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Abstract

This thesis has investigated the possibility to classify EEG signals produced by

visual exposure to red, green and blue (RGB) colors, thought to provide rapid

control and decreased learning times brain-computer interface (BCI) applications.

An in-house experiment with 17 participants was designed and conducted.

Analytic and empirical signal analysis methods were studied using event-related

potential (ERP), short time Fourier transform (STFT), and empirical mode

decomposition (EMD). Two classification methods have been explored. The first

method used features from intrinsic mode functions (IMFs) obtained with EMD

as inputs for machine learning (ML) algorithms, reaching accuracies of 0.37 and

0.63 for a generic and subject-specific model, respectively. Classification accuracy

of gray and any of the RGB colors were up to 0.99. The second method used EEG

signals as input to a convolutional neural network (CNN), obtaining a maximum

accuracy of 0.46 across all subjects.

All accuracies are above the chance level of 0.33 for three class classification,

which indicates that the methods can partly describe the colors in EEG signals.

The study concludes that generic models for classification of RGB colors are

challenging, and subject-tailored models are preferred for practical applications.

Although the model performances were not ideal, it is believed that the dataset

collected and the results presented encourage to further research.



Abstract - Norwegian

Denne masteroppgaven har undersøkt muligheten for å klassifisere EEG-signaler

fremstilt av visuell eksponering for rød, grønn og bl̊a (RGB) farge, noe

som anatas å gi kort responstid og redusert læringstid for hjerne-datamaskin-

grensesnitt-applikasjoner (BCI). Et eksperiment med 17 deltakere ble designet og

gjennomført. Analytiske og empiriske signalanalysemetoder ble undersøkt ved

hjelp av hendelsesrelatert potensial (ERP), kort Fourier-transformasjon (STFT)

og empirical mode decomposition (EMD). To klassifikasjonsmetoder ble benyttet.

Den første metoden bruker egenskaper som finnes i intrinsic mode functions

(IMF) fra EMD som inndata til algoritmer for maskinlæring (ML), og oppn̊ar

en nøyaktighet p̊a henholdhvis 0, 37 og 0, 63 for en generisk og individ-tilpasset

modell. Klassifikasjonsnøyaktigheten mellom gr̊a og RGB-fargene var opp til

0, 99. Den andre metoden bruker EEG-signalerer som inndata til et konvolusjonelt

nevralt nettverk (CNN), og oppn̊ar en nøyaktighet p̊a 0, 46 over alle individer.

Alle nøyaktigheter er over 0.33, som er den tilfeldige nøyaktigheten for

klassifisering av tre klasser, noe som indikerer at metodene delvis kan beskrive

farger i EEG-signaler. Studien konkluderer med at generiske modeller for

klassifisering av RGB-farger er utfordrende, og individ-tilpassede modeller

foretrekkes for praktisk anvendelse. Selv om resultatene ikke var ideelle, vil

datasettet og resultatene gi grunnlag for videre forskning.
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Chapter 1

Introduction

Color vision in mammals is useful for object detection and identification during

various tasks, such as recognizing ripe fruit on a tree. Humans ability to identify

colors based on light waves entering the eye is a complex task, successfully solved

by the human brain and the visual system.

Brain activity produces electrical activity that can be recorded from the scalp,

from the cortical surface, or from within the brain. These signals can be captured

with invasive or non-invasive methods, i.e., whether the sensors are set-up after a

craniotomy or not [1]. Electroencephalography (EEG) has become a well-known

technique for monitoring and recording brain activity, due to its high temporal

resolution, relatively low cost, high portability, and few risks to the user [2].

In the field of neurology and neurophysiology, EEG is practiced in hospitals to

investigate various conditions such as fainting, epilepsy, coma, personality change,

sleep disorder, and after various traumas. Monitoring brain signals is considered

a mature field that is now also being spun out into commercial products, that can

be used for reaching mindfulness and identifying mental states [3][4].

By recording brain signals, a specific cognitive state can be sent from a person

to a computer without the use of speech, gestures, or writing. A computer can

then translate brain activity into desired commands for an external device or the

computer itself. Such an application practiced in real time is called a brain-

computer interface (BCI), and the principle is illustrated in Fig. 1.1. Brain

activity is recorded with electrodes, and the signals are classified using pre-trained

algorithms. A learning algorithm has to be trained to learn the properties of the

different signals to detect those properties in unknown signals. Classification refers

to the task of identifying to which category a new observation belongs. Trained

1



Introduction 2

algorithms are, therefore, capable of separating the different mental states of the

user, and can decide on which action to execute.

A BCI application can be controlled using various neuro-paradigms, such as

imagining a movement or visual stimuli. Naturally, colors produce dedicated brain

responses, and an intriguing question is if EEG recordings contain components

capable of distinguishing colors from each other. These components could then be

used to determine which color a person sees, which would allow accurate control

of any electro-mechanic device. This particular area of using colors to produce

the control signals for BCI applications remains unclear, and few researchers

have addressed the topic, despite its simplistic nature compared to other neuro-

paradigms.

The brain responds to color faster than any other stimuli. Visually evoked signals

are observed as short as 200ms after stimuli, enabling quick control, as compared

to slower processes such as imagined movement observed 700ms after imagining

start [5]. Moreover, exposure to visual stimuli does not require the user to provoke

mental actively; just let the visual system passively produce the control signals.

Consequently, color controlled BCIs is thought to reduce learning times for the

user.

Feedback

Signal	acquisition Signal	processing

Application

Classification

Figure 1.1: Design and operation of a BCI system.

1.1 Problem description

The overall purpose of this research is to investigate color related characteristics

in EEG signals. As this research constitutes an almost new approach for working

with EEG and color stimuli, the study addresses a wide range of relevant topics,

such as facts about the visual system, and state-of-the-art research on the topic

of color perception in the human brain. These areas are, therefore, addressed and

discussed.

Using knowledge from the topics mentioned above, this works aims to classify

EEG signals produced by visual stimuli to red, green and blue (RGB) color.
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The problem is approached by investigating signal analysis methods, used both

for visual inspection and computational methods. The methods used are event-

related potential (ERP), short time Fourier transform (STFT) and empirical mode

decomposition (EMD). A first step is to test if it is possible to distinguish the RGB

colors from gray color, and the second step is to classify the RGB colors from each

other. A variety of methods will be examined and questioned in the search for the

optimal approach.

The evaluation of techniques requires a suitable dataset, consisting of EEG signals

produced by subjects being exposed to RGB colors. An essential part of this work

is, therefore, to design, implement, and record such a dataset.

1.1.1 Research Questions

The following research questions will be addressed:

1. Is it possible to distinguish EEG signals produced by red, green or blue color

exposure by visual inspection of transformations (ERP, STFT and EMD)

applied to the EEG signals?

2. Is it possible to distinguish between RGB colors and gray color from EEG

signals using machine-learning (ML)?

3. Can information contained in EEG data be used to train ML models and

efficiently differentiate between RGB colors?

1.1.2 Motivation

This work is the first effort towards the design of a reliable real-time classification

of EEG signals produced by looking at a color, which could enable physically

disabled people with cognitive functions to control their environment. Real-time

classification refers to the capability to perform a classification task and give a

rapid response to a user, which is required for any practical application. For

instance, a user can open and close doors by looking at colored signs, as illustrated

in Fig. 1.2. Even though the commercialization of a BCI application is beyond

the scope of this work, it surely provides an underlying motivation.

1.2 Report structure

This report gives a comprehensive overview of knowledge and tools to design,

execute, and analyze brain dynamics caused by visual stimuli to RGB. A selection
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1

H

Figure 1.2: Example of real-time application with dedicated colored signs.

of background theory related to the visual system and the brain, as well as signal

analysis methods are summed in Ch. 2. State-of-the-art research is addressed in

Ch. 3. The methods used for feature extraction and classification for this project

are outlined in Ch. 4. Ch. 5 presents the experimental paradigm used for data

collection, as well as the hardware and software employed. In Ch. 6 the results are

presented and discussed. Finally, Ch. 7 summarizes the whole thesis, and Ch. 8

concludes and provides a discussion for the next steps in the process of developing

a BCI system based on color perception.



Chapter 2

Background

Understanding the underlying processes in the brain is central to the discipline of

brain signal experiments. The objective of this chapter 1 is to provide background

knowledge considered useful for the design and execution of RGB experiments.

2.1 The human brain and the visual system

The visual system converts light into electric signals. These signals enable a visual

understanding of objects in the surroundings, while simultaneously provoke, for

instance, feelings and memories. This process is an extremely complex task, far

beyond the capabilities of the most advanced computer vision systems. A general

understanding of how the human brain and the visual system work is necessary

for both experimental design and interpreting the findings.

Information regarding the processes in the human brain can be recorded with

EEG electrodes. The rest of this section is dedicated to briefly introduce the

major concepts and functions of the human brain and the visual system.

2.1.1 The human brain

The human brain receives information from the senses and controls thoughts and

movements. Technologies such as functional magnetic resonance imaging (fMRI)

have been used to analyze the blood response in different areas of the brain as a

result of external stimuli [7]. Such studies have enabled scientists to divide the

brain into different parts and regions, according to their function. Some of the

main brain regions are presented in Fig. 2.1 [8].

1Note that this chapter is an updated version of the background presented in the author’s
work described in [6]

5
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• Frontal lobe (red) has mostly executive functions such as personality,

emotions, higher thinking skills, and movement control.

• Temporal lobe (yellow), processes hearing and other senses, and helps with

language and reading.

• Parterial lobe (blue) is involved with senses, attention, and language.

• Occipital lobe (green) is related to vision, including the recognition of

shapes and colors.

These are just a few of the parts and functions of the brain. Other deeper parts are,

for instance, controlling adrenaline and sleep. Processes are constantly happening

in the brain, some of which are impossible to control.

Figure 2.1: Main human brain regions.

2.1.1.1 How brains process information

Neurons in the brain receive, processes and transmit information through electrical

and chemical signals. The processing of information mostly happens in the outer

layer of the brain, the cerebral cortex. The brain consists of nerve cells, called

neurons. A neuron contains a cell body (soma), holding the cell nucleus. An axon

and several dendrites branch out of the cell body. Neurons are connected with

synapses, and when a neuron receives a potential, a movement of ions is produced

throughout the membrane, which creates a current that propagates in the head.

[9].

2.1.2 The visual system

The process of vision starts when light enters the eye through the pupil. Humans

can detect light waves of different frequencies and amplitudes. The portion of the
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electromagnetic spectrum the human eye can detect is called the visible spectrum

and includes wavelengths in the range 380−740nm [10]. The wavelength of a light

wave determines its color, and the amplitude relates to its brightens. Hence, blue

light with low amplitude will appear dull, while higher amplitude and intensity

will make the color look bright [11].

The main parts of the human eye are illustrated in Fig. 2.2 [12]. The iris,

surrounding the pupil, contracts, or expands the pupil to control the level of

illumination to enter the eye (1). Light reaches the light-sensitive tissue lining the

back of the eye, called the retina, and is absorbed by photoreceptors (2). The

photoreceptors transform the light energy into nerve impulses that the human

brain interprets. The signal is passed to neural cells (3), moves through the optic

nerve before the information is sent to the brain (5).

There exist two types of photoreceptors; rods and cones. Cones detect fine detail

in color, and distinct cones are sensitive to RGB. The rods, on the other hand, are

light sensitive, but do only register a scale of gray with poor resolution - and will,

for instance, be used to recognize the shape of large objects in dark surroundings.

The photoreceptors are all connected with synapses to the bipolar neurons which

transfers information to the ganglions. The action potentials created by the

ganglion cells are connected to the optic nerve, which transfers the signals to

the thalamus before they continue back to the occipital lobe, where the visual

cortex is located. In the context of color perception, a significant area of interest

(in addition to the eye itself) is as the name suggests, the visual cortex.

Figure 2.2: Working of the eye.
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2.1.2.1 Neural processing of the visual signal

Most of the pioneering work on the visual system was done in [13][14][15]. The

following is a much-simplified version of the findings.

There are more than 100 million light receptors in each retina; still, the two optic

nerves contain only 1 million fibers, and essential processing is done locally in the

retina. The signal passes through bipolar and ganglion cells, before the modified

signal passes through the optic nerve to the lateral geniculate nucleus (LGN) where

the signal is distributed to various parts of the visual cortex [16].

A recent study by two neuroscientists shares more information about the type of

processing going on in the eyeball, before transmission to the brain [17]. Visual

abilities are already set up in the bipolar cells, right after the first synapse of the

visual system [18]. The retina breaks the visual world into several parallel channels

before transmission to the visual cortex.

The different types of ganglion cells, responsible for local processing in the retina

were first described in [19]. Further research has shown that two of these ganglions

are responsible for high temporal precision and high spatial acuity, in other words,

speed, and sharpness, in primate vision [20].

Suppression of redundant data - data compression

It has intuitively been assumed that the visual system generates a continuous

stream of images. However, it has recently been demonstrated that redundant

data is suppressed to save energy by frequently forwarding image differences [17].

The visual system will not update unchanged images to the brain. The visual

receptor cells become fatigued very quickly, and hence, they turn off altogether

after a few seconds unless there is a change in stimuli [16].

2.2 Electroencephalography

The following subsections provides important terms and concepts related to EEG.

A general advantage of using EEG is the ability to examine brain activity unfolding

in real time. In this project, EEG was preferred due to its relatively low cost,

accessibility, and that it can easily be managed without significant arrangements

and special lab setups. One can record EEG signals using wet or dry electrodes;

wet electrodes require adding a conductive substance, such as a gel, while dry

electrodes achieve acceptable contact without any additions, resulting in a more

straightforward experiment procedure. One of the significant disadvantages of



Background 9

EEG is that it is hard to figure out where in the brain the electrical activity is

originated.

EEG is a well know technique for recording brain signals from the scalp [21][22].

Even though the current generated by a single neuron in the human brain is

undetectable, a collection of them can produce time-dependent electric fields

that are measurable via EEG electrodes. More precisely, EEG is a measure of

the electric potential difference between a point on the scalp and a reference

electrode. The positioning of the reference electrode is important when designing

EEG experiments.

2.2.1 Electrode placement

Electrodes are commonly positioned on the scalp according to the international

10-20 system or the 10-10 system [23]. The numbers refer to the fact that the

distance between adjacent electrodes is either 10% or 20% of the total front-back

or right-left distance of the scalp [24]. Each position has identification letters to

identify the lobe and a number to a corresponding hemisphere position, as shown

in Tab. 2.1.

Table 2.1: Brain lobes and associated electrode label.

Electrode Lobe
F Frontal
T Temporal
C Central*
P Parietal
O Occipital

Electrode positions from top and side view are presented in Fig. 2.32. The

electrodes are labeled with the letter representing the respective brain lobe and

numbered according to its position. Even numbers refer right hemisphere (blue),

and odd numbers refer to the left hemisphere (red). Electrodes placed on the

midline, zero, are denoted with “z” (green and black).

2.2.2 Frequency bands of the brain

Brain waves have been grouped according to their frequencies, referred to as the

frequency bands of the brain. These frequency bands are normally sorted from

lower to higher frequencies, namely delta (δ), theta (θ), alpha (α), beta (β), and

2Illustrations used with written consent from Trans Cranial Technologies ltd
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Figure 2.3: Top and lateral view of EEG electrode placement, according to
the international 10-20 system.

gamma (γ) waves [21]. The different frequency bands are given together with their

associated mental state in Tab. 2.2 [25]. Besides, when studied in more detail,

different brain rhythms are related to certain cognitive processes. Delta waves are

used to analyze sleep [26]. Theta waves are associated with memory and cognitive

workload [27]. Alpha waves are dominant in when in a calm state, and they have

been linked to inhibition and attention [28]. Beta waves are observed to be stronger

during the planning or execution of movements [29]. Finally, gamma waves are

associated with memory and learning [30][31].

Table 2.2: Frequency bands of the brain.

Brain rhythm Frequency Associated with
Delta wave (δ) 0.5− 4Hz Deep sleep
Theta wave (θ) 4− 8Hz Day dreaming and meditation
Alpha wave (α) 8− 12Hz Awake, but relaxed
Beta wave (β) 12− 30Hz Awake and thinking
Gamma wave (γ) > 30Hz Deep focus

2.2.3 Event related potentials

ERPs are small voltages that arise on the scalp as a response to specific sensory,

cognitive or motor event or stimuli that are time- and phase-locked. ERPs

has been used to evaluate the brain functioning and response. ERPs produces

several well-known patterns, one of the most studied being the P300 peak, that

occurs approximately 300ms after the stimulus onset. The P300 is one of

the strongest neural signatures observable by EEG, especially when targets are

presented infrequently [32].
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A particular signal from one electrode is too weak and noisy to give useful

information alone. Hence, it is necessary to calculate averages over a large number

of instances of the same stimulus or the same task and at several locations on the

scalp. In practical terms, ERP is the measured brain response, averaged over

several trials of the same experiment. Brain activity not correctly synchronized to

experimental events is averaged out through phase cancellation. It is important

to note that averaging may mask some variability at the level of individual events.

2.3 Signal analysis

EEG signals are non-stationary, time-dependent, and because of cumulative

electrical activity, most likely multicomponent signals [33][34]. Also, non-invasive

EEG signals have a small amplitude and are extremely noisy. These properties are

but a few of the reasons raw EEG signals do not provide useful information alone,

and dedicated signal analysis is therefore required to extract relevant information

contained within the signal. Choosing a suitable signal analysis method is a

crucial step when extracting information from EEG data. In general, no particular

method will provide the best results. Hence several techniques should be tested.

The choice of signal analysis tool depends for instance, on the characteristics of

the signal and the aim of the experiment.

2.3.1 Fourier transform

There is often much information contained in the frequencies of a signal, and

a signal is transformed from the time domain to the frequency domain with

the Fourier transform (FT). When dealing with finite sequence of equally-spaced

samples, the discrete Fourier transform (DFT) is applicable. The DFT transforms

a sequence of N complex numbers xn := x0, x1, ..., xN−1 into complex numbers

Xk := X0, X1, ..., XN−1, and is defines as [35]:

Xk =
N−1∑
n=0

xn · e
(
− 2πink

N

)
(2.1)

Eq. 2.1 can be implemented in computers, and software implementations usually

employ the fast Fourier transform (FFT) algorithm for faster computation. FFT

computes the DFT of a signal by factorizing the DFT matrix into a product

of sparse (mostly zero) factors, reducing computation complexity from O(n2) to

O(n log n), where n is the data size.
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A significant drawback of all the FT variations mentioned above is the loss of

time characteristics and it is therefore not suitable for interpreting time-dependent

signals. For this reason, methods based on the time-frequency domain has been

developed for feature extraction in non-stationary signals.

2.3.2 Short time Fourier transform

STFT preserves information about the time domain by windowing the signal

around a particular instant in time and calculating the local FT for each time

window. The information obtained from the STFT is presented in a spectrogram.

Spectrograms show how the spectral density of a signal varies with time, giving the

information about the quantity of the frequency, and at what time this frequency

is present.

STFT is limited due to the windowing of the signal, which causes a trade-off

between time precision and frequency resolution. Frequency resolution must be

sacrificed to detect an event precisely in time, and contrariety. This trade-off

between time and frequency resolution makes it essential to choose an appropriate

window size to optimize both time and frequency [36].

2.3.3 Empirical mode decomposition

EMD is a well-known technique used to analyze non-stationary and non-linear

data [37]. EMD does not make assumptions regarding stationary or linearity of

data, which motivates it’s use for analyzing EEG data [38]. In contrast to FT

and STFT, EMD is data-driven, based on the assumption that a signal consists of

several intrinsic mode functions (IMFs), that must satisfy two basic conditions:

• Number of zero-crossings must equal or differ by one compared with number

of extrema in the signal.

• The mean value of the upper and lower envelope of the signal must be equal

to zero at any point.

The EMD algorithm finds all the IMFs through the Sifting process. The calculation

of the IMFs given a signal x(t) are done as follows [37]:

1. Identify all extrema (maxima and minima) in x(t)

2. Interpolate between minima and maxima, generating the upper and lower

envelope; eupper and elower
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3. Determine the local mean as a(t) = eupper+elower
2

4. Extract the mean from the signal; h(t) = x(t)− a(t)

5. Decide whether it is an IMF or not based on two basic conditions for IMFs

mentioned above

6. Repeat step 1 to 4 until an IMF is obtained

7. Subtract the IMF from the original signal

8. Repeat steps 1-6 until there are no IMFs left to extract, the last extraction

resulting in a residue

The decomposition is complete when the sum of the IMFs and the residue is

negligible. Fig. 2.4 and 2.5 visualizes the shifting process. In Fig. 2.4, the upper

plot illustrates step 1− 2 in the algorithm, ie. the original signal x(t) with added

upper and lower splines. Step 3 − 4 is illustrated in the lower plot, the original

signal in red, the average (zero) signal in blue, and the residua in green. In Fig.

2.5 the successfully extracted IMF, step 5 − 6 is plotted in red, and the residual

in green.
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Figure 2.4: Illustration of the shifting process and the spline functions.

The major advantage of the EMD algorithm is that the resulting IMFs is well

suited for applying the Hilbert transform (HT) to obtain physically meaningful

instantaneous frequencies. This method is called the Hilbert-Huang transform

(HHT) [37]. A real function x(t) and its HT H(x(t)) create a strong analytic

signal. The strong analytic signal can be written with an amplitude and a phase
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Figure 2.5: Extracted IMF (red), average (blue), and residual (green).

where the derivative of the phase can be identified as the instantaneous frequency.

A dedicated review of the HHT is given in [39].

2.3.3.1 Limitations of EMD

The end effect problem is a self-inflicted problem on EMD. Unlike the other

methods previously mentioned, EMD does not use windows. The use of windows

in an analysis of the signal would force the ends to zero, and therefore, mask the

end effects. The end effect problem has not been taken into further account here.

Another limitation of the EMD algorithm is mode mixing, which occurs during

the sifting process, and can cause the IMFs to lose their physical meaning. Mode-

mixing can be summarized by (1) The IMFs contains signals of widely disparate

scales and (2) signals of a similar scale reside in different IMF components. A

method that can separate neighboring spectral component is proposed in [40] and

in [41]. Further, the ensemble empirical mode decomposition (EEMD) algorithm

[42] can be used. EEMD uses a large number of noisy signals as masking signals.

It is shown that EEMD can resolve the mode mixing problem in some real-life

signals. EEMD was used for this purpose in [43].

2.4 Feature extraction

The EEG signals are used for further analysis and feature extraction. A feature is

an individual measurable property of the process being observed, and any recorded

EEG activity includes different features [44]. Researchers, therefore, search for

a limited amount of features that can differentiate signals with certainty. The

process of selecting only a subset of variables in the input which can efficiently

describe the data is called feature selection. Feature selection decreases the effect
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of noise, irrelevant or redundant variables reduces, and the predictor performance

improved [44][45].

Features can be extracted directly from the raw signals, as well as from the

transformations or compositions of the raw signal, for instance by using techniques

described in Sec. 2.3. The following sections gives a theoretical description of the

features later used in this thesis.

2.4.1 Energy features

Energy features provide information regarding instantaneous frequency and

amplitude. The instantaneous energy of a signal includes amplitude information,

and is found as

f = log10

( 1

N

N∑
r=1

(IMF (r))2
)

(2.2)

where N is the length of the IMF, and IMF (r) is the IMF coefficient of an IMF

at position r.

The teager energy describes changes in frequency and is defined as:

f = log10

( 1

N

N−1∑
r=1

∣∣(IMF (r))2 − IMF (r − 1) · IMF (r + 1)
∣∣) (2.3)

2.4.2 Fractal features

The fractal dimension gives a complexity index, describing how a curve, or time

series such as EEG, changes depending on a scale used as a unit of measurement.

There exist several types of fractal dimension, but Petrosian fractal dimensions

(PFD) and Higuchi fractal dimension (HFD) have been used in this work.

The PFD translated the signals into a binary sequence and thereby provides a fast

computation of the fractal dimension. The PFD is computed as:

PFD =
log10(n)

log10(n) + log10

(
n

n+0.4N∆

) (2.4)

where n is the length of the sequence and N∆ is the number of sign changes in the

binary sequence [46].

The HFD algorithm approximates the mean length of the curve using segments

of k samples and estimates the dimension of a time-varying signal directly in the
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time domain [47]. An N-sample data sequence x(1), x(2), ..., x(N) is divided into

subsets consisting of k samples:

Xm
k ; X(m), X(m+ k), X(m+ 2k), ...X

(
m+

(N −m
k

)
k
)

(2.5)

where m = 1, 2, .., k is the initial time, the interval time is k = 1, ..., kmax and

kmax is constant parameter. The length Lm(k) for each sub-data set, Xm
k , is then

computed as:

Lm(k) =
1

k

( N−m
k∑

i=1

|X(m+ i k)−X(m+ (i− 1)k|
)(

N − 1
N−m

k
k

)
(2.6)

An array of mean values, L(k), is computed as:

Lk =
1

k

k∑
m−1

Lm(k) (2.7)

The HFD is then the least square slope of the trajectory:

HFD =
1

k

k∑
m=1

Lm(k) (2.8)

2.4.3 Statistical features

Also statistical measures can be used to describe a signal. The minimum and

maximum are the lowest and highest potential in the time series, respectively.

The mean and the median gives information of the central tendency and the

50th—percentile of the signal amplitude. The variance and standard deviation are

measures of the dispersion around the mean. Kurtosis is an outlier measure, hence

the value of kurtosis for a normal distribution is zero. A kurtosis higher of less

than zero indicates more or fewer outliers than a normal distribution, respectively.

The skewness, or skew, is an asymmetry measure. For normally distributed data,

the skewness is about zero, and a skewness greater than zero means that is more

weight in the left tail of the distribution.
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2.5 Machine learning and classification

ML is a computer’s ability to adapt to new circumstances and detect and

extrapolate patterns. RGB exposure is hypothesized to provoke patterns in

recorded EEG signals, making the use of ML a possibly suitable technique for

revealing these patterns. The following section describes the concept of ML and

introduces some classification algorithms. The presented information is primarily

based on the theory described in [48].

2.5.1 Forms of learning

Learning can be supervised, unsupervised, or a combination of these. Features

of an observed instance are here referred to as the input, and the label of the

class is the output. In this project, the inputs are the signal or the features

extracted from the signal, and the output is either red, green, or blue. In supervised

learning, example input-output pairs are observed and map a function from input

to output. In unsupervised learning, patterns are learned based only on input.

As these projects concerned only labeled data, it is a problem for supervised

learning. In supervised learning, a classification algorithm will learn a function

that predicts the output for new inputs. Given a training set of N input-output

example pairs x1, y1), (x2, y2), ...(xN , yN), where yj was generated by an unknown

function y = f(x), discover a hypothesis function h that approximates the true

function f .

There are multiple ways to test the hypothesis and obtain accuracy. The accuracy

of the hypothesis is tested on a test set. In k-fold cross-validation, the data is split

in k subsets of equal length. For k learning rounds, 1/k of the data is extracted

and used as the test, and the remaining data is used for training. Each subset is

held out one time and used to train the model k-1 times. The accuracy is then

obtained by averaging the test scores from the k rounds. Statistically accurate

results are usually obtained using k = 5 or k = 10. For novel accuracies, the test

set performance should not be used to both find the hypothesis and evaluate it.

A confusion matrix can be used to assess the performance in greater detail. To

assess the convergence of neural network (NN), accuracy and loss for both training

and test sets can be plotted for each epoch (training round).
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2.5.2 Classification algorithms

There exist numerous algorithms for classification purposes. A short introduction

to the algorithms used in this thesis are described next.

2.5.2.1 Decision tree

Decision tree (DT) builds a classification model in the structure of a tree, branching

out in “if-then-else” decision rules. The concept of reducing the entropy of the

data samples is used to build the tree structure.

The DT algorithm can in some cases create a large tree, even though there is no

pattern to describe the data. In this case, the tree can fully describe the training

set but is not capable of generalizing to new examples; a phenomenon referred to

as overfitting. Overfitting is a problem not only for DT, but ML algorithms in

general.

Random forest

The random forest (RF) algorithm constructs several DTs from randomly selected

subsets of the training set, and then outputs the aggregate result from the

individual trees. RF classifiers correct for decision trees’ tendency to overfit to

the training set [49].

k-nearest neighbors

The k -nearest neighbors (k-NN) algorithm can be used for both classification and

regression. An input is classified the the most common among class among its

k -nearest neighbors, where k is a positive integer. For instance, if k = 1, the input

is assigned to the class of the single nearest neighbor.

Support vector machine

An Support vector machine (SVM) aims to find a hyperplane in an N-dimensional

space, where N is the number of features, that distinctly separated the data points.

If there are two features, the hyperplane is a one-dimensional line, and with three

features it becomes a two-dimensional plane. Higher dimensions naturally exist,

but the hyper-plane becomes difficult to imagine. The gap between the hyperplane

and the data points should be as wide as possible and is defined by so-called support

vectors.

In addition to performing linear classification, SVMs can efficiently perform a

non-linear classification using what is called the kernel trick. The kernel trick

takes data points that are not linearly separable in the N-dimensional space and
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transforms it to a higher dimensional space where the data is linearly separable

[50].

Naive Bayes

Naive Bayes (NB) is a probabilistic classifier, based on utilizing Bayes’ theorem,

defined as

P (A|B) =
P (B|A)P (A)

P (B)
(2.9)

where P (A|B) is the probability of A happening, given B. The model is naive, as

it assumes conditional independence between the features (B), given the class (A).

The requirement of independent features is often not true for real-life cases, which

restricts the performance of the classifier for some applications. The NB classifier

is fast and easy to implement, and a well-known classifier in ML.

2.5.3 Deep learning

Deep learning (DL) is a type of ML technique that can be used for classification

purposes. DL uses multiple processing layers, often arranged in a NN architecture,

able to learn representations of data. NN does not require manual feature

extraction, as the features are learned while the network trains on a collection

of training examples. One common deep NN architecture is convolutional neural

network (CNN), which is designed to process data that are arranged in sequential

arrays of one or multiple dimensions, such as signals (1D), color images(2D) and

videos (3D) [51].

CNNs are especially successful in the field of image classification (as will be

outlined in state-of-the-art, Ch. 3).

Limitations of deep learning with EEG data

In contrast to image classification, the field of EEG suffers from limited amounts of

available training data. Collecting large datasets is time-consuming, and extremely

physically demanding on the subject. Advancements in computational power allow

for classification of EEG signals without feature extraction. However, results may

be limited due to a small amount of training data.

DL with CNN executes end-to-end learning, i.e. learning from the raw data. It

becomes difficult to interpret the importance of the features used for classification.

With most traditional ML algorithms, it is possible to analyze which features have

the highest importance in the classification, and even do causality analysis. Such

an analysis is complicated or impossible with NN.



Chapter 3

State-of-the-art

Little work on the design and development of a color controlled BCIs has been

carried out. This chapter gives a summary and a short evaluation of the most

relevant works.

3.1 Visual color stimulus

The major part of RGB related EEG research is concerned with only offline

classification, while one study also assesses performance in real time. A summary

including experimental setup, methods, and results of state-of-the-art research is

given in Tab. 3.1.

A neural signature of the unique hues (red, yellow, green, and blue), were

discovered 230ms after stimulus onset at a post-perceptual stage of visual

processing [52]. The study used ERPs evoked in response to different hues,

recorded from 39 EEG electrodes. However, the study does not evaluate the

discovered signatures using classification techniques, which makes it difficult to

consider its potential use in BCI applications.

A classification study of RGB colors was done in [53]. The dataset used is collected

from 14 subjects, and the best accuracy across the 14 subjects was 0.55. The

study was done using functional near-infrared spectroscopy (fNIRS), which makes

it difficult to compare with EEG experiments.

Classification of EEG signals produced by random visual exposure to RGB colors

was presented in [54]. Independent component analysis (ICA) was used to remove

artifacts. Event-related spectral perturbations (ERSP) were used as features for

a SVM, and the highest classification accuracy reported was 0.98.
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However, this work has some drawbacks. Fist, a fully randomized presentation of

colors was not applied due, as some colors were presented two consecutive times.

Second, all the epochs were used to compute 3 global ERSP matrices used as the

feature dataset in the classification stage. Using this method, the classifier knew

all the information about the EEG signals. The results are, therefore, thought to

be highly overestimated, as the classifier is fitted to both training and test data.

Single-trial classification of RGB using EMD residual is presented in [55]. This

study uses various methods of extracting features from EEG signals produced

by RGB exposure; ERSP, target mean, auto-regressive and EMD residual. The

feature extraction method which gives the highest classification accuracy are target

mean and EMD residual, and the study suggested these for a future real-time BCI

application. However, the outcomes seem to be overestimated, as they apply

feature selection from all available data.

A third offline study to classify EEG signals produced by RGB exposure was done

in [56]. The study yields impressive results, but limited documentation of the

experiment setup makes it difficult to evaluate the work.

The only known study to test a real-time classification of color related stimuli was

done in [57]. Band power features of the EEG signals were used as input for an

SVM. The study classifies two colors with 0.7−0.8 accuracy, using subject-specific

models (models trained for each subject individually). Note that the chance level

for classifying two colors is 0.5. During the experiment, subjects looked at the two

colors by changing their focus from one side of a screen to another. It is therefore

plausible that the classification is not directly related to color perception, but

rather the focus direction (left or right) of the eyes of the subject.

Learning from the works presented here, a well documented and controlled

experiment would be desirable.

Techniques to predict which color a subject is looking at have also been explored

using indirect approaches such as analyzing psychological and emotional responses

to color [58][59].

Electrode placement

The positioning of electrodes is essential when a limited number of channels are

available. The information and conclusions from related works can serve as a

starting point for improved experiment design.
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Table 3.1: Summary of state-of-art work.

Source [52] [53] [54] [55] [56] [57]
Method EEG fNIRS EEG EEG EEG EEG
Colors (RYGB) 3 (RGB) 3 (RGB) 3 (RGB) 5 (RGBWY) 2 (RB)
no. of channels 39 30 4 4 14 16
Sampling rate 1000 Hz - 256 Hz 256 Hz 128 Hz 128 Hz
No. of subjects 23 14 7 7 10 5
No. of epochs 320 27 180 180 50 32-38
Pre-processing Y Y Y Y Y Y
Artif. removal Y N Y Y N N

Features ERP pattern statistical
amplitude
(ERSP)

EMD
ERP
(N2, P3, N4)

Band powers

Exposure time 0.4 s 10 s 3 s 3 s 7 s -
Rest time 1.2-1.6 s 25 s (black) 3 s (gray) 3 s (gray) 5 s -
Offline/realtime offline offline offline offline offline real-time
Classification - LDA SVM SVM ANN SVM

Accuracy - 0.55 0.84-0.97 0.89
0.62
(subject model)

0.7-0.8
(subject model)

Surprisingly, one study observed that electrodes placed on the frontal lobe react

more than those placed on the occipital lobe when exposed to RGB [53]. Electrode

O1 and F7, according to the 10-20 international system, are suggested as most

important to record RGB data in [56]. Moreover, a combination of frontal and

occipital channels was most relevant when using 39 channels in [52].

3.2 Deep Learning and EEG

Although NN have been known for 50 years, recent improvements in computational

power and increasing amounts of available data have enlarged the interest and

success in the field over the last 10 years. It can be challenging to know which

features to extract, but advances in DL opens possibilities to classify data without

manual feature extraction. The input to a DL network can be the raw data itself,

and the network can extract the most discriminant features by constructing high-

level features in the back-propagation step.

DL has revolutionized the field of speech and image classification, achieving state of

the art performance, such as automatic speech recognition tasks [60] and learning

depth from a moving camera [61]. Image recognition was traditionally a field

dominated by feature driven approaches, such as in optical character recognition

(OCR) applications for typed text. The number of available pictures is immense,

providing the networks with large amounts of training examples, and CNN are

successful in challenging image classification problems.

Specifically, deep NN models yield successful results when utilized for the detection

of visual-evoked responses in EEG signals. Deep NN has proven an effective tool

for single trial P300 classification in [62], and hence the authors encourage the
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use of neural networks in EEG tasks. In [63], it is suggested that uniting spatial

filtering and classification through the use of a CNN can be more efficient than

separating the different steps [63]. A new CNN architecture for generalized multi-

class, single-trial EEG classification across subjects was tested in [64]. Usually,

subject-specific models yield better results than general models. The proposed

CNN in this paper slightly exceeds the performance of the other classifiers despite

being trained across subjects.



Chapter 4

Method

The following chapter explains methods used in this thesis for classifying EEG

signals produced by RGB stimuli. To accomplish this, the method’s main core has

2 elements: pre-processing and classification. The first element, described in Sec.

4.1, looks for the improvement of the signals’ quality and its performance is also

measured. Whereas the second element, described in 4.2.1 and 4.2.2 used a model

to assess both the first element and the capability of a classification algorithm to

distinguish the EEG signals recorded during the exposure to RGB colors.

4.1 Pre-processing

The stage consists of improving the signal-to-noise ratio. Noise caused by the

subject, the environment, or the electrodes is removed from the raw signals to

reveal relevant information.

Also, artifacts produced by involuntary movements can be removed in this stage.

Artifacts are noise sources captured in the EEG recording. Noise filtering

electronics, special materials, and industrial design techniques are necessary to

reduce noise influences. Two typical artifacts are electromyogram (EMG) and

electrooculogram (EOG) artifacts. EMG is essentially electrical noise generated

by facial muscle activity, and EOG is electrical noise generated by eye movement.

There are numerous ways to prepossess raw EEG data, for instance, by applying

a low or high pass filter to remove the influence of line frequency (50/60Hz).

Alternatively, noise is automatically extracted when using EMD or NN with

enough data and appropriate number of IMFs. There is no preferred approach, and

hence several combinations of pre-processing methods, as well as no pre-processing

at all, are explored. Fig. 4.1 illustrates procedures exploited. Finally, the data
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are arranged into 3 sec. long labeled epochs, for computation of ERP and further

analysis.

Raw	data
Sahara

Artifact	removal
(ICA)

Bandpass	filter	
0.1-30Hz

Artifact	removal
(ICA)

Bandpass	filter	
0.1-30Hz

Arrange	into	data
epocs

Classify Plot	ERP,	IMFs,
STFT,	etc.

Do	nothing

Figure 4.1: Overview of exploited procedures for noise reduction and artifact
removal.

4.1.1 Artifact removal

A dedicated program using ICA and visual inspection was developed to remove

artifacts. ICA demands supervised selection of artifact components. A manual

selection of which components to extract was implemented by allowing the

operator to iterate through all recorded sessions. The signals from each electrode

are plotted next to the independent components extracted using ICA. The operator

then selects components containing artifacts, which are removed from the data.

The operator also has the option to remove full sessions.

4.1.2 Bandpass filter

A band-pass filter passes frequencies within a certain range and excludes

frequencies outside that range. A band-pass filter from 0.1 − 30Hz was applied

to both the raw data, and the data where artifacts were removed. The

implementation of the filter is a much-modified version of the example presented

in [65].
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4.1.3 Epochs

As will be explained later, this work uses two datasets (Dataset 1 and Dataset

2), sampled at 250Hz and 256Hz respectively. Both datasets were re-organized

in 3 sec. long “epochs”. Resulting in 750 and 768 data points for Dataset 1 and

Dataset 2, respectively. Each epoch is labeled with the corresponding color.

The epoching of the signals is locking all the events to start at the same position

in time. Time-locking the events must be done to analyze the effect of event

exposure with respect to time. One epoch contains samples from all channels

where the subject is looking at gray for one second, followed by two seconds of

looking at one of the RGB colors or a math problem.

4.2 Classification

Specifically, two essentially different techniques are used in the second element, as

illustrated in Fig. 4.2. First, the combination of feature extraction and supervised

classification algorithms, and second, DL, which learns the important features

directly from sequential data through supervised training and thereby create a

classification model. The two methods are explained in Sec. 4.2.1 and 4.2.2,

respectively.

Dataset
(raw	EEG	signals)

Decompose

Feature	extraction Deep		Learning

Machine	learning

Classify	RGB

Figure 4.2: Flowchart describing the approaches used for creating the
classifiers.

4.2.1 Classification with feature extraction

The first method (left branch in Fig. 4) applies an initial process of feature

extraction to the EEG signals, which are used for the training of classical ML.
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The specific method used for classification with feature extraction is based on

a method developed in [66]. The feature based method was applied to classify

EEG data produced by visual exposure to RGB in [67]. The complete article is

published as part of this master thesis, and can therefore be found in Appendix C.

The method described here is therefore an adapted version of the paper mentioned

previously.

One way of classifying RGB colors is by finding a unique descriptor capable

of separating the colors from each other. Identifying one or more features

for color identification in EEG signals would enable less complex models and

reduced computation time for real-time applications. The method used for feature

extraction and classification can be described in four steps:

1. Decompose the individual signals with EMD

Signals from each channel are decomposed into two IMFs and the corresponding

residual, using the EMD algorithm explained in section 2.3.3. Once the IMFs is

extracted, certain features are obtained.

2. Create an array of features for each decomposition

The feature extraction stage for each electrode consists of the computation of

energy and fractal features, but additionally, in this thesis, a set of statistical values

are computed for each extracted IMF. This procedure of signal decomposition (1)

and feature creation (2) is illustrated in Fig. 4.3. The features are summarized in

Tab 4.1.
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IMF 1

IMF 2

IMF 3

Selected 
IMFs

Statistical
Energy
Fractal

F
eature vector...

Statistical
Energy
Fractal

IMFs

Raw signal

Figure 4.3: Flowchart illustrating the feature extraction procedure using
EMD. The procedure is the same for each channel.

Table 4.1: Summary of features.

Feature type Extracted features

Energy instantaneous and teager energy

Fractal Petrosian and Higuchi fractal dimension

Statistical min, max, mean, median, variance, standard deviation, kurtosis, skew

3. Use the feature arrays as inputs to classifiers and obtain the accuracy for each

classifier

The feature vectors obtained for each channel are concatenated to obtain a single

vector for each instance and later used as input to the classifiers. As will be

explained later, some experiments consist of using all the features shown in Tab.

4.1, while for others, only statistical values were used. For example, using all the

12 features, 3 IMFs and 4 channels, the length of the feature vector for an instance

is:

Features× Channels× IMFs = 12× 4× 3 = 144 (4.1)

Using only statistical features, the length of the feature vector is only 96 for each

instance. The features are computed for each IMF, and all experiments are done

with 3 IMFs and 4 or 8 channels.
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4. Choose the classifier with the highest accuracy

Lastly, supervised machine-learning models were created using 10-folds cross

validation using the accuracy metric. The ML based algorithms used are, RF,

SVM, k-NN,DT and NB.

The experiments were repeated using different parameters to find and select the

best parameters for each classifier. The classifier with the highest accuracy was

then automatically selected. The set of parameters for each classifier are listed

below:

• Depths for RF: 2, 3, 4, 5, 6, 7, 8

• Neighbors for kNN: 2, 3, 4, 5, 6, 7, 8

• Kernels for SVM: linear (lin.), radial basis function (rbf), sigmoid,

polynomial (poly.)

A Gaussian distribution is assumed for the NB classifier, and the GaussianNB

from scikit-learn with default parameters are used. Scikit-learn is an open

source machine learning library for Python, providing various built classification

algorithms. Unless otherwise stated, default parameters of scikit-learn classifiers

are used throughout this work [68].

4.2.2 Classification using deep learning

The second method (right branch in Fig. 4.2) directly uses EEG voltages as

input for a CNN. The specific architecture of the implemented CNN is based

on a publicly available architecture, titled EEGNet. In essence, EEGNet is a

compact CNN architecture developed especially for classification of EEG data

[69]. A visualization of the EEGNet architecture is given in Fig. 4.4, and shows

that it is divided into four main sections after the input.

The first section performs a convolution with several temporal filters (within one

channel) with a size of half the sampling rate. The output of these convolutions

is a series of signals filtered with bandpass-filters of different sizes.

The second section performs a depth-wise convolution for each of the outputs of

the previous layer. This allows for the extraction of spatial features (between

channels) for each temporal filter, which means it finds frequency-specific spatial

features. This is very important to extract meaningful features from EEG signals.
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The third section performs a depthwise convolution followed by a pointwise

convolution. The goal of this step is to summarize and combine the output from

the previous layers in a meaningful way.

Finally, a softmax layer allows for the final classification.

In summary, this is a CNN network optimized to extract essential features from

raw EEG data while limiting the number of parameters.

Figure 4.4: Overall visualization of the EEGNet architecture.

The hyperparameters and learning rates are, however, optimized for the

application in this thesis. The model is fitted using the Adam optimizer with

default parameters, minimizing the categorical cross-entropy loss function [70]. 30

or 50 training iterations were used depending on the given dataset. These numbers

were obtained from manual testing.
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Experiment design and

implementation

The following chapter provides documentation of experiment design and

implementation. The reasoning behind design choices will also be presented where

relevant. Sec. 5.1-5.2 outlines the experiment, Sec. 5.3 explains how data is

acquired and finally some limitations are discussed.

5.1 System overview

An overview of the system implementation is given in Fig. 5.1. A curved screen

display events to the subject. Dry electrodes transmit signals recorded from the

scalp to the local headset station. Sampled signals are sent to the base station

over a local wireless network. The base station is connected to a PC, which runs

the server service. The PC display events on the screen, records, and saves EEG

data. The following sections explain each system part in detail.

Light

Electrodes USB

Network

Screen

Headset	station Headset	base
station

PC	(server)
Python	Program

Subject	
EnvironmentExperiment	protocol

Figure 5.1: Experiment setup for RGB data collection.
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5.2 Experimental paradigm

The following section describes design choices made for the recorded in-house data

set, referred to as Dataset 1.

5.2.1 Experiment protocol

Experiment protocol refers to the scheme the subject experience from beginning

to the end of the experiment. The experimental protocol is designed to obtain as

many successful short impulse trials of each color as possible without sacrificing

subject well being. The protocol was developed by investigating color perception

and the dynamics of the eye (Ch. 2), followed by several test experiments with

subjects.

Four classes of stimuli, referred to as events, were exposed to the subject. The

events were red color, green color, blue color, and a math problem. Fig. 5.3

presents the algorithm of the experiment protocol, alongside with an illustration

of the respective screen display to the left. Before each exposure, a short break

showing uniform gray color was on display for a random duration of 1 − 2 sec.,

to allow time for blinking. A cross (+) appeared to indicate for the subject to

get ready 2 sec. before the next exposure. The exposure step is the display of

either event. The colors used are defined in hexadecimal format in Tab. 5.1.

Fig. 5.2 gives an illustrative picture of a subject being exposed to RGB colors.

Note that the room was dark during actual data collection. The math problem

was designed to be solvable in ≈ 3 sec. for an average university student, and is

included to serve as a baseline in future research. All events were presented the

same number of times, for the same duration (3 sec.). The described procedure

was repeated 5 times, before a longer break of 10 sec. This sequence is repeated 3

times, resulting in 15 trials of each event.

Figure 5.2: Subject in front of screen displaying RGB colors.

Although more trials would benefit analysis, test experiments suggested that it

takes on average eight minutes (time for 15 trials) before the light from the screen
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cause discomfort or tiredness in the eyes, even when the luminosity is set to

minimum.

Gray
1.5 sec.

Focus point
2 sec.

...

+

break
Break 
10 sec.

Exposure
3 sec.

Y

Nn > 5
for each event?

Y

N

End

 + − 
÷ ×

Get ready
7 sec.

End

k > 3

Figure 5.3: Experimental protocol; illustration of stimuli (left) and description
and length in seconds (right).

The order of the events and the time between each event were both randomized

to minimize brain activity due to prediction. No subjects experienced the same

pattern or the same break time.

Table 5.1: Experiment colors on hexadecimal format.

Name Red Green Blue Light gray Medium gray
Hex (RGB) FF 00 00 00 80 00 00 00 FF c9 c9 c9 80 80 80
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5.2.2 Electrodes

Electrodes positioned at a flexible cap measures voltage fluctuations on the

subject’s scalp. The positions of the electrodes are carefully chosen based on

results from related RGB research presented in Ch. 3. The chosen positions

according to the 10− 20 international system are [23]:

• Frontal lobe: FP1, FP2, AF3, AF4

• Parietal and occipital lobe: P03, P04, O1, O2

Fig. 5.4 highlights the operative electrodes (yellow), ground (blue) and reference

(green) connected to the left and right mastoid respectively.

Figure 5.4: Operative electrodes (yellow), ground (blue) and reference (green)
connected to the left and right mastoid respectively.

5.2.3 Screen

A curved computer screen with an active display size of 797× 333mm (34 inches)

was used to present the events and interact with the subject. The curved feature of

the screen (allowing viewing angle of 178◦/178◦) increased the visual exposure area

to include the peripheral vision, which is hypothesized to engage greater response

to the events. The luminosity of the screen was constantly at 250 cd/m2, chosen

to prevent eye pain due to too bright light. The distance from the subject to the

screen was 1.5m.
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5.2.4 Subjects

Twenty healthy volunteers participated in the study, aged in the range 21 −
27 years. Summary of subject details are given in Appendix A, Tab. A.1.

All participants were invited via a written letter explaining the research purpose,

what the study will involve, risks, data privacy, and what will happen during

the experiment. Participants were asked to follow these instructions before their

arrival at the experiment site:

• Do not add gel or any substance to your hair

• Get a good night’s sleep the night before

• Refrain from use of recreational drugs and stimulants at least 24 hours before

the experiment (coffee, alcohol, medicines)

Subjects shared information regarding their age, gender, BCI experience,

handedness, color blindness, and epilepsy. Subjects answered a simple

questionnaire regarding mental and physical health before and after the

experiment. Questions asked are listed in Appendix A, Tab. A.2. Answers to these

questions can complement data analysis and improve the experiment experience

for subjects in similar studies in the future.

5.2.5 Experiment procedure

Upon arrival, participants signed a consent form and answered the questionnaire

described above. Any questions the participant had was answered, and the

protocol was carefully explained. Subjects were instructed to sit as comfortable

and still as possible, avoid blinking during the events, and when math problems

appear; solve them by thinking only. It was made clear that subjects could

withdraw from the experiment at any time. However, no one decided to do so.

The skin behind the ears was cleaned with medical alcohol wipes (85 %) for

better conductivity from the skin to ground and reference. To protect against

electrostatic discharge (ESD), static electricity was discharged from the body of

subjects and operator by touching a metal grounded object.

The cap was positioned by measuring the distance between the nasion and inion

and the distance between the left and right preauricular points of the subject.

The position in the middle of these two locations is the vertex position, Cz. The

measured position was aligned with the position Cz of the electrode cap, and
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reference and ground were connected. Electrode wires were placed to avoid tension

and direct contact with moving parts of the body, and finally, each electrode was

twisted to improve contact.

5.2.6 Environment

The experiment was conducted in a dark room. An antistatic environment is

necessary for high-quality recordings, and as the room at hand did not have

antistatic floor (such as antistatic carpet, wood floor or stone floor), an antistatic

spray was used to on the floor and furniture.

5.3 Data acquisition

The following section describes the software implemented for data acquisition.

5.3.1 Recording software implementation

Acquisition of EEG data produced by external events requires carefully timed and

reliable software implementation. One main program, referred to as the protocol

software, simultaneously handles user interaction, event exposure, as well as data

recording and saving.

The protocol software follows sequential steps in two parallel threads, as illustrated

in Fig. 5.5. When a user decides to start the experiment, using the “Click to

start experiment” button, a separate thread establishes communication with the

headset. The recording thread acquires data using the g.NEEDaccess python

application programming interface (API). A start and stop recording marker are

set using the PC system clock.

The software is designed to run a pre-defined protocol, imported as a .json file.

This design allows the operator to change the protocol without having to alter

the source code, which is especially useful during testing procedures and while

developing the final protocol.

Finally, the main thread waits for the recording to complete. Raw data is cut to

match the start and stop of color exposure and then saved. In addition to EEG

data, metadata (date, time, name, gender, age, handedness, subject no., session

no.) is saved.
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Figure 5.5: Program flowchart; software developed for conducting EEG
experiments with visual stimuli.

5.3.2 g.tec software and hardware

Data acquisition is done using equipment from g.tec (g.Nautilus 8 flexible

g.SAHARA). The system comprises 8 active channels with g.SAHARA 7mm dry

EEG electrodes prefixed on a soft cap, with 24-bit resolution, 250Hz sample rate,

built in 3-axis acceleration sensor and lithium ION batteries. The equipment is
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developed for research only. The cap has flexible electrode positioning, allowing

for case-specific placement of the 8 electrodes.

Wireless data transmission is done using the g.NEEDaccess server and client. The

server software runs in the background. A client software, “Python Client API”

is used to interact with the server. g.NEEDaccess provides a server service named

g.tec Device Service (GDS), which was used to facilitates data acquisition.

A summary of the technical specifications are given in Appendix A, Tab. A.3.

For more information regarding g.tec products, consult g.tec product catalogue,

g.NEEDaccess Python API and user manual [71][72][73].

5.4 Experimental limitations

One common drawback of in BCI experiments is the difficulty of obtaining enough

data due to limited subject availability. Besides, in the experiment discussed here,

the achieved number of recorded trials in each session were also limited due to

unexpected tiredness from looking at bright colors.

The final dataset could be enriched by extended rest- and exposure times, as this

would give more options for data analysis.

The lab environment lacked protection against electromagnetic disturbances and

acoustic damping, which would be ideal for recording high-quality EEG signals. A

possible solution (and suggestion as part of future experiments) is to construct a

simple Faraday’s cage enclosing the subject, which will shield the electrodes from

electromagnetic fields. Even though active electrodes (such as the dry Sahara

electrodes used here) are in theory supposed to account for external inference,

a Faraday cage can remove external inference without the risk of affecting the

raw EEG signals. This is thought to be especially important in research where

the features are still unknown, and the researcher must be careful to not remove

information from the raw signals by filtering.

The experiment is conducted in a controlled environment with high subject

attention level and high color intensity, occupying a large viewing angle. Further

experiments and analyses are required to establish reliable algorithms for less than

ideal circumstances in a potential real-life application.
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5.5 Complementary dataset (Dataset 2)

The dataset collected, as explained in this chapter, is referred to as Dataset 1. A

second dataset, referred to as Dataset 2, is included to both enrich the analysis

and measure the proposed method’s performance. The second dataset consists

of EEG signals from 7 subjects that were watching RGB colors presented on a

screen. The distance from the screen to the subject was 3.5m, and the intensity

of the colors was constant at 4.5 cd/m2. Each color was presented 60 times to each

subject in a randomized order. Gray was used as the base color between RGB

exposure. The signals were recorded from channel P1, P2, O1, and O2, according

to the 10−20 international system. The acquisition system used was BCI200 with

g.tec’s MOBIlab portable device and a sampling rate of 256Hz [54]. A summary

of the technical specifications is given in Appendix A, Tab. A.4.

In the preprocessing stage, the signals were band-pass filtered from 0.1 − 30Hz.

To reduce the effect of abnormal values, signals crossing ±60µV were removed.

Also, some trials were excluded due to EMG and EOG artifacts. The final dataset

used in this paper consist of 52 trials for each color to obtain a balanced dataset.

5.6 Dataset summary

A summary of the two datasets used in this thesis is given in Tab. 5.2. It

is important to highlight that Dataset 1 was recorded during the present work

following the process described in this chapter. Whereas Dataset 2 was recorded

in [54] and it is described in Sec. 5.5

Table 5.2: Summary of Dataset 1 and Dataset 2.

Dataset name no. of sub. trials/sub. no. channels colors epoch length raw signals origin

Dataset 1 17 30 8 RGB 3 sec. yes in-house

Dataset 2 7 52 4 RGB 3 sec. no external
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Results

The following chapter first presents the raw data obtained from the experiments

presented in Ch. 5. Results from applying signal analysis techniques explained in

Ch.2, and methods from Ch.4 are then combined to visualize results and obtain

classification accuracies. Two different datasets are used; Dataset 1 and Dataset 2

(See Sec. 5.6). Throughout this chapter, great care is taken not to compare results

based on different datasets, as they are fundamentally different, both in processing

as well as size (no. of subjects, no. of trials) and experimental setup.

6.1 Raw data

Dataset 1 is recorded completely without any filter or noise reduction. This fact

gives greater flexibility to test filtering and analysis techniques, knowing that no

information was lost in the recording stage. Such a raw dataset is thought to be

necessary when searching for undiscovered features. An example of the raw data

from RGB exposure over a duration of ca. 6.5min is given in Fig. 6.1.

6.1.1 Distortions in the occipital and parietal channels

Two distortions are observed in the channels placed between the occipital and

parietal lobe (Chan. 5−8); a slow drift and a high-frequency noise. Both problems

were reviled in the testing stage, and attempts were made to reduce the effect.

First, the slow drift of Chan. 4 − 8 is clear in 6.1. Several attempts were made

to reduce and explain this signal drift. A headband was used to put pressure

on the electrodes, without significant improvements. The electrode positions were

changed to ensure that the position of the electrodes was the problem, and not the

40
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Figure 6.1: High levels of noise and a slow drift in raw data from Dataset 1.

electrodes themselves. It was concluded that it is always the electrodes positioned

at the occipital and parietal lobe that suffer from drift. In retrospect, it is

reasonable to believe that this drift is caused by increased temperature as the hair-

covered (and hence temperature isolated) occipital and parietal electrodes slowly

reach body temperature, as the same effect is not observed in the electrodes placed

on the hairless forehead. It can, however, not be ruled out that poor electrode-skin

contact causes the slow drift.

Second, high-frequency noise is observed only in the occipital and parietal

channels. Eye blinks are clear in the frontal channels (Chan. 1 − 4), plotted in

Fig. 6.2, while the occipital and parietal channels (Chan.5− 8) plotted in Fig. 6.3

clarifies this high-frequency noise. The wireless transmitter is, by design, located

close to the occipital electrodes and may very well be the source of this high-

frequency noise, perhaps amplified by poor skin contact. It is, however, doubtful

that a perfectly functioning transmitter would cause these problems. The reason

may perhaps, therefore, be an out-of-spec component in its high-frequency circuit

or poor grounding, resulting in unwanted oscillations or harmonics.
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Figure 6.2: Raw signals from Chan. 1− 4.
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Figure 6.3: Raw signals from Chan. 5− 8.

6.1.2 Possible solutions for noise reduction and detrending

Dedicated research has been done to investigate and propose solutions for noise

reduction and detrending in EEG data [74]. Robust techniques for detrending are

especially addressed in [75].

High-pass filtering is a simple solution to remove high-frequency noise and a

standard method to deal with drifts. Frequencies lower than 0.1Hz and higher

than 30Hz are considered noise, and hence a bandpass-filter for 0.1− 30Hz was

applied to the epoched data.
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ICA was applied to remove, or reduce, the effect of artifacts such as eye blinks

and spices caused by subject movement. As explained in 4.1, manually selected

independent components were extracted from each channel.

Alternative solutions exist, such as a notch filter for noise removal, and detrending

by extracting the EMD residual. EMD would also be applicable to remove high-

frequency noise, usually by extracting the first IMF from the original signal.

However, for some tasks, the first IMF can contain useful information. Hence,

there is no single solution to the problem, as it depends on the type of experiment.

Undoubtedly, the processing is a crucial step to obtain high-quality data. However,

an advanced review is out of the scope of this thesis.

6.2 Visualization and analysis of EEG signals

The following section address research question #1. ERPs, STFT and EMD were

applied to the EEG signals for the two datasets. The next subsections show the

computed plots, aiming to find differences between colors.

6.2.1 ERP-based Analysis

ERPs are evoked by sudden onset of visual stimuli, containing a negative and a

positive peak around 150− 300ms and 300ms respectively. This pattern can be

identified in both raw and processed data. In all ERP plots, color exposure starts

at t = 1 s, indicated with a black dotted vertical line, and each plot contains

samples from 0.2 sec. before color exposure followed by 0.6 sec. of color exposure.

The grand average of ERP hides variability in the waveforms, enabling visual

interpretation of the signals. However, it loses accurate information for individual

subjects. The ERPs for individual subjects are also investigated.

The response of the brain to experimental events is not fully captured in the

averaged ERPs [76]. For this reason, the individual signals (not the average) from

each electrode are used as a basis for classification in all the following results. ERP

plots from Dataset 1 and Dataset 2 are given next.

6.2.1.1 Dataset 1

All ERP plots from Dataset 1 are plotted after artifact removal with ICA and

noise reduction with band-pass filtering.

Signals from frontal and occipital channels are thought to contain different

waveforms due to their position. Frontal and occipital channels are averaged



Results 44

separately not to hide information. Fig. 6.4 plots the response for each color,

averaged over all subjects for Chan. 1-4 (left column) and Chan. 5-8 (right

column). The average using all channels are included in Appendix B, Fig. B.1.

The same plot for one individual subject (subject 10) is given in Fig. 6.5.
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Figure 6.4: Dataset 1: Averaged ERP waveform produced by RGB, for all
subjects Chan. 1-4 (left) and Chan. 4-8 (right).
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Figure 6.5: Dataset 1: Averaged ERP waveform produced by RGB, for subject
10, Chan. 1-4 (left) and Chan. 4-8 (right).

In the search for clear ERP plots, the average response from subject 6, 7, 9, 10 and

11 are plotted individually in Fig. 6.6. The same plot for the remaining subjects

are included in Appendix B, Fig. B.3-B.3.

Limited pre-processing prior to computing ERP plots is one reason why it is

challenging to identify a clear ERP in epoched data.
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Figure 6.6: Dataset 1: Individual averaged RGB plots for Chan. 1-4 (left)
and Chan. 5-8 (right).
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6.2.1.2 Dataset 2

Fig. 6.7 shows the grand average responses to red, green and blue (first, second

and third row respectively) for Dataset 2. The left columns are the grand average

ERP for all subjects, averaged over all available channels and instances. The right

columns are the grand average ERP for one individual subject.

When averaging over all subjects, the positive peaks around 300ms are higher

for red and blue (around 4µV in the normalized presentation), when compared to

green. When averaging over all subjects, the duration of the negative (t = 1.2s)

and positive peak (t = 1.3 s) are longer compared to the duration of individual

subject response. The reason being that the subject responses happen at slightly

different times for different people, or that the light was not turned on at exactly

t = 1.00 s for all subjects.
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Figure 6.7: Dataset 2: Averaged ERP waveform produced by RGB, for all
subjects (left) and one subject (right).
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Figure 6.8: Dataset 2: Individual differences in averaged ERP waveforms for
color exposure to RGB.

There is variation in the ERP waveforms (both in timing and amplitude) among

the different subjects, and a small variation on subject level. A unique cortical

pattern for each subject can influence the variation among subjects. The shape

can, for instance, be affected by age and personality [77].

6.2.2 Short time Fourier transform

Another technique employed for visualizing and analyzing the EEG signals in

the presented thesis is STFT. Specifically, STFT was applied to both datasets to

investigate possible changes of frequencies over the given period. An STFT with

a “Hanning” window size of 200 samples and an overlap of 190 samples were used

to produce the spectrograms in Fig. 6.9 and Fig. 6.10 for Dataset 1 and Dataset

2 respectively. The spectrogram represents the grand average for RGB from top

to bottom.
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6.2.2.1 Dataset 1

Despite the apparent prevalence of noise, the information gain from STFT for

Dataset 1 is very limited.
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Figure 6.9: Dataset 1: Spectrogram of grand average EEG signal for RGB.

6.2.2.2 Dataset 2

There is an amplitude increase in 2−12Hz for all colors, and for green, there is an

amplitude increase for 0− 5Hz in the time frame 1− 2 s. Hence, averaging data

reveals a change caused by visual stimuli from gray to RGB colors 200 − 300ms

after exposure. However, it is clear from their overlap that frequency alone is

not sufficient to separate three colors. In addition, there is no lasting change in

frequency, even though all subjects are continuously looking at color from from

t = 1 s to t = 3 s. Information gain from STFT is limited, and doubtfully sufficient

to reveal a signal feature specific for each of the colors.
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Figure 6.10: Dataset 2: Spectrogram of grand average EEG signal for RGB.

6.2.3 Empirical mode decomposition

The EMD algorithm was applied on each raw signal, and after ten siftings, the

residual fulfills the IMF requirements previously discussed in Sec. 2.3.3. An

example of extracted IMFs and the residual are presented in Fig. 6.12 and 6.13 for

Dataset 1 and Dataset 2 respectively. The cubic spline is used for the upper and

lower envelope. Note, however, that in the feature extraction stage, this procedure

is repeated for all the colors and not only green, as in the given examples.

Neither spectrograms nor IMFs reveal distinct color dependent frequency or

amplitude related characteristic by visual inspection.
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6.2.3.1 Dataset 1

Fig. 6.12 presents the IMFs extracted from instance no. 19 and electrode AF3

(Chan 3), for subject 10. The spectrogram of each IMF from Fig. 6.12 is presented

in Fig. 6.11.
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Figure 6.11: Dataset 1: Spectrograms of each of the five IMFs and the residual
obtained from ten siftings.
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Figure 6.12: Dataset 1: EEG signal from one channel, extracted IMFs and
the residual. Red background represents red light is on.
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6.2.3.2 Dataset 2

Fig. 6.13 presents the IMFs extracted from instance no. 50 and electrode O2

(Chan. 4), for subject 1, looking at green.

By visual inspection, it is not straight forward to identify the P300 peak expected

at t = 300ms in the decomposed data. IMF1 might be subject to mode mixing.

The EMD algorithm finds the next IMF using the residual obtained in the previous

iteration. A wrongly extracted IMF will, therefore, influence the rest of the

process, resulting in distorted IMFs. It is, therefore, a reason to further explore

methods to cope with this problem.
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Figure 6.13: Dataset 2: EEG signal from one channel, extracted IMFs and
the residual. Red background represents red light is on.

Similarly, Fig. 6.14 gives the spectrogram of each of the IMFs from Fig. 6.13.

EMD successfully extracts the highest frequency components in the first IMFs.
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IMF1 reveals a slight increase in magnitude for all frequencies at t ≈ 1.5 s, which

might be related to color exposure or change of mental state for the person in

the experiment. Extracted IMFs can be representing the physical properties of

the process from which the signal is obtained. However, the problem of mode

mixing in EMD caused by the presence of adjacent frequencies will cause loss

of meaningful information in the IMFs. A new method for separating closely

spaced spectral tones using EMD is presented in [78], and could be implemented

to improve results.
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Figure 6.14: Dataset 2: Spectrograms of each of the five IMFs and the residual
obtained from ten siftings.



Results 56

6.3 Classification with feature extraction

To test if machine-learning models can classify EEG signals evoked by exposure to

RGB colors using features based on EMD, the following experiments are proposed:

(I) Classification of exposure to color and gray

(II) Classification of exposure to red, green and blue considering signals across

all subjects

(III) Classification of exposure to red, green and blue considering signals

individually from each subject

For all experiments, the procedure described for Feature extraction and

classification in Sec. 4.2.1 is used. The accuracy metric after 10-fold cross-

validation is presented. As the classes are balanced in the dataset, accuracy serves

as a satisfactory metric for assessing the performance. Note that the chance level

accuracy for experiment (I) is 0.5, and 0.33 for both experiment (II) and (III).

The first experiment addresses research question one, presented in Ch. 1, and

aims to provide experimental information about the performance of the method

and to check if there is a set of features that can separate these two classes; gray

and RGB colors.

In the second experiment, the classification consists of three classes; red, green, and

blue. This experiment aims to discover if the features proposed are generalizable to

all subjects, and hence represent a signature of the RGB colors in EEG recordings.

In the third experiment, the same three-class classification between RGB is done,

using models trained and tested on data from the same subject. This test explores

the possibility of subject tailored applications.

Experiment (I); Gray vs RGB

For a possible real-time application, it will be necessary to clearly distinguish if

the subject is looking at “nothing in particular”, or decisively looking at a color.

Uniform gray color is used to simulate “nothing in particular”. The complexity of

such differentiation was investigated by first classifying if subjects were looking at

gray or RGB color using all available data from Dataset 2, referred to as “Dataset

2, complete”.
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An ERP is expected at approximately 300ms after the presentation of an

infrequent stimulus. The part of the signal where the subject is exposed to the

color will contain the P300 component, and it can be distinguished from a signal

not containing an ERP. To investigate if the ERP is crucial for the classification

between gray and color, a simple test was done where data points from t = 1

to t = 2 (where the P300 component is expected) was removed. This data is

referred to as “Dataset 2, limited”. All results, using both the complete and

limited dataset, are presented in Tab. 6.1. In addition to using different sized

datasets, the importance of features is assessed. The table contains the accuracies

(Acc.) obtained for the using all features (all), the statistical features (stat.) and

only one statistical feature, the mean (mean). Note that results for experiment I

was only computed for Dataset 2.

Table 6.1: Dataset 2: Results for gray vs. color classification.

Classifier
Data Feat. RF kNN SVM DT NB

Acc. depth Acc. k Acc. ker. Acc. Acc.
all 0.99 5 0.72 6 0.99 lin. 0.98 0.98

Dataset 2, complete statistical. 0.88 4 0.72 6 0.92 lin. 0.83 0.87
the mean 0.89 6 0.91 8 0.84 rbf 0.87 0.89
all 0.87 5 0.62 4 0.85 lin. 0.86 0.85

Dataset 2, limited statistical 0.89 6 0.62 4 0.73 poly 0.86 0.85
the mean 0.90 6 0.92 4 0.87 rbf 0.88 0.87

The best classification accuracy for each feature set is high, ranging from 0.91 to

0.99 for the complete dataset, and 0.87 to 0.92 for the limited dataset.

Surprisingly, for the limited dataset, the accuracy decreases with 0.12 using all

features. An interesting finding is a 0.92 accuracy when using the limited dataset,

and only one feature; the mean. A possible explanation can be that redundant

features create noise that distorts the model due to limited source data. Further

analysis is required to conclude the importance of the different features.

In this experiment, the lowest accuracy obtained is well above the chance level,

which in two class classification is 0.5. These results yield a promising first step

towards a less complex real-time application for separating between gray and RGB

colors.
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Experiment (II); Classification of red, green and blue across

all subjects

First, two separate models, including data from all 17 and 7 subjects for datasets

1 and 2 respectively, were developed, and the results are presented in Tab. 6.2.

The maximum accuracy is the same for both datasets; 0.37 for Dataset 1, using

7-NN, and 0.37 for Dataset 2 using both RF with depth 2 and Gaussian NB. These

results are weak but slightly better than the chance level of 0.33.

The different nature of the datasets makes the results non-comparable. For both

datasets, a limited amount of data and individual differences are believed to impair

the result, and hence, subject-specific models were developed (III).

Table 6.2: Classification accuracies (Acc.) using Dataset 1 and Dataset 2.

Dataset
Pre-processing
description

Classifier
RF kNN DT NB

Acc. depth Acc. k Acc. Acc.

Dataset 1

Raw data 0.36 2 0.34 3 0.34 0.33
Filtered data 0.34 6 0.33 3 0.34 0.33
Artifacts removed 0.35 5 0.34 5 0.32 0.32
Filtered and artifacts removed 0.36 5 0.37 7 0.33 0.33

Dataset 2 Pre-processed 0.37 2 0.34 6 0.35 0.37

Experiment (III); Subject specific classification of red, green

and blue

The mean accuracy for the subject models is found by obtaining the maximum

accuracy for each subject individually and then calculating the mean of these.

The best performing classification algorithm differs dependent on the subject, and

hence no algorithm, in particular, can be favored.

It should be remarked that the chance level for this experiment is 0.33, and the

lowest accuracy obtained is still above that value.

Results Dataset 1 (III)

Tab. 6.3 gives the average and max classification accuracy when creating subject-

specific models. The individual average is based on all individual models, where

parameters differ for each subject. None of these models are listed, but are

indicated with **. Tab. 6.4 provides further details for each individual subject.
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The highest individual accuracy obtained is 0.63 with 2-NN (subject 2 in Dataset

1). This accuracy was obtained using data that was bandpass filtered and stripped

of artifacts before classification.

The best average performance across subjects was 0.45 and was also obtained on

the filtered and artifact stripped dataset.

Table 6.3: Mean and maximum accuracy for subject models from Dataset 1.

Description
Classifier accuracy

raw data filtered data filtered and artifacts removed
Average 0.42 ** 0.40 ** 0.45 **
Best individual 0.52 DT 0.58 RF depth 3 0.63 2-NN

Table 6.4: Classification results for subject models, using raw and processed
data from Dataset 1.

Subject no.
Raw data Filtered data Filtered, artif. removed

Acc. Classifier Acc. Classifier Acc. Classifier

subject 1 0.52 DT 0.42 4-NN 0.50 2-NN

subject 2 0.52 DT 0.38 RF depth 4 0.63 2-NN

subject 3 0.40 NB 0.37 NB 0.50 NB

subject 5 0.43 RF depth 2 0.37 RF depth 2 0.43 2-NN

subject 6 0.39 10-NN 0.41 RF depth 3 0.47 2-NN

subject 7 0.38 RF depth 2 0.39 RF depth 6 0.43 RF depth 5

subject 9 0.38 4-NN 0.36 NB 0.43 9-NN

subject 10 0.44 RF depth 4 0.49 NB 0.49 NB

subject 11 0.39 DT 0.44 RF depth 5 0.46 3-NN

subject 13 0.39 10-NN 0.39 RF depth 6 0.40 RF depth 4

subject 14 0.43 8-NN 0.39 3-NN 0.38 RF depth 2

subject 15 0.40 9-NN 0.39 NB 0.39 NB

subject 16 0.40 2-NN 0.40 5-NN 0.36 RF depth 3

subject 17 0.45 RF depth 5 0.43 RF depth 5 0.45 9-NN

subject 18 0.45 9-NN 0.58 RF depth 3 0.40 RF depth 4

subject 19 0.38 RF depth 3 0.37 RF depth 5 0.36 RF depth 6

subject 20 0.37 9-NN 0.38 RF depth 2 0.45 2-NN

Results Dataset 2 (III)

Concerning Dataset 2, one subject in particular obtained higher accuracy when

testing with all classifiers: 0.58 of accuracy using NB, 0.51 using linear SVM, 0.47

with 6-NN, 0.53 using DT, and finally 0.57 using RF with depth 4. In contrast,

another subject model classified at chance level. Tab. 6.5 summarizes accuracies of

the RGB models for both a general model and considering each subject separately.
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Table 6.5: Mean and maximum accuracy for subject models from Dataset 2.

Classifier accuracy
Description RF kNN SVM DT NB

Acc. depth Acc. k Acc. kernel Acc. Acc.
Individual average 0.41 ** 0.37 ** 0.39 ** 0.39 0.38
Best individual 0.57 4 0.47 6 0.51 lin. 0.53 0.58

6.3.1 Discussion - feature extraction

Experiment I shows encouraging results, but some limitations should be

mentioned. It is difficult to know if the actual color exposure causes the successful

classification, or other factors such as subjects being more focused during RGB

exposure compared to a more relaxed state during gray exposure. However, this

experiment proves a successful use of the method proposed for decomposition and

feature extraction using EMD.

Across both experiments II and III, subject-specific models perform better than

models trained across several subjects. To classify RGB correctly within one

subject, the model has to learn features that are related to the exposure of a

color for that individual, which can both come from actual visual stimuli, but

also from other cognitive associations that individual makes. A non-generalizing

response would, for instance, be a person that always thinks of the ocean each

time the blue color appears on the screen. To classify signals correctly across

several individuals, the model needs to learn features that represent the exposure

to color in a more general sense. It has to ignore specific features that are strongly

linked to specific individuals and pick out those who generalize across subjects.

General models are less accurate than subject tailored models as general features

are harder to extract. Generalized features are preferred, as they would likely

enable less complicated and scaleable real-life applications.

The best results are obtained using pre-processed data. For Dataset 1, the

accuracy increases when using data that has been bandpass filtered prior to

decomposition and feature extraction, indicating that the proposed method

benefits from using bandpass filtered data. Although EMD, in theory, is capable

of removing noise, the bandpass filtered and artifact stripped data achieves higher

accuracy than the raw data. The reason for this somewhat surprising result is

not completely clear, but it could be that signals are not fully decomposed since

a constant number of IMFs, and one residual is extracted from each channel. The
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first IMF from the raw data hence contains mostly noise, while the first IMF from

the filtered data includes more information from the actual brain response.

6.4 Classification with deep leaning

To test if DL can classify RGB colors using a time series of sampled EEG voltages

as input, one experiment is proposed:

(II) Classification of exposure to red, green and blue considering signals across

all the subjects

There is too little data to create individual subject models using DL, and the

subject-specific experiments have been excluded in this section.

For all the experiments in this section, the EEGNet CNN model was used. The

model is designed explicitly for classifying EEG raw data and has shown state-of-

the-art performance in previous experiments.

The following measures are included in reporting the nature of the obtained

models: no. of epochs (training rounds) and respective accuracy are presented

in a table, the training and validation values are plotted against epoch no. Also,

the performance of the corresponding CNN is visualized in a confusion matrix.

The confusion matrices have two dimensions (“true label” and “predicted label”),

and identical sets of “classes” in both dimensions (red, green and blue). The

content of the matrix is the number of false positives, false negatives, true positives,

and true negatives. Particularly in unbalanced datasets, the confusion matrix is a

better measure for the actual performance of the classifier than overall accuracy.

Both Dataset 1 and Dataset 2 are balanced (same number of trials for each color).

However, the confusion matrix is helpful to review if specific colors are more

straightforward to classify than others.

A classification report, showing precision, recall and f1-score were also computed,

and are included in Appendix B, Tab. B.1 and Tab. B.2 for Dataset 1 and Dataset

2, respectively.

For both datasets, the data is split into a training set and a test set with a test

ratio of 0.33. The data is shuffled to ensure an equal distribution of subjects in

both the training and test data. A random seed was set in Python to ensure

reproducible results.
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6.4.1 Dataset 1

Results from classification using CNN with Dataset 1 is summarized for each pre-

processing technique in Tab. 6.6.

Table 6.6: CNN accuracy (Acc.) results for Dataset 1.

Input data Epochs Acc.

Raw data 100 0.28

Filtered data 50 0.38

Artifacts removed 30 0.27

Filtered and artifacts removed 30 0.38

The model accuracy for Dataset 1 is plotted in Fig. 6.15. The model fails to learn

anything on the datasets without filtering. The accuracy has no positive trend for

neither the training set nor the test set. For the filtered data, the model manages

to fit the model well on the training set. The effect is not as successful on the test

set, but there is a slight increase in test accuracy, indicating some generalization

of learned features. The model is over-fitting to the training set. This effect could

be reduced by adding regularization (for example, dropout or L2-norm), further

pre-processing of the data (e.g., filtering and normalization), or by acquiring more

data.

The confusion matrix for Dataset 1 is plotted in Fig. 6.16. As indicated in the

overall accuracy, the filtered data generally yields better results than the unfiltered

data. For the raw data (upper left) the predictions appear random, as the number

of true positives is lower than the false positives, indicating no learned features

of the different colors. Comparable results are seen for the artifact removed data,

which also tend to predict green more often than red and blue. In general, the

results using EEGNet with Dataset 1 are well below the accuracies required for

any practical purposes.
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Figure 6.15: Left: Training and validation accuracy values. Right: Training
and validation loss values. All results from Dataset 1.
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Figure 6.16: Confusion matrix for all versions of Dataset 1.

6.4.2 Dataset 2

The best accuracy obtained for Dataset 2 is 0.46, as given in Tab. 6.7. The

training curves in Fig. 6.17 indicate a better ability to generalize than Dataset

1, due to less overfitting. Both the training and test accuracy, as well as the loss

curves, have clear trends that indicate learning.

Table 6.7: CNN accuracy (Acc.) results for Dataset 2.

Input data Epochs Acc.

Pre-processed data 50 0.46
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The confusion matrix for Dataset 2 is plotted in Fig. 6.18.
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Figure 6.18: Confusion matrix for Dataset 2.

6.4.3 Discussion - using deep learning

Interestingly, Dataset 2 shows better results using CNN compared to the feature-

extraction method. This shows that the automatic feature extraction of the CNN

model manages to extract features relevant to the classification better that the

features included in the EMD approach. However, it is much harder to analyze

features from the CNN afterward, due to the nature of NN. Dataset 1 shows similar

results for both methods, given pre-processed data.

The main variations between the two datasets are that Dataset 2 has more data

per subject, fewer subjects, and more pre-processing. Fewer subjects reduce

the variance in the dataset, and the increased number of trials provides more

support for learning essential features. The pre-processing excludes noise, enabling

the model to capture features more quickly. This reasoning shows that further
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attention should be given to increasing dataset size and doing more pre-processing

to get better results with NNs.



Chapter 7

Summary

This thesis has investigated the possibility to classify EEG signals produced by

visual exposure to RGB, thought to be especially useful for rapid control and

decreased learning times for future BCI applications. First, background theory

and relevant research are outlined and reviewed. An in-house experiment with 17

participants was designed and conducted, acquiring a dataset of raw EEG signals

produced by random visual exposure to RGB colors. The dataset is used together

with a complementary dataset for further analysis and classification. The highest

accuracies were 0.38 and 0.63 for generic and subject-specific models respectively.

In the signal analysis step, STFT and EMD were studied. The EMD process

decomposed the raw signals from each channel into several IMFs. As the IMFs

alone did not reveal distinct features, the STFT of each IMF was plotted. None

of the methods reveals a lasting unique frequency marker for each of the colors

detectable by visual inspection.

Two fundamentally different methods have been explored. The feature driven

method uses IMFs as the basis for feature extraction. Features are manually

selected and automatically extracted from the IMFs, and finally used as the input

for classical ML algorithms. Three experiments were computed; the classification

of gray and RGB, general classification of the three RGB colors, and finally, a

subject-specific model to classify RGB.

Classification accuracy of gray and any of the RGB colors were up to 0.99 with

a general model based on the second dataset, using statistical, energy and fractal

features. The results indicate the possibility of deciding if a person is looking at

a primary color.
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Classification of RGB considering all subjects together gives limited results. The

best accuracy is 0.37 for both datasets tested and is obtained using pre-processed

data. This number is much lower than the value required for reliable classification.

Nevertheless, the accuracy is slightly above the chance level of 0.33 for the 3 class

classification, which indicates that the extracted features can partly describe the

colors in EEG signals.

In addition to the generic models, the feasibility of subject-specific models was

tested. The accuracy vary from 0.36 to 0.63. The reason can be individual

differences such as the amount of hair or attention level during data collection. It

can be concluded that color classification suffers from subject dependencies, and

a subject tailored system should be considered for future work.

A CNN was adopted to classify EEG signals without manual feature extraction,

motivated by the success of deep learning in the field of image classification. The

method used raw or processed signals as input for a CNN, which learns the relevant

features trough supervised training. The datasets had too few trials for each

subject to train a CNN for each subject, hence only generic models were tested.

The highest accuracy for the two datasets is 0.38 and 0.46. It should be remarked

that the second dataset, achieving the highest accuracy, ha only 7 subjects, while

the other dataset had 17 subjects. Fewer subjects reduce the variance in the

dataset, and as it was previously concluded that subject-specific models benefit

accuracy, the 7-subject model naturally achieves better results.

As might have been expected, results using CNN is restrained by limited amounts

of data. The pre-processed datasets perform better than the raw signals, although

a CNN can learn to eliminate noise and extract relevant features. A possible

approach could be to train the classifiers on a global dataset and then add several

new instances for one specific subject.

An important issue to resolve for future studies is the limited amount of data. CNN

performance is expected to improve if allowed to train on expanded datasets, for

example, obtained by data augmentation or ensemble learning.

Color exposure does not produce lasting features in amplitude nor frequency in

raw EEG signals. Dedicated methods are required to extract useful information

from such noisy and complex signals. It is not clear, however, if EEG signals

contain features that reliably can be used to distinguish RGB colors for practical

applications. Further investigation of methods is still necessary to find the

practical application potential of color controlled BCIs.
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Conclusion and future work

Inspection of the raw signals acquired for this thesis reveals slow drift and high-

frequency noise on the electrodes placed on the occipital lobe, likely related to

the nearby combined amplifier and transmitter, poor electrode-skin contact, or

perhaps gradually increasing electrode temperature. ICA and a bandpass filter

for 0.1−30Hz was applied in the pre-processing stage, successfully increasing the

accuracy in the classification step.

In the signal analysis step, STFT and EMD were studied. None of the methods

reveals a permanent unique frequency marker for each of the colors detectable by

visual inspection of transformations.

A generic model for classification of RGB colors is challenging using the proposed

methods. Subject tailored models obtain considerably higher classification

accuracy than the generic models. The highest accuracy for the generic model

is 0.37 and 0.48 for the feature driven and DL method, respectively. Using the

feature-driven method, the best subject-specific model have an accuracy of 0.63.

Limited amounts of data prevented the development of a subject-specific CNN.

Based on the results, it can be concluded that the preferred solution to classify

RGB using feature extraction is to select and train subject-tailored models. As

the CNN achieves higher classification accuracy, subject-specific CNN models are

thought to yield even higher accuracy.

Subject-specific models demand more data, either by data collection, data

augmentation, or transfer learning. Alternatively, new features and new methods

for feature selection and extraction can be explored using the acquired dataset.
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Although the model performances were not ideal, it is still believed that the dataset

collected and the results presented constitute an essential first step towards a

classification of EEG signals evoked by visual exposure to RGB colors.

Plots of the raw signals, as well as plots of the epoched data, clearly show high

levels of noise and artifacts. It is suggested that considerable attention should be

given to the pre-processing stage, and in obtaining a version of Dataset 1 that is

free for extreme artifacts and high levels of noise.

An improved method for feature extraction could extract the maximum number

of IMFs, select the most important ones, and thereby avoid the need for the

bandpass filter. There are certain limitations of using a bandpass filter. It

can, for instance, remove slow cortical activity, whether spontaneous or stimulus-

evoked [75]. Another issue is that transient features can also be distorted in the

filtering. Processing that erases such information is not optimal and is a significant

limitation.

Alternative solutions exist, such as a notch filter for noise removal, and detrending

by extracting the EMD residual. EMD would also be applicable to remove high-

frequency noise, usually by extracting the first IMF from the original signal.

However, for some tasks, the first IMF can contain useful information. Hence,

there is no single solution to the problem, as it depends on the type of experiment.

Undoubtedly, the pre-processing is a crucial step to obtain high-quality data.

Also, the feature-driven method uses a large number of features, obtained at a

high computational cost. This motivates the application of methods for feature

selection or reduction. An analysis of the features’ relevance is likely to reveal

that some features are less important than others, and hence can be excluded.

Decreasing the computational cost of the method is essential as this would allow

efficient real-time classification for a real application.
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[75] Alain de Cheveigné and Dorothée Arzounian. Robust detrending,

rereferencing, outlier detection, and inpainting for multichannel data.

NeuroImage, 172:903 – 912, 2018.

[76] Scott Makeig. Auditory event-related dynamics of the EEG spectrum

and effects of exposure to tones. Electroencephalography and Clinical

Neurophysiology, 86(4):283 – 293, 1993.

[77] Saim Rasheed, Daniele Marini, and Alessandro Rizzi. Recognition of colors

in EEG: planning towards brain-computer interface applications, 1 2012.

[78] Yunchao Gao, Guangtao Ge, Zhengyan Sheng, and Enfang Sang. Analysis

and solution to the mode mixing phenomenon in emd. Congress on Image

and Signal Processing, 2008.



Appendix A

Experimental setup

A.1 Subject information

Table A.1: Subject information.

Subject (no.) Handedness (L/R) Gender (M/F) Age (years) Color blind (Y/N)
1 R M 26 N
2 R F 25 N
3 R F 23 N
4 R M 24 N
5 R F 23 N
6 R F 23 N
7 R M 26 N
8 R F 24 N
9 R M 27 N
10 R F 21 N
11 R M 25 N
12 R M 26 N
13 R M 25 N
14 R M 23 N
15 R M 21 N
16 R M 22 N
17 R F 21 N
18 R F 22 N
19 R M 23 N
20 R F 26 N

A.2 Technical specifications for data collection
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Table A.2: Questionnaire given to all participants.

Before

How long did you sleep (no. hours)?
Did you drink coffee the past 24 hours (no. hours before)?
Did you drink alcohol the past 24 hours (no. hours before)?
Did you smoked within the past 24 hours? (no. hours before)?

Before and
after

How do you feel? Relaxed 1 2 3 4 5 Anxious
How do you feel? Exciting 1 2 3 4 5 Boring
Physical state Very good 1 2 3 4 5 Very bad/tired
Mental state Very good 1 2 3 4 5 Very bad/tired
Attention level High 1 2 3 4 5 Low

After

Did you look away from the screen?
Did you close your eyes consciously?
How many trials you miss?
How was this experiment?
Duration Short 1 2 3 4 5 Long
Procedure Good 1 2 3 4 5 Bad
Environment Comfortable 1 2 3 4 5 Uncomfortable

Table A.3: Technical specifications for data collection - Dataset1.

Description Specification
Recording device g.tec’s g.MOBIlab+ portable device
Recording software g.Nautilus
Sampling rate 250Hz
Processed and analyzed offline, Python
Band-pass filter 0.1− 30Hz
Artifact rejection with manual selection with ICA
Electrode placement [FP1, FP2, AF3, AF4, P03, P04, O1, O2, ]
Electrode reference right ear lobe
Electrode ground left ear lobe
Nr. of subjects 20
Screen - subject distance 1.5m
Base color between RGB gray and gray with cross
Luminosity of color 250cd/m2
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Table A.4: Technical specifications for data collection - Dataset 2.

Description Specification
Recording device g.tec’s g.MOBIlab+ portable device
Recording software BCI2000
Sampling rate 256Hz
Processed and analyzed offline, EEGlab, matlab
Band-pass filter 0.1− 30Hz
Artifact rejection All signals that crossed ±60µV
Electrode placement [P3, P4, O1, O2]
Electrode reference right ear lobe
Nr. of subjects 7
Screen - subject distance 3.5m
Base color between RGB gray
Luminosity of color 4.5cd/m2



Appendix B

Results

Appendix B includes extensive material forom the results presented in Ch. 6.

B.1 Event Related Potentials

Additional plots of epoched data are presented in the following section.
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Figure B.1: Dataset 1: Averaged ERP waveform produced by RGB, for all
subjects (left) and one subject (right).
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Figure B.2: Dataset 1: Individual differences in averaged ERP waveforms for
color exposure to RGB.
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Figure B.3: Dataset 1: Individual averaged RGB plots for Chan. 1-4 (left)
and Chan. 5-8 (right), part 1.
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Figure B.4: Dataset 1: Individual averaged RGB plots for Chan. 1-4 (left)
and Chan. 5-8 (right), part 2.
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B.2 CNN classification reports

The following section includes the classification reports for the CNN presented in

Sec. 6.4.

For example, for Tab. B.1, filtering the data slightly benefits the classification

using CNN. For the unfiltered Dataset 1, the precision scores are similar for all

three classes, while recall is significantly better for one class compared to the

others. For the raw data case, the model is relatively good at detecting green but

correspondingly bad at detecting the two other colors. This could be an artifact

of the NN’s random initial state, as no satisfactory learning is observed.

Table B.1: Classification report for CNN - Dataset 1.

Input data Epochs Acc. Class Precision Recall f1-score Support

Raw data 100 0.28

R 0.26 0.15 0.19 168

G 0.28 0.40 0.33 168

B 0.29 0.28 0.29 169

Filtered data 30 0.36

R 0.35 0.41 0.38 168

G 0.39 0.40 0.39 168

B 0.35 0.28 0.31 169

Artifacts

removed
50 0.28

R 0.23 0.11 0.15 124

G 0.29 0.52 0.38 124

B 0.27 0.19 0.22 124

Filtered and

artifacts removed
50 0.37

R 0.34 0.28 0.31 124

G 0.38 0.37 0.38 124

B 0.39 0.47 0.42 124

Table B.2: Classification report for CNN - Dataset 2.

Input data Epochs Acc. Class Precision Recall f1-score Support

Pre-processed 50 0.47

R 0.47 0.49 0.48 120

G 0.48 0.41 0.44 120

B 0.45 0.50 0.47 121
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Parts of the work done for this master thesis was published as S. Åsly, L.A.
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of RGB color based stimuli” at the 8th Graz Brain-Computer Interface Conference

2019. The article is therefore included here as Appendix C.
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ABSTRACT: This research looks at the possibility to ac-
tuate devices by looking at primary colors, thought to be
especially useful for individuals having restricted motor
control. Analytic and empirical signal analysis methods
for analyzing EEG signals produced by subjects exposed
to primary colors (RGB) are presented. Methods used are
short time Fourier transform (STFT) and Empirical mode
decomposition (EMD). Intrinsic mode functions (IMFs)
are obtained using EMD, three of which are used for fea-
ture extraction. The features are used as inputs for the
machine learning algorithms: random forest (RF), sup-
port vector machine (SVM), k-nearest neighbors (kNN),
decision tree (DT) and naive Bayes (NB). Using data
from 7 subjects, a general model classifies RGB with 0.37
accuracy, while the best subject-specific model achieves
an accuracy of 0.58, which is above the chance level of
0.33. The classification accuracy between gray and any
one of RGB is 0.98 with NB. Results are encouraging and
can be improved by further exploring features and classi-
fication techniques.

INTRODUCTION

Electroencephalographic signals (EEG) represent the
electrical activity in the brain. By placing electrodes
on the scalp, one can record these signals. One elec-
trode records the cumulative electrical activity of neu-
rons. EEG signals are non-stationary, time-dependent,
and because of cumulative electrical activity, most likely
multi-component signals [1]. Also, non-invasive EEG
signals have a small amplitude and are extremely noisy.
These properties are but a few of the reasons raw EEG
signals do not provide useful information alone, and ded-
icated signal analysis is therefore required to extract rele-
vant information contained within the signal. Choosing a
suitable signal analysis method is a crucial step when ex-
tracting information from EEG data. In general, no par-
ticular method will provide the best results. The choice
of signal analysis tool depends for instance on the char-
acteristics of the signal and the aim of the experiment.
The goal of certain EEG experiments is to classify sig-
nals produced by specific brain activity. A feature is an
individual measurable property of the process being ob-
served [2], and any recorded EEG activity includes differ-
ent features [3]. Researchers, therefore, search for a lim-

ited amount of features that can differentiate signals with
certainty. The process of selecting only a subset of vari-
ables in the input which can efficiently describe the data
is called feature selection. Feature selection decreases
the effect of noise, irrelevant or redundant variables are
reduced, and the predictor performance improved [2][4].
Techniques to predict which color a subject is looking at
have been explored using indirect approaches such as an-
alyzing psychological and emotional responses to color
[5][6]. Classification of EEG signals produced by ran-
dom visual exposure to primary colors was presented in
[7]. Independent component analysis (ICA) was used
to remove artifacts. Event-related spectral perturbations
(ERSP) were used as features for a support vector ma-
chine (SVM), and the highest classification accuracy was
0.97, more information at [3]. In general, empirical mode
decomposition (EMD) for feature extraction from color
related EEG signals have proven to be successful in sev-
eral studies [8]. A neural signature of the unique hues
(red, yellow, green, and blue) was discovered 230 ms af-
ter stimulus onset at a post-perceptual stage of visual pro-
cessing [9]. The study used ERPs (activity time-locked to
an event) evoked in the response to different hues.
In this paper, analytic and empirical signal analysis meth-
ods are investigated to evaluate their ability to reveal
color specific patterns in EEG signals produced by ex-
posure to RGB. EMD is used as the basis for feature ex-
traction. Identifying a set of features for color identifica-
tion in EEG signals would enable less complex machine-
learning based models, reducing the computational time
for real-time color identification. Reliable real-time clas-
sification of EEG signals produced by looking at a color
could enable physically disabled people with cognitive
functions to control their environment. For instance, a
user can open and close doors by looking at colored signs.
This research is a step towards discovering a combination
of signal analysis method, feature extraction technique,
and classification algorithm that can be used to determine
which color a subject is looking at using EEG signals.

METHODS AND MATERIALS

Dataset description: The dataset consists of EEG sig-
nals from 7 subjects that were watching RGB colors pre-
sented on a screen. The distance from the screen to the
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subject was 3.5m, and the intensity of the colors was con-
stant at 4.5cd/m2. Each color was presented 60 times to
each subject in a randomized order. Gray was used as
the base color between RGB exposure. The signals were
recorded from channel P1, P2, O1, and O2, according to
the 10-20 international system. The acquisition system
used was BCI200 with g.tec’s MOBIlab portable device
and a sampling rate of 256 Hz [7].
In the preprocessing stage, the signals were band-pass
filtered from 0.1 − 30Hz. To reduce the effect of ab-
normal values, signals crossing ±60µV were removed.
Also, some trials were excluded due to electromyogram-
(EMG) and electrooculogram (EOG) artifacts. The final
dataset used in this paper consist of 52 trials for each
color, in order to obtain a balanced dataset
Next, the data was re-organized in 3 seconds long
“epochs” (768 data points). One epoch contains samples
from all channels where the subject is looking at gray for
one second, followed by two seconds of looking at one of
the RGB colors. The colored light switched on at t = 1s
in all the following results.

Short time Fourier transform (STFT):
STFT preserves information about the time domain by
windowing the signal around a particular instant in time
and calculating the local Fourier transform (FT) for each
time window. The information obtained from the STFT
is presented in a spectrogram. Spectrograms show how
the spectral density of a signal varies with time, giving
the information about the quantity of the frequency, and
at what time this frequency is present.
STFT is limited due to the windowing of the signal,
which causes a trade-off between time precision and fre-
quency resolution. Frequency resolution must be sac-
rificed to detect an event precisely in time, and vice
verse. This trade-off between time and frequency resolu-
tion makes it essential to choose an appropriate window
size to optimize both time and frequency [10].

Empirical mode decomposition (EMD):
EMD is a well-known technique used to analyze non-
stationary and non-linear data [11]. EMD does not make
assumptions regarding stationary or linearity of data,
which motivates its use for analyzing EEG data [8]. In
contrast to FT and STFT, EMD is data-driven, based on
the assumption that a signal consists of several intrinsic
mode functions (IMFs), that must satisfy two basic con-
ditions:

• Number of zero-crossings must equal or differ by
one compared with the number of extrema in the sig-
nal.

• The mean value of the upper and lower envelope of
the signal must be equal to zero at any point.

The EMD algorithm finds all the IMFs trough a process
called Sifting. The calculation of the IMFs given a signal
x(t) are done as follows [11]:

1. Identify all extrema (maxima and minima) in x(t)
2. Interpolate between minima and maxima, generat-

ing the upper and lower envelope; eupper and elower

3. Determine the local mean as a(t) = eupper+elower
2

4. Extract the mean from the signal; h1(t) = x(t)−a(t)
5. Decide whether it is an IMF or not based on two

basic conditions for IMFs mentioned above
6. Repeat step 1 to 4 until an IMF is obtained.
7. Subtract the IMF from the original signal
8. Repeat steps 1-6 until there are no IMFs left to ex-

tract, the last extraction resulting in a residue

The decomposition is complete when the sum of the
IMFs and the residue is negligible.

Feature extraction and classification:
The main method used for feature extraction and classifi-
cation is based on the work presented in [12]. The feature
extraction stage for each electrode consists of the compu-
tation of energy and fractal features, but additionally, in
this paper, a set of statistical values are also computed for
each channel. This procedure is illustrated in Fig. 1, and
the features are summarized in Tab 1

IMF 1

IMF 2

IMF 3

Selected 
IMFs

Statistical
Energy
Fractal

F
eature vector

...

Statistical
Energy
Fractal

IMFs

Raw signal

Figure 1: Flowchart illustrating the feature extraction procedure
using EMD. The procedure is the same for each channel.

Table 1: Summary of features.
Feature type Extracted features
Energy instantaneous and teager energy
Fractal Petrosian and Higuchi fractal dimension
Statistical min, max, mean, median, variance,

standard deviation, kurtosis, skew

The feature vectors obtained for each channel are con-
catenated to obtain a single vector for each instance and
later used as input to the classifiers. As will be explained
later, some experiments consist of using all the features
shown in Tab. 1, while for others, only statistical val-
ues were used. For example, using all the 12 features, 3
IMFs and 4 channels, the length of the feature vector for
an instance is:

Features∗Channels∗ IMFs = 12∗4∗3 = 144

Using only statistical features the length of the feature
vector is only 96 for each instance. Note that the features
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are computed for each IMF, and all experiments are done
with 3 IMFs and 4 channels.
Lastly, supervised machine-learning models were created
using 10-folds cross-validation using the accuracy metric.
The machine-learning based algorithms used are, random
forest (RF), SVM, k-nearest neighbors (kNN), decision
tree (DT) and naive Bayes (NB).
To select the best parameters for each classifier, the ex-
periments were repeated using different parameters, thus
selecting automatically the classifier with the highest ac-
curacy. The set of parameters for each classifier are listed
below:

• Depths for RF: 2, 3, 4, 5, 6, 7, 8

• Neighbors for kNN: 2, 3, 4, 5, 6, 7, 8

• Kernels for SVM: linear (lin.), radial basis function
(rbf), sigmoid, polynomial (poly.)

A Gaussian distribution is assumed for the NB classifier,
and here the GaussianNB from scikit-learn with default
parameters are used throughout this work. Unless other-
wise stated, default parameters of scikit-learn classifiers
are used [13].

RESULTS

Signal analysis:
Fig. 2 shows the grand average for each color. The gray
background illustrates the duration for which the subject
was looking at gray, while the red vertical line indicates
the moment of color exposure (t = 1).
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Figure 2: Grand average of all epochs. The colored light is
switched on at t = 1s

STFT was applied to investigate possible changes of fre-
quencies over the given time period. An STFT with a
“Hanning” window size of 200 samples (≈ 781ms) over-
lap off 190 samples (≈ 742ms) and sampling frequency
of 256 Hz was used to produce the spectrogram in Fig.
3 The spectrogram represents the grand average for RGB
respectively. Despite apparent prevalence of noise, there
is an amplitude increase in 2− 12Hz for all colors, and
for green there is an amplitude increase for 0− 5Hz in
the time frame 1− 2s. Hence, averaging data reveals a
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Figure 3: Spectrogram of grand average EEG signal for RGB

change caused by visual stimuli from gray to RGB col-
ors 200− 300ms after exposure. However, is clear from
their overlap that frequency alone is not sufficient to sep-
arate three colors. In addition, there is no lasting change
in frequency, even though all subjects are continuously
looking at color from from t = 1s to t = 3s. Information
gain from STFT is limited, and doubtfully sufficient to
reveal a signal feature specific for each of the colors.
For this reason, the EMD algorithm was applied on each
raw signal, and after 10 siftings, the residual fulfills IMF
requirements discussed in the methodology section. Fig.
4 shows an example of the 5 IMFs and the residual for
color green. Note, however, that in the feature extraction
stage, this procedure is repeated for all the colors and not
only green, as in this example.
EMD does not use windows. Using windows in the anal-
ysis of the signal would force the ends to zero, and there-
fore mask end effects. The end effect problem has not
been taken into account in this paper. In Fig. 5 a spectro-
gram of each of the IMF is plotted. EMD successfully ex-
tracts the highest frequency components in the first IMFs.
IMF1 reveals slight increase in magnitude for all frequen-
cies at t ≈ 1.5. This might be related to color exposure or
change of mental state for the person in the experiment.
Extracted IMFs can be representing the physical prop-
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Figure 4: Original EEG signal, extracted IMFs and the residual.
Green background represents green light is continuously on

erties of the process from which the signal is obtained.
However, the problem of mode mixing in EMD caused
by the presence of adjacent frequencies will cause loss
of meaningful information in the IMFs. A new method
for separating closely spaced spectral tones using EMD
is presented in [14][15], and could be implemented to im-
prove results.
Neither spectrograms nor IMFs reveal distinct color de-
pendent frequency or amplitude related characteristic by
visual inspection.

Classification:
To test if machine-learning models can classify RGB col-
ors from EEG signals using features based on EMD, the
following experiments are proposed:

(1) Classify RGB colors from gray color

(2) Classification of red, green and blue considering the
EEG signals from all the subjects

(3) Classification of red, green and blue colors for each
subject

The first experiment aims to provide experimental infor-
mation about the performance of the method and to check

if there is a feature that can separate these two classes
(gray or RGB colors).
In the second experiment mentioned, the classifier con-
sists of three classes (red, green, and blue) intending to
check if using the proposed method is possible to differ-
entiate between them. It can be the second step for a real
implementation of a BCI based on RGB colors. Since the
first step can identify when an RGB color is presented
and then recognize the specific color. Following this aim
is important to check the feasibility of a general model
for the second experiment, that is why the last experi-
ment consists of the same experiment but considering the
EEG signals from all the subjects to create the classifier.
For all experiments, the procedure described for Fea-
ture extraction and classification is used. Accuracy met-
ric after 10-fold cross-validation is presented. All the
classifiers are tested with different kernels, the number
of neighbors or depth depending on each one, and the
best parameters are automatically selected. Note that the
chance level for the first experiment is 0.5 of accuracy,
and for experiment 2 and 3 it is 0.33

Experiment (1); gray vs RGB:
For a possible real-time application, it will be important
to clearly distinguish if the subject is looking at nothing
in particular, or decisively looking at a color. To simulate
“nothing in particular”, gray color is used. The complex-
ity of such differentiation was investigated by first classi-
fying if subjects were looking at gray or RGB color. An
event-related potential (ERP) (P300) is expected approxi-
mately 300ms after the presentation of an infrequent stim-
ulus. The part of the signal where the subject is exposed
to the color will, therefore, contain the P300 component,
and it can easily be distinguished from a signal not con-
taining an ERP. Therefore, classification removing data
points between t = 1− 2 was investigated. Results for
gray vs. color classification are presented in Tab. 2.

Table 2: Accuracies (Acc) obtained for the first experiment us-
ing all features (all), the statistical features (stat.) and only one
statistical feature, the mean (mean).

Classifier
Data Feat. RF kNN SVM DT NB

Acc. depth Acc. k Acc. ker. Acc. Acc.
all 0.99 5 0.72 6 0.99 lin. 0.98 0.98

Full stat. 0.88 4 0.72 6 0.92 lin. 0.83 0.87
mean 0.89 6 0.91 8 0.84 rbf 0.87 0.89
all 0.87 5 0.62 4 0.85 lin. 0.86 0.85

Limited* stat. 0.89 6 0.62 4 0.73 poly 0.86 0.85
mean 0.90 6 0.92 4 0.87 rbf 0.88 0.87

*Accuracy obtained when removing data points

Surprisingly, when excluding the data samples between
t = 1−2, the accuracy only decreases with 0.12 using all
features. An interesting finding is a 0.92 accuracy when
using data without ERP (Limited*), and only one feature;
the mean. In this experiment, the lowest accuracy ob-
tained is well above than the chance level, which in two
class classification is 0.5. These results yield a promising
first step towards a less complex real-time application for
separating between gray and RGB colors.

Experiment (2) and (3); classification of red, green and
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Figure 5: Spectrograms of each of the 5 IMFs and the residual obtained from 10 siftings.

blue color:
First, a model including data from all seven subjects was
developed (2), reaching a maximum accuracy of 0.37 us-
ing both RF with depth 2 and Gaussian NB. A limited
amount of data and individual differences are believed
to impair the result, and hence, subject-specific models
were developed (2). No classifier alone performed better
for all subjects, but rather different classifiers yield better
results dependent on the subject. There were, in partic-
ular, one subject that consistently obtained higher accu-
racy, when testing with all classifiers: 0.58 of accuracy
using NB, 0.51 using linear SVM, 0.47 with 6-NN, 0.53
using DT, and finally 0.57 using RF with depth 4. On
the other hand, another subject model classified at chance
level. Tab. 3 summarizes accuracies of the RGB models
for both a general model and considering each subject
separately.

Table 3: Accuracy (Acc) reached for the second and third ex-
periment, classifying red, green and blue colors considering a
general model (2) and each subject separately (3)

Classifier accuracy
Description RF kNN SVM DT NB

Acc. depth Acc. k Acc. kernel Acc. Acc.
all subjects 0.37 2 0.34 6 0.33 rbf 0.35 0.37
individual average 0.41 ** 0.37 ** 0.39 ** 0.39 0.38
best individual 0.57 4 0.47 6 0.51 lin. 0.53 0.58

** Average of all individual models. Parameters differs for
each subject, hence none of them are listed in particular

The mean accuracy for the subject model is found by
finding the maximum accuracy for each subject individu-
ally and then performing the mean of these. The best per-
forming classification algorithm differs dependent on the
subject, and hence no algorithm, in particular, can be pre-
ferred. The maximum accuracy, being 0.58 is the highest
individual accuracy obtained for one subject using NB. It
should be noted that the chance level for this experiment
is 0.33, and the lowest accuracy obtained is still above
that value.
The accuracy increase when including only one feature -

the mean. A possible explanation can be that redundant
features forms the model, due to limited source data.

DISCUSSION

Several methods have been explored in order to check if
there exist features that can be useful to describe the EEG
data while the subject is looking at gray or RGB colors,
and also considering RGB separately. In the signal anal-
ysis step, STFT and EMD were investigated.
The EMD method decomposed the original signals from
each channel into several IMFs. Since the IMFs alone
do not provide any information, they are analyzed further
with STFT for visual inspection, and later used as the
basis for feature extraction.
None of the methods yields a lasting unique frequency
marker sought after for RGB; however, there where clear
frequency modulations detected in the spectrogram of
each IMF. The frequency modulation after color expo-
sure is confirmed with a successful classification of gray
and RGB color with 0.99 of accuracy.
Accuracies from the second experiment, classifying RGB
considering all subjects together yields incomplete or in-
adequate results, considering the chance level of 0.33 for
the 3 classes, and with the best accuracy of 0.37 using
NB. The highest classification of RGB on an individual
subject level was obtained using NB with an accuracy of
0.58. It can be concluded that color classification suf-
fers from subject dependencies. Though NB yields the
highest accuracy in the classifications, it should not be
concluded as a general preference for RGB classification
algorithm.

CONCLUSIONS

These results indicate the feasibility of using the method
for feature extraction. Experimental evidence of differ-
ences between RGB colors preserved in EEG-data was
presented. Further investigation of which features are
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best suited to describe the primary colors is suggested as
part of the next step towards a less complex classification
model.
For a real implementation and future work, ensemble
learning should be considered as the best results in this
paper were obtained using different classifiers depending
on the subject.
Considering the results obtained in this paper and the
experiments proposed, it is reasonable to assume that
improving the feature extraction stage with a subject
tailored system could improve accuracy, which will be
tested in future works.
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