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Preface

The thesis is written in partial fulfilment of the requirements for the Master’s degree in Industrial Cybernetics (2
years master program) at NTNU Trondheim. The work was done during the spring of 2019 and is not a continuation
of the project from autumn the year before. It has been a steep learning curve doing this project as I had no prior
knowledge about time series or clustering before starting the work in the end of January. The project has been an
exciting journey and a great opportunity to learn as much as I have. The first half of this thesis concerns a literature
study of clustering techniques for time series clustering. No literature has been provided and everything which
is included in the thesis is the results of my own review of the literature during the spring of 2019. The choice
and implementation of the different methods is the results of the literature review. Kongsberg Digital provided me
with a HP laptop for access to their system and software. The platform provided by Kongsberg Digital is called
Kognifai EmPower and is used to extract time series data from turbines within different wind parks in Norway.

The thesis has three listed supervisors. Professor Lars Imsland is my supervisor at NTNU and he has helped
me with questions concerning the literature review and put me in contact with the correct people. Professor Adil
Rasheed was one of them, who is not a listed supervisor, which provided with helpful discussions. Unfortunately,
the method discussed with him did not make it to the thesis but will be included in the future work section. At
Kongsberg Digital I’ve had two co-supervisors: Pierluigi Salvo Rossi and Gerthory Toussaint. Gerthory has been
my co-supervisor who has been a great help for introducing me to the Kognifai EmPower platform. Pierluigi is
also my co-supervisor and has been my main contact throughout the semester. He has helped me to narrow the
scope of the thesis and provided much needed guidance in times of need. I want to thank all my supervisors for
their help during my thesis and Kongsberg Digital for providing me with an extensive set of time series to analyse.





Abstract

As wind parks are continuing to grow at an exponential rate, proper automatic classification of wind turbines
is required. Clustering techniques to process the real-time data streams of all the individual wind turbines in
operations are expected to provide a sufficient level of automation. The objective of this thesis is to do exploratory
work for using clustering techniques for wind turbine condition-based monitoring. More specifically, to explore,
understand and summarise the practical implications of using clustering algorithms for automatic classification of
wind turbines. To solve this objective, a couple of time series clustering techniques have been applied to cluster
different data sets which are comprised of either univariate or multivariate time series. These time series are all
extracted from an actual wind park located in Norway. A total of four data sets have been clustered; two univariate
and two multivariate data sets.

A review of the literature concerning time series clustering has been presented in the thesis and based on the
review, a couple of clustering methods has been selected to examine the practical implications of using clustering
techniques for automatic classification of wind turbines. The selected methods are the implementation of the
hierarchical clustering algorithm in conjunction with either the Euclidean distance or the dynamic time warping
(DTW) distance as the similarity measure; this solves the clustering objectives of similarity in time and similarity
in shape.

This thesis showed that by clustering the different data sets – either the univariate or multivariate data set –
it resulted in automatic classifications of wind turbines based on their dissimilarities - this includes classification
of wind turbines experiencing different gearbox temperatures, generator speed, power production and local wind
conditions. The thesis also showed that the Euclidean distance could effectively be used in a scaled-up version,
whereas the DTW distance cannot because of the quadratic time complexity of the DTW algorithm. For longer
time series, the DTW distance can be substituted with the Euclidean distance, as the objectives of similarity in
time and similarity in shape are more similar. This thesis forms the basis for further research into the practical
implications of using clustering algorithms for automatic classification of wind turbines.
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Sammendrag

Ettersom vindparker vokser eksponentielt, er det nødvendig med økende grad av automatisk klassifisering av vind-
turbiner. Klyngeteknikker for å behandle datastrømmer i sanntid for alle de enkelte vindturbinene i drift er forventet
å gi et tilstrekkelig nivå av automatisering. Målet med denne oppgaven er å gjøre utforskende arbeid for bruk av
klyngeteknikker for overvåking av vindturbiner. Nærmere bestemt å utforske, forstå og oppsummere de praktiske
implikasjonene ved bruk av klyngealgoritmer for automatisk klassifisering av vindturbiner. For å løse dette målet
har et par klyngeteknikker for tidsserier blitt anvendt for å gruppere vindturbiner i forskjellige datasett som består
av tidsserier med en eller flere variabler. Disse tidsseriene er alle hentet fra en faktisk vindpark i Norge, totalt fire
datasett har blitt gruppert; to datasett bestående av tidsserier med bare en parameter, og to datasett bestående av
tidsserier med flere parametere.

En gjennomgang av litteraturen om tidsserieklynging har blitt presentert i rapporten og på bakgrunn av denne
gjennomgangen har det blitt valgt ut et par klyngemetoder for å utforske de praktiske implikasjonene ved bruk
av klyngeteknikker for automatisk klassifisering av vindturbiner. De valgte metodene er implementering av den
hierarkiske klyngealgoritmen sammen med enten den euklidske avstanden eller dynamisk tidsfordreining (DTW)
avstanden for sammenligning mellom tidsserier; dette grupperer tidsserier basert på enten likhet i tid eller likhet i
form.

Denne rapporten viste at ved å implementere klyngeteknikker på de forskjellige datasettene klarte den å klassi-
fisere vindturbiner basert på deres ulikheter – dette inkluderer klassifisering av vindturbiner som opplever forskjel-
lig temperatur i girkassen, generatorhastighet, kraftproduksjon og lokale vindforhold. Rapporten viste også at den
euklidske avstanden effektivt kunne brukes i en oppskalert versjon, mens DTW-avstanden ikke kan på grunn av
den kvadratiske tidskompleksiteten til DTW-algoritmen. For lengre tidsserier kan DTW-avstanden erstattes med
euklidske avstanden, da målene for likhet i tid og likhet i form er mer eller mindre like. Denne oppgaven dan-
ner grunnlag for videre forskning av de praktiske implikasjonene ved bruk av klyngealgoritmer for automatisk
klassifisering av vindturbiner.
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Chapter 1
Introduction

Wind energy is becoming more and more popular and is one of the fastest growing renewable energy resources
(Farahani et al., 2012). According to Global Wind Energy Council (2019b), the installed wind capacity at the end
of 2018 in America was 11.9GW, which was an increase of 12% from the previous year. Similarly, Global Wind
Energy Council (2019a) states that in Africa and the Middle East, during the same time period, had an installed
capacity of 926MW, which was more than 300MW from the year before. By 2020, it is estimated that wind power
could supply 2.600 TWh, about 11.5 – 12.3% of global electricity supply, increasing to 21.8% by 2030 (Soua et al.,
2013).

There is no doubt that wind energy is the future for energy production. With more wind turbines being installed
to increase this capacity, the more important it is to maintain healthy conditions of the wind turbines. Consequences
for faults and maintenance are miserable for both the market and the owner. It is therefore important to detect faults
and failures early on as to minimise the downtime and maximise the productivity (Hossain et al., 2018). Wind
turbines are usually installed in remote areas (e.g. offshore) which makes maintenance both hard and costly (Yang
et al., 2013). Another consequence of these harsh environments is that wind turbines are more prone to failure
(Hossain et al., 2018).

Due to the complexity of wind turbines, there could be a couple of 100 monitoring points required to monitor
most of the subsystems of a single wind turbine; multiplying this number for each wind turbine in a wind park, it
is obvious that a lot of data is collected and potential of unsupervised learning increases (Zhang and Ma, 2016).
As wind parks are continuing to grow at an exponential rate, proper automatic classification of wind turbines is
needed. Much effort and focus have been made on developing condition monitoring systems for wind turbines.
However, most of these are costly and vary in reliability. A reliable and cost-effective condition-based monitoring
technique is still sought today (Yang et al., 2013). In the case of large-size wind parks, manual inspection of every
single wind turbine and a corresponding selection of the most effective template for condition-based monitoring is
unrealistic and further automation is required.

Clustering techniques to process the real-time data streams of all the individual wind turbines in operations are
expected to provide a sufficient level of automation. Time series clustering is a special type of clustering techniques
which clusters together similar time series and separate dissimilar ones. Clustering time series of different wind
turbines from the same wind park is believed to reveal interesting patterns and might help to obtain any information
about the condition of the different wind turbines within the park or the condition of the park as a whole.

1.1 Related work
Clustering time series have become increasingly popular and attracted attention from a wide range of researchers
from many different disciplines. For instance, researchers have clustered time series from speaker verification,
robot sensor data, financial data, earthquake, gene expression, retail pattern, commercial consumption, brain ac-
tivity and much more (Zhang et al., 2011). A more detailed review of applications is presented in the literature
review in Section 2.2.4.

The applications of time series clustering to wind turbine condition-based monitoring are very limited. The
only work found, to the best of the author’s knowledge, which implements clustering techniques for wind turbine
condition-based monitoring, is done by Zhang et al. (2012). In this paper, they applied data mining algorithms and
statistical methods to analyse the jerk data obtained from monitoring the gearbox of a wind turbine. The modified
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Chapter 1. Introduction

K-means algorithm was implemented for cluster analysis of the jerk patterns of the 12 sensors from one single
gearbox. The shortcoming of the study was the gearbox test condition as it was not actual data from wind parks,
but of a faulty gearbox mounted in an artificial environment. The clustering was also limited to univariate time
series extracted from the same turbine.

1.2 Objective of the thesis
The objective of this thesis is to do exploratory work for using clustering techniques for wind turbine condition-
based monitoring. More specifically, to explore, understand and summarise the practical implications of using
clustering algorithms for automatic classification of wind turbines. To explore the practical implications, a carefully
selected set of time series clustering techniques will be applied to cluster univariate and multivariate data sets.
These time series - which the data sets are comprised of - are extracted from Kongsberg Digital Kognifai EmPower
platform and are sensory data from an existing wind park located in Norway.

The practical implications and consistency of the clustering results will be addressed and compared. The choice
of appropriate clustering techniques to implement on the data set will be made by performing a comprehensive re-
view of the literature. From reviewing the literature, the scope of the thesis is limited to solving the clustering
problem with respect to two different clustering objectives: Similarity in time and similarity in shape. For solving
these clustering objectives, Euclidean distance and DTW will be implemented in conjunction with the agglom-
erative hierarchical clustering algorithm. Obtaining any physical meaning from the clustering results will be the
secondary goal of the thesis and will be used to identify the physical implications for using clustering algorithms
for automatic classification of wind turbines. To clarify, this thesis will implement a couple of algorithms and
evaluate the practical implication for clustering time series acquired from the same wind parks.

1.3 Setup of the report
• In Chapter 2, time series clustering will be reviewed along with additional applications for time series clus-

tering and important considerations. At the end of the chapter, the literature review will be summarised
along with an appropriate choice and justification of clustering methods used in the consecutive sections.

• In Chapter 3, the theory behind the implemented methods which are chosen will be provided.

• In Chapter 4, data acquisition using Kongnifai EmPower platform will be addressed along with its limitations
and special considerations. Then, different preprocessing techniques will be introduced and explained.

• In Chapter 5, different univariate and multivariate data set will be extracted and presented along with the
appropriate preprocessing which was introduced in the previous section.

• In Chapter 6, clustering will be implemented on the univariate time series (or data set) introduced in Section
5.1. The results will be presented and analysed.

• In Chapter 7, clustering will be implemented on the multivariate time series (or data set) introduced in
Section 5.2. The results will be presented and analysed.

• In Chapter 8, the practical implications for applying clustering techniques on the different data sets (univari-
ate and multivariate, short and long) will be summarised and discussed.

• In Chapter 9, the conclusion will be presented along with the recommendations for future work.

• In Appendix A, plots of the time series - which are not presented in Chapter 5 - are presented, along with
additional time series used for interpretation.

• In Appendix B, additional clustering results for each data set is presented.

• In Appendix C, additional results and remarks which are based on clustering the data set are presented.

• In Appendix D, the Python codes for all implementations are provided.
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Chapter 2
Reviewing the literature

In this chapter, the literature regarding time series clustering will be reviewed. The sole purpose of reviewing the
literature is to make an educated choice of which clustering techniques to implement on the acquired time series. In
Section 2.1 some basic definition and terminology will be introduced before going over to a more detailed review
of time series clustering in Section 2.2. In this section, different types of time series clustering, different ways
of clustering time series, the challenges associated with time series clustering and a brief review of applications
where time series clustering have been applied will be reviewed. In Section 2.3, the major components of time
series clustering will be addressed. Finally, in Section 2.4, a summary of the litterateur review will be included
followed by the choice and justification of the time series clustering techniques which will be applied to cluster the
different time series.

2.1 Basic definition and terminology
There are two primary data types which are common for clustering problem, namely static and dynamic data. Static
data refers to feature values which do not change with time or change negligibly (Warren Liao, 2005). Unlike static
data, time series is a type of dynamic data where the feature values vary with time. Each data point in a single time
series is one observation that is made chronologically (Aghabozorgi et al., 2015). According to Esling and Agon
(2012), the definition of time series data is as follows:

Definition 2.1.1. Time series is an ordered sequence of n real-valued variables F = (f1, f2, . . . , fn), fi ∈ R. A
time series is often the result of the observation of an underlying process in the course of which values are collected
from measurements made at uniformly spaced time instants and according to a given sampling rate (Esling and
Agon, 2012).

Time series data is a type of temporal data which is naturally high dimensional and large in data size (Aghabozorgi
et al., 2015). Time series typically comprise of registered continuous real-valued numbers (0.005, 2.998, ...)
measured at discrete time intervals. That is, time series are typically purely quantitative variables. One single
time series consisting of a large number of data points measured chronologically can also be seen as a single
object (Aghabozorgi et al., 2015). Time series can further be divided into two categories, namely univariate and
multivariate time series.

Definition 2.1.2. Univariate time series , is the simplest form of temporal data and is a sequence of real numbers
collected regularly in time, where each number represents a value. That is, univariate time series is characterised
by a single variable changing over time (Iwok and Okpe, 2016).

Definition 2.1.3. Multivariate time series , is an extension of the univariate case which involves two or more
variables which are varying over time (Iwok and Okpe, 2016).

During analysis in this paper, the time series will be collected in a data set. A data set is simply a collection of
objects. When the objects are time series, some refer to the data set as a database (DB) (Iwok and Okpe, 2016).
In this thesis, we will refer to a collection of time series as a data set, rather than a database. A data set which
is comprised of individual time series can also be referred to an unordered set of time series (Esling and Agon,
2012). Individual time series spans the columns of the data set and the rows are spanned by the discrete time
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points; each row can be thought of as a single object. All these objects will be compared and partitioned according
to the specific clustering algorithm. To clarify, a univariate data set refers to an unordered set of univariate time
series and a multivariate data set refers to an unordered set of multivariate time series.

2.2 Time series clustering
The goal of any cluster analysis is to create groups of objects where objects in different groups are dissimilar to
each other and similar if they are in the same group (Trevor et al., 2009; Maini, 2017; James et al., 2013; Wong,
2015). These clustering algorithms have in common that objects in the data set are partitioned into distinct groups
based on some kind of similarity or dissimilarity measure (Trevor et al., 2009). For quantitative data features,
distance functions are used as a measure of (dis)similarity; for qualitative data features, similarity functions are
used (Xu and Tian, 2015a). A special case of clustering is called time series clustering (Aghabozorgi et al., 2015).
For this type of clustering, the objects are either univariate time series or multivariate time series. The definition
of time series clustering, according to Aghabozorgi et al. (2015), is formulated in the following way:

Definition 2.2.1. Time series clustering , given a data set of n time series, DB = {F1, F2, . . . , Fn}, is the process
of unsupervised partitioning of DB into C = {C1, C2, . . . , Ck}, in such a way that homogeneous time series are
grouped together based on a certain similarity measure.

Each of the time series in DB can be seen as a single object and clustering these relatively complex objects can
prove to be very advantageous for the discovery of patterns and dissimilarities in time series data sets (Aghabozorgi
et al., 2015).

2.2.1 Types of time series clustering
Clustering of time series can be divided into three main categories depending on the type of time series clustering.
The proposed categories are as stated by (Aghabozorgi et al., 2015; Huang et al., 2016; Esling and Agon, 2012)
(where Huang et al. (2016); Esling and Agon (2012) excludes time point clustering): Whole time series clustering,
subsequence clustering and time point clustering.

• Whole time series clustering refers to the clustering of individual time series with respect to their similarity.
More specifically, algorithms based on this type of clustering tries to group individual time series to a set of
clusters, where the set of clusters are typically one of the time series or the means of all time series within
that cluster (Aghabozorgi et al., 2015; Esling and Agon, 2012; Rodpongpun et al., 2012).

• Subsequence clustering, or subsequence time series clustering (STS), discovers interesting subsequences
within a single time series (Rodpongpun et al., 2012; Esling and Agon, 2012; Aghabozorgi et al., 2015). The
time series is partitioned and divided into its most similar cluster. This is typically done with what is called
a sliding window.

• Time point clustering refers to the clustering of time points based on a combination of the similarity of
the corresponding value and the temporal proximity of the time points (Rodpongpun et al., 2012). This is
different from segmentation as the number of points assigned to a cluster does not necessarily need to be all
of them; some of the points can be treated as noise.

Subsequence time series clustering and time point clustering is performed on a single time series. Also, Keogh
and Lin (2005) have shown that subsequence clustering does not produce meaningful results. However, after
the publication of this paper, there have been many papers which have proposed methods to make this type of
clustering meaningful again (Chen, 2005, 2007). Nonetheless, as the objective of this report is to cluster data sets
of univariate and multivariate time series, the whole time series clustering approach is the correct choice.

2.2.2 Different ways to cluster time series
Within the whole time series clustering category, clustering of the time series is normally done by three different
clustering approaches (Aghabozorgi et al., 2015; Warren Liao, 2005). The first approach is called the shape-based
approach, or raw-data-based approach, as it typically works directly with the raw time series. In this approach,
modification of the existing algorithm for static data is done to handle time series data instead. The majority of
modification involves replacing the existing similarity/dissimilarity measures for static data with measure suitable
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for time series data (Warren Liao, 2005). The second approach is called feature-based approach. In a feature-based
approach, raw-time series data is converted into the form of static data such that conventional algorithms for static
data can be directly used. This involves converting the raw-time series into a feature vector of lower dimension
(Aghabozorgi et al., 2015). According to Aghabozorgi et al. (2015), usually, a feature vector of equal length is
calculated from each time series followed by Euclidean distance as the similarity measure between these features.
The last approach is called model-based approach. In this approach raw-time series is fitted to a model (ARMA,
HMM, ...) and a conventional clustering algorithm is applied to the extracted model parameters (Aghabozorgi
et al., 2015; Warren Liao, 2005). However, this approach has been shown by (Vlachos et al., 2004) and (Mitsa,
2010) to have scalability problems and reduced performance when clusters are close to each other, respectively.
The different clustering approaches are visualised in Figure 2.1. A multi-step approach is also included in the
figure, but will not be addressed in this thesis (for more information refer to Aghabozorgi et al. (2015)).

Figure 2.1: Different approaches for clustering time series. Figure is taken from Aghabozorgi et al. (2015)

2.2.3 Challenges with time series clustering
Clustering time series is unintuitive and is significantly harder than clustering static data. Some of the challenges
with clustering of time series are summarised by Aghabozorgi et al. (2015). First of all, the time series data set
requires a lot of memory and often requires storage on disk which leads to decreased efficiency. Secondly, is that
the time series data set are often high dimensional (Lin et al., 2003b; Keogh and Pazzani, 2000) which makes
handling the data difficult (Wang et al., 2004) and again slows down the process of clustering (Zhang et al., 2006).
Finally, the similarity or dissimilarity measure is fundamental to all clustering algorithms and the choice of the
correct similarity measure is complicated for time series clustering. The reason for the complication is that time
series data are naturally noisy, include outliers and shifts in time (Lin et al., 2004). Also, the length of the time
series is not necessarily equal in length, complicating the choice even more (Aghabozorgi et al., 2015).
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2.2.4 Applications for time series clustering
The applications of time series clustering are mostly used to discover interesting patterns in time series data sets.
Aghabozorgi et al. (2015) states, after reviewing the literature, that the applications can typically be divided into
two categories: The first category referrers to the discovery of patterns which frequently appears in the data set; the
second category are methods to discover patterns which happen surprisingly. Clustering time series have become
increasingly popular and attracted attention from a wide range of researchers from many different disciplines.
For instance, researchers have clustered time series from speaker verification, robot sensor data, financial data,
earthquake, gene expression, retail pattern, commercial consumption, brain activity and much more (Zhang et al.,
2011). Aghabozorgi et al. (2015) has done e complete review on whole time series clustering methods used before
the year of 2015. The different domains which Aghabozorgi et al. (2015) found for clustering of time series are, but
not limited to aviation/astronomy, biology, climate, energy, environment and urban, finance, medicine, psychology,
robotics, speech/voice recognition, and user analysis.

Firstly, within the biology section, clustering has been adapted to the clustering of gene expression data (Sub-
hani et al., 2010; Fujita et al., 2012; Pyatnitskiy et al., 2014). For example, Fujita et al. (2012) performed gene
clustering through the identification of Granger causality between and within sets of time series gene expression
data. Within the energy sector, Iglesias and Kastner (2013) used time series clustering to discover energy consump-
tion patterns within buildings. It also compared the most popular similarity distances where Euclidean distance
was the measure that obtained the best, balanced general solutions. Within medicine, Gullo et al. (2012) presented
a data mining approach for analysis of mass spectrometry data. New representation method called DSA was pro-
posed and applied to K-means clustering with DTW distance measure. The objective was to explore, identify and
group pathological cases from MS clinical samples. Further publications from before 2015 related to clustering of
time series from the domains listed above and can be reviewed in Aghabozorgi et al. (2015).

Major findings for applications for time series clustering after 2015 are reviewed in this paragraph. Nguyen
et al. (2018) clusters time series which was obtained from whole-volume calcium imaging experiments. A model-
based functional data analysis methodology via Gaussian mixtures for clustering of data from such visualisations is
proposed in this paper. Torabi et al. (2016) performs clustering on high-speed end milling experimental data. The
authors show that the clustering methods can coarsely capture the state of the process and can be applied to fault
diagnosis and tool condition monitoring (TCM) purposes. Diez et al. (2016) presents a clustering-based approach
to group substructures or joints with similar behaviour on a bridge and then detect abnormal or damaged ones (i.e.
structural health monitoring). Vibration signals caused by passing vehicles from different joints are classified and
damaged joints can then be detected and located. Here K-means based clustering was implemented. These are but
a few of the applications which time series clustering has been applied to. To the best of the author’s knowledge,
time series clustering has not been applied to clustering of time series acquired from wind turbines other than the
paper mentioned in the introduction (i.e. related work).
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2.3 Components of time series clustering
In this section, the major components of time series clustering will be addressed. Aghabozorgi et al. (2015) have
comprehensively reviewed the literature and based on that stated that time series clustering can essentially be
divided into the following major components:

1. Representation method

2. Similarity/dissimilarity measure

3. Prototype definition or characteristic of the cluster

4. Clustering algorithm

5. Cluster validation and evaluation metric.

According to Aghabozorgi et al. (2015), the general process for time series clustering is to apply some or all of
these steps, depending on the characteristic of the time series and the application. The general process is outlined
as follows: First, a representation method or dimensionality reduction is applied to the time series data such that
it takes less space in memory. Then, depending on the application, a specific clustering algorithm is chosen along
with an appropriate similarity measure and a prototype for characterisation of the cluster centre. Afterwards, the
obtained clusters are evaluated with regards to specific evaluation metrics. Lastly, the results are interpreted to
acquire meaning out of the obtained clusters. These different components will be addressed in more detail in the
following sections.

2.3.1 Representation method for time series
Dimensionality reduction relies on the fact that there is a lot of redundancy in the data and that a small fraction can
represent most of the information (Algorithmia Inc., 2018). Unsupervised learning is in many cases used to trans-
form the data into different representation (Zolhavarieh et al., 2014). The definition of time series representation,
as stated by Aghabozorgi et al. (2015), can be seen in Definition 2.3.1

Definition 2.3.1. Time series representation , given a time series data Fi = {f1, . . . , ft, . . . , fT }, representation
is transforming the time series to another dimensionality reduced vector F

′

i = {f ′

1, . . . , f
′

x} where x < T and if
two time series are similar in the original space, then their representations should be similar in the transformed
space too.

Motivations for transforming the time series to a lower dimensional space or different representation method are,
but not limited to:

• Reducing the memory requirements: Storing raw time series requires a lot of memory, especially when
considering 100+ sensors sampled at a high sampling rate.

• Increasing the efficiency of the algorithm: The calculation of similarity measure between raw time series is
computationally expensive. The clustering - or calculation of the dissimilarities - can be significantly sped
up by reducing the dimensions of the clustering problem.

• Sensitivity to noise: If there is significant noise in the time series, the similarity of two raw time series might
be similarity in noise, rather than similarity in shape (Aghabozorgi et al., 2015).

• Tool for visualisation: There is no intuitive way to represent high dimensional data. Reducing the dimensions
of the time series is one way to plot the data in two or three axis plot (Sarah Guido, 2013).

Different representation methods

According to Lin et al. (2003a); Ratanamahatana et al. (2005); Bagnall et al. (2006); Shieh and Keogh (2009),
representation methods can be divided into the following categories: Data adaptive, non-data adaptive, model-
based, and data dictated.

• Data adaptive: This representation is performed on all time series in the data set when the objective is to
minimise the global reconstruction error. The name, data adaptive, means that the parameters used in the
transformation are dependent on the data available. However, these methods tend to make the comparison
between the time series difficult (Aghabozorgi et al., 2015; Esling and Agon, 2012).
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• Non-data adaptive: These representation methods are suitable for time series of fixed length segmenta-
tion. The comparison between time series, compared to data adaptive representations, are straightforward
(Aghabozorgi et al., 2015).

• Model-based: Representation of time series through stochastic models such as a Hidden Markov Model
(HMM) or an ARMA model (Aghabozorgi et al., 2015).

• Data dictated: For the categories above, the compression ratio is decided by the user. However, for data
dictated representation methods, the characteristic of the raw time series automatically determines the com-
pression ratio (Aghabozorgi et al., 2015). Example of this is the data dictated representation method called
Clipped.

Non-data adaptive representation methods are most suited for time series of equal length and would, there-
fore, be most applicable. Some frequently mentioned representation methods within this category are Discrete
Fourier Transform (DFT), Perceptually important point (PIP), and Wavelets methods: Discrete Wavelet Transform
(DWT), Piecewise Aggregate Approximation (PAA), Chebyshev Polynomials (CHEB), Indexable Piecewise Lin-
ear Approximation (IPLA). Regardless of the representation method used, one of the important challenges is to
find a similarity measure which is appropriate and compatible with the representation method (Aghabozorgi et al.,
2015).

2.3.2 Similarity/Dissimilarity Measure
Time series clustering is highly sensitive to the choice of distance measure (or similarity measure) and is fundamen-
tal to all clustering techniques (Aghabozorgi et al., 2015; Trevor et al., 2009). A measure of similarity is required
in order to compare time series and partition them into different groups based on their dissimilarity. Depending
upon whether the time series are of equal or unequal length, a particular similarity measure might be more appro-
priate than another. The mathematical definition of distance function between two time series will be introduced
in Section 3.1. Similarity measures are divided into several categories with respect to some common features.
The first category divides the different similarity measures with respect to their objectives (i.e. the objective of
similarity measure). The second category divides the different similarity measures into four groups with respect to
the functioning of the similarity measures. First of all, the objective of the clustering process with respect to the
similarity measure will be explained.

Objective of the time series clustering

The choice of an appropriate similarity measure for an application depends on the length of the time series (equal
or unequal length, and short or long), representation method used, the characteristic of the time series data, and the
objective of the time series clustering (Aghabozorgi et al., 2015). The objective of the time series clustering can
be put into three categories, with its appropriated similarity measure. The three objectives are similarity in time,
shape and change.

• Similarity in time computes the similarity between two time series at the same time stamps. These distance
methods are also known as lock-step methods and refer to the one-to-one mapping between time series
Roelofsen (2018). Common distance measures suitable for this objective are the Euclidean distance and
correlation based distances (Aghabozorgi et al., 2015; Zhang et al., 2011). The computation of distances
is costly on raw time series and that is why the computations are normally performed on transformed time
series such as Wavelets, Fourier transform or Piecewise Aggregate Approximation (PAA) (Aghabozorgi
et al., 2015).

• Similarity in shape is a more general case of similarity in time, where the time of occurrence of patterns is
not important (Aghabozorgi et al., 2015; Zhang et al., 2011). Because of this, these are sometimes referred
to as elastic methods (Esling and Agon, 2012). The difference between elastic and lock-step methods are
that lock-step methods measure the distance from one-to-one (same time in both time series) and elastic
methods are more flexible as they can either be measured as one-to-many or one-to-none (Esling and Agon,
2012). A commonly used elastic distance measure is Dynamic Time Warping (DTW). Lock-step methods
are generally outperformed by elastic methods when time series are subjected to noise, scales and time shifts.

• Similarity in change clusters objects by how they change from time step to time step (Zhang et al., 2011).
A model, such as HMM or ARMA, is fitted to the time series and the similarity is measured on the fitted
parameters. That is, time series of similar autocorrelation structure are clustered together (Aghabozorgi
et al., 2015).
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Categories of similarity measures

In addition to the objective of time series clustering, similarity measures are normally categorised into four cate-
gories: shape-based, compression-based, feature-based and model-based similarity measures(Aghabozorgi et al.,
2015).

• Shape-based distance measures aim to find similarity in time and shape. Thus, both the objective of sim-
ilarity in time and shape are included in this category. Most popular shape-based measures are Euclidean
distance and the other L-norms, DTW, LCSS and MVM. As stated by Aghabozorgi et al. (2015), these mea-
sures are appropriate for short time series. Shape-based dissimilarities can fail to work for longer time series
which contains a significant amount of noise or outliers (Montero et al., 2014). For long and noisy time
series either a feature-based or model-based approach might be more appropriate.

• Feature-based use any kind of distance function for comparison of features which are describing the dif-
ferent time series (Esling and Agon, 2012). Extraction of the features really depends on the applications.
Features which could be of interest, to mention a few, are frequency content, mean, variance, minimum and
maximum value, and so on. According to Wang et al. (2006b), feature-based methods are appropriate when
time series are subjected to shifts in time or if there is a lot of missing values. The feature-based approach is
appropriate for long and noisy time series (Aghabozorgi et al., 2015).

• Compression-based similarity measures are based on how well two time series can be compressed to-
gether (Esling and Agon, 2012). These are suitable for both long and short time series (Aghabozorgi et al.,
2015). Examples of such methods are CDM, Autocorrelation, Pearson’s correlation coefficient and related
distances, Cepstrum, Piecewise normalisation and Cosine wavelets.

• Model-based similarity measures complies with the objective of similarity in change where parameters of
the model, such as HMM or ARMA, are fitted to the time series and compared. According to Wang et al.
(2006b), clustering the parameters of an ARMA process is not a reliable method; the set of parameters could
be different for time series with a similar structure. This would highly affect the clustering results as small
changes in these parameters could result in a different cluster assignment. These similarity measures are
mostly appropriate for long time series, not modest or short (Aghabozorgi et al., 2015).

Some of the similarity measures are based on a specific representation, such as SAX which is compatible
with MINDIS. Others work regardless of representations method and are even compatible with raw time series
(Aghabozorgi et al., 2015). Shape-based methods can be used for clustering the time series with the objective of
similarity in time and shape. The most common similarity measures used on time series, as stated by Aghabozorgi
et al. (2015), are the Euclidean distance, Euclidean distance in a PCA subspace, Dynamic Time Warping (DTW),
Longest Common Sub-Sequence (LCSS), Hausdorff distance, modified Hausdorff (MODH), and HH-based dis-
tance. Among these, Euclidean distance and DTW are by far the most commonly used methods for time series
clustering (Aghabozorgi et al., 2015). Furthermore, Aghabozorgi et al. (2015) cites Lkhagva et al. (2006) which
states that Euclidean distance is actually surprisingly competitive, despite its simplicity. These shape-based meth-
ods are widely used despite their limitation. Some of the limitations of shape-based methods, as stated by Wang
et al. (2006b), are that they cannot deal with missing values or time series of different length (except for DTW)
and are very sensitive to noise. These are some of the remarks which need to be dealt with prior to clustering if
shape-based methods are applied. On the other hand, feature-based methods can effectively handle time series of
longer interval and are less sensitive to noisy or missing data as the feature extraction reduces the dimensionality
of the time series. In short, shape-based methods can be used when the time series are not subjected to noise or
outliers. If the time series are relatively long and noisy, either model-based or feature-based methods should be
applied instead.

2.3.3 Prototype definition
Cluster prototype, or cluster representative, is used by most clustering techniques and represents what characterises
each cluster obtained by the clustering algorithm (Duval, 2016). That is, a cluster prototype is a data object which
is representative to the other objects within the same cluster (Tan et al., 2005). Aghabozorgi et al. (2015) states
that one of the problems that lead to low accuracy of clusters is a poor definition of the prototype and a poor up-
dating sequence for cluster prototypes. He further explains that the accuracy of some clustering methods is highly
dependent on the choice of an appropriate clustering prototype. Example of this are partitioning algorithms such
as K-means, K-medoids, Fuzzy C-means and Ascendant Hierarchical Clustering. Given a time series clustering
problem, the cluster prototypes are the prototypes which minimise the distance between all time series and its
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corresponding assigned prototype. This objective corresponds to minimising the well known Steiner sequence
(Aghabozorgi et al., 2015; Petitjean and Gançarski, 2011). There are several methods for solving this optimisation
problem and Aghabozorgi et al. (2015) points out that there are generally three approaches in literature which are
commonly used:

• The medoid sequence of the set: Cluster medoid as the prototype is the most common way to approach
optimal Steiner sequence in time series clustering (Kaufman, 1990). The medoids are the representative
objects of the data set which minimises the distance between all time series in each cluster (Aghabozorgi
et al., 2015). In other words, the time series within the clusters which has the lowest sum of the squared
error to the rest are chosen to be the centre of that cluster.

• The average sequence of the set: This approach is only appropriate for time series of equal length and
non-elastic (lock-step) distance measures (Aghabozorgi et al., 2015). The cluster centres are then simply the
average of all time series within that cluster. If the time series are of unequal length or an elastic distance
measure is used, the actual average shape cannot be captured (Niennattrakul and Ratanamahatana, 2007).

• The local search prototype: Prototype is obtained by a local search instead of medoid. However, the
improvements over the other prototypes, such as medoid averaging methods, are not clear (Aghabozorgi
et al., 2015).

The most commonly used prototype is the medoid, where the averaging method is scarcely used. The reason
there are fewer papers on averaging prototype methods is that it requires equal length time series and non-elastic
distance measures (e.g. Euclidean distance) (Aghabozorgi et al., 2015). However, Aghabozorgi et al. (2015)
concludes that the prototype which yielded the best accuracy was the local search prototype. However, there are
few papers on this and its advantages over averaging methods are not clear. Common clustering algorithms which
use medoid and average sequence of the set are K-medoids and K-means, respectively.

2.3.4 Clustering algorithm

Clustering algorithms can be divided into two main categories or partitioning methods which describes the nature
of how the clusters are constructed:

• Hard clustering (or crispy clustering) - Each object in the data set belongs to only one cluster.

• Soft clustering (or fuzzy clustering) - Clusters may overlap and for each object there exist a probability or
likelihood of that point belongingness to each of the different clusters (Wolfram Research, 2004; Kaushik,
2016; Patibandla and Veeranjaneyulu, 2018).

There are various approaches for applying these partitions based on different models (Patibandla and Veeran-
janeyulu, 2018).

Category of clustering algorithms

Clustering is subjective and because of this, there exists a huge amount of algorithms which is used. According to
Wong (2015); Liu and Lu (2015), most data clustering problems have been shown to be NP-hard, which explains
the number of clustering algorithms available. Kaushik (2016) states there are more than 100 different clustering
algorithms where each of them can be placed into a specific category (or several categories). Most of the algo-
rithms can be placed within the following paradigms: Partitional clustering, hierarchical clustering, density-based
clustering, model-based clustering, grid-based clustering, correlation clustering, spectral clustering, gravitational
clustering, herd clustering, subspace clustering, clustering based on neural networks, and so on (Wong, 2015).
Common to surveys of clustering algorithms (Rai and Shubha (2010); Nagpal et al. (2013a); Xu and Tian (2015b);
Ahmad and Khan (2018a); Aghabozorgi et al. (2015); Warren Liao (2005)) are the categories:

• Partitioning methods

• Hierarchical clustering

• Density-based clustering

• Model-based clustering
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Density-based and model-based clustering have not been broadly used on larger time series data set because of
their high time complexity (quadratic or higher) and slow process (Aghabozorgi et al., 2015). Model-based clus-
tering also has the disadvantage of being dependent on user-specified parameters, which are in most cases just
assumptions. Partitioning algorithms, on the other hand, have low time complexity and is therefore very efficient.
These require the user to specify the number of clusters, which is not feasible or available for many applications
(Liu and Lu, 2015; Rodriguez et al., 2019). Hierarchical clustering, on the other hand, does not assume the user to
specify the number of clusters, which is a great advantage for such applications (Xu and Tian, 2015a). However,
hierarchical clustering algorithms have a rather high time complexity and are therefore mostly applicable for small
data sets (Aghabozorgi et al., 2015; MacQueen, 1967; Bradley et al., 1998). Because of these reasons, much of the
literature apply either partitioning methods or hierarchical clustering when clustering time series data. These will
be addressed in more detail in the consecutive section.

Partitioning methods

Partitioning methods are clustering techniques which partition the data set into k clusters where the number of
cluster k is one of its hyper-parameters which is specified by the user. This is in most cases obtained by minimising
an objective function, similar to that of the Steiner sequence (Nagpal et al., 2013b). The most commonly used
partitioning algorithm is the K-means, due to its ease of implementation, simplicity and efficiency. K-means finds
a partition such that the distance from each object to its assigned cluster centre (prototype) is minimised (Liu and
Lu, 2015; Aghabozorgi et al., 2015). Other members of the partitioning methods are K-medoids (or PAM), CLARA
and CLARANS. The PAM algorithm is similar to K-means, only the cluster prototype is the medoid sequence of
the set, compared to the average sequence of the set for the K-means algorithm (Aghabozorgi et al., 2015). CLARA
and CLARANS are improvements to the K-medoids algorithms for use on spatial databases. Common for these
methods is that the clusters are not overlapping (i.e. crispy clustering). On the contrary, Fuzzy c-Means (FCM)
algorithm is a well-known partitioning method that constructs fuzzy clusters. Here each object is not only assigned
to just one cluster but will have some degree of membership to all the cluster centres (Hautamaki et al., 2008).
Most of the literature reviewed in the decade review, Aghabozorgi et al. (2015), use K-means or K-medoids as
their clustering algorithm, however, there are also some that use FCM.

Hierarchical clustering

Common for these methods is that the algorithms construct a hierarchy of clusters. The hierarchy can be organised
in two ways and is therefore divided into two subgroups: Agglomerative and divisive (Rodriguez et al., 2019).
The former is more commonly used in clustering of static data (Rai and Shubha, 2010). In an agglomerative
hierarchical clustering algorithms the hierarchy is ordered bottom up. This essentially means that all objects first
belong to its own individual cluster only containing itself. Iteratively, these sets of clusters are merged together
based on a specific linkage criterion. On the other hand, divisive hierarchical clustering algorithms start with all
objects in one single cluster and is separated into smaller clusters (top-down) (Rodriguez et al., 2019; Aghabozorgi
et al., 2015). Typical hierarchical clustering algorithms are BIRCH ,CURE, ROCK and Chameleon.

The advantage of hierarchical clustering algorithm for time series or static data is that it does not require the
user to input any parameters such as with many of the other clustering techniques (Aghabozorgi et al., 2015; Wong,
2015). All the different hierarchical clustering methods are clustered in a tree-based representation called dendro-
grams; the number of cuts is determined by viewing the dendrogram (and in most cases the internal evaluation
indexes). This process of constructing these dendrograms is deterministic, which means that given a dissimilarity
matrix, it would always result in the same assignment (Sardá-Espinosa, 2017). The dendrogram is also a great tool
for visualising the time series and their similarity (or dissimilarities). Much information can be obtained by simply
viewing the dendrogram. The ability to visualise has made hierarchical clustering approach quite popular in time
series clustering. However, it is not capable to effectively deal with large data sets (Wang et al., 2006a) because of
its quadratic computational complexity (poor scalability).
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2.3.5 Time series clustering evaluation measure
The purpose of evaluation indicators is to validate the results from the algorithm. These evaluation indicators are
divided into two main categories: the internal evaluation indicators and the external evaluation indicators.

Internal evaluation indicators

The internal evaluation indicators use the internal data to test the validity of the clustering results. They are usually
used if the ground truth is not available and the use of external evaluation indicators are not possible. Internal
evaluation indicators are mainly used for choosing optimal clustering algorithms to use on a specific data set,
rather than validation of the clusters. According to Aghabozorgi et al. (2015), this is because these indicators can
only make comparisons between clustering approaches used on the same data set and should not be compared
to different data sets. There are tens of internal indexes: R-squared index, Root-mean-square standard deviation
(RMSSTD) index, Davies-Bouldin indicator, Dunn indicator, Homogeneity index, Separation index and Silhouette
coefficient, to mention a few. For evaluating the clusters in terms of accuracy, the sum of squared error can be
used, which is implemented in different works such as in (Lin et al., 2004; Vlachos et al., 2003). Here the error for
each time series is the distance from that time series to its the nearest cluster (Aghabozorgi et al., 2015).

External evaluation indicators

External evaluation indicators use external data to test the validity of algorithms (Xu and Tian, 2015a; Rodriguez
et al., 2019; Aghabozorgi et al., 2015). This requires us to know the correct partitioning of the data set. Common
to all external indicators is that it requires the knowledge of the ground truth and compares the resulting clusters
with that of the ground truth (Manning et al., 2010). (Aghabozorgi et al., 2015) has done a literature review of the
external indicators. They state that external indicators used by previous time series clustering literature are: Purity,
CSM, Rand Index, Adjusted Rand Index (Hubert and Arabie, 1985), Entropy, Jaxard, F-measure, FM (Fowlkes
and Mallows, 1983) and MNI (Hubert and Arabie, 1985). Common for all these measures is that they range from
0 to 1, where 1 indicates a 100% correspondence to the ground truth.

There are many validation tools to choose from, where it is unsure whether these will yield a good metric of
comparison between different models or performance of the cluster analysis. James et al. (2013) states that any
time clustering is performed on a data set, regardless of the shape of the data set, clusters will be found. But what
we really want to get an answer to is if these clusters represent true subgroups of the data set, or whether these are
just noise. Aghabozorgi et al. (2015) further speculates that there has been no consensus on a single best approach
for evaluation of the cluster assignment. Because the ground truth is not known, the evaluation measure is limited
to internal evaluation indicators and visual confirmation
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2.4 Summary

This section will briefly summarise the important concepts introduced in Chapter 2 and make a choice of which
clustering technique and methods which will be used. First of all, we introduced the concept of different types
of time series clustering in Section 2.2.1, namely whole time series clustering, STS clustering and time-point
clustering. As the objective of this report is to cluster independent time series from different wind turbines, the
type of clustering is restricted to whole time series clustering. In Section 2.2.2, different ways to cluster time series
was introduced. The different approaches are either shape-based (or raw data-based), feature-based or model-based
approach. The model-based approach has been shown to have scalability problems and reduces performance when
clusters are close to each other (Vlachos et al., 2004; Mitsa, 2010). Furthermore, Wang et al. (2006b) states that
the ARMA process is not a reliable method as the set of parameters could be different for time series with a similar
structure. Therefore, to narrow in the scope of this thesis, the model-based approach will be disregarded and not
analysed. Fitting the time series to an ARMA process would solve the clustering problem with respect to the
objective of similarity in change; therefore, the objective of similarity in change is automatically excluded. The
remaining approaches are then shape-based and feature-based approach. Shape-based typically work directly with
raw time series whereas the feature-based approach converts the raw time series into a feature vector which is then
clustered. The shape-based approach is appropriate for time series of short to modest length and feature-based
are more appropriate for longer time series. The limitations of the shape-based approach for longer time series
are significant if the time series are subjected to noise and/or missing values; the shape-based approach cannot
handle missing values and the clustering results are quite sensitive to noise. This is also the case for shorter time
series. If a shape-based approach is used, the time series requires effective preprocessing steps which deal with the
missing values, noise and outliers prior to clustering. The most common approach, according to Aghabozorgi et al.
(2015), is clustering time series through the shape-based approach. However, the feature-based approaches are not
uncommon and are more appropriate for time series of longer length (not necessary equal length time series). The
limitations of the shape-based approach become less significant if the time series are properly preprocessed. The
thesis will, therefore, be limited to clustering time series with respect to a shape-based approach. In Section 2.3,
the major components of time series clustering was introduced. These are the representation method, similarity
measure, prototype, clustering algorithm, and cluster evaluation metric. A brief summary of the components
followed by a choice of which methods to apply will be included in the following paragraphs. The most critical
choice for time series clustering - for the components above - is the choice of the similarity measure.

Representation method: Representation methods are divided into four sub-categories: data adaptive, non-data
adaptive, model-based and data dictated. As the shape-based (also called raw-data-based) approach for the cluster-
ing will be adopted, no specific representation method is required. The thesis will not concern itself with limitation
such as memory or storage problems. The time series extracted will not be large enough to cause these problems.
But in the case this approach will be scaled up, a choice of a non-adaptive representation method is recommended.
Non-data adaptive representation methods can be applied because they are most suited for time series of equal
length and the comparison between time series are straightforward.

Similarity measure: Many regard the choice of similarity measure as the most important consideration when
doing time series clustering. The similarity measure is first divided into similarity measures fit to the objective
of the clustering. The two objectives of interest are similarity in time and similarity in shape. The scope of
the thesis will be limited to these two objectives, as the shape-based approach will be used for clustering the
time series. Shape-based methods contain similarity measures which are specific for both objectives. The most
commonly used similarity measures are the Euclidean distance and Dynamic Time Warping (DTW) distance;
both are shape-based methods but with different clustering objectives: Euclidean distance is a typical lock-step
method which clusters time series which are similar in time; DTW is an elastic method which clusters time series
which are similar in shape. Both similarity measures are applicable on raw-time series and most non-data adaptive
representation methods. Still, care must be taken when finding a match (if a representation method is used). The
specific preprocessing steps required for the time series, for both objectives, will be discussed and described in
detail in Chapter 4.

Cluster prototype: The cluster prototype will be either the medoid sequence of the set or the average sequence
of the set. The average sequence of the set is scarcely used as compared to the medoid sequence of the set because
the former is limited to equal length time series and non-elastic distance measure. Thus, the average sequence
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of the set will be used as the prototype if Euclidean distance is used, and the medoid sequence of the set as the
prototype if DTW is used as the similarity measure.

Clustering algorithm: Furthermore, the clustering algorithm will be limited to that of partitioning methods and
hierarchical clustering, which are the most popular time series clustering algorithms. Partitioning algorithms are
advantageous over hierarchical algorithms in terms of their low time-complexity and simplicity. This has made
partitioning algorithms highly suitable for time series clustering. The most common partitioning algorithm is the
K-means, due to its ease of implementation, simplicity and efficiency. However, this method requires the user to
specify the number of clusters and is limited to time series of equal length only. Hierarchical clustering algorithms
do not require the user to specify the number of clusters prior to clustering and can cluster time series of unequal
length if an appropriate elastic distance measure, such as DTW, is used. However, hierarchical clustering has
relatively high time complexity compared to partitioning methods. Nonetheless, these methods have great power
of visualisation because of the construction of dendrograms which are visually pleasing and informative. Both
K-means and hierarchical clustering will be implemented and a comparison between the algorithms will be made.

Evaluation indicators: Lastly, the evaluation measures are divided into external and internal evaluation indica-
tors. Because the ground truth or the actual cluster assignment is not known, the evaluation is limited to internal
evaluation indicators and visual confirmation. The internal indicators which will be used to determine the quality
of the clusters and the number of clusters (or cuts to the dendrogram) are the Silhouette index and the sum of
squared error within each cluster (SSE). In the next chapter, the theory behind the specific similarity measure,
clustering algorithm and evaluation indicators will be addressed.
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Chapter 3
Theory - Time series clustering

In this chapter, the theoretical background behind the different components of time series clustering will be ad-
dressed. Because the time series will be clustered according to the shape-based approach, some modifications to
the conventional clustering algorithms must be made such that it is capable of dealing with time series. Most of
the modifications to the conventional clustering algorithm concerns the modification to the similarity measure. In
Section 3.1, the similarity measure (or distance function) will be defined along with the dissimilarity matrix where
all similarity measures are stored prior to feeding it to the clustering algorithm. The Euclidean distance and the
DTW distance will be introduced followed by a brief comparison between the methods. The theory behind each
of the clustering algorithms implemented - K-means and Hierarchical clustering - will be introduced in Section
3.2 followed by the definition of the internal indicators in Section 3.3. These are the components of time series
clustering and the Python implementations can be seen in Appendix D.

3.1 Similarity measure

A measure of similarity is required in order to compare time series and partition them into different groups based
on their (dis)similarity. Aghabozorgi et al. (2015) defines the distance between two univariate time series x and y,
both of length n, as the sum of the pairwise distance between the two vectors

Du(x, y) =
n∑
t=1

dt(xt, yt), (3.1)

where dt(xt, yt) is the distance between two time series at time t. For a multivariate case, where d refers to the
number of dimensions, the distance between two multivariate time series x and y is given by:

Dm(x, y) =
1

sum(α)

d∑
i=1

αi

n∑
t=1

dt(xi,t, yi,t) =
1

sum(α)

d∑
i=1

αiDu(x, y), (3.2)

where α = {α1, . . . , αd} corresponds to the weighting vector. The weighting vector in the function allows the
user to weight the importance of different univariate data set in a multivariate case according to the application.

3.1.1 Dissimilarity Matrix

Regardless of the measure of dissimilarity is used, most algorithms presume a dissimilarity matrix (or distance ma-
trix) as their input. The dissimilarity matrix (DM) corresponds to aN×N matrix, where N is the number of objects
(number of individual time series) in the data set. Each element D(i, j) in the matrix refers to the (dis)similarity
between the ith and jth object (or time series) in the data set (Trevor et al., 2009). Most clustering algorithms
presumes that the dissimilarity matrix is symmetric with non-negative entries and zero diagonal elements. The

15



Chapter 3. Theory - Time series clustering

dissimilarity matrix can be defined as:

DM =


0

D(2,1) 0
D(3,1) D(3,2) 0

...
...

. . .
D(N,1) D(N,2) . . . D(N,N-1) 0

 (3.3)

Calculation of the dissimilarity matrix for a data set comprising ofN time series requires N(N−1)
2 different compu-

tations of distances, D(i, j). This is without including the time-complexity of calculating the individual distances
between time series. Any algorithm which requires a dissimilarity matrix cannot have lower time complexity than
O(N2). The time-complexity of calculating each distance D(i, j) depends on the distance metric used. A final
remark, when referring to a condensed distance matrix, we refer to a list of size N(N−1)

2 which is just the elements
below the diagonal (from top left to bottom right).

3.1.2 Lock-step measures
Shape-based similarity measures are divided into two categories: lock-step and elastic methods. In this section,
lock-step methods will be defined. Lock-step methods measure the distance between two time series in a one-to-
one fashion and therefore requires the time series compared to be of equal length. They are used when the objective
of clustering the time series is similarity in time. Another major limitation to lock-step methods is that they cannot
handle time shifts or lags (Roelofsen, 2018). If the time series are out of phase, lock-step methods would result in
a poor comparison. Common lock-step measures are Minkowski distances (or Lp-norms) and correlations based
distances. Minkowski is the generalisation of the well known Euclidean distance (p = 2) and Manhattan distance
(p = 1). Euclidean distance was chosen as the similarity measure for the objective of similarity in time. The
Euclidean distance is one of the most commonly used similarity measures within time series clustering and will be
defined in the following section.

Euclidean distance

Euclidean distance (ED) is one of the most common lock-step method used as similarity measures in time series
clustering (Aghabozorgi et al., 2015; Mori et al., 2016). The ED has the following definition:

Deuc(x, y) =

n∑
t=1

dt(xt, yt) =

√√√√ n∑
t=1

(xt − yt)2. (3.4)

ED is very efficient and has a time complexity of O(n), which results in an overall time complexity of O(nN2)
for calculating the entire distance (or dissimilarity) matrix (3.3). It also satisfies the triangle inequality (i.e. the
distance is metric) (Cassisi et al., 2012). However, ED can only deal with time series of equal length and is
highly susceptible to outliers, missing values and/or noise. This common limitation for lock-step method limits
the objective of the clustering to objective of similarity in time only (Mori et al., 2016; Cassisi et al., 2012). The
one-to-one mapping of the ED between two time series can be further visualised in Figure 3.1.

Figure 3.1: Euclidean distance metric for two time series Q and C. Picture taken from Elsworth (2017). The Euclidean distance
is the sum of all the vertical grey lines in the plot.
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3.1.3 Elastic measures

In contrast to lock-step methods, elastic methods are more flexible and can either be measured as one-to-many
or one-to-none point matching. These can, therefore, be used when time shifting or unequal length time series
is the problem. Time of occurrence is not important for these measures and therefore the objective falls into the
category of similarity in shape. However, the drawback of these measures is a drastic increase in time complexity;
most of these are of quadratic time complexity, such as the Longest Common Subsequence (LCSS) and Dynamic
Time Warping (DTW). Both of these methods do not satisfy the triangle inequality (i.e. the distance is non-metric)
(Cassisi et al., 2012; Elsworth, 2017). Regardless, the most commonly used elastic method is DTW and will be
addressed in details in the following section.

Dynamic Time Warping

DTW was first proposed by Berndt and Clifford (1994) and overcomes some of the disadvantages of the Euclidean
distance at the cost of increased time and space complexity; DTW can cope with both time distortion and varying
sampling times of the time series compared (Roelofsen, 2018). DTW starts by constructing a n×m matrix, called
local cost matrix (LCM), where the (i, j) element in the matrix refers to the distance between the time point i and
j in the time series x and y, respectively. The LCM is presented in the following equation:

LCM =


d(x1, y1) d(x1, y2) . . . d(x1, ym)
d(x2, y1) d(x2, y2)

...
. . .

d(xn, y1) . . . d(xn, ym)

 (3.5)

For calculating the distance d(xi, yj) between the elements in each time series, the squared error or the root
squared error is typically implemented. Next, a warping path W = {w1, w2, . . . , wk} of length k is computed
which satisfies the following conditions:

1. Boundary condition: A warping path has to start at the bottom left corner and end at the top right corner.
That is, the warping path w needs to start at DM(1,1) and end at DM(n,m).

2. Continuity condition: Only adjacent elements are considered valid steps for the warping path. This also
includes diagonal elements.

3. Monotonicity condition: The path must be monotonic, meaning that it cannot make a step in a non-
increasing direction. That is, the only direction which is valid is right, diagonally to the right and up.

Figure 3.2: Illustration of the conditions for the warping path of DTW. Picture taken from Elsworth (2017).

These three conditions are visualised in Figure 3.2. The path which satisfies the conditions above and has a
minimum cumulative total distance is defined as the DTW distance. A path which satisfied these conditions can
be obtained by a O(nm) algorithm which is based on dynamic programming. The DP recurrence that finds the
minimum cumulative distance is given by:

dcum(i, j) = d(xi, yj) + min{dcum(i− 1, j − 1), dcum(i− 1, j), dcum(i, j − 1)}. (3.6)

The minimum weighted cumulative total distance between the two boundary points represents the DTW distance.
The path W which minimises the total sum of weights along the traversed path is the only valid path. This
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corresponds to the following definition (Berndt and Clifford, 1994) of the DTW distance:

DDTW (x, y) = min

n∑
t=1

wk (3.7)

Determining the distance matrix (3.3) with DTW has a overall time complexity of O(nmN2). In some cases,
this method can provide undesired effects, such as the construction of a path which is far from the diagonal. This
might map a large number of points to a single point. This issue can be overcome by restricting the warping
path close the diagonal (Cassisi et al., 2012). Two popular global restrictions which are normally implemented
are called the Sakeo-Chiba band and Itakura parallelogram (Cassisi et al., 2012; Elsworth, 2017). Both of these
methods restrict the path along the yellow squares as illustrated in Figure 3.3.

(a) Sakoe-Chimba band (b) Itakura parallelogram

Figure 3.3: Yellow cubes indicates the restricted warping path. Figures are taken from Elsworth (2017)

The mapping of points in the DTW algorithm is illustrated and visualised in Figure 3.4. The weights which is
summarised in the DTW distance in Equation (3.7) is illustrated by the grey lines between the two time series. The
actual weighting value corresponds to the horizontal distance (y-axis) between the connected points. The DTW
distance is the sum of all of these distances from start to end. In a real example, the offset of the time series has to
be removed by normalisation to make a meaningful comparison between the two time series (Rakthanmanon et al.,
2012). This is especially important if the objective of clustering is similarity in shape.

Figure 3.4: Illustration of the DTW distance between two time series Q and C. Picture taken from Elsworth (2017). Note that
the DTW distance, which causes the current mapping, was calculated on the normalised time series and the mapping (in the
figure) is visualised with an offset.
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3.1.4 Comparison between lock-step and elastic methods
Both lock-step and elastic methods are distance measures which are categorised as shape-based dissimilarity mea-
sures. For lock-step and elastic methods, the objective of clustering time series is slightly different: Lock-step
methods aim to find similarity in time; elastic methods are more generalised and the aims to find similarity in
shape. This can be visualised in Figure 3.1 and 3.4. The grey lines - which indicates the mapping between the time
series - are different in both of these figures. For the Euclidean distance (i.e. lock-step methods), these grey lines
are vertical (i.e. one-to-one mapping). However, for the elastic methods, the grey lines are not necessarily vertical
or mapped one-to-one. These are also allowed to mapped points in a one-to-many or one-to-none fashion.

Lock-step methods are limited to time series of equal length and cannot handle shifts in time. Elastic methods
overcome most of the limitations which lock-step methods have. Elastic methods can find similarity between
similar time series subjected to time shifting and are applicable for time series of unequal length. Generally,
elastic distance measures have higher accuracy when compared to lock-step methods (Górecki, 2018; Roelofsen,
2018). However, even though these methods have an increased accuracy they also come with significantly larger
time complexity. The time complexity of the different methods can be viewed in Table 3.1. As mentioned in the
literature review, Euclidean distance was shown to be surprisingly competitive, despite its simplicity.

Table 3.1: Time complexities of distance measures. The length of the time series in the data set is indicated by the letter n and
N is the number of time series in the data set. Letter m, in the time complexity of DTW, indicates the length of the second time
series as DTW can handle time series of unequal length.

Distance Measure
Time complexity
distance measure

Time complexity
distance matrix

Euclidean distance O(n) O(nN2)
DTW O(nm) O(nmN2)
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3.2 Clustering algorithms

3.2.1 K-means
K-means finds a partition such that the distance from each object to its assigned cluster centre (prototype) is
minimised (Liu and Lu, 2015; Aghabozorgi et al., 2015). The prototype typically corresponds to the average
sequence of the set and the distance measure is typically the Euclidean distance. Other combinations of similarity
measures (lock-step methods) and prototypes are possible, but these do generally not produce an improvement in
the results (Singh et al., 2013). The original K-means uses the former configuration of prototype and similarity
measure. Thus, the objective of K-means is to find a configuration which minimises the following objective
function across all K clusters:

J(ck) =
∑
Fi∈ck

‖Fi − Fµk
‖2 (3.8)

where Fµk
corresponds to the mean of the cluster ck. In literature, the mean of the clusters is commonly known

as ’centroids’ (Hubert and Arabie, 1985). For time series clustering this refers to the mean vector of all the objects
(time series) within that cluster. The goal of K-means is to minimise the objective function in equation 3.8 across
all k clusters. This corresponds to minimising the following objective function.

J(C) =

K∑
k=1

∑
Fi∈ck

‖Fi − Fµk
‖2 =

K∑
k=1

∑
Fi∈ck

dki ‖Fi − Fµk
‖2 (3.9)

where, dki =

{
1 if xi ∈ ck
0 if xi /∈ ck

Minimising this objective function has shown to be an NP-hard problem (Aloise et al., 2009). Because the
algorithm finds a local minimum rather than a global minimum, the results are highly sensitive to the cluster centre
initialisation. One way to minimise this effect is to run the algorithm multiple times with different cluster centre
initialisation and chose the results which yields the lowest value of the objective function (James et al., 2013).
Other hyper-parameters which affects the results of the algorithm is the number of cluster centres and choice of
distance metric. Liu and Lu (2015) and Rodriguez et al. (2019) states that the most critical choice is the number
of cluster centres. The choice of the correct number of clusters is in many applications not feasible to determine
or available (Aghabozorgi et al., 2015). This is known as the main limitation for these methods in clustering of
static data (Wang et al., 2006a) and also for time series data (Antunes and Oliveira, 2001; Aghabozorgi et al., 2015).
Nonetheless, people tend to appeal to the relatively low time complexity and simplicity of the clustering algorithms
which has made them very suitable for time series clustering and many works apply K-means and K-medoids to
clustering of time series (Lin et al., 2004; Guo et al., 2008; Hautamaki et al., 2008; Bagnall and Janacek, 2005;
Beringer and Hüllermeier, 2006). It is also sensitive to outliers which in many practical situations can be used for
anomaly detection (Sequeira and Zaki, 2002).

The procedure of K-means is illustrated in Algorithm 1. The algorithm has three steps. The first step is to
initialise the partition of k clusters. The choice of these seed point is an important consideration as an incorrect
choice may give an incorrect solution. After the first step, the K-means algorithm loops through the two last steps
until the termination criterion is fulfilled. Normally, the termination criterion is when no significant change in the
objective function is observed. The second step is to assign each point to its closest cluster centres. The third step
is to compute new cluster centres and a new value of the objective function. The implemented Python script can be
viewed in Appendix D.2. Note that the algorithm does not expect a dissimilarity matrix as its input, but the time
series itself. This is because the distances are calculated within the algorithm.

Algorithm 1 K-means

1: Select an initial partition of K clusters
2: while Termination criteria do
3: Assign each time series Fi to its most similar cluster centre in C.
4: Update the cluster mean and objective function
5: return
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3.2 Clustering algorithms

3.2.2 Hierarchical Clustering

Common to these hierarchical clustering algorithms is that they build a hierarchy of clusters. The way this hierarchy
is built can be done in two way and hierarchical clustering algorithms are therefore divided into two subgroups:
Agglomerative and divisive (Rodriguez et al., 2019). The former is more commonly used in clustering of both
static data and time series (Rai and Shubha, 2010; Hastie et al., 2009). In an agglomerative hierarchical clustering
algorithms the hierarchy is ordered bottom up. This essentially means that all objects first belongs to its own
individual clusters only containing itself. Iteratively, these set of clusters are merged together based on a specified
linkage criterion which will be addressed shortly. On the other hand, divisive hierarchical clustering algorithms
start with all objects in one single cluster and then gradually separate it into smaller clusters until clusters with
only one object remain (top-down) (Rodriguez et al., 2019; Aghabozorgi et al., 2015). In this thesis, agglomerate
hierarchical clustering will be applied.
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Hierarchical Clustering Dendrogram - linkage: average, metric: euclidean

Figure 3.5: Illustration of a dendrogram with a cut to form two clusters. The linkage criterion is set as average and distance as
Euclidean distance.

Common to all hierarchical clustering methods is the construction of a tree-based representation called dendro-
gram. The x-axis corresponds to all the different objects clustered and the y-axis corresponds to the distance
between these time series. Clusters are obtained by making a cut in the dendrogram. For example, the dashed
horizontal line in Figure 3.5 illustrates a cut which divides the objects into two clusters: {16, 2} and {12, 6, 3,
10, 15, 5, 8, 11, 14, 7, 1, 13, 9}. The height at which two objects are merged together corresponds to the distance
between these two clusters. These distances are defined with the help of an internal distance function and a linkage
criterion which states how the difference between two objects is measured.

The advantage of hierarchical clustering algorithm for time series or static data is that it does not require the
user to input any parameters such as with many of the other clustering techniques (Aghabozorgi et al., 2015;
Wong, 2015). The number of cuts is determined by viewing the dendrogram. This process of constructing the
dendrogram is deterministic, which means that, given a dissimilarity matrix, it would always result in the same
assignment/results (Sardá-Espinosa, 2017). A dendrogram is also a great tool for visualising the time series and
their (dis)similarities. Much information can be obtained by simply viewing the dendrogram. Cutting the dendro-
gram can be performed by either visually evaluate the height at which the largest change in dissimilarity occurs,
specify the desired number of clusters and cutting the dendrogram appropriately, or decide on an upper threshold
value which corresponds to the largest dissimilarity allowed within each cluster and cutting the dendrogram ap-
propriately. However, Hastie et al. (2009) states that the dendrograms may be deceptive, as a hierarchical structure
is imposed by the algorithm even if such structure is not inherent to the data. That is why when the number of
clusters will be determined by reviewing a set of internal indexes.
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Chapter 3. Theory - Time series clustering

Linkage criterion

The linkage criterion in hierarchical clustering determine the pairwise distances between the clusters (Ahmad and
Khan, 2018b; Vlachos et al., 2003). That is, the linkage criterion determines how the distance between each merged
object should be measured. According to Hubert and Arabie (1985), the linkage criterion between the objects is
divided into four groups: single, complete, average and ward linkage. SciPy (Python library) includes several
others, such as weighted, centroid and median linkage. However, in this thesis, we will consider four of the most
commonly used methods for agglomerative hierarchical clustering, namely, single, complete, average and ward
linkage.

• Single linkage: Defines the distance between clusters as the shortest distance between two objects in each
cluster. The advantage of using the single linkage criterion is that it is capable of finding arbitrary shaped
clusters, but because of this, it is also highly sensitive to outliers and noise (Jain et al., 1988; Roelofsen,
2018).

• Complete linkage: Defines the distance between clusters as the largest distance between two objects in each
cluster. In contrast to single linkage criterion, the complete linkage criterion is less sensitive to outliers and
noise but cannot handle arbitrary shaped clusters (Roelofsen, 2018).

• Average linkage: Defines the distance between clusters as the average distance between each object in the
first cluster to every object in the second cluster.

• Ward linkage: Defines the distance between two clusters as the increase in the sum of squared error from
merging the two (Roelofsen, 2018). The ward linkage minimises the sum of squared differences within all
clusters. In other words, it minimises the total within-cluster variance of the clusters being merged.

(a) Single linkage (b) Complete linkage (c) Average linkage

Figure 3.6: Different linkage criteria for hierarchical clustering. Taken from Sayad (n.d.).

Agglomerative hierarchical clustering

In an agglomerative hierarchical clustering algorithms the hierarchy is ordered bottom-up. From the perspective
of the dendrogram, bottom-up refers to building the tree bottom-up. This essentially means that all objects first
belongs to its own individual clusters only containing itself. Iteratively, these set of clusters are merged together
based on a specified linkage criterion.

Algorithm 2 Agglomerative hierarchical clustering

1: Compute the dissimilarity matrix
2: Initialise all N objects into N individual clusters.
3: while there are more than one cluster do
4: Merge the objects which are closest.
5: Update the dissimilarity matrix with chosen linkage criteria.
6: return dendrogram

The procedure for agglomerative hierarchical clustering is shown in Algorithm 2. These algorithms initially
compute the dissimilarity matrix of all objects of sizeN×N and then initialises all theN objects intoN individual
objects. In step 4 the closest objects are merged into one cluster and then in step 5, the dissimilarity matrix of N -1
clusters are recalculated with the chosen linkage criterion. The new dissimilarity matrix now is of size N -1×N -1.
Step 4 and 5 are repeated until there is only one cluster remaining (or the dissimilarity matrix is just a scalar).
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3.3 Internal evaluation indexes

An obvious disadvantage of the algorithm is that is has a time and memory complexity of O(N2). Another
disadvantage is the lack of flexibility of the algorithm; the algorithm cannot adjust the clusters after merging or
splitting the objects during the agglomerative or divisive process. To remedy this, hierarchical clustering algorithms
are in some cases combined with another clustering algorithm (a hybrid clustering approach) (Aghabozorgi et al.,
2015; Sardá-Espinosa, 2017).

3.3 Internal evaluation indexes
As mentioned in Section 2.3.5, the evaluation indicators are divided into two main categories: The internal eval-
uation indicator and the external evaluation indicator. Common for all data set analysed in this thesis is that the
ground truth is not known. Internal evaluation indicators are usually used if the ground truth is not available and
external evaluation indicators are not possible to perform. These internal evaluation indicators will be used to find
the appropriate linkage criteria and the number of clusters for the hierarchical clustering algorithm. There exist
tens of internal indexes (or internal evaluation indicators). The internal indexes which will be used are the Cophe-
netic Correlation Coefficient, Silhouette index and the sum of squared error (SSE). The sum of squared error will
be used in order to evaluate the clusters in terms of their accuracy (i.e. their intra-cluster similarities).

3.3.1 Cophenetic Correlation Coefficient
Cophenetic correlation coefficient can be used to compare dendrograms. Lapointe and Legendre (1995) states
that because a dendrogram is simply a graphical representation of an ultrametric (=cophenetic) matrix, it can be
compared to one another by comparing their cophenetic matrices. Lets say we have a dendrogram {Ti} modelled
by the set of original data {Xi}, then Saraçli et al. (2013) defines the cophenetic correlation coefficient c as:

c =

∑
i<j(x(i, j)− x̄)(t(i, j)− t̄)√

[
∑
i<j(x(i, j)− x̄)2][

∑
i<j(t(i, j)− t̄)2]

(3.10)

where x(i, j) = |Xi −Xj | which is the Euclidean distance between the ith and the jth observations. t(i, j) is the
”dendrogramatic” distance between the model points Ti and Tj (i.e. the height at which the nodes connect in the
dendrogram, the horizontal lines). x̄ and t̄ is the average of x(i, j) and t(i, j), respectively. The distance between
the model points is specified by the linkage criteria chosen as well as the internal distance (the distance metric
used to calculate the distance of the linkage criteria of the precomputed distance matrix). For instance, DTW can
be used to calculate the distance matrix between all time series within the data set. Then, the distance matrix
is fed into the hierarchical clustering algorithm with a chosen linkage criteria and an internal metric (usually the
Euclidean distance) which calculates the model points Ti. The different linkage criteria to chose from are listed
in Section 3.2.2. The cophenetic correlation coefficient refers to the correlation between the obtained results
from the cluster configuration and the original distances (distance matrix) (NCSS, LLC, 2019). The value of
the cophenetic correlation coefficient range between −1 and 1: An absolute value close to one indicates that the
dendrograms represents a high-quality solution and an absolute value close to zero indicates no correlation and a
poor fit (Teknomo, 2017); NCSS, LLC (2019) states that the values above 0.75 refer to a high-quality solution.

3.3.2 Silhouette index
The Silhouette index (Rousseeuw, 1989) assumes that the the data has been clustered into k partitions. The data
set X is partitioned into k clusters, C = {C1, C2, . . . , Ck}, where Ck refers to the kth cluster. The silhouette value
(also called silhouette width) of one point x is defined as:

s(x) =
b(x)− a(x)

max{a(x), b(x)}
(3.11)

if |Cx| > 1; otherwise s(x) = 0 (|Cx| refers to the number of time series assigned to cluster Cx). This follows that
the silhouette width can also be written as:

s(x) =


1− a(x)/b(x), if a(x) < b(x)

0, if a(x) = b(x)

b(x)/a(x)− 1, if a(x) > b(x)

(3.12)

23



Chapter 3. Theory - Time series clustering

The within-cluster mean distance is denoted a(x) and is defined as the average distance between i and all other
data points within the same clusters Cx (Starczewski and Krzyżak, 2015). The within-cluster mean distance can be
interpreted as how well x is assigned to its cluster. On the other hand, b(x) is the mean nearest-cluster distance for
each sample which implies how badly x is matched to its nearest neighbouring cluster. In other words, the smallest
average distance of x to all points which x is not a member of. These expressions have the following mathematical
definitions:

a(x) =
1

|Cx| − 1

∑
y∈Cx,x 6=y

d(x, y), b(x) = min
x 6=y

1

|Cy|
∑
y∈Cy

d(x, y)

The silhouette width in Equation (3.11) range from−1 to 1, for each object in X. This can easily be verified by
reviewing Equation (3.12). A silhouette width close to 1 indicates that a(x) << b(x), which means that the point
x is well matched to its own cluster and poorly matched to its neighbouring clusters; the data is well clustered. If
the silhouette index is close to −1 then a(x) >> b(x) and x is poorly clustered; it indicates that it would be better
if it was clustered in its neighbouring cluster. Lastly, if the value is close to 0 (not zero) it indicates that the object,
x, lies between two clusters (Rousseeuw, 1987). The silhouette width for a given cluster Ck can now be defined
as:

S(Ck) =
1

|Ck|
∑
x∈Ck

s(x) (3.13)

Finally, the Silhouette index, as outlined in Rousseeuw (1989), is defined as:

SI =
1

K

K∑
k=1

S(Ck) (3.14)

3.3.3 Sum of squared error (SSE) and the MSSSE
The sum of the squared error (SSE) is exactly as stated by the K-means algorithm in Section 3.2.1. The SSE is the
sum of squared distance from each time series - assigned to cluster Ck - to its corresponding cluster prototype.

SSE(k) =
1

|Ck|
∑
Fi∈Ck

‖Fi − Fµk
‖2 (3.15)

where Fµk
corresponds to the cluster prototype of cluster Ck and |Ck| is the number of time series assigned to

cluster Ck. It is divided by |Ck| in order to get a standardised number which is comparable across models. The
prototype will vary according to the specific similarity measure chosen. When the cluster analysis is performed
with Euclidean distance as the similarity measure (i.e. similarity in time), the average sequence of the set is
the corresponding prototype. When the cluster analysis is performed with DTW as the similarity measure (i.e.
similarity in shape) the medoid sequence of the set is the corresponding prototype. Furthermore, the sum of
squared error for each cluster will be added together and divided by the number of clusters to get the Mean Sum
of SSE (MSSSE) or the average SSE across all cluster. In an univariate case the MSSSE is defined as follows:

MSSSEu(d) =
1

k

k∑
j=1

SSE(j) (3.16)

where k is the number of clusters and SSE(j) is sum of squared error of cluster j, as defined in Equation (3.15).
When calculating the MSSSE value for a multivariate cluster analysis, the MSSSE value is basically the summation
of the MSSSE value for each dimension divided by the number of dimensions in the data set:

MSSSEm =
1

d

d∑
j=1,α(j)6=0

MSSSEu(j) (3.17)

where d is the dimension of the data set which is the number of nonzero elements in the corresponding alpha value.
Additionally, it is worth noting that the MSSSE value is only summarised if the corresponding alpha is nonzero. If
the alpha for the corresponding univariate data set is zero, then it is the same as not including the time series in the
analysis at all.
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Chapter 4
Data acquisition and preprocessing

This chapter contains information about the software which time series will be acquired from, the limitations and
consideration of the software, and how the time series are preprocessed prior to clustering.

4.1 Data acquisition using Kognifai EmPower
Time series will be extracted from a software called Kognifai EmPower. Kognifai EmPower is a turbine inde-
pendent decision support system provided by Kongsberg Digital AS. It surpasses the functionality found in wind
farms supervisory control and data acquisition system. The software has four modules: Performance monitoring,
condition monitoring, production forecasting and wind farm control (Kongsberg Digital, 2019). However, the use
of the software will be limited to data extraction and visual analysis of different time series if needed. Time se-
ries are collected from a sensory network monitoring different monitoring points on several wind turbines within
wind parks in Norway. Over 100 of monitoring points for each wind turbine are monitored and stored within the
database. This could, for example, be the power of the individual wind turbines, the temperature of specific com-
ponents, wind speed, rotor speed and so on. Time series can be extracted with regards to a specific time interval,
aggregation interval and resampling interval. First of all, the limitations and considerations will be addressed.

4.1.1 Limitations and special considerations
The software provides the user with the possibility to extract stored time series during different intervals. The
stored data are real-time data which is stored over several years. There are therefore many possible intervals for
extraction of data with different aggregation and resampling interval. However, the software has some limitations
and consideration which needs to be taken into account before any extraction or cluster analysis is performed.

The major limitation to the extraction of data is large periods of missing values. In some cases, the interval of
missing data is as long as several weeks or even months. The explanation of these large periods of missing data is
that there is some kind of sensory fault in the network. Therefore, any interpolation of data during these periods
is pointless and would result in invalid time series. Thus, any potential clustering of data during these periods are
pointless and extraction during these intervals will be avoided at any cost. Secondly, the sampling of the sensors
is sampled unevenly which will result in missing data during extraction. The sensors sample data the following
way: Sensor values are monitored at a fixed sampling rate. If from the previous time step the measured value
on the current time step has not changed significantly, the sensor values will not be sampled. Therefore, missing
values are located in the time series where the sensors values have not changed significantly from previous values.
These missing values can easily be replaced with a forward filling. Forward filling means replacing the missing
values with the value from the preceding time step. Care must be taken when filling the time series. One would not
want to fill in intervals where the missing values are over a larger period. As mentioned first, these periods will be
avoided at all cost and the missing values of the extracted time series are assumed to be the results of the second
remark.
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4.1.2 Parameters for extracting time series

The software includes several options for extracting time series. Time series can be extracted at any time interval
from now and a few years back and is specified by the user. Alongside this, extraction of data also has the following
parameters which are set by the user:

1. Aggregation interval: Data aggregation is a process where raw data are collected and expressed in a sum-
mary form (IMB, n.d.; Wikimedia Foundation Inc., 2019). This can, for example, be the average, minimum,
maximum, sum, etc. By default, the average aggregation will be used during extraction.

2. Resampling interval: Resampling involves changing the frequency of the time series observations. Re-
sampling is further divided into either down-sampling or up-sampling. Up-sampling refers to increasing the
frequency of observations. This might in many cases lead to interpolating between actual values. Down-
sampling is reversed, where the frequency of observations is reduced. Multiple observation is summarised
to make new aggregated values (Brownlee, 2016b). According to (Argyros and Ermopoulos, 2003), down-
sampling longer time series has been shown to be fast and robust.

In short, the resampling interval refers to the sampling interval of the extracted time series and the aggregation
interval refers to how these new resampling points are collected. For instance, the resampling interval could be 2
seconds where the aggregation interval is 4 seconds. Then, for every 2 seconds interval of the original time series,
an aggregated data point is constructed from a 4 seconds interval at that time step. Similarly, Figure 4.1 illustrates
an aggregation interval and resampling interval of both 20 minutes. These extraction methods ensure that the time
series are all of equal length and also reduces some of the noise often associated with time series. Aggregation and
resampling of the time series ensure that the time series are of equal length and if the time series is down-sampled
some of the noise associated with the time series is reduced.

Figure 4.1: Aggregation and resampling interval of 20 minutes. The original sampling of resource A are every 5 minutes.
Taken from IMB (n.d.)

4.2 Preprocessing of the extracted time series

According to Indian Agricultural Statistics Research Institute (2011), preprocessing of data is typically divided
into four categories: data integration, data cleaning, data transformation, and data reduction (or representation).
These categories will be addressed in the consecutive sections followed by a preferred preprocessing method.

4.2.1 Data integration

Data integration refers to the process of collecting different readings from different sources into a collected data set
Indian Agricultural Statistics Research Institute (2011). For time series data this means the collection of individual
time series and store them in the corresponding data sets (or databases). Particularly, time series sampled during the
same interval, for different wind turbines in the same wind park (i.e. construction the univariate and multivariate
data sets).
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4.2 Preprocessing of the extracted time series

4.2.2 Data cleaning
Data cleaning mainly refers to the inconsistencies in the data such as missing values, noise and/or outliers. In real-
life scenarios, time series are often subjected to quite a significant amount of noise and outliers (Zappi et al., 2007).
For the extracted time series used in this thesis, we also know that it contains a lot of missing values. Proposed
methods for dealing with these will be introduced now.

Missing values

As already mentioned in Section 4.1, the data may contain missing values. Because the interval of extraction is
carefully inspected such that the interval does not contain large intervals of missing values (i.e. malfunctioning in
the system), only scenario two from above needs to be dealt with. Since we know that the missing values located
in the time series were the results of insignificant changes in the sensor values, these missing values can easily be
handled with the method of forward filling. Forward filling simply fills in all NaN entries with the previous value.
In the case where the time series have no previous values (i.e. the time series have missing values at time equal
to zero) an approximation will be made where the time series is then backward filled; simply filling in the NaN
entries with the future value measured. Any better approximation cannot be made without making assumptions
about the dynamic behaviour of the turbines. Therefore, the time series will first be subjected to forward filling. If
the time series contains any missing values after a forward filling, then these are leading missing values and will
be filled with backward filling.

Noise and outliers

Time series are naturally noisy and may include outliers. Down-sampling which was done during the extraction of
the time series reduces some of the noise associated with the time series. However, there may still be some noise
in the time series which we do not wish to model. Noise can ultimately be reduced or diminished by applying
digital filters or wavelet thresh-holding on the time series data (Esling and Agon, 2012). Low pass filters (or
smoothers) for time series are used to reveal low-frequency trends in the time series (Stephenson, 2000). One of
the simplest low pass filters in the time domain is the simple moving average (SMA) (Stephenson, 2000). This
filter is categorised as a linear non-recursive (FIR) low pass filter (Gruber, 2017). It filters out most of the noise
and approximates the underlying trends very well (Viswanathan, 2010). However, the SMA (and other FIR low
pass filters) are quite sensitive to outliers and not well suited for suppressing outliers (Gruber, 2017). These filters
can only reduce the effect of the outliers. Therefore, a simple moving median (SMM) is applied to the time series
prior to the SMA. Simple moving median (SMM) efficiently suppresses outliers (Yu, 2015; Serega, 2015). Instead
of taking the mean of the rolling window, the median is extracted instead. This increases the probability that noise
will not affect the new smoothed time series. The SMM over n time points is given by the following equation:

xi = Median(xi, xi−1, . . . , xi−n+1) (4.1)

It is worth noting that when the SMM is centralised, the smoothing operations correspond to the median filter.
After the SMM has been applied to the time series to remove the outliers, the additional noise can be removed by
applying an SMA filter. A larger length of the SMM filter could also be increased in order to remove the outliers
and much of the noise associated with the time series in one iteration.

4.2.3 Data transformation
Depending on the goal of the time series, scaling, detrending or deseasonalising the time series prior to clustering
may be desired (Roelofsen, 2018). Detrending and deseasonalising the data will not be done for the time series
extracted as these are important features which will help to separate them. Many clustering algorithms, such as
K-means, are highly sensitive to scaling. Its therefore common practices in the clustering community to adjust
the features such that they are more suitable for the clustering algorithms (Sarah Guido, 2013; Mori et al., 2016).
Normalisation methods aim to remove the scale difference that could exist, or as Dunn (2010) states it, the reason
for mean centring is to remove the arbitrary bias from measurements that we do not wish to model and scaling
erases the fact that variables are measured in different units of measurements. There are many different types of
procedure for normalising the data.

Caution should be taken when normalisation flat but noisy time series (Almaliki, 2018; Vlachos et al., 2002).
According to Vlachos et al. (2002), normalising such time series would not guarantee the best match between two
time series. This is caused by a significant amount of noise which can distort the average value and/or standard
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deviation of the time series, leading to improper translation. However, with proper filtering and outlier removal, this
can be avoided. Additionally, normalisation requires the user to know - or accurately estimate - the minimum and
maximum for the appropriate time series (Brownlee, 2016a). Normalisation should not be used if the time series
is trending up or down, as estimating of the minimum and maximum values might be difficult. The maximum and
minimum values used could also be the overall maximum and minimum value observed in all of the different time
series (for those parameters). This simply scales the univariate data set to simply have a maximum value of 1 and a
minimum value of 0. This is different from normalising, as described above, which normalises each individual time
series. Standardisation (or Z-score normalisation) and Min-Max scaling are two of the most common approaches.
Z-score normalisation is a common method for normalisation within time series clustering literature (Mori et al.,
2016; Aghabozorgi et al., 2015; Rodpongpun et al., 2012). The choice between normalisation and standardisation
is determined by the objective of the clustering. Normalisation is appropriate if the objective is to cluster time
series of similar shapes; standardisation is appropriate if the objective is to cluster time series with respect to their
variance.

Standardisation (or Z-score normalisation)

Standardisation is the process which aims to rescale the features or time series such that they have the properties of
a Gaussian distribution: Mean (µ) equal to zero and a standard deviation (σ), equal to one. Thus, standardisation
assumes that the observations within the time series fit a Gaussian distribution. If this is not the case and the time
series is standardised, the transformed time series may not be reliable (Brownlee, 2016a). The standardised values
can be calculated from the following equation:

z =
x− µ
σ

(4.2)

Normalisation

Normalisation is often called Min-Max scaling and scales the data between 0 and 1. This normalisation is used
when standardisation is not preferred. Standardisation is not preferred when the distribution is not Gaussian or the
standard deviation is very small (Almaliki, 2018). Min-Max scaling is typically done with the following equation

z =
x−min(x)

max(x)−min(x)
. (4.3)

For clustering the time series with the objective of similarity in shape, each time series will be scaled individually
to range from 0 to 1. That is, the individual time series will be scaled with their corresponding minimum and
maximum value. In the case is similarity in time, the entire univariate data sets will be scaled to have a maximum
value of 1 and a minimum value of 0. The maximum and minimum value observed in the entire univariate data set
will be used to scale individual time series. This is done to achieve comparable internal indexes between data sets.
This can be seen in the following equation

z =
x−min(X)

max(X)−min(X)
, (4.4)

where x is the current time series being transformed and X is the entire univariate time series. Scaling in equation
(4.4) will be utilised if the data set contains flat but noisy time series or if the objective is similarity in time.
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Chapter 5
Data extraction and Preprocessing

In this chapter, the univariate and multivariate data sets, which are going to be clustered and analysed, will be
presented. The univariate time series is presented in Section 5.1, and in Chapter 6 these time series will be clustered
and analysed. The multivariate time series is presented in Section 5.2, and in Chapter 7 these time series will be
clustered and analysed. All of the time series are extracted from the Kognifai Empower software introduced in the
previous chapter. The time series will be collected from a wind park with a total of 16 turbines. As one of the
turbines did not contain any measurements, only 15 turbines were available for extractions. Additionally, all data
sets will be preprocessed according to the preprocessing steps outlined in Section 4.2.

5.1 Univariate time series
In this section, the univariate data sets, which are going to be clustered in the next chapter, will be introduced
and preprocessed. These data sets contain univariate time series, which are measurements of the oil temperature
in the gearbox, extracted from different turbines, during a period of 24 hours. In order to strengthen the physical
interpretation of the clustering results from clustering the first dataset, the experiment will be repeated on a different
set of measurements (same turbines and sensors sampled at a different interval). Regardless of the results, it will
either strengthen or weaken the physical interpretation of the first experiment - both would be equally interesting.
The first univariate data set is introduced in Section 5.1.1 (from now on called ’Univariate V1’) and the second
univariate data set is introduced in Section 5.1.2 (from now on called ’Univariate V2’). The details of the extraction
are listed in the following table, Table 5.1.

Table 5.1: parameters for extracting of the univariate data sets. The column for ’From’ and ’To’ have the following time format:
[DD.MM.YYYY hh:mm:ss]

# Name of data set From To
Aggregation
Interval [s]

Resampling
Interval[s]

1 Univariate V1 22.01.2019 02:00:00 23.01.2019 02:00:00 30 30
2 Univariate V2 23.02.2019 00:00:00 24.02.2019 00:00:00 30 30

5.1.1 Univariate V1
The first data set will be a collection of time series describing the oil temperature of the gearbox (called ”GearOil-
TempSump” in software). The time series will be stored in a 3-dimensional array whose shape is (d, k, n) where
d is the dimension, k is the number of turbines, and n is the length of the time series. The time series are collected
from a wind park consisting of 15 wind turbines in total. These individual time series are extracted over a period of
24 hours with the specific intervals specified in Table 5.1; this results in a univariate data set of shape (1, 15, 2811).
The time series prior to any preprocessing can be viewed in Figures 5.1 and 5.2. The number of data points (count),
mean and the standard deviations (std) are is presented in Table 5.2 for each turbine.
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Table 5.2: General statistics for ’Univariate V1’ data set

WT1 WT2 WT3 WT5 WT6 WT7 WT8 WT9 WT10 WT11 WT12 WT13 WT14 WT15 WT16

count 2881 2881 2881 2881 2881 2881 2881 2881 2881 2881 2881 2881 2881 2881 2881
mean 57.2 17.3 45.7 51.5 45.8 55.9 52.0 57.3 52.9 56.3 49.5 54.0 55.6 50.8 13.8

std 4.7 2.3 3.8 6.7 3.3 6.3 6.8 6.3 8.5 7.3 8.1 3.9 7.1 6.6 3.0

Figure 5.1: The initial time series of ’Univariate V1’ plotted during an interval of 24 hours.

Figure 5.2: Subplots of the initial time series of ’Univariate V1’ during an interval of 24 hours.

As stated in Section 4.2, preprocessing is typically divided into four categories: data integration (this has
already been done, as the data set is already collected prior to any preprocessing), data cleaning, data transformation
and data reduction. The corresponding data set will be preprocessed according to the first three steps.
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Data cleaning

The first step is to clean the data set. This includes handling missing values, outliers and noise present in the data
set. First of all, the missing values in the data set are handled. As justified in Section 4.2, missing values will
be dealt with through forward filling and then backwards filling if there were leading missing values present in
the data set. Initially, 18 NaN entries were found in the data set; each was handled with the proposed methods.
Secondly, the obvious outliers which we do not wish to model need to be removed. Obvious outliers can especially
be observed for the time series for turbine 16 in both figures (see two outliers at time steps around 09 : 00). These
outliers - and potentially others - are removed by applying an SMM filter (Equation (4.1)) with a relatively small
window size of 5. The size of the window is kept relatively low in order to only remove the obvious outliers and
retain the shape and potential anomalies in the time series.

Figure 5.3: The resulting time series of ’Univariate V1’ after implementation of a simple moving median filter of length 5.

Figure 5.4: Subplots of the resulting time series of ’Univariate V1’ after implementation of a simple moving median filter of
length 5.
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The resulting time series can be viewed in Figure 5.3 and 5.4. It can be observed that the overall shape is maintained
and any (obvious) outliers are removed and replaced. No significant noise is observed in any of the time series
and therefore an SMM with a length of 5 is sufficient to remove both the outliers and the noise present in the time
series.

Data transformation

Before clustering the data sets, the time series needs to be transformed appropriately. This is because many of
the clustering algorithms, including K-means, are highly sensitive to scaling. Before clustering the data set with
respect to the objective of similarity in time, the univariate data set is scaled between 0 and 1 (as in Equation (4.4)).
The main reason for scaling the univariate data set before clustering is that it is required in the multivariate case;
all univariate data sets in a multivariate data set has its features adjusted such that they range between 0 and 1. This
will ensure that the calculation of the (dis)similarity matrix is correct and equally weighted across dimensions.
Note that a multivariate data set is just a set of univariate data sets. This will be addressed in more details when
clustering the multivariate data sets. Another reason for scaling the data set is that by scaling all data set equally,
the clustering models and internal indexes are comparable across different data sets. The scaled time series can be
seen in Figure 5.5. It can be observed that the plots for the scaled time series and the plot for the unscaled time
series in Figure 5.3 are identical, only the y-axis values are different. The scaled time series can be observed to
maintain the overall shape of the time series without removing their offset or trend. These scaled time series will
be clustered when the objective is similarity in time.

Figure 5.5: Time series of ’Univariate V1’ after scaling:. Data set is scaled between 0 and 1

In the case of similarity in shape - as long as there is no flat but noisy time series present - the time series
needs to be normalised according to Equation (4.3). This scales individual time series between 0 and 1, and not
the entire data set as done above in Figure 5.5. The normalised time series can be viewed in Figure 5.6. It can be
observed that those experiencing similar trends are mostly overlapping. Similarly, those experiencing no trends are
also overlapping but are also quite different compared to the others. This is exactly what we want when clustering
the time series with respect to similarity in shape. Furthermore, if the objective is to cluster the variance of the
different time series, standardisation should be used. As the time series will not be clustered with regards to their
variance, the plot is only presented to make a comparison between the standardised and the normalised time series.
The observation to be made is that the normalised time series are more offset than those of the standardised. This
essentially is the reason that clustering the standardised time series cluster the time series with respect to their
(dis)similarity in variance, rather than their shape.
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Figure 5.6: Time series of ’Univariate V1’ after normalisation: time series is scaled between 0 and 1

Figure 5.7: Time series of ’Univariate V1’ after standardisation: mean equal to zero and a standard deviation equal to one
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5.1.2 Univariate V2

The second univariate data set which is going to be clustered is ’Univariate V2’. The data set is identical to that of
the previous data set in Section 5.1.1, only the interval of extraction is different. Therefore, the shape of the data
set is similar to ’Univariate V1’; the shape is (1, 15, 2811). The time series collected can be viewed in the Figures
5.8 and 5.9. The number of data points (count), mean and the standard deviations (std) are is presented in Table
5.3 for each turbine.

Figure 5.8: The initial time series of ’Univariate V2’ plotted during an interval of 24 hours.

Figure 5.9: Subplots of the initial time series of ’Univariate V2’ during an interval of 24 hours.
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Table 5.3: General statistics for ’Univariate V2’ data set

WT1 WT2 WT3 WT5 WT6 WT7 WT8 WT9 WT10 WT11 WT12 WT13 WT14 WT15 WT16

count 2881 2881 2881 2881 2881 2881 2881 2881 2881 2881 2881 2881 2881 2881 2881
mean 59.3 18.6 47.3 55.0 47.2 59.0 55.3 59.3 13.6 59.2 34.8 56.737 59.2 55.2 45.3

std 2.0 1.3 0.7 1.8 0.5 1.8 2.3 1.9 3.1 1.9 3.4 1.0 1.8 2.3 9.8

Same procedure as for the ’Univariate V1’ will be followed when preprocessing this data set: Data integration
(this has already been done, as the data set is constructed prior to any preprocessing), data cleaning and data
transformation. The corresponding data set will be preprocessed according to these three steps.

Data cleaning

As before, the first step is to handle the missing values in the data set. Same procedure as before is followed:
Forward filling is first applied followed by backward filling for the remaining missing values. Some noise can be
observed in several of the time series, but no significant outliers are visually detected. As we do not wish to model
the noise or have outliers present (even though no significant outliers is observed), a simple moving median filter
is applied to the time series with a short length of 5. This removed some of the noise associated with some of the
time series and any possible outliers which were not found visually is removed. The results of the filtering can be
observed by viewing the normalised time series in Figure 5.10.

Data transformation

Before clustering the data sets, the time series needs to be transformed appropriately. The two normalisation
methods introduced in Section 4.2.3 are applied to the filtered data set. For clustering the time series with the
objective of similarity in time, the data set is scaled between 0 and 1 as in Equation (4.4). Scaling the data will
simply just replace the y-axis values in Figure 5.8 to range between 0 and 1. Therefore, the scaled data set can
simply be visualised be looking at this figure and replacing the y-axis values.

In the case of similarity in shape - as long as there is no flat but noisy time series present - the time series
needs to be normalised according to Equation (4.3). Reviewing the time series, there are some time series which
have relatively low standard deviation and might be in the danger zone of being too flat. However, the difference
between the standard deviations of the different time series are not significant and normalisation of the time series
proceeds. The normalised time series can be viewed in Figure 5.10. Normalising the time series are analogous to
changing all the y-axis values of Figure 5.9 to range between 0 and 1. None of the time series are observed to be
distorted because of the translation; the time series corresponding to turbine 6 had the lowest standard deviation
and are the most critical to observe. However, the time series for turbine 6 does not seem to be distorted from the
original observation.

Figure 5.10: Subplots of time series of ’Univariate V2’ after normalisation. Data is scaled between 0 and 1. Note, that the
subplots have shared x and y axis, in contrast to Figure 5.9.
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5.2 Multivariate time series
In this section, two sets of univariate sets, which are going to be clustered in the Chapter 7, will be introduced and
preprocessed. The sets of univariate time series will be collected in a 3-dimensional array whose shape is (d, k, n)
where d is the dimension, k is the number of turbines, and n is the length of the time series. For example, if a
multivariate data set containing three univariate data sets, each univariate data set contains 15 univariate time series
(i.e. measurements on 15 different wind turbines), all of length 2000, would results in a multivariate data set of
shape (3, 15, 2000). All of the univariate time series will be extracted during the same interval and with the same
aggregation and resampling interval. The univariate data sets within each multivariate data set are presented in
Appendix A.2 and A.3.

5.2.1 Multivariate V1
The first multivariate data set will from now on be called ’Multivariate V1’. The data set is a collection of univariate
time series presented in Table 5.4, along with the specific parameters for extraction. With the current time series,
the shape of the multivariate data set is (4, 15, 2881).

Table 5.4: Parameters for extraction of the univariate time series which ’Multivariate V1’ is comprised of are presented. The
column for ’From’ and ’To’ have the following time format: [DD.MM.YYYY hh:mm:ss]

Name of
data set

Name of
univariate
time series

Parameter of
interest From To Aggregation

Interval [s]
Resampling
Interval [s]

Multivariate V1 Gearbox temp
Temperature

in Celsius
23.02.2019
00:00:00

24.02.2019
00:00:00 30s 30s

Generator speed
Rotation speed

of generator [rpm]
23.02.2019
00:00:00

23.02.2019
00:00:00 30s 30s

Wind speed nacelle
Wind speed measured

at the nacelle [m/s]
23.02.2019
00:00:00

23.02.2019
00:00:00 30s 30s

Positional derivative
Direction of nacelle

versus wind direction
[degrees]

23.02.2019
00:00:00

23.02.2019
00:00:00 30s 30s

The time series of the gearbox temperature is the exact same time series as introduced in Section 5.1.2. Refer to
this section for plots and preprocessing steps. The other time series are preprocessed as done in the univariate case.
The univariate data sets are preprocessed individually. First, missing values are handled with forward filling (and
backward filling if there were still missing values present). Then, outliers and noise are dealt with by an SMM filter
of length 5. The only exception is the time series associated with the position deviation. One of the time series
oscillated quite significantly between −360, 0 and 360 degrees. To handle this, phase unwrapping was applied
before filtering the non-smooth signals for the position derivative. The generator speed, wind speed (measured at
the nacelle) and the positional derivative before and after preprocessing can be seen in Appendix A.2. Each of the
univariate data set are scaled or normalised prior to clustering.
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5.2.2 Multivariate V2
The multivariate second data set will from now on be called ’Multivariate V2’. The data set is a collection of
univariate time series represented in Table 5.5 along with the specific parameters for extraction. The interval for
extraction is now increased to roughly 22 days, compared to 1 day for the ’Multivariate V1’ data set. Now we
want to find similarities on a much larger time interval. With the current parameters for extraction, the shape of the
multivariate data set is now (6, 15, 6295). Finding a large enough interval where most turbines had non-missing
values proved to be a difficult task. The intended interval was supposed to be a month, but the best interval after
days of searching was a 22 days interval where data was available for all turbines except one (i.e. 15 different
turbines had measurements on all variables).

Table 5.5: Parameters for extraction of the univariate time series which ’Multivariate V2’ is comprise of are presented. The
column for ’From’ and ’To’ have the following time format: [DD.MM.YYYY hh:mm:ss]

Name of
data set

Name of
univariate
time series

Parameter of
interest From To Aggregation

Interval [s]
Resampling
Interval [s]

Multivariate V2 Power mv2
Produced power

in Watt
08.02.2019
01:00:00

01.03.2019
21:30:00 5m 5m

GearboxTemp mv2
Temperature

in Celsius
08.02.2019
01:00:00

01.03.2019
21:30:00 5m 5m

GeneratorSpeed mv2
Rotation speed

of generator [rpm]
08.02.2019
01:00:00

01.03.2019
21:30:00 5m 5m

WindDir mv2
Wind speed measured

at the nacelle [m/s]
08.02.2019
01:00:00

01.03.2019
21:30:00 5m 5m

WindSpeed mv2
Wind speed measured

at the nacelle [m/s]
08.02.2019
01:00:00

01.03.2019
21:30:00 5m 5m

ExternalTemp mv2
Outside temperature

in Celsius
08.02.2019
01:00:00

01.03.2019
21:30:00 5m 5m

Each individual univariate time series within the data set is presented in Appendix A.3 after each time series is
preprocessed appropriately. The preprocessing steps are as outlined in the previous sections. First, missing values
are handled with forward filling (and backward filling if there were still missing values present). Some significant
outliers were observed in the initial plots. An SMM with a window length of 100 was applied to these time series
to remove the outliers and additional noise observed in the time series. No phase unwrapping was applied to the
time series for the direction of the wind prior to applying the SMM filter as it were no need for it. This is because
the angle can be observed to be different from zero, and would therefore not oscillate between 0 and 365 degrees
as in the case for the position deviation of ’Multivariate V1’ data set. Each of the univariate data set are scaled or
normalised prior to clustering.
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Clustering of univariate time series

Throughout this chapter whole time series clustering will be applied to analyse a set of univariate time series. The
goal of this approach is to cluster similar time series in the same cluster and dissimilar time series in different
clusters; similarity is measured in terms of either similarity in time or similarity in shape. Two univariate data sets
(’Univariate V1’ and ’Univariate V2’) will be clustered and analysed in this chapter. The clustering results and
analyses are presented in Section 6.1 and 6.2, respectively. In Section 6.3, the clustering results and analyses of
both data set will be summarised and compared. The comparison will focus on strengthening (or weakening) the
physical interpretation or assumptions of the other. The Python implementation of the hierarchical clustering algo-
rithm used in conjunction with either Euclidean distance (i.e. similarity in time) or DTW distance (i.e. similarity
in shape) is presented in Appendix D.1. A brief description of the Python code is included before presenting the
procedure for running the code and then the code itself. The specific libraries used in the implementation can be
seen in Appendix D.1.1, followed by class definitions in Appendix D.1.2, D.1.3 and D.1.4. In Appendix D.1.3,
the class for clustering the time series with hierarchical clustering algorithm is included along with a procedure for
how to cluster the time series with respect to either the objective of similarity in time or the objective of similarity
in shape. The implementation of the K-means algorithm is presented in Appendix D.2. All computations and
cluster analysis are performed on a HP EliteBook with Intel Core i7-3520M processor and 8GB of RAM.

6.1 Clustering of ’Univariate V1’
The time series in Figure 5.3 are first visually inspected. The majority seems to have a mean of around 55 degrees
Celsius and a decreasing trend towards the end of the interval; two time series are observed to have a mean of
around 15 degrees Celsius and do not experience any decreasing trend towards the end of the interval. The obvious
partitioning with respect to the temperature level could easily be achieved by clustering the time series with the
objective of similarity in time. There are at least four different types of time series with respect to their shape and
behaviour; these can be separated when similarity in shape is the objective of clustering. As the same time series
seems to be dissimilar from the rest with respect to both the objective of similarity in time and shape, the first
hypothesis is that both methods (or objectives) would yield similar results - at least for the quite abnormal time
series observed in the plot. After reviewing the time series visually, the clustering objective for the time series
clustering are:

• Similarity in time: When clustering the time series with this objective, the scaled data set is clustered. The
scaling of the time series is done such that the clustering models and internal indexes are comparable across
different data sets. The scaled time series maintain the overall shape of the time series without removing
their offset or trend. Therefore, the overall shape and temperature levels will be clustered. The scaled data
set can be seen in Figure 5.5.

• Similarity in shape: The normalised time series are clustered during this approach. As mentioned in Section
4.2, normalisation is appropriate if the objective is to cluster time series of similar shapes. The trend is not
removed prior to normalisation as it is important to the overall shape of the time series and the behaviour of
the turbine. Thus, time series which are similar in shape will be clustered together and absolute difference
and offset, which is captured by the similarity in time objective, would be insignificant. The normalised data
set can be seen in Figure 5.6.
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In the following sections, the time series will be clustered with regards to both the objective of similarity in time
and similarity in shape. The objectives will be clustered with an agglomerative hierarchical clustering algorithm
as well as the K-means algorithm. These algorithms will be compared to each other and the most promising
algorithm will be used in the consecutive sections. As stated above, clustering with the objective of similarity in
time will be performed on the scaled data set with the Euclidean distance as the similarity measure. Clustering
with the objective of similarity in shape will be performed on the normalised data set with DTW as the similarity
measure. The standardised data set will not be analysed as standardising the time series assumes that the time
series are of a Gaussian distribution. Additionally, clustering the standardised time series solves the objective of
similarity in variance, which is not addressed in this thesis. For each cluster analyses, an attempt of analysing the
physical interpretation of the cluster assignments will be performed; this is done to get the basis for summarising
the physical implications of clustering the data set. The clustering result and analysis of similarity in time will be
presented first: Both hierarchical clustering and K-means in Section 6.1.1 and 6.1.2, respectively. The analysis of
the clustering results will be presented in Section 6.1.3. Then, the clustering results and analysis for similarity in
shape will be presented and analysed in Section 6.1.4 and 6.1.5, respectively.

6.1.1 Similarity in time - Hierarchical clustering of the scaled data set

The objective is now to cluster the time series with regards to similarity in time. In this analysis, the scaled
data set (noise, missing values and outliers have been dealt with prior to scaling) in Figure 5.5 will be analysed
with the hierarchical clustering algorithm. The implementation of the hierarchical clustering algorithm along with
the implementation of the internal indexes can be seen in Appendix D.1. The constructed dendrograms will be
compared to one another by comparing their Cophenetic correlation coefficient (3.10), and the dendrogram with
the largest cophenetic correlation coefficient will be chosen for further analysis. Recall that a cophenetic correlation
coefficient close to 1 indicates a good fit - values above 0.75 is considered a high-quality solution - and values close
to 0 indicate no correlation and a poor fit. The linkage criteria which will be compared are the single, complete,
average and ward linkage. After the best dendrogram has been found, the optimal number of clusters (or cuts to
the dendrogram) will be found by comparing the Silhouette index (3.14) and the sum of squared error (3.15) for
the clusters formed. The sum of squared error for each cluster will be added together and divided by the number
of clusters to find the mean sum of SSE, MSSSE (3.16), which will be used for comparison between cuts. The
silhouette index range from −1 to 1: Value close to 1 indicate that the time series are well matched to its assigned
cluster; value close to 0 (not zero) indicates that the object lies between two clusters; a value close to −1 indicates
poor clustering and that the current object is better placed in the neighbouring cluster. Lastly, the MSSSE value is
simply a measure on the within-cluster variance: A small value indicates that the objects (or time series) assigned
are similar to each other (i.e. small within-cluster variance); a large value indicates that the variance within the
cluster is significant. Now let us start clustering the first data set with respect to the objective of similarity in
time. The summary plot and table for the internal indexes of cutting each dendrogram into k partitions - each with
different linkage criterion - can be seen in Figure 6.1 and Table 6.1. The cophenetic correlation coefficient can be
seen in the upper right corner in the aforementioned figure (Figure 6.1).

Table 6.1: Summary table with the linkage criteria: single, complete, average and ward. The data set which was clustered is
’Univariate V1’ with the objective of similarity in time. The silhouette indexes and MSSSE values for a cut K - from 2 to 13 -
is presented.

Method Internal index Number of cuts to the dendrogram
K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10 K = 11 K = 12 K = 13

Single Silhouette 0.82 0.35 0.50 0.39 0.24 0.16 0.27 0.21 0.19 0.17 0.15 0.13
MSSSE 15.17 12.50 6.26 5.70 4.30 3.61 1.63 1.23 0.86 0.58 0.36 0.20

Complete Silhouette 0.82 0.49 0.37 0.42 0.39 0.38 0.27 0.21 0.19 0.17 0.15 0.13
MSSSE 15.17 8.17 5.67 3.76 2.86 2.19 1.63 1.23 0.86 0.58 0.36 0.20

Average Silhouette 0.82 0.49 0.50 0.35 0.39 0.28 0.27 0.21 0.19 0.17 0.15 0.13
MSSSE 15.17 8.17 6.26 4.86 2.86 2.29 1.63 1.23 0.86 0.58 0.36 0.20

Ward Silhouette 0.82 0.49 0.37 0.42 0.39 0.38 0.27 0.21 0.19 0.17 0.15 0.13
MSSSE 15.17 8.17 5.67 3.76 2.86 2.19 1.63 1.23 0.86 0.58 0.36 0.20

First of all, reviewing the cophenetic correlation coefficient in Figure 6.19, it can be observed that all dendro-
grams experience similarly high values of either 0.984 or 0.985. The cophenetic correlation coefficient is close to 1
for all dendrogram; values close to 1 indicate that all the dendrograms represent a high-quality solution. Depending
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Figure 6.1: Summary plots with the linkage criteria: single, complete, average and ward. The data set which was clustered is
’Univariate V1’ with the objective of similarity in time. The silhouette indexes and MSSSE values for a cut K - from 2 to 13 -
is presented along with the cophenetic correlation coefficient in the upper right corner.

on whether we want to minimise the sum of squared difference within all clusters or the separation of the differ-
ent clusters, either ward or average could be used as the linkage criterion during clustering. These dendrograms
have a corresponding cophenetic correlation coefficient of 0.984 and 0.985, respectively. Arguably, either of the
dendrograms could be chosen for further analysis. As both of the dendrogram with average and ward as linkage
criterion has similarly large cophenetic correlation coefficients, both will be interpreted. This is done in order to
make a comparison between the linkage metric and the internal indexes used. Actually, all dendrograms could be
chosen for further analysis, but a choice was made to further analyse these two dendrograms.

By reviewing the summary table and the corresponding summary plot, it can be observed that the silhouette
index is largest for a cut of two for all linkage criteria. This indicates that a cut of two provides two clusters with
the best combination of high intra-cluster similarity and large separating between them (i.e. the time series are
well matched to its own cluster and poorly matched to neighbouring clusters). This can be visually verified by
looking at the original plots of the time series (Section 5.1.1) where two time series are obviously different from
the rest. As the physical interpretation will be analysed, deeper cuts might be helpful when doing the analysis
of the cluster assignment. A number of cuts greater than two will roughly halve the silhouette index value, but
the corresponding MSSSE decreases exponentially along with it. Note that the MSSSE value is analogous to the
average within-cluster variance for all clusters formed. So when making a cut, we want the largest reduction in the
within-cluster variance (i.e. the MSSSE) and the smallest reduction in the silhouette index. The large silhouette
value and the large MSSSE for a cut of two indicate that the two clusters formed are well separated (large silhouette
index) but the within-cluster similarity in each cluster are still quite high (i.e. a large MSSSE value). Thus,
the compromise between separation and similarity becomes an important consideration when finding the correct
number of clusters.

Now reviewing only the ward and average dendrogram. As stated above, both dendrograms result in a large
silhouette index value for a cut of two. Deeper cuts will now further be analysed. First of all, when viewing the
internal indexes with average as the linkage criterion, a cut of 4 and 6 to the dendrogram still have a relatively
large silhouette index along with a significant reduction in the MSSSE value from previous cuts. A larger number
of cuts than 6 to the average dendrogram does not result in a sufficient decrease in the sum of squared error or an
increase or hold in the silhouette index value. Arguably, either a cut of 4 or 6 is optimal for this configuration (if
we disregard a cut of 2). At a cut of 4, the silhouette index value is relatively large. However, for a cut of 6 to
the dendrogram, it would approximately halve the MSSSE value while only reducing the silhouette index slightly
(from 0.5 to 0.39). Arguably, a cut of 2, 4 or 6 to the dendrogram seems to be a good choice, depending on the
compromise between separation and within-cluster similarity. Secondly, reviewing the indexes when ward is set to
be the linkage criterion. A cut of 5, 6 and 7 to the dendrogram results in roughly the same silhouette index values
with only a slightly decreasing in the MSSSE value across these cuts. As both - actually all dendrograms - have
similar cophenetic correlation coefficients, cutting any of the dendrograms would result in a high-quality solution
and roughly the same assignment. A choice has to be made between them. Depending on whether we want to
minimise the sum of squared difference within all clusters or the separation of the different clusters, either ward
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or average is used as the linkage criterion for the clustering. The dendrogram which will be cut is the dendrogram
constructed with average as the linkage criteria because it has the largest cophenetic correlation coefficient of the
two. However, both will be presented and used to make a connection between the internal indexes and the ward
and average distances. These dendrograms will further be analysed in the following paragraph.
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Figure 6.2: Dendrogram with ward as linkage criterion and distance as Euclidean distance.
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Figure 6.3: Dendrogram with average as linkage criterion and distance as Euclidean distance.

The dendrogram built with ward and average as the linkage criterion can be viewed in Figure 6.2 and 6.3,
respectively. The entire clustering process for both of these configurations took 1.32ms. Viewing the dendrograms,
the first observation to be made is that both dendrograms are very similar and make roughly the same cluster
assignments. The cluster assignment is the same for both dendrograms for a cut of 2, 3 and 6 (deeper cuts than
6 is not compared). A cut of two separates the time series into two distinct clusters. This is indicated by the
large reduction in the sum of squared difference within each cluster (i.e. the ward distance) and the average
distance between the two clusters. This can be observed in both dendrograms by the uppermost horizontal line.
The deeper the cut in the dendrogram is, the lower becomes the ward distance and similarly the average distance
between the clusters. The ward distance is comparable to the MSSSE index value as both metrics reflect the within-
cluster variance observed in all clusters formed (i.e. the MSSSE is highly correlation to the ward distance). The
combination - or the ratio - between a large separation (the average distance between the clusters) and within-cluster
variance (ward distance) is comparable to the silhouette index value. This connection will be further illustrated in
the following section where the dendrogram constructed with average as linkage criterion will be cut. The cuts
that will be further reviewed are the number of cuts equal to 2, 4 and 6. When a configuration has been found, the
resulting groupings will be analysed. This is done in Section 6.1.3 where the analysis of the physical interpretation
of the cluster assignment will be made.
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6.1 Clustering of ’Univariate V1’

Cutting the dendrogram to form 2 clusters

First of all, the dendrogram is cut to form two clusters, or groupings, will be reviewed. The resulting cut in the
dendrogram is shown in Figure 6.4 along with colour coding for the cluster assignment (green and red). The time
series belonging to both clusters are visualised in Figure 6.5. According to the Silhouette index, this is the optimal
number of cuts for both dendrograms; the reason for this is the large separation between the two formed clusters.
First of all, the ward distance will be reviewed. A significant reduction in the ward distance can be observed in the
dendrogram (Figure 6.2) with linkage criterion as ward. The ward distance is reduced from roughly 60 (indicated
by the uppermost horizontal line) to 4 and 15, respectively. The uppermost horizontal line indicates the ward
distance if the two clusters were merged together to form one single cluster. This is analogous to the MSSSE value
if all time series were placed in the same cluster. Similarly, the average distance in Figure 6.4 can be observed
to yield significant separation between those two clusters. The large reduction in the ward distance and the clear
separation between the two clusters explains - analytically - the large silhouette index value, 0.82, observed for
a cut of two to both the average and ward dendrograms. The corresponding overall MSSSE value of 15.17 for
this cut is highly correlation to the values read from the second and third uppermost horizontal line of each cluster
formed. That is, the uppermost horizontal line (green) for the first cluster and the uppermost horizontal line (red)
for the second cluster in Figure 6.4. The difference is that MSSSE distance is calculated from the cluster prototype
and the ward distance is the within-cluster variance. As mentioned above, these are highly correlated: A reduction
in the ward distance results in a reduction in the MSSSE value.
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Figure 6.4: Dendrogram with average as linkage criterion and distance as Euclidean distance.
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Figure 6.5: Clusters formed by cutting the dendrogram to form two clusters.
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Cutting the dendrogram to form 4 clusters

Now the average dendrogram is cut to form four clusters. The resulting cut in the dendrogram is shown in Figure
6.6, along with colour coding for the cluster assignment (green, red, dark blue and turquoise/light blue). The time
series belonging to each cluster is further visualised in Figure 6.7. From viewing the average dendrogram (Figure
6.6), the three new clusters (dark blue, red and turquoise) have now an average separation which is significantly
lower than that of a cut of two. The average distance between dark blue and turquoise can be read from the
dendrogram where the tree merges (third uppermost horizontal line read as roughly 6). The average distance
between these two clusters (dark blue and red) and the turquoise cluster can be found by reading of the distance
for where the second uppermost horizontal line merges (i.e. an average distance of roughly 7). As cutting the ward
dendrogram with K = 4 does not yield the same cluster assignment, the ward distance cannot be interpreted the
same way. However, as the MSSSE is comparable to the ward distance, interpretation of the MSSSE yields similar
interpretation value. From the MSSSE value, a reduction from 15.17 to 6.26 can be observed. The MSSSE value
is more than halved from a cut of two. The corresponding silhouette index value suffers a significant reduction
from 0.82 to 0.50 which indicates that the newly formed clusters are less separable than the assignment of a cut of
two. But since the MSSSE value for the new clusters has decreased by close to a factor of two, the reduction of
the silhouette value is considered to be negligible (i.e. separation between the clusters are less weighted than the
within-cluster similarity). Next, the dendrogram will be cut to form six clusters.
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Figure 6.6: Dendrogram with average as linkage criterion and distance as Euclidean distance.
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Figure 6.7: Clusters formed by cutting the dendrogram to form four clusters.

Cutting the dendrogram to form 6 clusters

Now the dendrogram is cut to form six clusters. The resulting cut in the dendrogram is shown in Figure 6.8 along
with colour coding for the cluster assignment (green, dark blue (1), red, turquoise/light blue, dark blue (2), purple).
The time series belonging to each cluster is further visualised in Figure 6.9. First of all, the silhouette value -
compared to a cut of four - ha decreased from 0.5 to 0.39. On the other hand, the corresponding MSSSE value is
reduced by a more than a factor of 2, from a value of 6.26 to a value of 2.86 for a cut of six. From viewing the
corresponding dendrogram (Figure 6.2), low ward distances for each cluster formed clusters can be observed (ward
distance between 1 and 5). The significant reduction in the silhouette value can be explained by a less significant
separation between the newly formed clusters; this can also be seen in the average distances in Figure 6.9. Because
the silhouette index and the MSSSE value are more descriptive than reviewing the ward and average distances
in the dendrogram and that a hierarchical structure could be imposed by the algorithm even if such structure is
not inherent to the data (Hastie et al., 2009), the choice for the number of cuts to the dendrogram will primarily
be determined by evaluating the internal indexes, rather than viewing the dendrograms. Furthermore, a cut of
seven to the ward dendrogram could indicate - from the silhouette index - to be beneficial. However, only a small
reduction in the MSSSE value is observed. The dendrogram constructed with average as linkage criterion still
has the highest cophenetic correlation coefficient (even though its just an 0.001 improvement). Looking at the
corresponding silhouette and MSSSE value for that dendrogram shows that a deeper cut of seven would not yield a
better compromise between separation and within-cluster similarity. The optimal configuration for the hierarchical
clustering algorithm is to cut the dendrogram with average as the linkage criterion into six partitions. The following
cluster assignment will be analysed in Section 6.1.3. But first, the same cluster analysis will be repeated on the
K-means algorithm with the same number of clusters found in this section.
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Hierarchical Clustering Dendrogram - linkage: average, metric: euclidean

Figure 6.8: Dendrogram with average as the linkage criterion and distance as Euclidean distance.

00:00
23-Jan

03:00 06:00 09:00 12:00 15:00 18:00 21:00
Time

10

20

30

40

50

60

70

Cluster 1: number of entries 2
WT2
WT16

(a)

00:00
23-Jan

03:00 06:00 09:00 12:00 15:00 18:00 21:00
Time

10

20

30

40

50

60

70

Cluster 2: number of entries 4
WT5
WT8
WT10
WT15

(b)

00:00
23-Jan

03:00 06:00 09:00 12:00 15:00 18:00 21:00
Time

10

20

30

40

50

60

70

Cluster 3: number of entries 5
WT1
WT7
WT11
WT13
WT14

(c)

00:00
23-Jan

03:00 06:00 09:00 12:00 15:00 18:00 21:00
Time

10

20

30

40

50

60

70

Cluster 4: number of entries 1
WT9

(d)

00:00
23-Jan

03:00 06:00 09:00 12:00 15:00 18:00 21:00
Time

10

20

30

40

50

60

70

Cluster 5: number of entries 2
WT3
WT6

(e)

00:00
23-Jan

03:00 06:00 09:00 12:00 15:00 18:00 21:00
Time

10

20

30

40

50

60

70

Cluster 6: number of entries 1
WT12

(f)

Figure 6.9: Clusters formed by cutting the dendrogram to form six clusters.
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6.1.2 Similarity in time - K-means on the filtered data set
In this section K-means from Section 3.2.1 will be implemented on the ’Univariate V1’ data set. The implemen-
tation of the algorithm can be seen in Appendix D.2. The prototype for the K-means algorithm is the average
sequence of the set. Thus, the cluster centres calculated are simply the average vector of all time series assigned to
the same grouping. These will be presented along with the assignment of the clusters. The Euclidean distance is
used as the distance measure. In the consecutive sections, K-means is implemented on the data set with the number
of clusters found from reviewing the internal indexes from the hierarchical cluster analysis (K = {2, 4, 6}).

K-means implementation - K equal to 2

First of all, K-means algorithm is implemented on the data set with a number of cluster K equal to 2. The cluster
centres are plotted in Figure 6.10. Similarly, the corresponding time series assigned to each cluster are plotted
along with the cluster centre in Figure 6.11. The running time for the K-means algorithm with K = 2 was 1.11ms,
which is slightly smaller than that of the hierarchical clustering algorithm. This is expected as the time complexity
of K-means is smaller than the hierarchical clustering algorithm.
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Figure 6.10: Cluster centres obtain by the K-means algorithm where K = 2.
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Figure 6.11: Clusters formed when K = 2 in the K-means algorithm.
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K-means implementation - K equal to 4

Now, K-means is implemented on the data set with a number of clusterK equal to 4. The cluster centres are plotted
in Figure 6.12. Similarly, the corresponding time series assigned to each cluster are plotted along with the cluster
centre in Figure 6.13. The running time for the K-means algorithm with K = 4 was 1.25ms. It can be observed
that the running time has increased from the previous cut. This is because of the increased number of prototype
calculations.
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Figure 6.12: Cluster centres obtain by the K-means algorithm where K = 4.
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Figure 6.13: Clusters formed when K = 4 in the K-means algorithm.
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K-means implementation - K equal to 6

K-means is implemented on the data set with a number of cluster K equal to 6. The cluster centres are plotted
in Figure 6.14. Similarly, the corresponding time series assigned to each cluster are plotted along with the cluster
centre in Figure 6.16. The running time for the K-means algorithm with K = 6 was 1.34ms. Now the running
time has surpassed the running time for the hierarchical clustering algorithms. This is explained by that the K-
means algorithm is dependent on the number of clusters, compared to the hierarchical clustering algorithm, which
is not. K-means would surpass the hierarchical clustering algorithm in running time if the number of objects
clustered is increased (linear vs quadratic complexity). Running the K-means algorithm several times, with the
same parameters, provided different cluster assignment almost every time. An example of the cluster centres from
a different run can be seen in Figure 6.15. This will be addressed in more detailed in the following section.
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Figure 6.14: Cluster centres obtain by the K-means algorithm where K = 6.
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Figure 6.15: Cluster centres obtain by the K-means algorithm where K = 6. K-means algorithm ran a second time with the
same input as the original run in figure 6.14
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Figure 6.16: Clusters formed when K = 6 in the K-means algorithm. Based on the results from Figure 6.14

Summary of similarity in time with K-means

Both the hierarchical clustering algorithm and the K-means algorithm resulted in the same cluster assignments
for a number of clusters set to two. However, for a cut of four and six, the assignments of the time series were
slightly different for each run. An example was shown for a cut of six which can be seen in Figure 6.14 and
6.15 where the cluster prototypes are slightly different because the time series were assigned differently. For a
cut of four, the cluster assignment presented occurred roughly 25% of the time, whereas, for the cut of six, the
assignment presented in Figure 6.14 occurred rarely. Each of the configuration for the algorithm was run for 5, 000
iterations, with random seeding, where the best assignment was chosen. The best run was determined by choosing
the run which had the smallest sum of all distances to its closest cluster centre. The results for a cut of 4 and 6 are
inconsistent and proves hard to verify even with random initiation, increasing the number of iterations, or adjusting
the termination criteria for the optimisation problem. In other words, the clustering results from K-means are not
deterministic as for hierarchical clustering. Additionally, the benefit of linear time complexity for the K-means
algorithm - compared to the quadratic time complexity of the hierarchical clustering algorithm - is not prominent
in the current analysis as the number of turbines (or objects) within each data set are only 15. For such small
data sets, the benefit from using K-means over hierarchical clustering algorithm is nonexistent. Because of these
remarks, clustering the time series with the K-means algorithm will not be used for analysing the other data sets
introduced in this section. However, for the scaled-up version where the number of wind turbines could potentially
be several hundred turbines, the K-means algorithm should be considered.
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6.1 Clustering of ’Univariate V1’

6.1.3 Analysing the clustering results from similarity in time

In this section, the results from clustering the ’Univariate V1’ data set in Section 6.1 will be analysed. The
corresponding dendrogram with the objective of clustering the time series with respect to similarity in time can be
seen in Figure 6.17. The corresponding groupings or cluster assignment are identical for both K-means (for the
first run) and hierarchical clustering. The cluster analysis is based on the results from the hierarchical clustering
algorithm, rather than K-means algorithm due to the inconsistency of the K-means algorithm. The dendrogram
was cut into six partitions and the resulting assignment will be analysed.
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Figure 6.17: Summary of hierarchical clustering with Euclidean as similarity measure and the linkage criterion set to ’average’.
The Python script for constructing this figure is presented in Appendix D.3.2.

Summary of the gearbox temperature [degrees Celsius], rotor speed [rpm], generator speed [rpm] and position
deviation [degrees] (difference in angle between the direction of the wind and the direction of the nacelle) can be
viewed in Table 6.2. The corresponding time series used to extract the content of the table can be seen in Appendix
A.1 (Figure A.1.1 to A.1.2). The exception is the rotor speed which is presented later in the current section in
Figure 6.18. Additionally, the time series for the wind speed measured at the nacelle for each turbine is presented
in Appendix A.1, in Figure A.1.3. Based on these results, an attempt of the physical interpretation will be made
based on the cluster assignment. The mean vector of the gearbox temperature or the cluster centre of each cluster
are better visualised in Figure 6.14 which shows the cluster centres for the K-means implementation. As can be
seen from the plot, cluster centre for group A, B, C, D, E and F are separated by an obvious difference in the
overall temperature level (mean temperature) of the different time series involved. In other words, the turbines
are separated into six different clusters with respect to their overall temperature level. The two obviously outlying
time series associated with turbine 2 and 16 are partitioned into its own separate cluster, regardless of the number
of cuts chosen. Larger partitions than two to the dendrogram manages to separate the more abnormal time series
(associated with turbine 3, 6, 9 and 12) from the majority. Time series for turbine 3 and 6 are separated by
an obvious difference in the intercept - although not that significant compared to the time series associated with
turbine 2 and 16. The remaining time series associated with turbine 9 and 12 have similar intercept and trends, but
experience very dissimilar behaviour during the first one-third of the interval. The assignment of each of the time
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series will now be analysed and interpreted to acquire physical meaning. To help with the interpretation, statistical
properties of the aforementioned parameters are provided in Figure 6.2.

Table 6.2: Summary of the properties of each time series within its respective cluster assignment (Group A, B, C, D, E and F)
for a cut of 6. Numbers within parentheses (*) refers to the estimated mean of the time series, without including the trend.

Groups Wind turbine
number

Gearbox temp
[Celsius]

Rotor speed
[rpm]

Generator
speed [rpm]

Position
deviation [*]

Group A WT2 Low (20) Low (∼0) Low (∼0) 0
WT16 Low (15) Low (∼0) NaN 0

Group B WT3 Medium-High (48) High (17) High (1.2K) 0
WT6 Medium-High (48) High (17) High (1.2K) 0

Group C WT12
Varying High (60)

Medium (30)
Medium (zero in
beginning) (17)

Medium (zero in
beginning) (1.2K) 0

Group D WT5 High (55) High (17) High (1.2K) 0
WT8 High (55) High (17) High (1.2K) 0
WT10 High (55) NaN High (1.2K) 0
WT15 High (55) High (17) High (1.2K) 0

Group E WT1 High (60) High (17) High (1.2K) 0
WT7 High (60) High (17) High (1.2K) 0
WT11 High (60) High (17) High (1.2K) 0

WT13 High (60)
High (17)

Slightly varying
High (1.2K)

Slightly varying 0

WT14 High (60) NaN High (1.2K) 0

Group F WT9
High (60)
Varying

High (17)
Varying

High (1.2K)
Varying 0

Group A: From the dendrogram, a cut of 2, 4 and 6 would all separate the time series associated with group A
into its separate cluster. These time series are two obviously different time series with respect to their intercept and
nonexistence of a trend towards the end. The difference between group A and the rest can be visually observed
by the clear difference in the mean vector of the time series involved. Time series from turbine 2 and 16 have
a significant separation between the rest of the time series in the data set, suggesting a significant difference
in those two turbines. It can also be observed that the two outliers have a significantly lower frequency of the
oscillations and have a constant mean throughout the whole interval. The first impression of this separation is that
all the wind turbines, except turbine 2 and 16, are actively rotating. This explains the lower temperature and the
nonexistence of the drop toward the end of the interval. This assumption can be verified by viewing the rotor speed
for each individual turbine (see Figure 6.18). The rotor speed of wind turbine 10 and 14 was not available as the
database contains a lot of areas where the sensors malfunctions and does not produce any sensor data. However,
the generator speed measurement was available and reflects the exact same property. It can be observed that the
rotor/generator speed for both wind turbine 2 and 16 are both zero (or close to zero), where the rest of the turbines
are rotating at a significantly higher speed. The assumption that the turbines are not rotating is confirmed and the
clustering manages efficiently to separates these two time series from the rest. It can also be noted that doing the
same clustering procedure - only with a multivariate case where the rotor speed is included - these would most
likely result in the same cluster assignment as for the univariate case. However, the missing rotor speed values of
wind turbine 10 and 14 have to be addressed prior to this; preferably substituted by the generator speed data.

Group B: The mean of the gearbox temperature within these time series are significantly lower than that of
the remaining wind turbines in group C, D, E, and F. The first assumption for why these turbines have lower
temperatures than the rest is that they are rotating more slowly. However, this was not the case as they have
identical generator speeds as the others with slightly larger gearbox temperatures. Another hypothesis is that the
lowered average temperature levels might indicate that the components of the gearbox are less worn out or better
lubricated than the others. This is not transparent in the rotor speed data (or any of the other parameters) and the
assumptions prove hard to verify. The last hypothesis is that the wind turbines are from a different model and have
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Figure 6.18: Plot of the rotor speed [rpm] during the same period as the extracted data in Section 5.1.1

a higher/lower maximum power consumption. By reviewing the maximum power - which will be different if the
turbine model were different from the rest - it was found that the turbines of group B have similar maximum power
outputs as the majority and therefore of the same turbine model (this can be seen in Figure A.3.2 in Appendix A.3).

Group C: This group contains only one wind turbine and has one of the most drastically changing gearbox tem-
peratures in the data set. Its varying temperature in the gearbox is justified by that it experience similar behaviour
in rotor/generator speed. However, the wind speed does not experience similar behaviour. The first assumption
for the turbine is that it was subjected to high wind conditions and therefore had its brakes engaged. But, from
reviewing the wind speed in Figure A.1.3, this was not the case. Nonetheless, the algorithm manages to separate it
from the rest as its experience quite different behaviour in the first quarter of the interval, compared to the rest.

Group D: Turbines within this group are characterised by a high gearbox temperature, high generator/rotor
speed, and all are directed against the wind. The turbines in this group experience similar behaviour as those of
group B, only the gearbox temperature is slightly elevated. Same interpretation as for group B holds, only reversed:
The elevated gearbox temperature might indicate that the components are more worn out or poorer lubricated than
group B.

Group E: Turbines within this group are characterised by a high gearbox temperature, high generator/rotor
speed, and are all directed against the wind. The turbines within this group - compared to those of group D - have
slightly elevated average gearbox temperature levels, despite having the same rotational speed. Same interpre-
tations as for the turbines in group D applies for these: Turbines of group E might be more worn out or poorer
lubricated than those of group D, and even more so, compared to the turbines in group B.

Group F: Contains only one time series. The properties for this turbine are similar to the turbines associated
with group C. The turbine experience varying gearbox temperatures which can be explained by an equally varying
generator/rotor speed. However, the sudden halt in the rotation is not explained by either the wind speed or the
positional derivation. Nonetheless, the algorithm manages to separate it from the rest as its experience quite
different behaviour in the first quarter of the interval, compared to the rest.
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Chapter 6. Clustering of univariate time series

6.1.4 Similarity in shape - Hierarchical clustering of the normalised data set
The objective is now to cluster the time series with similarity in shape and not the absolute difference and offset.
Therefore, the cluster analysis is performed on the normalised data set. The trend is not removed prior to the
normalisation as its important to the overall shape and we wish to capture this behaviour in the cluster analysis.
The time series which will be clustered with regards to the objective of similarity in shape can be viewed in Figure
5.6. For similarity in shape, the dynamic time warping (DTW) distance (3.7) is used instead of the Euclidean
distance. As DTW is not supported as a similarity measure for the hierarchical clustering algorithm, the DTW
distance between each time series are calculated first and then stored in a dissimilarity matrix (DM) (as in Equation
(3.3)). The condensed form of the dissimilarity matrix is furthermore fed to the hierarchical clustering algorithm.
The DTW distance can be calculated by numerous libraries in Python. A comparison between the libraries is
made in Appendix C.2. The library chosen for calculation of the condensed distance matrix between all time
series was the library called dtaidistance with the function call ’dtw.distance matrix’. The DTW algorithm is
implemented with a global constraint called the Sakeo-Chiba band restriction. The width of the band is set to
10% of the length of the time series in the data set. Justification for the choice of the width and need for the
global restriction (Sakeo-Chiba band) has been made in Appendix C.1. In brief, an accurate DTW calculation is
dependent on the implementation of the global constraint and how narrow the width of the band is. Furthermore,
DTW has much higher time complexity then Euclidean distance and the calculation of the condensed distance
matrix took 413 seconds compared to Euclidean distance which took only 1.32 ms. In order to find the appropriate
linkage criterion and the optimal number of clusters, the internal indexes are analysed. The best method for
hierarchical clustering will be found by comparing the Cophenetic correlation coefficient and the number of cuts
to the dendrogram will be determined by viewing the internal performance indexes: Silhouette index and MSSSE.
More information about these specific indexes can be found in Chapter 3. The implementation of the internal
indexes as well as the implementation of the hierarchical clustering algorithm with DTW as the similarity measure
can be seen in Appendix D.1. The summary plot and table for the internal indexes of cutting each dendrogram
into k partitions - each with different linkage criterion - can be seen in Figure 6.19 and Table 6.3. The cophenetic
correlation coefficient can be seen in the upper right corner in the aforementioned figure (Figure 6.19).

Table 6.3: Summary table with the linkage criteria: single, complete, average and ward. The data set which was clustered is
’Univariate V1’ with the objective of similarity in shape. The silhouette indexes and MSSSE values for a cut K - from 2 to 13
- is presented.

Method Internal index Number of cuts to the dendrogram
K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10 K = 11 K = 12 K = 13

Single Silhouette 0.66 0.63 0.61 0.56 0.06 0.05 0.08 0.16 0.11 0.14 0.13 0.07
MSSSE 3.75 2.77 2.04 1.58 1.36 1.14 0.93 0.64 0.49 0.36 0.24 0.16

Complete Silhouette 0.66 0.63 0.61 0.56 0.22 0.23 0.23 0.20 0.16 0.14 0.13 0.07
MSSSE 3.75 2.77 2.04 1.58 1.22 1.02 0.80 0.65 0.51 0.36 0.24 0.16

Average Silhouette 0.66 0.63 0.61 0.56 0.22 0.23 0.23 0.20 0.17 0.14 0.13 0.07
MSSSE 3.75 2.77 2.04 1.58 1.26 1.02 0.80 0.65 0.51 0.36 0.24 0.16

Ward Silhouette 0.67 0.63 0.61 0.56 0.22 0.23 0.23 0.20 0.16 0.14 0.13 0.07
MSSSE 3.73 2.77 2.04 1.58 1.26 1.02 0.80 0.65 0.51 0.36 0.24 0.16

First of all, reviewing the cophenetic correlation coefficient in Figure 6.19, it can be seen that the largest
coefficient is observed for the dendrogram constructed with average as the linkage criterion. However, the others
still have relatively high values which are close to 1, indicating that all the dendrograms represent a high-quality
solution. The dendrogram built with linkage criterion set to average will be cut and analysed. Secondly, reviewing
the summary table and the corresponding summary plot, it can be observed that the silhouette index is largest for
a cut of two for the average dendrogram. Actually, this can be observed for all dendrograms, as the cophenetic
correlation coefficient are all very large and quite similar. Only a small reduction in the silhouette index value can
be observed by going from a cut of two to a cut of five; where afterwards the silhouette index suddenly plunges. The
silhouette index does not decrease exponentially for a lower number of cuts as it did with the objective of similarity
in time. This is because the intercept is somewhat ignored and the time series are more similar in terms of their
overall shape, rather than their similarity in time. Furthermore, it can be observed that the corresponding MSSSE
value decreases exponentially along with deeper cuts to the dendrogram. The values of the MSSSE values can be
observed to be significantly smaller during this analysis, than in the cluster analysis with similarity in time as the
objective. The reasoning for this is because the intercept was included in the analysis of similarity in time and the
objective is a much stricter measure of similarity, compared to the objective of similarity in shape. The silhouette
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Figure 6.19: Summary plots with the linkage criteria: single, complete, average and ward. The data set which was clustered is
’Univariate V1’ with the objective of similarity in shape. The silhouette indexes and MSSSE values for a cut K - from 2 to 13
- is presented along with the cophenetic correlation coefficient in the upper right corner.

index and the MSSSE value - during this analysis - indicates that a cut of five is the optimal number of cuts to the
dendrogram. For a cut of five, a relatively large silhouette index and a significant reduction of the MSSSE value
from previous cuts can be observed. The best compromise between separation and similarity is, therefore, a cut
of five to the dendrogram built with average as the linkage criterion. Deeper cuts to the dendrogram significantly
reduce the silhouette index value and an insignificant reduction in the MSSSE value. The optimal configuration
for the current data set is chosen to be average as the linkage criterion and cutting the dendrogram such that it
constructs five partitions. Deeper insight will be obtained by reviewing the corresponding dendrogram along with
the assigned clusters. The resulting dendrogram - with average as the linkage criterion - can be viewed in Figure
6.20. Viewing the dendrogram and the corresponding time series associated with each partition, a deeper cut of
five to the dendrogram would actually result in a significant reduction in the average distance between each cluster.
This strengthens the choice of the optimal number of cuts based on the internal indexes. Therefore, the physical
interpretation of a cut of five will be examined in greater detail in the consecutive section.
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Figure 6.20: Hierarchical clustering with DTW as similarity measures.
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Chapter 6. Clustering of univariate time series

6.1.5 Analysing the clustering results from similarity in shape
The corresponding dendrogram with the objective of clustering the time series with respect to similarity in shape
can be seen in Figure 6.21. The absolute difference and the offset will be ignored to a certain degree, as normalising
the data set will remove the offset and scale the data between 0 and 1. Clustering with the objective of similarity in
shape manages to separate turbines with different behaviour pattern and manages to group time series subjected to
shifts in time. For instance, a cosine wave and a sinus wave are pretty similar when using the DTW distance, but
are drastically different when using Euclidean distance. In other words, cosine and sinus wave are similar in shape
but not in time.

Figure 6.21: Summary of hierarchical clustering with DTW as similarity measure and the linkage criterion set to ’average’

Initially, we can observe that using DTW as the distance measure to the clustering algorithm manages to group
the most similar time series in shape and separate the most dissimilar ones. A cut of five separates the four most
abnormal time series - time series corresponding to wind turbine 2, 9, 12 and 16 - into its own separate clusters
(from now on called group A, B, C and D, respectively). The last cluster contains the majority of the time series and
is hereby called group E. Note that the size of the branches is not scaled properly, which is one of the limitations
of the dtaidistance library. The number in the dendrogram should be observed instead; the numbers indicate the
average distance when the clusters are merged together. For example, turbine 16 and 2 are merged together at a
distance of 6.99 but shows a smaller distance visually compared group E, which are merged together at a distance
of 3.70. Oscillations can be observed in all time series for all clusters. These oscillations are the result of the
cooling pumps enabling and disabling when hitting their corresponding threshold values; the pump actives when
hitting the upper threshold value and deactivates when it reaches the lower threshold value. Analysis of the physical
interpretation of the clustering assignment will be performed in the consecutive paragraphs.

Group A: Contains only the time series associated with wind turbine 2. The time series is characterised by
medium frequency oscillations and constant mean throughout its entire length. The cooling pump enables when
reaching the maximum values observed in the plot and cools it down to its minimum value. The time series does
not experience a decreasing trend towards the end, which the wind speed has. A reduction in the wind should cause
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6.1 Clustering of ’Univariate V1’

a reduction in the rotation speed for the turbine, which furthermore, should lower the gearbox temperature for the
associated wind turbine. Since it does not follow the same trend as the local wind, it is a strong indication that the
turbines operate unaffected by the wind. The only possible explanation for this is that the turbine is not rotating.
This can be verified by reviewing the generator speed from the previous section (cluster analysis of similarity in
time).

Group B: Contains only the time series associated with wind turbine 9. The time series is characterised by
quite abnormal behaviour in the initial 5 hours (02:00 - 07:00) of the interval, but has similar behaviour as the
majority, after this interval. As with the objective of similarity in time, the explanation for this is that the turbine
experiences a period at the beginning where the generator/rotor is not rotating. The physical interpretation of
this is not transparent in the wind speed or direction. One would expect that the wind during the initial period
experiencing a raise and then a decreased, such that the temperature in the gearbox increases and then decreases,
but this was not the case. Regardless, the algorithm effectively manages to separate it from the rest. From viewing
the dendrogram, turbine 9 can be observed to be more similar to turbine 2 and 16, than it is to any of the others.
The explanation for this is that the time series are normalised, and the elevated values in the initial hours of the
interval are used for normalising the time series. In other words, maximum observable values are larger than the
majority and the time series are then normalised appropriately. This is expected as we want to compare the shape
of the time series, rather than its variance. If the variance was of greater interest, standardisation of the time series
would solve this issue, making it more similar to the majority.

Group C: Contains only the time series associated with wind turbine 12. The time series is characterised by
quite a abnormal behaviour during the initial 5 hours (02:00 - 07:00) of the interval, but pretty similar behaviour
as the majority, after the initial 5 hours. As with the objective of similarity in time, the explanation for this is
that the turbine experience period at the beginning where the generator/rotor is not rotating. The same physical
interpretation of turbine 9 in group B holds for this turbine.

Group D: Contains only the time series associated with wind turbine 16. The time series is characterised by
oscillations with a frequency close to half of the frequency of the time series in group A - the oscillations also has
lower amplitude than the time series in group A. This might indicate that the settings for the cooling pump are
different, especially with regards to the threshold values where the pump enables and disables. This explains the
slightly elevated temperature levels, but proves hard to verify as such information is not available. Other than that,
the same interpretation as for turbine in group A holds: The turbine is not rotating as it does not follow the trend
of its local wind conditions.

Group E: Contains the rest of the turbines. These turbines are characterised by relatively high-frequency oscilla-
tion, roughly the same amplitude and a decreasing trend towards the end. These turbines are also highly correlated
to the behaviour of the local wind conditions. The physical interpretation for these turbines is that they are actively
rotating and could be further interpreted as turbines which are operating under normal conditions. This is verified
by viewing the generator speed for all turbines.
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6.2 Clustering of ’Univariate V2’

In this section, the ’Univariate V2’ data set will be clustered and the clustering results will be analysed as done
in the previous section. First of all, the time series in Figure 5.8 are visually inspected. At first glance, there are
four to five different groups of time series with respect to its temperature levels where the majority of the time
series are in the group which has roughly a mean of 57 degrees Celsius. Majorly different time series in shape can
also be observed in the plot. The objectives for clustering of the ’Univariate V2’ data set - which are of interest -
are both similarity in time and similarity in shape. Similar procedure as in the previous section (Section 6.1) will
be repeated in order to enhance the physical interpretation of its results. As K-means did not provide consistent
results in the previous section, the analysis will not be based on the results of the K-means algorithm but rather
the hierarchical clustering algorithm. First of all, hierarchical clustering with Euclidean distance as the similarity
measure will be implemented on the scaled data set in Section 6.2.1 followed by the analysis in Section 6.2.2.
This will solve the clustering problem with respect to the objective of similarity in time. Then, the same clustering
algorithm will be used in conjunction with DTW as the distance function on the normalised data set to find similar
time series with respect to their shape. The resulting cluster assignment will be presented in Section 6.2.3 followed
by an analysis in Section 6.2.4 in order to obtain physical insight into the partition. The Python implementation
is the same as for the previous data set, only some minor changes to the script in Appendix D.1.5. For running
the cluster analysis on the ’Univariate V2’, comment out line number 11 to 29 and uncomment line 33 to 51, and
follow the procedure outlined in Appendix D.1.

6.2.1 Similarity in time - Hierarchical clustering on the scaled data set

The objective is now to cluster the time series with regards to the objective of similarity in time. In this analysis,
the scaled data set will be analysed with the hierarchical clustering algorithm. The Python implementation of the
hierarchical clustering algorithm along with the implementation of the internal indexes can be seen in Appendix D.
Similar to the clustering of the ’Univariate V1’ data set in Section 6.1, the dendrograms will be compared to one
another by comparing their cophenetic correlation coefficient (3.10). After the best dendrogram has been found,
the optimal number of clusters (or cuts to the dendrogram) will be found by comparing the Silhouette index (3.14)
and the MSSSE (3.16) value for each cut, K. The summary plot and table for the internal indexes of cutting each
dendrogram into k partitions - each with different linkage criterion - can be seen in Figure 6.22 and Table 6.4.

Table 6.4: Summary table with the linkage criteria: single, complete, average and ward. The data set which was clustered is
’Univariate V2’ with the objective of similarity in time. The silhouette indexes and MSSSE values for a cut K - from 2 to 13 -
is presented.

Method Internal index Number of cuts to the dendrogram
K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10 K = 11 K = 12 K = 13

Single Silhouette 0.73 0.57 0.51 0.59 0.50 0.36 0.26 0.14 0.14 0.14 0.13 0.13
MSSSE 55.67 29.88 17.16 5.29 4.04 1.75 1.46 1.20 0.94 0.69 0.46 0.21

Complete Silhouette 0.73 0.62 0.59 0.59 0.50 0.36 0.19 0.19 0.14 0.14 0.14 0.13
MSSSE 55.67 18.05 9.91 5.29 4.04 1.75 1.48 1.20 0.94 0.69 0.44 0.21

Average Silhouette 0.70 0.57 0.59 0.59 0.50 0.36 0.26 0.19 0.14 0.14 0.14 0.13
MSSSE 46.51 29.88 9.91 5.29 4.04 1.75 1.46 1.20 0.94 0.69 0.44 0.21

Ward Silhouette 0.73 0.62 0.59 0.59 0.45 0.36 0.26 0.14 0.14 0.14 0.14 0.13
MSSSE 55.67 18.05 9.91 5.29 2.99 1.75 1.46 1.20 0.94 0.69 0.44 0.21

First of all, reviewing the cophenetic correlation coefficient in Figure 6.22, it can be seen that all dendrograms
experience similarly high values, all above 0.899. Both single and ward dendrograms have cophenetic correlation
coefficients which are greater than 0.925. These cophenetic correlation coefficients are close to 1 for all dendro-
gram (i.e. greater than 0.75); values close to 1 indicate that all the dendrograms represent a high-quality solution.
The dendrogram with the highest cophenetic index is the dendrogram constructed with linkage criterion as single.
Therefore, the dendrogram built with linkage criterion as single will be cut and its assignment will be analysed.
Secondly, reviewing the summary table and the corresponding summary plot, it can be observed that the silhouette
index is largest for a cut of two (SI = 0.73). This indicates that a cut of two provides two clusters with a good com-
bination of high intra-cluster similarity and large separating between them (i.e. the time series are well matched
to its own cluster and poorly matched to any other clusters). Observing the MSSSE value, the high silhouette
index is mainly caused by a significant separation as the MSSSE value is still relatively large. This indicates that
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Figure 6.22: Summary plots with the linkage criteria: single, complete, average and ward. The data set which was clustered is
’Univariate V2’ with the objective of similarity in time. The silhouette indexes and MSSSE values for a cut K - from 2 to 13 -
is presented along with the cophenetic correlation coefficient in the upper right corner for each dendrogram.

a deeper cut to the dendrogram might be more suitable. The second biggest silhouette index value of 0.59 occurs
when the dendrogram is cut into five partitions. The corresponding MSSSE value decreases exponentially during
a cut of 2 to a cut of 5; it decreases from 55.67 to 5.29 which is reduction by a factor of more than 10. After a
cut of five, the corresponding MSSSE value starts to flatten and no significant reduction is observed in the internal
index. The best compromise between a small MSSSE value and a high silhouette index value is achieved for a cut
of five to the dendrogram. A cut of five to the dendrogram with single as linkage criterion is therefore chosen for
further analysis. The corresponding dendrogram - with single as linkage criterion - can be seen in Figure 6.23. The
resulting assignment for a cut of two and a cut of five will further be visualised in the consecutive sections; this is
mainly for illustrative purposes.
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Figure 6.23: Dendrogram with single as the linkage criterion and distance as the Euclidean distance implemented on ’Univari-
ate V2’ data set. The entire clustering process took 1.31ms which is basically the same as for the previous data set.

Cutting the dendrogram to form 2 clusters

First of all, the dendrogram is cut to form two clusters. The resulting cut in the dendrogram is shown in Figure 6.24
along with colour coding for the cluster assignment (green and red). The shortest distance between the two clusters
is given by the distance of the uppermost horizontal line, which is roughly 14. The large separation between the
clusters is responsible for the large silhouette index observed in the summary table and summary plot. However,
the corresponding MSSSE value of 55.67 is relatively large, indicating a large within-cluster variance. Deeper cut
can be observed to reduce the MSSSE value quite substantially.
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Figure 6.24: Cutting the dendrogram - with single as linkage criterion and distance as Euclidean distance - into 2 partitions.

Cutting the dendrogram to form 5 clusters

Now the dendrogram is cut to form five clusters. The resulting cut in the dendrogram are shown in Figure 6.25
along with colour coding for the cluster assignment (green, dark blue(1), dark blue(2), red, turquoise/light blue).
Note that WT12 and WT16 are both dark blue, but is not in the same cluster as they are in its own individual cluster
containing only itself. The silhouette index value for a cut of five is still pretty high, with a value of 0.59. However,
now the corresponding MSSSE value is reduced by a factor of more than 10 (MSSSE = 5.29). A deeper cut
in the dendrogram would result in a significant reduction in the silhouette index value and only a small reduction
in the MSSSE. A cut of five to the dendrogram with linkage criterion as single is the optimal configuration which
has the best compromise between separation and within-cluster similarity. A cut of six would separate the green
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cluster into two and would still result in a significant separation between the two. However, the corresponding
silhouette index has reduced quite a bit with a relatively small reduction in the MSSSE value. Arguably, a cut of
six could also be of interest, but will not be performed as the internal indexes strongly indicate a cut of five to the
dendrogram.
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Figure 6.25: Cutting the dendrogram - with single as linkage criterion and distance as Euclidean distance - into 5 partitions.
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6.2.2 Analysing the clustering results from similarity in time
In this section, the results from clustering the ’Univariate V2’ data set in Section 6.2 will be analysed. The
corresponding dendrogram with the objective of clustering the time series with respect to similarity in time can be
seen in Figure 6.26.
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Figure 6.26: Summary of hierarchical clustering with Euclidean distance as similarity measure and linkage criterion set to
’single’. Note that the scaling of the tree is wrong; refer to the distances (i.e. the numbers in the figure) at each merging instead.

Summary of the gearbox temperature [degrees Celsius], rotor speed [rpm], generator speed [rpm] and position
deviation [degrees] (difference in angle between the direction of the wind and the direction of the nacelle) can be
viewed in Table 6.5. The gearbox temperature corresponds to the time series presented in Section 5.1.2. The other
corresponding time series used to extract the content of the table can be seen in Appendix A.2, where the data
set called ’Multivariate V1’ is presented. The univariate time series corresponding to the rotor speed, generator
speed and position deviation are presented in Figure A.2.5, A.2.6 and A.2.7, respectively. The time series for the
wind speed measured at the nacelle for each turbine is also presented within Appendix in Figure A.2.8 followed by
descriptive statistics for the wind speed in Table A.2.1. Furthermore, the summary table, in this section in Table 6.5,
is constructed for a cut of five, dividing the wind turbines into five groups: Group A, B, C, D and E. The assignment
of individual time series can be seen in the corresponding table. Based on these results, physical interpretation can
be made from the cluster assignment for a cut of five. Initially, the hierarchical clustering algorithm efficiently
manages to separate the time series experiencing different temperature levels. The separated time series can also
be observed to be quite different in terms of shape. Based on that, the clustering results from for clustering the
data set with the objective of similarity in shape (presented in the next section) can be assumed to be similar to
the clustering results from this section; the time series are both similar in time and shape. Now, the physical
interpretation of this partition will be conducted in the following paragraphs.

Group A: The wind turbines in this group have in common that they have a relatively low average gearbox
temperature compared to the others. The initial assumption is that these wind turbines are rotating slower than the
rest or not rotating at all. Reviewing the rotor speed it is clear that wind turbine 2 has significantly lower rotor
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Table 6.5: Summary of the properties of each time series within its respective cluster assignment (Group A, B, C, D and E) for
a cut of five. Numbers within parentheses (*) refers to the estimated mean of the time series, without including the trend.

Groups Wind turbine
number

Gearbox temp
[Celsius]

Rotor speed
[rpm]

Generator
speed [rpm]

Position
deviation [*]

Group A WT2 Low (20) Low (∼0) Low (∼0) 0

WT10 Low (15) NaN Low (∼0)
100-150

(132)

Group B WT12 Low-Medium (35) Low (∼0) Low (∼0) 80-100 (90)

Group C WT3 Medium-High (48) High (17) High (1.2K) 0
WT6 Medium-High (48) High (17) High (1.2K) 0

Group D WT16
Vary between high (60)
and low-medium (35)

Vary between high (17)
and low (∼0)

Vary between high (1.2K)
and low (∼0) 0

Group E WT1 High (60) High (17) High (1.2K) 0
WT5 High (60) High (17) High (1.2K) 0
WT7 High (60) High (17) High (1.2K) 0
WT8 High (60) High (17) High (1.2K) 0
WT9 High (60) High (17) High (1.2K) 0
WT11 High (60) High (17) High (1.2K) 0
WT13 High (60) High (17) High (1.2K) 0
WT14 High (60) NaN High (1.2K) 0
WT15 High (60) High (17) High (1.2K) 0

speed than the others. Because the rotor speed data was not available for turbine 10 and the generator speed data
can be interpreted instead. The generator speed for turbine 10 indicates the same physical interpretation as with
wind turbine 2: These wind turbines are not rotating. Furthermore, the positional deviation for turbine 10 has
values between 100-150 indicating that the wind turbine is not optimally directed against the wind, which justifies
the low rotation speed for the turbine. Turbine 2 is directed against the wind and might indicate that the brakes are
activated or the angle for the blades are straightened. After reviewing the wind speed (presented in Appendix A.2,
Figure A.2.8) it becomes clear that turbine 10 experiences elevated wind speeds and the brakes are activated due
to these extreme local wind conditions. Turbine 2 does not experience similar extreme local wind conditions, but
are possibly experiencing maintenance since it was not rotating now or in the previous interval (1 month earlier);
this was confirmed by talking to the supervisors at Kongsberg Digital AS.

Group B: Wind turbine 12 is assigned to group B and has low to medium gearbox temperature. The position
deviation of the turbine range between 80 and 100 degrees, having a mean of roughly 85-90 degrees. This confirms
the low rotor speeds observed in the time series. The effect of the wind will diminish as it gets closer to 90 degrees
and at 90 degrees the turbine will not be rotating regardless of wind speed. Furthermore, analysing the wind
speed (Figure A.2.8) and summary table presented in Appendix A.2 in Table A.2.1) it is clear that the turbine
was subjected to much higher wind (indicates extreme wind conditions) than the rest. Extreme wind conditions
would automatically engage the brakes and stop the turbine. However, this does not explain the slightly elevated
temperature level observed, compared to the temperature levels of the turbines in group A. Since the turbine has a
low rotor speed (basically not rotating at all), the gearbox temperature should be similar to that of group A (WT2
and WT10). That is why the turbine is not clustered along with the remaining turbines in group A. This relatively
high temperature in the gearbox might indicate faulty conditions for the corresponding turbine or scaling issues for
the temperature sensor. Regardless, additional attention or maintenance might be required.

Group C: Turbines within this group are characterised by medium-to-high gearbox temperatures, high ro-
tor/generator speed and is directed against the wind. These turbines have lower temperature levels than those
of group E, despite having the same rotational speed. The lowered gearbox temperature could indicate that the tur-
bines are less worn out, better lubricated, or of a different turbine model. The latter was clarified when analysing
the first data set (’Univariate V1’) in Section 6.1.3: These turbines are all of the same models as indicated by their
maximum power production value. The hypothesis is therefore that these turbines have parts which are less worn
out or better lubricated than the other turbines in group E. However, it proves hard to verify and therefore remains
a hypothesis.
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Group D: This group contains only one time series and belongs to turbine 16. Turbine 16 is very different from
all the rest. The turbine has quite varying gearbox temperature which can be explained by the equally varying
rotor/generator speed (presented in Appendix A.2, in Figure A.2.6). One interpretation of this is that the turbine
is subjected to highly varying wind conditions, especially compared to the other turbines analysed. However,
after comparing the wind conditions in Figure A.2.8) it becomes clear that the local wind conditions are roughly
identical to the others and does not explain the deviations from the rest. Another hypothesis is that the braking
system is malfunctioning or that controller controlling the pitch angle of the blades is malfunctioning. However,
either of these hypothesis proves hard to verify with the information acquired.

Group E: Common for all turbines within this group are high gearbox temperature, high rotor/generator speed
and a corresponding position deviation of zero (turbines are directed against the wind). Time series experiencing
elevated temperature levels are due to the fact that the turbine is actively rotating and producing heat because of
friction in the gears/bearings. However, these turbines have elevated temperature level and might indicate that
these turbines are more worn out or less lubricated than those of group C with lower gearbox temperature levels.
This is not transparent in the rotor speed data (or any of the other parameters analysed) and the assumptions prove
hard to verify.
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6.2.3 Similarity in shape - Hierarchical clustering of the normalised data set
The objective is now to cluster the time series with the objective of similarity in shape and not the absolute differ-
ence and offset. Therefore, the cluster analysis is performed on the normalised data set. The trend is not removed
prior to the normalisation as its important to the overall shape and we wish to capture this behaviour in the cluster
analysis. The time series which will be clustered with regards to the objective of similarity in shape can be viewed
in Figure 5.10. For similarity in shape, the DTW distance (3.7) is used instead of the Euclidean distance. Same
constraint as in Section 6.1.4 is applied to the DTW algorithm. DTW has much higher complexity then Euclidean
distance and the calculation of the distance matrix took 408 seconds compared to Euclidean distance which took
only 1.31 ms. The condensed distance matrix is furthermore fed to the hierarchical clustering algorithm. In order
to find the appropriate linkage criterion and the optimal number of clusters, the internal indexes are analysed. The
best method for hierarchical clustering will be found by comparing the Cophenetic correlation coefficient and the
number of cuts to the dendrogram will be determined by viewing the internal performance indexes: Silhouette
index and MSSSE. More information about these specific indexes can be found in Chapter 3. The summary plot
and table for the internal indexes of cutting each dendrogram - each with different linkage criterion - into k cuts
can be seen in Figure 6.27 and Table 6.6. The cophenetic correlation coefficient can be seen in the upper right
corner in the aforementioned figure (Figure 6.27).

Table 6.6: Summary table for each linkage criteria supported by the hierarchical clustering algorithm: single, complete, average
and ward. The silhouette index and mean sum of the sum of squared error is plotted for each cut in the dendrogram.

Method Internal index Number of cuts to the dendrogram
K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10 K = 11 K = 12 K = 13

Single Silhouette 0.32 0.37 0.36 0.34 0.33 0.33 0.22 0.17 0.13 0.18 0.15 0.13
MSSSE 8.12 5.96 5.18 4.36 3.69 3.08 2.47 2.08 1.42 0.88 0.59 0.33

Complete Silhouette 0.32 0.37 0.34 0.34 0.33 0.21 0.21 0.19 0.21 0.16 0.15 0.13
MSSSE 8.12 5.96 5.37 4.38 3.69 2.89 2.29 1.82 1.28 0.90 0.59 0.33

Average Silhouette 0.32 0.37 0.36 0.34 0.33 0.33 0.22 0.20 0.15 0.18 0.15 0.13
MSSSE 8.12 5.96 5.18 4.36 3.69 3.08 2.47 1.70 1.32 0.88 0.59 0.33

Ward Silhouette 0.35 0.37 0.36 0.34 0.33 0.20 0.21 0.20 0.23 0.18 0.15 0.13
MSSSE 6.89 5.96 5.18 4.36 3.69 2.82 2.21 1.70 1.26 0.88 0.59 0.33
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Figure 6.27: Summary plot for each linkage criteria supported by the hierarchical clustering algorithm: single, complete,
average and ward. The silhouette index and mean sum of the sum of squared error (MSSSE) is plotted for each cut in the
dendrogram.
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First of all, reviewing the cophenetic correlation coefficient in Figure 6.22, it can be observed that all dendro-
grams have relatively high coefficients close to 1 (all over 0.75). The dendrogram constructed with linkage criterion
set to average have the largest correlation coefficient which represents the dendrogram with a high-quality solu-
tion. The dendrogram built with average as the linkage criterion will, therefore, be cut and its assignments will
be analysed. Secondly, reviewing the summary table and the corresponding summary plot, it can be observed
that the silhouette index is largest for a cut of three, with a silhouette index value of 0.37. From here it slowly
decreases until after a cut of seven where it suddenly plummets. The silhouette index value for a cut of seven is
0.33, which is only a 0.04 reduction from a cut of three. The corresponding MSSSE value decreases from 5.96
to 3.08, from a cut of three to a cut of seven. The reduction is significant for the MSSSE index and only a small
reduction in the silhouette index value is observed during this interval. Arguably, a cut of three, four, five, six or
seven could be chosen as the optimal number of cuts. The difference between the different cuts is simply the ratio
between separation and intra-cluster similarity: A cut of three has the largest separation between the clusters and a
relatively large intra-cluster similarity; a cut of seven has the smallest separation between the clusters but has also
a relatively small within-cluster variance. The latter partitions the time series based on less significant differences
and would be more interesting to analyse in terms of acquiring physical interpretations and finding time series
which are behaving slightly different from the rest. Therefore, a cut of seven to the dendrogram is chosen as the
best compromise between separation and intra-cluster similarity. The optimal configuration for the data set is to
cluster the data set with average as the linkage criterion and cutting the dendrogram to form seven clusters. The
dendrogram - with average as linkage criterion - along with visualisation of the corresponding time series can be
seen in Figure 6.28 and 6.29 (in the next section), respectively.
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Hierarchical Clustering Dendrogram - linkage: average, metric: DTW

Figure 6.28: Dendrogram with average as the linkage criterion and distance as the DTW distance implemented on ’Univari-
ate V2’ data set.
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6.2.4 Analysing the clustering results from similarity in shape
In this section, the clustering results from clustering ’Univariate V2’ data set in Section 6.2.3 will be analysed.
The corresponding dendrogram with the objective of clustering the time series with respect to similarity in shape
can be seen in Figure 6.28 or 6.29. The absolute difference and the offset will be ignored to a certain degree, as
normalising the data set will remove the offset and scale the data between 0 and 1. From analysing the internal
indexes in the previous section, best cut to the dendrogram was found to be a cut of seven.

Figure 6.29: Summary of hierarchical clustering with DTW as similarity measure. Average is chosen as the linkage criterion.

Initially, we can observe that when using DTW as the distance measure for calculating the dissimilarity matrix
it manages to group the most similar time series in shape and separate the most dissimilar ones from the rest. This
is especially true for a cut of three to dendrogram with ’average’ as the linkage criterion. This clearly separates
the time series experiencing rather stationary periodically oscillations of higher frequency to the one experiencing
quite different behaviour. A cut of two only separated the time series associated with wind turbine 2. This is
justified by that it is very different from all the rest. A much more detailed separation which results in only
similar time series within each cluster is achieved by cutting the dendrogram into seven partitions, as justified in
the previous section. A cut of seven separates turbine 2, 10, 12, 13 and 16 into its own cluster containing only
itself. The grouping - from top to bottom in Figure 6.29 - are now the following: Group A: {WT6, WT3}; Group
B: {WT12}; Group C: {WT10}; Group D: {WT13}; Group E: {WT16}; Group F: {WT14, WT5, WT9, WT1,
WT15, WT8, WT7, WT11}; Group G: {WT2}. The plots for the generator speed, position deviation and the
wind speed were presented in Section 5.2.1 (which refers to Appendix A.2 for the plots). The summary table for
all turbines with descriptive statistics was presented in the analysis of similarity in time in the previous section
(Table 6.5). These parameters will be used to interpret the physical meaning behind the resulting partitioning. The
groupings will now be analysed and interpreted in the following paragraphs.

Group A: Contains time series from turbine 3 and 6. These are characterised by low to no oscillations with
small fluctuation in the signal. The cooling pump - which is causing the oscillations - does not seem to be engaged
during the entire interval. The temperature remains relatively constant through the interval, with the exception of
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one bump after the midpoint. The bump can be explained by viewing the time series for the wind speed in Figure
A.2.8 which experience a decrease and right after an increase in wind speed (right after the midpoint). The lack of
oscillatory behaviour could be explained by that the threshold values for the cooling pump are very small or that
the gearbox temperature reaches its maximum value (i.e. equilibrium), which is lower than the upper threshold for
the cooling pump (i.e. when the cooling pump should be activated). The latter could be further explained by that
the parts within the gearbox are less worn out or are better lubricated, such that the gearbox temperature will not
exceed this threshold value for the pump regardless of rotor/generator speed. The former hypothesis is most likely
not correct as the overall variance is quite large. The latter hypothesis - as before - proves hard to verify.

Group B: Contains only the time series corresponding to turbine 12. The time series is characterised by lower
frequency oscillations. The signal also contains a higher frequency signal component with much lower amplitude.
The cooling pump enables when it reaches the upper value and then cools the gearbox down until it reaches the
minimum value (both values is set by the parameters for the cooling pump). The wind experiences sudden decrease
and then an increase right after the midpoint; the time series does not indicate any changes after the midpoint due
to this. This could indicate that the time series of the gearbox temperature is not dependent on the wind speed. The
only case in which this is true is when the turbine is not rotating. As with the objective of similarity in time, the
wind speed was found to be of critically high level, indicating that the brakes must be engaged.

Group C: Contains only the time series corresponding to turbine 10. Its characteristics are similar to that of the
time series assigned to group B but the frequency for which it oscillates with, has decreased by a factor of three.
Same interpretation as for group B applies to this turbine: The temperature does not follow the same trend as the
wind speed. However, after reviewing the wind speed, it is clear that the wind speed experience critically high
levels, indicating that the brakes must be engaged.

Group D: Contains only the time series corresponding to turbine 13. This turbine is characterised by low to no
oscillations with small fluctuation in the gearbox temperature. The cooling pump - which is causing the oscillations
- does not seem to be engaged during the entire interval. The temperature remains relatively constant through the
interval, with the exception of one bump after the midpoint. The bump can be explained by viewing the time series
for the wind speed in Figure A.2.8 which experience a decrease and right after an increase in wind speed (right
after the midpoint). Same physical interpretation as for those in group A holds for this turbine. The reason that this
turbine is not clustered with the others is simply that they are different in terms of shape. The time series associated
with turbine 13 have relatively large values in the first half of the time series and even greater values in the second.
This is not the same shape as the two other time series in group A - they have a reduction in the temperature level
after the midpoint.

Group E: Contains only the time series corresponding to turbine 16. The turbine has quite varying gearbox
temperature and experiences a small number of oscillations. Intervals where the gearbox temperature slightly
decreasing in a ’straight’ line indicate intervals where the turbine is not rotating. Same interpretation as for analysis
of similarity in time applies: The temperature varies with the generator speed. However, the generator does not
seem to stop because of the lack of wind or a position deviation different from zero but stops for different reasons.
Reasons could be the malfunctioning of the brakes or the malfunctioning of the pitch controller of the blades or
something completely else. These assumptions prove hard to verify and additional maintenance might be required.
Regardless, the turbine is effectively separated from the rest.

Group F: Turbines associated with this group contains the majority of the turbines and could indicate normal
operational behaviour for rotating turbines. The assigned wind turbines within this group are actually the same
assignment - with the exception of turbine 13 - formed from clustering with the objective of similarity in time.
Turbine 13 was not found to be of any interest for the analysis of similarity in time. But during this analysis, it
can be seen that the shape is quite different; it does not experience the same periodic oscillations as the turbines in
this group (group F). The faster the turbines rotate the more heat they produce which requires more ”aggressive”
cooling. The upper threshold for the cooling pump is reached at the peaks and the cooling pump enables until it
reaches the lower threshold value. This explains the higher frequency oscillations observed for the temperatures.
The fact that it reaches the upper threshold very often suggest that the somewhere in the gearbox additional heat
is produced because of poor lubrication or more worn out parts. Viewing the dendrogram, a deeper cut would
separate turbine 11 from this group (group F). The time series of the gearbox temperature corresponding to this
turbine has larger frequency oscillations than the rest of group F, despite having the same rotational speed and wind
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conditions. A possible explanation for this behaviour is that the component in the gearbox of turbine 11 is even
more worn out or worse lubrication than the remaining turbines in this group. If this is the case, the temperature
increases faster along with an appropriate reaction of the cooling pumps (i.e. faster cooling).

Group G: Contains only the time series corresponding to turbine 2. No periodic oscillations are observed, but
time series is affected by the change in the wind slightly after the midpoint. Reviewing the generator speed it
becomes clear that during that period it experiences a peak value where the turbine is actually rotating. This
explains the sudden increase in temperature levels observed in the gearbox. During the remainder of the interval the
turbine is not rotating or increasing its temperature (rather trying to reach its equilibrium value with the temperature
outside). No oscillatory behaviour is present which might indicate that the thresholds values for the cooling pump
are not exceeded.
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6.3 Summary and comparison of the two data sets
In order to strengthen the physical interpretation of the clustering results from the first data set analysed, the
experiment was repeated on a different set of measurements (same turbines and sensors sampled at a different
interval). First of all, the physical interpretation of the results from the objective of similarity in time - for both
data sets - will be compared. Then, the same procedure will followed for the objective of similarity in shape.

6.3.1 Similarity in time
First of all, clustering the time series based on the temperature in the gearbox results in a clear separation of the
rotating and non-rotating wind turbines for both data sets analysed. This is especially true for the first data set
analysed, where two non-rotating turbines were present. Regardless of the number of cuts made, the clustering
algorithms manage to separate the non-rotating turbines from the rotating turbines and place the non-rotating
turbines into its separate cluster. The second data set contains a collection of more diverse time series and proves
harder to find the correct number of clusters to get this separation. Initially, it manages to separate two turbines
which were not rotating into the same cluster. However, one turbine - which is not rotating nor clustered in the same
group - experiences elevated gearbox temperature despite it not rotating. It was therefore not clustered together
with the other non-rotating turbines but was placed in a separate cluster containing only itself; this is expected as
it shows abnormal temperature levels despite not rotating. Therefore, for the second data set, two clusters were
formed: The first cluster contains the turbines which are not rotating and has temperature levels which comply
with that; the second cluster contained the one turbine which is not rotating but experienced significantly higher
temperature levels than the others which did not rotate. Clustering time series based on the temperature of the
gearbox successfully manages to separate turbines of different rotational speeds (rotating and non-rotating). For
all turbine, the low gearbox temperatures observed is justified by an equally low generator speed which is for most
turbines a result of extreme local weather conditions. The exception of this is turbine 2 for both data sets which
was subjected to maintenance during both intervals and was manually deactivated from the grid. This becomes
more transparent when reviewing the time series with respect to their behaviour or shape.

Secondly, a larger number of cuts to the dendrogram or larger predetermined clusters to the K-means algorithms
was shown to separate turbines with respect to smaller dissimilarities. For example, turbines which have possibly
more worn out parts in the gearbox or poorer lubrication are well separated. The fact that these turbines are poorer
lubricated or have parts which are more worn out still remains a hypothesis and proves hard to verify with the
information acquired. Nonetheless, clustering with the objective of similarity in time still manages to separate
the time series behaving differently than others. The practical implication for clustering the turbines with respect
to their temperature levels can be extended to automatic classification of turbines experiencing slightly different
temperature levels, and not only rotating and non-rotating turbines. The practical application for the classification
of the turbines depends on the depth of where the dendrograms are cut (i.e. how low the cut is in the dendrogram).
This will be addressed in the next paragraph.

Deeper cuts to the dendrogram in many cases result in a reduction in the silhouette index and a definitive
reduction in the MSSSE value. The intra-cluster similarities within each cluster formed becomes more similar
with the increasing number of cuts (i.e. the time series within each cluster are more similar to each other), but the
separation between the clusters formed becomes less defined. By keeping this in mind, the user can customise the
specific objective to the particular application at hand. If a large number of cuts is used, the algorithm manages
to separate time series of smaller difference which might be of interest when interpreting the physical meaning
of the groupings or looking for outliers. The practical applications can vary between the classification of turbines
experiencing high and low temperature levels or slightly reduced temperature levels which could indicate turbines
which are more worn out or poorer lubricated. In other words, the compromise between separation and similarity
becomes an important consideration for the specific application and classification problem solved.

Lastly, it was shown during the analysis of the first data set that K-means produces inconsistent results. Addi-
tionally, the benefit of linear time complexity for the K-means algorithm - compared to the quadratic time complex-
ity of the hierarchical clustering algorithm - is not prominent in the current analysis as the number of turbines (or
objects) within each data set are only 15. For such small data sets, the benefit from using K-means over hierarchical
clustering algorithm is nonexistent. Because of these remarks, K-means was not applied to the second data set and
will not be applied in the multivariate clustering problem in the next chapter either. The hierarchical clustering
algorithm is much more advantageous over K-means when it comes to visualisation and consistency. This is really
important in the multivariate case, where the clustering assignment tends to be much harder to interpret. Addition-
ally, as the number of turbines within each wind park still remains relatively low, K-means does not benefit from
having lower time and space complexity than the hierarchical clustering algorithm. For the multivariate case, the
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same number of turbines will be clustered, only with including additional parameters (or dimensions).

6.3.2 Similarity in shape
When clustering with the objective of similarity in shape, both of the data sets analysed showed that it effectively
manages to group the time series which were most similar in shape and separate the most dissimilar time series
into their own individual clusters. Time series which does not have any oscillatory behaviour is separated into
either individual clusters or clusters with time series alike. Time series with no oscillation might indicate faulty
conditions for the cooling pump or that the threshold values are not within its optimal range. As addressed, this
assumption cannot be verified with the information acquired and still remains a hypothesis. Furthermore, turbines
experiencing sudden halts in the rotation of the rotors due to elevated wind conditions are also effectively captured
by the algorithms. The time series experiencing sudden halts in the rotation will automatically result in non-
stationary behaviour of the gearbox temperature; reduction in the rotor speeds results in a reduction in the gearbox
temperature, and vice versa. Because of the nature for some of the time series (the values can go from a minimum
value to a maximum value in a matter of few time steps), care must be taken when normalising such time series.
This will be addressed in detailed in Section 7.1, where typical normalisation cannot be applied to one of the
multivariate data sets.

In Appendix B.1 and B.2, cluster analyses with the objective of similarity in shape have been performed
without constraining the DTW algorithm (Sakeo-Chiba band not implemented). First of all, let us review the
similarity in shape analysis of the ’Univariate v1’ data set without constraining the DTW algorithm - results are
presented in Appendix B.1 - and compare it to the one in Section 6.1.4 which has implemented the DTW distance
with a global constraint. Several differences and similarities can be observed for both of the analysis. First of all,
the dendrograms (in Figure 6.20 and B.1.2) can be observed to be quite similar to each other with the exception
of a couple of turbines. The major differences are in the turbines which originally can be observed to be quite
different to the others; time series which are relatively similar to each other is not affected by whether or not
the DTW algorithm is constrained. This was shown in Appendix C.1, where the warped path for similar time
series did not deviate much from the diagonal (this can be observed in both Figure C.1.3 and C.1.4). On the
other hand, the warped path between time series which are obviously different experiences a warped path which
deviates quite a lot from the diagonal and maps a large number of points to a few numbers of points (this can be
observed in both Figure C.1.5 and C.1.6). This is an unwanted scenario as it forces similarity between two time
series where it should not be. This can also be observed for the second univariate data set analysed in Section
6.2.3. Comparing the dendrograms between the constrained and non-constrained case (Figure 6.28 and B.2.2 in
Appendix B.2, respectively), show very similar results, but the separation between the abnormal looking time series
can be observed to be more significant for the constrained case. This is indicated by the large average distance
between the dissimilar time series. The similarities between the dendrograms and the cluster assignments for both
the constrained and unconstrained case are quite small, but in a more realistic case where the data set may contain
several hundreds of turbines, the results can be severe. The DTW should, therefore, be implemented with the
Sakeo-Chiba band.

The overall similarities in shape are captured to a great extent by the clustering algorithm when DTW is
used as the similarity measure. However, it comes at a cost. The constrained DTW has a pretty high running
time compared to Euclidean distance (over 400 seconds for the DTW distance compared to 1.31ms for Euclidean
distance) and is not suitable for very large data sets or applicable for real-time applications.The running time
between different implementation of the DTW algorithm can be observed in Appendix C.2. For the unconstrained
case, the running time of the algorithm was reduced by a factor of nearly 10, where the fast implementation
(’dtw.distance matrix fast’) was applied, instead of the normal implementation (’dtw.distance matrix’). Sadly, the
fast implementation did not work with the implementation of the Sakeo-Chiba band and the other, slower function
had to be used. The comparison between the running times of the ’dtw.distance matrix’ function - with and without
Sakeo-Chiba band implemented - show a reduction in the running speed by a factor of 5 for the constrained case.
Already now, we can say with certainty that the DTW algorithm (especially the implementation of the DTW in the
python library, dtaidistance) are not suitable for larger data sets. However, because the DTW algorithm manages
to capture the similarities in shape between time series very well, it will further be utilised on a multivariate case,
despite the poor scalability of the similarity measure.
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In this chapter, the multivariate data sets introduced in Section 5.2, will be clustered and the clustering results
will be analysed. The clustering results and analysis of the first data set (’Multivariate V1’) and second data set
(’Multivariate V2’) will be presented in Section 7.1 and 7.2, respectively. In Section 7.3, the clustering results
and analyses of both data set will be summarised and compared. The only difference between doing a cluster
analysis on a multivariate data set, versus a univariate data set, is how the dissimilarity matrix is constructed. A
multivariate data set can simply be thought of as a set of univariate data sets; each of these univariate data sets can be
clustered as done previously, namely by constructing a dissimilarity matrix. Now, in order to cluster multivariate
time series, the individual dissimilarity matrices of each individual univariate data set - each associated with a
weighting value (alpha) - are added together. This is illustrated in Equation (3.2). The weighting vector (alpha)
contains the weighting value for each individual data set and can be adjusted according to the specific application
and preference. The Python implementation of the multivariate cluster analysis is the same as for the univariate
data set, only some minor changes to the script in Appendix D.1.5 is required. For running the cluster analysis
on either of the multivariate data sets, uncomment the data set which the analysis will be run on and comment
out the remaining code specific to the other data sets. Examples of how this is done are already provided in the
implementation of the univariate data sets.

7.1 Clustering of ’Multivariate V1’
The first multivariate data set which is going to be clustered is the ’Multivariate V1’ data set introduced in Section
5.2.1. This data set is an extension of the ’Univariate V2’ presented in Section 6.2, which only contains time
series of the gearbox temperature. The multivariate data set is comprised of the univariate data set from ’Univari-
ate V2’ data set (i.e. the gearbox temperature) in addition to three new dimensions: generator speed, wind speed
and position derivative. By clustering this combination of univariate data sets, it is expected to get similar (and
hopefully better) results as for clustering only the gearbox temperature. When clustering the multivariate data set,
the results and analysis will be presented in a similar fashion as for the univariate case. In Section 7.1.1, the data
set will be clustered with respect to the objective of similarity in time and the results will be presented, followed
by an analysis of the results in the consecutive section, Section 7.1.2. Then, the same layout will be used when
clustering the data set with the objective of similarity in shape. The results is presented in Section 7.1.3 followed
by an analysis of the results in Section 7.1.4. Lastly, a comparison between the clustering results of the univariate
data set - where only the gearbox temperature was included in the cluster analysis - and the clustering results of
the multivariate data set will be made in Section 7.1.5.

7.1.1 Similarity in time - Results from hierarchical clustering of the scaled data set
The filtered data set contains features which are of different units of measurements. This makes adding together
dissimilarity measures inconvenient. Before applying any kind of clustering, the time series have to be scaled. For
convenience, the univariate data sets are scaled (4.4) individually so that the minimum and maximum values for
each univariate data set are 0 and 1, respectively. This is different from normalisation used in the similarity in
shape analysis as we now scale the entire data set and not individual time series within that data set. As all the
univariate data sets - which the multivariate data set is comprised of - are individually scaled, clustering of the
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Chapter 7. Clustering of multivariate time series

data set can begin. Similar to Chapter 6, the best linkage criterion for the hierarchical clustering algorithm will
be found by comparing the Cophenetic correlation coefficient (3.10) and the number of cuts to the dendrogram
will be determined by inspecting the internal performance indexes: Silhouette index (3.14) and MSSSE (3.17).
More information about these specific indexes can be found in Chapter 3. The summary plot and table for the
internal indexes of cutting each dendrogram into k partitions - each with different linkage criterion - can be seen
in Figure 7.1 and Table 7.1. The cophenetic correlation coefficient can be seen in the upper right corner in the
aforementioned figure (Figure 7.1). In the current run, the alphas are all equal to one, which weight the different
univariate time series equally.

Table 7.1: Summary table with the linkage criteria: single, complete, average and ward. The data set which was clustered is
’Multivariate V1’ with the objective of similarity in time. The silhouette indexes and MSSSE values for a cut K - from 2 to 13
- is presented.

Method Internal index Number of cuts to the dendrogram
K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10 K = 11 K = 12 K = 13

Single Silhouette 0.73 0.63 0.60 0.57 0.25 0.12 0.12 0.12 0.14 0.12 0.12 0.10
MSSSE 57.04 25.97 12.99 6.99 3.87 3.44 2.86 1.91 1.18 0.90 0.52 0.33

Complete Silhouette 0.73 0.63 0.60 0.57 0.25 0.16 0.14 0.13 0.14 0.12 0.12 0.10
MSSSE 57.04 25.97 12.99 6.99 3.87 2.92 2.35 1.62 1.18 0.80 0.52 0.33

Average Silhouette 0.73 0.63 0.60 0.57 0.25 0.16 0.14 0.12 0.14 0.12 0.12 0.10
MSSSE 57.04 25.97 12.99 6.99 3.87 2.92 2.35 1.91 1.18 0.80 0.52 0.33

Ward Silhouette 0.70 0.66 0.60 0.57 0.25 0.15 0.15 0.13 0.14 0.12 0.12 0.10
MSSSE 47.90 25.14 12.99 6.99 3.87 2.90 2.26 1.62 1.18 0.80 0.52 0.33
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Figure 7.1: Summary plots with the linkage criteria: single, complete, average and ward. The data set which was clustered is
’Multivariate V1’ with the objective of similarity in time. The silhouette indexes and MSSSE values for a cut K - from 2 to 13
- is presented along with the cophenetic correlation coefficient in the upper right corner.

First of all, reviewing the cophenetic correlation coefficient in Figure 7.1, it can be seen that all of the den-
drograms experience similar high values; all are above 0.9 and two of them experience values above 0.95. The
cophenetic correlation coefficient is close to 1 for all dendrograms; values close to 1 indicate that the dendrograms
represent a high-quality solution. The dendrogram with the highest cophenetic index is the dendrogram constructed
with linkage criterion as average. Therefore, the dendrogram built with linkage criterion as average will be cut and
its assignment will be analysed. Secondly, reviewing the summary table and the corresponding summary plot, it
can be observed that the silhouette index is largest for a cut of two and slowly decrease in its magnitude until after
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7.1 Clustering of ’Multivariate V1’

a cut of five where it suddenly drops. The corresponding MSSSE value during this interval decreases exponentially
from 57.04 at a cut of two to 6.99 at a cut of five. A cut of five reduces the MSSSE values substantially where
the silhouette index - from a cut of three and four - remains roughly constant. Therefore, a cut of five seems to
be the optimal configuration where the compromise between separation and similarity is at its best. A cut of five
will, therefore, be further analysed in the consecutive section. The corresponding dendrogram - with average as
the linkage criterion - can be seen in Figure 7.2.
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Figure 7.2: Dendrogram with average as linkage criterion and distance as Euclidean distance implemented on ’Multivari-
ate V1’ data set. The weighting vector α is set to 1 for all elements.

7.1.2 Analysing the clustering results from similarity in time

In this section, the clustering results from clustering ’Multivariate V1’ data set in Section 7.1.1 will be analysed.
The corresponding dendrogram which will be cut can be seen in Figure 7.2. In Figure 7.3 the cluster assignment
and the time series are visualised for a cut of five. As before, the summary of the gearbox temperature, generator
speed, wind speed and position deviation (difference in angle between the direction of the wind and the direction
of the nacelle) is presented and can be seen in Table 7.2.

Initially, it can be observed from reviewing the dendrogram in Figure 7.2, that a cut of two to the dendrogram
partitions turbine 2, 10 and 12 into its own separate cluster, which separates the non-rotating from the rotating
turbines. From revisiting the internal indexes, this can be reflected by a large silhouette index value to be a good
idea. But reviewing the within-cluster variance, the second cluster (i.e. rotating turbines) contains a few dissimilar
turbines which results in a relatively large within-cluster variance. That is why the internal indexes recommenda a
cut of five to the dendrogram. From observing the assignment, for a cut of five, in Figure 7.3, the first observation
to be made is that there are four clusters which only contain one time series each; all of them deviates from cluster
four, but have drastically different behaviour. Therefore, none of these individual time series are placed within the
same cluster. The algorithm manages to separate turbines which behave differently from the majority (i.e. normal
operations), which might indicate faulty turbines or at least turbines which requires some additional analysis.
Secondly, it can be observed that the univariate data sets which stands for much of the variance between clusters are
the univariate data set associated with the gearbox temperature, generator speed and the position deviation; these
time series have the largest variety and the time series for the gearbox temperature is unique for each cluster; the
generator speed and position derivative time series are not necessarily unique for each cluster. The wind speed for
all the different clusters are quite similar; only cluster 1 and cluster 2 seems to deviate a bit from the rest. Thirdly,
cluster 4 can be observed to have two turbines which are quite different in terms of the gearbox temperature. These
were effectively separated in the univariate analysis where only the gearbox temperature was clustered, but not
now in the multivariate case. This is because the wind speed, generator speed and the position deviation are very
similar to the rest of the turbines associated with cluster 4 - three out of the four univariate time series state that
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Figure 7.3: Clustering results from the ’Multivariate V1’ data set with Euclidean distance. Summary plot of a cut of five to the
dendrogram with the linkage criterion set as ’average’.

Table 7.2: Summary of the properties of each time series within its respective cluster assignment (Group A, B and C) for a cut
of 3. Numbers within parentheses (*) refers to the mean of the time series. The associated time series can be viewed in Figure
7.3

Cluster Wind turbine number Gearbox temp
[Celsius]

Generator
speed [RPM]

Wind speed
[m/s]

Position
deviation
[degrees]

Cluster 1 WT10 Low (15) Low (∼0) 19.6 100-150 (132)

Cluster 2 WT12 Low-Medium (35) Low (∼0) 21.4 75-90 (80)

Cluster 3 WT2 Low (20) Low (∼0) 14.9 0

Cluster 4 WT3 Medium-High (48) High (1.2K) 14.4 0
WT6 Medium-High (48) High (1.2K) 14.6 0
WT1 High (60) High (1.2K) 14.2 0
WT5 High (60) High (1.2K) 14.6 0
WT7 High (60) High (1.2K) 15.8 0
WT8 High (60) High (1.2K) 16.7 0
WT9 High (60) High (1.2K) 12.4 0
WT11 High (60) High (1.2K) 15.6 0
WT13 High (60) High (1.2K) 14.1 0
WT14 High (60) High (1.2K) 14.9 0
WT15 High (60) High (1.2K) 16.1 0

Cluster 5 WT16
Vary between high (60)
and low-medium (35)

Vary between high
(1.2K) and low (∼0) 14.3 0

these turbines are very similar to each other. A deeper cut to the dendrogram would actually separate these from
cluster 4 but is not recommended by the internal indexes. With the corresponding configuration, the algorithm
effectively manages to separate abnormal behaving wind turbines from the rest. The physical interpretation of the
underlying turbines within each cluster will be done in a similar manner as performed in Section 6.2.2: Gearbox
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7.1 Clustering of ’Multivariate V1’

temperature, generator speed, wind speed and position deviation will be compared between and within clusters.

Cluster 1: This cluster contains only one turbine and it belongs to turbine 10. This turbine experiences a rela-
tively low gearbox temperature in compliance with a non-rotating generator. It has position deviations not equal
to zero and experience elevated wind speed level. These high wind speed conditions indicate that the brakes might
be engaged and therefore the nacelle is not directed against the wind and the generator is not rotating.

Cluster 2: This cluster contains only one turbine and it belongs to turbine 12. This turbine experiences elevated
gearbox temperature, despite not rotating. As the turbine is not rotating it should maintain similar temperature
levels in the gearbox as for the turbine in cluster 1 or 3. Same physical interpretation as for the univariate cluster
analysis holds: The temperature in the gearbox might indicate faulty conditions for the corresponding turbine or
scaling issues for the temperature sensor.

Cluster 3: This cluster contains only one turbine and it belongs to turbine 2. The turbine is characterised by low
gearbox temperature and equally low generator speed. The temperature level is comparable to that of cluster 1
with generator speed equal to zero. Nonetheless, the position deviation remains roughly around zero for the entire
interval. Same physical interpretation as for the univariate case in Section 6.2.2 holds: Because the turbine is
directed against the wind and is not rotating, it might indicate that the blades of the turbine are straightened and/or
the brakes are engaged.

Cluster 4: This cluster contains the majority of the turbines. Common for these turbines is that they experience
high gearbox temperatures (with the exception of turbine 3 and turbine 6), high generator speed, roughly the same
wind speeds (no elevated wind conditions is observed) and are all directed against the wind. These turbines can
be assumed to be working under normal conditions. Any deviations from this assignment are considered abnormal
behaviour and should be further analysed.

Cluster 5: This group only contain one turbine and is the one turbine which experiences abnormal behaviour
with quite varying temperature and generator speed. One hypothesis of this is that the turbine is subjected to
highly varying wind conditions, especially compared to the other turbines analysed. However, reviewing the wind
conditions in Figure 7.3, it can be seen that the wind has an average mean and shape similar to the others in cluster
3 and 4, and is quite constant throughout the entire interval. Another hypothesis is that the braking system or pitch
controller for the blades are malfunctioning. However, this proves hard to verify with the information acquired.
Regardless, it separates it from the rest, indicating that its different from the rest and requires additional attention.
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Chapter 7. Clustering of multivariate time series

7.1.3 Similarity in shape - Results from hierarchical clustering of the normalised data
set

Before the clustering can initiate, some remarks to the preprocessing of the time series have to be made. The time
series for the generator (or rotor) speed cannot be normalised as the others. This is because caution must be made
when normalising flat but noisy time series. The noise will distort the average value and/or standard deviation
of the time series which leads to improper translation. Clustering time series subjected to improper translation
is meaningless. However, by scaling with the maximum and minimum value observed for all time series in the
univariate data set, this can be avoided. This can be done because, throughout the interval, the maximum and
minimum possible value for the generator speed is observed. The difference can be observed in Figure 7.4. Three
time series (WT5: red line; WT10: yellow line; WT11: turquoise line) is present in the plot which experiences
flat but noisy signals (i.e. does not experience any peaks as the others). Significant distortion to these time series
- when subjected to normalisation - can be observed and clustering of such time series would result in clustering
those turbines with respect to their noise level rather than their overall (flat) shape.
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Figure 7.4: Difference between scaling and normalisation. If flat but noisy signals are normalised, the noise will distort the
normalised signal (see turbine 5, 10 or 11).

Because of this, the time series - for the generator speed - are instead scaled, as done when analysing the data set
with respect to the objective of similarity in time. This effectively suppressed the noise for flat signals. Essentially,
these time series behave similarly to a digital signal: They do not experience intermediate values and the signal
have only two levels, maximum and minimum. For time series such as this, it is important to scale them instead of
normalising. The rest of the time series are normalised as described in Section 4.2.3.

The objective is now to cluster the time series with similarity in shape and not the absolute difference and
offset. Therefore, the clustering analysis is performed on the normalised (and partly scaled) data set. For sim-
ilarity in shape, the DTW distance (3.7) measure is used instead of the Euclidean distance. Same constraint as
in Section 6.1.4 and 6.2.3 is applied to the DTW algorithm. DTW has much higher complexity then Euclidean
distance and the calculation of the condensed distance matrix takes d additional time - d refers to the dimension
of the multivariate data set. The calculation of the dissimilarity matrices now takes 1752 seconds (831 seconds
parallelization with two cores). The condensed distance matrix is then fed to the hierarchical clustering algorithm.
The best linkage criterion for the hierarchical clustering algorithm and the optimal number of clusters will be found
with the same internal indexes used so far: Cophenetic correlation coefficient, Silhouette index and MSSSE. More
information about these specific indexes can be found in Chapter 3. In this run, the alphas are all equal to one,
which weight the different univariate time series equally. The summary plot and table for the internal indexes of
cutting each dendrogram - each with different linkage criterion - into k cuts can be seen in Figure 7.5 and Table
7.3. The cophenetic correlation coefficient can be seen in the upper right corner in Figure 7.5.
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Table 7.3: Summary table with the linkage criteria: single, complete, average and ward. The data set which was clustered is
’Multivariate V1’ with the objective of similarity in shape. The silhouette indexes and MSSSE values for a cut K - from 2 to
13 - is presented. Alpha for all univariate data sets is equal to one.

Method Internal index Number of cuts to the dendrogram
K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10 K = 11 K = 12 K = 13

Single Silhouette 0.65 0.61 0.58 0.25 0.26 0.18 0.11 0.09 0.05 0.04 0.08 0.05
MSSSE 4.55 3.69 3.19 2.74 2.25 1.97 1.71 1.42 1.18 0.88 0.60 0.39

Complete Silhouette 0.65 0.61 0.58 0.27 0.26 0.18 0.20 0.19 0.12 0.12 0.08 0.05
MSSSE 4.55 3.69 3.19 2.61 2.25 1.97 1.63 1.35 1.09 0.84 0.60 0.39

Average Silhouette 0.65 0.61 0.58 0.27 0.26 0.18 0.20 0.13 0.11 0.12 0.08 0.05
MSSSE 4.55 3.69 3.19 2.61 2.25 1.97 1.63 1.37 1.12 0.84 0.60 0.39

Ward Silhouette 0.65 0.61 0.31 0.27 0.26 0.18 0.20 0.19 0.18 0.12 0.08 0.05
MSSSE 4.55 3.69 3.11 2.61 2.25 1.91 1.63 1.35 1.10 0.84 0.60 0.39
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Figure 7.5: Summary plots with the linkage criteria: single, complete, average and ward. The data set which was clustered is
’Multivariate V1’ with the objective of similarity in shape. The silhouette indexes and MSSSE values for a cut K - from 2 to
13 - is presented along with the cophenetic correlation coefficient in the upper right corner.

First of all, reviewing the cophenetic correlation coefficient in Figure 7.5, it can be observed that all of the
dendrograms experiences very large values for the cophenetic correlation coefficient. These values are very close
to 1 and indicate a high-quality solution. The dendrogram with the highest cophenetic index is the dendrogram
constructed with the linkage criterion set as average. Therefore, the dendrogram built with linkage criterion as
average will be cut and its assignment will be analysed. Secondly, reviewing the summary table and the corre-
sponding summary plot, it can be observed that the silhouette index is largest for a cut of two and decreases quite
slowly up to a cut of four where it suddenly decreases quite rapidly; the corresponding MSSSE value during this
periods decreases relatively steep. A fair reduction in the MSSSE value can be observed by cutting the dendrogram
into four partitions, where the corresponding silhouette value still remains relatively high. Deeper number of cuts
decreases the silhouette index value too much. Therefore, a cut of four seems to be the optimal configuration
where the compromise between separation and similarity is at its best. A cut of four will be further analysed in
the consecutive section. The corresponding dendrogram - with average as linkage criterion - can be seen in Figure
7.6.
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Figure 7.6: Dendrogram with average as linkage criterion and distance as DTW distance implemented on ’Multivariate V1’
data set. The weighting vector α is set to 1 for all elements.

7.1.4 Analysing the clustering results from similarity in shape

In this section, the clustering results from clustering ’Multivariate V1’ data set in Section 7.1.3 - with respect to
the objective of similarity in shape - will be analysed. The corresponding dendrogram which will be cut can be
seen in Figure 7.6. In Figure 7.7, the cluster assignment and the time series are visualised for a cut of four to
the dendrogram. The summary of the gearbox temperature, generator speed, wind speed and position deviation
(difference in angle between the direction of the wind and the direction of the nacelle) can be seen in Table 7.2 in
the previous cluster analysis in Section 7.1.2.
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Figure 7.7: Clustering results from the ’Multivariate V1’ data set with DTW distance. Summary plot of a cut of four to the
dendrogram with the linkage criterion set as ’average’.
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Initially, one can observe that the turbines are separated well with respect to their overall similarity in shape.
As with the objective of similarity in time, most of the dissimilarity between the clusters can be observed to be
in the time series for the gearbox temperature. Cluster 1 can be observed to contain three (WT3, WT6, WT13)
time series which are quite different in shape, compared to the rest. Same explanation for similarity in time
holds here: The turbines have very similar shapes when reviewing the wind speed, generator speed and position
deviation. Actually, cutting the current dendrogram a cut deeper (i.e. number of cuts equal to five) would separate
the three turbines within cluster 1 and place them into its own separate cluster. However, this is not indicated by the
silhouette index which suffers a quite significant reduction from a cut of four to a cut of five. More interestingly,
the alpha values for weighting the different univariate data sets - which the multivariate data set is comprised of -
can be modified. If we want stricter clustering of the gearbox temperature one could increase the corresponding
alpha value associated with it. This is illustrated in Appendix B.3.3 and shows an optimal configuration which
cuts the dendrogram into five partitions; this splits turbine 3, 6 and 13 from cluster 1 to an own separate cluster as
discussed above. In other words, the cluster analysis becomes more similar to the univariate case where only the
gearbox temperature is clustered. Now, the physical interpretation of the underlying turbines within each cluster -
for the current cluster assignment seen in Figure 7.7 - will be further analysed in the next paragraphs. Much of the
physical interpretation is similar to that of the univariate analysis in Section 6.2.4.

Cluster 1: Most of the turbines have a gearbox temperature which oscillates quite heavily with much higher
frequency than the observed in the other clusters. These time series are characterised by high generator speeds
and a position deviation of zero. As the majority of the clustered turbines is assigned to this cluster - and their
behaviour is expected - these turbines are assumed to be operating under normal conditions. However, there are
three outliers which can be observed in the plots for the gearbox temperature: Turbine 3, 6, and 13. These are
very similar to the others with respect to all traits but the gearbox temperature; the time series for the gearbox does
not experience similar oscillations. Oscillations are caused by the activation and deactivation of the cooling pump.
The lack of oscillations might indicate some fault in the cooling system. A deeper cut to the dendrogram would
separate these three from the current cluster, as mentioned in the previous paragraph.

Cluster 2: This cluster contains both turbine 10 and 12. These turbines are characterised by a gearbox temper-
ature with a much lower frequency than those of cluster 1. The position deviation is nonzero - which means that
the turbine is not directed against the wind - and the time series associated with the generator speed shows that the
turbine is not rotating; further inspection shows that the generator is not rotating because of the extreme local wind
conditions it experiences (and of course its alignment which is not directed against the wind direction).

Cluster 3: Contains only turbine 2 because the time series for the gearbox temperature is very different from
the rest. Wind speed, generator speed and position deviation have similar behaviours. Reviewing the generator
speed it becomes clear that this turbine is not rotating. Note that this turbine is under maintenance as mentioned in
Section 6.2.4. Same physical interpretation as for the univariate case holds for the multivariate case.

Cluster 4: Contains only turbine 16 because the time series for the gearbox temperature and the generator speed
is very different compared to the other turbines. The gearbox speed is varying quite heavily between the minimum
and the maximum values; this results in an equally varying gearbox temperature. It can also be observed that the
oscillations for the gearbox temperature occur only when the turbine is rotating. For further depth to the analysis,
revisit the univariate cluster analysis, Section 6.2.4.
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Chapter 7. Clustering of multivariate time series

7.1.5 Comparison between the univariate and the multivariate data set

In this section, the clustering results from the univariate case (Section 6.2) will be compared to those of the mul-
tivariate case in the previous section. The univariate data set contains only the time series associated with the
gearbox temperature; the multivariate data set is a combination of univariate data sets - where the univariate data
set in Section 6.2 is one of the univariate data set which the multivariate data set is comprised of. The multivariate
data set is also comprised of the univariate data sets: wind speed, generator speed and the position derivative.
The measurements are extracted during the same interval and with the same parameters for extraction as for the
’Univariate V2’ data set.

Similarity in time

The first observation to be made is that the internal indexes for both univariate and the multivariate case results
in different linkage criterion, but recommend the same number of cuts to the associated dendrogram. The small
difference in the internal indexes is expected as the univariate case is only dependent on the temperature in the
gearbox, whereas the multivariate case, the clustering also needs to take into account the wind speed, the position
deviation and the generator speed; a result of this is the assignment of turbine 3 and 6. In the univariate case, these
two turbines are separated into its own separate cluster, but in the multivariate case, these are clustered together
with the majority observed in cluster 4 in Figure 7.3. This is because the wind speed, generator speed and the
position deviation are very similar to the other turbines in cluster 4; three out of the four univariate data sets
indicate strongly that these turbines are similar to each other with respect to the objective of similarity in time.
And for the univariate case, the gearbox temperature alone indicates that the turbines are quite dissimilar to the
others. Furthermore, when comparing the dendrogram for the univariate analysis (Figure 6.23) and the multivariate
analysis (Figure 7.2), a deeper cut of six to both dendrograms would result in the exact same assignment; turbine
3 and 6 are separated in the multivariate case and turbine 2 and 12 are separated in the univariate case.

The second observation to be made is that the multivariate case manages to separate the non-rotating turbines
slightly better than in the univariate case (especially for a cut of two to the dendrograms). This is because the
gearbox temperature is highly correlated to the generator speed; relatively low gearbox temperature along with
a low generator speed is a strong indication of the first cluster formed in the multivariate case. Therefore, for a
cut of two to the dendrogram, wind turbine 2, 10 and 12, are assigned to the same cluster. This is because the
generator speed for these turbines is very similar. Because many of the time series associated with a dynamic
process is highly correlated to each other, the separation between turbines will be more prominent if such time
series are included. For instance, if the power production - which is highly correlated to the generator speed and
gearbox temperature - is also included in the current multivariate analysis, the separation between rotating and
non-rotating turbines would be more distinct. That is, if two turbines have similar gearbox temperatures, these
two turbines would also have similar generator speed and power production (as long as there are no fault in the
system). Approximately the same effect, as from including the power production time series, can be achieved
by doubling the weighting value for either the gearbox temperature or the generator speed. This is, to some
extent, analogous to including two time series (one additional) of the generator speed or gearbox temperature in
the analysis. The weighting of the univariate data sets allows the user to focus on a specific trait. For instance, let
us say for the gearbox temperature, it is much more critical to separate those experiencing abnormal temperature
levels rather than those experiencing different wind speeds. Then, a high weighting value would, in this case, be
given to gearbox temperature and a lower weighting value would be given to the wind speed parameter. Thus,
the advantage of multivariate clustering, compared to univariate clustering, is that the significance of different
parameters can be set according to preference and application. Of course, this comes at a cost. If more dimensions
are included in the multivariate cluster analysis, the running time will increase along with it. However, this would
not be the case if the corresponding alpha values are adjusted instead; the running time will remain the same.

The third observations can be made by reviewing the dendrograms for the univariate and the multivariate anal-
ysis. Both of the dendrograms - with average as the linkage criterion - for the univariate and the multivariate
analysis is presented in Figure 7.8. The assignment of the turbines can be observed to be quite similar for both
dendrograms. There are some minor differences between the assignment of turbine 2, 10, 12 and 16: For the uni-
variate case, turbine 2 and 10 are more similar to each other than turbine 12 is to either of them; in the multivariate
case, turbine 10 and 12 are more similar to each other than turbine 2 is to either of them. This can be justified by
reviewing the time series for the wind speed, generator speed and position deviation in Figure 7.7. These three
parameters - in a multivariate case - for turbine 10 and 12 are more similar to each other than that of turbine 2 is to
either. For the univariate case, the similarity is only measured between the time series of the gearbox temperature.
In that case, turbine 2 are more similar to turbine 10 than turbine 12 is to turbine 10. The assumption made in
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7.1 Clustering of ’Multivariate V1’

the previous paragraph - that the multivariate case separates the rotating and non-rotating turbines better - can
be verified by viewing the distance at where the three non-rotating turbines merge; the non-rotating turbines are
more similar to each other in the multivariate, than in the univariate case (indicated by a smaller distance for the
dendrogram in the multivariate case).
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(b) Multivariate analysis (Multivariate V1)

Figure 7.8: Comparison between the dendrograms for similarity in time for both univariate and multivariate data set.

Similarity in shape

Now for the cluster analysis with the objective of similarity in shape. The first observation to be made is that
the internal indexes for both univariate and the multivariate case results in same linkage criterion, but did not
recommend the same number of clusters. The multivariate case finds the optimal number of clusters to be four,
compared to seven for the univariate case. Both cluster analyses manage to separate the time series which are
different in terms of shape but have slightly different clustering objectives. The univariate case cluster the turbines
only based upon the different shapes in the gearbox temperature, and the multivariate case has a more general
clustering objective which also takes into account other dimensions.

As for similarity in time, the dendrograms of the univariate and multivariate analysis are compared. Both the
dendrograms - with average as the linkage criterion - for the univariate and the multivariate analysis is presented in
Figure 7.9. At first glance, the dendrograms seem to be quite dissimilar to each other; however, further inspection
shows that the clusters assignment for the dendrograms is indeed quite similar. The only significant difference can
be observed in the assignment of turbine 3, 6 and 13. For the multivariate analysis, these turbines are clustered
together along with the majority (see Figure 7.7) and are considered quite similar to those, but, for the univariate
case, these are separated and considered quite dissimilar to any other turbines and to themselves. As with the
objective of similarity in time, this can be justified by that the three turbines are very similar to the other when
comparing the shape of the wind speed, generator speed and position deviation to the majority of the other turbines
in a multivariate case. If only the gearbox temperature is compared - as in the univariate case - the three turbines
would be quite dissimilar to the others and are therefore separated from the majority. Smaller differences can
also be observed. For instance, the multivariate case states that turbine 10 and 12 are more similar compared to
the univariate case. This is because these two turbines are slightly different in shape by comparing their gearbox
temperature. But in terms of their wind speed, generator speed and position deviation, the shape/behaviour of the
time series are close to identical. Clustering the turbines with respect to only one parameter would cluster the time
series more naively. What is meant by a more naively, in this case, is that the assignment is only dependent on
the shape of that specific univariate time series - this results in a more confined cluster problem which only takes
into account the shape of that specific dimension (i.e. the gearbox temperature). By including more dimensions
(or parameters of interest) - as done in the multivariate case - we would acquire a more general cluster assignment
which is not only based upon the behaviour of one parameter but several.

(repeated experiment 7.1.3)
As mentioned when analysing the clustering results from the objective of similarity in time, the different

univariate time series which the multivariate time series is comprised of, can be weighted differently. This can
be done by adjusting the corresponding alpha value for each of the univariate data sets. In Appendix B.3.3, the
cluster analysis of similarity in shape was repeated with modifications to the alpha vector (weighting vector) -
same cluster analysis as in Section 7.1.3, only with a different alpha vector. In this cluster analysis, all alphas
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Figure 7.9: Comparison between the dendrograms for similarity in shape for both univariate and multivariate data set.

were set equal to one except for the alpha corresponding to the gearbox temperature which was set to eighth.
This increases the significance of the dissimilarities in the gearbox temperature by a factor of eighth. The internal
indexes could be compared to the univariate case where only the gearbox temperature is clustered; it shows that by
increasing the corresponding gearbox temperature, the internal indexes become more and more similar to that of
the univariate case. For this configuration, the optimal number of clusters was found to be equal to five. However,
the difference in the internal indexes is not that significant when comparing a cut of five to a cut of six, or even
seven. Arguably, a cut of seven could also reflect the optimal number of cuts to the dendrogram. Actually, a cut of
seven separates the time series into the exact same cluster assignment as for clustering the univariate time series.
The example illustrates how the alphas could be manipulated in order to customise the clustering algorithm to the
specific application. As the alpha is increased further, and the alpha corresponding to the other univariate data sets
remains small, the multivariate case would give the exact same results as the univariate case.

The average within-cluster variance (or the MSSSE value) can be observed to be slightly lower in the multi-
variate case than in the univariate case (this can be done by comparing the internal indexes in Table 6.6 and 7.3).
The explanation for this is that when clustering the multivariate case, the algorithm also takes into account the
other parameters, such as the wind direction, generator speed and position deviation. The wind speed, generator
speed (and position deviation) have very similar shapes for all time series and therefore would result in a low
within-cluster variance for each of them. The average within-cluster variance for the multivariate case is basically
the summation of the within-cluster variance for each dimension divided by the number of dimensions in the data
set. If three of the dimensions has a relatively low within-cluster variance and the fourth dimension has a relatively
high within-cluster variance (i.e. the gearbox temperature), then the average within-cluster variance would alwas
be lower than the dimension which has the largest within-cluster variance. Therefore, the within-cluster variance
(or the MSSSE index) for the univariate case is larger than the multivariate case. Additionally, it is worth noting
that the MSSSE value is only summarised if the corresponding alpha is nonzero; the number of dimensions which
the sum is divided by - to get the average values - corresponds to the sum of all alphas in the alpha vector. If the
alpha for the corresponding univariate data set is zero, then it is the same as not including the time series in the
analysis at all.

A final remark which requires some attention is the running time of the DTW algorithm. From the univariate
case in Section 6.2.3, the calculation of the distance matrix - where the algorithm was constrained with the Sakeo-
Chiba band - took close to 7 minutes. Calculation of the distance matrix in the multivariate case increased to 29
minutes, which is roughly 4 time as much (the number of dimensions in the data set). The running time for the
DTW algorithm, with global restriction, has increased quite drastically. The next multivariate data set which will
be analysed is even larger than the one analysed in this section. The calculation of the distance matrix, with the
DTW distance constrained, is expected to take several hours. Further comparison between the running time will
be made after the analysis of the second and last multivariate data set in the next section.
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7.2 Clustering of ’Multivariate V2’
The second and last multivariate data set which is going to be clustered is the ’Multivariate V2’ data set introduced
in Section 5.2.2 and visually presented in Appendix A.3. The interval of the new data set is increased. This is
done in order to compare different lengths and find a proper interval to cluster; a proper interval should be large
enough to avoid having unobserved dynamics and not too large to avoid superposition of different dynamics. Too
short intervals have the risk that relevant dynamics of the wind turbines may be unobserved. Too long intervals
include these dynamics but may include too much and therefore being uninformative. After counselling with the
supervisors, an interval of 1 month was chosen. However, because of insufficient measurements in the software,
the interval found which was closest to one month was an interval of 22 days. The extracted data set is presented
in the aforementioned section, Section 5.2.2. In this section, the same procedure as for the previous data sets will
be followed. In Section 7.2.1, the clustering results with the objective of similarity in time will be presented. The
analysis of the clustering results will be presented in the following section, Section 7.2.2. The same layout will be
used when clustering the data set with the objective of similarity in shape. The clustering results is presented in
Section 7.2.3 followed by an analysis of the results in Section 7.2.4.

7.2.1 Similarity in time - Results from hierarchical clustering of the scaled data set
First of all, the data set will be clustered with the objective of similarity in time. The filtered data set contains
features which are of different units of measurements. This makes adding together dissimilarity matrices incon-
venient. Before applying any kind of clustering, the time series has to be scaled. For convenience, the univariate
data sets must be scaled individually so that the minimum and maximum values for each univariate data set are 0
and 1, respectively. Scaling the data removes the fact that the variables are in different units of measure. As all the
univariate data sets - which the multivariate data set is comprised of - are individually scaled, clustering of the data
set can begin. As in Section 5.2.1, the best linkage criterion for hierarchical clustering algorithm will be found by
comparing their Cophenetic correlation coefficient and the number of cuts to the dendrogram will be determined
by viewing the internal performance indexes: Silhouette index and MSSSE index. More information about these
specific indexes can be found in Chapter 3. The plots of the univariate data sets which the current multivariate data
set are comprised of can be seen in Appendix A.3. After reviewing the time series corresponding to the external
temperatures in Figure A.3.6, it can be observed that it contain several measurements which are obviously invalid.
For instance, turbine 12 has an outside temperature which varies between −200 and 200 degrees Celsius. The
other turbines which do not contain valid measurements are turbine 3 and 13. Clustering the entire multivariate
data set, which also includes the external temperature, would yield invalid clustering results. Therefore, the exter-
nal temperature is removed from the multivariate data set. Now the data set has the shape (5, 15, 6295), rather than
(6, 15, 6295). In this section, two scenarios will be analysed. Scenario one will be a cluster analysis of the entire
data set where all alphas are equal to one except for the alpha corresponding to the external (outside) temperature
which is set to zero (setting the alpha to zero is the same as excluding it from the cluster analysis). The second
scenario will be a cluster analysis where all alphas are equal to one except for the one corresponding to the external
temperature and the wind direction which is set to zero. Justification for the latter will be done after presenting the
results of the former.

Scenario 1: External temperature disregarded

For this analysis, the alphas are all equal to one except for the alpha corresponding to the external (outside)
temperature which is set to zero. This has the same effect as not including the external temperature at all in the
cluster analysis. In other words, the shape of the multivariate data set analysed is now (5, 15, 6295) instead of
(6, 15, 6295). The summary plot and table for the internal indexes of cutting each dendrogram into k partitions
- each with different linkage criterion - can be seen in Figure 7.10 and Table 7.4. The cophenetic correlation
coefficient can be seen in the upper right corner in the aforementioned figure (Figure 7.10).

First of all, reviewing the cophenetic correlation coefficient in Figure 7.10, it can be seen that all dendrograms
experience similar high values, all above 0.9. The cophenetic correlation coefficient is close to 1 for all dendro-
gram; values close to 1 indicate that all the dendrograms represent a high-quality solution. The dendrogram with
the highest cophenetic index is the dendrogram constructed with the linkage criterion set as single. Therefore,
the dendrogram built with linkage criterion as single will be cut and its assignment will be analysed. Secondly,
reviewing the summary table and the corresponding summary plot, it can be observed that the silhouette index is
largest for a cut of three and slightly smaller for the neighbouring cuts, two and four. The corresponding MSSSE
value for a cut of two to three decreases exponentially from a value of 224.94 at a cut of two to 131.59 at a cut
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Table 7.4: Summary table with the linkage criteria: single, complete, average and ward. The data set which was clustered is
’Multivariate V2’ with the objective of similarity in time. The silhouette indexes and MSSSE values for a cut K - from 2 to 13
- are presented. The alphas are all equal to one except for the alpha corresponding to the external (outside) temperature which
is set to zero.

Method Internal index Number of cuts to the dendrogram
K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10 K = 11 K = 12 K = 13

Single Silhouette 0.43 0.45 0.37 0.18 0.20 0.17 0.14 0.12 0.10 0.11 0.09 0.05
MSSSE 224.94 131.59 118.06 97.36 51.09 41.78 30.26 22.37 17.58 12.07 9.08 4.30

Complete Silhouette 0.47 0.45 0.22 0.18 0.20 0.16 0.14 0.12 0.11 0.07 0.07 0.05
MSSSE 173.33 131.59 110.89 97.36 51.09 39.57 30.26 22.37 16.96 12.19 7.30 4.30

Average Silhouette 0.47 0.45 0.22 0.18 0.20 0.16 0.14 0.12 0.11 0.11 0.07 0.05
MSSSE 173.33 131.59 110.89 97.36 51.09 39.57 30.26 22.37 16.96 12.07 7.30 4.30

Ward Silhouette 0.47 0.45 0.26 0.24 0.20 0.17 0.14 0.12 0.11 0.11 0.07 0.05
MSSSE 173.33 131.59 80.52 64.63 51.09 41.78 30.26 22.37 16.96 12.07 7.30 4.30
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Figure 7.10: Summary plots with the linkage criteria: single, complete, average and ward. The data set which was clustered is
’Multivariate V2’ with the objective of similarity in time. The silhouette indexes and MSSSE values for a cut K - from 2 to 13
- is presented along with the cophenetic correlation coefficient in the upper right corner. The alphas are all equal to one except
for the alpha corresponding to the external (outside) temperature which is set to zero.

of three. No significant reduction in the MSSSE value is observed for a larger number of cuts; a larger number of
cuts also experience quite a significant decrease in its silhouette index value. Therefore, a cut of three seems to be
the optimal configuration where the compromise between separation and intra-cluster similarity is at its best. The
corresponding dendrogram - with single as linkage criterion and the external temperature excluded - can be seen
in Figure 7.11.

Furthermore, now the corresponding dendrogram in Figure 7.11 will be cut. From analysing the internal
indexes in Figure 7.10, the optimal number of cuts to the dendrogram was found to be three. In Figure 7.12,
the cluster assignment along with the time series are visualised for a cut of three. Note that the different clusters
now spans the columns of the subplot and not the rows as in Section 7.1. Each row spans the different univariate
data sets. For instance, the first row shows the power production of each wind turbine, all of which assigned to
a specific cluster. As can be observed in Figure 7.12, a cut of three to the dendrogram manages to separate the
three most dissimilar turbines from the majority. The within-cluster variance for each cluster can be observed to
be relatively small for all clusters and parameters, except for the time series describing the wind direction. The
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Figure 7.11: Dendrogram with single as linkage criteria and distance as Euclidean distance implemented on ’Multivariate V2’
data set. The alphas are all equal to one except for the alpha corresponding to the external (outside) temperature which is set to
zero.

time series for the wind direction are not consistent with the cluster assignments. For example, the time series
for the wind direction in cluster 2 is not really similar to each other with regards to the objective of similarity
in time. Actually, comparing the wind direction to those of clusters 1 and 3, no significant differences can be
observed between them. Because the time series for the wind directions are so different from each other, including
them would results in a large within-cluster variance (i.e. a large MSSSE value), regardless of the cluster the time
series is assigned to. By including the wind direction when doing the cluster analysis, it could negatively impact
clusters of larger size/entries. Therefore, in the next section, the cluster analysis is repeated on the multivariate
data set where both the external temperature and the wind direction are excluded from the analysis (i.e. setting the
corresponding alphas to zero).
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Figure 7.12: Clustering results from the ’Multivariate V2’ data set with Euclidean distance. Summary plot of a cut of three to
the dendrogram with the linkage criterion set as ’single’ (from Figure 7.11)
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Scenario 2: External temperature and the wind direction disregarded

For this cluster analysis, the alphas are all equal to one except for the alphas corresponding to the external (outside)
temperature and the wind direction which is set to zero. This has the same effect as not including the external
temperature or the wind direction at all in the cluster analysis. In other words, the shape of the multivariate data
set analysed is now (4, 15, 6295) compared to (5, 15, 6295) in the previous scenario. The summary plot and table
for the internal indexes of cutting each dendrogram into k partitions - each with different linkage criterion - can be
seen in Figure 7.13 and Table 7.5. The cophenetic correlation coefficient can be seen in the upper right corner in
the aforementioned figure (Figure 7.13).

Table 7.5: Summary table with the linkage criteria: single, complete, average and ward. The data set which was clustered is
’Multivariate V2’ with the objective of similarity in time. The silhouette indexes and MSSSE values for a cut K - from 2 to
13 - are presented. The alphas are all equal to one except for the alpha corresponding to the external (outside) temperature and
wind direction which is set to zero.

Method Internal index Number of cuts to the dendrogram
K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10 K = 11 K = 12 K = 13

Single Silhouette 0.51 0.55 0.47 0.29 0.13 0.07 0.10 0.07 0.11 0.08 0.07 0.03
MSSSE 180.22 73.91 61.49 42.00 33.07 29.18 20.34 16.10 10.38 8.03 5.55 3.21

Complete Silhouette 0.56 0.55 0.34 0.29 0.13 0.14 0.14 0.13 0.11 0.08 0.05 0.04
MSSSE 120.55 73.91 54.42 42.00 33.07 24.23 17.70 13.81 10.38 8.03 6.25 3.77

Average Silhouette 0.51 0.55 0.47 0.29 0.13 0.14 0.10 0.13 0.11 0.08 0.07 0.03
MSSSE 180.22 73.91 61.49 42.00 33.07 24.23 20.34 13.81 10.38 8.03 5.55 3.21

Ward Silhouette 0.56 0.55 0.34 0.29 0.13 0.14 0.14 0.13 0.11 0.08 0.07 0.03
MSSSE 120.55 73.91 54.42 42.00 33.07 24.23 17.70 13.81 10.38 8.03 5.55 3.21
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Figure 7.13: Summary plots with the linkage criteria: single, complete, average and ward. The data set which was clustered is
’Multivariate V2’ with the objective of similarity in time. The silhouette indexes and MSSSE values for a cut K - from 2 to 13
- is presented along with the cophenetic correlation coefficient in the upper right corner. The alphas are all equal to one except
for the alpha corresponding to the external (outside) temperature and the wind direction which is set to zero.

First of all, reviewing the cophenetic correlation coefficient in Figure 7.13, it can be seen that all dendrograms
experience similar high values, all above or around 0.95. The cophenetic correlation coefficient is close to 1
for all dendrogram; values close to 1 indicate that all the dendrograms represent a high-quality solution. The
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dendrogram with the highest cophenetic index is the dendrogram constructed with the linkage criterion set as
average. Therefore, the dendrogram built with linkage criterion as average will be cut and its assignment will be
analysed. Secondly, reviewing the summary table and the corresponding summary plot, it can be observed that
the silhouette index is largest for a cut of three and slightly smaller for the neighbouring cuts, two and four. The
corresponding MSSSE value from a cut of two to three decreases exponentially from a value of 180.22 at a cut of
two to 73.91 at a cut of three. No significant reduction in the MSSSE value is observed for a larger number of cuts;
a larger number of cuts also experience a quite significant decrease in its silhouette index value. Therefore, a cut of
three seems to be the optimal configuration where the compromise between separation and intra-cluster similarity
is at its best. The corresponding dendrogram - with average as the linkage criterion and the external temperature
and wind direction excluded - can be seen in Figure 7.14.
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Figure 7.14: Dendrogram with average as the linkage criterion and distance as Euclidean distance implemented on ’Multivari-
ate V2’ data set. The alphas are all equal to one except for the alpha corresponding to the external (outside) temperature and
the wind speed which is set to zero.

From observing the dendrogram, one can see that the exact same cluster assignment is obtained by removing
the wind direction from the analysis. When comparing the internal indexes from scenario 1 and scenario 2, a
significant change in the internal indexes can be observed. If one of the univariate data sets which are associated
with a relatively large withing-cluster variance is removed, then the average within-cluster variance for each data set
across all clusters would be reduced. This is exactly what is observed between the two scenarios by comparing their
internal indexes. The corresponding silhouette index has now changed from 0.45 to 0.55 and the corresponding
MSSSE value from 131.59 to 73.91. This is a strong indication that by including the wind direction data set resulted
in significant within-cluster dissimilarities (this can also be observed by looking at the time series assigned to each
cluster in Figure 7.15). If one of the univariate data sets which are associated with a relatively large withing-cluster
variance is removed, then the average within-cluster variance for each data set across all clusters would be reduced.
Regardless of clustering scenario 1 or 2, the same cluster assignment was achieved and will be further analysed in
the consecutive section.
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7.2.2 Analysing the clustering results from similarity in time

In this section, the clustering results from clustering ’Multivariate V2’ data set in Section 7.2.1 (scenario 2) - where
the external temperature and the wind direction is excluded - will be analysed. The corresponding dendrogram
which will be cut can be seen in Figure 7.14. From analysing the internal indexes from the previous section, a
cut of three to the dendrogram was found to be the optimal number of cuts. In Figure 7.15 the cluster assignment
and the time series are visualised for a cut of three. Note that the different clusters now spans the columns of the
subplot and not the rows as in the analysis of the clustering results in Section 7.1. Each row spans the different
univariate data sets. For instance, the first row shows the power production of each wind turbine; all of which
assigned to a specific cluster.
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Figure 7.15: Clustering results from the ’Multivariate V2’ data set with Euclidean distance. Summary plot of a cut of three to
the dendrogram with the linkage criterion set as ’average’ (from Figure 7.14)

Initially, it can be observed that the cutting the dendrogram in three, it manages to separate the three most
dissimilar time series from the majority. The within-cluster variation within each cluster can be observed to be
relatively small for all clusters. There are some time series within cluster 2 which are more dissimilar than the
majority. Visually, turbine 3 (orange), 6 (red) and 16 (orange dashed lines) can be observed to deviate to a certain
degree from the rest: Turbine 3 and 6 deviates only in time series for the gearbox temperature; turbine 16 deviates
(to a small degree) from the majority with respect to all its parameters. Reviewing the dendrogram (Figure 7.14),
it can be observed that for a deeper cut of four to the dendrogram, it would either split the current cluster 1 in
two or separate turbine 16 from cluster 2 (it is hard to say because the horizontal lines have close to identical
height). Either way, a cut of five would both split the current cluster 1 in two and separate turbine 16 from cluster
2. However, reviewing the internal indexes for the analysis (Table 7.5) the silhouette index or the MSSSE value
does not recommend a deeper cut than three. Therefore, the assignment for a cut of three will be further analysed.

Cluster 1: Turbines assigned to this cluster is turbine 10 and 12. Both turbines experience similar behaviour for
the power production (i.e. quite varying levels of power production). A strong correlation between the time series
for the power production, gearbox temperature and generator speed can be observed: A low generator speed results
in a low power production and a reduction in the gearbox temperatures. The physical interpretation of the sudden
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halt in generator speed can be observed by viewing the wind speeds for both turbines. During the second half the
interval both of the turbine experience relatively large wind speeds. These turbines are subjected to rougher wind
conditions than the rest and ultimately results in engaging the brakes more frequently. These turbines can actually
be observed to be close to identical to those of cluster 2 during the first half of the interval, but very dissimilar to
the others when reviewing the second half of the interval.

Cluster 2: The majority of the turbines are associated with this grouping. The turbines associated with this
grouping is characterised by elevated levels of power production as the turbines have more favourable wind con-
dition. More favourable wind conditions result in a more consistence generator speed and power production for
the individual turbines. These turbines associated with this group can be assumed to be operating under normal
conditions and deviations from these should be inspected further.

Cluster 3: Groupings 3 contains only turbine 2. Turbine 2 is characterised by low to no power production and
generator speed. This is also transparent in the gearbox temperature, as the aforementioned time series are highly
correlated to each other. The first assumption is that the turbines experience elevated wind conditions which result
in the brakes being engaged. However, the wind speeds are similar to that of the turbines in cluster 2 and no wind
speeds of critical levels are observed. The lack of power production is not explained by reviewing any of the time
series in the data set. However, reviewing the maintenance log of the corresponding wind park it becomes clear that
turbines 2 have been stopped manually due to maintenance. Even though the physical behaviour is not explained
by the information gathered, the cluster analysis still manages to separate it from the rest as the behaviour is highly
dissimilar to the others.
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7.2.3 Similarity in shape - Results from hierarchical clustering of the normalised data
set

The objective is now to cluster the time series with similarity in shape and not the absolute difference and offset.
Therefore, the clustering analysis is performed on the normalised data set. Because of the invalid measurements
of the external temperature, the corresponding univariate data set will be excluded from the cluster analysis in this
section. The other time series associated with ’Multivariate V2’, after preprocessing, can be found in Appendix
A.3. None of these time series for any of the univariate data sets experiences flat and noisy behaviour (as in
Section 7.1.3 for the generator speed). The time series can, therefore, be normalised prior to clustering with the
objective of similarity in shape. For similarity in shape, the DTW distance (3.7) measure is used instead of the
Euclidean distance. Same constraint as in Section 6.1.4, 6.2.3 and 7.1.3 is applied to the DTW algorithm. DTW
has much higher complexity then Euclidean distance and the calculation of the condensed distance matrix took
now close to two hours. The condensed distance matrix is then fed to the hierarchical clustering algorithm. As
before, the best linkage criterion for the hierarchical clustering algorithm and the optimal number of clusters will
be found with the same internal indexes used so far: Cophenetic correlation coefficient, Silhouette index and
MSSSE. More information about these specific indexes can be found in Chapter 3. The summary plot and table
for the internal indexes of cutting each dendrogram - each with different linkage criterion - into k cuts can be
seen in Figure 7.16 and Table 7.6. The cophenetic correlation coefficient can be seen in the upper right corner in
the aforementioned figure (Figure 7.16). Because we do not wish to include the external temperature (obviously
invalid/wrong measurement) the corresponding alpha is set to zero, disregarding the measurements completely.
The alpha corresponding to the wind direction is kept as 1, as it still might be similar in shape.

Table 7.6: Summary table with the linkage criteria: single, complete, average and ward. The data set which was clustered is
’Multivariate V2’ with the objective of similarity in shape. The silhouette indexes and MSSSE values for a cut K - from 2 to 13
- are presented. The alphas are all equal to one except for the alpha corresponding to the external (outside) temperature which
is set to zero.

Method Internal index Number of cuts to the dendrogram
K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10 K = 11 K = 12 K = 13

Single Silhouette 0.51 0.57 0.33 0.27 0.15 0.08 0.20 0.16 0.13 0.10 0.09 0.08
MSSSE 7.99 5.76 4.84 4.25 3.70 3.15 2.14 1.72 1.35 1.02 0.69 0.39

Complete Silhouette 0.60 0.57 0.33 0.27 0.20 0.21 0.20 0.16 0.13 0.10 0.09 0.08
MSSSE 7.01 5.76 4.84 3.71 3.11 2.57 2.14 1.72 1.35 1.02 0.69 0.39

Average Silhouette 0.60 0.57 0.33 0.22 0.15 0.21 0.20 0.16 0.13 0.10 0.09 0.08
MSSSE 7.01 5.76 4.84 4.30 3.70 2.57 2.14 1.72 1.35 1.02 0.69 0.39

Ward Silhouette 0.60 0.57 0.25 0.28 0.28 0.21 0.20 0.16 0.13 0.10 0.09 0.08
MSSSE 7.01 5.76 4.52 3.83 3.17 2.57 2.14 1.72 1.39 1.02 0.69 0.39

First of all, reviewing the cophenetic correlation coefficient in Figure 7.16, it can be seen that all dendrograms
experience similar high values; most of the dendrograms have high values equal or above 0.95. The cophenetic
correlation coefficient is very close to 1 and well above 0.75 which indicates that the dendrograms represent a
high-quality solution. The dendrogram with the largest cophenetic index is the dendrogram constructed with the
linkage criterion set as single. Therefore, the dendrogram built with the linkage criterion as single will be cut and
its assignment will be analysed. Secondly, reviewing the summary table and the corresponding summary plot, it
can be observed that the silhouette index is largest for a cut of three and decreases exponentially for deeper cuts;
the corresponding MSSSE value has a relatively steep descend from a cut of two to a cut of three, but for deeper
cuts it decreases more slowly. A cut of three seems to be the optimal configuration where the compromise between
separation and intra-cluster similarity is at its best. Therefore, a cut of three to the dendrogram will be further
analysed in the consecutive section. The corresponding dendrogram - with single as the linkage criterion and the
external temperature excluded - can be seen in Figure 7.17. As the Silhouette index and the MSSSE values are
identical for a cut of three to all dendrograms, one could assume that the different dendrograms produce the same
cluster assignments.
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Figure 7.16: Summary plots with the linkage criteria: single, complete, average and ward. The data set which was clustered is
’Multivariate V2’ with the objective of similarity in shape. The silhouette indexes and MSSSE values for a cut K - from 2 to 13
- is presented along with the cophenetic correlation coefficient in the upper right corner. The alphas are all equal to one except
for the alpha corresponding to the external (outside) temperature which is set to zero.
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Figure 7.17: Dendrogram with single as the linkage criterion and distance DTW distance implemented on ’Multivariate V2’
data set. The alphas are all equal to one except for the alpha corresponding to the external (outside) temperature which is set to
zero.
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7.2.4 Analysing the clustering results from similarity in shape
In this section, the clustering results from clustering ’Multivariate V2’ data set in Section 7.2.3 - where the external
temperature is excluded - will be analysed. The corresponding dendrogram which will be cut can be seen in Figure
7.17. In Figure 7.18 the cluster assignment and the time series are visualised for a cut of three.
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Figure 7.18: Clustering results from the ’Multivariate V2’ data set with DTW distance. Summary plot of a cut of three to the
dendrogram with the linkage criterion set as ’single’ (from Figure 7.17)

Initially, it can be observed that a cut of three to the dendrogram results in the exact same cluster assignment
as for similarity in time analysis. It manages to separate the three most dissimilar time series from the majority.
Because the cluster assignment is the same for both objectives, the clusters formed are both similar in time and
similar in shape. The same physical interpretation as for similarity in time in Section 7.2.2 holds for this analysis.
Additional physical interpretation from clustering with the objective of similarity in shape is not transparent.

Furthermore, the similarity in shape analysis was repeated on the data set for scenario 2, described in the
similarity in time analysis. In scenario 2, the time series for the wind direction were also excluded, in addition to
excluding the time series for the external temperature. The clustering results can be seen in Appendix B.4.3. The
internal indexes find the best dendrogram and the optimal number of cuts to the dendrogram to be the same as in
this section. As with the objective of similarity in time, an improvement in the internal indexes was observed. The
silhouette index increases from 0.57 to 0.65 and the MSSSE index decreases from 5.76 to 4.26. This indicates that
the inclusion of the wind direction in the analysis resulted in a significant increase in the within-cluster variance
for each cluster.
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7.3 Summary and comparison
So far in this chapter, two multivariate data set, namely, ’Multivariate V1’ and ’Multivariate V2’, have been clus-
tered and the corresponding clustering results have been analysed. The clustering results and analysis for both
data sets have been performed in Section 7.1 and 7.2, respectively. The major difference between the data sets is
the interval of extraction where the latter have measurements extracted over a period of 22 days, in contrast to the
former where the interval was only 1 day long. As a consequence, the resampling and aggregation intervals are
different for both extractions. The experiment of clustering the second data set (’Multivariate V2’) was supposed
to be repeated on a different set of measurements (same turbines, same sensors and same length of the interval, but
sampled at a different time) in order to strengthen the physical interpretation of the clustering results. However,
because no similar interval could be extracted from the software, this was not possible. Nonetheless, as the results
are similar to that acquired from analysing the other data sets, the validity of the clustering results is still strong.
In this section, a brief summary of the results of the multivariate cluster analyses will be presented, followed by a
comparison between clustering results obtained by clustering the time series of short and modest length.

7.3.1 Similarity in time
In this section, a brief summary of the clustering results from clustering both of the multivariate data sets - with the
objective of similarity in time - will be presented. For the first data set clustered (’Multivariate V1’), the optimal
configuration was found to be the dendrogram with average as the linkage criterion and a corresponding cut of five
to the dendrogram. All univariate time series were weighted equally during this analysis (i.e. all alphas were set to
one). By cutting the dendrogram into five partitions, it managed to separate four turbines into their own separate
cluster; all of which deviated significantly from the majority. In short, by clustering the first data set, it managed
to separate turbines which experienced different levels of the gearbox temperature, wind speed, generator speeds
and the position deviation; a clear separation between the rotating and non-rotating turbines was made by cutting
the dendrogram into two partitions. Deeper cuts separated turbines with regards to smaller dissimilarities, such as
turbine 16, which experienced quite abnormal behaviour throughout the interval.

The cluster analysis of ’Multivariate V2’ data set presented two scenarios which were clustered: Scenario one,
was a cluster analysis on the entire data set where all alphas were set to one except for the one corresponding to
the external temperature, which was set to zero; scenario two, was a cluster analysis where all alphas were set to
one except for the one corresponding to the wind direction and the external temperature, both alphas were set to
zero. For both scenarios, a cut of three to their corresponding dendrogram was found to be the optimal number
of clusters. The corresponding cluster assignments were identical for both scenarios and the assignment can be
viewed in Figure 7.15. From reviewing the cluster assignment, the majorities of the turbines were assigned to
the same cluster; for the two remaining clusters, three turbines were assigned in total. These three turbines were
characterised by power production, gearbox temperature and generator speed which were significantly lower than
the majority. For two of these turbines, the low generator speed could be explained by an alarmingly high wind
speed; however, the third turbine separated did not experience alarmingly high wind speed, but, after reviewing the
maintenance log, was confirmed to be under maintenance and therefore manually stopped.

7.3.2 Similarity in shape
In this section, a brief summary of the clustering results from clustering both of the multivariate data sets - with
the objective of similarity in shape - will be presented. For the first data set (’Multivariate V1’), the optimal
configuration was found to be the dendrogram with average as the linkage criterion and a corresponding cut of four
to the dendrogram. All of the univariate time series were weighted equally during the analysis (i.e. all alphas were
set to one). This separated four of the most dissimilar time series from the majority which could be assumed to
be operating under normal conditions. In short, the algorithm managed to separate turbines which are different in
shape across all dimensions.

For the second data set - similar to the objective of similarity in time - the external temperature was removed
prior to clustering (i.e. scenario 1 from before). The optimal configuration was found to be the dendrogram
with single as the linkage criterion and a corresponding cut of three to the dendrogram. All alphas were set to
one, weighing the different univariate data set equally during clustering. A cut of three separated the three most
dissimilar time series from the majority. Cutting the corresponding dendrogram into three partitions resulted in
the exact same cluster assignment as for similarity in time. This indicates that the time series are both (dis)similar
with respect to the objective of similarity in time and shape. The analysis was also repeated on the reduced data set
(i.e. scenario 2 from before), where the time series associated with the wind direction were removed. The cluster
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assignment resulted in the exact same cluster assignment as for scenario 1, indicating that the time series for the
direction of the wind for the different turbines did not affect the assignment of the cluster.

7.3.3 Comparison - short versus long extraction interval

So, what are the benefits of increasing the length of the time series, and what do we get out of clustering these
rather than the shorter ones? For both cluster analysis - regardless of short or long interval - the turbines were
successfully separated with respect to dissimilarities in the time series. A clear separation between the rotating
and non-rotating turbines was made in both cases. Because many of the parameters included are highly correlated
to each other, the separation between rotating and non-rotating is also analogous to the separation between high
and low gearbox temperature or high and low power production. So, for both cases, the classification of turbines
experiencing different levels of generator speed, gearbox temperature and wind speed were made. The obvious
difference between clustering the data set of the short or long interval is that for the data set with the longer interval,
the similarity (in time and/or shape) is captured over a longer time interval. Then, local discrepancies - for instance,
where the turbines experience different behaviour for a small time span of say 1 hour - becomes less significant
to the dissimilarity between two time series and furthermore the assignment of the turbines. In other words, when
clustering the short time series, the (dis)similarities is more affected by local (dis)similarities than clustering of the
longer time series; clustering of the longer time series captures a more generalised (dis)similarity ((dis)similarity
in time, measured on a higher level). Example of local discrepancies is the oscillatory behaviour observed for the
shorter time series of the gearbox temperature; these oscillations are not present in the longer time series.

Furthermore, the data set which is extracted over a longer time interval includes dynamics which are unob-
served for the data set extracted over a shorter interval. For example, the response of the parameters due to the
engaging of the brakes. This response can be observed for the longer time series but is not present in the shorter
time series. The engaging of the brakes results in an immediate reduction in the power production and generator
speed, and a slower decrease in the gearbox temperature. The threshold value for the wind speed, where the brakes
are engaged/disengaged, can be assumed to lie roughly around 15-20 m/s by reviewing the time series in Figure
7.15. Other dynamics which becomes more transparent when reviewing the longer interval is the behaviour of the
turbines during steady-state conditions and how the relationship between the different parameters are. Oscillatory
behaviour in the time series for the gearbox temperature, such as those found in the shorter data sets, are not
present in the longer time series. This is because the aggregation and resampling intervals are significantly larger
and basically filters out these oscillations. Increasing the length of the time series may include dynamics which
are unobserved during a shorter interval, or it may remove dynamics which are only observed during shorter inter-
vals. The clustering results and the partitioning of the turbines are dependent on which dynamics are observable
during the interval of extraction. Depending on the application and the objective, the length of the extracted time
series should be carefully chosen: Too short interval has the risk that the relevant dynamics of the wind turbines
may be unobserved; too long interval may include these dynamics but may include too much and therefore being
uninformative.

Table 7.7: Comparison between the running time of Euclidean and DTW distance on the different data sets. The running time
refers to the time it takes to calculate all elements in the condensed distance matrix. Note that the Euclidean distance is in
milliseconds and the DTW distance is in seconds.

Data sets Similarity in time Similarity in shape

Euclidean distance [ms] DTW distance
constrained [s]

DTW distance
unconstrained [ms]

Univariate V1 1.32 413 46
Univariate V2 1.31 408 44

Multivariate V1 4.8 1752 161
Multivariate V2 8.4 6958 480

The running time for the different algorithms, or similarity measures, will now be compared. The different
running times for all data sets with the objective of both similarity in time and similarity in shape is presented
in Table 7.7. The running times can be observed to increase for both the Euclidean and the DTW distance when
going from a univariate case to a multivariate case. The running time for calculations of the Euclidean distance
matrix is still relatively low; but the running time for the calculation of the DTW distance matrix, for both the
constrained and the unconstrained case, are getting problematically high. The running time of the constrained case
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goes from roughly 7 minutes in the univariate case to 29 minutes in for the first multivariate data set, and finally,
close to 2 hours for the second and last multivariate data set. The difference between the running time for DTW
distance, unconstrained case versus the constrained case, can be observed to be quite significant with a 10 times
longer running time for the constrained case. The is because a different function is used for calculation of the DTW
distance in the unconstrained case. Sadly, this function did not work in conjunction with the global constraint and,
therefore, the slower version had to be implemented. Several DTW algorithms were compared in Appendix C.2,
in order to find the implementation with the lowest running time and the most accurate results. The comparison
was made for both the constrained and the unconstrained case where the current implementations were superior
to the others. There are possibly other Python libraries which have a lower running times, but to the best of the
author’s knowledge, no such Python libraries exist. With the current implementation of the DTW algorithm, the
poor scalability for the calculations of the DTW distance is illustrated in this theses and is therefore not applicable
for large data sets.

Finally, the longer the time series are - or the longer the aggregation interval is - the less dominant is the
effect of time shifts (time lags). This is because the aggregation and resampling intervals are larger for the data
set extracted over a larger time span and the corresponding length of the simple moving median filter is also
increased. Therefore, all sampled values are more aggregated (or averaged) and less dependent on small shifts
in time. Then, the objective of similarity in time becomes more similar to the objective of similarity in shape.
Recall, that similarity in shape is a more general case of similarity, where the time of occurrence of patterns is not
important (Aghabozorgi et al., 2015; Zhang et al., 2011). In Appendix B.4.5, the normalised ’Multivariate V2’
data set - not the scaled data set as with the previous similarity in time analysis in Section 7.2.1 - is clustered
with the Euclidean distance metric, and the performance is compared to the similarity in shape analysis with DTW
distance in Appendix B.4.3. The same dendrogram and the exact same number of cuts to the dendrogram were
recommended by comparing the internal indexes for both analyses. Actually, the exact same cluster assignment
is achieved by cutting these dendrograms up to and including six partitions. The calculation of the dissimilarity
matrix with Euclidean distance took only 8.4 milliseconds compared to, approximately two hours with the DTW
distance. Based on these results, the following statement applies for data set extracted over a longer interval: If
the cluster accuracy is more important than the running speed, then, the DTW similarity measure should be used;
if the running time is more important than the accuracy, then, the Euclidean distance should be used. But are
longer time series less affected by these time shifts? It is at least obvious that the oscillations observed in the
’Multivariate V1’ data sets could cause some serious ”miscalculations” if the Euclidean distance is used instead of
the DTW distance; very small shifts in time could be the difference between two time series being very similar to
each other or vastly different. Consider the Euclidean distance and the DTW distance between a sinus and cosine
wave. Now consider the following example where two cosine waves have very high-frequency oscillations. If
one of these is subjected to a relatively small time delay - which results in a phase lag of close to 90 degrees -
the corresponding Euclidean distance between these two signals would become vastly different. This time delay
does not need to be large, as long as it causes a significant shift in the phase. Longer time series does not contain
such high-frequency components - at least not with the current extraction settings and preprocessing steps - and is
therefore slightly less affected by small shifts in time (or delays).
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Chapter 8
Discussion

The objective of this thesis is to do exploratory work for using clustering techniques for wind turbine condition-
based monitoring. More specifically, to explore, understand and summarise the practical implications of using
clustering algorithms for automatic classification of wind turbines. To solve this objective, univariate and multi-
variate time series of different lengths have been clustered with respect to both the clustering objective of similarity
in time and similarity in shape. The Euclidean distance was used as the similarity measure to solve the clustering
objective of similarity in time and the DTW distance was used as the similarity measure to solve the clustering
objective of similarity in shape. Both objectives managed to group similar time series and separate dissimilar ones
with respect to their specific similarities. A summary of the major findings from the univariate case was presented
in Section 6.3. Then, a brief summary and a comparison between the clustering results obtained from clustering
the ’Univariate V2’ and the ’Multivariate V1’ data set were presented in Section 7.1.5. Finally, a summary and
a comparison between the length of the multivariate data sets were performed in Section 7.3. The major findings
from these sections will be presented along with the relevance and importance of the research question.

8.1 Clustering time series with the objective of similarity in time
First of all, clustering the time series based on the temperature in the gearbox successfully manages to separate
turbines experiencing different temperature levels. The obvious practical application for this is that it manages
to effectively partition turbines with respect to their overall temperature levels. Because the gearbox temperature
is highly correlated to the rotation of the turbines (or generator), the difference between temperatures can easily
be justified by a rotation speed which is equally different; turbines experiencing relatively low-temperature levels
also experiencing low to no rotation of the generator, and vice versa. By clustering the gearbox temperature, the
algorithm successfully manages to automatically classify wind turbines of different temperature levels, which is
highly correlated to the classification of turbines experiencing different generator speeds. The assumption was
strengthened from clustering the second univariate data set which contains more diverse time series. Initially, it
managed to separate those turbines which are not rotating into the same cluster. However, one turbine - which
is not rotating nor clustered in the same group - experienced elevated temperature levels in the gearbox, despite
not rotating. It was therefore not clustered together with the other non-rotating turbines but was placed in a
separate cluster containing only itself. This is expected as the turbine shows abnormal temperature levels, despite
not rotating. Because the gearbox temperature and the generator speed are highly correlated to each other, the
temperature levels of the gearbox should be similar to the other non-rotating turbines. This demonstrates a situation
for where a turbine has been identified, which possibly require some maintenance or at least additional analysis to
explain this behaviour. Univariate clustering with the objective of similarity in time separates the turbines based
only on their temperature level in the gearbox. If the time series for the generator speed are clustered instead,
it would not manage to separate it from the other non-rotating turbines, but it would partition the turbines with
respect to whether or not they are rotating. This is because the objective of similarity in time for the generator
speed solves a different clustering problem than that of clustering the gearbox temperature. Depending on the time
series clustered, careful considerations must be made when defining the problem which the clustering algorithm
solves. On the other hand, a multivariate case would solve a more bounded clustering problem, which has more
dependencies. This is because, in a multivariate case, the similarity is measured across all dimensions and not only
one specific parameter.

99



Chapter 8. Discussion

Secondly, both multivariate data sets contain a lot of highly correlated time series, which are all highly cor-
related to the rotation of the turbines. The practical applications of classifying turbines with respect to whether
or not they are rotating remain strong for the multivariate case. Actually, the separation between the rotating and
non-rotating turbines are more prominent because of the inclusion of several highly correlated time series (i.e.
gearbox temperature, generator speed and power). Because many of the time series associated with a dynamic pro-
cess are highly correlated to each other, the separation between those dynamics becomes more evident if such time
series are included. A comparison between the dendrograms of the univariate and the multivariate analysis was
made in Section 7.1.5. Recall, that the two data sets were extracted during the exact same time interval and with
the same aggregation and resampling intervals. A comparison between the two dendrograms showed that in both
cases, the cluster assignment was close to identical to each other; only some minor differences could be observed
in the similarities between some of the turbines. This is justified by that the parameter analysed in the univariate
case (i.e. gearbox temperature) explains much of the variance between the different turbines and many of the other
parameters analysed in the multivariate analysis are highly correlated to this parameter. Careful selection of the
different parameters clustered and their correlation to each other must be accounted for prior to any multivariate
clustering analysis; the classification problem changes accordingly.

Thirdly, the length of the extracted time series was increased in Section 7.2. This was done to compare the
clustering result of time series with different intervals; a proper interval should be large enough to avoid having
unobserved dynamics and not too large to avoid superposition of the different dynamics. A summary and compar-
ison between short and long interval were made in Section 7.3. For both cluster analyses - short or long interval
- the wind turbines were successfully separated with regards to their differences in the time series. A clear sep-
aration between turbines experiencing different behaviour in the gearbox temperature, generator speed and wind
speeds was made. When clustering the short time series, the similarity was more affected by local (dis)similarities
than clustering of the longer time series; clustering longer time series captures a more generalised (dis)similarity
((dis)similarity in time on a higher level). Depending on the application and the objective, the length of the ex-
tracted time series should be carefully chosen to include the relevant dynamics and the (dis)similarities one would
like to base the partition on.

Finally, the longer the time series are - or the longer the aggregation interval is - the less dominant is the effect
of time shifts (time lags). This is because the aggregation and resampling intervals are larger for the data set
extracted over a larger time span and the corresponding length of the SMM filter is also increased. Therefore, all
sampled values are more aggregated (or averaged) and less dependent on small shifts in time. Then, the objective
of similarity in time becomes more similar to the objective of similarity in shape. Recall, that similarity in shape
is a more general case of similarity, where the time of occurrence of patterns is not important (Aghabozorgi et al.,
2015; Zhang et al., 2011). In Appendix B.4.5, the normalised ’Multivariate V2’ data set - not the scaled data set as
with the previous similarity in time analysis in Section 7.2.1 - is clustered with the Euclidean distance metric, and
the performance is compared to the similarity in shape analysis with DTW distance in Appendix B.4.3. The same
dendrogram and the exact same number of cuts to the dendrogram were recommended by comparing the internal
indexes for both analyses. Actually, the exact same cluster assignment is achieved by cutting these dendrograms
up to and including six partitions. The calculation of the dissimilarity matrix with Euclidean distance took only 8.4
milliseconds compared to, approximately two hours with the DTW distance. Based on these results, the following
statement applies for data set extracted over a longer interval: If the cluster accuracy is more important than the
running speed, then, the DTW similarity measure should be used; if the running time is more important than the
accuracy, then, the Euclidean distance should be used. But are longer time series less affected by these time shifts?
It is at least obvious that the oscillations observed in the ’Multivariate V1’ data sets could cause some serious
”miscalculations” if the Euclidean distance is used instead of the DTW distance; very small shifts in time could be
the difference between two time series being very similar to each other or vastly different. Consider the Euclidean
distance and the DTW distance between a sinus and cosine wave. Now consider the following example where two
cosine waves have very high-frequency oscillations. If one of these is subjected to a relatively small time delay
- which results in a phase lag of close to 90 degrees - the corresponding Euclidean distance between these two
signals would become vastly different. This time delay does not need to be large, as long as it causes a significant
shift in the phase. Longer time series does not contain such high-frequency components - at least not with the
current extraction settings and preprocessing steps - and is therefore slightly less affected by small shifts in time
(or delays).
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8.2 Clustering time series with the objective of similarity in shape

Clustering with the objective of similarity in shape - for both univariate data sets - effectively manages to sepa-
rate the time series which are dissimilar in shape. Automatic classification of the turbines experiencing different
behaviour (i.e. different shapes) can easily be achieved. The practical implication for this separation is the identi-
fication of turbines which are behaving abnormally compared to the majority. The turbines separated can then be
used as a standpoint for further analysis. Furthermore, due to a strong correlation between the parameters included
in the analysis, the clustering results from the univariate and the multivariate analysis are quite similar. Comparison
between the dendrograms was made in Section 7.1.5 and showed very similar cluster assignment for both cluster
analyses, with the exception of three turbines. Three of the wind turbines were quite dissimilar in shape when only
comparing the gearbox temperature. But when considering additional parameters, the clustering results showed
that the turbines were indeed quite similar to the majority. This is justified by that these turbines have very similar
time series with regards to the new dimensions included in the multivariate case, but quite a different shape of the
time series for which the univariate analysis was based upon. In other words, most of the variance (in terms of
shape) can be observed in the time series analysed in the univariate case (i.e. the gearbox temperature). To put
more emphasis on the similarity between the time series of the gearbox temperature - making it more similar to the
univariate case - the corresponding alpha value can be adjusted to have a higher importance. This will be addressed
in more detail in the next section.

For the multivariate data set with a relatively short extraction interval (i.e. ’Multivariate V1’), the shape of
the time series for the gearbox temperature was primarily dominated by oscillatory behaviour which was caused
by the activation and deactivation of the cooling pump, and the trend associated with the rise or fall in the quality
of the wind conditions. For the second multivariate data set, the interval was increased by a factor of 22 along
with an appropriate increase of the aggregation and resampling intervals. The effects of increasing the aggregation
interval are time series that are smoother and the underlying trend is captured to a greater extent. This removes
the effect of the oscillations in the gearbox temperature caused by the cooling pump. The partitioning of the time
series is based upon the similarity comparison performed on a higher level than for the shorter time series. The
practical applications for clustering short and long time series are different: When clustering the short time series,
the similarity is more affected by local dissimilarities than clustering of the longer time series; clustering of the
longer time series captures a more generalised similarity (similarity in shape on a higher level). In the previous
section (for similarity in time), it was shown that longer time series were less affected by shifts in time and that the
Euclidean distance performs surprisingly well when being used instead of the DTW distance on the normalised
data set.

The time complexity of using the dynamic time warping distance deserves some additional comments. The
running times of the Euclidean distance and the DTW distance on the different data sets can be seen in Table 7.7.
The running times can be observed to increase for both the Euclidean and the DTW distance when going from
a univariate case to a multivariate case. The running time for calculations of the Euclidean distance matrix is
still relatively low; but the running time for the calculation of the DTW distance matrix, for both the constrained
and the unconstrained case, are getting problematically high. The running time of the constrained case goes from
roughly 7 minutes in the univariate case to 29 minutes in for the first multivariate data set, and finally, close to 2
hours for the second and last multivariate data set. The difference between the running time for DTW distance,
unconstrained case versus the constrained case, can be observed to be quite significant with a 10 times longer
running time for the constrained case. The is because a different function is used for calculation of the DTW
distance in the unconstrained case. Sadly, this function did not work in conjunction with the global constraint and,
therefore, a slower version had to be implemented. Several DTW algorithms were compared in Appendix C.2,
in order to find the implementation with the lowest running time and the most accurate results. The comparison
was made for both the constrained and the unconstrained case where the current implementations were superior
to the others. There are possibly other Python libraries which have a lower running times, but to the best of the
author’s knowledge, no such Python libraries exist. The current implementation of the DTW distance has a high
running time and poor scalability and is therefore not suitable for large data sets. The time complexity for the
similarity measure plays a vital role in time series clustering (Roelofsen, 2018) and the experiments illustrate the
poor scalability of the DTW algorithm with only 15 turbines in the data sets. Imagine, a preferred scenario where
the wind park contains several hundred, maybe thousands of wind turbines. In this case, automatic classification by
the implementation of the DTW distance metric becomes impractical and obviously cannot be implemented on live
data streams. However, if the cluster analysis is only supposed to be run a couple of times a day, the significance of
the time complexity places a smaller role when deciding on which similarity measure to implement. For clustering
of longer time series, feature-based methods should be implemented instead, as some of these have almost linear
time complexity.
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8.3 Observations common for both methods
It is important to keep in mind that when performing a cluster analysis on any data set, the clustering algorithm
will always manage to partition the data set into a predetermined number of clusters, except for the trivial case
where all the time series are identical (James et al., 2013). It is up to the user to interpret the meaning of the cluster
assignment (i.e. defining the clustering problem appropriately) and its validity. The definition of the clustering
problem is dependent on many factors, such as the parameters included in the data set, the number of dimensions
analysed, the combination of the weighting vector and how the number of clusters is determined, to mention the
most critical components addressed in this thesis. By carefully considering which parameters to include in the
analysis and adjusting the importance of the individual time series appropriately, the clustering problem can be
customised to the specific application.

The choice of which time series to include in a multivariate cluster analysis and how they are weighted are
important considerations when defining the clustering problem. Without adjusting the weighting vector, all the
individual (dis)similarities are averaged across all dimensions to construct the averaged dissimilarity matrix which
the clustering is based upon. If this is preferred, the corresponding weighting values (alpha) can also be adjusted
and customised to the specific application and objective. For example, if for the gearbox temperature it is much
more critical to separate those experiencing abnormal temperature levels rather than those experiencing different
wind speeds, then, a high weighting would, in this case, be given to gearbox temperature and a lower weighting
would be given to the wind speed parameter. This will weigh the influence of the (dis)similarities observed in
the gearbox temperature more than the (dis)similarities observed in the time series for the wind speed. Another
example where adjusting the alpha mighty become advantageous is in the case where several highly correlated
parameters are included in the analysis. If these are the majority of the parameters included in the multivariate
analysis, their dynamics will dominate the cluster assignment. The corresponding alpha value can, in this case, be
adjusted to average out this effect. The practical applications vary from the choice of which parameters to include
in the analysis and how the corresponding parameters are weighted with the alpha values.

In the multivariate cluster analysis, clustering is performed on time series which are highly correlated to each
other. Clustering of the gearbox temperature, generator speed and power production are all associated with similar
problem definition. The problem definition could be stated in numerous ways, all of which are similar to each other.
For example, the current partitioning of the wind turbines - in the ’Multivariate V2’ analysis - could be defined as
the partitioning or classification of the wind turbines based on the similarity in their power production. Similarly,
this also corresponds to the partition of turbines associated with similarities in generator speed and gearbox tem-
perature. The objective of the partitioning further depends on how similar turbines should be within all clusters;
the compromise between separation and within-cluster similarity becomes an important consideration. With that
in mind, another way of cutting the dendrogram is to decide on an upper threshold value which corresponds to the
largest dissimilarity allowed within each cluster (i.e. largest within-cluster variance for each cluster). The algo-
rithm will then consistently cut the dendrogram to form clusters which have, for example, a within-cluster variance
of less than 5%. However, as the dissimilarities between the separated turbines are getting smaller, the interpreting
the physical meaning and practical application of the partitioning become harder and less trivial to find. Finding
the best compromise between separation and similarity is a difficult task and is an important consideration for all
clustering applications.

Finally, the K-means algorithm was implemented on the first univariate data set in Section 6.1.2. The cluster-
ing results were shown to be inconsistent and the partitioning proves hard to verify even with random initiation,
increasing the number iterations, or adjusting the termination criteria for the optimisation problem. In this thesis,
for a small data set of only 15 turbines (or objects), the benefit from using K-means algorithm over the hierarchi-
cal clustering algorithm is non-existing. However, for the scaled-up version where the number of wind turbines
could potentially be several hundred turbines, maybe thousands, the K-means algorithm should be considered as
it has much lower time complexity than the hierarchical clustering algorithm. Actually, it could be used in con-
junction with the hierarchical clustering algorithm as a hybrid clustering approach to improve the accuracy of the
hierarchical clustering algorithm (Aghabozorgi et al., 2015).
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8.4 Limitations of the study
The limitations of the study will be presented in the following list, where the importance of the limitations is
presented in a decreasing manner (i.e. the first mentioned is of highest importance):

• The number of turbines in each data set analysed were limited to only 15 turbines. The reason for the
small number of turbines analysed is that the current wind park - from which the time series were extracted
from - contained only 16 wind turbines, where 15 of them had measurements which were available for
extraction. Preferably, a wind park of several hundred wind turbines is an optimal scenario and if available,
the experiment should be repeated to verify the results of this thesis. However, it is of the author’s opinion
that even though the data sets contained only 15 turbines, it shows the practical implications for using
clustering techniques to classify turbines within a wind park to a large extent.

• The clustering objectives were limited to similarity in time and similarity in shape, and clustering was not
performed with regards to the similarity in change (i.e. the third and last clustering objective).

• The analysis of the second multivariate data set on a longer time interval was not repeated, but the results
were consistent with the clustering results from that of the other data sets. Thus, the legitimacy of the results
achieved for the second analysis is still strong.

• Only one similarity measure has been implemented for each of the objectives: Euclidean and DTW sim-
ilarity measure. These are the two most commonly used similarity methods in the literature and are very
competitive, as justified in Chapter 2. The scope of this thesis is limited to implementing these two. In the
bigger picture, other similarity measures should also be implemented for comparison.

• The Sakeo-Chiba band for restricting the DTW algorithm were set to a width of 10%, as most of the literature
use this width. The choice was made based upon a comparison between a width of 5%, 10% and the
unconstrained case. No detailed analysis of the clustering accuracy for different widths could be performed
as the ground truth was not available. However, no significant improvements in the accuracy is expected
from correcting the width but should be tested if the ground truth is available and a more detailed approach
is possible.
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Conclusion and future work

9.1 Conclusion

The aim of this thesis was to do exploratory work for using clustering techniques for wind turbine condition-
based monitoring. More specifically, to explore, understand and summarise the practical implications of using
clustering algorithms for automatic classification of wind turbines. Two methods - which has two different clus-
tering objectives, namely similarity in time and similarity in shape - have been implemented to cluster univariate
and multivariate data sets. Both methods effectively managed to partition turbines with regards to their specific
measure of (dis)similarity: Euclidean distance in conjunction with the agglomerative hierarchical clustering algo-
rithm effectively solves the objective of similarity in time; DTW distance in conjunction with the agglomerative
hierarchical clustering algorithm solves the objective of similarity in shape.

Automatic classifications of wind turbines based on their differences were made - this includes classification
of wind turbines experiencing different gearbox temperatures, generator speed, power production and local wind
conditions. The classification of turbines by clustering the univariate and the multivariate data sets show similar
cluster assignments. This is because many of the parameter associated with a dynamic process are highly correlated
to each other. The classification of wind turbines in the multivariate case is, therefore, more prominent as many of
the included parameters as highly correlated to the parameter analysed in the univariate case.

Both clustering methods manage to identify turbines which are experiencing quite abnormal behaviour com-
pared to the others; this can be used as a standpoint for further, and more detailed, analysis of the identified
turbines. The length of the clustered time series plays a vital part in the definition of the clustering problem; a
more generalised clustering problem is obtained by clustering longer time series rather than short. As the length
of the time series increases, the difference between the two clustering objectives becomes less significant. In this
situation, DTW distance can be substituted with the Euclidean distance, as the objectives of similarity in time and
similarity in shape are more similar. Euclidean distance can effectively be used in a scaled-up version, whereas the
DTW distance cannot because of the quadratic time complexity of the DTW algorithm. The poor scalability of the
DTW algorithm is illustrated in the thesis.

A better method for dealing with time shifts should be implemented if the running time is an issue. However,
the benefit of using DTW distance over Euclidean distance is that the measure is not limited to the (dis)similarity
between equal-length time series and can also effectively deal with time shifts. This generally results in higher
accuracy in terms of the clustering results (as shown by numerous papers) and should be used if the increased
running time is of no concern. Both methods solve its corresponding objective with a satisfactory result. This thesis
forms the basis for further research into the practical implications of using clustering algorithms for automatic
classification of wind turbines.

9.2 Future work

This thesis has compared several methods to explore the practical implications of using clustering algorithms for
automatic classification of time series clustering. To better understand the practical implications of the results,
future studies could apply the same methods to a wind park of larger dimensionality. Furthermore, the scope
of the thesis is limited to clustering time series with the shape-based approach, which limits the objective of the
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time series clustering to the objectives of similarity in time and similarity in shape. One interesting continuation
could be the implementation of the third, and the last objective of time series clustering, namely, the objective of
similarity in change. To cluster the objective of similarity in change, the model-based approach as introduced in
Section 2.2.2 should be implemented. It would be interesting to compare the practical implication of clustering
the time series with the third objective and compare it to the remaining objectives analysed in this thesis. Another
continuation could be to find a replacement for the DTW algorithm as the similarity measure was shown to not be
inappropriate for large data sets and therefore impractical to use in a scaled-up cluster analysis. This can be done
by clustering the time series through the feature-based approach; converting the time series into feature vectors
and then these features are clustered with conventional clustering algorithms.
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Beringer, J., Hüllermeier, E., 2006. Online clustering of parallel data streams. Data & Knowledge Engineering
58 (2), 180–204.

Berndt, D. J., Clifford, J., 1994. Using dynamic time warping to find patterns in time series. In: KDD workshop.
Vol. 10, No. 16. Seattle, WA, pp. 359–370.

Bradley, P. S., Fayyad, U. M., Reina, C., et al., 1998. Scaling clustering algorithms to large databases. In: KDD.
Vol. 98. pp. 9–15.

Brownlee, J., December 2016a. How to normalize and standardize time series data in python. https://
machinelearningmastery.com/normalize-standardize-time-series-data-python/,
accessed 09. April 2019.

Brownlee, J., December 2016b. How to resample and interpolate your time series data with python. https://
machinelearningmastery.com/resample-interpolate-time-series-data-python/,
accessed 08. April 2019.

Cassisi, C., Montalto, P., Aliotta, M., Cannata, A., Pulvirenti, A., et al., 2012. Similarity measures and dimension-
ality reduction techniques for time series data mining. InTech.

107

http://arxiv.org/abs/1811.04364
https://blog.algorithmia.com/introduction-to-unsupervised-learning/
https://blog.algorithmia.com/introduction-to-unsupervised-learning/
https://medium.com/@zaidalissa/standardization-vs-normalization-da7a3a308c64
https://medium.com/@zaidalissa/standardization-vs-normalization-da7a3a308c64
https://machinelearningmastery.com/normalize-standardize-time-series-data-python/
https://machinelearningmastery.com/normalize-standardize-time-series-data-python/
https://machinelearningmastery.com/resample-interpolate-time-series-data-python/
https://machinelearningmastery.com/resample-interpolate-time-series-data-python/


Chen, J. R., 2005. Making subsequence time series clustering meaningful. In: Fifth IEEE International Conference
on Data Mining (ICDM’05). IEEE, pp. 8–pp.

Chen, J. R., 2007. Useful clustering outcomes from meaningful time series clustering. In: Proceedings of the
sixth Australasian conference on Data mining and analytics-Volume 70. Australian Computer Society, Inc., pp.
101–109.

Diez, A., Khoa, N. L. D., Makki Alamdari, M., Wang, Y., Chen, F., Runcie, P., Jul 2016. A clustering approach for
structural health monitoring on bridges. Journal of Civil Structural Health Monitoring 6 (3), 429–445.
URL https://doi.org/10.1007/s13349-016-0160-0

Dunn, K., 2010. Process improvement using data. Retrieved on, 11–2016Accessed 20. October 2018.

Duval, L., February 2016. What does prototype mean in clustering? https://dsp.stackexchange.com/
questions/28593/what-does-prototype-mean-in-clustering, [Online discussion group]
Accessed 10. February 2019.

Elsworth, S., September 2017. Dynamic time warping. http://www.maths.manchester.ac.uk/

˜mbbx2se2/Docs/Dynamic time warping(Steven Elsworth).pdf, accessed 22. February 2019.

Esling, P., Agon, C., 2012. Time-series data mining. ACM Computing Surveys (CSUR) 45 (1), 1–34.

Farahani, E., Hosseinzadeh, N., Ektesabi, M., 2012. Comparison of fault-ride-through capability of dual and single-
rotor wind turbines. Renewable Energy 48, 473–481.

Fowlkes, E. B., Mallows, C. L., 1983. A method for comparing two hierarchical clusterings. Journal of
the American Statistical Association 78, 553–569, http://wildfire.stat.ucla.edu/pdflibrary/
fowlkes.pdf.

Fujita, A., Severino, P., Kojima, K., Sato, J. R., Patriota, A. G., Miyano, S., 2012. Functional clustering of time
series gene expression data by granger causality. BMC systems biology 6.

Global Wind Energy Council, 2019a. Africa and middle east installed 962mw new wind capacity in 2018 – over
300mw more than in 2017. https://gwec.net/africa-and-middle-east-installed-962mw-
new-wind-capacity-in-2018-over-300mw-more-than-in-2017/, accessed 09. February
2019.

Global Wind Energy Council, 2019b. Americas install 11.9gw wind capacity in 2018 – increase by 12%. https:
//gwec.net/americas-install-11-9gw-wind-capacity-in-2018-increase-by-12/,
accessed 09. February 2019.
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Appendix

Appendix A - Plots and summary tables for different univariate time series
In this appendix, time series associated with the different data sets is presented, as long as these are not already
presented in Chapter 5. Also, additional time series used for interpreting the results of the univariate clustering
results in Chapter 6 are presented in this appendix. In Appendix A.1, additional time series used during the analysis
of the first univariate data set, ’Univariate V1’, is presented. As for the remaining appendices, A.2 and A.3, the
time series associated with the data sets, ’Multivariate V1’ and ’Multivariate V2’ are presented, respectively.

A.1: Additional time series during the same interval as ’Univariate V1’

Figure A.1.1: Subplots of the generator speed during the same interval as the data ’Univariate V1’.
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Figure A.1.2: Subplots of the positional deviations during the same interval as the data ’Univariate V1’. The spikes indicate a
misinterpretation of the angles as the spikes have values of -360 and 360, which is the same as saying the angle is 0.

Figure A.1.3: Subplots of the wind speed [m/s] measured at the nacelle during the same interval as the data ’Univariate V1’.
All experience quite similar behaviour.

Table A.1.1: Descriptive statistics for the wind speed of Figure A.1.3

WT1 WT2 WT3 WT5 WT6 WT7 WT8 WT9 WT10 WT11 WT12 WT13 WT14 WT15 WT16

count 2881 2881 2881 2881 2881 2881 2881 2881 2881 2881 2881 2881 2881 2881 2881
mean 6.2 6.7 6.1 6.0 6.7 6.8 6.8 6.3 6.5 6.0 6.4 8.0 5.9 6.1 8.1

std 3.1 3.1 3.3 3.4 3.6 3.4 3.4 3.0 3.2 3.1 3.3 4.3 3.1 3.2 3.5
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A.2: Multivariate V1
In this appendix, the time series corresponding to the multivariate data set named ’Multivariate V1’ is presented.
The time series presented are all filtered with an SMM filter of length 5, except for the one corresponding to the
positional deviation (i.e. angles) where phase unwrapping is applied prior to filtering. The specific parameters for
extraction can be seen in Section 5.2.1. The univariate time series corresponding to the generator speed, the wind
speed and the position deviation and - before any preprocessing - can be seen in the consecutive figures (Figure
A.2.1, A.2.2 and A.2.3, respectively). The time series of the position deviation after phase unwrapping is presented
in Figure A.2.4. Then, a comparison between measured rotor and generator speed, after filtering, is presented in
Figure A.2.5 and A.2.6, respectively. At last, the filtered time series for the positional deviations (which is phase
unwrapped first) and the wind speed are presented in FigureA.2.7 and A.2.8, respectively

Initial plots before any preprocessing

First of all, the initial plots without any preprocessing is presented.

Figure A.2.1: Subplots of the generator speed (before any filtering) during the interval as stated in Table 5.4.

Figure A.2.2: Subplots of the wind speed [m/s] (before any filtering) measured at the nacelle during the interval as stated in
Table 5.4. All experience quite similar behaviour except for turbine 10 and 12 which has slightly higher values.
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Figure A.2.3: Subplots of the positional deviations (before any filtering) during the interval as stated in table 5.4. The spikes
indicate misinterpretation of the angles as the spikes are of negative -360 and 360 which is the same as saying the angle is 0.
Before filtering, phase unwrapping is applied to the time series of position deviation. The resulting plot can be viewed in Figure
A.2.4

Phase unwrapping of the position deviation

Figure A.2.4: Subplots of the positional deviations during the same interval as the time series in Figure A.2.3, only after phase
unwrapping. It can be observed that the spikes in the time series associated with turbine 6, in the previous plot, do not appear
in this one.
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Comparison between the measured rotor and generator speed after filtering

As can be seen in these plots, the generator and rotor speed reflects the exact same property. Generator speed is
originally measured where the rotor speed is an approximation of the generator speed. The only difference between
them is the ratio, which is caused by the gearbox mounted between the rotor and the generator shafts. From now
on, the generator speed will be used instead of the rotor speed. If the generator speed misses values, the time series
(which are missing) for the generator speed will be substituted by the rotor speed time series, if available.

Figure A.2.5: Subplots of the rotor speed (after filtering) during the exact same interval as the generator speed provided in
Figure A.2.6.

Figure A.2.6: Subplots of the generator speed (after filtering) during the exact same interval as the rotor speed provided in
Figure A.2.5.
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The remaining preprocessed time series

The consecutive figures presented in this subsection is the positional deviation after phase unwrapping and the
wind speed after an SMM filter of length 5 is applied.

Figure A.2.7: Subplots of the positional deviations during the interval as stated in Table 5.4, only after phase unwrapping.
Considerably less noise can be observed in these plots, compared the time series prior to filtering.

Figure A.2.8: Subplots of the wind speed [m/s] (after filtering) measured at the nacelle during the interval as stated in Table
5.4. All experience quite similar behaviour except for turbine 10 and 12 which has slightly higher values.

Table A.2.1: Descriptive statistics for the wind speed of Figure A.2.8.

WT1 WT2 WT3 WT5 WT6 WT7 WT8 WT9 WT10 WT11 WT12 WT13 WT14 WT15 WT16

count 2881 2881 2881 2881 2881 2881 2881 2881 2881 2881 2881 2881 2881 2881 2881
mean 14.2 14.9 14.4 14.6 14.6 15.8 16.7 12.4 19.6 15.6 21.4 14.1 14.9 16.1 14.3

std 2.9 3.0 2.8 2.7 2.5 2.6 2.6 2.6 3.4 2.5 3.3 2.7 2.3 2.8 3.0
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A.3: Multivariate V2
In this section, the time series corresponding to the multivariate data set named ’Multivariate V2’ is presented.
The time series presented are all filtered with an SMM filter of length 100. The specific parameters for extraction
can be seen in Section 5.2.2. The univariate time series corresponding to power, gearbox temperature, generator
speed, wind direction, wind speed and the external temperature can be seen in the consecutive figure (Figure A.3.1
to A.3.6).
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Figure A.3.1: Subplots of the power [W] for ’Multivariate V2’ post filtering. Length of the moving window was set to 100
and the missing values are handled with forwarding and backward filling.
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Figure A.3.2: Subplots of the gearbox temperature [degrees Celsius] for ’Multivariate V2’ post filtering. Length of the moving
window was set to 100 and the missing values are handled with forwarding and backward filling.
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Figure A.3.3: Subplots of the generator speed [rpm] for ’Multivariate V2’ post filtering. Length of the moving window was
set to 100 and the missing values are handled with forwarding and backward filling.
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Figure A.3.4: Subplots of the wind direction [degrees] for ’Multivariate V2’ post filtering. Length of the moving window was
set to 100 and the missing values are handled with forwarding and backward filling.
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Figure A.3.5: Subplots of the wind speed [m/s] for ’Multivariate V2’ post filtering. Length of the moving window was set to
100 and the missing values are handled with forwarding and backward filling.
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Figure A.3.6: Subplots of the outside temperature [degrees Celsius] for ’Multivariate V2’ post filtering. Length of the moving
window was set to 100 and the missing values are handled with forwarding and backward filling.
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Appendix B - Additional clustering results
Within Appendix B, additional clustering results for all data sets will be presented: Additional clustering results
for clustering ’Univariate V1’, ’Univariate V2’, ’Multivariate V1’ and ’Multivariate V2’ is presented in Appendix
B.1, B.2, B.3 and B.4, respectively.

B.1: Additional clustering results from clustering the ’Univariate V1’ data set

B.1.1: Similarity in shape - thetheDTW algorithm not constrained
The objective is now to cluster the time series with the objective of similarity in shape and not the absolute differ-
ence and offset. Therefore, the clustering analysis is performed on the normalised data set. The similarity measure
used to calculate the dissimilarity matrix (DM) for all time series is now the dynamic time warping (DTW) mea-
surement presented in Section 3.1. As DTW is not supported as a similarity measure for the hierarchical clustering
algorithm the DTW distance between each time series are calculated first and then stored in a dissimilarity matrix
(DM) (as in Equation. (3.3)). The DTW distance can be calculated by numerous libraries in Python. The library
chosen for calculation of the condensed distance matrix between all time series was the library called dtaidis-
tance. The calculation of the DTW will be unconstrained (i.e. Sakeo-Chiba band is not added). DTW has much
higher complexity then Euclidean distance and the calculation of the condensed distance matrix took 46.3 seconds
compared to Euclidean distance which took only 1.32 ms. The condensed distance matrix is furthermore fed to
the hierarchical clustering algorithm. In order to find the appropriate linkage criterion and the optimal number of
clusters, the internal indexes are analysed. The best method for hierarchical clustering algorithm will be found by
comparing the Cophenetic correlation coefficient and the number of cuts to the dendrogram will be determined
by viewing the internal performance indexes: Silhouette index and MSSSE. More information about these specific
indexes can be found in Chapter 3. The summary plot and table for the internal indexes of cutting each dendro-
gram into k partitions - each with different linkage criterion - can be seen in Figure B.1.1 and Table B.1.1. The
cophenetic correlation coefficient can be seen in the upper right corner in the aforementioned figure (Figure B.1.1).

Table B.1.1: Summary table with the linkage criteria: single, complete, average and ward. The data set which was clustered is
’Univariate V1’ with the objective of similarity in shape. The silhouette indexes and MSSSE values for a cut K - from 2 to 13
- is presented.

Method Internal index Number of cuts to the dendrogram
K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10 K = 11 K = 12 K = 13

Single Silhouette 0.65 0.57 0.55 0.43 0.11 0.15 0.14 0.17 0.15 0.12 0.06 0.07
MSSSE 3.08 2.62 1.83 1.39 1.22 0.88 0.70 0.52 0.39 0.30 0.21 0.13

Complete Silhouette 0.64 0.61 0.48 0.43 0.20 0.18 0.16 0.21 0.15 0.12 0.07 0.07
MSSSE 3.05 2.29 1.85 1.39 1.18 0.96 0.82 0.51 0.39 0.30 0.23 0.13

Average Silhouette 0.65 0.61 0.55 0.43 0.13 0.18 0.16 0.21 0.15 0.12 0.06 0.07
MSSSE 3.08 2.29 1.83 1.39 1.19 0.96 0.82 0.51 0.39 0.30 0.21 0.13

Ward Silhouette 0.61 0.58 0.48 0.43 0.20 0.21 0.21 0.21 0.15 0.12 0.07 0.07
MSSSE 3.26 2.37 1.85 1.39 1.18 0.83 0.66 0.51 0.39 0.30 0.23 0.13

First of all, reviewing the cophenetic correlation coefficient in Figure B.1.1, it can be seen that the largest coef-
ficient is observed for the dendrogram constructed with average as the linkage criterion. However, the others still
have relatively high values close to 1, indicating that all the dendrograms represent a fairly high-quality solution.
The dendrogram built with the linkage criterion set to average will be cut. Secondly, reviewing the summary table
and the corresponding summary plot, it can be observed that the silhouette index is largest for a cut of two for both
the average and single dendrograms, which have the highest cophenetic correlation coefficients. For both dendro-
grams, only a small reduction in the silhouette index is observed from going from a cut of two to a cut of three and
four. The values do not decrease exponentially as it did with the objective of similarity in time. This is because the
intercept is somewhat ignored (not the trend though). Reviewing the dendrogram with ’average’ linkage criterion,
the silhouette decreases slowly for a cut of 2, 3 and 4; where afterwards the silhouette index suddenly plunges.
The corresponding MSSSE value decreases exponentially along with deeper cuts in the dendrogram. The values
of the MSSSE values can be observed to be significantly smaller during this analysis, than in the cluster analysis
with similarity in time as the objective. The reasoning for this is because the intercept is included in the analysis
and similarity in time is a stricter measure of similarity. Furthermore the silhouette index and the MSSSE - during
this analysis - indicates that a cut of four has a significant level of the silhouette index and a significant reduction
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Figure B.1.1: Summary plots with the linkage criteria: single, complete, average and ward. The data set which was clustered
is ’Univariate V1’ with the objective of similarity in shape. The silhouette indexes and MSSSE values for a cut K - from 2 to
13 - is presented along with the cophenetic correlation coefficient in the upper right corner.

in the MSSSE from the previous cuts. The best compromise between separation and similarity is, therefore, a cut
of four the dendrogram built with average as the linkage criterion. Deeper cuts to the dendrogram significantly
reduce the silhouette index value and an insignificant reduction in the MSSSE value. The optimal configuration
for the current data set is chosen to be average as the linkage criterion and cutting the dendrogram such that it
constructs four partitions. A deeper insight will be obtained by reviewing the corresponding dendrogram along
with the assigned clusters.
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Figure B.1.2: Hierarchical clustering with DTW as similarity measures.
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The resulting dendrogram - with average as the linkage criterion - can be viewed in Figure B.1.2. Viewing the
dendrogram and the corresponding time series associated with each partition, a deeper cut of five to the dendrogram
would result in a significant reduction in the average distance between each cluster. The difference can be seen
by reviewing the time series in Figure B.1.3 where a cut of five manages to separate the most abnormal looking
time series to those which experience similar behaviour. However, as the silhouette index value decreases quite
significantly from a cut of four to a cut of five, a cut of five is disregarded. Therefore, the physical interpretation
of a cut of four will be examined in greater detail in the consecutive section.

B.1.2: Analysing the clustering results from similarity in shape where DTW algorithm is
not constrained
The corresponding dendrogram with the objective of clustering the time series with respect to similarity in shape
can be seen in Figure B.1.3. The absolute difference and the offset will be ignored to a certain degree, as nor-
malising the data set will remove the offset and scale the data between 0 and 1 (assuming there are no negative
values). Clustering with the objective of similarity in shape manages to separate turbines with different behaviour
pattern and manages to group time series subjected to shifts in time. For instance, a cosine wave and a sinus wave
are pretty similar when using DTW, but are drastically different when using Euclidean. In other words, these are
similar in shape but not in time.
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Figure B.1.3: Summary of hierarchical clustering with DTW as similarity measure and the linkage criterion set to ’average’

Initially, we can observe that using DTW as the distance measure the clustering algorithm manages to group
the most similar time series in shape and separate the most dissimilar time series. A cut of four separates the three
most abnormal time series - time series WT2, WT12 and WT16 - into its own separate clusters (from now on called
group A, B and C). A deeper cut of five would also separate WT9 into its own cluster which makes sense when
looking at the first quarter of the interval. However, reviewing the remaining interval, the time series looks pretty
similar to the rest. This can be verified by reviewing Figure B.1.3. Note that the size of the branches is not scaled
properly, which is one of the limitations to the dtaidistance library. The number should be observed instead; it
indicates the average distance when trees are merged together. Time series associated with turbine 2 and 16 are
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merged at an average distance of 6.91, which is slightly higher than the merge of the time series associated with
turbine 9 and the majority (currently assigned to group D), 6.27. The rest of the time series are clustered together
within the fourth group, group D. Oscillations can be observed for all time series and is the results of the cooling
pump which is enabled and disabled when hitting its corresponding threshold values. Analysis of the physical
interpretation of the clustering assignment will be performed in the consecutive paragraphs.

Group A: Contains only the time series associated with wind turbine 2. The time series are characterised by
medium frequency oscillations and constant mean throughout its entire length. The cooling pump enables when
reaching the upper values, cooling it down to its minimum value. The time series does not experience a decreasing
trend towards the end; the wind, on the other hand, experiences this trend and should result in lower rotations and
lower temperature levels for the associated turbine. Since it does not follow the same trend as the local wind, it is
a strong indication that the turbines operate unaffected by the wind. The only possible explanation for this is that
the turbine is not rotating. This can be verified by reviewing the generator speed from the previous section.

Group B: Contains only the time series associated with wind turbine 12. The time series are characterised
by quite abnormal behaviour pattern in the initial 5 hours (02:00 - 07:00), but pretty similar behaviour as the
majority after this interval. As with the objective of similarity in time, the explanation for this is that the turbine
experience period at the beginning where the generator/rotor is not rotating. The physical interpretation of this is
not transparent in the time series for the wind speed or wind direction. One would expect that the wind during the
initial period are too high such that the brakes are engaged, but this is not the case.

Group C: Contains only the time series associated with wind turbine 16. The time series are characterised by
oscillation with a frequency close to half of the time series in group A. It also has a lower amplitude than the time
series in group A. This might indicate that the settings for the cooling pump are different: Especially with regards
to the enable and disable threshold values. This explains the slightly elevated temperature levels also but proves
hard to verify as such information is not available. Other than that, the same interpretation as for turbine in group
A holds: The turbine is not rotating as it does not follow the trend of its local wind conditions.

Group D: Contains the rest of the turbines. All these turbines experience similar behaviour: relatively high-
frequency oscillation, roughly the same amplitude and a decreasing trend towards the end. This is highly correlated
to the behaviour of the local wind conditions for each turbine. The hypothesis for these turbines is that they are
actively rotating and could be further interpreted as operation under normal conditions. This is verified by viewing
the generator speed for all turbines. One small exception is turbine 9 which have similar behaviour as the turbine
in group B. Same physical interpretation as for group B holds for turbine 9.
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B.2: Additional clustering results from clustering the ’Univariate v2’ data set

B.2.1: Similarity in shape - DTW algorithm not constrained
The objective is now to cluster the time series with regards to the objective of similarity in shape and not the
absolute difference and offset. Therefore, the clustering analysis is performed on the normalised data set. The
similarity measure used to calculate the dissimilarity matrix (DM) for all time series is now the dynamic time
warping (DTW) measurement presented in Section 3.1. The DTW algorithm is implemented with no constraints.
DTW has much higher complexity then Euclidean distance and the calculation of the condensed distance matrix
took 44.3 seconds compared to Euclidean distance which took only 1.31 ms. The condensed distance matrix
is furthermore fed to the hierarchical clustering algorithm and solved with the corresponding linkage criterion
set. The optimal hierarchical clustering method and the optimal number of clusters will be found with the same
internal indexes used so far: Cophenetic correlation coefficient, Silhouette index and MSSSE. More information
about these specific indexes can be found in Chapter 3. The summary plot and table for the internal indexes of
cutting each dendrogram - each with different linkage criterion - into k cuts can be seen in Figure B.2.1 and Table
B.2.1. The cophenetic correlation coefficient can be seen in the upper right corner in the aforementioned figure
(Figure B.2.1).

Table B.2.1: Summary table for each linkage criterion supported by the hierarchical clustering algorithm: single, complete,
average and ward. The silhouette index and mean sum of the sum of squared error is plotted for each cut in the dendrogram.

Method Internal index Number of cuts to the dendrogram
K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10 K = 11 K = 12 K = 13

Single Silhouette 0.41 0.40 0.37 0.35 0.38 0.26 0.22 0.19 0.23 0.20 0.18 0.13
MSSSE 5.89 5.08 4.37 3.81 3.26 2.65 2.31 1.64 1.11 0.82 0.56 0.33

Complete Silhouette 0.31 0.36 0.35 0.36 0.38 0.25 0.23 0.19 0.21 0.20 0.18 0.13
MSSSE 6.51 5.52 4.71 3.83 3.26 2.47 2.01 1.67 1.13 0.82 0.56 0.33

Average Silhouette 0.41 0.40 0.37 0.36 0.38 0.26 0.24 0.20 0.23 0.20 0.18 0.13
MSSSE 5.89 5.08 4.37 3.83 3.26 2.65 1.88 1.55 1.11 0.82 0.56 0.33

Ward Silhouette 0.41 0.40 0.35 0.36 0.23 0.25 0.24 0.27 0.23 0.20 0.18 0.13
MSSSE 5.89 5.08 4.54 3.83 2.96 2.39 1.88 1.44 1.11 0.82 0.56 0.33
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Figure B.2.1: Summary plot for each linkage criterion supported by the hierarchical clustering algorithm: single, complete,
average and ward. The silhouette index and mean sum of the sum of squared error is plotted for each cut in the dendrogram.

First of all, reviewing the cophenetic correlation coefficient in Figure B.2.1, it can be observed that all den-
drograms have relatively high coefficients close to 1 (all over 0.75). The dendrogram constructed with the linkage
criterion set to average has the largest correlation coefficient which represents a dendrogram with a high-quality
solution. The dendrogram built with average as the linkage criterion will, therefore, be cut and its assignments
will be analysed. Secondly, reviewing the summary table and the corresponding summary plot, it can be observed
that the silhouette index is largest for a cut of two; the silhouette index value is 0.41. The second and third highest
peaks are at a cut of three and a cut of six. The silhouette index value for a cut of six is 0.38, which is only a 0.03
decrease from a cut of two. The corresponding MSSSE value decreases from 5.89 to 3.26, from a cut of two to
a cut of six. The reduction is significant for the MSSSE index and only a small reduction in the silhouette index
value is observed during this interval. Arguably, a cut of two, three and six could be chosen as the optimal number
of cuts. The difference between the three different cuts is simply the ratio between separation and intra-cluster sim-
ilarity: A cut of three has the largest separation between the clusters and a relatively large intra-cluster similarity;
a cut of six has a smaller separation between the clusters, but also a relatively small intra-cluster similarity. The
latter partitions time series based on less significant differences and would be more interesting to analyse in terms
of acquiring physical interpretations and finding time series which are behaving slightly different from the rest.
Therefore, a cut of six to the dendrogram is chosen as the best compromise between separation and intra-cluster
similarity. The optimal configuration for the data set is to cluster the data set with average as the linkage criterion
and cut the dendrogram to form six clusters. The dendrogram - with average as the linkage criterion - along with
visualisation of the corresponding time series can be seen in Figure B.2.2 and B.2.3 (in the consecutive section),
respectively.
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Figure B.2.2: Dendrogram with average as linkage criterion and distance as the DTW distance implemented on ’Univariate V2’
data set.

B.2.2: Analysing the clustering results from similarity in shape where the DTW algorithm
is not constrained
In this section, the clustering results from clustering ’Univariate V2’ data set in Section 6.2.3 will be analysed.
The corresponding dendrogram with the objective of clustering the time series with respect to similarity in shape
can be seen in Figure B.2.2 or B.2.3. The absolute difference and the offset will be ignored to a certain degree, as
normalising the data set will remove the offset and scale the data between 0 and 1 (assuming there are no negative
values). From analysing the internal indexes in the previous section, best cut to the dendrogram was found to be a
cut of six.

Initially, we can observe that when using DTW as the distance measure for calculating the dissimilarity matrix
it manages to group the most similar time series in shape and separate the most dissimilar ones from the rest. This
is especially true for a cut of two to dendrogram with ’average’ as the linkage criterion. This clearly separates the
time series experiencing rather stationary periodically oscillations of higher frequency to the one experiencing quite
different behaviour. A much more detailed separation which results in only similar time series within each cluster
is achieved by cutting the dendrogram in six partitions, as justified in the previous section. A cut of six separates
- from top to bottom in Figure B.2.3 - WT12, WT16, WT10 and WT2 into its own cluster containing only itself.
The grouping - from top to bottom - are now the following: Group A: {WT13, WT6, WT3}; Group B: {WT12};
Group C: {WT16}; Group D: {WT10}; Group E: {WT2}; Group F: {WT14, WT5, WT9, WT1, WT15, WT8,
WT7, WT11}. The plots for the generator speed, position deviation and the wind speed is presented in Section
5.2.1. The summary table for all turbines with descriptive statistics is presented in the analysis of similarity in time
in Table 6.5. These parameters will be used to interpret the physical meaning behind the resulting partitioning.
The groupings will now be analysed and interpreted in the following paragraphs.

Group A: Contains time series from turbine 3, 6 and 13. These are characterised by low to no oscillations with
small fluctuation in the signal. The cooling pump - which is causing the oscillations - does not seem to be engaged
during the entire interval. The temperature remains relatively constant through the interval, with the exception of
one bump after the midpoint. The bump can be explained by viewing the time series for the wind speed in Figure
A.2.8 which experience a decrease and right after an increase in wind speed (right after the midpoint). The lack
of oscillatory behaviour could be explained either that the threshold values for the cooling pump are very small or
that the gearbox temperature reaches its maximum value, which is lower than the upper threshold for the cooling
pump (i.e. when the cooling pump should be activated). The latter could be further explained by that the parts
within the gearbox are less worn out or better lubricated, such that the gearbox temperature will not exceed this
threshold value for the pump regardless of rotor/generator speed. The former hypothesis is most likely not correct
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Figure B.2.3: Summary of hierarchical clustering with DTW as similarity measure. Average is chosen as the linkage criterion.

as the overall variance is quite large. The latter hypothesis - as before - proves hard to verify.

Group B: Contains only the time series corresponding to turbine 12. The time series is characterised by low-
frequency oscillations. The signal also contains a higher frequency signal component with much lower amplitude.
The cooling pump enables when it reaches the upper value and then cools the gearbox down until it reaches the
minimum value (both values is set by the parameters for the cooling pump). The wind experiences sudden decrease
and then increase right after the midpoint; the time series does not indicate any changes after the midpoint due to
this. This indicates that the gearbox temperature is not dependent on the wind speed. The only case in which this
is true is when the turbine is not rotating. As with the objective of similarity in time, the wind speed was found to
be of critically high values, indicating that the brakes must be engaged.

Group C: Contains only the time series corresponding to turbine 16. The turbine has quite varying gearbox tem-
perature and none to little oscillations. Intervals where the gearbox temperature slightly decreasing in a ’straight’
line indicates the intervals where the turbine is not rotating. Same interpretation as for analysis of similarity in time
applies: the temperature varies with the generator speed. However, the generator does not seem to stop because
of the lack of wind - or position deviation different from zero - but from different reasons. Reasons could be the
malfunctioning of the brakes or the malfunctioning of the pitch controller of the blades or something completely
else. These assumptions prove hard to verify and additional maintenance might be required.

Group D: Contains only the time series corresponding to turbine 10. It characteristics are similar to that of the
time series assigned to group B but the frequency for which it oscillates is decreased by a factor of three. Same
interpretation as for group B applies to this: the temperature does not follow the same trend as the wind speed.
However, after reviewing the wind speed, it is clear that the wind speed experience critically high levels, indicating
that the brakes have to be engaged.
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Group E: Contains only the time series corresponding to turbine 2. No periodic oscillations are observed, but it
is affected by the change in the wind slightly after the midpoint. Reviewing the generator speed it becomes clear
that during that period it experiences a peak value where the turbine is actually rotating. This explains the sudden
increase in temperature levels observed in the gearbox. During the remainder of the interval the turbine is not
rotating or increasing its temperature (rather trying to reach its equilibrium value with the temperature outside).
No oscillatory behaviour is present which might indicate that the thresholds for the cooling pump are not exceeded.

Group F: Turbines associated with this group contains the majority of the turbines and could indicate normal
operational behaviour for rotating turbines. The assigned wind turbines within this group are actually the same
assignment - with the exception of turbine 11 and 13 - formed from clustering with the objective of similarity in
time. Turbine 13 was not found to be of any interest for the analysis of similarity in time. But during this analysis,
it can be seen that the shape is quite different; it does not experience the same periodic oscillations as the turbines
in this group (group F). The faster the turbines rotate the more heat they produce which requires more cooling.
The upper threshold for the cooling pump is reached at the peaks and the cooling pump enables until it reaches
the lower threshold. This explains the higher frequency oscillations observed for the temperatures. The fact that
it reaches the upper threshold very often suggest that the somewhere in the gearbox additional heat is produced
because of poor lubrication or worn out parts. Viewing the dendrogram, a deeper cut would separate turbine 11
from this group (group F). The time series of the gearbox temperature corresponding to this has a larger frequency
than the rest of group F, despite having the same rotational speed and wind conditions. A possible explanation
for this is that the component in the gearbox of turbine 11 is even more worn out or worse lubrication than the
remaining turbines in this group. If this is the case, the temperature increases faster along with an appropriate
reaction of the cooling pumps(i.e. faster cooling).
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B.3: Additional clustering results from clustering the ’Multivariate v1’ data set

B.3.1: Similarity in shape - DTW algorithm not constrained
The objective is now to cluster the time series with the objective of similarity in shape and not the absolute dif-
ference and offset. Therefore, the clustering analysis is performed on the normalised (and partly scaled) data set.
The similarity measure used between time series is the dynamic time warping (DTW) measurement presented in
Section 3.1. Global restrictions on the DTW algorithm is not implemented (i.e. unconstrained case). DTW has
much higher complexity then Euclidean distance and the calculation of the condensed distance matrix takes d ad-
ditional time: d refers to the dimension of the multivariate data set. The calculation of the dissimilarity matrices
took 161.21 seconds (78.64 seconds parallelization with two cores). The condensed distance matrix is then fed
to the hierarchical clustering algorithm. The optimal hierarchical clustering method and the optimal number of
clusters will be found with the same internal indexes used so far: Cophenetic correlation coefficient, Silhouette
index and MSSSE. More information about these specific indexes can be found in Chapter 3. In the first runs, the
alphas are all equal to one, which weight the different univariate time series equally. The summary plot and table
for the internal indexes of cutting each dendrogram - each with different linkage criterion - into k cuts can be seen
in Figure B.3.1 and Table B.3.1. The cophenetic correlation coefficient can be seen in the upper right corner in
Figure B.3.1.

Table B.3.1: Summary table with the linkage criteria: single, complete, average and ward. The data set which was clustered is
’Multivariate V1’ with the objective of similarity in shape. The silhouette indexes and MSSSE values for a cut K - from 2 to
13 - is presented. Alpha for all univariate data sets is equal to one.

Method Internal index Number of cuts to the dendrogram
K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10 K = 11 K = 12 K = 13

Single Silhouette 0.62 0.57 0.53 0.30 0.20 0.14 0.12 0.07 0.09 0.08 0.07 0.05
MSSSE 4.47 3.62 3.17 2.47 2.19 1.93 1.65 1.41 1.08 0.85 0.59 0.39

Complete Silhouette 0.64 0.57 0.53 0.30 0.20 0.22 0.17 0.11 0.09 0.09 0.07 0.05
MSSSE 4.45 3.62 3.17 2.47 2.19 1.82 1.58 1.33 1.08 0.82 0.59 0.39

Average Silhouette 0.64 0.57 0.53 0.30 0.20 0.22 0.17 0.11 0.09 0.09 0.07 0.05
MSSSE 4.45 3.62 3.17 2.47 2.19 1.82 1.58 1.33 1.08 0.82 0.59 0.39

Ward Silhouette 0.64 0.57 0.34 0.30 0.21 0.22 0.17 0.15 0.15 0.09 0.07 0.05
MSSSE 4.45 3.62 2.91 2.47 2.13 1.82 1.58 1.33 1.08 0.82 0.59 0.39
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Figure B.3.1: Summary plots with the linkage criteria: single, complete, average and ward. The data set which was clustered
is ’Multivariate V1’ with the objective of similarity in shape. The silhouette indexes and MSSSE values for a cut K - from 2 to
13 - is presented along with the cophenetic correlation coefficient in the upper right corner.

First of all, reviewing the cophenetic correlation coefficient in Figure B.3.1, it can be observed that all of the
dendrograms have values equal or above 0.965. These values are very close to 1 and indicate a high-quality
solution. The dendrogram with the highest cophenetic index is the dendrogram constructed with the linkage
criterion set as average. Therefore, the dendrogram built with the linkage criterion set as average will be cut and its
assignment will be analysed. Secondly, reviewing the summary table and the corresponding summary plot, it can
be observed that the silhouette index is largest for a cut of two and decreases quite slowly up to a cut of four where
it suddenly decreases quite rapidly. The corresponding MSSSE value during these periods decreases relatively
steep. A fair reduction in the MSSSE value can be observed by cutting the dendrogram into four partitions; the
corresponding silhouette value still remains relatively high. Further reduction will decrease the silhouette index
value too much. Therefore, a cut of four seems to be the optimal configuration where the compromise between
separation and similarity is at its best. A cut of four will be further analysed in the consecutive section. The
corresponding dendrogram - with average as linkage criterion - can be seen in Figure B.3.2.

B.3.2: Analysing the clustering results from similarity in shape where the DTW algorithm
is not constrained

In this section, the clustering results from clustering ’Multivariate V1’ data set in Appendix B.3.1 - with respect
to the objective of similarity in shape - will be analysed. The corresponding dendrogram which will be cut can be
seen in Figure B.3.2. In Figure B.3.3, the cluster assignment and the time series are visualised for a cut of four. As
before, the summary of the gearbox temperature, generator speed, wind speed and position deviation (difference in
angle between the direction of the wind and the direction of the nacelle) can be seen in Table 7.2 in Section 7.1.2.

Initially, one can observe that the turbines are separated well with respect to their overall similarity in shape.
As with the objective of similarity in time, most of the dissimilarity between the clusters can be observed in the
time series for the gearbox temperature. Cluster 1 can be observed to contain three (WT3, WT6, WT13) time
series which are quite different in shape, compared to the rest. Same explanation for similarity in time holds here:
The turbines have very similar shapes when reviewing the wind speed, generator speed and position deviation.
Actually, cutting the current dendrogram a cut deeper (i.e. number of cuts equal to five) would separate the three
turbines within cluster 1 into its own separate cluster. However, this is not indicated by the quite significant
reduction in the silhouette index from a cut of four to a cut of five; but it is indicated by a significant decrease in
the MSSSE value. More interestingly, the alpha values for weighing the different univariate data sets - which the
multivariate data set is comprised of - can be modified. If we want stricter clustering of the gearbox temperature
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Figure B.3.2: Dendrogram with average as the linkage criterion and distance as DTW distance implemented on ’Multivari-
ate V1’ data set. The weighting vector α is set to 1 for all elements.
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Figure B.3.3: Clustering results from the ’Multivariate V1’ data set with DTW distance. Summary plot of a cut of four to the
dendrogram with the linkage criterion set as ’average’.

one could increase the corresponding alpha value associated with it. This is illustrated in Appendix B.2 and shows
an optimal configuration which cuts the dendrogram into five partitions; this splits turbine 3, 6 and 13 from the
current cluster 1 to an own separate cluster. Nonetheless, the physical interpretation of the underlying turbines
within each cluster for the current cluster assignment seen in Figure B.3.3 will be further analysed in the next
paragraphs.

Cluster 1: Gearbox temperature oscillates quite heavily with much higher frequency than the rest. These time
series are characterised by high generator speeds and a position deviation of zero. As the majority of the clustered
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turbines is assigned to this cluster - and their behaviour is expected - these turbines are assumed to be under normal
operational conditions. However, there are three outliers which can be observed in the plots for the gearbox
temperature: turbine 3, 6, and 13. These are very similar to the others with respect to all traits but the gearbox
temperature; the time series for the gearbox does not experience similar oscillations. Oscillations are caused by the
activation and deactivation of the cooling pump. The lack of oscillations might indicate some fault in the cooling
system. However, the temperature levels are not critical: Based on this, the settings for the cooling system might
be different from the others.

Cluster 2: This cluster contains both turbine 10 and 12. These turbines are characterised by a gearbox temper-
ature with a much lower frequency than those of cluster 1. The position deviation is nonzero - which means that
the turbine is not directed against the wind - and the time series associated with the generator speed shows that
the turbine is not rotating. Further inspection shows that the generator is not rotating because of the extreme wind
conditions (and of course its alignment which is not directed against the wind direction) it experiences.

Cluster 3: Contains only itself because the time series for the gearbox temperature is very different from the
rest. Wind speed, generator speed and position deviation have similar behaviours. Reviewing the generator speed
it becomes clear that this turbine is not rotating. Note that this turbine is under maintenance as stated previously.

Cluster 4: Contains only itself because the time series for the gearbox temperature and the generator speed is
very different from the rest. The gearbox speed is varying quite heavily between the minimum and the maximum
value. This results in an equally varying gearbox temperature. It can also be observed that the oscillations for the
gearbox temperature occur only when the turbine is rotating.
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B.3.3: Similarity in shape - DTW is constrained and the alpha corresponding to the gear-
box temperature is modified

For this analysis, the same experiment as in Section 7.1.3 is repeated with a modification to the alpha values.
The alphas are now all equal to one except for the alpha corresponding to the gearbox temperature which is set
to eighth. This has the effect that it weights the dissimilarities for the gearbox temperature eighth time as much
as for the others. For instance, if the dissimilarity between turbine 1 and turbine 2 was 30 (with respect to the
gearbox temperature), it now would be 8 ∗ 30 = 240. Other than the modification of the alpha value, all other
parameters are identical to that of the analysis in Section 7.1.3; the analysis is included with constraints to the
DTW algorithm. The summary plot and table for the internal indexes of cutting each dendrogram into k partitions
- each with different linkage criterion - can be seen in Figure B.3.4 and Table B.3.2. The cophenetic correlation
coefficient can be seen in the upper right corner in the aforementioned figure (Figure B.3.4). It must be noted that
the internal indexes are all standardised such that the comparison between different models is possible.

Table B.3.2: Summary table with the linkage criteria: single, complete, average and ward. The data set which was clustered is
’Multivariate V2’ with the objective of similarity in time. The silhouette indexes and MSSSE values for a cut K - from 2 to 13
- are presented. The alphas are all equal to one except for the alpha corresponding to the gearbox temperature which is set to 8.

Method Internal index Number of cuts to the dendrogram
K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10 K = 11 K = 12 K = 13

Single Silhouette 0.33 0.29 0.37 0.37 0.33 0.32 0.21 0.14 0.13 0.14 0.14 0.11
MSSSE 7.70 6.62 5.25 3.87 3.26 2.69 2.19 1.86 1.27 0.88 0.59 0.36

Complete Silhouette 0.37 0.39 0.37 0.37 0.35 0.32 0.21 0.19 0.15 0.09 0.14 0.11
MSSSE 7.23 6.15 4.77 3.87 3.30 2.69 2.19 1.60 1.31 0.98 0.59 0.36

Average Silhouette 0.39 0.39 0.37 0.37 0.35 0.32 0.21 0.19 0.13 0.09 0.14 0.11
MSSSE 7.07 6.15 5.25 3.87 3.30 2.69 2.19 1.60 1.27 0.98 0.59 0.36

Ward Silhouette 0.34 0.37 0.37 0.37 0.35 0.23 0.20 0.19 0.20 0.20 0.14 0.11
MSSSE 6.90 5.63 4.77 3.87 3.30 2.63 2.01 1.60 1.21 0.93 0.59 0.36
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Figure B.3.4: Summary plots with the linkage criteria: single, complete, average and ward. The data set which was clustered
is ’Multivariate V1’ with the objective of similarity in time. The silhouette indexes and MSSSE values for a cut K - from 2
to 13 - is presented along with the cophenetic correlation coefficient in the upper right corner. The alphas are all equal to one
except for the alpha corresponding to the gearbox temperature which is set to 8.

First of all, reviewing the cophenetic correlation coefficient in Figure B.3.4, it can be seen that all dendrograms
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experience similar high values; two of them have values which are above 0.95. The cophenetic correlation coeffi-
cient is close to 1 for all dendrogram; values close to 1 indicate that all the dendrograms represent a high-quality
solution. The dendrogram with the highest cophenetic index is the dendrogram constructed with the linkage crite-
rion set as average. The dendrogram built with the linkage criterion set as average will be cut and its assignment
will be analysed. Secondly, reviewing the summary table and the corresponding summary plot, it can be observed
that the silhouette index is largest for a cut of two and three and slightly decreases until a cut of five where it starts
to decrease more rapidly. The corresponding MSSSE value from a cut of two to five decreases significantly for all
these cuts. No significant reduction in the MSSSE value is observed for larger cuts; larger cuts also experience a
quite significant decrease in its Silhouette index value. A cut of five to the dendrogram results in a large silhouette
index and a relatively low MSSSE value. A cut of five seems to be the optimal configuration where the compro-
mise between separation and intra-cluster similarity is at its best. The corresponding dendrogram - with average
as linkage criterion - can be seen in Figure B.3.5. In Figure B.3.6, the cluster assignment and the time series are
visualised for a cut of five.
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Figure B.3.5: Dendrogram with average as the linkage criterion and distance as Euclidean distance implemented on ’Multi-
variate V2’ data set. The alphas are all equal to one except for the alpha corresponding to the gearbox temperature which is set
to 8.
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Figure B.3.6: Clustering results from the ’Multivariate V1’ data set with Euclidean distance. Summary plot of a cut of four to
the dendrogram with the linkage criterion set as ’average’ (from Figure B.3.5)
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B.4: Additional clustering results from clustering the ’Multivariate v2’ data set

B.4.1: Similarity in shape - DTW algorithm not constrained and a dimension of 5
The objective is now to cluster the time series with the objective of similarity in shape and not the absolute differ-
ence and offset. Therefore, the clustering analysis is performed on the normalised data set. Because of the invalid
measurements of the external temperature, the corresponding univariate data set will be excluded from cluster
analysis in this section. The other time series associated with ’Multivariate V2’, post-filtering, can be observed
in Appendix A.3. None of the time series for any of the univariate data sets experiences flat and noisy behaviour
(as in Section 7.1.3 for the generator speed). The time series can, therefore, be normalised prior to clustering with
the objective of similarity in shape. The similarity measure used between time series is the dynamic time warping
(DTW) measurement presented in Section 3.1. The DTW algorithm is unconstrained. DTW has much higher
complexity then Euclidean distance and the calculation of the condensed distance matrix takes now over 16 min-
utes (over 8 minutes when using parallelization with two cores). The condensed distance matrix is then fed to the
hierarchical clustering algorithm. The optimal hierarchical clustering method and the optimal number of clusters
will be found with the same internal indexes used so far: Cophenetic correlation coefficient, Silhouette index and
MSSSE. More information about these specific indexes can be found in Chapter 3. The summary plot and table
for the internal indexes of cutting each dendrogram - each with different linkage criterion - into k cuts can be seen
in Figure B.4.1 and Table B.4.1. The cophenetic correlation coefficient can be seen in the upper right corner in
the aforementioned figure (Figure B.4.1). Because we do not wish to include the external temperature (obviously
invalid/wrong measurement) the corresponding alpha is set to zero, disregarding the measurements completely.
The alpha corresponding to the wind direction is kept as 1, as it still might be similar in shape.

Table B.4.1: Summary table with the linkage criteria: single, complete, average and ward. The data set which was clustered is
’Multivariate V2’ with the objective of similarity in shape. The silhouette indexes and MSSSE values for a cut K - from 2 to 13
- are presented. The alphas are all equal to one except for the alpha corresponding to the external (outside) temperature which
is set to zero.

Method Internal index Number of cuts to the dendrogram
K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10 K = 11 K = 12 K = 13

Single Silhouette 0.52 0.36 0.27 0.21 0.16 0.08 0.05 0.04 0.01 0.01 0.05 0.07
MSSSE 5.38 4.36 3.76 3.25 2.87 2.50 2.11 1.78 1.45 1.04 0.67 0.39

Complete Silhouette 0.52 0.28 0.26 0.15 0.13 0.15 0.15 0.15 0.13 0.08 0.08 0.07
MSSSE 5.38 4.47 3.75 3.34 2.85 2.44 2.05 1.72 1.39 1.01 0.69 0.39

Average Silhouette 0.52 0.36 0.26 0.21 0.13 0.10 0.15 0.10 0.08 0.08 0.08 0.07
MSSSE 5.38 4.36 3.75 3.25 2.88 2.49 2.05 1.67 1.34 1.01 0.69 0.39

Ward Silhouette 0.52 0.36 0.23 0.15 0.15 0.16 0.16 0.15 0.10 0.08 0.08 0.07
MSSSE 5.38 4.36 3.81 3.38 2.88 2.51 2.12 1.72 1.34 1.01 0.69 0.39

First of all, reviewing the cophenetic correlation coefficient in Figure B.4.1, it can be seen that all dendrograms
experience similar high values. Both the dendrogram constructed with single and average linkage criteria have
high values above 0.95. A cophenetic correlation coefficient is very close to 1 and well above 0.75 which indicates
that the dendrograms represent a high-quality solution. The dendrogram with the largest cophenetic index is the
dendrogram constructed with the linkage criterion set as average. Therefore, the dendrogram built with the linkage
criterion set as average will be cut and its assignment will be analysed. Secondly, reviewing the summary table
and the corresponding summary plot, it can be observed that the silhouette index is largest for a cut of two and
decreases exponentially after; the corresponding MSSSE value has a relatively steep descend from a cut of two to
a cut of three (with over 20% reduction in the within-cluster variance), but afterwards decreases more slowly. As
the silhouette index decreases exponentially after a cut of two and a reduction in the MSSSE is not significant, a
cut of two is arguably best cut for the dendrogram. A cut of two seems to be the optimal configuration where the
compromise between separation and intra-cluster similarity is at its best. Therefore, a cut of two to the dendrogram
will be further analysed in the consecutive section. The corresponding dendrogram - with average as the linkage
criterion and the external temperature excluded - can be seen in Figure B.4.2. As the Silhouette index and the
MSSSE values are identical for K = 2 for all dendrograms, one could assume that the different dendrograms
produce the same cluster assignments.
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Figure B.4.1: Summary plots with the linkage criteria: single, complete, average and ward. The data set which was clustered
is ’Multivariate V2’ with the objective of similarity in shape. The silhouette indexes and MSSSE values for a cut K - from 2
to 13 - is presented along with the cophenetic correlation coefficient in the upper right corner. The alphas are all equal to one
except for the alpha corresponding to the external (outside) temperature which is set to zero.
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Figure B.4.2: Dendrogram with average as linkage criterion and distance DTW distance implemented on ’Multivariate V2’
data set. The alphas are all equal to one except for the alpha corresponding to the external (outside) temperature which is set to
zero.
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B.4.2: Analysing the clustering results from similarity in shape - DTW algorithm not
constrained and the dimension of 5
In this section, the clustering results from clustering ’Multivariate V2’ data set in Appendix B.4.1 - where the
external temperature is excluded - will be analysed. The corresponding dendrogram which will be cut can be seen
in Figure B.4.2. In Figure B.4.3 the cluster assignment and the time series are visualised for a cut of two.
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Figure B.4.3: Clustering results from the ’Multivariate V2’ data set with DTW distance. Summary plot of a cut of two to the
dendrogram with the linkage criteron set as ’average’ (from Figure B.4.2)

A cut of two to the dendrogram separates only turbine 2 from the remaining turbines. This indicates that turbine
2 is vastly different from the rest. This can easily be observed by reviewing the corresponding time series for the
power, gearbox temperature and generator speed. More interestingly, a cut of three to the current dendrogram
(Figure B.4.2 would result in the exact same cluster assignment as for similarity in time. Because the cluster
assignment is the same for both objectives, the clusters formed are both similar in time and in shape. Additional
information from clustering with the objective of similarity in shape is not transparent. Nonetheless, the physical
interpretation of the cluster assignment will be interpreted in the following paragraphs.

Cluster 1: This cluster contains all of the turbines except for turbine 2. The turbines associated with cluster 1
are characterised by medium to high power production caused by a medium to high generator speed. From the
objective of similarity in time, there are two time series which are, to a degree, outliers in this plot: Turbine 10 and
12 which experience low to no generator speed during the second half of the interval. This is caused by elevated
wind speed conditions. This is further backed up by reviewing the gearbox temperature which also experiences
similar drops as the power and generator speed. That is because the power production, gearbox temperature and
generator speed are highly correlated to each other. Regarding the wind speed, no benefit is observed by including
this in the analysis.

Cluster 2: Contains only turbine 2 and is one of the turbines which is vastly different from the rest. Turbine 2
have very small power production; where the power production is zero so is the generator speed followed by a low
gearbox temperature. The wind conditions do not indicate high wind speed, or at least elevated from the others.
With the acquired information, no justification can be made for the low generator speeds observed. However, after
reviewing the maintenance plan, turbine two are in fact under maintenance during this interval.
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B.4.3: Similarity in shape - DTW algorithm constrained and the dimension of 4
The objective is now to cluster the time series with the objective of similarity in shape and not the absolute dif-
ference and offset. Therefore, the clustering analysis is performed on the normalised data set. The dimension of
the data set is now four where the alpha corresponding to the external temperature and the wind direction is set
to zero. The DTW algorithm is run with the same settings as in Section 7.2.3, Sakeo-Chiba band width of 10%
of the length of the time series. DTW has much higher complexity then Euclidean distance and the calculation of
the condensed distance matrix took over one hour to complete. The condensed distance matrix is then fed to the
hierarchical clustering algorithm. The optimal hierarchical clustering method and the optimal number of clusters
will be found with the same internal indexes used so far: Cophenetic correlation coefficient, Silhouette index and
MSSSE. More information about these specific indexes can be found in Chapter 3. The summary plot and table
for the internal indexes of cutting each dendrogram - each with different linkage criterion - into k cuts can be seen
in Figure B.4.4 and Table B.4.2. The cophenetic correlation coefficient can be seen in the upper right corner in the
aforementioned figure (Figure B.4.4).

Table B.4.2: Summary table with the linkage criteria: single, complete, average and ward. The data set which was clustered is
’Multivariate V2’ with the objective of similarity in shape. The silhouette indexes and MSSSE values for a cut K - from 2 to 13
- are presented. The alphas are all equal to one except for the alpha corresponding to the external (outside) temperature which
is set to zero.

Method Internal index Number of cuts to the dendrogram
K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10 K = 11 K = 12 K = 13

Single Silhouette 0.57 0.65 0.44 0.37 0.26 0.12 0.08 0.05 0.05 0.04 0.05 0.01
MSSSE 7.02 4.26 3.47 2.94 2.42 2.05 1.74 1.42 1.14 0.87 0.58 0.37

Complete Silhouette 0.67 0.65 0.43 0.33 0.26 0.12 0.06 0.06 0.06 0.06 0.06 0.03
MSSSE 5.69 4.26 3.52 2.96 2.42 2.09 1.84 1.54 1.20 0.93 0.63 0.38

Average Silhouette 0.67 0.65 0.44 0.33 0.26 0.12 0.08 0.09 0.07 0.05 0.05 0.03
MSSSE 5.69 4.26 3.47 2.96 2.42 2.05 1.74 1.44 1.15 0.85 0.58 0.38

Ward Silhouette 0.67 0.65 0.43 0.33 0.26 0.12 0.11 0.06 0.06 0.06 0.06 0.03
MSSSE 5.69 4.26 3.52 2.96 2.42 2.09 1.78 1.54 1.20 0.93 0.63 0.38

First of all, reviewing the cophenetic correlation coefficient in Figure B.4.4, it can be seen that all dendrograms
experience similar high values. Both the dendrogram constructed with single and average have high values above
0.95. A cophenetic correlation coefficient is very close to 1 and well above 0.75 which indicates that the den-
drograms represent a high-quality solution. The dendrogram with the largest cophenetic index is the dendrogram
constructed with the linkage criterion set as single. Therefore, the dendrogram built with the linkage criterion set
as single will be cut and its assignment will be analysed. Secondly, reviewing the summary table and the cor-
responding summary plot, it can be observed that the silhouette index is largest for a cut of three and decreases
exponentially after; the corresponding MSSSE value has a relatively steep descend from a cut of two to a cut of
three but afterwards, decreases more slowly. As the silhouette index decreases exponentially after a cut of three
and a reduction in the MSSSE is not significant, a cut of three is arguably best cut for the dendrogram. A cut of
three seems to be the optimal configuration where the compromise between separation and intra-cluster similarity
is at its best. Therefore, a cut of three to the dendrogram will be further analysed in the consecutive section. The
corresponding dendrogram - with single as linkage criterion and the external temperature and wind direction is
excluded - can be seen in Figure B.4.5.
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Figure B.4.4: Summary plots with the linkage criteria: single, complete, average and ward. The data set which was clustered
is ’Multivariate V2’ with the objective of similarity in shape. The silhouette indexes and MSSSE values for a cut K - from 2
to 13 - is presented along with the cophenetic correlation coefficient in the upper right corner. The alphas are all equal to one
except for the alpha corresponding to the external (outside) temperature and wind direction which is set to zero.
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Figure B.4.5: Dendrogram with average as the linkage criterion and distance DTW distance implemented on ’Multivariate V2’
data set. The alphas are all equal to one except for the alpha corresponding to the external (outside) temperature and wind
direction which is set to zero.
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B.4.4: Analysing the clustering results from similarity in shape - DTW algorithm con-
strained and the dimension of 4
In this section, the clustering results from clustering ’Multivariate V2’ data set in Appendix B.4.3 - where the
external temperature and the wind direction are excluded - will be analysed. The corresponding dendrogram which
will be cut can be seen in Figure B.4.5. In Figure B.4.6 the cluster assignment and the time series are visualised
for a cut of two.
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Figure B.4.6: Clustering results from the ’Multivariate V2’ data set with DTW distance. Summary plot of a cut of three to the
dendrogram with the linkage criterion set as ’average’ (from Figure B.4.5). Note the normalised time series is shown, rather
than the time series after filtering.

Similar to clustering with respect to the objective of similarity in time in Section 7.2.1, the clustering results
from the objective of similarity in shape for dimension equal to 4 and 5 are identical. The same cluster assignments
can be observed by comparing Figure 7.18 and B.4.6. The corresponding dendrograms can also be observed to
be close to identical for both analyses. The only difference can be observed in the internal indexes where a large
silhouette index and a lower MSSSE value (i.e. within-cluster variance) can be observed for the current analysis
(dimension of 4).
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B.4.5: Comparison between similarity in time and similarity in shape for the longer time
series
In this section, the aim is to compare the clustering results acquired from the objective of similarity in time with
the objective of similarity in shape. The clustering results and analysis of similarity in shape has already been
done in Section 7.2.3. In this section, the normalised data set - not the scaled data set as with the objective of
similarity in time analysis - will be clustered with the Euclidean distance metric. Similar to previous analyses, the
best linkage criterion for hierarchical clustering will be found by comparing the Cophenetic correlation coefficient
(3.10) and the number of cuts to the dendrogram will be determined by viewing the internal performance indexes:
Silhouette index (3.14) and MSSSE (3.17) for multivariate analysis. More information about these specific indexes
can be found in Chapter 3. The summary plot and table for the internal indexes of cutting each dendrogram into
k partitions - each with different linkage criterion - can be seen in Figure B.4.7 and Table B.4.3. The cophenetic
correlation coefficient can be seen in the upper right corner in the aforementioned figure (Figure B.4.7). In the
current run, the alphas are all equal to one, except for the alphas associated with the external temperature and the
wind direction, which is set to zero.

Table B.4.3: Summary table with the linkage criteria: single, complete, average and ward. The data set which was clustered
is ’Multivariate V2’ with the objective of similarity in time. The silhouette indexes and MSSSE values for a cut K - from 2 to
13 - is presented. The alphas are all equal to one, except for the alphas associated with the external temperature and the wind
direction, which is set to zero.

Method Internal index Number of cuts to the dendrogram
K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10 K = 11 K = 12 K = 13

Single Silhouette 0.52 0.58 0.39 0.32 0.17 0.10 0.07 0.03 0.04 0.04 0.05 0.02
MSSSE 220.56 82.55 57.57 45.61 36.03 28.71 23.24 19.26 13.71 9.80 6.09 3.72

Complete Silhouette 0.59 0.58 0.39 0.32 0.15 0.10 0.10 0.08 0.07 0.05 0.05 0.02
MSSSE 138.77 82.55 57.57 45.61 34.43 26.74 21.02 16.24 12.54 9.12 6.09 3.72

Average Silhouette 0.59 0.58 0.39 0.32 0.17 0.10 0.10 0.08 0.07 0.05 0.05 0.02
MSSSE 138.77 82.55 57.57 45.61 36.03 28.71 21.02 16.24 12.54 9.12 6.09 3.72

Ward Silhouette 0.59 0.58 0.39 0.22 0.15 0.10 0.10 0.08 0.07 0.05 0.05 0.02
MSSSE 138.77 82.55 57.57 46.40 34.43 26.74 21.02 16.24 12.54 9.12 6.09 3.72

First of all, reviewing the cophenetic correlation coefficient in Figure B.4.7, it can be seen that all of the
dendrograms experience similar high values; all are above 0.95. The cophenetic correlation coefficient is close
to 1 for all dendrograms; values close to 1 indicate that the dendrograms represent a high-quality solution. The
dendrogram with the highest cophenetic index is the dendrogram constructed with the linkage criterion set as
single. Therefore, the dendrogram built with the linkage criterion set as single will be cut and its assignment will
be analysed. Secondly, reviewing the summary table and the corresponding summary plot, it can be observed that
the silhouette index is largest for a cut of three and decreases exponentially for deeper cuts; the corresponding
MSSSE value has a relatively steep descend from a cut of two to a cut of three, but for deeper cuts it decreases
more slowly. A cut of three seems to be the optimal configuration where the compromise between separation and
intra-cluster similarity is at its best. Therefore, a cut of three to the dendrogram will be further analysed in the
consecutive section. The corresponding dendrogram - with single as linkage criterion and the external temperature
excluded - can be seen in Figure B.4.8.

Cutting the dendrogram into three partitions results in the exact same cluster assignment as for scenario 2 for
both similarity in time done in Section 7.2.1 and similarity in shape analysis presented in Appendix B.4.3. Now
we will compare the similarity in time analysis (done in this section) to the similarity in shape analysis presented
in Appendix B.4.3. The only difference between the analysis is the similarity measure: Euclidean distance is used
in this section and DTW distance is used in Appendix B.4.3. Initially, the internal indexes can be observed to
recommend the exact same dendrogram as well as the same number of cuts to the dendrograms. No significant
differences can be observed by reviewing the silhouette index. But reviewing the MSSSE value (i.e. the within-
cluster variance), the internal indexes are quite different: 4.26 for the similarity in shape analysis and 73.91 for
the similarity in time analysis. From reviewing the time series assigned to each cluster in Figure B.4.6 some
differences can be observed within each cluster. By looking at the first cluster, we can observe that the time series
for the first half of the interval are quite similar in time and shape. Recall, that similarity in shape is a more general
case of similarity, where the time of occurrence of patterns is not important (Aghabozorgi et al., 2015; Zhang et al.,
2011). But for the second half of the interval, some delays in the signal can be observed. These delays will results
in a very large pairwise distance between the time series if the Euclidean distance is used, which in the end, will
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Figure B.4.7: Summary plots with the linkage criteria: single, complete, average and ward. The data set which was clustered
is ’Multivariate V2’ with the objective of similarity in time. The silhouette indexes and MSSSE values for a cut K - from 2
to 13 - is presented along with the cophenetic correlation coefficient in the upper right corner. The alphas are all equal to one,
except for the alphas associated with the external temperature and the wind direction, which is set to zero.
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Figure B.4.8: Dendrogram with average as the linkage criterion and distance as Euclidean distance implemented on ’Multi-
variate V2’ data set. The alphas are all equal to one, except for the alphas associated with the external temperature and the
wind direction, which is set to zero.

result in a significant increase in the within-cluster variance (i.e. MSSSE value).
Now, let us compare the dendrograms for both analyses with each other. The dendrograms, with DTW and

Euclidean distance metric, can be seen in Figure B.4.5 and B.4.8, respectively. Initially, these dendrograms might
look quite dissimilar, but they result in the exact same cluster assignment for all cuts up to a cut of six. The results
show that the Euclidean distance is quite competitive to DTW, in terms of the cluster ”accuracy”, as shifts in time
are less dominating for the longer time series. The results from clustering the normalised data set could be achieved
by implementing either the Euclidean or the DTW distance; DTW comes with an increased accuracy and a high
running time. Calculation the dissimilarity matrix with Euclidean distance took only 8.4ms compared the close to
two hours for calculation the dissimilarity matrix with the DTW distance. Then, if the cluster accuracy is more
important than the running speed, the DTW similarity measure should be used; and if the running time is more
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important than the accuracy, the Euclidean distance should be used. But is the longer time series less affected by
these time shifts? It is at least obvious that the oscillations observed in the ’Multivariate V1’ data sets could cause
some serious damage if the Euclidean distance is used; very small shifts in time could be the difference between
two time series being very similar to each other or vastly different. Consider the Euclidean distance and the DTW
distance between a sinus wave. Now consider the following example where two cosine waves which have very
high-frequency oscillations. If one of these is subjected to a relatively small time delay - which results in a phase
lag of close to 90 degrees - the corresponding Euclidean distance between these to signals would become vastly
different. This time delay does not need to be large, as long as it causes a significant shift in the phase. Longer
time series does not contain such high-frequency components - at least not with the current extraction settings and
preprocessing - and is, therefore, less affected by small time shifts (or delays).
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Appendix C - Additional calculation and remarks

C.1: Making a comparison between different widths of the Sakeo-Chiba band constraint
of the DTW algorithm.
In some cases, DTW can provide undesired effects, such as the construction of a path which is far from the
diagonal. This might map a large number of points to a single point. In Figure C.1.1, the DTW is calculated
without constraints and finds the optimal and expected path between the two time series. In many cases, this might
not be what we wanted and can be overcome by restricting the warping path close to the diagonal (Cassisi et al.,
2012).

Figure C.1.1: DTW without global constraint. Taken from (Niennattrakul and Ratanamahatana, 2006)

Two popular global restrictions which are normally implemented are called the Sakeo-Chiba band and Itakura
parallelogram (Cassisi et al., 2012; Elsworth, 2017). Both of these methods restricts the path along the yellow
squares as illustrated in Figure C.1.2.

(a) Sakeo-Chiba band (b) Itakura parallelogram

Figure C.1.2: Yellow cubes indicates the restricted warping path. Figures are taken from Elsworth (2017)

In this section, the effect of different Sakeo-Chiba band widths will be discussed. Ratanamahatana and Keogh
(2004); Niennattrakul and Ratanamahatana (2006) states that the vast majority of the data mining community
used a width of 10%, which is believed to be superior to other widths. In Ratanamahatana and Keogh (2004)
Ratanamahatana and Keogh (2004), an empirical experiment was performed on seven data sets with varying widths
between 0-100% of the length of the data set. They found that adjusting the warping window size did indeed affect
the accuracy of the clustering, but for each data set, the optimal width was located between 1-10% of the length of
the time series. The paper also showed that with a decreasing size of the database (the number of turbines in our
case), the classification accuracy decreases with it and the corresponding optimal width was larger. For databases
containing 12-24 objects, the width was closer to 10%. In addition to Ratanamahatana and Keogh (2004), Xi et al.
(2006) also states that narrower constraints are necessary for accurate DTW and that a too large warping window
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could actually deteriorate the accuracy. Finding the optimal value is specific to the application and hard to find.
Because the ground truth in the thesis is not known, the clustering accuracy cannot be measured and finding the
optimal width of the Sakeo-Chiba band cannot be done by comparing the classification accuracy. The effects of
different widths will be done through a visual approach by comparing the different warped paths achieved from
finding the DTW distance between a couple of time series. A comparison between a width of 5%, 10% and 100%
(or no constraint) will be performed on several combinations of time series. The warped paths are presented in
Figure C.1.5, C.1.6, C.1.3 and C.1.4. The darker (blue) colour indicates a low weighing value and lighter colours
indicates a high value, and vice versa.

(a) Sakeo-Chiba band width of 5%
and DTW distance of 3.1667.

(b) Sakeo-Chiba band width of 10%
and DTW distance of 2.9611.

(c) No constraints and DTW distance of
2.9.

Figure C.1.3: Plotting of the warped path between time series of the gearbox temperature for turbine 1 and turbine 6 in the
’Univariate V1’ data set.

(a) Sakeo-Chiba band width of 5%
and DTW distance of 7.00.

(b) Sakeo-Chiba band width of 10%
and DTW distance of 6.94.

(c) No constraints and DTW distance of
6.86.

Figure C.1.4: Plotting of the warped path between time series of the gearbox temperature for turbine 2 and turbine 16 in the
’Univariate V1’ data set.

First of all, lets review Figure C.1.3 and C.1.4. For both examples, the two time series compared are relatively
similar in terms of shape. Because these time series are very similar to each other, the corresponding warped path
from the DTW algorithm, between different widths, are also very similar to each other. This can be further verified
by reviewing the calculated DTW distance for the warped path. Note that the warped path starts at the upper
left corner and ends at the bottom right. From comparing the weights for these two plots, a deterioration of the
accuracy cannot be observed and the choice between the different widths seems to be insignificant. Now let us look
at the warped path between time series which are both slightly and very different to each other. In Figure C.1.5
and C.1.6, the warped path between time series which are obviously different to each other are presented. The two
time series analysed in Figure C.1.5 can be observed to be different during the first part of the interval and have
very close similarity for the remainder of the interval. The effect of no constraints to the DTW algorithm results
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in a warping path which maps a large number of points to a single point during the first part of the interval; the
warped path, in this case, is therefore quite different from other widths. The corresponding DTW distance can be
observed to decrease with the increase of the band width, which is expected. The large DTW distance still reflects
a relatively large dissimilarity between the two time series. Similar results can be observed in the other figure
(Figure C.1.6), where the warped path has been found between two very different time series. A quite narrow
width results in the quite large DTW distance. The DTW distance can be observed to decrease as the width of the
band increases. The reduction of the DTW distance can be observed to be slightly more significant than for those
two time series in Figure C.1.5. Furthermore, for the warped path which was found without any constraints (Figure
C.1.6), a very large number of points can be observed to be mapped to a single point. This case is an unwanted
case as the (dis)similarity in shape between the two time series is lost; it distorts the distance. It can be observed
that the DTW distance between turbine 2 and 12 is quite similar to the DTW distance between turbine 1 and 12,
which does make sense visually.

(a) Sakeo-Chiba band width of 5%
and DTW distance of 14.35.

(b) Sakeo-Chiba band width of 10%
and DTW distance of 13.17.

(c) No constraints and DTW distance of
11.45.

Figure C.1.5: Plotting of the warped path between time series of the gearbox temperature for turbine 1 and turbine 12 in the
’Univariate V1’ data set.

(a) Sakeo-Chiba band width of 5%
and DTW distance of 19.08.

(b) Sakeo-Chiba band width of 10%
and DTW distance of 16.23.

(c) No constraints and DTW distance of
12.65

Figure C.1.6: Plotting of the warped path between time series of the gearbox temperature for turbine 2 and turbine 12 in the
’Univariate V1’ data set.

Based on the results in Figure C.1.3, C.1.4 and C.1.5, any of the band widths results in a clear indication of the
similarity and no significant distortion or warping, which cannot be explained, is observed. However, reviewing
Figure C.1.6, a very large number of points can be observed to be mapped to a single point. This case is an
unwanted case as the similarity in shape between the two time series is lost: The initial time points of the first
time series (horizontal one) are compared to pretty much the entire second time series; the last percentage of the
second time series (vertical) is compared to the majority of the first time series. This is avoided by applying the

151



global constraint, Sakeo-chiba band, to the calculations. Therefore, the DTW algorithm will be included with
Sakeo-Chiba band constraint. As most of the literature uses a width of 10%, the difference between 5% and 10%
was insignificant, and no detailed analysis of the clustering accuracy can be performed, a width of 10% is chosen
for all cluster analysis with DTW as the similarity measure.
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C.2: Comparison between different DTW implementations
In this appendix, several different python libraries will be implemented on a test data sets and the running time will
be compared to one another. The comparison between libraries for the unconstrained case can be seen in Table
C.1.1 and the constrained case (i.e. included a Sakeo-chiba band of width 10% of length of the time series) is
presented in Table C.1.2. All computations and cluster analysis are performed on a HP EliteBook with Intel Core
i7-3520M processor and 8GB of RAM.

Table C.1.1: Running time of different implementations of the DTW distance metric for the unconstrained case. Width = 10%
means 10% of the length of the time series.

Running time different libraries unconstrained

Library Arguments Distance Time [s]

from cdtw import pydtw
dist = ’euclid’, step = ’dp2’,
window = ’nowindow’,
compute path = False

18.42 1.441

from fastdtw import fastdtw dist=euclidean 913.00 3.577
from tslearn.metrics import dtw path - 18.42 21.63
from tslearn.metrics import cdist dtw - 18.42 21.60
from dtaidistance import dtw.distance matrix - 18.42 98.70
from dtaidistance import dtw.distance matrix use c = True 18.42 57.68
from dtaidistance import dtw.distance matrix use c = True, parallel = True 18.42 59.63
from dtaidistance import dtw.distance matrix use nogil = True 18.42 97.04
from dtaidistance import dtw.distance matrix use nogil = True, parallel = True 18.42 82.00
from dtaidistance import dtw.distance matrix fast - 18.42 1.25

Table C.1.2: Running time of different implementations of the DTW distance metric for the constrained case. Width = 10%
means 10% of the length of the time series.

Running time different libraries constrained

Library Arguments Distance Time [s]

from cdtw import pydtw N/A N/A N/A
from fastdtw import fastdtw N/A N/A N/A

from tslearn.metrics import dtw path
global constraint=’sakoe chiba’,
sakoe chiba radius=width 39.48 22.36

from tslearn.metrics import cdist dtw
global constraint=’sakoe chiba’,
sakoe chiba radius=width 39.48 22.54

from dtaidistance import dtw.distance matrix width = 10% 39.57 15.24
from dtaidistance import dtw.distance matrix use c = True, width = 10% 39.57 11.19

from dtaidistance import dtw.distance matrix
use c = True, parallel = True,
width = 10% 39.57 11.88

from dtaidistance import dtw.distance matrix use nogil = True, width = 10% 39.57 19.09

from dtaidistance import dtw.distance matrix
use nogil = True, parallel = True,
width = 10% 39.57 16.21

from dtaidistance import dtw.distance matrix fast width = 10% NOT WORKING! NOT WORKING!

For the unconstrained case, the clear winner is the function call ’dtw.distance matrix fast’ from the library
’dtaidistance’ with running time of only 1.25 seconds. For the constrained case, the winner is the function call
’dtw.distance matrix’ from the library ’dtaidistance’ with the listed arguments in Table C.1.2. Including the Sakoe-
chiba band for the winner in unconstrained case, ’dtw.distance matrix fast’, caused the script to crash. In the
documentations it is stated that it support these arguments, but for some reason it does not seem to work.
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Appendix D - Python code

D.1: Python script for clustering the data set with hierarchical clustering - both objectives.
In this appendix, the python scripts for clustering the data set with hierarchical clustering - both objectives - is
presented. In Appendix D.1.1, the libraries which need to be imported prior to running the script is presented. In
Appendix D.1.2, the class for importing and preprocessing of the time series is presented. The path to the .csv and
the names of the different files must be changed according to the path chosen for anyone trying to run this code.
Then, in Appendix D.1.3, the class for clustering the extracted time series according to the hierarchical clustering
algorithm is presented. The class allows for two similarity measures: Euclidean or DTW distance. The procedure
for clustering with the objectives of similarity in time or similarity in shape is outlined in the class description.
In Appendix D.1.4, the class for calculating and displaying the internal indexes is provided. The procedure for
calculation and presenting the internal indexes is included in the class description. Finally, the main function of
running the clustering techniques for all data sets is provided in Appendix D.1.5. The different implementation
details are outlined in this script. This includes the length of the moving average filter, the size of the window used
for the Sakoe-Chiba band and the alpha values. The procedure for clustering the time series are:

1. Import the different libraries outlined in the script in Appendix D.1.1. If these are not installed prior to
running the script, do so first.

2. Run the following scripts in the following order: D.1.2, D.1.3 and D.1.4 (appendices).

3. In script in Appendix D.1.5, uncomment the data set which is going to be clustered, and comment out
the rest. The example shown in the script in Appendix D.1.5, illustrates what to uncomment and what to
comment out for clustering the data set called ’Univariate V1’.

4. Modifications can be made to the length of the moving average filter, the size of the window used for the
Sakoe-Chiba band and the alpha values.

D.1.1: The libraries which needs to be imported in order for the hierarchical clustering algorithm for both
objectives of similarity in time and similarity in shape.

1 #!/usr/bin/env python
2 # coding: utf-8
3

4 # In[ ]:
5

6

7 import pandas as pd
8 from datetime import datetime
9 import time

10 import numpy as np
11 import matplotlib.pyplot as plt
12

13 # Filtering
14 from collections import deque
15 from bisect import insort, bisect_left
16 from itertools import islice
17

18

19 # Clustering
20 import timeit
21 from scipy.spatial.distance import euclidean
22 import scipy.spatial.distance as ssd
23 from dtaidistance import dtw
24 from joblib import Parallel, delayed
25 import multiprocessing
26 from cycler import cycler
27

28

29 # Internal indexes
30 from scipy.cluster.hierarchy import cophenet
31 from sklearn.metrics import silhouette_score
32 from scipy.spatial.distance import squareform
33 from scipy.cluster.hierarchy import fcluster
34 from scipy.cluster.hierarchy import dendrogram
35 import scipy.cluster.hierarchy as hac
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D.1.2: Class for the importing and preprocessing of the time series.

1 #!/usr/bin/env python
2 # coding: utf-8
3

4 # In[ ]:
5

6

7 class Dataframe_extraction_preprocessing:
8 """ Class used to the extraction of data from .csv files
9 The extraction includes setting the time, handling of missing values and

10 removing turbines which does not contain measurements.
11 dataset_name us required because for one data set the filled values are wrongly filled."""
12 def __init__(self, path_csv, filenames, dataset_name, skip_rows):
13 self.dataframes = []
14 self.dataframes_norm = []
15 self.dataframes_scaled = []
16

17 # Importing into dataframes
18 for idx, filename in enumerate(filenames):
19 self.dataframes.append(pd.read_csv(path_csv+filename+'.csv', delimiter=',', skiprows = skip_rows[idx]))
20

21 self.setting_time_dataframe() # Setting time for dataframes
22 self.filling_missing_values(dataset_name) # Handling missing values
23 self.remove_turbines_with_no_measurement()
24

25 def setting_time_dataframe(self):
26 """ Setting date time for the dataframe if not already done
27 Also renames the columns to the correct turbine number """
28 for idx, df in enumerate(self.dataframes):
29 try:
30 df['Time'] = pd.to_datetime(df['Time'], format='%Y-%m-%dT%H:%M:%S.%fZ')
31 df.set_index('Time', inplace=True)
32 df.columns = ['WT1', 'WT2', 'WT3','WT5', 'WT6', 'WT7', 'WT8', 'WT9',
33 'WT10', 'WT11', 'WT12', 'WT13', 'WT14', 'WT15', 'WT16']
34 except:
35 try:
36 df.columns = ['WT1', 'WT2', 'WT3', 'WT4', 'WT5', 'WT6', 'WT7', 'WT8', 'WT9',
37 'WT10', 'WT11', 'WT12', 'WT13', 'WT14', 'WT15', 'WT16']
38 except:
39 print("Dataframe {} does not fit column names".format(idx+1))
40 print(df.columns)
41

42

43 def filling_missing_values(self, dataset_name):
44 # The function fills in wrong for this timeseries associated with 'Mulitvariate_v2' data set
45 if dataset_name == 'Multivariate_v2':
46 self.dataframes[0]['WT2'].fillna(0, inplace=True)
47 for df in self.dataframes:
48 number_of_NaN_before = df.isna().sum().sum()
49 df.fillna(method='ffill', inplace=True) # Filling inn all NaN with forward filling
50 df.fillna(method='bfill', inplace=True) # In case the first values are NaN, do backwards filling.
51 number_of_NaN_after = df.isna().sum().sum()
52 print("Number of NA fields in dataset", number_of_NaN_before)
53 print("Number of NA fields in dataset after filling: ", number_of_NaN_after,"/",number_of_NaN_before)
54

55

56 def remove_turbines_with_no_measurement(self):
57 """ Removes turbine with no measurments
58 and corrects the shape of the timeseries"""
59 # Finding the turbine which contains missing values
60 list_df = []
61 for df in self.dataframes:
62 number_of_NaN = df.isna().sum()
63 for idx in np.where(number_of_NaN > 0)[0]:
64 if df.columns[idx][:6] not in list_df:
65 list_df.append(df.columns[idx][:6])
66

67 # Removing the column containing nan from all dataframes
68 for idx, df in enumerate(self.dataframes):
69 for index_name in list_df:
70 try:
71 df.drop([index_name+df.columns[0][6:]], axis=1, inplace=True)
72 except:
73 print(index_name+df.columns[0][6:]+" Does not exist in df", idx + 1)
74

75 # Fixing timestamps such that they are equal
76 self.print_shape_time_interval()
77 dataframes_new = []
78 for idx, df in enumerate(self.dataframes):
79 dataframes_new.append(df[:self.dataframes[0].shape[0]])
80 self.dataframes = dataframes_new
81 self.print_shape_time_interval()
82

83
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84 def print_shape_time_interval(self):
85 for idx, df in enumerate(self.dataframes):
86 print("Shape of dataframe{0}: {1},".format(idx+1, df.shape), end=' ')
87 print("Start/stop", df.index[0] ,"/", df.index[-1])
88

89

90 def running_median_insort(self,seq, window_size): # Faster approach to simple moving median filter
91 """Contributed by Peter Otten"""
92 seq = iter(seq)
93 d = deque()
94 s = []
95 result = []
96 for item in islice(seq, window_size):
97 d.append(item)
98 insort(s, item)
99 result.append(s[len(d)//2])

100 m = window_size // 2
101 for item in seq:
102 old = d.popleft()
103 d.append(item)
104 del s[bisect_left(s, old)]
105 insort(s, item)
106 result.append(s[m])
107 return np.asarray(result)
108

109

110 # Filters the dataset in the object with a preent lenght of the moving window
111 def filter_median(self, length_moving_median):
112 for df in self.dataframes:
113 for i in range(df.shape[1]):
114 df.values[:,i] = self.running_median_insort(df.values[:,i], length_moving_median)
115

116

117 def normalization(self):
118 for df in self.dataframes:
119 self.dataframes_norm.append((df - np.min(df.values, axis=0)) / (np.max(df.values, axis=0) -
120 np.min(df.values, axis=0)))
121

122

123 def scaling(self):
124 for df in self.dataframes:
125 temp = (df - np.min(np.min(df, axis=0)))
126 temp /= np.max(np.max(temp, axis=0))
127 self.dataframes_scaled.append(temp)
128

129 # Helper function for plotting the different data sets
130 # initial, filtered, scaled, normalised data set
131 def plotting_dataframe(self, dataframe, title="No title"):
132 style_code = ['-', '-', '-', '-', '-', '-', '-', '-', '-', '-',
133 '--','--','--','--','--','--','--','--','--','--',]
134 print("\n",title,"\n")
135 for df in dataframe:
136 df.plot(figsize=(18,10), subplots=True, layout=(4,4), sharex=True, sharey=True, grid=False,
137 style=style_code, x_compat=True, fontsize= 10)
138 plt.gca()
139 plt.show()
140

141
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D.1.3: Class for doing the hierarchical clustering with the Euclidean distance or the DTW distance.

1 #!/usr/bin/env python
2 # coding: utf-8
3

4 # In[ ]:
5

6

7 class Clustering_hierarchical:
8 """ Clustering is performed on the dissimilarity matrix chosen.
9 Similarity in time: Uses the scaled data set and the calculation of the euclidean distance matrix

10 1) Initilise the dataframes_scaled
11 2) Call the distance matrix function 'distance_matrix_euc' with the corresponding weigthing vector
12 3) Cluster and plot the dendrogram with 'plot_dendrogram' function
13 4) Cut the dendrogram and plot the clusters with 'print_clusters' function
14

15 Similarity in shape: Uses the normalised data set and the calculation of the DTW distance matrix.
16 1) Initilise the dataframes_norm
17 2) Call the distance matrix function 'distance_matrix_dtw' with the corresponding weigthing vector
18 3) Same as similarity in time
19 4) Same as similarity in time
20 """
21 def __init__(self, dataframes_norm = None, dataframes_scaled = None):
22 self.dataframes_norm = dataframes_norm
23 self.dataframes_scaled = dataframes_scaled
24 self.dist_cond = None
25 self.dist_cond_original = None
26

27

28

29 def distance_matrix_euc(self, alphas):
30 """ Alphas is the weighting vector of length equal to the number of dimension in the data set """
31 # Initializing an empty condensed distance matrix
32 condensed_matrix_size = 0
33 for i in range(1,self.dataframes_scaled[0].shape[1]):
34 condensed_matrix_size += i
35 dist_cond = np.zeros([condensed_matrix_size,])
36 dist_cond_original = []
37

38 # Calculating the distance
39 start = timeit.default_timer()
40 for idx, df_s in enumerate(self.dataframes_scaled):
41 dist_cond_original.append(ssd.pdist(df_s.T.values, metric='euclidean'))
42 if alphas[idx] != 0:
43 dist_cond = np.add(dist_cond, alphas[idx]*dist_cond_original[idx])
44

45 end = timeit.default_timer()
46 print("Time: ",end-start)
47 print("Shape of dist: ", dist_cond.shape)
48

49 # Mean condenced distance vector
50 sum_alphas = sum(alphas)
51 dist_cond /= sum_alphas
52

53 self.dist_cond = dist_cond
54 self.dist_cond_original = dist_cond_original
55

56

57

58 def distance_matrix_dtw(self, alphas, window_size):
59 """ Alphas is the weighting vector of length equal to the number of dimension in the data set """
60 num_cores = multiprocessing.cpu_count()
61

62 start = timeit.default_timer()
63 temp = Parallel(n_jobs=num_cores)( delayed(dtw.distance_matrix)(df.T.values,
64 use_c=True, show_progress=True, window=window_size) for df in self.dataframes_norm )
65 end = timeit.default_timer()
66 print("Time in seconds for calculating the dtw distance matrix: ",end-start)
67

68

69 # Constructing the original untampered distance matrix; not including where alphas is zero.
70 count_nonzero = np.count_nonzero(alphas)
71 iterations = [1 for v in range(count_nonzero - 1)]
72 dist_squared_original = temp[0]
73 for i in iterations:
74 dist_squared_original = np.add(dist_squared_original, temp[i])
75 print(dist_squared_original.shape)
76

77 # Transfoming to condensed distance matrix (n,)
78 listing = []
79 for i in range(dist_squared_original.shape[0]):
80 for j in range(i+1,dist_squared_original.shape[1]):
81 listing.append(dist_squared_original[i,j])
82

83 dist_cond_original = np.asarray(listing)
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84 print(dist_cond_original.shape)
85

86

87 # Combining the dissimilarity matrices: Used in the cluster analysis
88 dist_squared = alphas[0]*temp[0]
89

90 for i in range(1,len(temp)):
91 if alphas[i] != 0:
92 dist_squared = np.add(dist_squared, alphas[i]*temp[i])
93 print(dist_squared.shape)
94

95 # Transfoming to condensed distance matrix (n,)
96 listing = []
97 for i in range(dist_squared.shape[0]):
98 for j in range(i+1,dist_squared.shape[1]):
99 listing.append(dist_squared[i,j])

100

101 dist_cond = np.asarray(listing)
102 dist_cond.shape
103

104 # Mean condenced distance vector
105 sum_alphas = sum(alphas)
106 dist_cond /= sum_alphas
107 dist_cond_original /= count_nonzero
108

109 self.dist_cond = dist_cond
110 self.dist_cond_original = dist_cond_original
111

112

113

114 # Helper function for plotting the dendrogram
115 def fancy_dendrogram(self, *args, **kwargs):
116 max_d = kwargs.pop('max_d', None)
117 if max_d and 'color_threshold' not in kwargs:
118 kwargs['color_threshold'] = max_d
119 annotate_above = kwargs.pop('annotate_above', 0)
120

121 ddata = dendrogram(*args, **kwargs)
122

123 if not kwargs.get('no_plot', False):
124 plt.title(r'Hierarchical Clustering Dendrogram - linkage: '+method+', metric: Euclidean', fontsize=20)
125 plt.xlabel(r'sample index', fontsize=18)
126 plt.ylabel(r'distance', fontsize=18)
127 plt.yticks(fontsize=15)
128 for i, d, c in zip(ddata['icoord'], ddata['dcoord'], ddata['color_list']):
129 x = 0.5 * sum(i[1:3])
130 y = d[1]
131 if y > annotate_above:
132 plt.plot(x, y, 'o', c=c)
133 #plt.annotate("%.3g" % y, (x, y), xytext=(0, -5),
134 #textcoords='offset points',
135 #va='top', ha='center')
136 if max_d:
137 plt.axhline(y=max_d, linestyle='--', c='k')
138 return ddata
139

140

141 # Doing hierarchical clustering and plotting the dendrogram
142 def plot_dendrogram(self, method, metric, cut_distance, dataframes, path_pictures, file_ending):
143 """ This method performes hierarchical clustering by using the hierarchical clustering
144 algorithm of SciPy.
145 method: The linkage criteria of the hierarchical clustering algorithm. See SciPy doc.
146 metric: The internal distance metric. See SciPy doc.
147 cut_distance: Plotting a horizontal line which indicates the cut of the dendrogram.
148 If no cut is wanted increase the number above the larges plotted distance
149 value in the plot
150 dataframes: Only used to get the columns of the dataframes which will be the sample index
151 of the dendrogram.
152 path_pictrure: Path where the dendrogram will be saved.
153 file_ending: file ending of the saved dendrogram"""
154 Z = hac.linkage(self.dist_cond, method=method, metric=metric,optimal_ordering =True)
155 # Plot dendogram
156 fig = plt.figure(figsize=(20, 10))
157 self.fancy_dendrogram(
158 Z,
159 leaf_rotation=0., # rotates the x axis labels
160 leaf_font_size=15., # font size for the x axis labels
161 labels = dataframes[0].columns,
162 color_threshold = cut_distance,
163 max_d=cut_distance, # plot a horizontal cut-off line
164 )
165

166

167 fig.savefig(path_pictures+'dendrogram_'+method+'_'+metric+file_ending+'.eps', bbox_inches='tight',
168 pad_inches=0)
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169 plt.show()
170

171

172

173 def print_clusters(self, dataframes, method, metric, k, count_nonzero, path_pictures, save_plot=False):
174 """ This method performes hierarchical clustering by using the hierarchical clustering algorithm of
175 SciPy and printing the different clusters.
176 dataframes: For plotting of the time series assigned to each cluster
177 method: The linkage criteria of the hierarchical clustering algorithm. See SciPy doc.
178 metric: The internal distance metric. See SciPy doc.
179 k: number of clusters.
180 count_nonzero: Number of nonzero elements in the weigthing vector alpha.
181 path_pictrure: Path where the dendrogram will be saved."""
182 style_code = ['-', '-', '-', '-', '-', '-', '-', '-', '-', '-',
183 '--', '--', '--', '--', '--', '--', '--', '--', '--', '--']
184 style_color = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd',
185 '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf',
186 '#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd',
187 '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf']
188 # k Number of clusters I'd like to extract
189 Z = hac.linkage(self.dist_cond, method=method, metric=metric, optimal_ordering=True)
190 results = fcluster(Z, k, criterion='maxclust')
191

192 # check the results
193 s = pd.Series(results)
194 clusters = s.unique()
195 clusters.sort()
196 print(clusters)
197 #fig, axarr = plt.subplots(num_cuts, length_dataframe,figsize=(20,15))
198 fig, axarr = plt.subplots(count_nonzero, num_cuts, figsize=(20,15))
199 if count_nonzero > 1:
200 for idx, c in enumerate(clusters):
201 cluster_indeces = s[s==c].index
202 print("Cluster %d number of entries %d" % (c, len(cluster_indeces)))
203 for num, df in enumerate(dataframes):
204 custom_cycle = (cycler(color=style_color) +
205 cycler(linestyle=style_code))
206

207 axarr[num,idx].set_prop_cycle(custom_cycle)
208 axarr[num,idx].plot(df.index, df.iloc[:,cluster_indeces])
209 plt.gcf().autofmt_xdate()
210

211

212 axarr[0,idx].legend(dataframes[0].columns[cluster_indeces], loc='upper right', ncol=4,
213 fontsize=8, framealpha = 0.7)
214 axarr[0, idx].set_title("Cluster "+str(idx+1), fontsize=20)
215 # axarr[0, idx].set_ylim((-50,2600)) # Used for power time series
216 # axarr[1, idx].set_ylim((5,70)) # Generator speed
217 # axarr[3, idx].set_ylim((0,27)) # Wind speed
218 #axarr[5, idx].set_ylim((-200,200)) # Position deviation or wind direction
219 for num, df in enumerate(dataframes):
220 axarr[num,0].set_ylabel(df_names[num], fontsize=15)
221

222 elif count_nonzero == 1:
223 for idx, c in enumerate(clusters):
224 cluster_indeces = s[s==c].index
225 print("Cluster %d number of entries %d" % (c, len(cluster_indeces)))
226 df = dataframes[0]
227 custom_cycle = (cycler(color=style_color) +
228 cycler(linestyle=style_code))
229 axarr[idx].set_prop_cycle(custom_cycle)
230 axarr[idx].plot(df.index, df.iloc[:,cluster_indeces])
231 plt.gcf().autofmt_xdate()
232

233 axarr[idx].legend(df.columns[cluster_indeces], loc='upper right', ncol=4, fontsize=8,
234 framealpha = 0.7)
235 axarr[idx].set_title("Cluster "+str(idx+1), fontsize=20)
236 # axarr[idx].set_ylim((-50,2600)) # Used for power time series
237 else:
238 print("Do nothing")
239

240 if save_plot:
241 plt.savefig(path_pictures+'subplots_'+method+'_numCut'+str(k)+'_dim4.pdf', bbox_inches='tight',
242 pad_inches=0)
243
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D.1.4: Class for calculating and displaying the internal indexes.

1 #!/usr/bin/env python
2 # coding: utf-8
3

4 # In[ ]:
5

6

7 class Internal_indexes:
8 """ Class for calculating and plotting of the internal indexes.
9 dist_cond: 1D condensed distance matrix calculated with the the weighting vector, as used in SciPy.

10 dist_cond_original: 1D condensed distance matrix calculated without the weighting vector (all alphas equal to 1)
11 count_nonzero: Number of nonzero elements in Alpha vector.
12

13 Procedure for calculating and presenting the itnernal indexes
14 1) First initate the class witht du corresponding distance matrices, count_nonzeroes and dataframes_scaled
15 for the euclidean distance or random dataframe for the dtw distance
16 2) Call the 'calculation_internal_indexes' with the list of methods allowed in the SciPy notation and valid metric
17 'euclidean' or 'dtw'.
18 3) Call 'plotting_internal_indexes' for potting of the internal indexs
19 """
20

21 def __init__(self, dist_cond, dist_cond_original, count_nonzero, dataframes):
22 self.dist_cond = dist_cond
23 self.dist_cond_original = dist_cond_original
24 self.count_nonzero = count_nonzero
25 self.dataframes = dataframes
26 self.correlations = {}
27 self.silhouettes = {}
28 self.mean_sum_squared = {}
29

30 def cophenet_index(self, Z):
31 """Calculates the cophenet correlation coefficent for a given dendrogram, Z"""
32 c = cophenet(Z)
33 corr_value = np.corrcoef(c,self.dist_cond)[0,1]
34 return corr_value
35

36

37

38 def silhouette_index(self, Z):
39 """ Calculates the silhouette index for a given dendrogram, Z
40 for cuts from 2 to number of (turbines - 2) """
41 dist_squared = squareform(self.dist_cond)
42 silhouette_scores = []
43 for k in range(2,dist_squared.shape[0] - 1):
44 labels = fcluster(Z, k, criterion='maxclust')
45 silhouette_scores.append(silhouette_score(X=dist_squared, labels=labels, metric="precomputed"))
46 return silhouette_scores
47

48

49 # Helper function for sum_squared_error_euc and sum_squared_error_dtw functions
50 def mssse(self, columns, SSE):
51 """ Calculates the average sum of SSE for all clusters formed. """
52 MSSSE = 0
53 for index_name in columns:
54 MSSSE += SSE[index_name]
55 MSSSE /= len(columns)
56 return MSSSE
57

58

59

60 def sum_squared_error_euc(self, Z, current_scaled_dataframes):
61 dist_squared_list = []
62 # Converting list of 1d condensed matrices to square form
63 for idx, element in enumerate(self.dist_cond_original):
64 dist_squared_list.append(squareform(element))
65

66 mean_sum_of_SSE = []
67 for num_cuts in range(2,dist_squared_list[0].shape[0] - 1):
68 # Getting labels
69 labels = fcluster(Z, num_cuts, criterion='maxclust')
70 s = pd.Series(labels)
71 clusters = s.unique()
72 clusters.sort()
73

74 cluster_vectors = pd.DataFrame()
75 sum_squared_error = {} # dict for storing the SSE
76 for c in clusters:
77 cluster_indeces = s[s==c].index
78 # Caluclating the mean vector for df in scaled_data = [df1, df2, df3, ...]
79 for idx, df in enumerate(current_scaled_dataframes):
80 cluster_vectors['Cluster{0}_{1}'.format(c,idx)] = df[df.columns[cluster_indeces]].sum(axis=1)/
81 len(cluster_indeces)
82

83 # Getting the sum of squared error between all timeseries in the cluster to its cluster centre
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84 # This is repeated for each dimension scaled_data = [df1, df2, df3, ...] and than the mean
85 # is extracted
86 squared_error = {}
87 for idx, df in enumerate(current_scaled_dataframes): # For [df1,df2,df3]
88 temp = 0
89 for timeseries in cluster_indeces: #Indces for the timeseres within the current cluster
90 temp2 = np.sum( (df[df.columns[timeseries]] -
91 cluster_vectors['Cluster{0}_{1}'.format(c,idx)])**2 )
92 squared_error[df.columns[timeseries]+'_cluster_'+str(idx)] = temp2
93

94 # Initializing each sum to zero
95 for timeseries in cluster_indeces: # indces for the timeseres within the current cluster
96 sum_squared_error[df.columns[timeseries]] = 0
97

98 # Summing each squared error associated with the same turbine (f.eks WT2)
99 # from all dimension in scaled_dataframes: df1, df2, df3, ...

100 for idx, df in enumerate(current_scaled_dataframes): # For [df1,df2,df3]
101 for timeseries in cluster_indeces:
102 sum_squared_error[df.columns[timeseries]] += squared_error[df.columns[timeseries]+
103 '_cluster_'+str(idx)]
104

105

106 # Dividing all errors by the number of dimension to get a comparable value
107 for idx in range(len(sum_squared_error)):
108 sum_squared_error[df.columns[idx]] /= len(current_scaled_dataframes)
109

110

111 #Mean sum of SSE - as above, to get a comparable value
112 temp = self.mssse(current_scaled_dataframes[0].columns, sum_squared_error)
113 mean_sum_of_SSE.append(temp)
114

115 return mean_sum_of_SSE
116

117

118 def get_centroid(self, cluster_indeces, dist_squared):
119 # Cluster_indeces is all timeseries in that cluster with index values. Same as the function returns.
120 centroid_distances = []
121 for ts in cluster_indeces:
122 average_distance = dist_squared[ts,cluster_indeces.drop(ts)].sum(axis=0)
123 centroid_distances.append(average_distance)
124

125 # Returns index from [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14]
126 # Indexes associated ['WT1','WT2','WT3','WT5','WT6','WT7','WT8','WT9','WT10','WT11','WT12','WT13',
127 # 'WT14','WT15','WT16']
128 centroid_index = cluster_indeces[centroid_distances.index(min(centroid_distances))]
129 return centroid_index
130

131

132

133 def sum_squared_error_dtw(self, Z, columns):
134 dist_squared = squareform(self.dist_cond)
135 mean_sum_of_SSE = []
136 for num_cuts in range(2,dist_squared.shape[0] - 1):
137 # Getting labels
138 labels = fcluster(Z, num_cuts, criterion='maxclust')
139 s = pd.Series(labels)
140 clusters = s.unique()
141 clusters.sort()
142

143 centroid_indices = []
144 sum_squared_error = {} # dict for storing the SSE
145 for c in clusters:
146 cluster_indeces = s[s==c].index
147

148 # Finding the centroid for each cluster
149 centroid_index = self.get_centroid(cluster_indeces, dist_squared)
150 centroid_indices.append(centroid_index)
151

152 # Calculating the sum of squared error for each timeseries to its centroid
153 for ts1 in cluster_indeces:
154 sum_squared_error[columns[ts1]] = dist_squared[centroid_index, ts1]
155 #print(centroid_index, ts1, dist_squared[centroid_index, ts1])
156

157 # Overall Mean sum of SSE
158 temp = self.mssse(columns, sum_squared_error)
159 mean_sum_of_SSE.append(temp)
160

161 return mean_sum_of_SSE
162

163

164

165 def calculation_internal_indexes(self, methods, metric, similarity_measure = "euclidean"):
166 """ metric and methods limited to those avaiable in the SciPy hac library.
167 methods: should be a list containing the names of linkage criterias.
168 Example: methods = ['single', 'complete'] or methods = ['single']
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169 metric: internal distance, measure used in the linakge criteria
170 similarity_measure: can either be the 'euclidean' or the 'dtw'"""
171 for method in methods:
172 Z = hac.linkage(self.dist_cond, method=method, metric=metric, optimal_ordering=True)
173 self.correlations[method] = self.cophenet_index(Z)
174 self.silhouettes[method] = self.silhouette_index(Z)
175 if similarity_measure == "euclidean":
176 self.mean_sum_squared[method] = self.sum_squared_error_euc(Z, self.dataframes[:self.count_nonzero])
177 elif similarity_measure == "dtw":
178 self.mean_sum_squared[method] = self.sum_squared_error_dtw(Z, self.dataframes[0].columns)
179 else:
180 print("Invalid similarity measure. Should be either 'euclidean' or 'dtw'. MSSSE is not calculated")
181

182 print("Method: "+method)
183 print("Correlation: {:.3f}".format(self.correlations[method]))
184 print("Silhouettes: \t\t", end='')
185 print(' [' + ';'.join('%6.2f' % v for v in self.silhouettes[method]) + ']')
186 if self.mean_sum_squared:
187 print("Mean sum of SSE: \t", end='')
188 print(' [' + ';'.join('%6.2f' % v for v in self.mean_sum_squared[method]) + ']\n')
189

190 for method in methods:
191 print(';'.join('%6.2f' % v for v in self.silhouettes[method]))
192 if self.mean_sum_squared:
193 print(';'.join('%6.2f' % v for v in self.mean_sum_squared[method]))
194

195

196

197 def plotting_internal_indexes(self, similarity_measure, dataset_name, cophenet_yaxis,
198 file_ending, save_figure=False):
199 """ similarity_measure, dataset_name and file_ending are all used to determine the
200 name of the figure saved. cophenet_yaxis: number which indicates where the
201 cophenet index values should be located in the plot (y-axis)."""
202 methods = ['single', 'complete', 'average', 'ward']
203 fig, ax = plt.subplots(2, 2,figsize=(20,12), sharex=True, sharey=True)
204

205 x_data = [] # X-axis for the coefficents
206 dist_squared = squareform(self.dist_cond)
207 [x_data.append(cuts) for cuts in range(2,dist_squared.shape[0] - 1)]
208 temp = -1 # Used to iterate the subplots
209 for idx, method in enumerate(methods):
210 if idx%2 == 0:
211 temp += 1
212 color = 'tab:red'
213 ax[temp,idx%2].grid(True)
214 ax[temp,idx%2].set_title(method, fontsize=25)
215 ax[temp,idx%2].plot(x_data, self.silhouettes[method],'-o', color=color, label = 'Silhouette index')
216 ax[temp,idx%2].tick_params(axis='y', labelcolor=color, labelsize=15)
217 ax[temp,idx%2].text(10,cophenet_yaxis,"Cophenet index: {:.3f}".format(self.correlations[method]),
218 fontsize=15)
219 ax[temp,idx%2].tick_params(axis='x', labelsize=15)
220 ax[temp,idx%2].set_ylabel('Silhouette index', color=color, fontsize=20)
221 ax2 = ax[temp,idx%2].twinx() # instantiate a second axes that shares the same x-axis
222

223 color = 'tab:blue'
224 ax2.plot(x_data, self.mean_sum_squared[method], '-o', color=color, label = 'Mean sum of SSE')
225 ax2.tick_params(axis='y', labelcolor=color, labelsize=15)
226 ax2.set_ylabel('Mean sum of SSE', color=color, fontsize=20)
227

228

229 ax[1,0].set_xlabel('Number of cuts', labelpad=0, fontsize=20)
230 ax[1,1].set_xlabel('Number of cuts', labelpad=0, fontsize=20)
231

232 fig.tight_layout() # otherwise the right y-label is slightly clipped
233 plt.show()
234

235 if save_figure:
236 path_pictures = 'C:/Users/ewaaga/OneDrive - KONGSBERG MARITIME AS/Pictures/Performance indicators/'
237 fig.savefig(path_pictures+'Internal_indices_'+similarity_measure+'_'+dataset_name+file_ending+'.eps',
238 bbox_inches='tight', pad_inches=0)
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D.1.5: Main function which is called after the former scripts has been run.

For running the ’Univariate V1’ cluster analysis, leave it as it is and run the scripts. For running the ’Univariate V2’
comment out line number 11 to 29 and uncomment line 33 to 51. For running the ’Multivariate V1’ cluster
analysis, uncomment line 54 to 76 and comment out the other data sets. For running the ’Multivariate V2’ cluster
analysis, uncomment line 79 to 102 and comment out the other data sets. Make sure that the path the the data sets
is correct.

1 #!/usr/bin/env python
2 # coding: utf-8
3

4 # In[ ]:
5

6

7 if __name__ == "__main__":
8 """ For running the different cluster analysis, uncomment the different sections.
9 For example, if I want to run the analysis on the UNIVARIATE_v1, I would uncomment

10 line number 11 to 29. """
11 #### UNIVARIATE_v1 ####
12 #Paths
13 path_csv = 'C:/Users/ewaaga/OneDrive - KONGSBERG MARITIME AS/Finished_python_code/Data sets/Univariate_v1/'
14 path_pictures_euc = 'C:/Users/ewaaga/OneDrive - KONGSBERG MARITIME AS/Pictures/'
15 path_pictures_dtw = 'C:/Users/ewaaga/OneDrive - KONGSBERG MARITIME AS/Pictures/'
16

17 # Filenames
18 dataset_name = 'Univariate_v1'
19

20 filenames = ['Gearbox_temp_1day_30A_R']
21

22 df_names = ['gearboxTemp']
23

24 skip_rows = [1]
25 alphas = [1]
26 file_ending = "_alphas_1"
27 lenght_moving_average = 5
28 window_size_dtw = 280
29 #########################
30

31

32

33 # #### UNIVARIATE_v2 ####
34 # #Paths
35 # path_csv = 'C:/Users/ewaaga/OneDrive - KONGSBERG MARITIME AS/Finished_python_code/Data sets/Univariate_v2/'
36 # path_pictures_euc = 'C:/Users/ewaaga/OneDrive - KONGSBERG MARITIME AS/Pictures/'
37 # path_pictures_dtw = 'C:/Users/ewaaga/OneDrive - KONGSBERG MARITIME AS/Pictures/'
38

39 # # Filenames
40 # dataset_name = 'Univariate_v2'
41

42 # filenames = ['Gearbox_temp_1day_30A_R_v2']
43

44 # df_names = ['gearboxTemp']
45

46 # skip_rows = [1]
47 # alphas = [1]
48 # file_ending = "_alphas_1"
49 # lenght_moving_average = 5
50 # window_size_dtw = 280
51 # #########################
52

53

54 # #### MULTIVARIATE_V1 #####
55 # #Paths
56 # path_csv = 'C:/Users/ewaaga/OneDrive - KONGSBERG MARITIME AS/Finished_python_code/Data sets/Multivariate_v1/'
57 # path_pictures_euc = 'C:/Users/ewaaga/OneDrive - KONGSBERG MARITIME AS/Pictures/'
58 # path_pictures_dtw = 'C:/Users/ewaaga/OneDrive - KONGSBERG MARITIME AS/Pictures/'
59

60 # # Filenames
61 # dataset_name = 'Multivariate_v1'
62

63

64 # filenames = ['Gearbox_temp_1day_30A_R_v2',
65 # 'Wind_speed_nascell_v2',
66 # 'Generator_speed_v2',
67 # 'Positional_derivative_v2_unwrapped']
68

69 # df_names = ['gearboxTemp', 'windSpd','genSpd','posDeviation']
70

71 # skip_rows = [1,1,1,0]
72 # alphas = [8,1,1,1]
73 # file_ending = "_alphas_8111"
74 # lenght_moving_average = 5
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75 # window_size_dtw = 280
76 # #########################
77

78

79 # #### MULTIVARIATE_V2 #####
80 # # Paths
81 # path_csv = 'C:/Users/ewaaga/OneDrive - KONGSBERG MARITIME AS/Finished_python_code/Data sets/Multivariate_v2/'
82 # path_pictures_euc = 'C:/Users/ewaaga/OneDrive - KONGSBERG MARITIME AS/Pictures/'
83 # path_pictures_dtw = 'C:/Users/ewaaga/OneDrive - KONGSBERG MARITIME AS/Pictures/'
84

85 # # Filenames
86 # dataset_name = 'Multivariate_v2'
87

88 # filenames = ['power_mv2',
89 # 'gearboxTemp_mv2',
90 # 'generatorSpeed_mv2',
91 # 'windSpeed_mv2',
92 # 'windDir_mv2',
93 # 'outsideTemp_mv2']
94

95 # skip_rows = [0,0,0,0,0,0]
96 # alphas = [1,1,1,1,0,0]
97 # file_ending = "_alphas_111100"
98 # lenght_moving_average = 100
99

100 # df_names = ['power', 'gearboxTemp','genSpd', 'windSpd', 'windDir', 'extTemp']
101 # window_size_dtw = 620
102 # #########################
103

104

105 # Initiate dataframes
106 dataframes = Dataframe_extraction_preprocessing(path_csv, filenames, dataset_name, skip_rows)
107 #dataframes.plotting_dataframe(dataframes.dataframes, "Initial plots")
108

109 # Applying filter
110 dataframes.filter_median(lenght_moving_average)
111 #dataframes.plotting_dataframe(dataframes.dataframes, "Post-filtering plots")
112

113 # Normalization
114 dataframes.normalization()
115 #dataframes.plotting_dataframe(dataframes.dataframes_norm, "Normalized timeseries plots")
116

117 # Scaling
118 dataframes.scaling()
119 #dataframes.plotting_dataframe(dataframes.dataframes_scaled, "Scaled timeseries plots")
120

121 # Reformed dataset
122 if dataset_name == 'Multivariate_v1':
123 dataframes_reformed = [dataframes.dataframes_norm[0], dataframes.dataframes_norm[1],
124 dataframes.dataframes_scaled[2], dataframes.dataframes_norm[3]]
125

126

127 ### SIMILARITY IN TIME CLUSTER ANALYSIS ###
128 ## Distance matrix
129 count_nonzero = np.count_nonzero(alphas)
130

131 # Euclidean
132 model_euc = Clustering_hierarchical(dataframes_scaled = dataframes.dataframes_scaled)
133 model_euc.distance_matrix_euc(alphas)
134

135 ## Internal indexes
136 methods = ['single', 'complete', 'average', 'ward']
137 metric = 'euclidean' # internal distance, NOT the similarity measure
138

139 print("Euclidean internal indexes")
140 similarity_measure = 'euclidean'
141 cophenet_yaxis = 0.63 # Adjust this for the location of the Cophenet index in the plot of the dendrogram
142 internal_indexes = Internal_indexes(model_euc.dist_cond, model_euc.dist_cond_original,
143 count_nonzero, dataframes.dataframes_scaled)
144 internal_indexes.calculation_internal_indexes(methods, metric, similarity_measure)
145 internal_indexes.plotting_internal_indexes(similarity_measure, dataset_name, cophenet_yaxis, file_ending,
146 save_figure = False)
147

148 # Plotting the dendrogram with the given method
149 method = 'single'
150 metric = 'euclidean'
151 cut_distance = 250000 # Only used for visualising the cut in the dendrogram
152 model_euc.plot_dendrogram(method, metric, cut_distance, dataframes.dataframes, path_pictures_euc,
153 file_ending)
154

155 num_cuts = 3 # Cuts the dendrogram into 'num_cuts' partitions
156 print(count_nonzero)
157 df_names = ['power', 'gearboxTemp','genSpd', 'windSpd', 'windDir', 'extTemp']
158 model_euc.print_clusters(dataframes.dataframes_norm[:count_nonzero], method, metric, num_cuts,
159 count_nonzero, path_pictures_euc, save_plot=False)
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160

161

162

163 ### SIMILARITY IN SHAPE CLUSTER ANALYSIS ###
164 ## DTW distance
165 if dataset_name == 'Multivariate_v1':
166 model_dtw = Clustering_hierarchical(dataframes_norm = dataframes_reformed)
167 else:
168 model_dtw = Clustering_hierarchical(dataframes_norm = dataframes.dataframes_norm)
169

170 model_dtw.distance_matrix_dtw(alphas, window_size_dtw)
171

172 ## Internal indexes
173 methods = ['single', 'complete', 'average', 'ward']
174 metric = 'euclidean' # internal distance, NOT the similarity measure
175

176 print("DTW internal indexes")
177 similarity_measure = 'dtw'
178 cophenet_yaxis = 0.72 # Adjust this for the location of the Cophenet index in the plot of the dendrogram
179 internal_indexes = Internal_indexes(model_dtw.dist_cond, model_dtw.dist_cond_original,
180 count_nonzero, dataframes.dataframes_scaled)
181 internal_indexes.calculation_internal_indexes(methods, metric, similarity_measure)
182 internal_indexes.plotting_internal_indexes(similarity_measure, dataset_name, cophenet_yaxis, file_ending,
183 save_figure=True)
184

185 # Plotting the dendrogram with the given method
186 method = 'single'
187 metric = 'euclidean'
188 cut_distance = 250000 # Only used for visualising the cut in the dendrogram
189 model_dtw.plot_dendrogram(method, metric, cut_distance, dataframes.dataframes, path_pictures_dtw,
190 file_ending)
191

192 # Plotting the timeseries and the cluster assignment
193 num_cuts = 3 # Cuts the dendrogram into 'num_cuts' partitions
194 print(count_nonzero)
195 df_names = ['power', 'gearboxTemp','genSpd', 'windSpd', 'windDir', 'extTemp']
196 model_dtw.print_clusters(dataframes.dataframes_norm[:count_nonzero], method, metric, num_cuts,
197 count_nonzero, path_pictures_dtw, save_plot=True)
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D.2: Python script for the K-means implementation
In this appendix, the Python script for the K-means implementation is presented. This script assumes that the time
series are stored in dataframes, which is the results from running the scripts in Appendix D.1. In this implemen-
tation, the scaled dataframes are clustered (dataframes.dataframes scale[0].T is called in the script). This is only
run for the first data set, ’Univariate V1’, where the time series for the gearbox temperature is clustered.

1 #!/usr/bin/env python
2 # coding: utf-8
3

4 # ## K-means
5 # Implementation from scipy library
6 #
7 # https://docs.scipy.org/doc/scipy/reference/cluster.vq.html#module-scipy.cluster.vq
8

9 # In[ ]:
10

11

12 ### K-means from scipy.cluster.vq.kmeans
13

14 from scipy.cluster.vq import vq, kmeans, kmeans2, whiten
15 import timeit
16

17 num_clusters = 4
18 num_iterations = 5000
19

20 # Codebook: A k by N array of k centroids,
21 # Distrotion: The mean (non-squared) Euclidean distance between the observations passed and the centroids
22 # generated.
23 # codebook, distortion = kmeans(timeSeries, num_clusters, iter=500)
24 start = timeit.default_timer()
25 centroid, _ = kmeans(dataframes.dataframes_scaled[0].T, num_clusters, iter= num_iterations, thresh=1e-08,
26 check_finite=False)
27 end = timeit.default_timer()
28

29 print("Time: ",(end-start)/num_iterations)
30

31 # Code: A length M array holding the code book index for each observation.
32 # dist: The distortion (distance) between the observation and its nearest code.
33 label, dist = vq(timeSeries, centroid)
34

35 print(label, dist)
36

37 df_centroid = pd.DataFrame(centroid.transpose())
38 df_centroid.set_index(time_axis.values, inplace=True)
39

40

41 # In[ ]:
42

43

44 # Getting the cluster centers and plotting them
45

46 import matplotlib.pyplot as plt
47 df_centroid.plot(figsize=(18,10), style=style_code, fontsize=15)
48 plt.title(r'Gearbox oil temperature', fontsize=20)
49 plt.ylabel(r'Temperature [C]', fontsize=18)
50

51 # Attaching lengeds
52 legends = []
53 for i in range(centroid.shape[0]):
54 legends.append('Cluster '+str(i+1))
55 plt.legend(legends, fontsize=13)
56 plt.savefig(path_pictures+'Cluster_prototypes_numClusters_'+str(num_clusters)+'v2.eps',
57 bbox_inches='tight', pad_inches=0)
58 plt.show()
59 #bottom, top = [0,1]
60 #plt.ylim(bottom, top)
61

62 # Cluster assignment
63 print("Cluster assignment: ",label)
64

65

66 # In[ ]:
67

68

69 # Plotting the cluster center along with the time series assigned to that cluster
70

71 for idx, cluster in enumerate(centroid):
72 # Transforming to panda frames
73 labels = pd.Series(label)
74 cluster_plot = pd.DataFrame(cluster)
75 cluster_plot.set_index(time_axis.values, inplace=True)
76 cluster_plot.columns = ['Cluster '+str(idx+1)]
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77

78 # Assigning time-series to correct cluster
79 cluster_indeces = labels[labels==idx].index
80 print("Cluster %d number of entries %d" % (idx+1, len(cluster_indeces)))
81

82 # Plotting the results
83 title = r"Cluster "+str(idx+1)+" - Number of time-series: "+str(len(cluster_indeces))
84 ax = cluster_plot.plot(figsize=(18,8), title = title, style=style_code, fontsize = 20)
85 timeSeries.T.iloc[:,cluster_indeces].plot(ax=ax, style=style_code, alpha=0.3, fontsize = 20)
86 ax.legend(loc='upper right', fontsize=20)
87 ax.set_ylim(bottom, top)
88 fig = ax.get_figure()
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D.3: Additional python scripts
In this appendix, additional Python scripts are provided. In Appendix D.3.1, the Python script used for calculating
and visualising the warping path of the DTW algorithm in Appendix C.1 is provided. In Appendix D.3.2, the
Python script for plotting of the dendrogram with the associated time series. Examples of these resulting plots can
be seen in for example Figure 6.17 or 6.21. In Appendix D.3.3, the Python script for comparing the different DTW
implementations is provided.

D.3.1: Python script used for calculating and visualising the warping path of the DTW algorithm in Ap-
pendix C.1.

1 #!/usr/bin/env python
2 # coding: utf-8
3

4 # # Script for visualising the warping path
5

6 # In[ ]:
7

8

9 # Plotting of the warping path
10 from dtaidistance import dtw
11 from dtaidistance import dtw_visualisation as dtwvis
12 import numpy as np
13 t1 = 1 # time sereis number in the dataframe
14 t2 = 4 # time sereis number in the dataframe
15

16 # The dataframes_norm is the same as acquired from the main function.
17 # Should be run after the dataframes extarction and preprocessing
18 x = dataframes.dataframes_norm[0].values[:,t1]
19 y = dataframes.dataframes_norm[0].values[:,t2]
20

21

22 window_size = 300
23 d, paths = dtw.warping_paths(x, y, window=window_size)
24 best_path = dtw.best_path(paths)
25 # dtwvis.plot_warpingpaths(x, y, paths, best_path, filename = "turbine_{}vs{}_window_{}".format(t1,t2,window_size))
26 dtwvis.plot_warpingpaths(x, y, paths, best_path)
27

28

29 # In[ ]:
30

31

32 window_size = 600
33 d, paths = dtw.warping_paths(x, y, window=window_size)
34 best_path = dtw.best_path(paths)
35 dtwvis.plot_warpingpaths(x, y, paths, best_path)
36

37

38 # In[ ]:
39

40

41 d, paths = dtw.warping_paths(x, y)
42 best_path = dtw.best_path(paths)
43 dtwvis.plot_warpingpaths(x, y, paths, best_path)
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D.3.2: Script for plotting of the dendrogram with the associated time series
1 #!/usr/bin/env python
2 # coding: utf-8
3

4 # # Helper function for visualising thedendrograms and the time series
5

6 # In[ ]:
7

8

9 dataframes.dataframes_norm[0].values.shape
10 timeSeries = dataframes.dataframes_norm[0].T
11 print(timeSeries.shape)
12 print(type(timeSeries.values))
13 print(timeSeries.values.shape)
14

15

16

17 import timeit
18 from dtaidistance import clustering
19 from dtaidistance import dtw
20 # Custom Hierarchical clustering
21 model1 = clustering.Hierarchical(dtw.distance_matrix, {})
22 # Augment Hierarchical object to keep track of the full tree
23 model2 = clustering.HierarchicalTree(model1)
24 # SciPy linkage clustering
25 model3 = clustering.LinkageTree(dtw.distance_matrix, dists_options={"use_c":True, "window":window_size_dtw})
26 # use_c =True, window=100
27 start = timeit.default_timer()
28 method = 'average'
29 cluster_idx = model3.fit(timeSeries.values, method = method)
30 end = timeit.default_timer()
31

32 print("Time: ",end-start)
33 print(model3)
34

35 fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(20, 15))
36 show_ts_label = lambda idx: dataframes.dataframes_norm[0].columns[idx]
37 model3.plot(path_pictures_dtw+"dendrogram_dtaidistance_2"+method+".png", axes=ax, show_ts_label=show_ts_label,
38 show_tr_label=True, ts_label_margin=-200, ts_height = 100,
39 ts_left_margin=-50, ts_sample_length=1, tr_label_margin=1, tr_left_margin=0)
40 plt.show()
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D.3.3: Script for comparing the different DTW implementations

1 #!/usr/bin/env python
2 # coding: utf-8
3

4 # # Comparison between different DTW implementations
5

6 # In[1]:
7

8

9 import timeit
10 import numpy as np
11 import matplotlib.pyplot as plt
12 from dtaidistance import dtw
13 from dtaidistance import dtw_visualisation as dtwvis
14 import numpy as np
15

16

17 # In[2]:
18

19

20 idx = np.linspace(0, 10, 5000)
21 x = 1.4*np.sin(idx)
22 y = np.cos(idx)
23

24 width = len(x)//10
25 print("Width:", width)
26 plt.figure(figsize=(15,10))
27 plt.plot(idx,x,idx,y)
28

29

30 # # DTW unconstrained
31

32 # In[3]:
33

34

35 from cdtw import pydtw
36

37 start = timeit.default_timer()
38 d = pydtw.dtw(x,y,pydtw.Settings(dist = 'euclid', step = 'dp2', window = 'nowindow',
39 compute_path = False))
40 end = timeit.default_timer()
41 print("Time pydtw from cdtw: ",end-start)
42 print("Distance pydtw from cdtw: ", d.get_dist())
43

44

45 # In[4]:
46

47

48 from scipy.spatial.distance import euclidean
49 from fastdtw import fastdtw
50

51 start = timeit.default_timer()
52 distance, path = fastdtw(x, y, dist=euclidean)
53 end = timeit.default_timer()
54

55 print("Time: ",end-start)
56 print("Distance: ", distance)
57

58

59 # In[5]:
60

61

62 from tslearn.metrics import dtw_path
63

64 start = timeit.default_timer()
65 path, distance = dtw_path(x, y) # support
66 end = timeit.default_timer()
67 #
68 print("Time: ",end-start)
69 print("Distance: ", distance)
70

71

72 # In[6]:
73

74

75 from tslearn.metrics import cdist_dtw
76

77 start = timeit.default_timer()
78 path, distance = cdist_dtw([x,y])
79 end = timeit.default_timer()
80 #
81 print("Time: ",end-start)
82 print("Distance: ", distance)
83
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84

85 # In[7]:
86

87

88 from dtaidistance import dtw
89

90 start = timeit.default_timer()
91 distance = dtw.distance_matrix([x,y])
92 end = timeit.default_timer()
93

94 print("Time: ",end-start)
95 print("Distance: ", distance)
96

97 start = timeit.default_timer()
98 distance = dtw.distance_matrix([x,y], use_c = True)
99 end = timeit.default_timer()

100

101 print("Time: ",end-start)
102 print("Distance: ", distance)
103

104 start = timeit.default_timer()
105 distance = dtw.distance_matrix([x,y], use_nogil = True)
106 end = timeit.default_timer()
107

108 print("Time: ",end-start)
109 print("Distance: ", distance)
110

111 start = timeit.default_timer()
112 distance = dtw.distance_matrix([x,y], use_nogil = True, parallel = True)
113 end = timeit.default_timer()
114

115 print("Time: ",end-start)
116 print("Distance: ", distance)
117

118 start = timeit.default_timer()
119 distance = dtw.distance_matrix([x,y], use_c = True, parallel = True)
120 end = timeit.default_timer()
121

122 print("Time: ",end-start)
123 print("Distance: ", distance)
124

125 start = timeit.default_timer()
126 distance = dtw.distance_matrix_fast([x,y])
127 end = timeit.default_timer()
128

129 print("Time: ",end-start)
130 print("Distance: ", distance)
131

132

133 # # DTW contrained, Sakoe-band
134

135 # In[8]:
136

137

138 from tslearn.metrics import dtw_path
139

140 start = timeit.default_timer()
141 path, distance = dtw_path(x, y, global_constraint='sakoe_chiba', sakoe_chiba_radius=width) # support
142 end = timeit.default_timer()
143 #
144 print("Time: ",end-start)
145 print("Distance: ", distance)
146

147

148 # In[9]:
149

150

151 from tslearn.metrics import cdist_dtw
152

153 start = timeit.default_timer()
154 path, distance = cdist_dtw([x,y], global_constraint='sakoe_chiba', sakoe_chiba_radius=width)
155 end = timeit.default_timer()
156 #
157 print("Time: ",end-start)
158 print("Distance: ", distance)
159

160

161 # In[3]:
162

163

164 from dtaidistance import dtw
165

166 start = timeit.default_timer()
167 distance = dtw.distance_matrix([x,y], window=width)
168 end = timeit.default_timer()

171



169

170 print("Time: ",end-start)
171 print("Distance: ", distance)
172

173 start = timeit.default_timer()
174 distance = dtw.distance_matrix([x,y], use_c = True, window=width)
175 end = timeit.default_timer()
176

177 print("Time: ",end-start)
178 print("Distance: ", distance)
179

180 start = timeit.default_timer()
181 distance = dtw.distance_matrix([x,y], use_nogil = True, window=width)
182 end = timeit.default_timer()
183

184 print("Time: ",end-start)
185 print("Distance: ", distance)
186

187 start = timeit.default_timer()
188 distance = dtw.distance_matrix([x,y], use_nogil = True, parallel = True, window=width)
189 end = timeit.default_timer()
190

191 print("Time: ",end-start)
192 print("Distance: ", distance)
193

194 start = timeit.default_timer()
195 distance = dtw.distance_matrix([x,y], use_c = True, parallel = True, window=width)
196 end = timeit.default_timer()
197

198 print("Time: ",end-start)
199 print("Distance: ", distance)
200

201

202 # # IMPLEMENTATION DOES NOT WORK!
203 # start = timeit.default_timer()
204 # distance = dtw.distance_matrix_fast([x,y], window=width)
205 # end = timeit.default_timer()
206

207 # # IMPLEMENTATION DOES NOT WORK!
208 # start = timeit.default_timer()
209 # distance = dtw.distance_fast(x,y, window=width)
210 # end = timeit.default_timer()
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