
Jon Eivind Stranden
A

utonom
ous driving of a sm

all-scale electric truck m
odel w

ith dynam
ic w

ireless charging

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 E
ng

in
ee

ri
ng

D
ep

ar
tm

en
t o

f E
ng

in
ee

ri
ng

 C
yb

er
ne

tic
s

M
as

te
r’

s
th

es
is

Jon Eivind Stranden

Autonomous driving of a small-scale
electric truck model with dynamic
wireless charging

Master’s thesis in Cybernetics and Robotics
Supervisor: Jon Are Suul

June 2019

Jon Eivind Stranden

Autonomous driving of a small-scale
electric truck model with dynamic
wireless charging

Master’s thesis in Cybernetics and Robotics
Supervisor: Jon Are Suul
June 2019

Norwegian University of Science and Technology
Faculty of Engineering
Department of Engineering Cybernetics

Abstract

Automated wireless power transfer can be seen as an enabling technology for autonomous
vehicles. At SINTEF Energy Research a 1/14 scale electric truck model [13] had been
used for demonstrating such technology. The truck was fitted with an induction system,
but was otherwise stock. In this master thesis a system for autonomous path following has
been developed and successfully implemented to demonstrate self-driving capabilities on
a path that includes an inductive charger. The purpose of the vehicle is to visualize the
concept of wireless charging for a self-driving truck, but on a smaller scale.

Three different methods has been tested and implemented.

1. A LiDAR-based approach that utilizes Hector SLAM for mapping and localization
together with a Pure Pursuit and Stanley Steering path tracking steering controller.

2. A machine-learning and camera-based approach that can navigate a track using deep
learning and behavior cloning/supervised learning. This was inspired by the convo-
lutional neural network used in Nvidia’s DAVE-2 self-driving car.

3. A classic computer vision approach for detecting lane curvature and using PID for
control.

ROS nodes that integrates the output from the SLAM- and deep learning-methods and
combines them with a path recorder and a path tracking algorithm has been made, together
with a graphical interface for monitoring vehicle states. Methods for estimating odome-
try without wheel encoders, dynamic speed control and obstacle detection with start/stop
functionality has been implemented, along with a computer vision method for detecting
ArUco markers. A complete, self-driving ROS-based system has been created. An Nvidia
Jetson TX2 has been used as the main embedded computing unit. The system implements
Hector SLAM as the primary SLAM method, since it does not require odometry. The
Pure Pursuit path tracker was chosen as the preferred steering controller since it resulted
in smooth and stable tracking of the path. The neural network of the machine-learning
approach was able to steer the truck reliably and is implemented in the final version as
a separate mode. This works independently of the LiDAR for when the LiDAR is out
of range. The neural network has also been tested on the Udacity self-driving simulator
[4]. The computer vision approach was found to be too demanding for the embedded
hardware, and ended up not being used. The inductive charger system has successfully
been connected and integrated to the Jetson TX2 through a CAN-bus interface in order
to receive the battery state. The amount of charge received is dependent on the position-
ing of the truck, and is not optimized for a system with manual path creation. A better
autonomous positioning system when driving across the charger is recommended, along
with a better and more precise LiDAR and vehicle platform.

i

Preface

In this master thesis a self-driving system for a small-scale R/C semi-trailer with inductive
charging has been created. This contributes to the development of a demonstration plat-
form for an autonomous vehicle with inductive charging at SINTEF Energy Research. The
system is based on ROS (Robot Operating System), OpenCV and Tensorflow/Keras run-
ning on an embedded Linux platform. The majority of the development is done in Python,
with some minor use of C and C++. All hardware was provided by SINTEF by request
from the student before the project was started. This included the 1/14 scale semi-trailer
with an existing inductive charger system [13], an Nvidia Jetson TX2 embedded com-
puter, a LiDAR, camera, IMU, microcontroller and a joystick controller. All hardware has
been mounted and integrated into the truck’s electrical system. Custom laser-cut mount-
ing hardware has been made. ROS packages such as hector slam, rplidar, joy
and rosserial were used to achieve some of the hardware integration and localization.
ROS nodes for path recording, path tracking, CNN steering, lane assist (computer vision)
steering, encoder-free Ackermann odometry w/IMU, velocity estimation and car control
has been made. The truck has been operated with PWM signals though a serial interface
between the microcontroller and the Jetson TX2. The microcontroller is also responsible
for publishing IMU data to ROS via I2C, and to control a WS2812B LED strip indicator.
Integration of the existing onboard induction system was done using CAN-bus, with the
help of Giuseppe Guidi at SINTEF Energy Research to configure the CAN-messages and
the charging system. A circuit board was made in order to connect a CAN transceiver to
the TX2, with an associated ROS node and GUI to publish and display the battery state
respectively. The project takes inspiration from [35], [36] and [21].

I would like to thank my supervisor Associate Professor Jon Are Suul at the Department
of Engineering Cybernetics, Norwegian University of Science and Technology (NTNU),
and my co-supervisor Research Scientist Dr. Giuseppe Guidi at SINTEF Energy Research
for supporting me in this project.

ii

Table of Contents

Abstract i

Preface ii

Table of Contents vi

List of Figures ix

List of Tables xi

Nomenclature xii

1 Introduction 1
1.1 Background & Motivation . 1
1.2 Objectives . 2
1.3 Contribution . 2
1.4 Thesis Overview . 3

2 Hardware and Software 5
2.1 Hardware . 6

2.1.1 Component Overview . 6
2.1.2 Nvidia Jetson TX2 . 6
2.1.3 Slamtec RPLIDAR A2M8 . 7
2.1.4 Logitech C922 Pro . 8
2.1.5 Bosch BNO080 IMU . 9
2.1.6 PJRC Teensy 3.2 . 9
2.1.7 SN65HVD230D/VP230 CAN transceiver 9

2.2 Hardware System overview . 10
2.2.1 Vehicle Control . 10
2.2.2 Wireless Charging System . 11

2.3 Software . 13

iii

2.3.1 ROS (Robot Operating System) 13
2.3.2 OpenCV . 14
2.3.3 Camera Calibration Software . 14
2.3.4 Deep Learning Frameworks . 15

3 SLAM-based Path Tracking 17
3.1 Related Work . 17

3.1.1 Stanley . 17
3.1.2 MIT RACECAR . 18
3.1.3 F1/10 . 19

3.2 Simultaneous Localization and Mapping (SLAM) 20
3.2.1 Hector SLAM . 20
3.2.2 Gmapping . 23
3.2.3 ORB-SLAM2 . 23

3.3 Particle Filter Localization . 24
3.4 Odometry . 24

3.4.1 Laser-based Odometry . 24
3.4.2 ESC/IMU-based Odometry . 25

3.5 Path Generator . 27
3.6 Path Tracking . 28

3.6.1 Simplified Bicycle Model . 28
3.6.2 Pure Pursuit . 29
3.6.3 Stanley Steering Controller . 31
3.6.4 Finding the Shortest Distance to the Path 32

3.7 Dynamic Speed Control . 33
3.8 Obstacle Detector . 33
3.9 Implementation . 34
3.10 Results . 35

3.10.1 Path Tracker Tuning . 35
3.10.2 Dynamic Speed Control . 38

4 Deep Learning Steering Controller 41
4.1 Introduction . 41
4.2 Related Work . 42

4.2.1 Nvidia DAVE-2 . 42
4.3 Creating Datasets . 43

4.3.1 Simulator . 43
4.3.2 Simulator Dataset . 44
4.3.3 Truck Datasets . 45
4.3.4 Getting Training Data from the Truck 46

4.4 Network Model and Training . 47
4.4.1 Neural Network Model . 47
4.4.2 Dataset Augmentation . 47
4.4.3 Training . 49

4.5 Results . 51
4.5.1 Simulator . 51

iv

4.5.2 Truck . 52

5 Computer Vision Steering Controller 55
5.1 Introduction . 55
5.2 Lane Keep Assist . 56

5.2.1 Lane Detection . 56
5.2.2 Steering Controller . 59

5.3 Results . 60
5.3.1 Performance . 60

6 Integration with Wireless Inductive Charging 61
6.1 Onboard Charger Communication . 61
6.2 Graphical User-Interface . 62
6.3 Charging Area Detection using ArUco 63
6.4 Results . 64

7 Discussion 67
7.1 Hardware . 67
7.2 Localization Methods . 68
7.3 Path Tracking Methods . 68
7.4 Comparison of Methods for Path Following 69
7.5 Improved Obstacle Detection . 69
7.6 ArUco Detection . 70
7.7 Optimal Positioning during charging . 71

8 Conclusion and Outlook 73
8.1 Conclusions . 73
8.2 Outlook . 74

Bibliography 75

Appendix 79
8.3 Getting Started . 79

8.3.1 ROS Remote Network Setup . 79
8.3.2 Connecting to the Truck . 80
8.3.3 Launching the Truck . 81
8.3.4 Shutting down . 81
8.3.5 Joystick Controls . 82

8.4 AI Training Procedure . 84
8.4.1 Create a New Dataset . 84
8.4.2 Train a New Model . 85
8.4.3 Drive . 85

8.5 ROS System Structure . 86
8.6 Installation . 88

8.6.1 ROS Kinetic . 88
8.6.2 Desktop GUI . 88

v

8.6.3 ROS Nodes . 88
8.6.4 Udacity Self-Driving Car Simulator 89
8.6.5 OpenCV 3.4.0 on Jetson TX2 89
8.6.6 Controller Area Network (CAN) 89
8.6.7 CP210x Support for Jetson TX2 with RPLIDAR 90

8.7 Teensy Connection Chart . 91
8.8 Code Overview . 91

vi

List of Figures

2.1 Tamiya R/C Scania self-driving semi-trailer. 5
2.2 Nvidia Jetson TX2 devkit. Ill.: Nvidia 7
2.3 The Slamtec RPLIDAR A2M8 mounted on top of the 1/14 truck. 8
2.4 Block diagram of the hardware system architecture. 10
2.5 Block diagram of the vehicle control configuration. 11
2.6 The inductive charger setup. 11
2.7 A closer look at one of the induction coils. 12
2.8 Induction coil mounted beneath the truck. 12
2.9 Camera calibration process with camera calibration in ROS. 15

3.1 Stanley - 2005 DARPA Grand Challenge. Ill.: Stanford University. 18
3.2 MIT RACECAR / RACECAR/J. Ill.: JetsonHacks 18
3.3 F1/10 experimental track setup. Ill.: F1/10 19
3.4 The NTNU/SINTEF National Smart Grid laboratory mapped with Hector

SLAM. 21
3.5 Hector SLAM on a handheld mapping device. Ill.: Team Hector Darm-

stadt/Youtube. 21
3.6 ORB-SLAM2 VSLAM test in the authors office. 23
3.7 Controller input vs. longitudinal velocity output [m/s]. 25
3.8 Recording a new path. 27
3.9 Ackermann steering geometry. Ill.: Bromskloss/Wikipedia 28
3.10 Simplified Bicycle Model. Ill.: [36] . 29
3.11 Principle of Pure Pursuit. 29
3.12 Pure Pursuit geometry. Ill.: [36] . 31
3.13 Stanley steering geometry. Ill.: Jarrod M. Snider 32
3.14 SLAM path tracker system architecture. 34
3.15 Pure Pursuit with 0.6m look-ahead, 0.8 look-forward gain. 36
3.16 Pure Pursuit with 1.0m look-ahead, 0.8 look-forward gain. 36
3.17 Stanley steering with 0.1 cross-track error gain. 37
3.18 Pure Pursuit with 21% straight speed, 18% cornering speed. 39

vii

3.19 Stanley steering with 21% straight speed, 18% cornering speed. 39
3.20 Pure Pursuit with 27% straight speed, 18% cornering speed. 40
3.21 Stanley steering with 27% straight speed, 18% cornering speed. 40

4.1 Block diagram of the Nvidia CNN training setup. Ill: Nvidia 42
4.2 Block diagram of the Nvidia CNN steering control from a single camera.

Ill: Nvidia . 42
4.3 Nvidia DAVE-2 network architecture. Ill: Nvidia 43
4.4 Screenshot of the road circuit on the Udacity Self-Driving Car simulator. . 44
4.5 Example of image output from the Udacity Self-Driving Car simulator

with left, center and right camera respectively. Images are recorded on the
road circuit. 44

4.6 The test track used for gathering training data. 45
4.7 Placement of the Logitech C922 camera. 46
4.8 Samples of training data from the camera. 46
4.9 The CNN model. 48
4.10 Training setup for the truck model. 50
4.11 Model loss vs. number of epochs for the first (left) and second (right) dataset. 50
4.12 Output from the center camera image during autonomous driving. 51
4.13 CNN controlling steering commands on the Udacity simulator. 51
4.14 Using the CNN to output steering commands. 52
4.15 Comparing CNN models with Hector SLAM. 52
4.16 Driving with 6 minutes of training data. 53
4.17 Driving with 16 minutes of training data. 53

5.1 Tesla autopilot lane detection (04/2019). Ill.: [12] 56
5.2 Lane detection using histogram. 57
5.3 Using OpenCV for lane detection. 58
5.4 Measuring center offset during cornering. 58
5.5 Negative feedback-loop for steering control. 59

6.1 Block diagram of the CAN communication. 61
6.2 CAN-bus transceiver adapter. 62
6.3 GUI made with Tkinter. 62
6.4 Using OpenCV to detect an ArUco marker in real-time. 63
6.5 Charge current vs. position. 64
6.6 Battery states plotted with a 10Hz sampling-rate. 65

7.1 Object detection with YOLOv3 on TX2. Ill.: JetsonHacks/YouTube. . . . 70
7.2 Feedback-loop based on power measurement. 71
7.3 Optimal line-following based on power measurements. 72

8.1 Autonomous driving at the SINTEF Smartgrid Lab. 79
8.2 Placement of the power button on the Jetson TX2. 80
8.3 Trajectory tracking in Rviz. 81
8.4 Overview of the joystick controls. 82

viii

8.5 Overview of the ROS system structure. 87

ix

x

List of Tables

2.1 List of components. 6
2.2 Technical specifications Nvidia Jetson TX2. 7

3.1 Tuning parameters Hector SLAM. 22
3.2 Tuning parameters Pure Pursuit. 35
3.3 Tuning parameters Stanley steering controller. 37
3.4 Dynamic speed control testing parameters. 38

4.1 CNN training parameters for simulator model. 49
4.2 CNN training parameters for 1/14 truck model. 50

8.1 Nvidia Jetson TX2 to CAN transceiver. 90
8.2 Teensy 3.2 connection chart. 91

xi

Nomenclature

Symbols

α Angle [rad]
δ Steering angle [rad]
ψ Yaw [rad]
θ Heading [rad]
ω Angular velocity [rad/s]
κ Curvature [m-1]

Indicies

x Longitudinal direction
y Lateral direction
vx Longitudinal velocity
vy Lateral velocity
t Discrete time step
u Controller input
L Wheelbase length
R Turning radius
gx, gy Goal point
ld Look-ahead distance

Acronyms and Abbreviations

ROS Robot Operating System
SLAM Simultaneous Localization and Mapping
VSLAM Visual Simultaneous Localization and Mapping
Pose Position and Orientation
LiDAR Light Detection And Ranging Sensor
IMU Inertial Measurement Unit
PID Proportional Integral Derivative Controller
R/C Radio Control
ESC Electronic Speed Controller
VCU Vehicle Control Unit
SSH Secure Shell
PWM Pulse-width Modulation
CAN Controller Area Network
DNN Deep Neural Network
CNN Convolutional Neural Network
GUI Graphical User Interface

xii

Chapter 1
Introduction

This thesis aims to demonstrate wireless inductive charging on a moving electric vehicle,
though the development of a self-driving system on a small-scale vehicle. The project is
in collaboration with SINTEF Energy Research. SINTEF is a norwegian, interdisciplinary
research institute with leading international competence within the fields of technology
and science. They are among the largest European research institutes and do research and
development projects for businesses and institutions. This chapter gives an introduction to
the project, the motivation behind and the problems this project will aim to solve.

1.1 Background & Motivation
Wireless charging has in the recent years become a common standard in consumer-oriented
applications such as e.g. wireless phone chargers, but the technology has also been tested
and implemented in more industrial applications such as cars, busses and electrical ferries
[14]. Other uses include fixed charging spots for taxies [8] and wireless home charg-
ing pads for electrical cars. Wireless power transferring can also be seen as an enabling
technology for autonomous vehicles [2] that can operate without the need for a physical
charger connection. This can make for the creation of a self-supplied, fully autonomous
and independent system. Imagine e.g. drones having an inductive platform for landing
and charging. Or autonomous ferries with auto-docking and connection-less charging.
The technology can have a huge impact on the future and can also change the transporta-
tion industry in general. Norway has set the ambition to become climate neutral by 2050
[7]. In order to achieve this goal, all modes of transport need to become as climate effi-
cient as possible. Freight transport is decisive for business to thrive, but generates large
emissions of greenhouse gases. Norwegian freight transport is expected to increase by
65% by 2050, in parallel with the target of climate neutrality. This is why it is important to
work for the electrification of freight transport. Technology for dynamic on-road wireless
power transfer to electric vehicles is envisioned as a suitable solution for power supply for
autonomous vehicles. When it comes to vehicles, the autonomous capabilities are usu-
ally divided into five levels [17], where level 0 is a vehicle that is operated manually by a

1

Chapter 1. Introduction

human driver and level 5 is full self-driving without any human input. As the car manufac-
turers are approaching level 5 autonomy in self-driving cars, the benefits of having a fully
self-sustained charging system becomes apparent. Not only the possibility for the car to
drive itself to the nearest charger when needed, but also be able to charge autonomously
on the move. Researchers at SINTEF has proposed an electric road infrastructure with
built-in coils for wireless charging. By enabling fully automated power transfer to moving
vehicles, such technology can help overcome the limitations of driving range for electric
vehicles and allow for fully autonomous long-term operation.

1.2 Objectives
The objective of this project has been to propose and develop a strategy for self-driving
technology that could be tested on a small-scale model of an electric truck with dynamic
wireless charging. An electric truck model in scale 1/14 was already available at SINTEF
Energy Research as a small-scale demonstration platform for inductive charging technol-
ogy. The main task was to develop a self-driving strategy that could be implemented on
this truck model to achieve a demonstration of a fully autonomous electric truck running
on a path that included dynamic inductive charging.

1.3 Contribution
Three different methods for achieving a self-driving system on a small-scale truck has
been implemented and tested.

• A SLAM-based method for localization and navigation.

• Using machine-learning with a deep convolutional neural network.

• Using classic computer vision methods.

Also a method for a detection system for the inductive charging area has been proposed

• Using computer vision to recognize the charging zone.

A working and easy-to-use system for following a path has been made. The project shows
that the proposed strategies will work as methods for enabling autonomous driving along
a path or track on a small-scale truck model. Each method comes with its own strengths
and weaknesses depending on the area, but also due to the chosen hardware.

2

1.4 Thesis Overview

1.4 Thesis Overview
This section contains a short description of the chapters in this report:

1. Introduction
An introduction to the project and the motivation and objectives behind it.

2. Hardware and Software
Describes the hardware components and the software stack. Overview of the system
hardware architecture.

3. SLAM-based Path Planning
Contains the specific methods that were used to develop and implement a SLAM-
based path tracking system for autonomous driving using LiDAR. Results of differ-
ent tuning parameters are presented.

4. Deep Learning Steering Controller
A steering controller based on deep learning with a convolutional neural network
is presented, together with training procedures and dataset creation. The controller
uses a camera to follow a path.

5. Computer Vision Steering Controller
Describes a steering controller based on classic computer vision methods, with lane
detection and PID-control.

6. Integration with Wireless Inductive Charging
Describes how the wireless charging system is connected to the truck, and how
information from the system is presented. A detection system for the charger area
based on computer vision/ArUco is tested.

7. Discussion
Discussions of the results from the previous chapters, along with suggested improve-
ments.

8. Conclusion and Outlook
The conclusion of the project and the way forward.

9. Appendix
Information about how to operate the truck, with procedures and installations, and
an overview of the ROS system structure and code.

3

Chapter 1. Introduction

4

Chapter 2
Hardware and Software

The basis for this project was an 1/14 scale semi-trailer provided by SINTEF. The truck
had earlier been used for technology demonstrations of inductive charging [13], but with
manual control from an R/C radio-transmitter only. The task at hand was to develop a self-
driving system to control the truck autonomously while driving on a path that included
the inductive charger. The truck had already been fitted with the power electronics for the
earlier demonstrations to provide wireless power to the battery, but was otherwise stock.
This chapter describes the hardware components and software stack used for building and
developing the self-driving truck, shown in figure 2.1. The hardware and software compo-
nents need to be able to provide environmental feedback through perception, process the
information and finally be able to operate the truck through control of the hardware. At the
end of this chapter an overview of the system structure based on the methods from chapter
1 is presented.

Figure 2.1: Tamiya R/C Scania self-driving semi-trailer.

5

Chapter 2. Hardware and Software

2.1 Hardware

2.1.1 Component Overview
Here, a list of the parts and components used for this project is presented. All parts were
ordered before the project was started, but also some custom parts were made such as laser-
cut mounting hardware for the Nvidia Jetson TX2 and the RPLIDAR, power connector
adapters and a CAN-bus interface. See the following subsections for descriptions of the
main components.

Electronics Amount Type
Nvidia Jetson TX2 Developer kit with Jetpack 3.3 1 Embedded SoM

Slamtec RPLIDAR A2M8 1 LiDAR

PJRC Teensy 3.2 1 Microcontroller

Logitech C922 Pro 1 Webcam

Logitech F710 1 Joystick

Sparkfun BNO080 1 IMU

Texas Instruments SN65HVD230D 1 CAN transceiver

WS2812B 4 Neopixel RGB LED

120 ohm resistor 2 For CAN-bus

SINTEF Induction system w/CAN-bus 1 Wireless charger

Mechanical
Tamiya R/C Scania Semi-Trailer 1/14 scale 1 R/C car

Laser-cut mounting 1 For Nvidia Jetson TX2

Laser-cut mounting 1 For RPLidar A2M8

XT60 to barrel-plug adapter 1 Custom connector

Miscellaneous
A laptop with Ubuntu 16.04 LTS and ROS Kinetic 1 Computer

Turnigy 5200mAh 3S Li-Po 2 Battery

Turnigy 6500mAh 2S Li-Po 1 Battery

Biltema 12V LiFePO4 1 Battery

Belkin 4-port USB 3.0 hub 1 USB hub

SanDisk 128 GB SDcard 1 Memory card

Table 2.1: List of components.

2.1.2 Nvidia Jetson TX2
The Nvidia Jetson TX2 devkit (figure 2.2) was selected as the main computing unit for this
project, due to its relative high performance pr dollar. The Jetson TX2 is a high perfor-
mance embedded system-on-module (SoM) with six CPUs cores (Dual-core Denver 64-bit
+ quad-core ARM Cortex A57). It has a GPU based on the Nvidia Pascal architecture with

6

2.1 Hardware

256 CUDA cores that is useful for deploying computer vision and machine learning. Jetson
TX2 runs an ARM-version of Linux/Ubuntu and the typical power consumption is about
7.5W (15W max). The low power consumption is useful in battery powered applications
such as this, as opposed to using a small desktop computer or a laptop.

Nvidia Jetson TX2 I/O Power
256-core Nvidia Pascal Architecture GPU HDMI 2.0 5.5-19.6V DC

2 Denver 64-bit CPUs + Quad-Core A57 Complex USB 3.0 Type A

8 GB L128 bit DDR4 Memory USB 2.0 Micro

32 GB eMMC 5.1 Flash Storage SATA, SDcard

802.11a/b/g/n/ac 22 867Mbps WiFi Dual CAN bus

10/100/1000 BASE-T Ethernet UART, SPI, I2C, GPIO

Table 2.2: Technical specifications Nvidia Jetson TX2.

Figure 2.2: Nvidia Jetson TX2 devkit. Ill.: Nvidia

2.1.3 Slamtec RPLIDAR A2M8
A LiDAR is a laser-based range measurement sensor that measure distances by utilizing
time-of-flight of an emitted light-pulse and the reflected light. It has become the standard
for self-driving vehicles where mapping of the environment is important. Obstacle avoid-
ance is another use-case for this kind of sensor. For this project a low-cost 2D LiDAR was
selected, as the vehicle will only move in the plane and because good 2D and 3D LiDARs
can be quite expensive. A 2D LiDAR only measure distances in horizontal direction. The
chosen LiDAR was the Slamtec RPLIDAR A2M8 360◦ with a distance range of 0.15 -
12m, a scan rate of 5-15 Hz and an angular resolution of 0.45◦ - 1.35◦ depending on the
rotation speed of the unit. It measures distances in a 360◦ field of view. The RPLIDAR

7

Chapter 2. Hardware and Software

A8M8 also has the ability to measure reflection intensity for distinguishing between dif-
ferent materials. A negative aspect of choosing a low-cost LiDAR such as the A8M8 is
the slow scan rate that can affect the maximum turning rate of the vehicle it is mounted
on. If the vehicle turns too quickly the LiDAR will not be able to keep up. A scan rate
of 30-40 Hz would be ideal, such as on the Hokuyo UST-10LX which is another ’budget’
laserscanner. The maximum measured distance may also cause some restrictions in larger
areas, but this depends on the application and the A8M8 should work well in smaller areas.
The LiDAR was mounted on top of the roof of the R/C truck with custom hardware (figure
2.3), in order to clear the trailer and get a 360◦ view of its surroundings while driving.

Figure 2.3: The Slamtec RPLIDAR A2M8 mounted on top of the 1/14 truck.

2.1.4 Logitech C922 Pro
The camera is another commonly used sensor in self-driving vehicles. It can be used for
object recognition and distance measurements, or as input to a deep neural network. In
contrast to the LiDAR, cameras are good at capturing color data and textures, and can
more easily distinguish objects. Cameras are more sensitive to environmental changes
such as varying light conditions than the LiDAR. For fast moving applications a camera
with a global shutter is preferred. This implies that the image is updated as a whole, in
contrast to the more regular rolling-shutter cameras that use scan-lines. A rolling-shutter
camera will update the image line-by-line which may cause ’tearing’ of the image if the
camera is moved too quickly. A camera with a global shutter will usually cost more than a
camera with a rolling shutter. For this project a rolling-shutter camera was chosen due to
the budget and the slow-moving application. The chosen camera was the Logitech C922
Pro webcam. It has a maximum resolution of 1920 x 1080 pixels, a refresh rate of up to
60Hz and a field of view of 78◦. It is powered by a regular USB-cable. A stereo-camera
could also be considered in the future as it would make visual odometry easy to implement.
Visual odometry is possible with monocular cameras, but they need a reference or scale-

8

2.1 Hardware

factor to be able to estimate the correct distance. A stereo-camera could also be used as
a redundant distance measurement sensor to complement the LiDAR scanner. The C922
camera was mounted on the roof of the truck beneath the LiDAR such that it had a clear
view of the road in front of the vehicle. This can also be seen in figure 2.3.

2.1.5 Bosch BNO080 IMU
An inertial measurement unit (IMU) is used to measure orientation, linear velocity and
angular rate in 3D-space. It uses a combination of accelerometers, gyroscopes and mag-
netometers. For this project the Bosch BNO080 IMU was chosen. It has 9 degrees of
freedom (Acc, Gyro, Mag) and a dedicated ARM Cortex M0+ processing unit for drift
correction. This leads to accurate rotation vector headings, with a static rotation error of
2◦ or less, and a linear acceleration accuracy of 0.35 m/s2. The BNO080 can be interfaced
with I2C (400kHz), SPI (3MHz) or UART (3Mbps) and has an operating voltage of 1.65V
- 3.6V DC.

2.1.6 PJRC Teensy 3.2
In order to connect and interface the electronic components such as the servos, ESC, IMU
and lights, a microcontroller was needed. The PJRC Teensy 3.2 is a small, powerful
microcontroller with support for the well-know Arduino platform. It has a 32-bit ARM
Cortex-M4 running at 72 MHz, and a logic level of 3.3V. The Arduino support means
it is ROS-compatible and can be used to connect to a ROS network for direct control and
interaction via a serial interface, by using the ros serial package. There is also support
for I2C, SPI, UART and CAN.

2.1.7 SN65HVD230D/VP230 CAN transceiver
The Nvidia Jetson TX2 features two build-in CAN controllers, can0 and can1. To make
use of CAN communication, a CAN transceiver has to be added to the controller. The CAN
transceiver is the interface between the CAN protocol controller and the physical bus. The
CAN transceiver used for this project was the Texas Instruments SN65HVD230D (marked
VP230).

9

Chapter 2. Hardware and Software

2.2 Hardware System overview
This section presents an overview of the hardware system architecture, see figure 2.4. The
LiDAR, camera and microcontroller are connected to the Nvidia Jetson TX2 via USB for
both communication and power. The joystick has a small receiver that is also plugged in
via USB, but uses wireless 2.4 GHz RF communication. Most USB peripherals except the
power connector for the LiDAR, are connected via the USB hub. The Jetson is powered
by a separate battery and can accept voltages from 5.5-19.6V DC. The battery used to
power the Jetson is a 3-cell 5200mAh Li-Po (11.1V). The Teensy microcontroller is used
to control and interface with the car controls (servos and ESC), the IMU and the LED
indicator strip. A laptop or computer can be connected to the Jetson via WiFi/SSH for
startup and monitoring. See the appendix on how to connect.

Nvidia
Jetson TX2

PJRC
Teensy 3.2

Steering servo

ESC

Gearing servo

IMULiDAR

Camera

Joystick

LED indicator

ROS
Serial

Interface

PWM

I2C

PWM

PWM

Wireless charger
system

CAN bus

GPIO

WiFi /
SSH

Laptop/
Computer

USB

RF/USB

Figure 2.4: Block diagram of the hardware system architecture.

2.2.1 Vehicle Control
The truck is controlled by pulse-width modulated signals (PWM) going from a radio re-
ceiver to a vehicle control unit (VCU) that controls the steering servo, gearing servo and
the electronic speed controller (ESC). The Teensy 3.2 microcontroller replaces the stock
radio receiver in order to control the servos and ESC. Since the microcontroller only has
3.3V output, 5V is supplied from the VCU with a common ground for both the microcon-
troller and the servos/ESC, as shown in figure 2.5. The microcontroller is connected to the
Jetson with a USB interface for serial communication. It has been programmed to receive
input data and translate them into PWM control signals.

10

2.2 Hardware System overview

Vehicle
Control

unit
Gearing

servo

Steering
servo

ESC

Teensy 3.2
5V/GND

Control
signals

USB/Serial

GND

GND

Figure 2.5: Block diagram of the vehicle control configuration.

2.2.2 Wireless Charging System
A system for wireless inductive charging has been developed by SINTEF Energy Research
as a demonstration unit. This can be seen in figure 2.6. The system consists of power
electronics that controls the current flow, and two induction coils mounted in 3D-printed
housings (figure 2.7). Plexiglas and grip-tape has been added to the top to make the surface
more drivable. The truck has had an induction coil mounted beneath the drive train in order
to receive charge, seen in figure 2.8, with onboard control and power electronics mounted
in the trailer and instruments for measuring real-time current and voltage. The control
electronics on the truck are powered by a separate 12V LiFePO4 battery mounted in the
trailer. The truck itself is powered by a 2-cell 6500mAh Li-Po battery that receives charge
when driving over the coils. The power electronics can be interfaced via a CAN-bus
interface.

Figure 2.6: The inductive charger setup.

11

Chapter 2. Hardware and Software

Figure 2.7: A closer look at one of the induction coils.

Figure 2.8: Induction coil mounted beneath the truck.

12

2.3 Software

2.3 Software
To develop a self-driving vehicle, different software frameworks are required. These
frameworks should be able to run on the ARM-based embedded hardware of the car, as
well as on the host computer, and make development and interfacing of different sensors
easier. It should also help with testing and visualizing during the development process.
This section presents the frameworks and software used for the self-driving system.

2.3.1 ROS (Robot Operating System)
The Robot Operating System, or ROS [24], is an open-source meta-operating system that
is developed specifically for robotics. It runs on top of any existing Linux-distribution,
such as Ubuntu. ROS implements hardware abstraction, low-level device control, im-
plementation of commonly used functionality, message-passing between processes, and
package management. It functions as a peer-to-peer network of processes that can com-
municate via message passing. ROS comes with tools and libraries to visualize data and to
run code on multiple platforms, including embedded computers and microcontrollers. For
this project, ROS Kinetic was used. Core elements of the ROS system are listed below:

• Packages contains the ROS run-time processes (nodes), libraries and configura-
tion files that is usefully organized together.

• Nodes are ROS run-time processes that perform computation. They can publish
and/or subscribe to topics for inter-node communication. A full ROS system is
usually build up by multiple nodes doing specific tasks.

• Master is responsible for name registration and lookup in the ROS network. It can
run across multiple machines for communication via Ethernet or WiFi, and does so
that the nodes can find each other and send messages.

• Messages are used for standardized communication between nodes. There are
several standard message formats, such as int, float, sensors, navigation etc. It is
also possible to make custom message formats.

• Topics are the channels that are used for message passing between the nodes. The
message passing is based on a publish/subscriber scheme. A node can publish a
message on a given topic. The topic has a name identifier that makes it possible for
other nodes to identify and subscribe to it. The publisher is not aware of who is
subscribing to the topic. Multiple nodes can publish or subscribe to the same topic.

• Rosbags are used for saving and playing back ROS message data from topics.

• Rviz is a tool for visualizing ROS messages and transformations, and can be used
to visualize laser scans, maps, paths and current positions and orientations.

• rqt is a tool for plotting data and display connections.

• map server is a tool in the ROS navigation package for hosting and serving map
data to nodes.

13

Chapter 2. Hardware and Software

2.3.2 OpenCV
OpenCV is an open-source computer vision and machine learning software library. It
has C++, Python, Java and MATLAB interfaces and supports Windows, Linux, Android
and Mac OS. It can also be compiled with support for CUDA, that can make use of the
CUDA-cores on the Nvidia Jetson TX2 to achieve GPU-accelerated functionality. CUDA
is currently only supported in C++. For this project, OpenCV 3.4.0 was used on both the
host computer and the Nvidia Jetson TX2. The Jetson had an ARM-version of OpenCV
3.4.0 with CUDA enabled.

2.3.3 Camera Calibration Software
To compensate for lens distortion a camera calibration is needed. This will also obtain the
intrinsic parameters [10] of the camera. The intrinsic parameters are specific to the camera,
such as the focal length (fx, fy) and optical centers (cx, cy). They can be represented in
a 3×3 matrix known as the camera matrix, see equation 2.1. The distortion matrix seen in
equation 2.2, is a 5×1 matrix of the distortion coefficients. The camera model used is the
pinhole model [10].

Camera matrix =

fx 0 cx
0 fy cy
0 0 1

 (2.1)

Distortion coefficients =
[
k1 k2 p1 p2 p3

]
(2.2)

There are several tools available for doing camera calibration, e.g. the camera calibration

tool in ROS shown in figure 2.9, or the built-in functions in OpenCV. Common for these
tools is the use of a checkerboard pattern with squares of known size. The calibrated pa-
rameters for the Logitech C922 Pro is shown in equations 2.3 and 2.4. The numbers are
rounded to the third decimal. The camera was calibrated with a resolution of 640x480 and
the calibration will not be valid if the resolution is changed.

Camera matrix C922 =

708.434 0 317.966
0 724.304 274.086
0 0 1

 (2.3)

Distortion coefficients C922 =
[
0.097 −0.184 0.014 0.008 0

]
(2.4)

14

2.3 Software

Figure 2.9: Camera calibration process with camera calibration in ROS.

2.3.4 Deep Learning Frameworks
TensorFlow

TensorFlow is an open-source machine-learning framework from Google that can be used
to build and design neural networks. The GPU-version of TensorFlow can also take ad-
vantage of the Pascal GPU on the Nvidia Jetson TX2, utilizing its CUDA-cores.

Keras

Keras is another open-source machine-learning framework that runs on top of the Ten-
sorFlow framework, as a more user-friendly interface. Keras makes it easier to interact
with the TensorFlow framework through high-level abstractions for creating deep neural
networks.

15

Chapter 2. Hardware and Software

16

Chapter 3
SLAM-based Path Tracking

This chapter describes the methods of building a path-following autonomous car based on
simultaneous localization and mapping (SLAM) using a LiDAR sensor. It will go trough
some different methods for SLAM, odometry, path tracking and dynamic speed control.
In the end of this chapter is a description of the results when testing with different methods
and tuning parameters.

3.1 Related Work

In this section some of the work that inspired this project’s approach to achieving self-
driving using SLAM and path tracking is presented.

3.1.1 Stanley

Stanley [35], created by Stanford University’s Stanford Racing Team, was the car that won
the 2005 DARPA Grand Challenge. The DARPA Grand Challenge was an autonomous car
racing competition across the Mojave desert that lasted 240 km. Stanley (figure 3.1) was
based on a VW Touareg. The onboard autonomous system used five Sick AG LiDAR units
for 3D-mapping, a GPS system for global map localization together with IMUs for pose
estimation, wheel sensors for odometry and a video camera for detecting road conditions.
It had six 1.6 GHz Intel Pentium M based computers running different versions of Linux.
It was operated by a combination of electric motors, hydraulics and the built-in drive-by-
wire system from VW. Stanley used supervised machine-learning based on human driver
input to be able to drive. This method is explored further in chapter 4. The Stanford Racing
Team implemented a steering controller called the Stanley Steering Controller. The theory
behind this controller is explained in section 3.6.3. The Stanford Racing Team was led
by Associate Professor Sebastian Thrun, who later on founded the Google self-driving car
company Waymo and the online learning site Udacity.

17

Chapter 3. SLAM-based Path Tracking

Figure 3.1: Stanley - 2005 DARPA Grand Challenge. Ill.: Stanford University.

3.1.2 MIT RACECAR

The MIT RACECAR [29] (Rapid Autonomous Complex-Environment Competing Acker-
mann-steering Robot) is an open-source hardware platform for robotics research and ed-
ucation from the Massachusetts Institute of Technology. An example of a car built on
the platform can be seen in figure 3.2. The platform is part of a course to teach students
about perception and planning algorithms for cars that can quickly navigate through com-
plex environments. But there is also a competition, where student teams will race through
the corridors and tunnels of MIT. The platform is based on the Nvidia Jetson TX1, the
predecessor to the Jetson TX2. It is equipped with an IMU, a visual odometer, a laser
scanner (Hokuyo UST-10LX), and a stereo-camera (Stereolabs ZED). As for software, it
is based on the ROS software stack. Software resources for the platform can be found on
the projects github-page [1]. This includes a fast particle filter localization method [5], see
section 3.3, and a method for estimating odometry without wheel encoders, see section
3.4.2.

Figure 3.2: MIT RACECAR / RACECAR/J. Ill.: JetsonHacks

18

3.1 Related Work

3.1.3 F1/10
F1/10 [22] is an international autonomous racing competition for students. The compe-
tition involves designing, building, and testing an autonomous 1/10th scale F1 race car
capable of speeds in excess of 60 km/h. All while learning about perception, planning,
and control for autonomous navigation. The race itself is a corridor race similar to the
MIT RACECAR, and F1/10 takes a lot of inspiration from this, e.g. the sensor pack-
age. The homepage contains resources about hardware and algorithms for localization and
navigation.

Figure 3.3: F1/10 experimental track setup. Ill.: F1/10

19

Chapter 3. SLAM-based Path Tracking

3.2 Simultaneous Localization and Mapping (SLAM)
Simultaneous Localization and Mapping (SLAM) is a technique that provides both local-
ization and mapping so that an agent/robot is able to navigate in an unknown environment.
The map is built and updated while simultaneously keeping track of the agent’s position
within it. SLAM is known as a chicken-or-egg problem because in order to localize, a map
is needed. Vice versa a pose estimate (localization) is needed for mapping. Both of these
factors are unknown. The SLAM problem [15] is defined as a set of given and wanted
values over discrete time steps t.

Given values:
Robot controls:

u1:t = {u1, u2, u3, ..., ut} (3.1)

Relative observations:
z1:t = {z1, z2, z3, ..., zt} (3.2)

Wanted values:
Environment map:

m = {m1,m2,m3, ...,mn} (3.3)

Robot’s path:
x1:t = x1, x2, x3, ..., xt (3.4)

An estimate of the robot’s path and the map is given by:

p(x0:t,m|z1:t, u1:t) (3.5)

Common methods for solving the SLAM problem are particle filters, extended Kalman
filters, and GraphSLAM. Most methods rely on a combination of LiDAR distance read-
ings, odometry, and/or camera images (VSLAM). When using a planar LiDAR such as
the RPLIDAR A8M8, maps are represented in ROS as a 2D occupancy grid map with
x,y-coordinates, as seen in figure 3.4. Maps can also be represented as a 3D point cloud
when using a 3D LiDAR or VSLAM. In the following subsections three different meth-
ods for SLAM with ROS support are presented; Hector SLAM and Gmapping which are
LiDAR-based options, and ORB-SLAM2 which is a camera-based approach.

3.2.1 Hector SLAM
Hector SLAM [20] developed by Team Hector from the Technische Universitt Darmstadt
in Germany, is an odometry-free SLAM approach that can generate maps and estimate
2D pose based off LiDAR distance readings. Many LiDAR-based SLAM methods require
additional odometry in some form to estimate an accurate pose of a vehicle. This could
be a problem in applications where there is no room for odometry sensors such as wheel
encoders, which is the case for the truck model used in this project. Visual odometry is
a possible option but this has a high load on the processor and would ideally require a
stereo camera setup. Hector SLAM is a robust SLAM that is built with high scan rate

20

3.2 Simultaneous Localization and Mapping (SLAM)

Figure 3.4: The NTNU/SINTEF National Smart Grid laboratory mapped with Hector SLAM.

LiDARs like the Hokuyo UTM-30LX (40Hz) in mind. It will also work with lower scan
rate LiDARs like the RPLIDAR A8M8 (5-15Hz), but this is less robust to rapid angu-
lar motion. Hector SLAM does not provide loop closure, but is accurate enough to not
need explicit loop closure in many real world environments. The system has been suc-
cessfully implemented on Unmanned Ground Vehicles (UGV) where as in harsh terrain
the vehicle cannot rely on wheel odometry. It has also been used in unmanned surface
vehicles (USV), unmanned aerial vehicles (UAV), and handheld mapping devices. Figure
3.5 shows a Hokuyo UTM-30LX LiDAR mounted on top of a small embedded computer
running Linux. Hector SLAM comes with a ROS API for publishing maps and odom-
etry/pose when given a LiDAR scan input. The published pose representes the current
transformation between the map and the vehicle.

Figure 3.5: Hector SLAM on a handheld mapping device. Ill.: Team Hector Darmstadt/Youtube.

21

Chapter 3. SLAM-based Path Tracking

Hector Mapping

The mapping and localization in the Hector SLAM package is performed by the Hector
Mapping ROS node. Below is a basic overview of how the mapping and localization
process in Hector Mapping works (one iteration).

1. Receive a scan from the LiDAR

2. Transform the scan endpoints into the base link transformation frame. This is the
frame used for localization and for transformation of laser scan data.

3. Throw out the endpoints outside of the cut-off parameters
laser min dist and laser max dist, to limit the range.

4. Perform a 2D pose estimation.

5. Update the map if the robot is estimated to have travelled more than the thresholds
indicated by the map update distance thresh and map update angle thresh

parameters.

Hector Mapping Tuning Parameters

The parameters used for the map update settings in Hector Mapping can be seen in table
3.1 and has been found to be a good balance between update frequency and stability for
the Slamtec RPLIDAR A8M8 LiDAR. The scan rate was set to 15Hz by increasing the
motor speed on the A8M8 from 600 rpm (10Hz) to 900 rpm with the help of a customized
ROS package of the original driver software. This lowers the angular resolution but also
makes it more robust to higher angular rates. The laser range was reduced to 12 m, which
is the maximum usable range of the A8M8.

Parameter Description Used value Default
map update distance thresh map update distance threshold [m] 1.5 0.4

map update angle thresh map update angle threshold [rad] 1.6 0.9

laser min dist laser minimum distance [m] 0.3 0.4

laser max dist laser maximum distance [m] 12.0 30.0

Table 3.1: Tuning parameters Hector SLAM.

Hector Trajectory Server

Hector SLAM includes a tool for logging trajectories. This is the Hector Trajectory
Server. The Hector Trajectory Server can be used to log trajectory data based on the trans-
form/pose estimation on the vehicle. The trajectory is published as a ROS Path message
and can be visualized in Rviz for tracking performance and compare results.

22

3.2 Simultaneous Localization and Mapping (SLAM)

3.2.2 Gmapping
Gmapping [11] is one of the most common SLAM methods in ROS and is part of the
ROS navigation stack. It is based on a highly efficient Rao-Blackwellized particle filter
to generate grid maps from laser range data. Rao-Blackwellized particle filters have been
introduced as effective means to solve the simultaneous localization and mapping (SLAM)
problem. Gmapping differs from Hector SLAM in that it requires odometry data in addi-
tion to the laser scan data. Odometry can be emulated and estimated using laser scan data,
cameras, IMUs or motor output but this can lead to less accurate performance in com-
parison to using wheel encoders, and may also require extra hardware resources. Some
methods for odometry is further investigated in section 3.4.

3.2.3 ORB-SLAM2
As an alternative to laser-based SLAM, it is also possible to use a monocular camera like
the Logitech C922 Pro, for mapping and localizing. A library called ORB-SLAM2 [25]
has been tested to achieve visual SLAM. ORB-SLAM2 is a real-time SLAM library for
Monocular, Stereo and RGB-D cameras that computes the camera trajectory and a sparse
3D reconstruction, as seen in figure 3.6. It also features loop-detection and support for
ROS. ORB-SLAM2 was tested as a redundant system or replacement to the LiDAR setup
for this project and seemed to be a robust solution but also computationally intensive on the
Jetson TX2. A scaling factor is required with a monocular setup, whereas stereo and depth
cameras would have true scale. A stereo-camera setup, like for example Stereolab’s ZED
camera or the Intel Realsense would have been preferred in order to estimate the correct
scaling. Still, ORB-SLAM2 showed impressive results even with only a monocular setup,
and could be a topic for future experimentation and development.

Figure 3.6: ORB-SLAM2 VSLAM test in the authors office.

23

Chapter 3. SLAM-based Path Tracking

3.3 Particle Filter Localization
SLAM is a computationally intensive process, and if the vehicle is operating in the same
room or environment all the time, then it shouldn’t always be necessary to generate a new
map each time. If it is assumed that the world will not change after the mapping process
is complete, then a static map can be used to determine the location and orientation. A
static map can be obtained by mapping the environment with SLAM, then save the gener-
ated map to file with the map server package from the ROS navigation stack. The ROS
navigation stack is a standard lib for navigation with ROS. The map server can load the
saved map and distribute it to the ROS network. In order to localize in the static map, a
particle filter like the Adaptive Monte Carlo Localization (AMCL) [9] or the MIT RACE-
CAR Particle Filter [5] can be used. AMCL is the standard particle filter implemented in
the ROS navigation stack, but the MIT RACECAR particle filter has the advantage that
it is much faster than AMCL (30Hz vs. 4Hz respectively). It also has support for GPU-
acceleration (RMGPU), meaning that it can utilize several times more particles hence in-
creasing tracking accuracy. The particle filters can be used to obtain both positioning and
orientation. The MIT RACECAR particle filter was tested, but was not seen as accurate
enough compared to using SLAM directly, often with noisy outputs due to the limitations
of the LiDAR. The car would also be operated in different unknown areas every time, so
the need for static maps would be less although the particle filters are using less resources.

3.4 Odometry
Odometry is the use of data from sensors to estimate change in position over time. In ROS,
odometry is represented as a series of time-stamped poses and twists. A pose represent
the position and orientation of the agent relative to the map, while a twist represent the
linear and angular velocity vectors in space. To improve localization it is common to use
wheel rotation encoders to measure distance and difference of wheel travel. Since the
truck did not have room for encoders that could monitor wheel speed, alternative methods
for estimating odometry was investigated. The vehicle is equipped with an accelerometer
as part of the IMU, but pure accelerometer-based odometry was seen as too inaccurate
since it would have implied double integration of the acceleration to get the distance, and
estimation errors would quickly accumulate. The methods investigated for encoder-free
odometry were based on LiDAR and ESC/IMU. Visual odometry was briefly tested with
the rovio [3] ROS package, but not further used.

3.4.1 Laser-based Odometry
The Hector SLAM mapping package described section 3.2.1, can emulate odometry by
using its pose estimator and the laser scan matcher package. This can be very ac-
curate when there are enough features for the laser scanner to detect, but in areas where
there is a lack of features, such as long straight hallways or large open areas it can struggle
a bit, especially when using a low-cost LiDAR with limited range, update rate and reso-
lution. The Hector odometry function can be used for emulating odometry where this is
required. It can be a bit more noisy and less accurate than real wheel encoders in certain

24

3.4 Odometry

areas as described earlier, but avoids problems like wheel spin and has proven to work well
in smaller environments where the tracking has shown to be very good.

3.4.2 ESC/IMU-based Odometry

A different approach to achieve odometry without wheel encoders is to use the controller
input to the motor/ESC on the truck model directly. In difference to using laser-based
odometry it does not rely on surrounding feature detection, and would ideally be a more
robust solution. As mentioned in the beginning of this section, a ROS odometry message
consists of a series of poses and twists. The pose of the vehicle can be found by combin-
ing the current velocity and the yaw angle. The current velocity can be estimated from
the relationship between the controller input u and the longitudinal velocity output vx. To
find this relationship, the pose output from the Hector SLAM package was used to get the
current position in x- and y-direction in order to build a model. A longitudinal velocity
reference based on the laser measurements vlidar was then found by taking the difference
in position over time.

vlidar =

√
(xn − xn−1)2 + (yn − yn−1)2

dt
(3.6)

where xn and yn represent the current position of the vehicle in x- and y-direction relative
to the map.

Figure 3.7: Controller input vs. longitudinal velocity output [m/s].

The velocity output of the truck model was then measured with different constant con-
troller inputs on a flat surface. As shown in figure 3.7 the longitudinal velocity of the
vehicle is almost linear to the controller input if one take into account the measurement
noise from the laser distance readings. Here, input ranged from 0-1 where 0 was no input

25

Chapter 3. SLAM-based Path Tracking

and 1 was max input. By assuming a linear relationship, the longitudinal velocity can now
be expressed as a linear velocity vl with input u [0,1]

vl = 0.9u+ 0.3 (3.7)

The truck model has an (anti-) Ackermann-based geometry and a single motor output to
the wheels, therefor it is not possible to estimate yaw directly without the use of wheel
encoders to measure rotation difference, as would be the case for a differential drive vehi-
cle. But it is possible to use the angular velocity output ω of the IMU. Now, yaw ψ can be
expressed as the integral of the angular velocity in z-direction ωz

ψ =

∫ t

0

ωzdt (3.8)

Then, vehicle velocities in x- and y-direction, ẋ and ẏ respectively, can be calculated

ẋ = vl · cos(ψ)
ẏ = vl · sin(ψ)

(3.9)

Finally, the vehicle position in x and y can be expressed as

x =

∫ t

0

ẋdt

y =

∫ t

0

ẏdt

(3.10)

A complete ROS odometry message with pose and twist can now be created, and encoder-
free odometry is achieved. It should be noted that this approach is only as accurate as
the model for longitudinal velocity, and there is also a lack of feedback since the velocity
is calculated from the controller input u. vlidar can be used as a velocity reference, but
unfiltered it is too noisy and inaccurate to function as feedback for f. ex. a PID controller.
The linear velocity output vl has been found to be relatively accurate when doing constant
velocity, but is inaccurate during acceleration, which is probably caused by an inaccurate
model. The IMU does a good job at finding the direction, but drift can be a problem
over time. Another problem with an ESC-based approach is wheel spin, as it will assume
movement when controller input is given regardless of any real movement. The ESC-based
odometry module and the VESC-odometry module from MIT RACECAR (see section
3.1.2) shares some of the above functionality and design and was the inspiration behind
the development. What differs the two is mostly the use of an IMU to retrieve the angular
velocity instead of using the steering angle input. The solution was chosen because the
steering mechanics on the truck model was not very accurate, with a lot of play.

26

3.5 Path Generator

3.5 Path Generator
In order to get the R/C truck to drive autonomously along a predefined path, a path that
the vehicle can follow has to be created. The current pose of the vehicle can be retrieved
from the /scanmatch odom topic that is generated with Hector SLAM, where the x, y-
coordinates and orientation are given. A ROS waypoint logger node has been created, that
can record data for the driven trajectory and then publish the path on the ROS network. An
example of a recorded path can be seen in figure 3.8, where the path is visualized in Rviz.
The path is made up as a sequence of waypoints that consist of the recorded poses. When
the waypoint logger is enabled, a new waypoint is added to the path every time a new pose
is published from the /scanmatch odom topic. The waypoint logger is activated from
the joystick controller during manual operation of the truck, and an operator can create
new tracks in real-time by driving the vehicle along the desired path.

Figure 3.8: Recording a new path.

27

Chapter 3. SLAM-based Path Tracking

3.6 Path Tracking

A control law or tracking method is needed to translate a path into steering and throt-
tle/brake actions, so that the vehicle can navigate the path correctly. Such controller should
also consider the limitations of the vehicle such as axle length and max steering angle.
This section aims to explain two of the most popular path trackers in robotics, namely
Pure Pursuit and Stanley Steering Control, as described in [36].

3.6.1 Simplified Bicycle Model

Most car-like vehicles are using the Ackermann steering geometry model [19]. The Ack-
ermann model works so that the wheel on the side the vehicle is turning to has a smaller
turning radius than the other outer wheel for more traction and less tire slippage while
cornering. The priciple is illustrated in figure 3.9. To do path tracking, a model of the car
is needed. Instead of modeling the vehicle with all four wheels, it is possible to model it
using the Simplified Bicycle Model [27]. Here, the two wheels on each axle are combined
to form a two-wheeled model, much like a bicycle. It is assumed that the car will only
move in a 2D-plane with no tire slippage. This simplification of the kinematics means that
instead of having to control each front wheel individually it is now possible to control with
only one steering output. The Simplified Bicycle Model is supposed to work well in low
speeds with limited lateral acceleration and low steering angle rate.

The geometric relationship of the Simplified Bicycle Model can be written as

δ = arctan

(
L

R

)
(3.11)

where δ is the steering angle of the virtual front wheel, L is the distance between the front
and rear axle, and R is the radius of circle the rear axle will travel with the steering angle
δ, as shown in figure 3.10.

Figure 3.9: Ackermann steering geometry. Ill.: Bromskloss/Wikipedia

28

3.6 Path Tracking

Figure 3.10: Simplified Bicycle Model. Ill.: [36]

Anti-Ackermann Model

The truck model used in this project has an anti-Ackermann steering layout [23], meaning
that the steering rods sits in front of the wheels, opposite of the regular Ackermann model.
This is a common layout in race-cars, but creates a different steering geometry that is
opposite of the regular Ackermann model. This was ignored since the Ackermann model
was converted to the Simplified Bicycle Model, and the car was operated only at lower
speeds. Hence, the inversion of the steering layout was assumed to not have any significant
effect on the driving performance.

3.6.2 Pure Pursuit

Look-ahead

Car

Actual Path

Waypoints

Figure 3.11: Principle of Pure Pursuit.

Pure Pursuit [6] is a popular path tracking algorithm within robotics. It calculates the ap-
propriate curvature and steering angle so that the vehicle is able to move from its current
position to a goal point (look-ahead point) on a reference path, see figure 3.11. The longi-
tudinal velocity is assumed constant, which mean it can be changed at any point. As the
vehicle moves forward, it will also push the goal point forward on the path with a prede-
fined look-ahead distance.

29

Chapter 3. SLAM-based Path Tracking

How the Pure Pursuit algorithm works:

1. Determine the current location of the vehicle.

2. Find the waypoint closest to the vehicle.

3. Find the goal point

4. Transform the goal point to vehicle coordinates.

5. Calculate the curvature and request the vehicle to set the steering to that curvature.

6. Update the vehicles position.

The look-ahead distance can also be set to scale with the velocity of the vehicle. This is
a commonly used method and will ensure less steering noise and more stability in higher
speeds. In figure 3.12, the goal point (gx, gy) is set by the look-ahead distance ld from the
rear axle of the Simplified Bicycle Model to the reference path. The steering angle δ can be
determined by using the angle α between the vehicle heading direction and the direction
to the goal point from the rear axle. To calculate the steering angle, first an expression of
the curvature κ of the circular arc between the rear axle and goal point is found using the
Law of Sines [33].

ld
sin(2α)

=
R

sin(π2 − α)
ld

2sin(α)cos(α)
=

R

cos(α)

ld
sin(α)

= 2R

κ =
2sin(α)

ld

(3.12)

Then, using the Simplified Bicycle Model, the control law for the steering angle δ can
be expressed as

δ = arctan(κL) (3.13)

30

3.6 Path Tracking

Figure 3.12: Pure Pursuit geometry. Ill.: [36]

3.6.3 Stanley Steering Controller

The Stanley Steering controller [35] was used by Stanley (section 3.1.1) in the 2005
DARPA Grand Challenge. The method is supposed to be well suited for higher driv-
ing speeds than Pure Pursuit. The Stanley controller is a non-linear feedback function of
the cross-track error efa, where efa is the distance from the center of the front axle to the
nearest point on the path (Cx, Cy), as shown in figure 3.13. The steering angle δ is equal
to the heading error θe plus the cross-track error angle θd. It differs from Pure Pursuit in
that it also needs the yaw angle of the path point.

First, the heading error θe is expressed as

θe = θp − θv (3.14)

where θp is the yaw angle of the tangent in the nearest path point (Cx, Cy), and θv is the
yaw angle of the vehicle.

Then, the cross-track error angle θd is calculated

θd = arctan

(
k · efa
vx

)
(3.15)

where k is the gain tuning parameter and vx is the longitudinal velocity of the vehicle.

31

Chapter 3. SLAM-based Path Tracking

The control law for the steering angle can now be written as

δ = θe + θd (3.16)

Figure 3.13: Stanley steering geometry. Ill.: Jarrod M. Snider

3.6.4 Finding the Shortest Distance to the Path
In order to navigate correctly, both the Pure Pursuit and the Stanley Steering controller
relies on the shortest distance from the vehicle to the path. The path is made up of an array
of indexed waypoints that are represented as x- and y-positions in a 2D-plane. The nearest
point on the path relative to the vehicle can be found by simple geometry. Calculate the
distance to each point on the path, as seen in equation 3.17, and select the waypoint with
the shortest distance. The formula for calculating the distance is

dx = xvehicle − xwaypoint
dy = yvehicle − ywaypoint
d = |

√
(dx2 + dy2)|

(3.17)

where d is the distance from the vehicle relative to the waypoint.

The method has been extended in the code to include a dynamic look-ahead distance
Ldynamic that can vary with the longitudinal velocity vx of the vehicle, see equation 3.18.
This is used with the Pure Pursuit controller, and is a common method for gaining stability
with higher speeds. The formula for calculating the dynamic look-ahead distance is

Ldynamic = kpp · vx + Llookahead (3.18)

where kpp is the look forward gain, vx is the longitudinal velocity of the vehicle and
Llookahead is the base look-ahead distance.

32

3.7 Dynamic Speed Control

3.7 Dynamic Speed Control
When the autonomous driving mode is engaged the longitudinal velocity of the vehicle vx
is expressed as a function of the steering angle δ. The vehicle can increase its speed when
going in a strait line, and slow down if the steering angle exceeds 0.1 radians, or 5.73 de-
grees, as shown in equation 3.19. This allows for dynamic speed control and can increase
accuracy when following the reference path at higher speeds. There is also a velocity set-
ting for when the charger is detected, to reduce the speed. Note that this method assumes
that the speed is constant and independent of any external forces. In reality the speed will
vary, pending on driving style, surface or surface materials. If an accurate odometry sensor
with high refresh rate was added, this could be used in e.g. a PID controller and the veloc-
ity would be kept constant. Vlidar from section 3.4.2 was tried as a sensor input to a PID
controller in order to control the speed, but was found to be too inaccurate as the output
had to much noise on the readout, and filtering it caused some time delays making the car
’jumpy’. In manual mode the longitudinal velocity is simply controlled by the input from
the left thumbstick of the joystick controller. Another method for velocity control could be
to implement the look-ahead-distance from the Pure Pursuit path tracker controller to al-
low reduction of speed before the turn occurs by looking at the future path in front, instead
of waiting until the vehicle starts to turn. This would allow for higher speeds with even
sharper cornering. Since this is not a high-speed application, the implemented method has
proven to be sufficient.

vx(δ) =

{
Speedstraight for − 0.1 < δ < 0.1

Speedcorner for | ± 0.1| < δ < δmax
(3.19)

3.8 Obstacle Detector
A simple obstacle detector has been implemented in the system, where any object within
a 40◦ field of view in front of the vehicle is detected by the LiDAR. The steering angle
of the vehicle is used to adjust the angle of the field of view. If the LiDAR can detect an
object in the field of view that is closer than 1m, the vehicle will come to a halt. It will
resume when the object is removed. The object has to block a least 3◦ to be concidered an
obstacle. This is to reduce the sensitivity when driving close to tables and chairs, but can
easily be adjusted or turned off, along with the other parameters.

33

Chapter 3. SLAM-based Path Tracking

3.9 Implementation
Figure 3.14 shows how the SLAM path tracker system is connected, from the laser input to
the control of the vehicle. Three different methods for SLAM were tested in this project,
namely Hector SLAM, Gmapping and ORB-SLAM2. The MIT RACECAR particle filter
was also tested as an alternative method for localization. In the end, Hector SLAM proved
to be the best candidate for the system. It does not require odometry to work in contrast
to Gmapping and compared to using the camera-based ORB-SLAM2, Hector SLAM is
easier to use and delivers correct distance measurements. It also has built-in tools for
trajectory tracking and pose estimation, and can easily be tuned. Some problems occurred
when mapping large areas, whereas the SLAM algorithm suddenly would loose track of
where is was relative to the mapped walls and objects. This seemed to be because of the
limited range of the LiDAR, and not a problem with the software itself. When testing
in the NTNU/SINTEF National Smart Grid laboratory the tracking worked very well and
the truck could precisely map the area and track its own location in 2D. By tuning down
the update thresholds for the mapping algorithm in Hector SLAM it also became more
robust when doing quick turns. The implementation of Pure Pursuit and Stanley steering
is based on [34] and [6]. The LiDAR provides distance readings to Hector SLAM and
the obstacle detector. Hector SLAM will then create a map and estimate a position and
orientation in the map. This is then used by the path generator to record the poses of the
truck in order to create a path. The path tracker receives the recorded path and outputs a
steering angle based on the current pose to the steering control on the vehicle. Throttle and
brake is controlled either with the joystick, or the dynamic speed controller. The dynamic
speed controller outputs a velocity command based on the steering angle. The velocity of
the truck is calculated using laser-based odometry from section 3.4.1, but is only used for
display purposes in the GUI (section 6.2), and has not been included here. All the different
odometry methods has been implemented for any later use.

LiDAR SLAM

Joystick Obstacle
detector

Path
generator

Path
tracker

Steering controlThrottle/brake
control

Dynamic speed
controller

Input Perception Path planning

Vehicle control

Figure 3.14: SLAM path tracker system architecture.

34

3.10 Results

3.10 Results

3.10.1 Path Tracker Tuning
The path tracker steering controllers can be tuned by adjusting parameters for wheelbase
length, gain and look-ahead distance. Here, the results of testing different tuning parame-
ters are presented. Hector SLAM with the Hector trajectory server and Rviz was used to
log the results. The wheelbase was measured to 0.28m between the axles.

Pure Pursuit

Pure Pursuit has two tuning parameters except the wheelbase length, namely the look-
ahead distance and the look-forward gain. Increasing the look-ahead distance will gain
stability but it will also tend to smooth out the corners. This can be counteracted by tuning
the look-forward gain or reducing the look-ahead distance. The Pure Pursuit implemented
here uses a dynamic look-ahead distance with gain, that will increase the distance as a
function of the forward velocity. The result of increasing the look-ahead distance can be
seen by comparing figure 3.15 and figure 3.16. The truck is presented as a red arrow, while
the look-ahead point can be seen as the coordinate transform in front. The red path is the
reference, while the truck’s driven trajectory is the blue path. When using a look-ahead
distance of 0.6 m the corners are more precise. Note that there is a small deviation of the
trajectory in figure 3.15 due to the overlapping of the endings of the reference path. Table
3.2 shows an overview of some parameters that proved to be a good compromise between
precision and stability.

Parameter Description Tuned value
kpp look-forward gain 0.8

Llookahead look-ahead distance [m] 0.6

L wheelbase [m] 0.28

Table 3.2: Tuning parameters Pure Pursuit.

35

Chapter 3. SLAM-based Path Tracking

Figure 3.15: Pure Pursuit with 0.6m look-ahead, 0.8 look-forward gain.

Figure 3.16: Pure Pursuit with 1.0m look-ahead, 0.8 look-forward gain.

36

3.10 Results

Stanley Steering

The Stanley Steering controller has only one tuning parameter except the wheelbase length,
namely the cross-track error gain. A high cross-track error gain will lead to overshoot
steering, while it may struggle to follow the path if the cross-track error gain is too low.
Different values for the cross-track error gain were tested, but increasing the gain quickly
led to an unstable behavior of the vehicle. One reason for this could be an inaccurate
steering mechanism on the truck, or a time delay between the control signal and the steer-
ing servo. Table 3.3 shows the parameters that proved to be a good compromise between
precision and stability. The driving behavior for these settings can be seen in figure 3.17
where the speed is set to a constant. The truck is presented as a red arrow. The red path
is the reference, while the truck’s driven trajectory is the blue path. The controller was
precise at low speeds but became unstable and would overshoot when going into the cor-
ners at high speeds, even when adding the dynamic speed controller to lower the cornering
speed. Stanley Steering showed to be very precise, but was not as smooth compared to
Pure Pursuit. This can also be because the path itself has some noise to it, and the Pure
Pursuit controller will smooth it out due to it’s look-ahead point.

Parameter Description Tuned value
kss cross-track error gain 0.1

L wheelbase [m] 0.28

Table 3.3: Tuning parameters Stanley steering controller.

Figure 3.17: Stanley steering with 0.1 cross-track error gain.

37

Chapter 3. SLAM-based Path Tracking

3.10.2 Dynamic Speed Control
As mentioned in section 3.7, dynamic speed control has been implemented to increase the
accuracy of the truck when driving through tight corners. The driving accuracy for both
the Pure Pursuit and the Stanley steering controller were compared when dynamic speed
control was enabled. The algorithm reduces the speed from speedstraight to speedcorner
when the steering angle exceeds 0.1 radians. The path trackers used the same settings as
in table 3.2 and 3.3. Three different speed settings were tested as listed in table 3.4. In
the first test, both speedstraight and speedcorner were the same; 18% of max speed. For
the second test the speed on the straight parts of the track was increased to 21%. For the
third test, the straight speed was set to 27%. For each test the truck (red arrow) would have
to create a new reference path (red line) since changing steering controller or parameters
required the system to be restarted, hence the tracks were not exactly the same but similar.
The blue lines are the driven trajectories of the truck.

Test # Speedstraight [%] Speedcorner [%]
1 18 18

2 21 18

3 27 18

Table 3.4: Dynamic speed control testing parameters.

Test #1

The results of the first test where both parameters were the same can be seen in figure 3.15
and 3.17. The truck is tracking the reference path well, with not much deviation in both
cases, but it has an overall slow pace when going around the track.

Test #2

The results from the second test is shown in figure 3.18 and 3.19. Here, the truck is
speeding up a little bit on the straight parts of the track. This is visible in the plots when
the truck is driving into the corners. When driving out of the corner it will increase its
speed. Pure Pursuit seems to track the reference path much smoother than the Stanley
controller, but the Stanley controller is overall more precise. In the plot of the Stanley
controller one can see that the car overshoots when leaving a corner. This can possibly be
improved by further tuning of the controller.

38

3.10 Results

Figure 3.18: Pure Pursuit with 21% straight speed, 18% cornering speed.

Figure 3.19: Stanley steering with 21% straight speed, 18% cornering speed.

39

Chapter 3. SLAM-based Path Tracking

Test #3

For the third test, the straight speed was increased by 9%. From figure 3.20 and 3.21 one
can see the effect of the increased speed, with much less accurate tracking of the reference
path. The overshoot on the Stanley controller is more visible than in the previous tests,
when coming from a straight section. Also the Pure Pursuit controller struggles a bit to
slow down fast enough.

Figure 3.20: Pure Pursuit with 27% straight speed, 18% cornering speed.

Figure 3.21: Stanley steering with 27% straight speed, 18% cornering speed.

40

Chapter 4
Deep Learning Steering Controller

4.1 Introduction
In recent years artificial intelligence and machine-learning has been one of the key factors
to realizing self-driving cars, with companies like Tesla and Google/Waymo leading the
way. Deep learning – a method that uses multi-layered neural networks – has been widely
used as a method for extracting and interpret information from huge datasets. There are
different methods of machine-learning that can be used to control a self-driving car, e.g.
supervised or unsupervised learning. In this chapter, a form of supervised learning called
behavioral cloning is tested as a way to control the steering angle of the R/C truck model
based on a single camera input. The goal of behavioral cloning is to mimic the behavior
of the data the model has been trained on, for example by logging steering angles from
a human driver while recording camera images to create a dataset, then use the dataset
to train the car controller. Camera images are fed though a convolutional neural network
(CNN) – a deep network that is specifically built for processing image data. At the end
the car should ideally copy the behavior of the human driver by generating a policy with
actions based on the current state and observation. The work presented in this chapter is
based on the DAVE-2 CNN from Nvidia described in [21], and also an article [16] where
an adaptation of this CNN is used to drive a car autonomously on the Udacity self-driving
car simulator [4]. Udacity is an online learning-site that was founded by former Google
and Stanford University self-driving car project lead Sebastian Thrun. In this project the
Udacity simulator was used to test the neural network model under development, before
implementing a version on the real truck. Many people has implemented some version
of this CNN on a simulator before, but the author has not observed it implemented on a
small-scale electric car in real life, although Nvidia had successfully tested its model on a
full-scale gas-powered car.

41

Chapter 4. Deep Learning Steering Controller

4.2 Related Work

4.2.1 Nvidia DAVE-2
DAVE-2 [21] is a well-known deep neural network model for self-driving cars created
by Nvidia back in 2016. It is designed to be an end-to-end learning system, with only
the human steering angle as the training signal and three front-facing cameras as sensor
input. Performance-wise it should lead to better performance than using human-optimized
criteria such as with e.g. lane detection, because it will self-optimize with a minimum
number of steps. DAVE-2 was inspired by the DARPA Autonomous Vehicle (DAVE) [26]
in which an R/C car was trained on hours of human driving. The training data included
video from two cameras coupled with the steering input. Another inspiration for DAVE-2
was the Autonomous Land Vehicle in a Neural Network (ALVINN) system [28], where an
end-to-end neural network was demonstrated on a road-going car. A block diagram of the
training method for DAVE-2 is shown in figure 4.1.

Figure 4.1: Block diagram of the Nvidia CNN training setup. Ill: Nvidia .

Images are fed into a CNN which computes a proposed steering angle. The proposed
steering angle is then compared to the desired steering angle from the human driver, and
the weights of the CNN are adjusted through back propagation. The model was trained
with data where the car was staying within a lane on a road, and the training data was
sampled at 10 frames per second to remove highly similar data input. After training,
DAVE-2 could generate steering angles from a single center camera input image shown in
figure 4.2. The network architecture for DAVE-2 is shown in figure 4.3.

Figure 4.2: Block diagram of the Nvidia CNN steering control from a single camera. Ill: Nvidia

42

4.3 Creating Datasets

Figure 4.3: Nvidia DAVE-2 network architecture. Ill: Nvidia .

4.3 Creating Datasets

In this project, the datasets required for training the model were created in two ways, one
for the simulator and one for the actual truck. Image data and steering angles were logged
to file/disk for later processing. The two setups differed mostly by the number of cameras
used, but the general principles were the same on both platforms, hence the same neural
network was assumed to work for both cases.

4.3.1 Simulator

To test and evaluate the CNN, an open-source Unity-based simulator from Udacity was
used. The Udacity self-driving car simulator [4] (Term 1, Version 2, 2/07/17), shown in
figure 4.4, was built for the Udacity Self-Driving Car Nanodegree [44] to teach students
how to train cars to navigate roads using deep learning. The simulator can output images
from three virtual cameras in front of the car, as well as the steering angle and the speed
of the vehicle. This is similar to the Nvidia DAVE-2 setup. The car can be controlled
manually with a keyboard or mouse in training mode. There is also an autonomous mode
where the car can be controlled by external throttle, brake and steering using an API. This
allows for control via for example a python script running SocketIO and Flask which is
what was used for this project. The term 1, version 2 edition of the simulator has two
tracks, a race circuit and a road circuit.

43

Chapter 4. Deep Learning Steering Controller

Figure 4.4: Screenshot of the road circuit on the Udacity Self-Driving Car simulator.

4.3.2 Simulator Dataset
For logging training data, the simulator was started in training mode and data was recorded
while driving the car manually for about four laps (8 min) on the race circuit using the
built-in data-logger. Images from all three cameras along with the steering angle and
speed of the car were logged. Figure 4.5 shows an example output from each of the three
camera angles. For smooth steering a mouse was used as the steering controller, while the
throttle and brake was controlled from the keyboard. The output was the image files and
a .csv-file containing the steering angle, speed and file-paths, with one line per sample.
The format of this file was: filename-center-img, filename-left-img, filename-right-img,
steering angle, not-used, not-used, speed.

Figure 4.5: Example of image output from the Udacity Self-Driving Car simulator with left, center
and right camera respectively. Images are recorded on the road circuit.

44

4.3 Creating Datasets

4.3.3 Truck Datasets
A test track was made in the NTNU/SINTEF National Smart Grid laboratory (figure 4.6)
using black electrical tape so that the truck could be driven manually with the joystick
controller, while recording data from the controller and the camera. To evaluate the amount
of training data needed, two datasets were recorded from the test track.

• For the first set, the truck was driven for about 3 minutes in each direction for a total
of 6 minutes. The truck was driven carefully so that it was inside the lanes at all
time.

• For the second set, the recorded data was added to the data from the first set. The
truck was driven for 5 minutes in each direction for a total of 10 + 6 = 16 minutes.

Figure 4.6: The test track used for gathering training data.

45

Chapter 4. Deep Learning Steering Controller

4.3.4 Getting Training Data from the Truck
A datalogger was written in Python with OpenCV and ROS to capture images from the
truck’s onboard camera (figure 4.7) and the steering commands from the joystick con-
troller, with a recording rate of 20Hz. The camera images (figure 4.8) were recorded at
340x180 pixels and saved to disk. Logging was only done when the truck was moving
forward to avoid saving empty data. The captured steering data and the imagefile-paths
were written to a .csv-file, so that it could easily be imported into the CNN training script.
The format of the .csv-file was: filename-img, steering angle, with one line per sample.

Figure 4.7: Placement of the Logitech C922 camera.

Figure 4.8: Samples of training data from the camera.

46

4.4 Network Model and Training

4.4 Network Model and Training

4.4.1 Neural Network Model
The convolutional neural network in this project is based on the DAVE-2 model for self-
driving cars, but with some modifications suggested in an article [16] by Matt Harvey,
founder of Coastline Automation, regarding implementation of the model for the Udacity
simulator. The input to the network is an RGB image consisting of a separate layer for
red, green and blue, and the associated steering angle. The input images are normalized
to better fit the steering angle value and is resized to 100x100 pixels. A series of convolu-
tional layers are added before the layers are flattened. Then follows two fully connected
layers with dropout layers between to prevent overfitting. The final layer is the output
layer with a single neuron for the steering command. The network model can be seen in
figure 4.9. It was programmed in Python using Keras on top of the Tensorflow framework
for easy implementation. When training is done, an .h5-file containing the finished model
is generated.

4.4.2 Dataset Augmentation
To maximize the effect of the training data, several methods of dataset augmentations were
used. Dataset augmentation can be seen as a way to get more data out of the same amount
of input by processing the images while training. This can also make the model more
robust to unknown states.

Augmentation methods used on the dataset in this project were

• Randomized image and steering-angle horizontal flipping to vary the amount of left
and right turns in order to avoid any biases.

• Randomized darkening of parts of the images to simulate shadows and dark surfaces.

• Normalization of image pixel values from the default range [0-255] to [±1.0] for the
real truck and [±0.5] for the simulator, to better fit the actual steering angle inputs.

47

Chapter 4. Deep Learning Steering Controller

2D convolution layer 32@3x3, ELU

Input RGB image 3@100x100

Normalization layer

MaxPooling2D

2D convolution layer 32@3x3, ELU

MaxPooling2D

2D convolution layer 32@3x3, ELU

MaxPooling2D

2D convolution layer 64@3x3, ELU

MaxPooling2D

2D convolution layer 128@3x3, ELU

MaxPooling2D

Flatten

Dense layer 1024, ELU

Dropout layer 0.5

Dense layer 512, ELU

Dropout layer 0.5

Dense layer 1, Linear

Steering angle

Figure 4.9: The CNN model.

48

4.4 Network Model and Training

4.4.3 Training
Training the Simulator

The simulator model was trained on the dataset created from driving around the race circuit
in the simulator as explained in section 4.3.2. For the simulator, all three camera outputs
were first used, but tests were also done using only the center camera, since this was
relevant to the truck. With only one camera output, the amount of required logging time
increased significantly, as expected. Training was done by trial-and-error with different
variations of parameters for batch size, epochs and steps per epoch. A batch generator that
splits the dataset into batches was used in order to preserve memory on the system while
training. For the simulator stable results was found using the parameters in table 4.1. The
simulator model was trained on a desktop computer, a Dell Optiplex 9020 with an Intel
Core i7 @ 3.6 GHz x 8, 16GB RAM and without a discrete GPU.

Parameter Value
Batch size 64
Number of epochs 5
Steps per epoch Number of images / Batch size
Input shape 100x100
Optimizer adam
Loss function Mean Squared Error (MSE)
Activation Functions ELU & Linear
Cameras used Left, Right, Center

Table 4.1: CNN training parameters for simulator model.

Training the Truck

The truck model was trained on the Jetson TX2 using the GPU-version of Tensorflow and
similar parameters as the simulator. Two models, one for each dataset (6 min and 16 min
of driving) were created with the parameters found in table 4.2. Figure 4.10 shows an
overview of how the training process works on the truck model. This is similar to the one
used by Nvidia, but with only one camera output used for collecting training data. A plot
of the model loss function with respect to the number of epochs can be seen in figure 4.11,
where the first and second dataset are presented respectively. The best result was obtained
on the second dataset with a loss of 0.0545 after completing 5 epochs.

49

Chapter 4. Deep Learning Steering Controller

Parameter Value
Batch size 32
Number of epochs 5
Steps per epoch Number of images / Batch size
Input shape 100x100
Optimizer adam
Loss function Mean Squared Error (MSE)
Activation Functions ELU & Linear
Cameras used Center

Table 4.2: CNN training parameters for 1/14 truck model.

Desired steering command

Front camera Random flip
and darken CNN -

Back propagation
weight adjustment

Network
computed
steering
command

Error

Figure 4.10: Training setup for the truck model.

Figure 4.11: Model loss vs. number of epochs for the first (left) and second (right) dataset.

50

4.5 Results

4.5 Results

4.5.1 Simulator
The virtual car was trained on the race circuit map in the Udacity self-driving simulator
with a 3-camera setup similar to Nvidia DAVE-2. After completing the training process
the car was set in autonomous mode and a driving script was executed. The script loads
the CNN model from the generated .h5 model-file and receives the current speed and front
camera image from the simulator, as seen in figure 4.12.

Figure 4.12: Output from the center camera image during autonomous driving.

A proportional-controlled throttle command and CNN steering command is returned to
the simulator. With the settings used in table 4.1 the car was able to complete a full lap
autonomously, even handling corners as seen in figure 4.13. A video demonstrating the
performance of the network model can be seen here [42].

Figure 4.13: CNN controlling steering commands on the Udacity simulator.

51

Chapter 4. Deep Learning Steering Controller

4.5.2 Truck
On the truck, the model from each of the two datasets were tested by driving the vehicle
autonomously on the track. The steering control was handled by a custom ROS steering
node that captures images from the front camera with OpenCV and loads them into the
CNN containing the generated .h5 model-file. The CNN then returns a corresponding
steering angle and the steering node publishes it on a ROS topic to the car controller node,
as shown in figure 4.14. This is similar to how DAVE-2 (section 4.2.1) is controlled. The
speed was dynamically controlled as a function of the steering angle, such that it would
slow down a bit in corners and accelerate on straight parts.

Front camera CNN
steering node

Car controller
node

Network
computed
steering
command

Figure 4.14: Using the CNN to output steering commands.

In order to compare the results of the two dataset models, Hector SLAM was used to track
the position of the vehicle while moving (figure 4.15). As can be seen from figure 4.16 and
4.17, the difference between 6 min. and 16 min. of training data does not seem significant,
and it is impressive to see how little data is required for the truck to drive itself. In real life
it was easier to see the difference. The map plots shows the vehicle (red arrow) driving
around the test track multiple rounds (blue lines). On the second dataset the truck seems
somewhat more consistent, and driving in the opposite direction showed that the model
was indeed more robust due to the increased amount of training data, naturally. Testing
was also done on a reworked test track to confirm that the model would generalize, at least
in the same environment as the training data was gathered. This also worked very well.
On narrow corners the truck sometimes lost track of the road since the camera no longer
was able to see the lanes, but this was solved by making the track a bit wider. Overall the
results of the testing was showing that the system was working properly.

Figure 4.15: Comparing CNN models with Hector SLAM.

52

4.5 Results

Figure 4.16: Driving with 6 minutes of training data.

Figure 4.17: Driving with 16 minutes of training data.

53

Chapter 4. Deep Learning Steering Controller

54

Chapter 5
Computer Vision Steering
Controller

5.1 Introduction
Today, many self-driving cars use one or several cameras as one of their main sensory
inputs to build situation awareness. The advantage of using cameras over LiDAR is that
they are better at distinguishing objects and pattern. They are also usually less expensive
and has no moving parts. One use of a camera system is to detect lanes on the road while
driving. Once a lane is detected, a simple controller such as PID can be used to keep the
car in the middle of the lane. Many major automakers such as Volvo and Tesla has imple-
mented some version of such system with less or more self-driving capabilities. The Tesla
autopilot software [43] is an example of a current (2019) state-of-the-art system where a
range of cameras and ultrasonic sensors work together to form a complete understanding
of the environment surrounding the car, where the ultimate goal is to achieve full level-5
autonomy [17]. An illustration of how the car perceives the world though the camera can
be seen in figure 5.1, where the image is split into segments to detect cars, road surfaces
and lanes. This is also known as semantic segmentation [45]. Although the system is
heavily based on supervised deep learning (explored in chapter 4) from millions of driven
miles, the principle of lane detection for control using cameras and computer vision can be
scaled down to achieve a simpler but still functional result. This chapter will explore the
possibility to control the R/C truck using classic computer vision methods with a single
camera in order to achieve path following on a road with visible lanes.

55

Chapter 5. Computer Vision Steering Controller

Figure 5.1: Tesla autopilot lane detection (04/2019). Ill.: [12]

5.2 Lane Keep Assist
The goal of this section is to implement a lane keep assist system by using a steering
controller with lane detection. The system should be able to detect curved lanes and cal-
culate the center position between the lanes in order to create an offset measurement for
the controller.

5.2.1 Lane Detection
In order to do lane detection on curved lanes, an open-source Python script [30] by Vamsi
Ramakrishnan was used as a basis for the implementation. The script calculates the po-
sition and curvature of the lanes, but there were still some adjustments required such as
filtering and platform conversion. The code was modified to support live video from the
camera via OpenCV instead of a video file, and ROS support was added. It also had to be
converted to run on an ARM-based platform such as the Jetson TX2, although the main
development and testing was done on a regular x86-computer with Linux/Ubuntu. The
truck features a single camera with a resolution of up to 1080p, but for efficiency this
was reduced to 640x480. The camera matrix and distortion coefficients from section 2.1.4
were used as camera parameters. As part of the image processing, the image was warped
to get a bird-eye view of the road using the perspective transform [32] function in OpenCV.
The image also had to be filtered in order to separate the lanes from the background. This
can be challenging due to differences in illuminance and ground surface patterns. For this
project black electrical tape was used as lane markers.

56

5.2 Lane Keep Assist

To filter out the background in OpenCV, the following steps were taken:

• Converting the image from RGB color to greyscale.

• Blurring the image with a 5x5 kernel.

• Creating a mask of the pixels with values between 0-110
(Pending on light conditions).

• Perform a bitwise-OR operation on the background/mask to get a binary represen-
tation of the lanes.

In order to detect lanes, the script from Ramakrishnan utilizes blind search, also known as
uninformed search, meaning that it has no additional information about the states beyond
what is provided in the problem definition. Here, the blind search algorithm will search
for white pixels within the binary, filtered image (figure 5.2). The blind search algorithm
can be divided into the following steps:

• Divide the image into n segments along the y-axis.

• Find the peak in each segment by using histograms.

• Validate the peak by comparing it with other/previous segments.

Figure 5.2: Lane detection using histogram.

Once the lanes has been detected, a Polyfit-function creates a polynomial across the de-
tected lane points on each lane. The author has used the coordinates of these points to find
the center point of the lanes, by dividing the distance between them. An interface was then
made to visualize the data. The polynomials are placed on the previously transformed im-
age and then transformed back to it’s original shape using inverse perspective transform.
This is placed as an overlay on top of the original camera image with some added graphics.

57

Chapter 5. Computer Vision Steering Controller

The measured offset between the lane center and the camera center seen in figure 5.3 and
5.4, is published to the ROS network.

Figure 5.3: Using OpenCV for lane detection.

Figure 5.4: Measuring center offset during cornering.

58

5.2 Lane Keep Assist

5.2.2 Steering Controller
Once a measurement for the lane center offset is obtained, this value can then be used to
calculate an error sum in a closed-loop feedback-controller using PID (figure 5.5).

Sum
error Setpoint = 0 Steering controller

(PID) Truck

Lane center offset
measurement

Position

-

+

Figure 5.5: Negative feedback-loop for steering control.

PID is a common method of controlling a process by using measurements from a sensor
(camera) and is used in varies applications. The goal of the controller is to reach a defined
setpoint value by correcting for offset error. A PID-controller consist of three parts, the
proportional (P), the integral (I) and the derivative (D). It uses a measurement error e(t)
to control a process, in this case the R/C truck. e(t) is calculated between the camera
center point and the lane center point.

Equations for the PID-controller are the following:

P = Kpe(t) (5.1)

I = Ki

∫ t

0

e(t)dt (5.2)

D = Kd
de(t)

dt
(5.3)

where Kp, Ki and Kd are the tuning parameters for the controller. For tuning of the con-
troller, a method like Ziegler-Nichols [18] can be used.

In this case the desired setpoint is set to 0 as we want the car to turn toward the center
of the lane. If the center offset error increases, so will the amount of steering angle and the
vehicle will self-correct.

59

Chapter 5. Computer Vision Steering Controller

5.3 Results

5.3.1 Performance
The computer vision method for detecting lanes was developed using Python on a x86-
desktop computer running Ubuntu 16.04 with specs; IntelCore i7 @ 3.6 GHz x 8, 16GB
RAM, AMD OLAND GPU. The Logitech C922 camera was connected to the computer
via USB, but still mounted on the truck. During testing the system ran fine, with no
major time delays. A demonstration of the lane detector running on the host computer
can be seen here [41]. A P-controller was implemented on the truck, using the center
offset measurement from the lane detector as error. The output from the lane detector was
sent to the truck via WiFi/ROS from the desktop computer. Unfortunately, when trying
to run the lane detector on the Jetson TX2, it was clear that the hardware was not up to
the task with this kind of heavy image processing in Python. The system would work, but
with delays of up to 1 second it made the truck not able to react in time to steer through
the path. The OpenCV library installed on the Jetson has support for CUDA to enable
hardware acceleration, but for the moment when this report was written, this was currently
only supported in C++. A solution would be to rewrite the Python code into C++, to make
it run faster or replace the Jetson with a faster computer.

60

Chapter 6
Integration with Wireless Inductive
Charging

6.1 Onboard Charger Communication
The charger system on the truck is connected to the Jetson TX2 via a CAN-bus connector,
utilizing the can0 interface, see figure 6.1. The main purpose for this communication is
to monitor energy usage and charging current in real-time, and detect whether the charger
system is active. An adapter for the CAN-bus transceiver was made in order to connect
the Jetson and the charger, shown in figure 6.2. The custom adapter is mounted in the J26
socket on the Jetson. The twisted wire is connected to the onboard charging system. A
ROS node can charger node has been written to be able to receive CAN messages
from the charger, and distribute them on the ROS network via the /CAN bus subtopics.
The node is using the python-can library and the SocketCAN interface module to enable
support for CAN in Python. The hexadecimal values of the CAN messages are converted
to a ROS message format (Int64MultiArray) with message id and data as first and second
field respectively. The port was configured to communicate at 1 Mbps, see appendix. A
graphical interface (section 6.2) created for this project, has been used for easy monitoring
and display of the data during demonstrations of the system.

Nvidia
Jetson TX2

CAN
Transciever

Charger
system

CANH

CANL

TX (PIN7)

RX (PIN5)

Figure 6.1: Block diagram of the CAN communication.

61

Chapter 6. Integration with Wireless Inductive Charging

Figure 6.2: CAN-bus transceiver adapter.

6.2 Graphical User-Interface
A stand-alone GUI, shown in figure 6.3, was made with Python, Tkinter, Pillow and ROS
to show current states of the vehicle. Tkinter is the standard graphical user-interface pack-
age in Python. The GUI is used to present data in a more user-friendly way. It pulls data
from the relevant ROS topics, such as driving mode, speed and button states, gear and
dead-switch status. But most importantly it shows the current amount of charge when
driving across the induction coils, indicated by a moving needle. A video demonstration
of the GUI is posted here [40]. All graphics were made from scratch in Adobe Photoshop.

Figure 6.3: GUI made with Tkinter.

62

6.3 Charging Area Detection using ArUco

6.3 Charging Area Detection using ArUco
The onboard charging system requires extra energy to operate and is powered by a separate
battery in the trailer. To be able to save energy when the charger is not active, a system
for detecting the charging area using computer vision has been created. This makes auto-
matically turning on and off the onboard charging system possible, by for example using
an electronic power switch. Other uses for this system would be to switch the steering
controller on the truck model when passing the charging area, from passive path following
to optimal-charge path following described in section 7.7. The created system is based on
detecting ArUco markers using computer vision. An ArUco marker is a binary 2D barcode
often used in augmented reality and robotics. The marker corresponds to an identifier in
form of a single number. A detected marker can be seen in figure 6.4. This project utilizes
the ArUco library in OpenCV to generate and detect markers. The detector is implemented
with ROS so that it will publish a binary number on the ROS network when a marker is
detected, based on the identifier. The markers with id 1 and 2 are corresponding to charger
area detection true or false respectively. It will also detect the position of the corners of
the marker, so that the detector can trigger on a specific location inside the camera window
frame or on a set size of the marker. This can be useful if the camera is tilted upward in
such way that there is a large forward line-of-sight, to filter out distant markers. A video
demonstration of the system is posted on [37] and [38].

Figure 6.4: Using OpenCV to detect an ArUco marker in real-time.

63

Chapter 6. Integration with Wireless Inductive Charging

6.4 Results
Here, the results of driving on a path containing the wireless charger is presented. A path
was created with the SLAM- and path tracking approach from chapter 3. All data/topics
were saved to a rosbag and resampled to 10Hz with a custom Python resampling script. In
figure 6.5 the receiving current from the charger is plotted as a function of the position of
the R/C truck during three laps. The size of the circles correspond to the amount of charge
the truck receives. Two distinct areas shows where the charging coils are placed along the
path. There is some noise from the onboard charger system, so small current values are
visible even when the truck is not driving across the charger.

Figure 6.5: Charge current vs. position.

In figure 6.6 three states of the R/C truck’s battery is plotted, namely the current consump-
tion, the battery voltage and the charge current. The truck was driven for three rounds,
hence there are three spiking areas in the plot. One for each round when the charger
was passed. One can observe that charge is received from each of the two coils, with the
inversion of the current consumption and a temporary increase in battery voltage. The am-
plitude of the current consumption and charge current varies when the truck is driving over
the charging area, since the transmitted power is depending on the position. The LiDAR-
based positioning and tracking system is not perfect and the vehicle is driven manually
when a path is made, making it hard to optimize the power transfer. A method for optimal
placement of the truck as a function of the charge value should be developed in the future
in order to obtain optimal charging conditions. The average time taken to run across one
induction coil was measured to about 1.3 second (An average of 13 samples at 10Hz). It
is noted that the overall effect of driving across the charger at this speed is not enough to
increase the amount of energy stored in the battery by any significance.

64

6.4 Results

This will make the vehicle eventually run out of energy if kept driving for too long. A
solution would of course be to extend the charging area with more coils or to stop or slow
down the vehicle when an induction coil is passed.

Figure 6.6: Battery states plotted with a 10Hz sampling-rate.

65

Chapter 6. Integration with Wireless Inductive Charging

66

Chapter 7
Discussion

This chapter contains discussions regarding the results found in the previous chapters.
Also general improvements of the truck’s autonomous system are discussed.

7.1 Hardware
All hardware was provided by SINTEF Energy, and was ordered before the project was
started. The author chose the specs of the hardware, except the truck itself which was
already in use at SINTEF for manual demonstrations of the dynamic inductive charging
system. This meant that the hardware specs were set from the start, so the project had to
be developed under these restrictions. Some limitations were observed during the devel-
opment regarding the hardware specs. The truck had low abilities for precision steering
because of severe front axle play, but it would still work with the created steering con-
trollers. In the future a more precise driving platform would probably be to prefer. Re-
garding the sensor systems and computing units, some bottlenecks were also discovered.
The RPLIDAR is a low-cost LiDAR with limited range. During testing in long corridors
and large open areas without distinct features the SLAM system would sometimes loose
track of the truck’s position and orientation, hence not being able to follow the path. This
was somewhat compensated for by tuning down the update threshold of the mapping in
Hector SLAM, such that it was more robust to rapid changes in orientation. But it still
struggles in large areas where walls and objects become out of range. Fortunately, most
of the testing has been in the National Smart Grid laboratory where the wall- and object
distances worked very well with the RPLIDAR, and this did not turn out to be a big prob-
lem. It is still important to be aware of these limitations, and a better LiDAR could be
considered. The computer chosen for the project was the Nvidia Jetson TX2 due to its
high performance pr dollar. It is also a preferred hardware platform for lower-end robotics
and machine-learning, and has strong community support. Also, running an ARM version
of Ubuntu makes the integration easy to work with. It is not the most powerful com-
puter though, which was noticed when trying to run un-accelerated computer vision with
Python.

67

Chapter 7. Discussion

But this can be improved greatly by utilizing CUDA-optimized compiled code like C++.
For both SLAM and machine-learning the Jetson TX2 performed well.

7.2 Localization Methods
Different methods for localization were tested, namely Hector SLAM, Gmapping, the MIT
RACECAR particle filter, and ORB-SLAM2. Particle filters require a pre-mapped area to
work, so one would still need to map the area with SLAM first. The benefit with particle
filters is less computational cost when driving, since the mapping is already done. It only
tries to relocate itself on the map. But this leads to an extra step in order to drive the
truck, and a new map has to be created and saved for every new environment the truck
encounters. MIT uses this filter on their RACECAR platform, but this is set in the same,
constant environment. ORB-SLAM2 seemed to work fine, but was running slow on the
Jetson. It had good tracking and pose estimation, but was ditched in favor of LiDAR-
based SLAM. It would also have been difficult to estimate true scale from the monocular
camera. Both Gmapping and Hector SLAM were considered, mostly because Gmapping
is the standard SLAM mapping method in the ROS navigation package. But in contrast to
Gmapping, Hector SLAM does not require odometry, which the truck did not have. Some
attempts were made to make an odometry module, and these would work to some degree.
But they also weren’t as precise as needed, hence Hector SLAM proved to be the preferred
method.

7.3 Path Tracking Methods
Two path tracking methods were tested and compared, Pure Pursuit and Stanley Steering.
It was concluded that the final path tracking method for the truck, when in SLAM mode,
should be to use the Pure Pursuit path tracker with the parameters and dynamic speed
settings from test 1 (figure 3.18). This seemed to be the best compromise between speed
and accuracy, especially when the charger platform was included along the path. Pure
Pursuit also proved to be more stable and smoother than the Stanley Steering controller,
with simpler tuning to get good results.

68

7.4 Comparison of Methods for Path Following

7.4 Comparison of Methods for Path Following
Three different methods for autonomous path following were proposed throughout this
report. Each method has it’s own strengths and weaknesses. Some of these are listed
below:

SLAM-based Path Tracking

+ Does not require a track

+ Precise

+ Easy to make new paths

- Can loose track of pose in feature-less hallways or large areas

Deep Learning Steering Controller

+ Works well in large, open areas

+ Can be adapted to different areas through training

- Requires a track

- Requires training

- Only as precise as the human driver

Computer Vision Steering Controller

+ Works well in large, open areas

+ Does not require training

- Requires a track

- Not as robust as AI

- Can be hard to adapted to different areas (light conditions etc.)

- Computationally expensive

7.5 Improved Obstacle Detection
To improve the obstacle detection, a convolutional neural network like YOLOv3 [31] (You
Only Look Once) could be implemented. This would add the ability to recognize people
and a range of different objects instead of just measuring the distance to the objects in
front. Implementing YOLO would probably require a stronger computer than the TX2,
since it will currently only run at about 3 fps. An example of YOLOv3 running on the
Jetson TX2 can be seen in figure 7.1. Note the high GPU usage. The network can be

69

Chapter 7. Discussion

trained on custom datasets, and therefore also be used to detect special objects, much like
the ArUco detector tested in this project. It could also be possible to detect objects for
relative positioning of the truck in respect to for example the wireless charger platform.

Figure 7.1: Object detection with YOLOv3 on TX2. Ill.: JetsonHacks/YouTube.

7.6 ArUco Detection
For this project, an ArUco detector was implement as described in section 6.3, to detect
the charging area. When trying to do marker detection during fast driving and cornering
especially, one quickly recognizes the need for a global shutter camera or faster process-
ing speed than what is available on the Jetson TX2. As mentioned earlier in the report
the Logitech C922 is a rolling shutter camera meaning that the image can refresh before
it is complete. This can lead to tearing in the image, hence making detection difficult.
Fast movement can also cause motion blur. This has been tried compensated by reducing
the frame rate of the camera input, to lessen the load on the processor. Auto focus and
auto exposure is another problem that has been looked into, but no solution for disabling
these features has been found when running on an ARM-based solution such as the Jetson
TX2. Note that it is possible to disable both features when running on a regular x86-based
platform.

70

7.7 Optimal Positioning during charging

7.7 Optimal Positioning during charging
In this project the vehicle is not actively detecting the wireless charger, and it will only
follow the current path independently of the power delivery from the charger coils. In order
to maximize efficiency, the car should position itself in the most optimal spot available
while driving across the coils. A closed-loop feedback controller that could ensure optimal
charge is proposed in figure 7.2.

Sum
errorSetpoint Steering

controller (PID) Truck
Position

Power
measurement

Steering
angle

-

+

Figure 7.2: Feedback-loop based on power measurement.

This is based on a PID-controller that will use power measurements as the sensor input
to calculate the positioning error offset of the truck. The controller will output a steering
angle to correct the position of the vehicle for maximum charge. Currently, the truck has
only one charging coil with an attached amp/voltmeter that can be used for measuring.
This can make an implementation difficult, since there is no way to tell what direction the
vehicle is heading when the error increases/decreases, and therefore not knowing which
way to turn the steering wheel to correct the error. If possible, an array of smaller coils with
individual input power measurement would be able to detect the direction by combining
the measurement values. Using an example of four individual coils mounted from left to
right in a straight line beneath the vehicle (figure 7.3), the two coils on the left would give
a positive value while the two on the right would give a negative value. Then, the optimal
path would be where the combined measured value is zero. Other, similar approaches
can include computer vision methods as described in chapter 5 to detect lanes across the
charging area, or hall effect sensors to detect a magnetic field across multiple sensors.
These are both methods that would scale well if implemented on larger moving vehicles,
but would of course require extra features such as lane markers or magnets to function.
NFC or RFID would also be suitable sensors, at least on a small-scale model such as in
this project, since they also can be used as distance monitors.

71

Chapter 7. Discussion

Truck

Coils

Optimal
charging
area

Figure 7.3: Optimal line-following based on power measurements.

72

Chapter 8
Conclusion and Outlook

This chapter contains the conclusion of the work done for this thesis, and also some advice
on future work that could further improve the system.

8.1 Conclusions
The goal of this thesis was to propose methods for creating and implementing a self-
driving system for a small-scale truck model. The system should be able to follow a path
that included a wireless dynamic charger. Three different methods were implemented and
tested. Both the SLAM- and AI-based methods worked very well, with different strengths
and weaknesses. The pure computer vision-based method showed promises during test-
ing. The OpenCV lane tracking worked well in optimal conditions. But especially when
implemented in Python on the Jetson TX2 this method was very hardware demanding,
and also dynamic adaption to different environments and light conditions proved to be
difficult. The method would benefit from a compiled C++ implementation to speed up
the algorithms and make use of the hardware acceleration that comes with CUDA. For
now, this was not included as a usable method in the final system, and better results were
obtained with the deep learning method. Regarding the SLAM-method this does not re-
quire a track in contrast to the camera-based methods, but it needs to have a pre-recorded
path to be able to drive, hence a path generator/recorder had to be made. Some different
SLAM-methods were reviewed, and Hector SLAM was chosen as the preferred method to
gain vehicle pose and mapping due to not needing odometry to function. The combination
of SLAM and a path tracker like Pure Pursuit is a very robust and precise solution as long
as the LiDAR is able to detect static references like walls or objects in the surrounding
environment. Pure Pursuit was also the algorithm that was chosen as the preferred path
tracking method in the final version of the software. It provided smooth steering control
and easy tuning. There were some limitations discovered regarding the range, rate and
angular resolution of the RPlidar A8M8. But the National Smart Grid lab environment,
where most of the testing was done, was small enough that this did not cause any concern.
Still, the author would recommend an upgrade to the LiDAR if an even more robust sys-

73

Chapter 8. Conclusion and Outlook

tem is required. The final method, based on deep learning with a CNN does not need a
pre-recorded path like the SLAM-method, but it needs a visible track. This makes it a bit
less flexible than the SLAM-method since a new track has to be made if one is to move the
system to a different location. The method can easily be adapted to different conditions
and tracks though training, but since the method is based on supervised machine-learning
the precision depends on the quality of the training data. Still, with minimal amounts of
training data the truck was able to produce some impressive results of relating the cam-
era input to a steering output. The neural network was based on the one used in Nvidia’s
DAVE-2 self-driving car, which had been modified to work on a car-simulator/video game.
This project shows that the network could be transferred to a real-life vehicle by providing
new training data and a different set of inputs and outputs. The main drawback of this
method is the dependency of the camera view, but this can be solved with better camera
placement, a wider lens or by using multiple cameras. The second part of the project was
to integrate the wireless charging system that already had been mounted on the car. This
was done in order to monitor the different states of the battery. CAN-bus and ROS worked
as a bridge between the two systems after adding a transceiver on a custom circuit board
to the TX2. By integrating the charger system with ROS it was also easy to record and log
data for plotting and analysis. A GUI was made to present the data on a TV-screen during
demonstrations. The software stack was mainly based on ROS, OpenCV and Python in
an embedded Linux environment. Although learning ROS can be a steep learning-curve
for newcomers, it gives the user a wide variety of tools that makes module-based develop-
ment, sensor integration and communication easier. There is also a large community for
support. Overall, the project has demonstrated a working small-scale self-driving truck
with integrated wireless dynamic charging. A video demonstrating the final system can be
viewed here [39].

8.2 Outlook
Although the system is in a fully functional and working condition, some improvements
can still be made. This is mostly regarding the positioning of the truck while driving
across the wireless charging setup. This currently depends on the positioning from the
SLAM system, and not the placement of the charger itself. There are many approaches
that can be investigated to optimize the placement during charging, with some methods
mentioned in section 7.7. Since the truck is built for live demonstration purposes it would
also be nice to have a more intelligent obstacle avoidance system than the simple start-stop
functionality currently implemented. The sensor package can also be upgraded with some
kind of odometry based on wheel-encoders or a stereo-camera to test more methods for
estimating the pose in addition to only using a LiDAR. If further investigation is wanted
regarding the computer vision steering controller, this should be converted to C++ to utilize
the OpenCV CUDA-functionality that does not yet exist on Python in the moment of
writing. Alternatively, a more powerful computing unit can be recommended.

74

Bibliography

[1] Abhishek Agarwal, Ariel Anders, A. F.-k. S. K. T. H., 2019. mit-racecar.
URL https://github.com/mit-racecar

[2] Alistair Charlton, T., 04 2018. Wireless electric vehicle charging explained.
URL https://www.techradar.com/news/wireless-electric-
vehicle-charging

[3] Bloesch, M., Burri, M., Omari, S., Hutter, M., Siegwart, R., 2017. Iterated extended
kalman filter based visual-inertial odometry using direct photometric feedback. The
International Journal of Robotics Research 36 (10), 1053–1072.
URL https://doi.org/10.1177/0278364917728574

[4] Brown, A., 2017. Udacity self-driving car simulator.
URL https://github.com/udacity/self-driving-car-sim

[5] Corey Walsh, S. K., 2017. Cddt: Fast approximate 2d ray casting for accelerated
localization abs/1705.01167.
URL http://arxiv.org/abs/1705.01167

[6] Coulter, R. C., Januar 1992. Implementation of the pure pursuit path tracking algo-
rithm. Technical report, Carnegie Mellon University.
URL https://tinyurl.com/y3797vsk

[7] Elvestuen, O., 07 2018. Norway’s low emissions policy.
URL https://www.regjeringen.no/en/aktuelt/norways-low-
emissions-strategy/id2607245/

[8] Fortum, 2019. Fortum bygger verdens første traadløse hurtigladestasjoner for el-
taxier.
URL https://tinyurl.com/y3hjjyug

[9] Fox, D., 1998. Kld-sampling: Adaptive particle filters. Technical report, University
of Washington.

75

https://github.com/mit-racecar
https://www.techradar.com/news/wireless-electric-vehicle-charging
https://www.techradar.com/news/wireless-electric-vehicle-charging
https://doi.org/10.1177/0278364917728574
https://github.com/udacity/self-driving-car-sim
http://arxiv.org/abs/1705.01167
https://tinyurl.com/y3797vsk
https://www.regjeringen.no/en/aktuelt/norways-low-emissions-strategy/id2607245/
https://www.regjeringen.no/en/aktuelt/norways-low-emissions-strategy/id2607245/
https://tinyurl.com/y3hjjyug

[10] Fusiello, A., 2019. Elements of geometric computer vision.
URL http://homepages.inf.ed.ac.uk/rbf/CVonline/
LOCAL COPIES/FUSIELLO4/tutorial.html

[11] Giorgio Grisetti, C. S., Burgard, W., 2007. Improved techniques for grid mapping
with rao-blackwellized particle filters. IEEE Transactions on Robotics 23, 34–46.

[12] Greentheonly, 09 2018. Paris streets in the eyes of tesla autopilot.
URL https://www.youtube.com/watch?v= 1MHGUC BzQ

[13] Guidi, G., 2018. Small-scale model of inductive charging system for long-haul
trucks. Technical report, SINTEF Energy Research.
URL https://tinyurl.com/y4sbty3t

[14] Guidi, G., Suul, J. A., Jenset, F., Sorfonn, I., Sep. 2017. Wireless charging for ships:
High-power inductive charging for battery electric and plug-in hybrid vessels. IEEE
Electrification Magazine 5 (3), 22–32.

[15] H. Durrant-Whyte, T. B., 2006. Simultaneous localization and mapping: part i. IEEE
Robotics & Automation Magazine 13 (2), 99–110.

[16] Harvey, M., 2017. Training a deep learning model to steer a car in 99 lines of code.
URL https://tinyurl.com/ycmcjg28

[17] Isabel Harner, i., 10 2017. The 5 autonomous driving levels explained.
URL https://www.iotforall.com/5-autonomous-driving-
levels-explained/

[18] J.G. Ziegler, N. B. N., 1942. Optimum settings for automatic controllers. Transac-
tions of the ASME, 759768.

[19] King-Hele, D., 2002. Erasmus darwin’s improved design for steering carriages–and
cars. Notes and Records of the Royal Society of London 56 (1), 41–62.
URL http://www.jstor.org/stable/532121

[20] Kohlbrecher, S., Meyer, J., von Stryk, O., Klingauf, U., November 2011. A flexible
and scalable slam system with full 3d motion estimation. In: Proc. IEEE International
Symposium on Safety, Security and Rescue Robotics (SSRR). IEEE.

[21] Mariusz Bojarski, Beat Flepp, U. M.-D. D. T. P. G. J. Z. D. D. L. D. J. X. Z. B. F. M.
M. J. Z. K. Z., 2016. End to end learning for self-driving cars.
URL https://arxiv.org/pdf/1604.07316v1.pdf

[22] Matthew O’Kelly, Dr. Madhur Behl, V. S. D. H. A. L. W. P. N. D. R. M., 2019.
F1tenth.
URL http://f1tenth.org

[23] Meywerk, M., 2015. Vehicle Dynamics. Automotive Series - Wiley. Wiley.
URL https://books.google.no/books?id=VTzODQAAQBAJ

76

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/FUSIELLO4/tutorial.html
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/FUSIELLO4/tutorial.html
https://www.youtube.com/watch?v=_1MHGUC_BzQ
https://tinyurl.com/y4sbty3t
https://tinyurl.com/ycmcjg28
https://www.iotforall.com/5-autonomous-driving-levels-explained/
https://www.iotforall.com/5-autonomous-driving-levels-explained/
http://www.jstor.org/stable/532121
https://arxiv.org/pdf/1604.07316v1.pdf
http://f1tenth.org
https://books.google.no/books?id=VTzODQAAQBAJ

[24] Morgan Quigley, Brian Gerkey, K. C. J. F. T. F. J. L. E. B. R. W. A. N., 2009. Ros:
an open-source robot operating system. ICRA Workshop on Open Source Software.

[25] Mur-Artal, Raúl, M. J. M. M., Tardós, J. D., 2015. ORB-SLAM: a versatile and
accurate monocular SLAM system. IEEE Transactions on Robotics 31 (5), 1147–
1163.

[26] Net-Scale Technologies, I., 7 2004. Autonomous off-road vehicle control using end-
to-end learning. Final technical report.
URL http://net-scale.com/doc/net-scale-dave-report.pdf

[27] Philip Polack, Florent Altch, B. D.-N. A. D. L. F., 06 2017. The kinematic bicycle
model: a consistent model for planning feasible trajectories for autonomous vehi-
cles?

[28] Pomerleau, D. A., 1995. Alvinn, an autonomous land vehicle in a neural network.
Technical report, Carnegie Mellon University.
URL https://tinyurl.com/yyw6qkaz

[29] RACECAR, M., 2019. Racecar.
URL https://mit-racecar.github.io

[30] Ramakrishnan, V., 09 2017. Lane identification system for camera based systems.
URL https://github.com/vamsiramakrishnan/
AdvancedLaneLines

[31] Redmon, J., Farhadi, A., 2018. Yolov3: An incremental improvement. CoRR
abs/1804.02767.
URL http://arxiv.org/abs/1804.02767

[32] Rosebrock, A., 08 2014. 4 point opencv getperspective transform example.
URL https://tinyurl.com/ydbnn8tx

[33] Russell, R. A., 2019. Generalized Law of Sines from mathworld–a wolfram web
resource, created by eric w. weisstein.
URL http://mathworld.wolfram.com/GeneralizedLawofSines.html

[34] Sakai, A., Ingram, D., Dinius, J., Chawla, K., Raffin, A., Paques, A., 2018. Python-
robotics: a python code collection of robotics algorithms.

[35] Sebastian Thrun, Mike Montemerlo, H. D.-D. S. A. A. J. D. P. F. J. G. M. H. G.
H. K. L. C. O. M. P. V. P. P. S., 2006. Stanley: The robot that won the darpa grand
challenge. Journal of Field Robotics 23 (9), 661–692.

[36] Snider, J. M., 02 2009. Automatic steering methods for autonomous automobile path
tracking. Technical report, Carnegie Mellon University.
URL https://www.ri.cmu.edu/pub files/2009/2/
Automatic Steering Methods for Autonomous Automobile Path Tracking.pdf

[37] Stranden, J. E., 2019. Aruco marker detector - sintef r/c truck.
URL https://www.youtube.com/watch?v=q0i1uxSa3Lc

77

http://net-scale.com/doc/net-scale-dave-report.pdf
https://tinyurl.com/yyw6qkaz
https://mit-racecar.github.io
https://github.com/vamsiramakrishnan/AdvancedLaneLines
https://github.com/vamsiramakrishnan/AdvancedLaneLines
http://arxiv.org/abs/1804.02767
https://tinyurl.com/ydbnn8tx
http://mathworld.wolfram.com/GeneralizedLawofSines.html
https://www.ri.cmu.edu/pub_files/2009/2/Automatic_Steering_Methods_for_Autonomous_Automobile_Path_Tracking.pdf
https://www.ri.cmu.edu/pub_files/2009/2/Automatic_Steering_Methods_for_Autonomous_Automobile_Path_Tracking.pdf
https://www.youtube.com/watch?v=q0i1uxSa3Lc

[38] Stranden, J. E., 2019. Aruco marker detector, camera view - sintef r/c truck.
URL https://www.youtube.com/watch?v=knDvOXJkvMM

[39] Stranden, J. E., 2019. Demonstration video, full system - sintef r/c truck.
URL https://www.youtube.com/watch?v=N L3MuPEHa8

[40] Stranden, J. E., 2019. Graphical user-interface - sintef r/c truck.
URL https://www.youtube.com/watch?v=Jf4LbMbmYdw

[41] Stranden, J. E., 2019. Lane offset detector - sintef r/c truck.
URL https://www.youtube.com/watch?v=ZcOG-n89rWU

[42] Stranden, J. E., 2019. Udacity self-driving car simulator, neural network perfor-
mance.
URL https://www.youtube.com/watch?v=fdha7VQqisE

[43] Tesla, I., 2019. Model 3.
URL https://www.tesla.com/model3

[44] Thrun, S., 2017. Self driving car engineer nanodegree.
URL https://www.udacity.com/course/self-driving-car-
engineer-nanodegree--nd013

[45] Wang, T., 2019. Semantic segmentation. University Lecture.
URL http://www.cs.toronto.edu/˜tingwuwang/
semantic segmentation.pdf

78

https://www.youtube.com/watch?v=knDvOXJkvMM
https://www.youtube.com/watch?v=N_L3MuPEHa8
https://www.youtube.com/watch?v=Jf4LbMbmYdw
https://www.youtube.com/watch?v=ZcOG-n89rWU
https://www.youtube.com/watch?v=fdha7VQqisE
https://www.tesla.com/model3
https://www.udacity.com/course/self-driving-car-engineer-nanodegree--nd013
https://www.udacity.com/course/self-driving-car-engineer-nanodegree--nd013
http://www.cs.toronto.edu/~tingwuwang/semantic_segmentation.pdf
http://www.cs.toronto.edu/~tingwuwang/semantic_segmentation.pdf

Appendix

8.3 Getting Started
This section describes how to get started with using the truck. There are no special re-
quirements regarding the host computer to start the truck except an SSH interface, but for
full visualization Ubuntu, ROS and the desktop GUI node are required. The system has
only been tested with Ubuntu 16.04 LTS and ROS Kinetic.

Figure 8.1: Autonomous driving at the SINTEF Smartgrid Lab.

8.3.1 ROS Remote Network Setup
Optional: These steps are not required if visualization is not needed. In order to
subscribe to the relevant ROS topics to run visualizations with the custom desktop GUI or
Rviz, the host computer/laptop needs to connect to the ROS network remotely. To be able
to connect to the ROS master on the truck via WiFi the computer needs to be configured.

1. Install Ubuntu with ROS on the desktop or laptop.

2. Open the hidden file /.bashrc in the Home-folder (ctrl + h to show hidden files).

3. Add the following to the bottom of the /.bashrc-file, remember to change the IP
adress (f.ex. 10.42.0.170).
export ROS MASTER URI=http://10.42.0.1:11311
export ROS IP=<YOUR IP HERE>

4. Save the file and close any open terminal windows.

79

8.3.2 Connecting to the Truck
1. Plug in the power sources and connect all wires, then power up the truck (on/off-

switch) and the Jetson TX2 by pressing the power button (see figure 8.2).

2. Wait a bit until the Jetson has booted, then connect to the WiFi hotspot set up by the
Jetson named Sintef truck

3. The WiFi password is JetsonTX2

4. Log in by typing ssh nvidia@10.42.0.1 in the terminal.

5. The password is nvidia

Figure 8.2: Placement of the power button on the Jetson TX2.

80

8.3.3 Launching the Truck
1. The truck can be launched from a single file in the Home-folder of the Jetson. Start

the truck by typing ./ros startup.sh in the terminal window after you have
logged in (Alternatively, type roslaunch car cmd run.launch).

2. Push the center button on the joystick controller with the Logitech logo to wake up
and connect the joystick.

3. For visualization, start Rviz (figure 8.3) by typing rviz in a new local terminal
window. This requires ROS on the host computer.

4. After installing the car gui node, the graphical interface can be accessed by the
following command on the host computer: rosrun car gui car gui.py

5. Customization and overview of the ROS startup nodes can be done in the launch file
called run.launch in the nvidia ws/src/car cmd/launch folder.

Figure 8.3: Trajectory tracking in Rviz.

8.3.4 Shutting down
To shut down the car, press ctrl + c to abort the script, and then type sudo shutdown now

in the terminal. Do not plug out the power directly without shutting down properly,
as this may cause harm to the system.

81

8.3.5 Joystick Controls
This is an overview of the joystick control functions and driving modes, seen in figure 8.4
for reference.

Dead switch trigger (RB) +
Dead switch lock on/off (RT)

Record/Save new path
(Only in manual mode)

Path tracker
mode

Steering
(Left/Right)

Throttle
(Forward/Backward)

Gear
select

(Up/Down)

AI/Lane
follow mode

Manual
mode

Figure 8.4: Overview of the joystick controls.

Dead Switch

In order to drive the truck, the dead switch button (RB) has to be kept pushed down. This is
a safety measurement. Dead switch requirement can be disabled by pressing and releasing
the RT-trigger on the joystick controller. This will lock the dead switch in the ’On’ position
so there is no need to hold down the dead switch button (RB). Push the RT-trigger again
to go back to normal dead switch mode.

Manual mode

This mode is used to drive the truck manually with the joystick controller. The throttle
is controlled with the left joystick, while steering is handled by the right joystick. Gears
(1-2-3) can be shifted by pressing up and down on the D-pad. The mode is indicated by
green solid lights.

Record a new path

Manual mode is also used to record a new path for the path tracker mode to follow. When
in manual mode, push the blue X-button to start recording a new path, then drive the
desired trajectory. Push the X-button again to save the path. The path can be displayed in
Rviz by subscribing to the topic /wp path. The mode is indicated by blue solid lights.

82

Path tracker mode

Path tracker mode is using the Pure Pursuit path tracker as a steering controller to follow
the recorded path. The LiDAR is used for positioning, and the truck will drive to the
nearest point on the path. It has dynamic speed control based on the steering angle so it
will slow down in corners. This mode require a pre-recorded path. The mode is indicated
by blue blinking lights.

AI/Lane follow mode

This mode uses an AI as a steering controller to follow marked lanes. It also has dynamic
speed control to reduce speed while cornering. It does not require a pre-recorded path, but
the camera needs to see the lanes. The AI has been trained to follow lanes consisting of
black electrical tape. The mode is indicated by green blinking lights.

83

8.4 AI Training Procedure
This section will go through how to gather training data for the deep neural network steer-
ing controller, train a new model for path following, and run the model on the truck for au-
tonomous driving. All files are located in the nvidia ws/src/dnn steering node/src/-
folder

8.4.1 Create a New Dataset
Datasets are created with data logger.py. It uses OpenCV and ROS to capture image
and control data. Follow the steps below to create a new dataset:

1. First, set up a new track that the vehicle can be driven on. It is important that the
camera can see the lanes of the track while driving.

2. Connect and log in to the car via SSH, see section 8.3.2 in appendix.

3. The datalogger script subscribes to the /joy-topic. Therefore the truck’s driving sys-
tem has to be started by typing ./rosstartup.sh (home-folder) or roslaunch
car cmd run.launch in a new terminal window.

4. Navigate to the nvidia ws/src/dnn steering node/src/-folder and start
the datalogger by typing python data logger.py.

5. Now, use manual mode to drive the truck around the track with the joystick con-
troller. Data is only saved when driving forward.

6. After logging is done, close the scripts by pressing ctrl + c in the active terminals.
The driving script should also be aborted.

7. Images and steering angles are saved in the /img-folder and training data.csv.
Since the data is timestamped, you can log multiple times to the same dataset. Delete
these files if a new dataset is created, or rename the output from the datalogger-
script.

Troubleshooting: If the camera cannot start, make sure no other ROS node such as the
dnn steering node is currently using it. Try to comment out this node from the
launch-file (or create a new launch-file without DNN steering enabled).

84

8.4.2 Train a New Model
After the dataset has been created, the model has to be trained. This can be done by using
the script called train.py in the node-folder. Training parameters can be adjusted in the
train() module at the bottom of the script. The script will pull data from the /img-folder
and training data.csv.

1. Optional: Adjust the training parameters in the script for batch size and number of
epochs. Batch size=32 and number of epochs=5 works fine.

2. Run the training-script by typing python train.py in the node-folder.

3. Wait for the training procedure to complete. A graph will pop up and show the
results.

4. A new model-file called model.h5 has now been created.

Note: The truck uses the default file called model.h5 directly from the node-folder. Be
sure to backup any previous models before training.

8.4.3 Drive
The truck will automatically load the model.h5-file when the default launch-file (run.launch)
is started, and the model is updated. The driving script is called drive.py and is also
placed in the node-folder (nvidia ws/src/dnn steering node/src/).

1. Place the truck inside the track.

2. Run the run.launch again to start the truck.

3. Switch to AI-mode on the joystick controller.

4. Hold down the deadswitch-button (RB) or press the deadswitch-lock-button (RT) to
make the truck drive autonomously.

5. Release deadswitch-button (RB), press the deadswitch-lock-button (RT) or switch
to manual mode to stop the truck.

85

8.5 ROS System Structure
This is an overview of the ROS nodes used for the final version of the truck’s autonomous
system. A graphic representation can be seen in figure 8.5, where nodes and topics are
represented as ovals and rectangles respectively. Note: the GUI is not represented here.

• /car cmd or car commander is the main system controller for distributing signals
to the Teensy microcontroller in order to control and move the vehicle. It will take
steering angle input data from the steering controller and steering angle plus speed
from the joystick and convert it to PWM values for the microcontroller to read. It
also controls the vehicle speed and the different driving modes. The driving modes
can be switch by using the buttons on the joystick controller. The different LED
indicator modes are controlled from this node and it has a terminal GUI for system
status.

• /hector mapping is the Hector SLAM node used for localization and mapping. It
will estimate position and orientation (pose) using the laser scan matcher package,
and return a map of the surrounding environment.

• /hector trajectory server is used to record the trajectory the vehicle has driven.
This is useful for measuring path tracking performance.

• /waypoint logger is used to record a path during driving. The node is activated
by a buttonpress on the joystick controller. When finished recording the node will
publish the path to the path tracker.

• /pure pursuit is the path tracker steering controller node for Pure Pursuit. It will
subscribe to the current state of the vehicle (pose and velocity) and return a steering
angle in radians based on the state.

• /dnn steering is the deep neural network steering controller. It uses the front
camera to track black lanes and outputs a steering angle to the car controller.

• /joy is the joystick node that will publish joystick input commands.

• /can charger node talks with the onboard wireless charging system to retrieve
data for the GUI mainly.

• /heartbeat broadcaster is used to send an alive-message from the Jetson TX2
to the Teensy micro-controller so it will stop the vehicle if the Jetson fails during
operation.

• /esc vel pub is used to publish the current velocity of the vehicle in [m/s] by using
motor-based odometry based on the output from the car command node to the ESC.

• /rplidar ros is the RPLIDAR node for publishing laser distance measurements
from the LiDAR.

• /serial node is used for serial communication between the Jetson TX2 and the
Teensy micro-controller in ROS.

86

• /base to laser broadcaster publishes the transform between the base link-
frame and the laser-frame

• /scan to base broadcaster publishes the transform between the scan-frame
and the base link-frame

Figure 8.5: Overview of the ROS system structure.

87

8.6 Installation

8.6.1 ROS Kinetic
To install ROS Kinetic on a computer, follow the instructions on:
http://wiki.ros.org/kinetic/Installation/Ubuntu.

To install ROS Kinetic on the Jetson TX2, follow instructions on:
https://github.com/jetsonhacks/installROSTX2.

ROS node installation

ROS nodes can be installed by placing them in the workspace folder, e.g. nvidia ws/src
for this project.

8.6.2 Desktop GUI
The desktop GUI can be downloaded from the project folder on GitHub:
https://github.com/joneivind/Self-Driving-Truck.

8.6.3 ROS Nodes
These are the ROS nodes used for developing and testing the system that were not made
by the author. The installed nodes are placed in the nvidia ws/src workspace folder:

Nodes used in the Final Version

• Rplidar - adds support for the RPLIDAR A8M8
http://wiki.ros.org/rplidar

• Joy - adds joystick support
http://wiki.ros.org/joy

• rosserial - adds serial communication
http://wiki.ros.org/rosserial

• Hector-SLAM - adds the Hector SLAM ROS package
http://wiki.ros.org/hector slam

Nodes used during Research & Development

• usb cam - adds USB camera support
http://wiki.ros.org/usb cam

• MIT RACECAR Particle Filter
https://github.com/mit-racecar/particle filter

• ORB-SLAM2 - ORB-SLAM2 package with ROS and CUDA support for Jetson
https://github.com/hoangthien94/ORB SLAM2 CUDA

88

http://wiki.ros.org/kinetic/Installation/Ubuntu
https://github.com/jetsonhacks/installROSTX2
https://github.com/joneivind/Self-Driving-Truck
http://wiki.ros.org/rplidar
http://wiki.ros.org/joy
http://wiki.ros.org/rosserial
http://wiki.ros.org/hector_slam
http://wiki.ros.org/usb_cam
https://github.com/mit-racecar/particle_filter
https://github.com/hoangthien94/ORB_SLAM2_CUDA

• ROVIO - (Robust Visual Inertial Odometry) framework for ROS
https://github.com/ethz-asl/rovio

8.6.4 Udacity Self-Driving Car Simulator
The Udacity Self-Driving Car Simulator (Term 1, version 2) was used to test and train
the AI model, and is available for Windows, Mac and Linux as an open-source project on
GitHub:
https://github.com/udacity/self-driving-car-sim

8.6.5 OpenCV 3.4.0 on Jetson TX2
Nvidia Jetson TX2 requires a special version of OpenCV to enable CUDA support. A
description on how to compile OpenCV 3.4.0 with CUDA can be found in this blogpost
from JK Jung: https://jkjung-avt.github.io/opencv3-on-tx2/

8.6.6 Controller Area Network (CAN)
The CAN controllers on the Jetson TX2 are not enabled by default from Nvidia. To enable
CAN bus, the CAN controller modules must be added to the kernel. A tutorial for building
custom kernels on the TX2 can be found on the JetsonHacks website:
https://www.jetsonhacks.com/2017/03/25/build-kernel-and-modules-nvidia-jetson-tx2/

1. Download the buildJetsonTX2Kernel repository from JetsonHacks (GitHub), then
run the ./getKernelSources.sh script. This will download the sources from
Nvidia and open an editor where the kernel modules can be selected.

2. Under the tab called CAN Device Drivers, enable Bosch M TTCAN. Give
the kernel a unique name, press save, and exit the editor.

3. Follow the rest of the tutorial from JetsonHacks. Run ./makeKernel.sh to
build the kernel, then ./copyImage.sh to copy the kernel to the boot directory.
Restart the Jetson to activate the new kernel.

4. Open a new terminal window and type the following to enable the
can0 controller:
$ modprobe can

$ modprobe can raw

$ modprobe mttcan

$ ip link set can0 type can bitrate 1000000 dbitrate 2000000

berr-reporting on fd on

$ ip link set up can0

then type ifconfig -a to check if the new controller is visible.

5. Open /etc/modprobe.d/blacklist-mttcan.conf and comment out the
first line to ensure the mttcan module is loaded.

89

https://github.com/ethz-asl/rovio
https://github.com/udacity/self-driving-car-sim
https://jkjung-avt.github.io/opencv3-on-tx2/
https://www.jetsonhacks.com/2017/03/25/build-kernel-and-modules-nvidia-jetson-tx2/
https://github.com/jetsonhacks/buildJetsonTX2Kernel

6. Add the following to /etc/network/interfaces to load the module on boot

source-directory /etc/network/interfaces.d

auto can0

iface can0 inet manual

pre-up /sbin/ip link set $IFACE type can bitrate 1000000 dbitrate

2000000 berr-reporting on fd on

pre-up /sbin/ip link set up $IFACE

up /sbin/ifconfig $IFACE up

down /sbin/ifconfig $IFACE down

7. The connections between the CAN controller (can0) and the TI SN65HVD230D
CAN transceiver is shown in table 8.1. The Rs pin on the transceiver is grounded
(logic low) to enable high speed mode (1Mbps). Note that the CAN controller
interface is located at the J26 header pins on the Jetson.

Nvidia Jetson TX2 SN65HVD230D (VP230)
Connector Label Pin (J26) Connector Label Pin
3.3V DC 2 VCC 3

GND 10 GND 2

CAN0 TX 7 D 1

CAN0 RX 5 R 4

- - CANH 7

- - CANL 6

GND 10 Rs 8

- - Vref 5

Table 8.1: Nvidia Jetson TX2 to CAN transceiver.

8.6.7 CP210x Support for Jetson TX2 with RPLIDAR
The RPLIDAR A8M8 is using a CP210x USB to serial converter (FTDI) to communicate
over USB. The stock Jetson TX2 kernel does not have built-in support for CP210x in the
kernel, so a CP210x USB to serial converter module has to be added. To enable CP210x
support, download the installACMModule repository from JetsonHacks (GitHub), and run
the ./installCP210x.sh script.

90

https://github.com/jetsonhacks/installACMModule

8.7 Teensy Connection Chart

5V and GND is connected from the VCU to the servos, ESC and LED strip.

PJRC Teensy 3.2 Device Connector Label
3.3V BNO080 IMU 3V3

19 (SCL0) BNO080 IMU SCL

18 (SDA0) BNO080 IMU SDA

GND BNO080 IMU GND

2 Ws2812B LED strip Data

20 Steering servo Signal

21 ESC Signal

22 Gearing servo Signal

GND Vehicle Control Unit GND

Table 8.2: Teensy 3.2 connection chart.

8.8 Code Overview

This is an overview of the final code parts of the project with a short description for each
part. The descriptions are separated by folders. For the latest update, visit the project
repository on GitHub: https://github.com/joneivind/Self-Driving-Truck

Teensy

Contains the code for the Teensy microcontroller that is used to control the servos, IMU
and LEDs with rossserial.

car cmd

This contains the car controller node (car cmd.py) and is the central hub for controlling
the truck. This is the node that will communicate with the microcontroller in order to
control the vehicle, or to change the color of the led strip. The folder also contains the
main launch-files for ROS such as run.launch.

dnn steering node

This folder contains the Deep Neural Network steering controller software (drive.py).
It also contains the software to record training data (data logger.py) and the AI
trainer (train.py) that will generate a model-file in .h5-format.

91

https://github.com/joneivind/Self-Driving-Truck

ackermann odom

ROS node for estimating odometry using velocity commands from the car controller and
angular velocity from IMU, without the use of wheel sensors. See description in section
3.4.2.

aruco detector

Contains the ArUco marker detector described in section 6.3. Uses OpenCV to detect
markers and publishes the id’s on a ROS topic.

can charger node

Contains the CAN bus to ROS interface node for publishing charger system CAN mes-
sages such as battery current and voltage. See description in section 6.1.

car gui

Contains the GUI (gui.py) described in section 6.2.

car setup tf

Tf broadcaster ROS node for publishing the transform between the truck and the LiDAR.

cv lanetracker

Contains the OpenCV-based lane detector ROS node described in chapter 5. The node will
output a lane center offset [cm] if two lanes are detected by the camera.

esc vel pub

ROS node for publishing an estimate of the velocity based on the control input from the
car controller to the ESC. See description in section 3.4.1.

heartbeat broadcaster

ROS node for publishing alive-messages to the microcontroller. The truck will stop if this
is not received.

path trackers

Contains the two path trackers used in this project, namely Pure Pursuit (pure pursuit.py)
and Stanley Steering (stanley steering.py). Both nodes will publish a steering an-
gle based on the current location relative to a reference path.

92

rosbag resampler

Script for resampling logged rostopics from a rosbag to a given sampling-rate and output
the data to a .csv-file.

rplidar pwm ros

This is a modified version of the official RPlidar ROS node, with support for changing the
PWM value of the motor in order to control the rotational speed of the LiDAR. Code by
David Portugal: https://github.com/davidbsp/rplidar ros

waypoint logger

Contains a ROS node for creating path messages as a series of waypoints, in order to
generate paths for the path trackers to follow.

93

https://github.com/davidbsp/rplidar_ros

Jon Eivind Stranden
A

utonom
ous driving of a sm

all-scale electric truck m
odel w

ith dynam
ic w

ireless charging

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 E
ng

in
ee

ri
ng

D
ep

ar
tm

en
t o

f E
ng

in
ee

ri
ng

 C
yb

er
ne

tic
s

M
as

te
r’

s
th

es
is

Jon Eivind Stranden

Autonomous driving of a small-scale
electric truck model with dynamic
wireless charging

Master’s thesis in Cybernetics and Robotics
Supervisor: Jon Are Suul

June 2019

	Abstract
	Preface
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Background & Motivation
	Objectives
	Contribution
	Thesis Overview

	Hardware and Software
	Hardware
	Component Overview
	Nvidia Jetson TX2
	Slamtec RPLIDAR A2M8
	Logitech C922 Pro
	Bosch BNO080 IMU
	PJRC Teensy 3.2
	SN65HVD230D/VP230 CAN transceiver

	Hardware System overview
	Vehicle Control
	Wireless Charging System

	Software
	ROS (Robot Operating System)
	OpenCV
	Camera Calibration Software
	Deep Learning Frameworks

	SLAM-based Path Tracking
	Related Work
	Stanley
	MIT RACECAR
	F1/10

	Simultaneous Localization and Mapping (SLAM)
	Hector SLAM
	Gmapping
	ORB-SLAM2

	Particle Filter Localization
	Odometry
	Laser-based Odometry
	ESC/IMU-based Odometry

	Path Generator
	Path Tracking
	Simplified Bicycle Model
	Pure Pursuit
	Stanley Steering Controller
	Finding the Shortest Distance to the Path

	Dynamic Speed Control
	Obstacle Detector
	Implementation
	Results
	Path Tracker Tuning
	Dynamic Speed Control

	Deep Learning Steering Controller
	Introduction
	Related Work
	Nvidia DAVE-2

	Creating Datasets
	Simulator
	Simulator Dataset
	Truck Datasets
	Getting Training Data from the Truck

	Network Model and Training
	Neural Network Model
	Dataset Augmentation
	Training

	Results
	Simulator
	Truck

	Computer Vision Steering Controller
	Introduction
	Lane Keep Assist
	Lane Detection
	Steering Controller

	Results
	Performance

	Integration with Wireless Inductive Charging
	Onboard Charger Communication
	Graphical User-Interface
	Charging Area Detection using ArUco
	Results

	Discussion
	Hardware
	Localization Methods
	Path Tracking Methods
	Comparison of Methods for Path Following
	Improved Obstacle Detection
	ArUco Detection
	Optimal Positioning during charging

	Conclusion and Outlook
	Conclusions
	Outlook

	Bibliography
	Appendix
	Getting Started
	ROS Remote Network Setup
	Connecting to the Truck
	Launching the Truck
	Shutting down
	Joystick Controls

	AI Training Procedure
	Create a New Dataset
	Train a New Model
	Drive

	ROS System Structure
	Installation
	ROS Kinetic
	Desktop GUI
	ROS Nodes
	Udacity Self-Driving Car Simulator
	OpenCV 3.4.0 on Jetson TX2
	Controller Area Network (CAN)
	CP210x Support for Jetson TX2 with RPLIDAR

	Teensy Connection Chart
	Code Overview

