely define requirements

to the application layer. Better defining the goals of the application layer was therefore

an early priority for the thesis work. With a backpack full of knowledge and insight in

Python programming for web software applications, a more thorough approach to defining

requirements for application software was completed. This bore fruits, as can be seen in the

detailed requirements of chapter 3. It is by these requirements the IoF system is evaluated.

The next main objective of the thesis was to identify all relevant data types and define

corresponding message formats, protocols, and network transports from end-device to IoF

back-end. Related to this goal was the goal of implementing the full IoF protocol on

the SLIM hardware, preferably with better compression methods to optimize LoRaWAN

bandwidth. As already mentioned, the main groundwork for the new message protocol

was done in the specialization project, in the form of suggestions of improvements. The

data types of the system was also identified. Revisiting those suggestions, and iterating

on them further, the current protocol format was reached. This was presented in detail in

chapter 4. However, no time so far in this paper has been spent on development for the

SLIM hardware.

As the main focus of this thesis is the application layer, little focus has been given to

the SLIM module, despite around a month of work to understand, design, and implement

the full working protocol in SLIM. A large portion of that time was spent on debugging

unknown errors, like incompatible SDK versions, as is typical for hardware development.

The software for SLIM is written in C, and is developed by co-supervisor Waseem Hassan.

Understanding a relatively large codebase without any prior knowledge takes some time.

Luckily, the code was written so that the main modifications needed were only in two
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functions dealing with unpacking data received from TBRs. Bit and byte manipulation

was written here to achieve the new protocol format. In the LoRa packing of messages,

modifications were also needed, to accommodate the new header format. And SLIM packet

sending needed to be implemented.

The SLIM software currently supports all possible communication protocols, SLIM

IoF packets, and it uses less bytes. Before, the maximum number of detections was 11,

which would use 123 bytes (with header). During the case study in the fall, 10 tags sending

a message every 40 seconds was present in both cages. Thus the data load limitations could

be fully tested. However, this could not be tested in the same manner after implementing

the new protocol, since the batteries of these tags had died out. Despite this, some IoF

messages containing 17 detections were received after updating SLIMmodules at Aquatraz

site, most likely due to some buffer buildup in SLIM resulting in two IoF messages as one.

17 detections + an accompanying SLIM packet and header use 118 bytes. It is clear that this

is a major gain in data rates, allowing for more complex instrumentation of experiments.

The implementation in SLIM was in other words a success. There are still problems with

the SLIM, however, such as the timestamp drifting, and at times inconsistent GPS readings.

Choosing and implementing a flexible solution for storage of IoF data was also an

important objective. The different options and thoughts behind them are presented in

detail in chapter 4. The end-result is an SQLite database perfectly suited for the IoF

system. But there are some additional considerations that is worth mentioning as a design

flaw of the currently implemented solution. First of all, PRIMARY KEY can be defined

uniquely by using multiple columns to do so in the IoF database tables. This is a discovery

made late after completing development, which is why it was not implemented. It would

improve database lookup time. Another important factor is the fact that post-processing of

IoF data takes a lot longer than reading from database, converting timestamp to datetime

to string being the most time consuming culprit. By preprocessing this transformation

and adding it as an additional column in the database tables would increase performance

greatly, potentially to the point where reading all from a database file can be sufficiently

fast.

Finally, the objectives of the study was to demonstrate IoF by implementing a IoF
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web-based application front-end for the case study, targeting 2/3D visualization of fish

space usage in Aquaculture sea cages. And to plan and conduct tests to validate the IoF

concept with the described use case. The validation of the IoF concept was done through

the requirements to the application layer, and the exported plots from the front-end are

demonstrations that illustrate the IoF concept for the use case. In addition to the material

presented in chapter 6, a short video series was made demonstrating the the application

live [21]. Looking through the requirements, one can see that most of the functional

requirements are met. At the same time, most of the non-functional and UI requirements

are not met. These would greatly increase the quality of the IoF app as a tool for future

use. The application performed well for the case study, but it is important to criticize the

software quality of this part of the system.

First of all, the code remains largely undocumented. While typical dash code is quite

self-explanatory, proper documentation is always useful. Second, there is a lot of code

duplication that most likely could be avoided. While some steps were taken to reduce code

duplication, with the chosen design for the webpage layout, it cannot be avoided. Third,

the application is one big Python file. Dividing the different parts logically elsewhere

would improve quality of code, for example all callbacks in a separate file. Furthermore,

the application code will only work for the Aquatraz case study. While it is true that

the design and meat and logic of the application can be reused elsewhere, the code is so

intertwined with the project that it would be hard for an outsider to know where to begin

pulling it apart. Lastly, work should be done to look into how to better solve the problem

of sharing data between callbacks. While the in-memory object store works well, perhaps

it is a solution with more overhead than needed for most IoF experiments. The focus was

mostly on getting everything to work, not necessarily the best way to do so. Thus, the

quality of this component is worse than the rest of the system. Luckily, these flaws cannot

be experienced by the end-user in the web browser.

Regarding quality of back-end, it is well-formed. More or less all requirements for

back-end have been meet, including NFR and UI requirements. Improving documentation,

enabling project-specific MQTT topic subscription, and enabling logging options through

a command line interface, remain as NFR and UI requirements not met. These are minor
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parts that can easily be improved upon. Improving the persistent storage by including

timestamp converted to date as a string, and using PRIMARY KEY constraint also remains

as useful steps to take for improving the overall IoF system. Also, publishing back-end as

a package on the Python Package Index (PyPi) could also be useful to make installation

even easier, as it would enable installation through the pip manager.

7.3 Case-study data analysis

There are some interesting results found from the case study that is worth writing briefly

about. The findings concern both fish behaviour and consequences of the chosen case

design. However, no work has been done to remove biases from the data, or to process

the data in any additionally capacity. As such, the following analysis is not meant to give

definitive answers to the situation of the cages, but rather illustrate some of the interesting

and unknown data that can be observed with the IoF system.

First of all, most of the fish seemed to follow a pattern similar to the one shown in

fig. 6.1. Figure 6.1a shows how two fish alternate between depths, in a near perfect opposite

pattern. Similar behavioural patterns were found in [11], where the fish swam deeper in a

time frame of the same length, centered around midnight and not during daytime like tag

46 of the figure. The same behaviour with deeper depths during the daytime, and closer

to the surface, was observed in [13]. Furthermore, fig. 6.3 shows how the fish seems to

have preferred depths that vary between them. Individual behaviour is complex, and there

are many factors that can influence what is seen through the IoF data, such as temperature,

feeding, genetics, and environmental parameters like current and salinity.

Figure 6.6 shows where the fish stay during the different hours of the day. Interestingly,

at least in the Aquatraz cage, the fish seems to follow the pattern of staying close to the

surface, and then swimming deeper during the active window. In the reference cage,

the amount of detections go down significantly within this window. This can be seen in

fig. 6.15b, where all spikes have rapid increase and decreases. Notice also that the size of

these variations decrease mid February. This coincides well with the tags sending updates

frequently dying out late January / early February, which is also reflected in the number of

detections in the figure. Some degradation of quality in this window can also be seen in
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Aquatraz when viewing fig. 6.5a. But the total detections seem not to be affected like they

are in reference.

This is further seen when viewing figs. 6.4, 6.10 and 6.11. It is clear how the noise

is much more varied in reference with much higher values in the active time period. The

interesting part is that the two TBRs closes to the Aqautraz cage are the two reporting much

larger noise average values. Figure 6.16 shows that Aquatraz tag signals leaking to the

reference cage definitely happen, and while it happens from reference to Aquatraz too, it is

by far a lot less. The fish swimming deeper during the active windowmeans that they swim

around the windows, giving clear line of sight to the reference cage. This could explain

the increase of noise average during these hours, in addition to a more complex image if

one assumes that the fish swims around more actively. The Aquatraz TBRs are protected

by the cage the other way around. In Aquatraz, the one furthest away from the reference

cage have a consistently higher value than the others. Using line of sight as argument, this

could make sense, since it will be the most exposed to the reference cage. When viewing

boxplots for the limited data after 10th of may, when the setup of TBRs in Aqautraz was

moved (fig. 5.2), TBR 732 becomes the one with the absolute worse noise, and TBR 837

becomes pretty bad to. Actually they follow the pattern of reference, low good values,

except for the active window.

This can indicate that leakage is not the sole reason for degradation in noise quality. The

case after 10th of May is actually a good one. The TBRs are hanging 10 meters deep, right

outside Aquatraz windows, getting clear line of sight to most of Aquatraz and reference

all the time. Despite this, the noise average becomes around 5 times worse from 7 until

16 for TBR 732. Why not constantly worse? 735 actually improved greatly, becoming

very stable and low in noise, except some more noise midday. And why is the effect less

pronounced in the other two, especially 735 which actually got better for all times of the

day. It is difficult to tell for sure as underwater acoustics is incredibly complex. One would

believe that the noise average situation would improve over time as more tags go offline,

but apparently it does not, at least in the reference cage figs. 6.12b and 6.17.

For Aquatraz on the other hand, the noise average did improve over time, seemingly fol-

lowing a downwards trend in tact with the frequent updating tags coming offline (fig. 6.12a).

129



Chapter 7. Discussion

This fact makes sense. The noise average measurement in TBR is a quite narrow band

that is set to listen at 69 KHz in the case study TBRs. So it is in reality only viewing the

ambient noise of that specific frequency. In reference, normal water, the tag signals are

distinct from each other. But inside Aquatraz, reflections in the wall will lead to distortions

of signals, as a sort of filter, leading to some of the tags with frequency 71 or 73 being

detected within the ambient noise bandwith of the TBRs.

Figure 6.18 shows a weird result. The SNR of tags with frequency 69 becomes worse

fromDecember to February, in both cages, although the data is more spread in the Aquatraz

case. And then a peak in the end of March in Aqautraz with improved SNR. This is most

likely related to the total number of detections in frequency 69. Figure 6.15 shows all

detections, including 71 and 73, but when viewing the detections for only 69, it is observed

that when the detection number goes up quite a lot, the SNR value at the same time goes

down, which makes sense. The sudden peaks up and down in number of detections is

difficult to explain, as the acoustic factors are complex. But it is clear that the number of

detections stabilize early February after the last 71/73 tags die out.

Figure 6.19 shows when the batteries of the SLIM modules died. The sharp drop of

positions found stem from TBR clocks going out of sync, a clear sign of SLIM battery

dying. The sharp comebacks are from directly after replacing batteries. It is unclear why

barely no positions were found from 16th of January to 2nd of April in the reference cage.

Figures 6.20 to 6.23 shows XY contour plots of the fish in both cages. It is clear that some

fish prefer to stay at certain parts of the cage, assuming the data can be trusted. One can

also see that some of the fish have fallen out, resulting in a densely concentrated contour

plot from a static location.

There are two reasons to present this analysis. One, to illustrate some of the limitations

of the case study. To properly compare how fish behave in an Aquatraz cage compared

to a reference cage, it would be beneficial to remove the underlying causes for noise and

degradation, and to switch batteries in SLIM modules before they die, thus finding more

positions to potentially gain a deeper understanding of their swimming behaviour. It is also

unfortunate that the acceleration data was mostly ruined. A solution for the noise problem

could perhaps have been to instrument the fish in Aquatraz with frequencies 68, 70, and 72.
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That way, tags interfering with each other would be less of a problem. However, another

reason why the noise and complexity increase from 7 in the morning to 16 in the afternoon

could be because of day-to-day operations. Equipment such as boats driving around the site

can influence the acoustic conditions. If that is the case, it would be difficult to eliminate,

and the case study would accurately reflect how the Aquatraz cage differs.

The other purpose of including this analysis is to showcase the breadth of questions that

arises from having access to visualization of data like the IoF app offers. The main focus

was on noise and limitations of the study, but countless hours have been spent just browsing

through the data, looking for clues, seeing connections and so on. That is the best demo to

illustrate the value of the IoF concept. While the analysis presented here might not find the

correct reasons for why we see what we see, it does not matter that much, as the focus of

this paper is not on the actual data (beyond benefits and flaw of the IoF system), but rather

the IoF concept as a whole. And one thing is for sure, it definitely inspires the mind to take

a deep dive into the data and find answers. And that is what IoF is all about, learning by

exploring data. Gaining a peek into the lives of fish that no other data gathering method

can offer.
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Chapter 8
Concluding remarks

8.1 Summary

In this thesis, the Internet of Fish concept has been presented and realized. The system

uses acoustic telemetry, local wide area network, and internet to transmit data from fish

to the internet. In the perception layer of the system, the acoustic tags produce signals

that real-time hydrophones receive, which synchronization and LoRa Interface modules

transmit with LoRa to a gateway in the Network layer. This gateway subsequently converts

the data to MQTT and sends it to a MQTT server in the application layer, which forwards

it to the appropriate subscribers. Here a back-end MQTT client is running to receive the

data, unpack it, and store it persistently in storage, and perform difference of time of arrival

positioning on the incoming data. Finally, front-end software polls the same database

for new messages, and makes the data available to end-users through a front-end web

application.

The concept was proven and tested with a use case study. Previous work in the

specialization project used the same case study, but did not support an interactive web

application, and both back-end software andmessage compression was flawed. For the case

study, acoustic tags were placed in 30 fish in the Aquatraz sea cage, and 30 fish in a normal

sea cage on the same site location, owned and operated byMidtNorskHavbrukAS. The tags
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and hydrophones used are produced by Thelma BioTel, and the synchronization and LoRa

Interface module is made by PhD-candidate Waseem Hassan and associate professor Jo

Arve Alfredsen. The software for the module was updated during development to support

a new design of the IoF message protocol that compress data. Sending status packets with

positional data was also implemented. The gateway used is the MultiConnect© Conduit

™produced by MultiTech. A virtual Ubuntu 18.04 LTS server was set-up on NTNU

to run the MQTT server. The back-end client application developed for this thesis was also

run on this virtual server, and the local development computer. The message handling of

back-end was completely redone, and major other parts of the back-end was also rewritten,

refactored, and expanded. TDOA-based positioning was implemented in back-end. A full

web application that showcase the potential of the IoF concept was made with Dash by

Plotly, and data collected from the use case was presented through the front-end. The

front-end application was specifically made for the case study, but making it work for other

projects in the future seems feasible.

The project work has shown that the Internet of Fish concept is a viable concept for

real-time monitoring of live fish in commercial sea cage situations. The data from the

use case seem to suggest varying individual behaviours of the fish, as well as differences

in behaviour between the cages. Some differences are to be expected since Aquatraz

is a larger and deeper cage made of steel. In the Aquatraz cage, the noise conditions

are generally worse than in the reference cage, but the hydrophones are less affected by

worsened ambient noise conditions from 7 in the morning until 16 in the afternoon. A

new IoF message protocol was implemented, greatly saving on the amount of data being

transmitted. The data collected has been explored, but not in great depth, as it was only

meant to illustrate the power of IoF in the context of this thesis. Gateway has disconnected

multiple times when testing the system, before losing connection completely. All other

components of the IoF system has been runningwithout downtime. No unwanted behaviour

has surfaced in back-end or front-end of the application layer. The implementation of IoF is

now fully implemented, making IoF a true reality. The culmination of the past year of work

has resulted in a useful tool to have for both commercial implementations and research.
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8.2 Future work

There are a couple of improvements for the different layers of the IoF system that should

be explored in the future.

Firstly, finding ways to further optimize battery usage in SLIM modules would be

beneficial, to maintain synchronized times longer. One way this could be achieved would

be to have a more precise clock in TBR that does not drift out of sync as quickly. That

would limit how often SLIM needs to synchronize time. Implementing battery status in

the SLIM packet, and potentially other status information, would be a natural next step to

take when developing SLIM further.

Secondly, finding a better gateway solution. The gateway has proved to be a major

problem. Power outages happen, and for an unknown reason, gateway is not able to

reconnect to MQTT broker after an power outage, and it also seem to randomly disconnect

and connect (6.14), possible due to bad internet connection. Switching over to a battery

and mobile network based solution would probably improve uptime, making real-time

monitoring of fish more of a reality.

Thirdly, some suggestion for back-endwas suggested in section 7.2. These are relatively

minor, and should be easy to implement. Further improvements to do besides these are to

better accommodate wild fish experiments. While the code is interchangeable, positioning

especially should be revisited so that it can handle both wild fish and cage scenarios. This

too should not prove too much of a challenge.

Finally, for the front-end, several things can be done. They have mostly been mentioned

already, but to reiterate: Add documentation, make the application project agnostic, meta-

data file handling, explore other options for sharing data between callbacks, add features

such as proper figure export, data table view, data export, data upload, dashboard func-

tionality and more. The application possibilities are many. And since the whole system is

modular, each component can easily be swapped for others. Another gateway can be used,

some other form of hydrophone and synchronization module can be used (although this

would probably include redesign of IoF protocol), different front-end, and even different

back-end. Perhaps some experiments are better suited with a different front-end design

than the one used. Having the option to easily switch between layouts and themes in quick
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configurations would be a nice feature to have.

Regarding the case study, a more comprehensive analysis of the data should be done.

This analysis should look into factors responsible for data loss, and to eliminate potential

factors affecting data integrity. Parameters unavailable at the time of writing, such as

day-to-day operations (feeding, crowding etc.), would also be beneficial to include in the

analysis and front-end application.
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Appendix A - IoF code structure

In this appendix, the structure of the IoF software is presented. For the full source

code of the IoF system, see [20]. .toml files are the configuration files used by the

back-end. The metadata.toml file must me formatted and placed manually, but the

metadata_conversion.toml will be generated automatically, and so will the other

.toml-, .db-, and .log-files. The structure of the back-end is following typical Python

package structuring. The Dash application does not have a clear modular construction, but

is following typical structure with an asset folder and resources. The source code can be

summarized like this inside the root folder:

docs /

b u i l d /

h tml /

README.md

s r c /

backend /

. c o n f i g /

c o n f i g . toml

db_names . toml

me t a d a t a _ c onv e r i s o n . toml

m e t a d a t a _ p o s i t i o n i n g . toml

me t ada t a . toml

dbmanager /

d a t a b a s e s /

i o f . db

backup . db
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db fo rma t . py

d b i n i t . py

dbmanager . py

msgbackup . py

msgconve r s ion . py

pdop . py

p o s i t i o n i n g . py

t doa . py

i n i t b a c k e n d . py

l o g s /

c l i e n t . l og

main . l og

main . py

m q t t c l i e n t . py

msghand le r /

c o n v e r s i o n . py

msghand le r . py

p a ck e t . py

p r o t o c o l . py

f r o n t e n d /

app_plasma . py

a s s e t s /

ba se . c s s

g a l l e r y − s t y l e . c s s

g en e r a l −app−page . c s s

i o f _ i c o n . png

g i thub_mark . png

db_ to_p la sma . py

l ayou tCode . py

l i v e _ a p p . py
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metaData . py

p l a sm a _ s t a t e . pk l

venv /
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Appendix B - TDOA Python code

In this appendix, the implemented TDOA python code is listed. None of the other posi-

tioning code is listed here.

1 import numpy as np
2

3

4 def tdoa_hyperbola_algorithm(
5 depth: float, tstamps: Timestamps, station_data: StationData

6 ) -> CoordXYZ:

7 """Calculates x-y-z coordinates based on station data, depth and timestamps.

8

9 Calculates x-y-z coordinates with algorithm from Bertrand T. Fang's 1989 paper,
10 | --> 'Simple Solutions for Hyperbolic and Related Position Fixes'.
11 Algorithm is a 'Time Difference of Arrival' (TDOA) technique for positoning, where 3
12 stations (A, B, C) with known positions, are used to measure difference in times of

13 arrival of signal, leading to a hyperbolic solution for position fix. In this case,

14 providing a 2D solution, while the third dimension z is provided by depth argument.

15

16 Args:

17 depth: Depth of signal, defining z-value of position [m units]

18 timestamps: Dataclass 'Timestamps' with member variables containing
19 second and millisecond time arrival of signal in station A, B and C.

20 station_data: Dataclass 'StationData' with member variables containing
21 integer id, latitude/longitude position, depth, and x-y-z position

22 for station A, B, and C [m units].

23

24 XY position of A is always (0, 0)

25 XY position of B is always (b, 0)

26 XY position of C is always (cx, cy)

27

28 Returns:

29 An instance of dataclass 'CoordXYZ' with member variables x, y, and z.
30 Coordinates describe 3D-position of signal in relation to coordinate

31 system defined by station data. The position is returned in unit cm.

32 """

33 # Extract values from input matrixes in algorithm/paper naming convention

34 sec_a, msec_a = tstamps.sec_a, tstamps.msec_a

35 sec_b, msec_b = tstamps.sec_b, tstamps.msec_b

36 sec_c, msec_c = tstamps.sec_c, tstamps.msec_c

37
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38 # Coordinates of stations

39 b = station_data.xyz_B.x

40 cx = station_data.xyz_C.x

41 cy = station_data.xyz_C.y

42 c = np.sqrt(cx ** 2 + cy ** 2)

43 z = depth - station_data.depth

44

45 # Main equations:

46 # | sqrt(x² + y² + z²) - sqrt((x-b)² + y² + z²) = V * T_ab = R_ab (1)

47 # | sqrt(x² + y² + z²) - sqrt((x-cx)² + (y-cy)² + z²) = V * T_ac = R_ac (2)

48

49 # Sound speed

50 v = 1500

51

52 # Calculate R_ab and R_ac using eq. (1) and (2)

53 T_a = sec_a + (msec_a / 1000)

54 T_b = sec_b + (msec_b / 1000)

55 T_c = sec_c + (msec_c / 1000)

56 R_ab = v * (T_a - T_b)

57 R_ac = v * (T_a - T_c)

58

59 # create x_candidates and y_candidates vectors

60 x_candidates = np.zeros(2)

61 y_candidates = np.zeros(2)

62

63 # Transposing, squaring and simplifying equation (1) and (2) gives:

64 # | R²_ab - b² + 2b*x = 2R_ab*sqrt(x²+y²+z²) (3)

65 # | R²_ac - c² + 2*cx*x + 2*cy*y = 2R_ac*sqrt(x²+y²+z²) (4)

66

67 if R_ab == 0:
68 # equation (3) with R_ab equal to 0:

69 # | ==> x = b/2

70 x = b / 2

71 x_candidates[0] = x # equal roots

72 x_candidates[1] = x # equal roots

73 if R_ac == 0:
74 # If R_ab and R_ac is 0, position equal distance to all stations, trivial

75 # Solve equation (4) for y with R_ab = 0 (x = b/2) and R_ac = 0:

76 # | ==> y = (c² - 2*cx*x) / (2*cy)
77 y = ((c ** 2) - 2 * cx * x) / (2 * cy)

78 positions = np.array([CoordXYZ(x, y, depth)])

79 return positions
80 else:
81 # Solve equation (4) for y with z = depth and R_ab = 0 (x = b/2):

82 # | Put equation (4) on quadratic form:

83 # | term = R²_ac - c² + 2*cx*x
84 # | a_2 = 4*cy*(cy²-R²_ac)
85 # | a_1 = 2*cy*term

86 # | a_0 = term² - 4*R²_ac*(x²+z²)
87 # | ==> y²*a_2 + y*a_1 + a_0 = 0
88 quad_term = (R_ac ** 2) - (c ** 2) + (2 * cx * x)

89 a_2 = 4 * ((cy ** 2) - (R_ac ** 2))
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90 a_1 = 2 * (2 * cy) * quad_term

91 a_0 = (quad_term ** 2) - (4 * (R_ac ** 2) * ((x ** 2) + (z ** 2)))

92 poly = np.array([a_2, a_1, a_0])

93 y_candidates = np.roots(poly)

94 else:
95 # Additional equations (equations for g, h, d, e and f given in code):

96 # | y = g * x + h (5)

97 # | z = +-sqrt(d*x² + e*x + f) (8)

98 # | ==> dx² + ex + f-z² = 0
99 # | pos_xyz = xi^ + (g * x + h)j^ +- sqrt(d*x² + e*x + f)k^ (13)

100 # | where i^, j^, and k^ are unit vectors in x-, y- and z-direction.

101

102 # Calculate g, h, d, e and f

103 b_Rab = b / R_ab

104 b_Rab_1 = 1 - (b_Rab ** 2)

105 g = (R_ac * b_Rab - cx) / cy # eq. (6)

106 h = ((c ** 2) - (R_ac ** 2) + (R_ac * R_ab * b_Rab_1)) / (2 * cy) # eq. (7)

107 d = -(b_Rab_1 + (g ** 2)) # eq. (10)

108 e = b * b_Rab_1 - 2 * g * h # eq. (11)

109 f = ((R_ab ** 2) / 4) * (b_Rab_1 ** 2) - (h ** 2) # eq. (12)

110

111 # Calculate x and y, where x is found with equation (8) and y with equation (5)

112 x_polynomial = np.array([d, e, f - (z ** 2)])

113 x_candidates = np.roots(x_polynomial)

114 y_candidates = g * x_candidates + h

115

116 # Reject complex solutions if they exist (does not reject complex number with 0j)

117 index = np.argwhere(np.iscomplex(x_candidates))

118 x_candidates = np.delete(x_candidates, index)

119 y_candidates = np.delete(y_candidates, index)

120

121 # Take the real value in case the candidate object has 0j imaginary part

122 x_candidates = np.real(x_candidates)

123 y_candidates = np.real(y_candidates)

124 numOfCandidates = x_candidates.size

125

126 # Pack candidates into array and return

127 if numOfCandidates == 1:
128 x = x_candidates.item()

129 y = y_candidates.item()

130 positions = np.array([CoordXYZ(x, y, depth)])

131 elif numOfCandidates == 2:
132 x_0, x_1 = x_candidates

133 y_0, y_1 = y_candidates

134 positions = np.array([CoordXYZ(x_0, y_0, depth), CoordXYZ(x_1, y_1, depth)])

135 else:
136 positions = None

137 return positions
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Appendix C - timestamp
adjustment Python code

In this appendix, the implemented python code to adjust timestamps that have drifted in

triplets is listed.

1 import pandas as pd
2

3 def _adjust_tstamp_drift_of_triplet(df: pd.Dataframe) -> List[pd.DataFrame]:
4 """Return list of pandas DataFrames where timestamp offsets has been adjusted.

5

6 Sorts dataframe based on timestamp, finds triplets where timestamp is equal +-2, and

7 adjusts any timestamps +-2 from 2nd timestamp to be equal to 2nd timestamp. Returns

8 a list of all valid triplets.

9

10 Args:

11 df: pd.DataFrame where columns "timestamp" and "millisecond" are used to adjust.

12

13 Returns:

14 Returns list of pd.DataFrame where timestamps offset +-2 from middle timestamp

15 is adjusted. For example:

16

17 | timestamp | millisecond | frequency | tagID | tagData |

18 | 1556555369 | 335 | 69 | 12 | 3.5 |

19 | 1556555370 | 345 | 69 | 12 | 3.5 |

20 | 1556555371 | 350 | 69 | 12 | 3.5 |

21

22 becomes -->

23

24 | timestamp | millisecond | frequency | tagID | tagData |

25 | 1556555370 | 335 | 69 | 12 | 3.5 |

26 | 1556555370 | 345 | 69 | 12 | 3.5 |

27 | 1556555370 | 350 | 69 | 12 | 3.5 |

28 """

29 ts_drift_threshold = 2

30 ms_1km = 0.667

31

32 # Sort dataframe by timestamps in case some timestamps are in the wrong order

33 df = df.sort_values("timestamp")

34 df = df.reset_index(drop=True)

35
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36 # Extract timestamps and find all triplets within dataframe

37 ts = df["timestamp"]

38 last_indices = ts.index[ts.diff(periods=2) <= ts_drift_threshold]

39 all_indices = last_indices.append(

40 [last_indices - 1, last_indices - 2]

41 ).sort_values()

42

43 # Mask out all detections that aren't triplets
44 mask_values = [i for i in range(len(last_indices)) for _ in range(3)]
45 df.loc[all_indices, "mask"] = mask_values

46 df = df[df["mask"].notnull()]

47 if df.empty:
48 return []
49

50 # Adjust timestamps that have drifted

51 # | if 2nd timestamp in triplet is much larger than the 1st, add 2nd index to list

52 # | if 3rd timestamp in triplet is much larger than the 2nd, add 2nd index to list

53 df["drift"] = df.apply(lambda x: x["timestamp"] + x["millisecond"] / 1000, axis=1)
54 drift = df["drift"].diff()

55 drift_3rd = drift[last_indices].where(abs(drift[last_indices]) >= ms_1km)

56 drift_1st = drift[last_indices - 1].where(abs(drift[last_indices - 1]) >= ms_1km)

57 drift_indices = drift_3rd.dropna().index - 1 # -1 to get index of 2nd timestamp

58 drift_indices = drift_indices.append(drift_1st.dropna().index)

59

60 # Set timestamp 1 and 3 of each triplet with drift has equal to 2nd timestamp

61 df.loc[drift_indices - 1, "timestamp"] = ts[drift_indices].values

62 df.loc[drift_indices + 1, "timestamp"] = ts[drift_indices].values

63

64 # get and return triplets as list of dataframes

65 triplets = [v.drop(["mask", "drift"], axis=1) for _, v in df.groupby("mask")]
66 # triplets = [v.drop(["mask"], axis=1) for _, v in df.groupby("mask")]

67 return triplets

150


