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Problem formulation 

The problem formulation is as follows.  

 

1. Create a suitable image set with boundary box data which may be used to train object 

detection neural networks. 

2. Provide one or several object detection neural network which is trained on these images and may 

be used to start a recording whenever a fish is detected, which operates at "real-time" (say 8 FPS 

or higher). 

3. Provide a detailed project report detailing all steps of the development (results, usage, setup, etc.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Abstract 

Camera vision is a state-of-the-art technique which allows observation and analysis of fish cultures within 

fish cages. It is needed in order to estimate bio mass and to monitor the general health state of the fish 

population. A key component in the process is to determine when a fish is present within the cameras 

field of view and detect it within the time frame it is present in order to perform calculations and 

estimations on the fish population. This paper presents a comparison of the performance and detections 

results of three different state-of-the-art convolutional neural networks for object detection. The networks 

were trained and tested through Tensorflow’s object detection API on a dataset consisting of 2658 

grayscale images of fish. Result vise, FRCNN Inception v2 claimed the best detection results with a recall 

of 0.848 and mean average precision of 0.853. The best performing network was SSD Mobilenet v2 with 

an estimated 4.29 frames per second. None of the tested networks managed to operate in real-time which 

was defined as operating at 8 or more frames per second. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Challenges, solutions and knowledge gained 

The first dataset received from Optoscale was presented in a different format than mentioned later in the 

report. Only one image per fish was received, where the grayscale image of the fish was encoded into the 

green channel and the binary image in the blue channel. Before sending this data, it was JPEG-

compressed to save space and as a result the once independent data channels became dependent, as 

information from the binary image spread to the grayscale image and vice versa through compression. As 

a result, when 5 different convolutional neural networks had been trained in the beginning of November 

showing promising validation results, the author noticed that only some visible fish would be detected, 

whereas other more visible fish were given a probability of less than 0.01 percent of being a fish. It turned 

out that the convolutional neural networks had learned the patterns of JPEG-compression and not those of 

fish. As neither validation loss nor recall or mAP results showed any signs of overfitting, the author can 

only assume that the image compression corrupted the data in such a way that it could no longer be used 

to train convolutional neural networks to detect fish.  

The solution to the issue was to start anew by requesting new data from Optoscale in a different format 

that separates the fish image from the binary images. 

From this challenge, the author learned the importance of data integrity and convolutional neural 

networks sensitivity towards noise. Data needs to be kept as close as possible to its original format from 

the sensor and various methods used to manipulate the data in later stages may influence detection results. 

In addition, the trainer of neural networks may be fooled by the numbers that are supposed to measure the 

networks ability to generalize on new data. As a result, it is important to manually inspect results and not 

rely completely on automatically generated results.  

Another issue that was encountered quite frequently was related to the quality of the Tensorflow Object 

detection API. As the API is free of charge without generating any revenue to its makers, updates may 

change key parameters without it being documented. For instance, when trying to set the interval at which 

the neural network should be evaluated against the validation set, the standard command mentioned in the 

documentation seemed to have no effect. Another unintentional effect was that some of the configuration 

files for different convolutional neural networks would not load as the framework had been updated, but 

not the configuration files themselves. Lastly, when changing the hyperparameters of methods within the 

CNNs, one needs the correct keyword to do so in the configuration file. This presented an issue as to the 

author’s knowledge, some of these keywords have not been officially documented.   



The solution to these issues where found through thorough googling. As it turned out, several others had 

faced these issues and a knowledgeable user mentioned the solution of editing the python scripts of the 

framework, thus circumventing the configuration files. Consequently, the author edited and scoured files 

python files in the tensorflow-gpu framework in order to solve the issues mentioned above.  

From this issue the author learned that free of charge services such as the object detection API may be 

incomplete to some extent and thus it might have been wiser to use the inbuilt functions of TensorFlow to 

create a tailor-made solution and not rely on the API itself. Another piece of wisdom one should bring 

along is that no matter how complex the issue or error message might be, Google may often point the user 

in the right direction towards a solution. 
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Chapter 1: Introduction 

Motivation 
Monitoring the state of a fish population in a fish pen in an important aspect within the industry of fish 

farming. As the fish live under water, human beings struggle to gather vital information regarding the 

fish’ health and environment which are detrimental factors to any company in the aquaculture industry. 

If not monitored properly, the worst-case scenario would be the mass death and suffering of the fish 

population, whereas the company most likely will face catastrophic economic backlashes.  

There exist technologies which enable the monitoring of fish populations, however many of these either 

involve high risk with regards to human life or direct intrusion into the fish population, thus affecting the 

fish’s health. One promising technology, which does not involve risk to human life or unwanted side 

effects is the underwater camera. By submerging a camera into a fish pen, one can extract vital 

information on the fish population. Although it is not able to monitor the entirety of the fish pen, 

cameras can over time generate a strong image of the general state of the fish population. However, 

one problem arises, how would one extract the information gathered by the camera? One solution 

would be to assign a fish pen worker to manually inspect each image as it is loaded from the camera, 

however it is both tiresome and time-consuming. Another solution, however, would be to employ state-

of-the-art computer vision techniques to automate the process entirely.  

This is the background for this study, as a company named Optoscale has created such a solution. 

However, they would like to investigate further into techniques that may detect a fish when it is present 

in front of the camera. Consequently, this paper will focus on various traditional and state-of-the-art 

methods of doing so, in order to improve the estimates on the fish populations state. Hopefully 

increasing the wealth of the fish, as well as the wealth of the companies that take care of them. 

 

Outline 
Chapter Purpose 

2 Introduces the fish data set received from Optoscale and preliminary thoughts on 

weaknesses in the data. 

3 An overview of various techniques for image object detection under water. 

4-5 An overview of which libraries, tools and hardware this paper has been dependent on. 

6 An introduction into the field of convolutional neural networks which focuses on their inner 

workings, how they learn and the metrics they are evaluated on. 

7 A summary of what had to be done in order to train and evaluate the CNNs. 

8 A presentation of the results from each respective CNN. 

9 Discusses the results in terms of what they mean, how they came to be and possible 

solutions. 

10-11 Concludes the report as a whole and suggests topics for future work. 
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Chapter 2: Materials 

The dataset received from Optoscale 
The image set contained around 38000 usable images of fish. It contained two types of files for each 

image of fish. The first file was the image of the fish itself with structured light on its surface and the 

other was one or several binary images depicting where Optoscale’s current fish detection algorithm had 

detected a fish in the image. See the figure 1 and 2 below.  

 

Figure 1: Example of a fish image received from Optoscale. 

 

Figure 2: Example of a binary image denoting the position of a fish in an image. 

An aspect of the dataset that will influence later results is that in some images, only one visible image is 

marked through a binary image, however other candidates that also should have been marked are also 

present. This may particularly influence the precision measure, as the network most likely will detect 

these fish, and as they are not marked as fish they will be marked as a false positive although that is not 

the case.  

In addition, many of the images were a result of sequential tracking of one fish from one frame to the 

next. Since the camera operates at about 200 frames per second, some images would look roughly the 

same. This may cause issues with regards to overfitting. 
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Chapter 3: Literature study 

Introduction 
In order to get an overview of which techniques might be applicable to fish detection through camera 

vision a literature study on the subject has been conducted. It covers traditional methods and new research 

on neural networks and finishes of with a comparison of the two with regards to performance, detection 

results and weaknesses. To the author’s knowledge, few papers have been released on the subject of fish 

detection and as a result the study will also rely on results from fish recognition as this process necessarily 

also needs a form of fish detection in order to classify at a later stage.  

Background 
Early developments within the use of camera vision to detect and recognize fish consisted of manually 

creating shape and color descriptors, deriving first and second moments of the image that describes what 

is on it and a simple version of template matching (Strachan, Nesvadba and Allen, 1990). The algorithms 

input was a clean image file containing the silhouette of a certain type of fish and nothing else. Although 

some of the results are satisfiable, for instance the shape descriptor method reached 90% reliability which 

in today’s terminology translates to 90 % precision, the methods only worked, at that point in time, on 

images of a fish’ silhouette without noise or any background texture. 

More advanced methods that are in use today and expand on these concepts manage to isolate the pixels 

belonging to the fish from more complex scenes containing more objects and noise, whether it is the 

silhouette or the entirety of the fish itself, using an image segmentation method. The isolated pixels, or 

features found from the isolated pixels after passing them as input to a feature extractor, are subsequently 

passed as input to a classifier in order to determine whether the isolated object could be a fish. To 

exemplify, (Giordano, Palazza and Spampinato, 2016) used an advanced type of background subtraction 

in combination with a foreground detection method as the image segmentation method. Then features of 

the blobs found from background subtraction such as luminosity and “motion objectness” were extracted 

and finally compared to known features of fish in order to determine the probability of the isolated pixels 

in fact being a fish caught on camera. Another way of doing it was shown by (Boudhane and Nsiri, 2016). 

They used a Poisson-Gauss mixture filter to eliminate noise created by the transmission of image data 

from the camera to the computer. In order to segment the different parts of the image, the mean shift 

clustering algorithm was used. Furthermore, a log likelihood ratio test served as the classifier on the 

different clusters found.  Finally, (Rodríguez et al., 2015) used a dynamic background subtraction method 

to separate moving objects from the background. Moreover, a version of a canny edge detector was used 
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to sample features from the foreground objects and the Otsu method was used to eliminate white 

background pixels. Lastly, manually created reference features of fish were compared to the output of the 

feature extractor in order to determine whether a fish was present or not.  

Newer development within fish detection occurs in the field of research on convolutional neural 

networks, or CNNs for short. CNNs for object detection work in a vastly different way than previously 

mentioned methods. In contrast to firstly identifying objects of interest and then finding its features, 

CNNs either scan the entire image looking for features of interest or make an educated guess as to where 

the object may be that is later refined. Later this information is used to conclude whether the object of 

interest was present and if so where in the image ("Convolutional Neural Networks (CNNs / ConvNets)", 

cs231n, Stanford University, 2018a).The default structure of CNNs is firstly a model which is used to 

detect features and secondly, if one wants to detect where in the image the object may be found, an object 

detector responsible for proposing where in the image an object of interest is, what it is and how confident 

it is in the prediction. Further, CNNs can learn by themselves what to look for when distinguishing an 

object of interest from everything else that may be present in the image ("Convolutional Neural Networks 

(CNNs / ConvNets)", cs231n, Stanford University, 2018a), given enough image data of an object, through 

the process of training (Soulié, 1991). (Krizhevsky, Sutskever and Hinton, 2012a) proposed one of the 

first successful CNNs used as an image classifier, firstly competing in the object detection competition 

known as ImageNet Large Scale Visual Recognition Competition (ILSVRC) and the winner of the 2012 

version of the competition (Russakovsky et al., 2015). Further development on the field saw the 

introduction of various other models for image classification such as Inception (Szegedy et al., 2014), 

ResNet (He et al., 2015) and MobileNet (Howard et al., 2017) who vastly outperform the original 

AlexNet model (Canziani, Paszke and Eugenio, 2016, Huang et al., 2016). 

Furthermore, said CNNs are only able to classify images with regards to what objects are present, without 

giving information on the whereabouts of the object. In order to predict where those objects are in the 

image, one needs to add a region proposal method on top of the CNN (Lu, Du and Chang, 2018). A 

region proposal method may be as simple as creating a fixed set of boundary boxes on the image and look 

for objects in them, to training a region-based network that gives probabilities of where an object of 

interest might be present. Examples of region proposal methods that are in use today are the Single Shot 

Detector (Liu et al., 2015), which uses a fixed set of boundary boxes to estimate the location of an object 

in an image, and Faster Region-based convolutional network (Ren et al., 2015), which uses a region 

proposal network that needs to be trained along with the neural net model, in order to predict the most 

likely place in an image an object is present.  
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Method 
Search databases 

The database Oria by Bibsys has been used in the search of relevant sources. The database covers most of 

the material present at Norwegian research libraries as well as other open electronically available sources. 

In addition, Google and Google Scholar was used to broaden the number of sources. 

Source criteria 

In order to eliminate yet-to-be confirmed or inadequate research the following criteria were essential in 

deciding whether a source was to be considered or not. Firstly, the article needed either to be peer-

reviewed, to have been cited in 10 or more articles, to have been part of a published book or be a part of a 

course from a renowned university. Secondly, the source had to contain relevant information regarding 

aspects of fish detection and a result measure which contained information about how well the technique 

could perform when being used as a fish detector. 

The Search 

The search was conducted by entering various search words relevant to fish detection into the mentioned 

sources, in addition to scouring already found sources for new ones, see the table 1 below for search 

words used and subsequently the sources found from the search query. 

 

Source Search words Criteria match Sources 

Oria Fish detection Published book, peer-

reviewed 

(Giordano, Palazza and 

Spampinato, 2016, 

Mandal et al., 2018, 

Ravanbakhsh et al., 

2015) 

Oria Fish identification Peer-reviewed (Shafait et al., 2016) 

Oria Camera vision fish 

detection 

Peer-reviewed (Rodríguez et al., 

2015) 

Oria Cnn fish detection Peer-reviewed (Sun et al., 2018) 

Oria State of the art fish 

detection 

Peer-reviewed (Boudhane and Nsiri, 

2016) 

Google Scholar Fish detection cnn Citations (Xiu et al., 2015) 
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Google Scholar Underwater fish 

recognition 

Citations (Hongwei et al., 2015) 

Google Comparison Alexnet Citations (Canziani, Paszke and 

Eugenio, 2016) 

Google Tensorflow Object 

Detection API 

Citations (Huang et al., 2016) 

Google Alexnet paper Citations (Krizhevsky, Sutskever 

and Hinton, 2012a) 

Oria Neural net training Published book (Menéndez de Llano 

and Bosque, 2010) 

(Menéndez de Llano 

and Bosque, 2010) 

 Published book (Soulié, 1991) 

Google Imagenet paper Citations (Deng et al., 2009) 

Google Convolutional neural 

networks 

Course at Stanford 

University 

("Convolutional 

Neural Networks 

(CNNs / ConvNets)", 

cs231n, Stanford 

University, 2018a) 

Google Alexnet imagenet Description of contest (ILSVRC) 

Google Alexnet imagenet Citations (Russakovsky et al., 

2015) 

Google Inception paper Citations (Szegedy et al., 2014) 

Google Resnet paper Citations (He et al., 2015) 

Google Mobilenet paper Citations (Howard et al., 2017) 

Oria Region proposal Peer-reviewed (Lu, Du and Chang, 

2018) 

Google Ssd paper Citations (Liu et al., 2015) 

Google Faster region-based 

convolutional neural 

network paper 

Citations (Ren et al., 2015) 

Google Scholar how much data neural 

network 

Citations (Srivastava et al., 

2014) 
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Oria transfer learning neural 

networks 

Citations (Lucena et al., 2017) 

Table 1: An overview of the sources found through the literature search. 

The sources found where collected in an annotated bibliography made in Word containing the following 

columns: “link”, “source”, “search words used”, “trustworthiness”, “relevance to project” and 

“summary”.  

Finally, the summary column in addition to extra information extracted directly from the articles where 

used to create table 1. 

Results 
Before jumping into the results, a few words used in the result and discussion section must be defined. 

Firstly, by real-time one means an algorithm able to operate at 8 frames per second or higher. Secondly, 

when describing the background as simple, one means that the background of the image remains static 

and barely changes from one image to another. Consequently, a complex background does not remain the 

same over time and contains major changes from one image to the another. 

Table 2 sums up the important information extracted through the literature study. The columns are source, 

which simply refers to the source of the findings. Data which describes the size of the dataset used, 

whether the image was colorized or not and a measure of the background complexity. Detection method 

which describes the methods used in order to perform detection of fish, frames per second which 

describes how many images the method reportedly managed to process per second. Measure which 

describes what kind of measure was used to evaluate the method with regards to detection capabilities and 

results which put a number on the success of the method on detecting fish.  
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Source Data Detection 

method 

Frames per 

second  

Measure used 

to quantify 

result 

Results  

8 30000 images from 

the Baltic sea 

 

Color: Yes 

 

Background: Complex 

Filtering, 

mean-shift 

clustering 

and Log-

Likelihood 

ratio test 

Not Real-time 

due to 

denoising 

Pixel 

classification 

(belonging to 

fish or not) 

Correct classification: 

~94 % 

(Giordano, 

Palazza and 

Spampinato, 

2016) 

F4K fish videos 

 

Color: Yes 

 

Background: Complex 

Background 

subtraction 

algorithm 

followed by 

blob features 

compared to 

known blob 

features of 

fish such as 

luminosity 

and size 

0.3-1.5 (image 

size dependant) 

Recall and 

precision 

Recall: 97.4 % 

Precision: 89.4 % 

(Ravanbakhsh 

et al., 2015) 

35 fish images from 

the transfer gate 

between two cages 

 

Color: No 

 

Background: Simple 

Haar-like 

classifier 

Real-time Recall 

(completeness) 

and precision 

(correctness) 

Recall: 91.4-100 % 

Precision: 89.6-100 % 

(Shafait et al., 

2016) 

ImageCLEF 2014 fish 

task (fish manually 

cropped) 

 

Color: Yes 

 

PCA and 

One-nearest-

neighbor  

Real-time Precision Precision: 71.4-100 % 

(species dependent) 



9 
 

Background: Complex 

(Rodríguez et 

al., 2015) 

Live testing on full-

scale fishway model 

 

Color: No 

 

Background: Simple 

Background 

subtraction 

algorithm, 

canny edge 

detection 

and Otsu 

region 

classification 

3.2 Recall and 

precision 

Recall: 94 % 

Precision: 94-95 % 

(Background 

dependent) 

(Hongwei et 

al., 2015) 

F4K fish videos 

 

Color: Yes 

 

Background: Complex 

Foreground 

extraction, 

PCA filter 

feature 

extraction 

and SVM 

classifier 

N/A, however 

ran on CPU 

thus indicating 

not real-time 

Classification 

accuracy 

C.a.: 55.56-100 % 

(species and data size 

dependent) 

(Mandal et 

al., 2018) 

4909 fish images  

 

Color: Yes 

 

Background: Complex 

VGG16, ZF 

and CNN-M 

models with 

FRCNN 

identifier 

Real-time Mean average 

precision 

mAP: 0.71-0.824 

(Sun et al., 

2018) 

F4K fish videos 

 

Color: Yes 

 

Background: Complex 

Neural 

networks, 

SIFT-Fisher, 

LDA, 

DeepFish, 

AlexNet 

Real-time Recall and 

precision 

Recall: 45.84-99.45 % 

Precision: 48.55-

99.68% 

(Neural net model and 

species dependent) 
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(Xiu et al., 

2015) 

ImageCLEF fish 

videos 

 

Color: Yes 

 

Background: Complex 

AlexNet and 

FRCNN 

5-8 mAP 0.654-0.892 (species 

dependant) 

Table 2: An overview implementations and results of fish detectors from the literature. 

 

Discussion 
Most of the traditional methods seem to excel within their task of detecting fish, however they also 

show weaknesses within performance. Most recall and precision results are close to or above 90 %. 

Although each method is tailored towards the environment they operate in, they will be suitable as fish 

detectors in the environment this task is concerned with due to it being mostly black background with 

some illumination noise which can be modelled thereafter. However, the performance of each method 

is questionable. Specifically, it seems that the first filtering step of each algorithm uses too much time 

and consequently none of the end-to-end methods show results close to real-time performance. The 

one method, created by (Shafait et al., 2016), is real-time, however the detection was performed on 

already cropped images of fish. Thus, it lacks perhaps the most vital step which would be to segment the 

image into its parts or objects if one will. 

Further the data set the traditional methods have tackled are in general quite large and comprise of 

both colorized and grayscale images with either simple or complex backgrounds.  Images used later in 

this report will be in grayscale and thus one knows that the structure behind each method, namely 

filtering, image segmentation and classification is a potential candidate for the fish detectors tested later 

in the report.  

The neural networks have varying results which can be summarized as either inadequate or great fish 

detection. Some of the articles, namely (Hongwei et al., 2015, Sun et al., 2018, Xiu et al., 2015), report 

that the main issue causing inadequate results would be the lack of data and neural net model choice. 

Most results on species, in which there has been enough data, show recall and precision close to or 

above 90 %. As for the performance part, all but one neural net implementation ran real-time, that is 

operating with more than or equal to 8 FPS. (Xiu et al., 2015) comes close. Thus, meeting the 

requirements set earlier in this report. 
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Data vise, all datasets contain several thousand images with complex backgrounds and thus must be 

considered quite large. This is a natural consequence of using neural networks, as they need a lot of data 

to generalize well on to other data than the training data (Srivastava et al., 2014). The dataset received 

from Optoscale is large, and as a result this will not pose an issue at later development stages. An 

interesting aspect regarding the different neural net implementations is that they use datasets 

containing colorized images, perhaps a result of these images containing more information through 

having more than 1 color channel. The author tried to find neural net fish detectors taking grayscale 

images as input, however found none.  

When comparing both ways of tackling the issue of fish detection, both show great results when the 

necessities connected to the size of the image set or environment are present. Thus, there is no clear 

choice to go for when considering this information. Regarding performance, the neural nets far 

outperform the traditional methods by a minimum of 4.8 FPS, where not one traditional managed to 

meet the real-time requirement of 8 FPS or higher. Still, one needs to keep in mind that the 

performance is hardware and implementation dependent, for instance most neural nets run on the 

GPU. This might not be the case regarding the traditional methods. To summarize the performance 

comparison, neural networks clearly come out on top. Next, when comparing data aspects, both ways of 

detecting fish seem to operate well on large sets of data. The dataset’s used in traditional 

implementations contain both simple and complex backgrounds and background complexity does not 

seem to affect the results. On the other hand, the articles found on CNN fish detectors all handled 

complex data and as a result it is unsure how well they will perform on fish images with simple 

backgrounds. However, there is good reason to believe that this will not be an issue as they perform 

well on complex backgrounds, and consequently perform well on nearly any background.  Moreover, an 

important difference is the fact that neural nets generally need massive amounts of data in order to 

avoid overfitting, unless transfer learning is used (Lucena et al., 2017), and later in the test phase. The 

traditional methods merely need lots of data in the test phase. For this reason, the winner with regards 

to the data aspect would be the traditional methods.  

Finally, an interesting observation is that there seems to be a lack of research on how convolutional 

neural networks perform as fish detectors on grayscale images. 

When making a choice of whether to opt for the traditional method of fish detection versus the newer 

way of handling the issue through neural networks, all aspects above needs to be considered. Table 3 

below summarizes the results for each category. 
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 Traditional methods Convolutional neural networks 

Results Good Good 

Performance Not real-time Real-time 

Data  

1. Needs little to none 

data 

 

 

2. Handles both simple 

and complex 

backgrounds 

 

3. Tested and proven as 

fish detector on 

grayscale images 

 

1. Needs a lot of data, 

especially if transfer 

learning is not used 

 

2. Handles complex fish 

image backgrounds and 

most likely simple ones 

 

3. Not tested as fish 

detector on grayscale 

images as far as the 

scope of this literature 

study is concerned. 

 

Table 3: An overview of weaknesses and strengths related to traditional methods and convolutional neural networks. 

For these reasons, convolutional neural networks seem to be correct choice given the fact that enough 

data, several thousands of images, is supplied by Optoscale. They seem to be able to operate in real-

time and using CNNs as fish detectors on grayscale images is a relatively unexplored area. 

Summary 
To summarize, a literature study on various methods for fish detection has been conducted in order to 

get an overview of existing methods for fish detection that would be able to handle the problem 

presented in this paper. Both traditional algorithms for fish detection and convolutional neural networks 

have been presented and their respective detection results and performances in terms of frames per 

second have been compared. In the end, convolutional neural networks picked the longest straw as a 

result of having similar detection results to the other methods and the best performance, in addition to 

being a relatively unexplored way of detecting fish on grayscale images. 
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Chapter 4: Hardware and Drivers 
 

Hardware 
• CPU: Intel Core i7 4790 @ 3.6GHz 

• GPU: 2047MB NVIDIA GeForce GTX 1060 6GB (EVGA) 

• RAM: 16GB Dual-channel DDR3 @ 799MHz 

• Motherboard: Alienware 0PGRP5 

Drivers 
• NVIDIA Graphics Driver 397.64 

• CUDA Toolkit 9.0 

• cuDNN v7.4 
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Chapter 5: Libraries, frameworks and tools 

Tensorflow-gpu 1.11.0 
 “Tensorflow is an open source software library for high performance numerical computation. Its flexible 

architecture allows easy deployment of computation across a variety of platforms (CPUs, GPUs, TPUs), 

and from desktops to clusters of servers to mobile and edge devices. Originally developed by researchers 

and engineers from the Google Brain team within Google’s AI organization, it comes with strong support 

for machine learning and deep learning and the flexible numerical computation core is used across many 

other scientific domains.” ("https://www.tensorflow.org"). Throughout this study, the GPU version of 

Tensorflow (Abadi et al., 2015) is used, thus the library performs most of the numerical operations on the 

computer’s GPU thus leading to greater performance and time efficiency when for example training 

neural networks.  

Tensorflow Object Detection API 
The API is an open source framework containing most tools a neural network trainer needs. It ships with 

state-of-the-art object detection models in the form of pipeline configuration files. Some of which also 

come with pretrained weights on the COCO-image set thus enabling the usage of transfer learning. 

Training is initiated by running one of the shipped python scripts after they have been built using protobuf 

and the process of data formatting has been completed. In order to integrate the API with TensorFlow-

gpu, download the following GitHub repository (https://github.com/tensorflow/models) and place the 

files in the “TensorFlow” folder created by pip. 

Pipeline configuration files are files which tell TensorFlow what neural network model to load. It also 

defines the values of the important hyperparameters such as batch size, learning rate, regularization 

weight values and so forth, making it easy for the user to tune the network if training results are not 

satisfactory. The TensorFlow team has published several pipeline files for different state-of-the-art neural 

network and a list of the available configs may be found here (Tensorflow detection model zoo). 

Tensorboard 1.11.0 
Tensorboard ships with the Tensorflow-gpu package installed through pip. It is a powerful visualization 

tool aimed at helping users interpret the current state of their trained neural network. Tensorboard reads 

the output created by tensorflow-gpu when training and visualizes important numbers such as 

classification and total loss, learning rate and evaluation results in the form of recall and mAP. Thus, it is 

of great help when deciding whether the neural net is training as expected or needs to be tuned in order to 

give satisfying results. 

https://github.com/tensorflow/models
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Python 3.6.5 
TensorFlow is a Python based library and Python is consequently needed in order to initiate training and 

evaluation sessions of neural networks. Some of the modules shipped with TensorFlow seem to be written 

in Python2 or earlier and as a result these modules must be changed in order to accommodate the updated 

syntax of Python3. The author specifically experienced crashes caused by this issue when initially 

attempting to start the training of neural nets. Luckily a google search of the thrown error message gave 

solutions to every issue. 

Pip 18.1 
Pip is a package management system aimed at simplifying the installation of various libraries and 

frameworks for Python. It is used by the author to install TensorFlow-gpu and protobuf to the machine 

used for training and evaluation of neural networks.  

Protobuf 3.6.1 
Protobuf is a language and platform neutral data compressor, extractor and compiler. In this paper it is 

used to extract and build the protobuf files provided by the Tensorflow Object Detection API to usable 

“.py” Python files in order to train neural networks.  

ShareLatex 
Some equations were written in the ShareLatex user interface to increase readability. It is an online Latex-

editor with online compilation capabilities.  
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Chapter 6: Theory 

Neural network terminology 
Batch 

A batch is a subset of data from the training data set. For example, a batch size of 20 images would mean 

that 20 images have been extracted from the training set.   

Global step 

A global step is defined as how many times the neural network has processed a batch. Say the batch size 

is 20 images and the network in total has processed 2000 images. Then the value of global steps will be 

2000/20=100. 

Epoch 

An epoch is defined as how many times the neural network has processed the entire training set. Say the 

neural network has processed 2000 images, and that the training set consists of 1000 images. Then the 

neural network has trained for 2 epochs.  

Ground truth and boundary box 

The boundary box is a rectangle which completely, and as tightly as possible, encapsulates an object in an 

image. It serves as the ground truth when a convolutional neural network predicts the location of an object 

in an image.  

Confidence score 

The confidence score is part the output of a convolutional neural network and is the probability provided 

by the network on how confident it is in its prediction. For instance, when predicting an object to be a 

fish, the network would also provide a probability of how certain it is on this prediction.  

Annotated image 

An annotated image comes with metadata, usually stored in a separate file, which describes certain 

aspects of the image. In this paper, an annotated image also comes with information regarding the 

position of fish in the image. 
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Activation functions 
Rectified Linear Units (Krizhevsky, Sutskever and Hinton, 2012b) commonly known under the 

abbreviation ReLU, is a nonlinear mathematical function which keeps positive numbers as they are and 

sets negative numbers to zero. The mathematical equation for ReLU is the following  

f(x)=max(0, x) 

Equation 1: The ReLU function 

ReLU is commonly used as the activation function within convolutional layers.  

The Sigmoid function ("Sigmoid function", Wikipedia, 2002) is another type of nonlinear mathematical 

function normally used in the last layers of a fully connected neural network. Its mathematical definition 

is the following  

 

Equation 2: The Sigmoid function 

Whereas its output is restricted to the interval <-1,1>. 

Filters 
Filters are simply 2-dimensional arrays of a fixed size FxF, where each element of the array is known as a 

weight ("Convolutional Neural Networks (CNNs / ConvNets)", cs231n, Stanford University, 2018b). In 

the example below, the value of F would be 2. Dependent on which elements in the filter has the greatest 

values, the filter may encode a shape or information about color composition in an image. For instance, 

figure 3 could encode a line.  

 

Figure 3: A simple 2x2 filter 

 

A simple example of a convolutional layer 
The following example is based on ("Convolutional Neural Networks (CNNs / ConvNets)", cs231n, 

Stanford University, 2018a). Convolution in neural networks is the operation of moving a filter over a 2-
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dimensional input array of size WxH, for example a small grayscale image with an edge on the diagonal. 

Firstly, the filter is superimposed on the input in for instance the top left corner, and then the dot product 

is made. The result of the dot product is stored in a new array of smaller size than the input array for later 

calculations. Consider the 4x4 input in figure 4, which is a small grayscale image depicting a line going 

across the diagonal of the image. 

 

Figure 4: A 2x2 filter is superimposed on the 4x4 input 

 

The filter has been superimposed on the input and the resulting dot product will be: 

3x5+0x0+0x0+3x5 = 30 

Next, the filter needs to slide over other values of the input. This is usually done by sliding the window a 

set number of places along the row dimension, called stride (S), and when the filter reaches the end of the 

row, it moves down S rows and starts from left to right yet again. Figure 5 illustrates the operation with a 

stride of 2.  

 

Figure 5: A 2x2 filter sliding over the 4x4 input 
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The dot product of step 1 is 30, for step 2 it is 0, for step 3 it is 0 and for step 4 it is 30. Thus, we may 

gather the output of the convolutional operation in the following 2D-array (figure 6). 

 

 

Figure 6: The outputted result from the filter operation. 

 

As a result of the convolution, our 4x4 grayscale image has been downscaled to 2x2 while still containing 

enough information to tell us that a line was present in the original image. 

Moreover, a bias is added to each element of the dot product array. Let’s assume all biases are 0. Then we 

end up with the same array, and this is called the output volume. The output volume is subsequently 

passed through an activation function, where each element is filtered through a nonlinear function. This 

step is important, as it makes the convolutional neural network able to not only estimate linear functions, 

but nonlinear ones as well. Say our activation function is a simple one that only allows positive numbers 

to flow through, negative numbers are set to zero. This is known as the ReLU activation function and it is 

non-linear. Thus, when passing our dot product array through the ReLU function, the output array 

remains the same. Lastly, a non-maximum suppression method is applied to the output of the activation 

function. The non-maximum suppression method could simply be a window sliding over the output array 

that only keeps the largest value. Consider a window of size 2x2 which covers the entirety of the output 

array in our example. The output of the non-maximum suppression method would thus be a single 

number with value 30. In this example however, the non-maximum suppression method is excluded and 

the final output of the convolution operation on our 4x4 grayscale image becomes figure 4. 

 

A simple example of a fully connected feed-forward layer 
The following example is based on ("Modeling one neuron", cs23n1, Stanford University). A fully 

connected layer is a directed acyclic graph where all input nodes are connected to all output nodes. 

Consider figure 10, which takes the output of the previous example as input and outputs a single value. 

Notice that the output of the convolutional layer has been flattened to a 1-dimensional vector. 
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Figure 7: A visual explanation of fully connected feed-forward layer. 

 

Assume that the bias is zero, the activation function (AF) is sigmoid (S(x)) and the weight vector looks as 

follow 

Weight w11 w12 w13 w14 

Value 1 0 0 1 

 

Thus, SUM equals 

SUM = 1 · 30 + 0 · 0 + 0 · 0 + 1 · 30 + 0 = 60 

 

and when entering the SUM as input to equation … the output becomes 

Output = S(SUM) = 1 

and based on this number the network can decide if an edge has been detected (sigmoid is restricted in the 

interval <0,1> and thus a score close to 1 suggests that an edge was present). 

 



21 
 

 

 

 

Pooling layer 
The following explanation is based on ("Convolutional Neural Networks (CNNs / ConvNets)", cs231n, 

Stanford University, 2018b). 

A pooling layer works as a down sampler of the output from for example the convolutional layers. The 

idea is to pass on important values, whereas less important values are discarded. An example of a pooling 

layer is the max pooling layer. It slides a window of a fixed size of the input it is given and chooses only 

the largest value within the window. Consider the following example in figure 13 where the window and 

input size are 4x4, consequently the output becomes 1x1. 

 

Figure 8: A visual explanation of the pooling layer operation. 

The subsequent output of the max pooling layer would thus be max(10,5,7,8)=10 
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The general structure of a convolutional neural network 
The following explanation is based on ("Convolutional Neural Network Architectures", TUM, 2017).  

 

Figure 9: The general structure of a simple convolutional neural network. 

Consider figure 14 above, which depicts an excessively simple convolutional neural network. Typically, 

the input is sent through a large convolutional layer, next the output of the convolutional layer is passed 

through a pooling layer to keep the prominent values. In the more complex case, several cascades of 

convolutional and pooling layers are added. Furthermore, the output of the final pooling layer is flattened 

and passed to the fully connected layer which outputs the final result.  

Equations of the cost function and backpropagation algorithm for learning 
The following explanations are based on chapter 2 in (Nielsen, 2015). In this explanation, the quadratic 

cost function is considered, however many others exist with similar properties ("A list of cost 

functions...", StackExchange, 2015) and the solutions regarding this cost function can be adapted to other 

cost functions as seen in chapter 3 in (Nielsen, 2015) . 

In order to train the network, a measure on how well it is performing is needed. This measure is called the 

loss or cost function. As defined in chapter 2, equation 26 in (Nielsen, 2015) the cost function looks the 

following 

 

Equation 3: The quadratic cost function. Source: (Nielsen, 2015), chapter 2, equation 26 

Where y(x) is the desired output of the neural network, aL(x) is the activation output from the last layer of 

the neural network and x is the input to the neural network which are summed over the total number of 

training examples in the batch. 
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Two assumptions are needed on the cost function. Firstly, the cost function needs to be able to be written 

as an average over cost functions Cx for individual training examples. This assumption is needed in order 

to train the neural network with batch sizes larger than 1, as the final cost is estimated by averaging over 

costs for individual training examples. Secondly, the cost function needs to be a function of the outputs of 

the neural network. This is essential in updating weight values deep down the neural network through 

partial derivation of the original cost function. 

Figure 15-18 and equation 5 outlines the steps taken in order to update the weights and biases at a given 

layer in the neural network, thus making it able to learn. This technique is known as backpropagation. 

Large L denotes the last layer of the network. 

 

Figure 10: The general outline of the backpropagation algorithm. Source: (Nielsen, 2015), chapter 2, subchapter “The 

backpropagation algorithm”. 

where the equations for the different expressions used in the outline are defined by figure 16-18 in 

addition to equation 5. 

 

Figure 11: Definition of the equations used in the backpropagation algorithm. Source: (Nielsen, 2015), chapter 2, subchapter 

"The four fundamental equations behind backpropagation". 
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Figure 12: Mathematical definition of the vector containing the cost function's partial derivatives with respect to the last layers 

outputs. Source: (Nielsen, 2015), chapter 2, subchapter "The four fundamental equations behind backpropagation". 

 

Equation 4: Definition of the cost’s partial derivative with respect to the last layer's outputs. Source: (Nielsen, 2015), chapter 2, 

subchapter "Exercises". 

Lastly, weights and biases would we updated according to the stochastic gradient descent scheme 

 

Figure 13: Final equations for updating the weight of each layer l. Source: (Nielsen, 2015), chapter 2, subchapter "Exercises". 

Where η denotes the learning rate of the neural network, and thus decides how large of a 

step the networks weight should take when learning. x denotes which input sample is 

used from the batch and m the batch size. 

 

 

Choosing the learning rate 
The following explanations are based on the article (Zulkifli, 2018).  

 

Figure 14: Effect of different learning rates on a 2-dimensional optimization problem. Source (Zulkifli, 2018) 
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Figure 19 depicts a simple 2-dimensional optimization problem where gradient descent it used to update 

the weight at each step. α denotes the learning rate, J() is the cost function and θ is the weight that is being 

updated. As one may observe, when operating with a small learning rate it may time several epochs for 

the algorithm to converge to the global minima. If one considers a multidimensional space with several 

local minima, which is the case when training neural networks on images (Choromanska et al., 2014), it 

might also lead to the network being stuck in a sub-optimal local minimum. When operating with a large 

learning rate, the global or local minima may never be reached, and the learning algorithm might even 

diverge from a solution. For these reasons, picking the right learning rate schedule for a neural network is 

a tricky ordeal. 

 

Fortunately, there exists learning rate optimizers such as Momentum and RMSProp (Ruder, 2016) that 

attempt to automatically tune the learning rate based on an algorithm. Thus, lightening the time required 

to tune a network considerable.  

Avoiding overfitting 
Overfitting, as defined in ("Overfitting", Oxford Dictionary), is “The production of an analysis which 

corresponds too closely or exactly to a particular set of data and may therefore fail to fit additional data or 

predict future observations reliably.”. Translated to neural network language, this means that a neural 

network model corresponds correctly to the training data, however, does not fit new data such as the test 

data. Consequently, detection results on new data will be inadequate if not non-existent.  

To avoid overfitting, a variety of methods exist. Most notably is the process of monitoring training and 

validation loss and results by splitting the dataset into training and validation sets ("Overfitting", 

Wikipedia, 2018, Guyon, 1996, Nielsen, 2015) introducing dropout to the classifying layer (Srivastava et 

al., 2014), introducing more data to the training set, including L1/L2 regularization techniques, using data 

augmentation or reducing the complexity, e.g. size, of the network (Ruizendaal, 2017). 

Transfer learning 
The following explanations are based on ("Transfer Learning", cs231n, Stanford University 2018). 

Transfer learning is a technique within the field of artificial neural network. The technique consists of 

pretraining a given network model on a large set of data, for instance the COCO image dataset. The first 

layers of the neural network will encode features that generalize to most objects, such as edges and curved 

shapes, whereas the final classification part will be specialized towards the objects that were included in 

the pretraining part. By completely resetting the weights in the classification layers of the network after 

the pretraining was completed, one is left with a network that can detect shapes or color patterns, however 
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being clueless with regards to what object these data points might represent. Thus, one finetunes the 

network on new data to mainly train the classification layers. By doing so, one saves a vast amount of 

time as not all parts of the network need to be trained. In addition, the size of the dataset can be shrunk as 

not that much data is needed to finetune the network. 

Object detection metrics 
First off, one needs to provide some definitions on how to categorize the outcome of a prediction, they are 

based on the following article ("Precision vs Recall", Wikipedia, 2007). 

• A true positive (TP) is the result when the network correctly predicts the class of an object.  

• A false positive (FP) is the result when the network predicts that an object is of a certain class, 

when in fact it is not. 

• A true negative (TN) result is when the network correctly predicts that an object is not the class it 

is looking for. 

• A false negative (FN) is when the neural network incorrectly predicts that an object is not the 

class it is looking for, when in fact it is. 

Recall 

Recall ("Precision vs Recall", Wikipedia, 2007) is the number of true positives divided by the actual 

number of positives. For instance, say there are 30 images of fish in a dataset, and the network correctly 

predicts 25 of them and does not find the others. Then the recall would be 25/30 = 0.83. Equation 6 shows 

its mathematical definition. 

 

Equation 5: Definition of recall. 

Precision 

Precision ("Precision vs Recall", Wikipedia, 2007) is the number of true positives divided by the total 

number of predictions made. It serves as a measure on how correct the network is when classifying 

objects. For instance, say there are 30 images of fish and 10 images of otters in a dataset, and the network 

correctly predicts 25 of them, however predicted otter on the 5 remaining. Equation 7 shows its 

mathematical definition. 



27 
 

 

Equation 6: Definition of precision. 

 

Intersection over Union 

Intersection over Union (IoU) is a measure on how well a convolutional neural network predicts the 

location of an object. It is calculated by dividing the area of the intersection between the ground truth 

boundary box and predicted boundary box of an object by the total area of both boundary boxes combined 

(Rosebrock, 2016). Equation 8 shows its mathematical equation. 

 

Equation 7: Definition of Intersection over Union. 

Precision-recall curve 

There are several definitions of mAP and precision-recall curves, and in this report the variant used in the 

COCO object detection competition will be explained. The explanation is based on (Arlen, 2018). 

The precision-recall curve is a mathematical function showing the relationship between precision and 

recall p(r). It is calculated by varying the confidence score of a neural network at certain IoU thresholds. 

The recall and precision are recorded when varying the confidence score, and in the end, precision is 

plotted against recall. Figure 20 shows an example of a precision-recall curve where only detections with 

an IoU score of above 0.5 are included.  

 

Figure 15: An example of a precision-recall curve. 
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Where recall is close to zero, one can expect the confidence score to be so high that when making 

predictions it is almost always correct, thus precision is close to 1, however it finds few of the objects 

present as the confidence score is too high and as a result recall is close to 0. Where precision is close to 

zero, one can expect that the confidence score is quite relaxed, and as a result several accepted predictions 

are made where some are wrong, and others correct. As a result, the precision plummets whereas recall 

increases since the network finds more of the objects present this time. 

Mean average precision at IoU threshold 0.5 

The mean average precision is in this case the average precision across all recall values. Consequently, it 

is the area under the p(r) graph and is a number that describes the graph’s shape. As the maximum area 

under the graph is 1, a perfect mAP@0.5IoU score would be 1. Then the network shows 100 % precision 

and recall at all confidence score levels when the IoU of the detection’s predicted location is above 0.5.  
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Chapter 7: Method 

Preprocessing the dataset 
Firstly, each image of fish was matched to its binary images. This operation was somewhat tricky, as the 

fish images had the caption “13_Oct_2017_00_26_22_178_FullCam1.jpg”, namely 

“day_month_year_hour_minute_second_image” whereas their binary images had the caption 

“13_Oct_2017_00_26_22F1_178_Binary”. As one may notice, the binary image’s caption has inserted 

the letters “FX”, where X is a whole number which defines which detected fish in the fish image the 

binary image labels, and thus a simple comparison between the captions would not suffice. As a result, a 

script (Appendix B, B1) was written that manually separated binary and fish images into two different 

arrays based on their filetype and then extracted the time information from each caption. Finally, the 

extracted time information from every element of the two arrays where compared to match fish images to 

their binary images. The binary images were renamed to match the caption of the fish image and then 

both the fish images and binary images were stored in a new folder. As a result of this operation, one 

could now easily match binary images to their fish image and sort them in for example Windows Explorer 

to manually inspect each fish image and its binary images to get a better overview of the dataset. 

Furthermore, since some of the fish images would look roughly the same due to the camera operating at 

200 FPS and tracking the same fish over several frames, some of these need to be removed as they do not 

present new information to the convolutional neural network and may result in overfitting. A script 

(Appendix B, B2) was written to find all images tracking the same fish, and then sort by image number. 

In the end every fifth image of the sequence was kept, as the author noticed some change between images 

when applying this interval. The images one decided to keep was saved to a new folder along with their 

respective binary images. Lastly, as this process of elimination had downsized the dataset to about 2700 

images of fish, each binary image was manually inspected to see whether the binary image was deformed 

and thus would lead to an inaccurate boundary box for the fish. If the binary image seemed misformed, it 

would be removed, and if this was the last binary image belonging to a fish image, the fish image would 

also be removed. See the figure 21 and 22 below for an example of binary image misformation. 
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Figure 16: The original fish image. 

 

Figure 17: Misformation in the binary image labeling the fish. 

Moreover, the boundary box given by each binary image had to be found in terms of its coordinates and 

describing values, namely top left corner, width and height. A script (Appendix B, B3) was written that 

iterates through each pixel value of the binary image from left to right, top to bottom and vice versa in 

order to identify the image coordinates of the points of the top left and bottom right corner of the fish. 

This was done through simple thresholding, as the value of a pixel belonging to the fish has the value 1 

and the rest 0. From these points, the information that describes the size and position of the boundary box 

was extracted. See the image below for an illustration. Lastly, binary images in which the script failed to 

detect a boundary box was removed, and if it was the last binary image relating to a fish image, the fish 

image would also be removed. Figure 23 illustrates the mentioned concepts. 

 

Figure 18: Visual explanation of how the boundary boxes metadata was found. 
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Next, the RGB stripes of the structured light needed to be removed as they were not a part of this task. 

Thus, a script (Appendix B, B4) was created which summed each channel’s value at each pixel location 

and divided the sum by the number of channels, namely three. The resulting value was put into a new 

grayscale image, with only one channel, at the same pixel position. After, the grayscale image was pasted 

into each channel of an RGB image. The reason behind this decision would be that then one can fully 

exploit the shape information already encoded in convolutional neural networks when using the technique 

of transfer learning, as the weights one transfers from another trained convolutional network, usually is 

trained on a three channel RGB-image. See figure 24 and 25 below for the result of this operation. 

 

Figure 19: Original image before removal of structured light. 

 

Figure 20: Image after the structured light was removed. 

 

Creating the train, evaluation and test set 
The resulting size of the dataset after preprocessing stages was 2658 images of fish. These needed to be 

divided into three sets, namely training, validation and test set. A script (Appendix B, B5) based on a 

script created by Daniel Stang (Stang, 2017) was modified to create the TFRecord file which is the file 

format Tensorflow’s object detection API reads data from. In addition, all images related to training, 

validation and testing were stored in their own respective folders for later fish detection testing. Table 4 

summarizes the distribution of images in each set. 
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Dataset Number of images 

Training 1860 

Validation 532 

Testing 266 

Table 4: The size of each dataset after division. 

Choosing which convolutional neural networks to train 
In order to get an overview of which convolutional neural networks Tensorflow offers configuration files 

for, as well as pretrained models, the Tensorflow detection model zoo was visited. At the site, various 

models and methods for object detection are outlined, as well as their fps and mAP score on the COCO 

dataset. As mentioned in their article (Huang et al., 2016), the measurements on fps were conducted on 

a Nvidia GeForce GTX Titan X, which is more powerful than the GPU used in this study and by Optoscale. 

As a result, when picking which networks to train for fish detection, this needs to be considered. From 

that knowledge, models reporting an operating fps of 12 or lower were dropped as they most likely do 

not run in real-time on this study’s GPU. In the end, the choice fell on three types of convolutional 

neural networks and their respective method for proposing where an object may be. Table 5 

summarizes the choices and their reported attributes. 

Chosen CNN Chosen region proposal 

method 

Pretrained  Reported FPS 

Mobilenet v2 Single-shot detector Pretrained on COCO 34.48 

Mobilenet v1 Single-shot detector and 

feature pyramid network 

Pretrained on COCO 13.15 

Inception v2 Faster region-based 

convolutional neural network 

Pretrained on COCO 17.24 

Table 5: An overview of the chosen CNNs and their reported attributes. 

Preparing configuration files for training 
Firstly, the data and models were organized in the folder structure recommended by Tensorflow 

("Running locally", Tensorflow, 2018).Next, the config file relating to the CNN model which was 

downloaded from the detection zoo was modified to match file paths to both model and config. In 

addition, number of classes was set to 1 and number of evaluation examples to 532 and the training 

data was set to shuffle after each epoch. All models used the data augmentation techniques 

“random_horizontal_flip” and “random_crop_image” or “ssd_random_crop” which is the SSD variant of 



33 
 

“random_crop_image”. Also, the measure for classification loss function was set to “weighted sigmoid”, 

which is an abbreviation of binary cross entropy with weighted sigmoid activation function, as this 

supposedly is the best classification loss function for data with 1 class ("Softmax Regression", Stanford 

University Wiki, 2011). Lastly, the metrics used to evaluate the networks detection results was chosen to 

be the detection metrics average recall and mAP, which is used in the COCO object detection 

competition. 

Initially all hyperparameters in the config file were kept as they came from the detection zoo as they are 

shipped ready to fine tune the downloaded CNN on new data. Training was initiated by running the 

python script “model_main.py” which ships with the tensorflow-gpu package through a command 

window. In addition, the Tensorboard application was run in a separate command window in order to 

keep tabs on loss and evaluation results while training through the web interface.  

 

Tuning hyperparameters during training 
The classification and localization loss of both training and validation, in addition to evaluation results 

were closely monitored through Tensorboard. The total training loss was updated in Tensorboard every 

100th global step, whereas the validation loss and results every 465th global step, which is 4 times per 

epoch. These measurements where used to determine if the network was training correctly and when 

its training was completed. 

When tuning the network, a couple of rules were followed with regard loss and tuning of the learning 

rate. 

1. If both training loss and validation loss steady decrease in value and stays roughly at the same 

value, then the network is training properly. Thus, the learning rate need not be changed. 

2. If the training loss and validation loss slowly decrease until they stabilize, and validation 

detection results are bad, then the learning rate is most likely too low and needs to be 

increased.  

3. If the learning rate skyrockets from the beginning, the learning rate is most likely too high and 

needs to be decreased. 

4. If the distance between training loss and validation loss increases early on, the network is most 

likely overfitting due to too high learning rate and thus the learning rate needs to be lowered. 
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5. It is normal for the training loss to oscillate between increasing and decreasing, however if the 

amplitude of these oscillations is large the learning rate is most likely too high and needs to be 

lowered.  

Furthermore, it was hard to balance the learning rate to achieve optimal training for FRCNN Inception 

v2. As a result, a dropout value of 0.5 was set in the box predictor layer to increase the networks 

robustness against overfitting, making it easier to find an appropriate learning rate scheme. 

When deciding whether to tune the learning rate itself or for instance the decay factor or steps as part 

of the learning rate scheme, the following guidelines were followed. 

1. If the network shows signs of overfitting early on, the learning rate needs to be adjusted. 

2. If the network shows signs of overfitting at a later stage without satisfactory detection results, 

the decay steps parameter needs to be adjusted. Preferably to a step that comes before the 

point where the network showed signs of overfitting. 

3. If the situation in point 2 occurs again, decay factor needs to be adjusted. 

As for the batch size, the GPU struggled with having enough memory when the batch size was larger 

than 4. To avoid any crashes due to memory issues while training, it was decided that if the original 

config’s batch size was larger than one, the batch size would be set to two.  

After countless trials and errors, the following table 6 shows the final values of the most important 

hyperparameters. For details on the remaining hyperparameters and their values, see appendix A. 

Hyperparameters CNN 

FRCNN Inception v2 SSD+FPN Mobilenet v1 SSD Mobilenet v2 

Batch size 1 2 2 

Learning rate (LR) Manual learning rate 

Step 0 LR: 0.0002 

Step 2000 LR: .00002 

Step 5000 LR: .000002 

Step 7500 LR: .0000002 

Exponential decay 

Step 0 LR: 0.004 

Decay steps: 465 

Decay factor: 0.85 

Staircase 

Exponential decay 

Step 0 LR: 0.004 

Decay steps: 500 

Decay factor: 0.85 

Dropout Not used 0.5 0.5 

Table 6: An overview of the final hyperparameter values used. 
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Deciding when to end the training of a network 
Two criteria were followed in order to decide if the training of a network should be stopped. 

1. If the validation detection results, namely mAP and recall, looked satisfactory and showed little 

signs of improvement, the network’s training would be considered complete. 

2. If validation detection results, namely mAP and recall, looked inadequate and showed little signs 

of improvement, and the validation loss had stalled on a certain level or was oscillating, the 

training would end, and readjustments should be made to the network’s hyperparameters. 

 

Frames per second test 
All test images were resized according to the resize scheme defined in each network model and stored 

in new folders. That is, images for FRCNN Inception v2 were resized to a maximum width of 1024 with 

the preservation of the image’s original aspect ratio, images for Mobilenet v1 were resized to a fixed size 

of 640x640 pixels and images for Mobilenet v2 were resized to a fixed size of 300x300 pixels.  

Furthermore, the graph from each network was extracted through the TensorFlow provided python 

script called “export_inference_graph.py”. The graphs were extracted from the models that showed the 

best mAP@0.5 and recall validation scores. Lastly, a script (Appendix B, B6) for measuring frames per 

second was written based on TensorFlow’s “off-the-shelf-inference” script for inference on single 

images. The script excluded the 10 first images in the fps count as it needs some time to warm up before 

reaching a stable fps. The timer was started after the first 10 images had been inferred. As a result, the 

final fps value was found through equation 9. 

 

Equation 8: Equation used to calculate the CNNs FPS. 

 

 

 

 

 

mailto:mAP@0.5
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Chapter 8: Results 

Training and validation results 
Note that the transparent graphs are the true values measured, whereas the clearly visible graph is a 

smoothed variant which removes the inherent noise present in the measurement and thus making the 

graphs easier to interpret when training. In addition, the red dot should be ignored. 

The figure 26-29 show the training and validation losses and detection metrics related to FRCNN 

Inception v2. 

 

Figure 21: Training loss of FRCNN Inception v2 per global step. 

 

Figure 22: Validation loss of FRCNN Inception v2 per global step. 
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Figure 23: mAP@0.50IoU of FRCNN Inception v2 per global step. 

 

 

Figure 24: Recall of FRCNN Inception v2 per global step. 
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Figure 30-33 show the training and validation losses and detection metrics related to SSD+FPN 

Mobilenet v1. 

 

 

Figure 25: Training loss of SSD+FPN Mobilenet v1 per global step. 

 

 

 

Figure 26: Validation loss of SSD+FPN Mobilenet v1 per global step. 
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Figure 27: mAP@0.5IOU of SSD+FPN Mobilenet v1 per global step. 

 

 

 

Figure 28: Recall of SSD+FPN Mobilenet v1 per global step. 
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Figure 34-37 show the training and validation losses and detection metrics related to SSD Mobilenet v2. 

 

 

Figure 29: Training loss of SSD Mobilenet v2 per global step. 

 

 

 

Figure 30: Validation loss of SSD Mobilenet v2 per global step. 
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Figure 31: mAP@0.5IOU of SSD Mobilenet v2 per global step. 

 

 

Figure 32: Recall of SSD Mobilenet v2 per global step. 
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Test results 
Table 7 shows the detection results after inferring on 266 test images, which corresponds to the red 

dots seen on the recall and mAP graphs above.  

CNN Recall mAP@0.5IoU FPS 

FRCNN Inception v2 0.848 0.853 2.02 

SSD+FPN Mobilenet v1 0.814 0.827 3.38 

SSD Mobilenet v2 0.694 0.741 4.29 

Table 7: Overview of recall and mAP results for each CNN. 

Chapter 9: Discussion 

Training and validation results 
As seen in all training loss graphs (figure 26, 30, 34), the loss tends to fluctuate while slowly decreasing. 

This may be a property of the data used in training and batch size, as smaller batch sizes are more 

susceptible to the noise in each image in contrast to using large batch sizes where the noise is averaged 

out (Keskar et al., 2016). More notably, is the amplitude of the fluctuations in the training and validation 

loss of SSD Mobilenet v2. Generally, one would assume that this is caused by having to high learning 

rate, however the author experimented with extremely low values and yet the fluctuations were still 

present. A possible explanation could be caused by a methods used by the network called hard example 

miner (Shrivastava, Gupta and Girschick, 2016, Hui, 2018) and the lack of annotation of the fish dataset. 

The hard example miner stores false positive detections and subsequently trains the network on these 

examples to learn what the object is not. However, since not all fish are annotated in the dataset, the 

network may detect an object that in fact is a fish, however it gets labeled as a false positive as the 

object has not been annotated. These examples are subsequently used to train the network what a fish 

does not look like and may be the cause of the oscillations. 

When looking at the recall and mAP for SSD+FPN Mobilenet v1 (fig ..), the results take a dive around 

step 4500 before recovering. This may be a sign of overfitting, however later the network recovers. As 

far as the author can tell, this may be due to a suboptimal learning rate scheme, where the learning rate 

decreases too slowly or learning rate optimizers. The learning rate optimizers take an educated guess 

based on the initially set learning rate to update the weights of the network through backpropagation, 

and this may not be optimal (Wilson et al., 2017). The issue could also have been caused by the network 
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being too complex, however FRCNN Inception v2 does not show the same tendencies while being a 

more complex network, and thus is explanation is discarded. 

Finally, the results of the respective networks’ training seem to be acceptable. Both training loss and 

validation loss decrease most of the time and stay relatively close. Furthermore, recall and mAP values 

confirm this observation as they slowly rise to an asymptotic maximum value. 

Test results 
The most noticeable result is that not one of the convolutional neural networks managed to operate in 

real-time, although Tensorflow reported that they can do so. The most prominent reason for this 

paper’s difference in fps compared to Tensorflow’s own measurements would be the different hardware 

used. Tensorflow’s GPU outshines the GPU used in this study on all performance criteria. Furthermore, 

the author discovered that the provided numbers on fps from Tensorflow’s model zoo used a different 

input image size when compared to the configuration publicly available for FRCNN Inception v2 and SSD 

Mobilenet v1. The input image size in the publicly available configurations was larger, and as a result the 

neural network becomes slower as more data must be processed. This most likely explains why SSD+FPN 

Mobilenet v1 was measured to be faster than FRCNN Inception v2 although the opposite was reported. 

Consequently, in order to increase the fps by some degree, one could try to train the same neural 

networks on smaller images. Out of curiosity, the author halved the width of the images input to the 

FRCNN Inception v2 network and the fps rose to 5.14 while still showing promising results. However, 

these results were only visually observed by the author and not confirmed by an objective detection 

result measure. Finally, the issue could have been avoided early on if the fps of the pretrained networks 

was tested before they were trained.  

When comparing the various networks results to those gathered in the literature study, the networks 

seem to perform above average. They are not competing with the top results of other implementations, 

however neither are they at the bottom. A reason as to why they were not able to reach the top may be 

the number of images in the dataset and the fact that many of the images track the same fish over 

several frames. Thus, this sequence of images does not represent entirely new information and may 

lead to a slight increase in overfitting. Furthermore, the other implementations used RGB images, thus 

additional information regarding the color of fish might have been to their advantage. 
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Chapter 10: Conclusion 
The objective of this study was to create an underwater fish dataset consisting of grayscale images and 

to compare fish detection methods found in the literature in order to determine which of these could 

serve as real-time fish detectors. Lastly, the most prominent method was to be implemented and tested 

on the dataset. 

In order to do so, a literature study was conducted that found convolutional neural networks to be the 

best candidate. The proposed method was subsequently realized by choosing three promising types of 

CNNs, creating an annotated dataset consisting of fish images received from Optoscale, implementing 

and testing the solution through TensorFlow’s object detection API and finally measuring the methods 

fps on a test set. 

The results of the three different implementations varied and compared to similar results from the 

literature, one may conclude that they performed above average. However, when looking at their 

performance, they performed below average and did not operate in real-time. 

 

 

 

Chapter 11: Future work 
1. It would be informative to investigate whether a smaller input size could have thrusted the fps 

of the implementations above 8 FPS. 

2. A larger dataset could have been gathered to see whether detection results would be improved, 

that also had annotated all examples of fish in the image. 

3. Less complicated convolutional neural networks could have been tested in order to improve FPS 

and issues with overfitting, perhaps leading to better detection results. 

 

 

 

 



45 
 

 

Bibliography 
 

Abadi, M. et al. (2015) TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Available 
at: http://tensorflow.org/. 

Arlen, T. C. (2018) Understanding the mAP Evaluation Metric for Object Detection. Available at: 
https://medium.com/@timothycarlen/understanding-the-map-evaluation-metric-for-object-
detection-a07fe6962cf3 (Accessed: 11/17/2018). 

Boudhane, M. and Nsiri, B. (2016) Underwater image processing method for fish localization and 
detection in submarine environment, Journal of Visual Communication and Image 
Representation, vol 39, pp. 226-238. 

Canziani, A., Paszke, A. and Eugenio, C. (2016) An Analysis of Deep Neural Network Models for Practical 
Applications, arXiv:1605.07678 [cs.CV]. 

Choromanska, A. et al. (2014) The Loss Surfaces of Multilayer Networks, arXiv:1412.0233v3 [cs.LG]. 
"Convolutional Neural Network Architectures", TUM (2017). Available at: 

https://wiki.tum.de/display/lfdv/Convolutional+Neural+Network+Architectures (Accessed: 
11/15/2018). 

"Convolutional Neural Networks (CNNs / ConvNets)", cs231n, Stanford University (2018a). Available at: 
https://cs231n.github.io/convolutional-networks/ (Accessed: 09/26/2018). 

"Convolutional Neural Networks (CNNs / ConvNets)", cs231n, Stanford University (2018b). Available at: 
https://cs231n.github.io/convolutional-networks/#case (Accessed: 11/14/2018). 

Deng, J. et al. (2009) ImageNet: A large-scale hierarchical image database, 2009 IEEE Conference on 
Computer Vision and Pattern Recognition. 

Giordano, D., Palazza, S. and Spampinato, C. (2016) Fish Detection. In: Fisher R., Chen-Burger YH., 
Giordano D., Hardman L., Lin FP. (eds) Fish4Knowledge: Collecting and Analyzing Massive Coral 
Reef Fish Video Data., Intelligent Systems Reference Library, vol 104. Springer, Cham. 

Guyon, I. (1996) A scaling law for the validation-set training-set size ratio. Available at: 
https://pdfs.semanticscholar.org/452e/6c05d46e061290fefff8b46d0ff161998677.pdf. 

He, K. et al. (2015) Deep Residual Learning for Image Recognition, arXiv:1512.03385 [cs.CV]. 
Hongwei, Q. et al. (2015) DeepFish: Accurate underwater live fish recognition with a deep architecture, 

Neurocomputing, vol 187, pp. 49-58. 
Howard, A. G. et al. (2017) MobileNets: Efficient Convolutional Neural Networks for Mobile Vision 

Applications, arXiv:1704.04861 [cs.CV]. 
"https://www.tensorflow.org"  (Accessed: 10/11/2018). 
Huang, J. et al. (2016) Speed/accuracy trade-offs for modern convolutional object detectors, 

arXiv:1611.10012 [cs.CV]. 
Hui, J. (2018) What do we learn from single shot object detectors (SSD, YOLOv3), FPN & Focal loss 

(RetinaNet)? Available at: https://medium.com/@jonathan_hui/what-do-we-learn-from-single-
shot-object-detectors-ssd-yolo-fpn-focal-loss-3888677c5f4d (Accessed: 12/17/2018). 

ILSVRC IMAGENET Large Scale Visual Recognition Challenge. Available at: http://www.image-
net.org/challenges/LSVRC/. 

Keskar, N. S. et al. (2016) On Large-Batch Training for Deep Learning: Generalization Gap and Sharp 
Minima, arXiv:1609.04836v2 [cs.LG]. 

Krizhevsky, A., Sutskever, I. and Hinton, G. E. (2012a) ImageNet classification with deep convolutional 
neural networks, In NIPS, pp. 1106-1114. 

http://tensorflow.org/
https://medium.com/@timothycarlen/understanding-the-map-evaluation-metric-for-object-detection-a07fe6962cf3
https://medium.com/@timothycarlen/understanding-the-map-evaluation-metric-for-object-detection-a07fe6962cf3
https://wiki.tum.de/display/lfdv/Convolutional+Neural+Network+Architectures
https://cs231n.github.io/convolutional-networks/
https://cs231n.github.io/convolutional-networks/#case
https://pdfs.semanticscholar.org/452e/6c05d46e061290fefff8b46d0ff161998677.pdf
https://www.tensorflow.org/
https://medium.com/@jonathan_hui/what-do-we-learn-from-single-shot-object-detectors-ssd-yolo-fpn-focal-loss-3888677c5f4d
https://medium.com/@jonathan_hui/what-do-we-learn-from-single-shot-object-detectors-ssd-yolo-fpn-focal-loss-3888677c5f4d
http://www.image-net.org/challenges/LSVRC/
http://www.image-net.org/challenges/LSVRC/


46 
 

Krizhevsky, A., Sutskever, I. and Hinton, G. E. (2012b) ImageNet classification with deep convolutional 
neural networks, chapter 3.1, In NIPS. 

"A list of cost functions...", StackExchange (2015). Available at: 
https://stats.stackexchange.com/questions/154879/a-list-of-cost-functions-used-in-neural-
networks-alongside-applications (Accessed: 11/15/2018). 

Liu, W. et al. (2015) SSD: Single Shot MultiBox Detector, arXiv:1512.02325v5 [cs.CV]. 
Lu, H., Du, X. and Chang, P. (2018) Toward Scale-Invariance and Position-Sensitive Region Proposal 

Networks. In: Ferrari V., Hebert M., Sminchisescu C., Weiss Y. (eds) Computer Vision – ECCV 
2018. ECCV 2018., Lecture Notes in Computer Science, vol 11212. Springer, Cham. 

Lucena, O. et al. (2017) Transfer Learning Using Convolutional Neural Networks for Face Anti-spoofing. 
In: Karray F., Campilho A., Cheriet F. (eds) Image Analysis and Recognition. ICIAR 2017., Lecture 
Notes in Computer Science, vol 10317. Springer, Cham. 

Mandal, R. et al. (2018) Assessing fish abundance from underwater video using deep neural networks, 
arXiv:1807.05838v1 [cs.CV]. 

Menéndez de Llano, R. and Bosque, J. L. (2010) Study of neural net training methods in parallel and 
distributed architectures, Future Generation Computer Systems, vol 25, issue 2, pp. 267-275. 

"Modeling one neuron", cs23n1, Stanford University. Available at: http://cs231n.github.io/neural-
networks-1/ (Accessed: 11/15/2018). 

Nielsen, M. A. (2015) Neural Networks And Deep Learning, Determination Press. Available at: 
http://neuralnetworksanddeeplearning.com/. 

"Overfitting", Oxford Dictionary. Available at: https://en.oxforddictionaries.com/definition/overfitting 
(Accessed: 11/15/2018). 

"Overfitting", Wikipedia (2018). Available at: https://en.wikipedia.org/wiki/Overfitting (Accessed: 
11/15/2018). 

"Precision vs Recall", Wikipedia (2007). Available at: https://en.wikipedia.org/wiki/Precision_and_recall 
(Accessed: 11/17/2018). 

Ravanbakhsh, M. et al. (2015) Automated fish detection in underwater images using shape-based level 
sets, Photogrammetric Record, vol 30, pp. 46-62. 

Ren, S. et al. (2015) Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, 
arXiv:1506.01497 [cs.CV]. 

Rodríguez, Á. et al. (2015) Fish tracking in vertical slot fishways using computer vision techniques, 
Journal of Hydroinformatics, 17(2), pp. 275-292. Available at: 
http://dx.doi.org/10.2166/hydro.2014.034. 

Rosebrock, A. (2016) Intersection over Union (IoU) for object detection. Available at: 
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-
detection/ (Accessed: 11/17/2018). 

Ruder, S. (2016) An overview of gradient descent optimization algorithms, arXiv:1609.04747v2 [cs.LG]. 
Ruizendaal, R. (2017) Deep Learning #3: More on CNNs & Handling Overfitting. Available at: 

https://towardsdatascience.com/deep-learning-3-more-on-cnns-handling-overfitting-
2bd5d99abe5d (Accessed: 11/15/2018). 

"Running locally", Tensorflow (2018)  (Accessed: 09/10/2018). 
Russakovsky, O. et al. (2015) ImageNet Large Scale Visual Recognition Challenge, International Journal of 

Computer Vision, vol 115, issue 3, pp. 211-252. 
Shafait, F. et al. (2016) Fish identification from videos captured in uncontrolled underwater 

environments, ICES Journal of Marine Science, vol 73, Issue 10, pp. 2737–2746. Available at: 
https://doi.org/10.1093/icesjms/fsw106. 

Shrivastava, A., Gupta, A. and Girschick, R. (2016) Training Region-based Object Detectors with Online 
Hard Example Mining, arXiv:1604.03540 [cs.CV]. 

https://stats.stackexchange.com/questions/154879/a-list-of-cost-functions-used-in-neural-networks-alongside-applications
https://stats.stackexchange.com/questions/154879/a-list-of-cost-functions-used-in-neural-networks-alongside-applications
http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/
http://neuralnetworksanddeeplearning.com/
https://en.oxforddictionaries.com/definition/overfitting
https://en.wikipedia.org/wiki/Overfitting
https://en.wikipedia.org/wiki/Precision_and_recall
http://dx.doi.org/10.2166/hydro.2014.034
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://towardsdatascience.com/deep-learning-3-more-on-cnns-handling-overfitting-2bd5d99abe5d
https://towardsdatascience.com/deep-learning-3-more-on-cnns-handling-overfitting-2bd5d99abe5d
https://doi.org/10.1093/icesjms/fsw106


47 
 

"Sigmoid function", Wikipedia (2002). Available at: https://en.wikipedia.org/wiki/Sigmoid_function 
(Accessed: 11/14/2018). 

"Softmax Regression", Stanford University Wiki (2011). Available at: 
http://ufldl.stanford.edu/wiki/index.php/Softmax_Regression#Softmax_Regression_vs._k_Binar
y_Classifiers. 

Soulié, F. F. (1991) Neural networks and computing, Future Generation Computer Systems, vol 7, issue 1, 
pp. 69-77. 

Srivastava, N. et al. (2014) Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Journal 
of Machine Learning Research 15 (2014), pp. 1929-1958. 

Stang, D. (2017) Step by Step TensorFlow Object Detection API Tutorial — Part 2: Converting Existing 
Dataset to TFRecord. Available at: https://medium.com/@WuStangDan/step-by-step-
tensorflow-object-detection-api-tutorial-part-2-converting-dataset-to-tfrecord-47f24be9248d. 

Strachan, N. J. C., Nesvadba, P. and Allen, A. R. (1990) Fish species recognition by shape analysis of 
images, Pattern Recognition, vol 23, issue 5, pp. 539-544. 

Sun, X. et al. (2018) Transferring deep knowledge for object recognition in Low-quality underwater 
videos, Neurocomputing,  vol 275, pp. 897-908. 

Szegedy, C. et al. (2014) Going Deeper with Convolutions, arXiv:1409.4842v1 [cs.CV]. 
Tensorflow detection model zoo. Available at: 

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detectio
n_model_zoo.md. 

"Transfer Learning", cs231n, Stanford University (2018). Available at: http://cs231n.github.io/transfer-
learning/ (Accessed: 11/17/2018). 

Wilson, A. C. et al. (2017) The Marginal Value of Adaptive Gradient Methods in Machine Learning, 
arXiv:1705.08292 [stat.ML]. 

Xiu, L. et al. (2015) Fast accurate fish detection and recognition of underwater images with Fast R-CNN, 
OCEANS 2015 - MTS/IEEE Washington. 

Zulkifli, H. (2018) Understanding Learning Rates and How It Improves Performance in Deep Learning. 
Available at: https://towardsdatascience.com/understanding-learning-rates-and-how-it-
improves-performance-in-deep-learning-d0d4059c1c10 (Accessed: 11/15/2018). 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Sigmoid_function
http://ufldl.stanford.edu/wiki/index.php/Softmax_Regression#Softmax_Regression_vs._k_Binary_Classifiers
http://ufldl.stanford.edu/wiki/index.php/Softmax_Regression#Softmax_Regression_vs._k_Binary_Classifiers
https://medium.com/@WuStangDan/step-by-step-tensorflow-object-detection-api-tutorial-part-2-converting-dataset-to-tfrecord-47f24be9248d
https://medium.com/@WuStangDan/step-by-step-tensorflow-object-detection-api-tutorial-part-2-converting-dataset-to-tfrecord-47f24be9248d
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
http://cs231n.github.io/transfer-learning/
http://cs231n.github.io/transfer-learning/
https://towardsdatascience.com/understanding-learning-rates-and-how-it-improves-performance-in-deep-learning-d0d4059c1c10
https://towardsdatascience.com/understanding-learning-rates-and-how-it-improves-performance-in-deep-learning-d0d4059c1c10


48 
 

Appendix 

A: Network configuration files 

A1: FRCNN Inception v2 config file 
model { 

  faster_rcnn { 

    num_classes: 1 

    image_resizer { 

      keep_aspect_ratio_resizer { 

        min_dimension: 600 

        max_dimension: 1024 

      } 

    } 

    feature_extractor { 

      type: 'faster_rcnn_inception_v2' 

      first_stage_features_stride: 16 

    } 

    first_stage_anchor_generator { 

      grid_anchor_generator { 

        scales: [0.25, 0.5, 1.0, 2.0] 

        aspect_ratios: [0.5, 1.0, 2.0] 

        height_stride: 16 

        width_stride: 16 

      } 

    } 

    first_stage_box_predictor_conv_hyperparams { 

      op: CONV 

      regularizer { 

        l2_regularizer { 

          weight: 0.0 



49 
 

        } 

      } 

      initializer { 

        truncated_normal_initializer { 

          stddev: 0.01 

        } 

      } 

    } 

    first_stage_nms_score_threshold: 0.0 

    first_stage_nms_iou_threshold: 0.7 

    first_stage_max_proposals: 300 

    first_stage_localization_loss_weight: 2.0 

    first_stage_objectness_loss_weight: 1.0 

    initial_crop_size: 14 

    maxpool_kernel_size: 2 

    maxpool_stride: 2 

    second_stage_box_predictor { 

      mask_rcnn_box_predictor { 

        use_dropout: false 

        dropout_keep_probability: 1.0 

        fc_hyperparams { 

          op: FC 

          regularizer { 

            l2_regularizer { 

              weight: 0.0 

            } 

          } 

          initializer { 

            variance_scaling_initializer { 
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              factor: 1.0 

              uniform: true 

              mode: FAN_AVG 

            } 

          } 

        } 

      } 

    } 

    second_stage_post_processing { 

      batch_non_max_suppression { 

        score_threshold: 0.0 

        iou_threshold: 0.6 

        max_detections_per_class: 100 

        max_total_detections: 300 

      } 

      score_converter: SOFTMAX 

    } 

    second_stage_localization_loss_weight: 2.0 

    second_stage_classification_loss_weight: 1.0 

  } 

} 

 

train_config: { 

  batch_size: 1 

  optimizer { 

    momentum_optimizer: { 

      learning_rate: { 

        manual_step_learning_rate { 

          initial_learning_rate: 0.0002 
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          schedule { 

            step: 2000 

            learning_rate: .00002 

          } 

          schedule { 

            step: 5000 

            learning_rate: .000002 

          } 

          schedule { 

            step: 7500 

            learning_rate: .0000009 

          } 

        } 

      } 

      momentum_optimizer_value: 0.9 

    } 

    use_moving_average: false 

  } 

  gradient_clipping_by_norm: 10.0 

  fine_tune_checkpoint: 

"C:\\Users\\Storm\\Documents\\Optoscale\\FishRecog\\models\\frcnn_inception_coco\\model.ckpt" 

  from_detection_checkpoint: true 

  # Note: The below line limits the training process to 200K steps, which we 

  # empirically found to be sufficient enough to train the COCO dataset. This 

  # effectively bypasses the learning rate schedule (the learning rate will 

  # never decay). Remove the below line to train indefinitely. 

  num_steps: 200000 

  data_augmentation_options { 

    random_horizontal_flip { 
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    } 

  } 

  data_augmentation_options { 

    random_crop_image { 

      min_object_covered: 0.0 

      min_aspect_ratio: 0.75 

      max_aspect_ratio: 3.0 

      min_area: 0.75 

      max_area: 1.0 

      overlap_thresh: 0.0 

    } 

  } 

} 

 

train_input_reader { 

  label_map_path: "C:\\Users\\Storm\\Documents\\Optoscale\\FishRecog\\data\\label_map.pbtxt" 

  tf_record_input_reader { 

    input_path: "C:\\Users\\Storm\\Documents\\Optoscale\\FishRecog\\data\\training.record" 

  } 

  shuffle: true 

} 

eval_config { 

  num_examples: 532 

  num_visualizations: 50 

  metrics_set: "coco_detection_metrics" 

  use_moving_averages: false 

} 

eval_input_reader { 

  label_map_path: "C:\\Users\\Storm\\Documents\\Optoscale\\FishRecog\\data\\label_map.pbtxt" 
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  shuffle: false 

  num_readers: 1 

  tf_record_input_reader { 

    input_path: "C:\\Users\\Storm\\Documents\\Optoscale\\FishRecog\\data\\eval.record" 

  } 

} 

 

A2: SSD+FPN Mobilenet v1 config file 
model { 

  ssd { 

    num_classes: 1 

    image_resizer { 

      fixed_shape_resizer { 

        height: 640 

        width: 640 

      } 

    } 

    feature_extractor { 

      type: "ssd_mobilenet_v1_fpn" 

      depth_multiplier: 1.0 

      min_depth: 16 

      conv_hyperparams { 

        regularizer { 

          l2_regularizer { 

            weight: 3.99999989895e-05 

          } 

        } 

        initializer { 

          random_normal_initializer { 
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            mean: 0.0 

            stddev: 0.00999999977648 

          } 

        } 

        activation: RELU_6 

        batch_norm { 

          decay: 0.996999979019 

          scale: true 

          epsilon: 0.0010000000475 

        } 

      } 

      override_base_feature_extractor_hyperparams: true 

    } 

    box_coder { 

      faster_rcnn_box_coder { 

        y_scale: 10.0 

        x_scale: 10.0 

        height_scale: 5.0 

        width_scale: 5.0 

      } 

    } 

    matcher { 

      argmax_matcher { 

        matched_threshold: 0.5 

        unmatched_threshold: 0.5 

        ignore_thresholds: false 

        negatives_lower_than_unmatched: true 

        force_match_for_each_row: true 

        use_matmul_gather: true 
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      } 

    } 

    similarity_calculator { 

      iou_similarity { 

      } 

    } 

    box_predictor { 

      weight_shared_convolutional_box_predictor { 

        conv_hyperparams { 

          regularizer { 

            l2_regularizer { 

              weight: 3.99999989895e-05 

            } 

          } 

          initializer { 

            random_normal_initializer { 

              mean: 0.0 

              stddev: 0.00999999977648 

            } 

          } 

          activation: RELU_6 

          batch_norm { 

            decay: 0.996999979019 

            scale: true 

            epsilon: 0.0010000000475 

          } 

        } 

        depth: 256 

        num_layers_before_predictor: 4 
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        use_dropout: true 

        dropout_keep_probability: 0.500000011920929 

        kernel_size: 3 

        class_prediction_bias_init: -4.59999990463 

      } 

    } 

    anchor_generator { 

      multiscale_anchor_generator { 

        min_level: 3 

        max_level: 7 

        anchor_scale: 4.0 

        aspect_ratios: 1.0 

        aspect_ratios: 2.0 

        aspect_ratios: 0.5 

        scales_per_octave: 2 

      } 

    } 

    post_processing { 

      batch_non_max_suppression { 

        score_threshold: 0.300000011921 

        iou_threshold: 0.600000023842 

        max_detections_per_class: 100 

        max_total_detections: 100 

      } 

      score_converter: SIGMOID 

    } 

    normalize_loss_by_num_matches: true 

    loss { 

      localization_loss { 
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        weighted_smooth_l1 { 

        } 

      } 

      classification_loss { 

        weighted_sigmoid { 

        } 

      } 

      classification_weight: 1.0 

      localization_weight: 1.0 

    } 

    encode_background_as_zeros: true 

    normalize_loc_loss_by_codesize: true 

    inplace_batchnorm_update: true 

    freeze_batchnorm: false 

  } 

} 

train_config { 

  batch_size: 2 

  data_augmentation_options { 

    random_horizontal_flip { 

    } 

  } 

  data_augmentation_options { 

    random_crop_image { 

      min_object_covered: 0.0 

      min_aspect_ratio: 0.75 

      max_aspect_ratio: 3.0 

      min_area: 0.75 

      max_area: 1.0 
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      overlap_thresh: 0.0 

    } 

  } 

  sync_replicas: true 

  optimizer { 

    momentum_optimizer { 

      learning_rate { 

        exponential_decay_learning_rate { 

          initial_learning_rate: 0.0004000000189989805 

          decay_steps: 465 

          decay_factor: 0.85000000000 

          staircase: true 

        } 

      } 

      momentum_optimizer_value: 0.899999976158 

    } 

    use_moving_average: false 

  } 

  fine_tune_checkpoint: 

"C:\\Users\\Storm\\Documents\\Optoscale\\FishRecog\\models\\frcnn_inception_coco\\model.ckpt" 

  from_detection_checkpoint: true 

  load_all_detection_checkpoint_vars: true 

  num_steps: 12500 

  startup_delay_steps: 0.0 

  replicas_to_aggregate: 8 

  max_number_of_boxes: 100 

  unpad_groundtruth_tensors: false 

} 

train_input_reader { 
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  label_map_path: "C:\\Users\\Storm\\Documents\\Optoscale\\FishRecog\\data\\label_map.pbtxt" 

  tf_record_input_reader { 

    input_path: "C:\\Users\\Storm\\Documents\\Optoscale\\FishRecog\\data\\training.record" 

  } 

  shuffle: true 

} 

eval_config { 

  num_examples: 532 

  num_visualizations: 50 

  metrics_set: "coco_detection_metrics" 

  use_moving_averages: false 

} 

eval_input_reader { 

  label_map_path: "C:\\Users\\Storm\\Documents\\Optoscale\\FishRecog\\data\\label_map.pbtxt" 

  shuffle: false 

  num_readers: 1 

  tf_record_input_reader { 

    input_path: "C:\\Users\\Storm\\Documents\\Optoscale\\FishRecog\\data\\eval.record" 

  } 

} 

 

A3: SSD Mobilenet v2 config file 
model { 

  ssd { 

    num_classes: 1 

    box_coder { 

      faster_rcnn_box_coder { 

        y_scale: 10.0 

        x_scale: 10.0 
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        height_scale: 5.0 

        width_scale: 5.0 

      } 

    } 

    matcher { 

      argmax_matcher { 

        matched_threshold: 0.5 

        unmatched_threshold: 0.5 

        ignore_thresholds: false 

        negatives_lower_than_unmatched: true 

        force_match_for_each_row: true 

      } 

    } 

    similarity_calculator { 

      iou_similarity { 

      } 

    } 

    anchor_generator { 

      ssd_anchor_generator { 

        num_layers: 6 

        min_scale: 0.2 

        max_scale: 0.95 

        aspect_ratios: 1.0 

        aspect_ratios: 2.0 

        aspect_ratios: 0.5 

        aspect_ratios: 3.0 

        aspect_ratios: 0.3333 

      } 

    } 
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    image_resizer { 

      fixed_shape_resizer { 

        height: 300 

        width: 300 

      } 

    } 

    box_predictor { 

      convolutional_box_predictor { 

        min_depth: 0 

        max_depth: 0 

        num_layers_before_predictor: 0 

        use_dropout: true 

        dropout_keep_probability: 0.5 

        kernel_size: 1 

        box_code_size: 4 

        apply_sigmoid_to_scores: false 

        conv_hyperparams { 

          activation: RELU_6, 

          regularizer { 

            l2_regularizer { 

              weight: 0.00004 

            } 

          } 

          initializer { 

            truncated_normal_initializer { 

              stddev: 0.03 

              mean: 0.0 

            } 

          } 
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          batch_norm { 

            train: true, 

            scale: true, 

            center: true, 

            decay: 0.9997, 

            epsilon: 0.001, 

          } 

        } 

      } 

    } 

    feature_extractor { 

      type: 'ssd_mobilenet_v2' 

      min_depth: 16 

      depth_multiplier: 1.0 

      conv_hyperparams { 

        activation: RELU_6, 

        regularizer { 

          l2_regularizer { 

            weight: 0.00004 

          } 

        } 

        initializer { 

          truncated_normal_initializer { 

            stddev: 0.03 

            mean: 0.0 

          } 

        } 

        batch_norm { 

          train: true, 
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          scale: true, 

          center: true, 

          decay: 0.9997, 

          epsilon: 0.001, 

        } 

      } 

    } 

    loss { 

      classification_loss { 

        weighted_sigmoid { 

        } 

      } 

      localization_loss { 

        weighted_smooth_l1 { 

        } 

      } 

      hard_example_miner { 

        num_hard_examples: 3000 

        iou_threshold: 0.99 

        loss_type: CLASSIFICATION 

        max_negatives_per_positive: 3 

        min_negatives_per_image: 3 

      } 

      classification_weight: 1.0 

      localization_weight: 1.0 

    } 

    normalize_loss_by_num_matches: true 

    post_processing { 

      batch_non_max_suppression { 
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        score_threshold: 1e-8 

        iou_threshold: 0.6 

        max_detections_per_class: 100 

        max_total_detections: 100 

      } 

      score_converter: SIGMOID 

    } 

  } 

} 

 

train_config: { 

  batch_size: 2 

  optimizer { 

    rms_prop_optimizer: { 

      learning_rate: { 

        exponential_decay_learning_rate { 

          initial_learning_rate: 0.0004 

          decay_steps: 500 

          decay_factor: 0.85 

        } 

      } 

      momentum_optimizer_value: 0.9 

      decay: 0.9 

      epsilon: 1.0 

    } 

  } 

  fine_tune_checkpoint: 

"C:\\Users\\Storm\\Documents\\Optoscale\\FishRecog\\models\\ssd_mobilenet_v2_coco\\model.ckpt

" 
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  from_detection_checkpoint: true 

  # Note: The below line limits the training process to 200K steps, which we 

  # empirically found to be sufficient enough to train the pets dataset. This 

  # effectively bypasses the learning rate schedule (the learning rate will 

  # never decay). Remove the below line to train indefinitely. 

  num_steps: 200000 

  data_augmentation_options { 

    random_horizontal_flip { 

    } 

  } 

  data_augmentation_options { 

    random_crop_image { 

      min_object_covered: 0.0 

      min_aspect_ratio: 0.75 

      max_aspect_ratio: 3.0 

      min_area: 0.75 

      max_area: 1.0 

      overlap_thresh: 0.0 

    } 

  } 

} 

 

train_input_reader { 

  label_map_path: "C:\\Users\\Storm\\Documents\\Optoscale\\FishRecog\\data\\label_map.pbtxt" 

  tf_record_input_reader { 

    input_path: "C:\\Users\\Storm\\Documents\\Optoscale\\FishRecog\\data\\training.record" 

  } 

  shuffle: true 

} 
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eval_config { 

  num_examples: 532 

  num_visualizations: 50 

  metrics_set: "coco_detection_metrics" 

  use_moving_averages: false 

} 

eval_input_reader { 

  label_map_path: "C:\\Users\\Storm\\Documents\\Optoscale\\FishRecog\\data\\label_map.pbtxt" 

  shuffle: false 

  num_readers: 1 

  tf_record_input_reader { 

    input_path: "C:\\Users\\Storm\\Documents\\Optoscale\\FishRecog\\data\\eval.record" 

  } 

} 

 

graph_rewriter { 

  quantization { 

    delay: 48000 

    weight_bits: 8 

    activation_bits: 8 

  } 

} 

 

B: Python scripts 

B1: Match images to binary images and rename binary images 
from PIL import Image 

import os 

import glob 

import numpy as np 
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import shutil 

 

currentDir = os.path.dirname(os.path.realpath(__file__))  

allBottomDirs = [] 

for dirpaths, dirnames, filenames in os.walk(currentDir): 

 if not dirnames:  

  allBottomDirs.append(dirpaths) 

 

numDirs = len(allBottomDirs) 

countDir = 1 

 

countDir = 0 

for dirPath in allBottomDirs: 

 imageFiles = glob.glob(dirPath + '\\*.jpg') 

 binaryFiles = glob.glob(dirPath + '\\*.png') 

 countFiles = 0 

 for imgPath in imageFiles: 

  #1 finne dato og klokkeslett og isolere alle bilder tilhørende dette 

  filename = os.path.basename(imgPath) 

  if('_FullCam1' in filename): 

   date = filename.replace('.jpg','').split('_FullCam1')[0] 

   #2 finne dag 

   day = date.split('_')[-1] 

   date = date.replace('_' + day ,'') 

   for binaryPath in binaryFiles: 

    binaryName = os.path.basename(binaryPath) 

    nameParts = binaryName.split('_') 

    nameParts = nameParts[0:6] 
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    for idx, part in enumerate(nameParts): 

     if((idx+1) != len(nameParts)): 

      nameParts[idx] += '_' 

     else: 

      nameParts[idx] = nameParts[idx].split('F')[0] 

 

    binaryDate = ''.join(nameParts) 

 

    if(date == binaryDate): 

     binaryDay = binaryName.replace(date,'').split('_')[1] 

     binaryLabel = binaryName.replace(date,'').split('_')[0] 

     if(day == binaryDay and not 'Boundary' in binaryName): 

     

 shutil.copy(imgPath,'C:\\Users\\Storm\\Desktop\\Training_set\\ImagesRoi' + '\\' + filename) 

     

 shutil.copy(binaryPath,'C:\\Users\\Storm\\Desktop\\Training_set\\ImagesRoi' + '\\' + 

filename.replace('.jpg','_' + binaryLabel + '.png')) 

  countFiles +=1 

  print('{}/{}'.format(countDir,countFiles))  

 

 countDir += 1 

   

 input('Done') 
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B2: Removal of images that are too close in time when tracking fish 
 

#Note: script must be in top dir of images directories 

 

from PIL import Image 

import os 

import glob 

import numpy as np 

import shutil 

 

class FishTypes: 

 F1 = 0 

 F2 = 1 

 F3 = 2 

 F4 = 3 

 F5 = 4 

 

class FishImage: 

 def __init__(self, imagePath, binaryPath, day, block): 

  self.imagePath = imagePath 

  self.binaryPath = binaryPath 

  self.day = int(day) 

  self.block = int(block)-1 

 

def keepImages(images): 

 for fimg in images: 

  imageName = os.path.basename(fimg.imagePath) 

  binaryName = os.path.basename(fimg.binaryPath) 
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  shutil.copy(fimg.imagePath, 

'C:\\Users\\Storm\\Desktop\\Training_set\\filteredImages\\' + imageName) 

  shutil.copy(fimg.binaryPath, 

'C:\\Users\\Storm\\Desktop\\Training_set\\filteredImages\\' + binaryName) 

 

 

def findBlockImages(matchedPairs): 

 blockImages = [[],[],[],[],[]] #F1-5 

 

 for pair in matchedPairs: 

  blockImages[pair.block].append(pair) 

  

 return blockImages 

 

def filterImages(blockImages): 

 for block in blockImages: 

  if(len(block) > 0): 

   matchedPairs = sorted(block, key=lambda x: x.day, reverse=False) 

   keepBin = [] 

   #for entry in matchedPairs: 

   # print(entry.binaryPath) 

 

   for idx, pair in enumerate(matchedPairs): 

    if((idx*5) >= len(matchedPairs)): 

     pass 

    else: 

     keepBin.append(matchedPairs[idx*5]) 

   keepImages(keepBin) 
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currentDir = os.path.dirname(os.path.realpath(__file__))  

allBottomDirs = [] 

 

allBottomDirs.append(currentDir + '\\ImagesRoi') 

 

for dirPath in allBottomDirs: 

 imageFiles = glob.glob(dirPath + '\\*.jpg') 

 binaryFiles = glob.glob(dirPath + '\\*.png') 

 

 

alreadyHandled = [] 

for imgPath in imageFiles: 

 filename = os.path.basename(imgPath) 

 date = filename.replace('.jpg','').split('_FullCam1')[0] 

 #2 finne dag 

 day = date.split('_')[-1] 

 date = date.replace('_' + day ,'') 

 if(date in alreadyHandled): 

  continue 

 else: 

  alreadyHandled.append(date) 

 matchedPairs = [] 

 for binaryPath in binaryFiles: 

  binaryName = os.path.basename(binaryPath) 

  binaryDate = binaryName.split('_FullCam1')[0] 

  binaryDay = binaryDate.split('_')[-1] 

  binaryDate = binaryDate.replace('_' + binaryDay ,'') 

 

  if(binaryDate == date): 
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   imagePath = binaryPath.split('FullCam1_')[0] + 'FullCam1.jpg' 

   block = binaryPath.split('FullCam1_F')[1].split('.')[0] 

   matchedPairs.append(FishImage(imagePath,binaryPath,binaryDay, block)) 

 

 blockImages = findBlockImages(matchedPairs) 

    

 filterImages(blockImages) 

 

B3: Find the boundary box of each binary image and store it as a “.txt” file 
#Note: script must be in top dir of images directories 

 

from PIL import Image 

import os 

import glob 

import numpy as np 

import shutil 

 

class FishImage: 

 def __init__(self, imagePath): 

  self.imagePath = imagePath 

  self.binaryPaths = [] 

 

 def addBinaryPath(self,path): 

  self.binaryPaths.append(path) 

 

class BBox: 

 def __init__(self, minx, maxx, miny, maxy): 

  self.minx = int(minx) 

  self.maxx = int(maxx) 
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  self.miny = int(miny) 

  self.maxy = int(maxy) 

  self.height = self.maxy-self.miny 

  self.width = self.maxx-self.minx 

 

 

 

def findBoxData(binaryPath): 

 img = Image.open(binaryPath) 

 binLab = np.asarray(img) 

 

 bboxData = [] 

 try: 

  for idx, x in enumerate(binLab.T): 

   for idx2, y in enumerate(x): 

    if(binLab[idx2][idx] >= 1): 

     bboxData.append(idx) 

     break 

   if(len(bboxData) > 0): 

    break 

 

  #max x 

  for idx, x in reversed(list(enumerate(binLab.T))): 

   for idx2, y in enumerate(x): 

    if(binLab[idx2][idx] >= 1): 

     bboxData.append(idx) 

     break 

   if(len(bboxData) > 1): 

    break 
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  #min y 

  for idx, y in enumerate(binLab): 

   for idx2, x in enumerate(y): 

    if(binLab[idx][idx2] >= 1): 

     bboxData.append(idx) 

     break 

   if(len(bboxData) > 2): 

    break 

  #max y 

  for idx, y in reversed(list(enumerate(binLab))): 

   for idx2, x in enumerate(y): 

    if(binLab[idx][idx2] >= 1): 

     bboxData.append(idx) 

     break 

   if(len(bboxData) > 3): 

    break 

 

 except: 

  print('except') 

  return [] 

 

 if(len(bboxData) < 4): 

  print('len') 

  return [] 

 else: 

  return BBox(bboxData[0],bboxData[1],bboxData[2],bboxData[3]) 

 

def save(boxData,fimg, bugged=False): 
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 dirName = os.path.dirname(os.path.realpath(__file__)) +'\\boundaryData\\' 

 fileName = os.path.basename(fimg.imagePath).replace('.jpg', '.txt') 

 path = dirName + fileName 

 

 with open(path,'a+') as f: 

  if(bugged == False): 

   f.write(str(boxData.minx) + ' ' + str(boxData.maxx) + ' ' +str(boxData.miny) + ' ' 

+str(boxData.maxy) + ' ' +str(boxData.height) + ' ' +str(boxData.width) + '\n') 

  else: 

   f.write('bugged') 

 

 

currentDir = os.path.dirname(os.path.realpath(__file__))  

allBottomDirs = [] 

 

allBottomDirs.append(currentDir + '\\filteredImages') 

 

for dirPath in allBottomDirs: 

 imageFiles = glob.glob(dirPath + '\\*.jpg') 

 binaryFiles = glob.glob(dirPath + '\\*.png') 

 

 

alreadyHandled = [] 

allImages = [] 

for imgPath in imageFiles: 

 filename = os.path.basename(imgPath) 

 date = filename.replace('.jpg','').split('_FullCam1')[0] 

 #2 finne dag 

 if(date in alreadyHandled): 
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  continue 

 else: 

  alreadyHandled.append(date) 

 fimg = FishImage(imgPath) 

 for binaryPath in binaryFiles: 

  binaryName = os.path.basename(binaryPath) 

  binaryDate = binaryName.split('_FullCam1')[0] 

 

  if(binaryDate == date): 

   fimg.addBinaryPath(binaryPath) 

 allImages.append(fimg) 

 

countImgs = 1 

totalImgs = len(allImages) 

for fimg in allImages: 

 for binaryPath in fimg.binaryPaths: 

  boxData = findBoxData(binaryPath) 

  if(boxData): 

   save(boxData, fimg, bugged=False) 

  else: 

   save(boxData, fimg, bugged=True) 

 print('{}/{}'.format(countImgs,totalImgs)) 

 countImgs += 1 
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B4: Remove structured light and put the grayscale image in each of the channels of an RGB 

image 
 

from PIL import Image 

import os 

import glob 

import numpy as np 

import shutil 

 

currentDir = os.path.dirname(os.path.realpath(__file__))  

allBottomDirs = [] 

 

allBottomDirs.append(currentDir + '\\filteredImages') 

 

for dirPath in allBottomDirs: 

 imageFiles = glob.glob(dirPath + '\\*.jpg') 

 

saveDir = currentDir + '\\grayImages\\' 

 

countImgs = 1 

totalImgs = len(imageFiles) 

for imgPath in imageFiles: 

 print(imgPath) 

 img = Image.open(imgPath) 

 r,g,b=img.split() 

  

 red = np.asarray(r,dtype=np.uint8) 

 green = np.asarray(g,dtype=np.uint8) 

 blue = np.asarray(b,dtype=np.uint8) 



78 
 

 newImg = np.zeros_like(red,dtype=np.uint8) 

 

 for idx, y in enumerate(red): 

  for idx2, x in enumerate(y): 

   newPixelValue = np.uint8((int(red[idx][idx2]) + int(green[idx][idx2])+ 

int(blue[idx][idx2]))/3) 

   newImg[idx][idx2] = newPixelValue 

 

 newPilImg = Image.fromarray(newImg, 'L') 

 

 rgbimg = Image.new("RGB", r.size) 

 rgbimg.paste(newPilImg) 

 filename = os.path.basename(imgPath) 

 rgbimg.save(saveDir + filename) 

 print('{}/{}'.format(countImgs,totalImgs)) 

 countImgs += 1 

  

B5: Create the TFRecord file with metadata on fish locations 
 

import tensorflow as tf 

from object_detection.utils import dataset_util 

import os 

import glob 

import random 

from PIL import Image 

import shutil 

 

 

class ImageData: 
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 def __init__(self, height, width, filename, source_id, encoded_img, xmin, xmax, ymin, ymax, 

labels, texts): 

  self.height = height 

  self.width = width 

  self.filename = filename 

  self.source_id = source_id 

  self.encoded_img = encoded_img 

  self.xmin = xmin 

  self.xmax = xmax 

  self.ymin = ymin 

  self.ymax = ymax 

  self.texts = texts 

  self.labels = labels 

 

 

def create_tf_example(data): 

 # TODO START: Populate the following variables from your example. 

 height = data.height # Image height 

 width = data.width # Image width 

 filename = data.filename # Filename of the image. Empty if image is not from file 

 encoded_image_data = data.encoded_img # Encoded image bytes 

 image_format = b'jpeg' 

 

 xmins = data.xmin # List of normalized left x coordinates in bounding box (1 per box) 

 xmaxs = data.xmax # List of normalized right x coordinates in bounding box 

       # (1 per box) 

 ymins = data.ymin # List of normalized top y coordinates in bounding box (1 per box) 

 ymaxs = data.ymax # List of normalized bottom y coordinates in bounding box 

       # (1 per box) 
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 classes_text = data.texts # List of string class name of bounding box (1 per box) 

 classes = data.labels # List of integer class id of bounding box (1 per box) 

 # TODO END 

 tf_label_and_data = tf.train.Example(features=tf.train.Features(feature={ 

   'image/height': dataset_util.int64_feature(height), 

   'image/width': dataset_util.int64_feature(width), 

   'image/filename': dataset_util.bytes_feature(str.encode(filename)), 

   'image/source_id': dataset_util.bytes_feature(str.encode(filename)), 

   'image/encoded': dataset_util.bytes_feature(encoded_image_data), 

   'image/format': dataset_util.bytes_feature(image_format), 

   'image/object/bbox/xmin': dataset_util.float_list_feature(xmins), 

   'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs), 

   'image/object/bbox/ymin': dataset_util.float_list_feature(ymins), 

   'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs), 

   'image/object/class/text': dataset_util.bytes_list_feature(classes_text), 

   'image/object/class/label': dataset_util.int64_list_feature(classes), 

 })) 

 return tf_label_and_data 

 

def main(_): 

 writer = tf.python_io.TFRecordWriter('training.record') 

 evalwriter = tf.python_io.TFRecordWriter('eval.record') 

 testwriter = tf.python_io.TFRecordWriter('test.record') 

 

 currentDir = os.path.dirname(os.path.realpath(__file__))  

 allBottomDirs = [] 

 

 allBottomDirs.append(currentDir + '\\grayImages') 
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 for dirPath in allBottomDirs: 

  imageFiles = glob.glob(dirPath + '\\*.jpg') 

 

 random.shuffle(imageFiles) 

 valNumber = int((len(imageFiles)*0.7)) 

 testNumber = int((len(imageFiles)*0.9)) 

 

 txtDir = currentDir + '\\boundaryData\\' 

 countImgs = 0 

 totalImgs = len(imageFiles) 

 buggedImgs = 0 

 evalSamples = 0 

 testSamples = 0 

 for imgPath in imageFiles: 

  filename = os.path.basename(imgPath) 

  txtPath = txtDir + filename.replace('.jpg','.txt') 

  file = open(txtPath, 'r') 

  text = file.read() 

  if(not text == 'bugged'): 

   with Image.open(imgPath) as img: 

       img_width, img_height = img.size 

   allBoxes = text.split('\n') 

   xmin = [] 

   xmax = [] 

   ymin = [] 

   ymax = [] 

   labels = [] 

   texts = [] 

   for box in allBoxes: 
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    if(box != ''): 

     if(box != 'bugged'): 

      values = box.split(' ') 

      xmin.append(float(values[0])/float(img_width)) 

      xmax.append(float(values[1])/float(img_width)) 

      ymin.append(float(values[2])/float(img_height)) 

      ymax.append(float(values[3])/float(img_height)) 

      labels.append(0) 

      texts.append(str.encode('Fish')) 

     else: 

      print('not good') 

 

 

   height = int(img_height) 

   width = int(img_width) 

   file.close() 

  

   encoded_img = tf.gfile.FastGFile(imgPath,'rb').read() 

   filename = os.path.basename(imgPath) 

   #self, height, width, filename, source_id, encoded, xmin, xmax, ymin, ymax, 

text, label 

   data = ImageData(height, width, 

filename,filename,encoded_img,xmin,xmax,ymin,ymax, labels, texts) 

   tf_example = create_tf_example(data) 

   if(countImgs < valNumber): 

    writer.write(tf_example.SerializeToString()) 

    shutil.copy(imgPath, 'C:\\Users\\Storm\\Desktop\\Training_set\\train\\' 

+ filename) 

   elif(countImgs < testNumber): 

    evalwriter.write(tf_example.SerializeToString()) 
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    evalSamples += 1 

    shutil.copy(imgPath, 'C:\\Users\\Storm\\Desktop\\Training_set\\eval\\' 

+ filename) 

   else: 

    testwriter.write(tf_example.SerializeToString()) 

    testSamples += 1 

    shutil.copy(imgPath, 'C:\\Users\\Storm\\Desktop\\Training_set\\test\\' 

+ filename) 

  else: 

   buggedImgs += 1 

 

 

  countImgs += 1 

  print('{}/{}'.format(countImgs,totalImgs)) 

 

 writer.close() 

 evalwriter.close() 

 

 print('Num bugged imgs: {}'.format(buggedImgs)) 

 print('Eval samples: {}'.format(evalSamples)) 

 print('Test samples: {}'.format(testSamples)) 

 print('Total samples: {}'.format(totalImgs)) 

 

if __name__ == '__main__': 

 tf.app.run() 
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B6: Load extracted graph and run inference to do measure fps 
import tensorflow as tf 

import numpy as np 

import os 

import glob 

from utils import label_map_util 

from utils import visualization_utils as vis_util 

from PIL import Image 

from matplotlib import pyplot as plt 

import time 

plt.switch_backend('TkAgg') 

 

def load_image_into_numpy_array(image): 

 (im_width, im_height) = image.size 

 return np.array(image.getdata()).reshape((im_height, im_width, 3)).astype(np.uint8) 

 

def run_inference_on_images(graph): 

 

 with graph.as_default(): 

   

  with tf.Session() as sess: 

   

   ops = tf.get_default_graph().get_operations() 

   all_tensor_names = {output.name for op in ops for output in op.outputs} 

   tensor_dict = {} 

   for key in [ 

    'num_detections', 'detection_boxes', 'detection_scores', 

    'detection_classes', 'detection_masks' 

   ]: 
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    tensor_name = key + ':0' 

    if tensor_name in all_tensor_names: 

     tensor_dict[key] = 

tf.get_default_graph().get_tensor_by_name(tensor_name) 

   image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0') 

 

   count = 0 

   start_time = time.time() 

   currentDir = os.path.dirname(os.path.realpath(__file__))  

   dirFiles = glob.glob(currentDir + '\\test\\*.jpg') 

   for imgPath in dirFiles: 

    if(count == 10): 

     start_time = time.time() 

    img = Image.open(imgPath) 

    image = load_image_into_numpy_array(img) 

    # Get handles to input and output tensors 

 

    # Run inference 

    output_dict = sess.run(tensor_dict, feed_dict={image_tensor: 

np.expand_dims(image, 0)}) 

     

    # all outputs are float32 numpy arrays, so convert types as appropriate 

    output_dict['num_detections'] = int(output_dict['num_detections'][0]) 

    output_dict['detection_classes'] = 

output_dict['detection_classes'][0].astype(np.uint8) 

    output_dict['detection_boxes'] = output_dict['detection_boxes'][0] 

    output_dict['detection_scores'] = output_dict['detection_scores'][0] 

    if 'detection_masks' in output_dict: 

     output_dict['detection_masks'] = 

output_dict['detection_masks'][0] 
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    count += 1 

 

 

   end_time = time.time() 

   fps = ((266-10)/(end_time-start_time)) 

   print('FPS: {}'.format(fps)) 

 

PATH_TO_LABELS = 'label_map.pbtxt' 

PATH_TO_FROZEN_GRAPH = 'frozen_inference_graph.pb' 

 

category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, 

use_display_name=True) 

detection_graph = tf.Graph() 

with detection_graph.as_default(): 

 od_graph_def = tf.GraphDef() 

 with tf.gfile.GFile(PATH_TO_FROZEN_GRAPH, 'rb') as fid: 

  serialized_graph = fid.read() 

  od_graph_def.ParseFromString(serialized_graph) 

  tf.import_graph_def(od_graph_def, name='') 

 

run_inference_on_images(detection_graph) 

 

 


