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Abstract

The objective of this project was to investigate grasp selection in bin-picking tasks
for a robotic manipulator arm with end-effector geometric constraints, and to make
a study of how easy it is for a robot arm to reach a given grasp in a bin-picking
task. The importance of bin-picking in the automation picture is significant, with
respect to what positive consequences such a system would have, should a more
general solution be found. Considering its task-specific nature, bin-picking is a
valuable issue to research where a mixture of different technologies come together
in an intuitive and exciting manner.

By looking at a specific section of the workspace and investigating its level of
reachability and using this as a grasp quality metric in terms of how easy it is to
obtain this grasp pose for the robot manipulator, insight into the constraints of the
robot emerged. Furthermore, investigating a specific region of the workspace, gave
input to further optimal placement of the bin for this set-up, and what regions or
approaches were optimal.

By searching the area chosen for inverse kinematic solutions and viable paths from
a start configuration to map this part of the workspace, it was discovered that the
average reachability of the area was at best 26.95%, indicating that further work
with the workspace is a necessity, when this seems like a result with the possibility
for improvement. Even though good results were obtained for inverse kinematic
solution coverage of the chosen part of the workspace in this project, there was not
always a path, which limited the total accessibility of the region.
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Chapter 1

Introduction

This project will deal with aspects of grasp selection in bin-picking tasks for a
robotic manipulator, more specifically the set-up employed by SINTEF Digital
in Trondheim with end-effector geometric constraints. In the coming pages the
following will be introduced; a brief introduction to bin-picking, a problem descrip-
tion, limitations of the project, its contributions and an overview of the project
structure.

1.1 What is bin-picking?

Imagine that you are tasked with moving 10 apples from one crate to another. This
seems a simple enough problem to solve. You grab one apple, with either hand,
move the apple to its desired location and you put it down or drop it in the second
crate. And then you repeat the process nine more times.

In this task you have used your eyes as a 3D sensor, scanned the environment,
estimated the distance to the apples, registered its position and orientation with a
”reference apple” in mind and decided which apple it is best to grab first based on
how they all are positioned in the crate. You have used previous experience and
knowledge to estimate its consistency, weight and mass centre. This enables you
to know where to grab the apple for an optimal grip, how hard you should grab
it, how tight you should hold it when you move it and when you can drop it into
the bin without damaging it. Using your fingers and palm as a gripper with force
feedback to hold the apple enables you to adjust your grip as to not damage it as
well, as you can feel the force you are exerting on the apple.

When you scanned your environment you also knew how far away the second crate
was and what the optimal path you should take to unload the apple was. The
process of moving the apples was not difficult, but you used your own sensors and
actuators in real-time to achieve the goal. Perhaps you also tried to optimize the
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4 CHAPTER 1. INTRODUCTION

process after having moved a few of the apples? Maybe you moved because you
thought you could get the job done faster if you stood closer to the second crate,
but then moved back because this made it harder to grab an apple from the first
crate? All these aspects and processes we take for granted to solve this problem
must be transferred to a robot for it to manage the same task, but how can we
make it see its surroundings and let it know or teach it how it should grab the
apple without damaging it? And how can we make a robot aware of whether it
actually can grab the apple or not when it has figured out how to grasp it?

Robotic bin-picking is a classic robot problem, where the objective is to achieve a
pick-and-place routine in a randomized environment. The robot is presented with
a bin, containing some object or parts and its task is to pick an item, one at the
time, and place them safely in the next bin. In an industrial setting this could for
example be on to the next conveyor belt or a new work station. This is a tedious
task for humans where we perhaps do not reflect on the complexity of the task,
and being able to employ robots in our place would allow an increase in efficiency
and predictable timing of for example an assembly process.

1.2 Problem description

Figure 1.1: Picture of the SINTEF set-
up for bin-picking. Courtesy of Katrine
Seel MSc SINTEF Digital

The title of this project is ”Grasp selec-
tion in bin picking tasks for robotic ma-
nipulator arm with end-effector geomet-
ric constraints” and focuses especially on
the setup employed by SINTEF Digital
Trondheim, see figure 1.1.

Bin picking is the problem of grasping
objects randomly placed in a bin. This
is a problem that often occurs in in-
dustrial settings where objects come out
of a production line packaged in bulk,
without isolating individual objects, and
where the objects are transported to a
second production line that subsequently
must isolate and process these objects
individually. Information from a 3D-
sensor is used to compute many possi-
ble grasps based on how the objects are
placed in the bin. When the 3D-sensor
is attached to the robotic arm perform-
ing the grasps this imposes additional
constraints on how the robotic manipu-
lator arm can move while avoiding self-
collisions and collisions with the bin or
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other parts of the environment. The overall goal of this assignment is to find a way
to judge which grasps are favourable for grasping with the robotic manipulator
arm.

The assignment consists of the following general bullet points:

• Make a literature review of state-of-the-art methods relevant to achieve the
described goal.

• Design one or more metrics suitable to evaluate different grasps, which then
can be used to judge the performance of different methods. The picking
should preferably be carried out as fast as possible, but it might be useful to
consider other metrics, for instance related to safety.

To summarize; this project will deal with and investigate how a given grasp can be
judged in the sense of how easy this grasp configuration can be reached by the robot.
In its simplest form, imagine that we are given a pose A, a position and orientation
of what has been judged a favorable grasp, and a pose B which is the current pose
of the gripper. How easy is it to achieve A = B? In this setting, what was just
named pose A is not actually a pose, but a mere point and direction vector which is
the output of the neural network grasp planner employed by SINTEF Digital (this
will be explained later in section 3.2). When viewing figure 1.2, the objective is to
obtain ztcp = zgrip, and to optimize or at least make feasible the rotation about
this now common z-axis (placement of the x and y-axis), as to obtain a successful
grasp, and judge how accessible it is.

z
base

xbase

y
base

z
tcp

y
tcp

x
tcp

Zivid

z
grip

Figure 1.2: Simple schematic of the system
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1.3 Limitations

This project will deal with grasp selection for an eye-in-hand (3D sensor at the end-
effector) bin picking system, the physical setup at SINTEF Digital Trondheim, and
will not consider implementations for other set-ups or a general investigation which
can be independently implemented for an arbitrary system. Apart from a literature
review of existing work and solutions for comparison and discussion, the majority
of the following work will be done with the SINTEF system in mind.

Furthermore, a solid background in robotics is needed to complete the assignment
and as such, basic robotics is also presented as background for the project. In
addition, to be able to judge a grasp, a solid understanding of what a good grasp
actually is is also presented in the literature part of this project. More weight will
be placed upon the hardware part of the system, and the inner workings of for
example deep neural networks is outside the scope.

1.4 Contribution

The contributions of this project are:

• An overview of bin-picking in a technology and manufacturing perspective,
chapter 2.

• An overview of robotic grasping, what a so-called ”good grasp” is, and how
they are selected based on mathematical principles.

• An overview of literature considering and implementing robotic manipulator
reachability and its use in combined grasp and motion planning, chapter 5.

• Investigation of reachability properties of an UR5 eye-in-hand robotic ma-
nipulator with end-effector geometric constraints, chapter 6.

• Implementation and testing on the UR5 a reachability metric considering
inverse kinematic solutions and the existence of paths, and presented the
results as heatmaps for easy visualization, chapter 6.

1.5 Project structure

This report is divided into four main parts; the introduction, the literature review,
method and design employed to reach the goal, and finally a conclusion which
discusses the results and gives suggestions for future work.

In the literature review part of the report, an introduction to bin-picking in industry
context will be given, along with an overview of the importance of the subject.
Furthermore, a brief presentation of robotics is given, before the SINTEF system
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is presented. The literature part of the project is rounded of with a chapter on
robotic grasping and one on the combination of grasping and motion planning and
its importance.

In the part considering method and design, a thorough description of the work
executed on the SINTEF set-up is given. A description of the experiments and the
results are presented.

Finally, in the concluding part of this report, a brief discussion of the results and
the project will be given, along with a list of suggestions for future work and some
concluding remarks.
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Chapter 2

Bin-picking

In ”Automatic Grasp Generation and Improvement for Industrial Bin-Picking”,
Kraft et al. (2014) describe the bin-picking problem by these simple, yet individu-
ally challenging, steps;

1. Use a sensor system (typically based on a camera, range scanner or a combi-
nation of these) to detect an object in the bin and its pose

2. Select an appropriate way to grasp the object

3. Execute the appropriate motion and grasp the object

4. If the grasp was successful, move the object to a desired location

2.1 Randomized bin-picking

Figure 2.1: Picture of the parts to
be picked from the bin in the SIN-
TEF set-up. Courtesy of Katrine
Seel MSc SINTEF Digital

In automated assembly lines, the problem
of locating, gripping and moving an object
that is randomly positioned and unsorted is
known as random bin-picking. Many, if not
all, bin-picking systems today are tailored
to a very specific need and application, and
are simply known as bin-picking systems.
Should bin-picking be achieved and solved
generally such that a system is equipped to
pick-and-place any type of object regardless
of the environment, it can become a rou-
tine robot application in the industry and
assist many small scale businesses in increas-
ing their efficiency and expanding their pro-
duction. The ”dream” is that a bin-picking

11



12 CHAPTER 2. BIN-PICKING

system will become routine and easy to use in all parts of industrial production and
not just in large scale production as is the main rule today (Bogue, 2014).

Random bin-picking has the potential to reduce costs and improve efficiency in
production on a large scale. By eliminating the human element in for example
sorting and pick-and-place operations, one will be able to increase the output vol-
umes of for example production lines. Today, without a bin-picking system, large
specific machinery take up a large volume of the production locations and are not
applicable for other tasks than the ones they are specifically designed for. To be
able to increase the flexibility of a system could assist in cost reduction and reduce
the cycle time of a process.

A general solution to randomized bin-picking has not been reached yet, despite
the rapid development in the field of computer vision and the known vast benefits
of a solution, should it be found. Computer vision is important as it enables us
to equip a robot with eyes, and this development has gained momentum in the
search for a solution. Since a bin-picking system consists of different technologies,
the dependency on accurate and fine-tuned calibration procedures has long been at
the centre of the issue. If the system fails on two out of three grasps throughout the
production time, the reliability of the system is not sufficient to be used industrially
on a large scale. Keeping this is mind, there have been improvements with both
calibration and set-up routines (Bogue, 2014).

Random bin-picking is not one-size and must be adjusted to the need of the buyer
in terms of robot reach and payload, shape, size, geometry and characteristics of the
parts and how randomly they are arranged is critical, and following this argument
a completely general solution seems challenging. One could for example not use
the same system to pick large cylinders of metal, uniformly distributed in a bin,
as one would use to pick glass vials positioned more systematically. As bin-picking
is far more application-specific than many other robot applications it is only just
now gaining momentum in regards to finding a solution. (Bogue, 2014)

2.2 Motivation and importance

Random bin-picking or unstructured bin-picking has the potential to revolutionize
industry. Manufacturing technologies have increased their use of robots and this has
pushed the boundaries of an already competitive market in terms of productivity
and innovation. One of the many advantages of bin-picking is that it is an intuitive
process to understand and a solution is not limited to academics or specialists,
there is a long list of interested parties, motivated to find a solution (Marvel et al.,
2012)

One of the many challenges associated with bin-picking is dependency on many
forms of technology seamlessly integrated, working together towards the goal; lo-
calizing, approaching, gripping and moving. An image of the robots surroundings
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must be generated to find the bin and the parts to be picked. The important in-
formation such as orientation and position of the object must be separated from
the non-critical information in the image. In a human context, we filter an image
we see in real-time dependant on our goal. If I would like to pick up my water
bottle, I would scan my desk, process the image to find the bottle, and grab it
without thinking twice, even though I probably calculated and executed a perfect
pick-and-place operation. Since the parts in the bin are not precisely positioned
and we do not know their exact location, traditional robot vision is not sufficient,
due to varying lighting conditions, a lack of distinctive features and entanglements
and collisions with other objects in the container, or the container itself (Bogue,
2014).

From the image, an estimate of the objects location must be calculated and its
position and orientation derived, this is known as pose estimation and is a chal-
lenge in itself. The pose must be calculated relative to the camera and the robot
base, this demands a good calibration of the camera to sustain repeatability and
exact gripping. Furthermore a path to approach the grip must be calculated and
executed, the object must be grasped and a new path must be calculated to carry
the object to its desired location. In the last few years rapid successes in the field
of computer vision, or machine vision, and 3D cameras as well as the algorithms
that process the image information, have made this technology readily available.
Some types of software are even tailored to function specifically with regards to
the bin-picking problem. (Bogue, 2014)

The acquisition of a single part from a collection of parts is considered an integral
part of manufacturing, including, but not limited to, palletizing, packing, assembly
and kitting. Since bin-picking is not at the moment one size fits all, current goals
include easing the transition of using a system to pick object A one day and then
picking object B the next day, and simplifying the effort needed to reprogram the
system for a different use. (Marvel et al., 2012)

According to Marvel et al. (2012), there are three primary challenges associated
with the integration of bin-picking in manufacturing: sensing, hardware issues and
solution integration issues. Sensing is related to difficulty in sensor development
associated with pose estimation, finding on object’s pose in the environment, and
the associated challenges with lighting, reflections, shadows etc. Hardware issues
include the gripper, robot and the parts to be picked, and the challenge of choosing
the right hardware for a specific application without over- or under equipping
the system. Solution integration problems include factors such as cost, financial
burden, time used to train and tune the system, and how long it takes to re-purpose
the system in terms of flexibility. (Marvel et al., 2012)

In essence, the bin-picking problem is vast in its application and valuable to the
industry as well as an interesting classical robot problem in academia. It is of im-
portance and worth looking into in terms of the positive ripple effects it would have
in both large and small scale industry, to increase output volume and contribute
to a higher degree of automation in tedious, repetitive tasks.
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Chapter 3

Hardware

Figure 3.1: ABB’s IRB 120 6 axis robot
(ABB, 2018)

This chapter will be used to give an
overview of robot manipulators since this
is the tool at the centre of the opera-
tion. Without a robot up for the task,
problems will arise in the execution of
the picking. After this brief repetition
of robotics, the SINTEF system will be
briefly presented, before the next chap-
ter introduces robotic grasping.

3.1 Robot manipulators

The definition of a robot is a pro-
grammable, multifunctional manipulator
designed to move material, parts, tools or
specialized devises through variable pro-
grammed motions for the performance of
a variety of tasks. From this defini-
tion we can extract the concept of re-
programmability, meaning that we may
again and again utilize a robot in differ-
ent tasks, and this gives a robot its utility
and adaptability. Some of the most com-
monly stated advantages of the introduc-
tion of robots is decreased labour costs,
an increased flexibility with regards to its reprogrammability and the creation of
more humane working environments where robots are able to perform dangerous,
repetitive and dull operations. (Spong et al., 2006)

15



16 CHAPTER 3. HARDWARE

3.1.1 Workspace

A robot is composed of links with joints in between to form a kinematic chain. A
joint can either be revolute, have a rotation, or prismatic, have an extension. The
workspace of a robot is the volume swept out by the manipulators end-effector, or
more easily put, its reach. The end-effector is its tool, commonly attached at the
end of the final joint. This space is limited by the manipulators geometry and is
designed with the task the robot is to perform in mind. Constraints on motors
and actuators will need to be taken into account as well as the robot work cell and
possible obstacles. The workspace is commonly split into the dexterous workspace
and the reachable workspace. The reachable workspace is a subset of the dexterous
workspace and is the space reachable by the manipulator and the dexterous space
is the set of points the robot can reach with an arbitrary orientation of the end-
effector. The dexterous workspace is thus the full space it can reach. (Spong et al.,
2006)

Consider a simple planar robot with two DOF, one elbow joint and one wrist joint.
Moving the joints changes the (x, y)-coordinates of gripper and the elbow. The
robot can thus be described by the coordinates of the elbow and gripper, (xe, ye)
and (xg, yg) respectively, relative to the environment. These four coordinates de-
scribe the full workspace of the robot and the manipulation of these coordinates
allow full reach in the workspace and can describe the location of the manipulator
in the environment. If a robot was to avoid an obstacle or locate an object in
its work cell, using workspace coordinates is advantageous since the coordinates
of the robot position and the position of the object would be given in the same
coordinate frame. However, not all coordinates by this representation are within
reach, since the robot is non-linearly constrained by its own geometry, for example
by the link between the two joints. Using the configuration space assists in solving
this problem. (Russell and Norvig, 2016)

165°
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R580

R121 Minimum
turning radius axis 1
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Figure 3.2: Workspace of the IRB 120 (ABB, 2018)
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3.1.2 Configuration space

Figure 3.3: Photo of the UR5
6DOF robot (Universal Robots,
2018)

The configuration of a manipulator is the com-
plete specification of the location of every point
on the manipulator. The set of all possible con-
figurations is known as the configuration space
(Russell and Norvig, 2016). Instead of repre-
senting the robot position in Cartesian coordi-
nates as in section 3.1.1, we represent in the
configuration space the robot as a function of
its joint variables. If we further build on the
example already mentioned, we may represent
the robot configuration of a two DOF planar
robot by its joint angles instead of joint posi-
tions; (Russell and Norvig, 2016)

(xg, yg) ∧ (xe, ye)⇐⇒ (θg, θe) (3.1)

If the robot is a rigid body, its base is fixed and
we know the values for the joint variables it is

straightforward to find any point on the manipulator. If these demands are met,
we may denote a vector q and state that a robot is in configuration q when the
joint variables take on the values q1, ..., qn, where qi = θi for a revolute joint and
qi = di for a prismatic joint. The subscript n denotes the degree of freedom for
the rigid body, DOF for short. For example, a robot with six revolute joints will
have six degrees of freedom since we have three parameters to denote its position
and three to denote its orientation in R3. (Spong et al., 2006)

3.1.3 Rigid bodies and motion

In robot manipulation, geometry of the three-dimensional space and rigid motion
plays a central role. Even though this project is specifically concerned with grasp
selection and the ability to reach a given grasp, these subjects are important. To
select a good grasp with the robot end-effector, the robot behaviour and limita-
tions are central, to make sure a grasp is valid in terms of constraints. In order
to represent the relative position and orientation of one rigid body with respect
to another, for example an end-effector and an object to be grasped, we attach
by convention coordinate frames to each body and then specify the geometrical
relationship between these coordinate frames.

3.1.3.1 Rotations

A rotation matrix in three dimensions belongs to the group SO(3), the special
orthogonal group (Spong et al., 2006). The set of all matrices that are orthogonal



18 CHAPTER 3. HARDWARE

and have a determinant equal to the identity matrix exist in this group, defined
by:

SO(3) = {R | R ∈ R3×3, RTR = I and detR = 1} (3.2)

For rotations around the principal axes, x, y and z, the following holds and can be
proven, where sα = sinα and cα = cosα:

Rx(φ) =


1 0 0

0 cφ −sφ
0 sφ cφ

 ,Ry(θ) =


cθ 0 sθ

0 1 0

−sθ 0 cθ

 ,Rz(ψ) =


cφ −sφ 0

sφ cφ 0

0 0 1


(3.3)

The rotation matrix Ra
b from a to b can be interpreted in two ways; either as

the coordinate transformation from b to a or as a rotation matrix where a vector
pa in a is rotated to the vector qb by qa = Ra

bp
a. The rotation of a composite

rotation is the product of the rotation matrices, such that (Egeland and Gravdahl,
2002):

Ra
c = Ra

b ·Rc
b (3.4)

3.1.3.2 Rigid motion

After now having defined a rotation matrix R, we can define rigid motion by also
introducing a vector d ∈ R3. A rigid motion is a pure translation together with a
pure rotation. Suppose p is attached to a frame o1x1y1z1, with local coordinates
p1. We can then express the coordinates of p in frame o0x0y0z0 using:

p0 = R0
1p

1 + d0 (3.5)

This concept can be extended to three coordinate frames such that: (Spong et al.,
2006)

p0 = R0
1R

1
2p

2 + R0
1d

1
2 + d01 (3.6)

= R0
2p

2 + d02 (3.7)

3.1.3.3 Transformations

The concept of a rotation matrix can be expanded to include both orientation, as
before with the rotation matrix, and position of one coordinate frame relative to
a another frame. This is what is called a homogeneous transformation matrix T
which is defined as:

T =

[
R d

0T 1

]
∈ SE(3), (3.8)
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where SE(3) is the special Euclidean group defined by the following expression:

SE(3) =

{
T | T =

[
R d

0T 1

]
, R ∈ SO(3), d ∈ R3

}
(3.9)

When utilizing a homogeneous transformation matrix, we may describe a rigid
body in terms of either a pure rotation, a pure translation or a combination of the
two relative to another coordinate frame. The inverse of the transformation matrix
is defined as

(
T ab
)−1

= T ba and the product of composite transformations is the
same as for rotation matrices Ta

c = Ta
b ·Tc

b. (Egeland and Gravdahl, 2002)

Transformation matrices form the basis of the Denavit-Hartenberg convention which
is a popular way to describe the forward kinematics of a robot configuration. The
convention can further be used to find the dynamics of a robot manipulator, as will
be further explained in section 3.1.5.

3.1.4 Forward Kinematics

The forward kinematics problem is concerned with finding the position and orien-
tation of the last link in the kinematic chain, often the position of the end-effector
with an attached tool, for example a gripper. This is done by attaching a coordi-
nate system to each link in the chain making up the robot. Usually one does this
design by attaching coordinate system oixiyizi to link i, such that the coordinates
of the ith link are constant in coordinate system i.

With each joint, a joint variable qi, is associated; often qi = θi for revolute joints
and qi = di for prismatic joints. The inertial frame is usually attached at the
robot base and denoted as the 0-frame, o0x0y0z0. When each link has been as-
signed a coordinate system and with the homogeneous transformation matrices in
mind, suppose that Ai is the transformation matrix giving the position and ori-
entation of coordinate frame oixiyizi with respect to oi−1xi−1yi−1zi−1. Since we
have introduced the general coordinate qi, Ai is a function of only one joint variable
dependant on if the joint is revolute or prismatic, Ai = Ai(qi).

By following this thought we may now express every point on the robot in terms
of its joint variables qi and by multiplying A1(q1) up until An(qn) we can find the
position and orientation of the last attached coordinate system given in the inertial
frame:

H = T 0
n = A1(q1) · ... ·An(qn) (3.10)

The forward kinematics problem is thus to find the pose of the final attached coor-
dinate system, usually given in the inertial frame. This is the problem of knowing
the joint variables and multiplying your way outwards in the kinematic chain. By
using different conventions as the DH-convention this is a solvable problem with
one solution.
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3.1.4.1 Reachability

The reachability of a robot manipulator to a target is defined as its ability to move
its joints and links in free space in order for its hand to reach the given target
(Ying and Iyengar, 1995). When transferring this to a bin-picking system, the
given target is the given grasp we would like to reach. How well a robot can reach
this given grasp is closely related to its reachability. If the reachability of the robot
is ”good” for a given grasp we can be more certain that the robot will be able to
reach the grasp.

3.1.5 Denavit-Hartenberg convention

The Denavit-Hartenberg convention, or DH-convention, is used to find the for-
ward kinematics of a manipulator. By following this convention of choosing ref-
erence frame the problem is simplified and each transformation Ai is given as the
product of four basic transformations. The final product for each link will be as
follows:

Ai = Rz(θi) ·Transz(di) ·Transx(ai) ·Rx(αi) (3.11)

=


cθi −sθicαi sθisαi aicθi

sθi cθicαi −cθisαi aisθi

0 sαi cαi di

0 0 0 1

 , (3.12)

where θi, di, ai and αi are parameters associated with link and joint i. By a
systematic and proven way of choosing the coordinate frames for the manipulator
one can decrease the number of variables needed from six to four. For a complete
overview of how to choose the frames according to this convention see for example
the book ”Robot modeling and control” by Spong et al. (2006).

3.1.6 Inverse kinematics

The general inverse kinematics problem is the opposite of the forward kinemat-
ics problem. Given the position and orientation of the end-effector or the desired
origin of the last attached coordinate frames, how must the joint variables qi be
assigned to achieve this configuration? So, given a 4 × 4 transformation matrix
with the structure of equation 3.8, find the qi needed up until n to result in this
transformation matrix. The issue with inverse kinematic solutions are that they
are redundant, there exists an infinite number of solutions. This is generally not a
problem on paper, but when programming this solution with a robot, the redun-
dancy leads to choices. The simplest example is a two-DOF planar robot, which
will have two solution, elbow joint up or elbow joint down. This is a choice that
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needs to be made by the engineer, often with a specific task in mind, or considering
the robot work cell.

3.1.7 Motion planning

When dealing with robots, the objective is usually to allow the robot to exe-
cute some task, re-position and complete the same, or a different, task. Since
all robotic manipulation includes some degree of motion, motion planning is cen-
tral for a robotic system. We differentiate between path planning and trajectory
planning.

3.1.7.1 Path planning

As previously defined, a robot has a unique configuration space which is the set of all
possible robot configurations. To plan a collision free path, ensuring that the robot
does not make contact with an obstacle is central. The configuration space can
further be divided into the configuration space obstacle and the free configuration
space. The configuration space obstacle is the set of all robot configurations for
which the robot collides with an obstacle and the free configuration space is the
set difference between the whole configuration space and the obstacle. Denoting
the configuration space as Q, the obstacle as QO and the set of collision-free
configurations as Qfree gives the following relation

Qfree = Q \ QO (3.13)

The path planning problem can be summarized as finding a path from qs, an
initial joint configuration, a starting point, to qf , a final joint configuration where
obstacles are avoided when traversing the path. Formally defined by Spong et al.
(2006); ”a collision free path from qs to qf is a continuous map, γ : [0, 1] → Qfree

with γ(0) = qs and γ(1) = qf”. Methods for path planning are many and the
most popular solution is to treat it as an optimization problem using for example
gradient descent methods. This will not be discussed further here as it is outside the
scope of this project. Path planning does not depend on the variable time, whilst
the next section on trajectory planning, does just that. (Spong et al., 2006)

3.1.7.2 Trajectory planning

A trajectory, unlike a path, is a function of time q(t). By employing the same
notation as for path planning, qs = q(t0) and qf = q(tf ), where the difference
tf − t0 is the time needed to execute a given trajectory. From this we can present
path planning as a subset of trajectory planning where a path is a trajectory com-
pleted during one time unit. In some cases, paths are specified by a series of
end-effector poses T 0

6 (k∆t), where the inverse kinematics solution gives a sequence
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of joint configurations. Since the trajectory is time varying, velocity and acceler-
ation information can be found by differentiation, and as such these variables can
be controlled and used in the planning. Consider for instance the velocity close to
an obstacle in comparison to the velocity which can be employed in the free space.
For repetitive trajectories, it might be more efficient to employ a ”jog-and-learn”
approach where the robot is guided though the desired motion and repeats this,
instead of solving the inverse kinematics problem. (Spong et al., 2006)

3.2 SINTEF system

Figure 3.5: Picture of the SINTEF set-up
for bin-picking, overview. Courtesy of Ka-
trine Seel MSc SINTEF Digital

The project is done in cooperation
with SINTEF Digital Trondheim and
solutions to the grasp selection prob-
lem will be done with their system in
mind. Here follows a brief system de-
scription and overview.

The SINTEF system consists of a
six degree of freedom revolute UR5
robot manipulator as can be seen in
figure 3.3 mounted on a pillar. At
the end-effector, a Zivid camera is
mounted within a protective camera
house where a vacuum gripper is at-
tached at its side. Below the robot
is a table where a rectangular plastic
container is placed. The container is
lined with felt to limit reflections from
the lighting in the room. In the bin
are cylinders for picking with the vac-
uum gripper. In figure 3.5 we see a
photo of the setup, and a very simple
schematic of the system and the ob-
jective is shown in figure 1.2.

Initially, the vision system captures a
point cloud of the bin filled with parts

from a scan configuration set by the user. This point cloud is sent to a deep neural
network trained on simulated data whose output is an optimal grasp. This deemed
optimal grasp is given to the system as a point and a unit vector, indicating the
direction the grasp should be executed from and where the vacuum gripper should
end up to pick up the part. This unit vector can be viewed as the z-axis of an
incomplete coordinate system, where the x and y axis must be generated at a later
time.
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Figure 3.4: Screenshot of SINTEF set-up as visualized in Rviz with attached co-
ordinate systems at joints
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Chapter 4

Grasping

Figure 4.1: Successful grip with vacuum
gripper. Courtesy of Katrine Seel MSc
SINTEF Digital

Robotic grasping differs from human
grasping, mostly by the different nature
of the hands. Many robotic grippers
such as the two- and three-finger grip-
pers seek to mimic the behaviour of hu-
man hands. Human hands are not task-
specific, in terms that we may use our
hands in a variety of ways, where the
three most important functions are to ex-
plore (haptics), restrain and manipulate
objects. Since a robotic application of-
ten is task-specific, adapting the type of
gripper one employs may be beneficial in
hopes that it will increase the success of
the application. In bin-picking and other
robotic applications more emphasis has
been placed on restraining and manipu-
lation, rather than exploration. Restrain-

ing is often referred to as fixturing, whilst manipulation with the fingers is referred
to as dexterous manipulation (Bicchi and Kumar, 2000).

In this chapter, robotic grasping is presented in short along with a few concepts
important for what we call a ”good grasp”. The chapter is closed with an intro-
duction to grasp planners which can take an object and a hand as inputs and give
a grasp as an output. This part of the project does not take into account with
what degree of ease a robot may reach said grasp, but defines what a grasp is as
well as surrounding topics.

25
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4.1 Defining grasping

To grasp is defined as to take something and hold it firmly, which is also what we
would like robot to do when we ask it to grasp an object. Even though we would
like the robot to grab and hold an object, does not mean it must do so with five
fingers and a palm.

With regards to the definition of a grasp and the notion of good grasps, a few
aspects are central. A grasp needs to resist external forces and torques to be
maintained, and in that regard, it is necessary to define what a wrench is, as well
as the wrench space. Furthermore follows a brief explanation of what force and
form closure properties involve with regards to grasping.

4.1.1 Wrench and wrench space

From screw theory we find the concepts of screws, twists and wrenches. When a
generalized force acts on a rigid body this force consists of a linear component which
is pure force, and an angular component which is pure moment acting at a point.
This force/moment pair is defined as a wrench w. (Murray et al., 1994)

A wrench is presented as a vector w ∈ Rp, where in three dimensional space,
p = 6. The vector is made up of a force F ∈ R

p
2 and a torque τ ∈ R

p
2 , such that

w = ( F
τ ). Wrenches are used in robotic grasping to determine the net effect of

forces (wrenches) that are applied at the contact points between the fingers and
the object.

Furthermore we may define the magnitude of a wrench as

‖w‖ =

√
‖F‖2 + λ ‖τ‖2, (4.1)

where choosing λ = 1 is equivalent to measuring ‖w‖ according to an L2 metric
(equivalent to the Euclidean norm). The choice of λ is somewhat arbitrary since the
torque vector can be scaled differently than the force vector. (Ferrari and Canny,
1992)

The forces and torques acting on an object can be represented in a 6-dimensional
space having three variables for the three components of the total moment acting
on the object, and three more for the total force. This space is called the wrench
space and is denoted W. (Ferrari and Canny, 1992)
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4.1.2 Force and form closure

Figure 4.2: Form and force clo-
sure illustration. Illustration in-
spired by Bajd et al. (2010)

The force and form closure properties of a grasp
are concerned with the capability of a grasp to
partially or completely constrain an object and
its motions, as well as apply an arbitrary con-
tact force on the object without violating fric-
tion constraints at the contact points (Bicchi,
1995).

A grasp is said to be force closure if it is possible
to apply forces and torques at the contact points
such that any external force and torque can be
balanced by the robot (dependant on the robot
kinematics). Thus, put differently, a grasp is
said to be force closure if it is in equilibrium for
any arbitrary wrench. So, if there exists, for an

arbitrary wrench w, a vector λ that satisfies the contact constraints inequalities
such that

Wλ = w, (4.2)

where W is the combined wrench matrix, the grasp is defined force closure. (Bicchi
and Kumar, 2000)

In the analysis of force closure, one considers frictional forces, whilst one in form-
closure does not consider the friction component (Bicchi, 1995). Form closure is
defined as complete constraint of an object, like holding a rubber ball in your fist,
where the object grasped can withstand any disturbance wrench. By the same
notation, a grasp is said to be form closure if the following is fullfilled:

Wλ = 0, (4.3)

and W has full rank and λ > 0. Form closure is a stronger condition than force
closure and can be viewed as force closure with frictionless contact points. (Bicchi
and Kumar, 2000)

4.2 Good grasps and grasp selection

In their 2014 paper, Kraft et al. place a focus on grasp selection and generation
and ways to decrease the failure rates of grasps with bin-picking specifically. The
paper in its entirety is based upon the assumption that all objects in the bin are
the same, and known. The process of grasp selection can also be broken down into
a few points, regardless whether one imposes limitations or not: Choose a set of
“good grasps” G = {g1, ..., gn} that covers the object in SE(3) as well as possible.
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And for each grasp gα, a priority πα should be defined based on an estimate of the
success probability of that grasp.

The question of what a “good grasp” is, is complex and depends on the objective.
For example; Is it of interest to place the object a certain way or in a certain
configuration in the next bin, or when placing the item onto a conveyor belt in a
bin-picking application? Are differences in material affecting where it should be
grabbed? How can it be certain that the grasp will be maintained?

The early literature on this has been dominated by the use of metrics and the com-
putation of grasp quality evaluated with regards to the operation objective. Grasps
that fulfill the metric and has a high grasp quality have been labelled “good”. A
popular notion of a good grasp is typically defined with an approximation of the form
or force closure of a grasp, meaning how well a grasp can resist externally applied
wrenches (forces, torques and combinations thereof) (Kraft et al., 2014)

In their 1992 paper ”Planning optimal grasps”, Ferrari and Canny address the
problem of planning optimal grasps, or ”good grasps”. In their work they present
two optimality conditions that consider the total finger force and the maximum
finger force exerted by the robot on the object. They further formalize the intuition
of judging a grasp by considering the ratio between the magnitude of the maximum
wrench to be resisted over all possible direction, and some notion of the applied
(finger) force.

The criteria are formalized using various metrics on a space of generalized forces.
Grippers exert forces and torques on the grasps object through the contact points.
They ask the following question; Given the position of the gripper and the object
to be grasped, how can we say ”this is a good grasp”? In the paper they base their
two criteria on that the force closure condition defined in section 4.1.2 is satisfied.
Their work on optimal grasps have been referenced heavily in the literature.

4.3 Grasp plannners

Grasp planners are ready-made computer bases containing several options for hand
and object interaction. Grasp planners are a tool for both gripper designers and
those who implement grasping systems as one has the ability to investigate ones
design of a gripper or the interaction between a gripper and an object without
having to perform new full-scale experiments every time a new test needs to be
undertaken.
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4.3.1 GraspIt!

Figure 4.3: GraspIt! logo (Miller
and Allen, 2018)

GraspIt! is an interactive grasping simulator
that can import different robotic hands and
objects and evaluates the grasps made by the
hands on the object, making it easier to simu-
late both robotic hand design and functionality
of systems. The focus on the grasp analysis in
the simulator has been on force closure property
grasps which are useful for pick and place op-
erations, and the quality metrics for this prop-
erty assumes nothing about the space of exter-

nal forces that might be applied to the grasped object during the operation. As
of 2004 the grasp planner does not include a sophisticated trajectory generator or
path planner that is able to plan an approach from the robot initial pose to the
desired grasp pose in space, but this functionality is listed as a point under future
directions.

Furthermore grasp analysis is used to assess the quality of the grasp by examining
the properties of the grasp. When the object and hand touch forces can be trans-
mitted along the contact normal, and the Coulomb law is used in the planner to
determine the magnitude of forces acting in the tangent plane of the contact that
can be resisted by friction. (Miller and Allen, 2004)

4.3.2 OpenRAVE

Figure 4.4: OpenRAVE logo (Di-
ankov and Kuffner, 2018)

The OpenRAVE (Open Robotics and Anima-
tion Virtual Environment) architecture sup-
ports a range of robotic tasks, and was at first
designed to handle autonomous handling of ob-
jects. Initially, the focus of the planner was on
grasping objects. This includes calculating con-

tact points between the end-effector, (or tool provided a transformation exists from
tool centre point to end effector), and the object to be grasped. Furthermore, it
included calculations needed for computing force closure for grasps as well as grasp
stability. OpenRAVE has expanded in terms of including path planning to meet
demands for such functionality. (Diankov and Kuffner, 2008)

In their paper Diankov and Kuffner (2008) claim that, ”most grasping research
considers free-floating end-effectors able to approach a target from any direction”.
As this is not the case in most real world pick-and-place applications, inclusion of
the environment is necessary. This is to improve grasping success in unison with
optimal grasp configurations between the end effector and the object, as well as the
limitations of the robotic arm in use. This leads to the inclusion of reachability, also
in the cases where reachability is not simply a measure of whether there is an inverse
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kinematic solution to the problem or not (such as in mobile base applications).
(Diankov and Kuffner, 2008)

4.3.3 OpenGRASP

Figure 4.5: OpenGRASP logo
(León et al., 2018)

OpenGRASP is built upon OpenRAVE, and
has some functionality for collision checking
with the environment. León et al. (2010) have
added a robot editor which allows for more
streamlined implementation of the robot in use
for a specific application in the simulation.
This is a step in the direction of using and
implementing something like reachability and

environmental- or self-collisions which limit a robot from reaching a good grasp. In
OpenGRASP one can define the kinematics of a robot via its Denavit-Hartenberg
parameters. As this environment is based on OpenRAVE, sets of stable grasps are
readily available and the robot in the simulation can manipulate the object and
analyze contact points. (León et al., 2010)

To autonomously manipulate an object in the environment, there is a need for
an IK solver that maps grasp locations into robot configuration joints. This is
available in OpenRAVE, and thus also in OpenGRASP, and the solver returns all
possible solutions. In their test of grasping known objects, the grasp simulator was
used (off-line) to find a set of grasps that are force closure and as such, usable.
By also utilizing a vision system, the environment was mapped and the poses of
the objects estimated. That information was sent to the planning plug-in in the
software.
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Grasping combined with
motion planning

During the theory search for this project information on grasp physics, grasp prop-
erties, measures of grasp quality, methods to determine good grasps and grasp
planners are found readily available in many different shapes and forms. The prob-
lem of finding a good grasp seems to have been solved for a majority of hands and
fingers and for a multitude of objects.

The objective of this project however deviates slightly from these subjects. The
basis for the problem to be looked into presupposes an already available grasp,
which already has been ranked the optimal candidate for grasping. The question is
not ”is this a good or optimal grasp?”, but rather, ”given this optimal grasp, can
the robot reach it? And if so, how easy is it to reach?”

5.1 Separated solutions

Bin-picking is, as previously mentioned, a concoction of different technologies, and
branches within those technologies. Attempting a solution of the bin-picking prob-
lem by solving it part by part seems a good strategy due to the complexity of the
system as a whole. Combining solutions to subsystems is reasonably assumed to
lead to the solution of the system as a whole. As such, following this reasoning,
much research has been done on one of two things; finding good trajectories to
reach a desired pose and finding high quality grasp candidates. This leads to a new
problem: an optimal pose for grasping may not be feasible to reach for the robot
due to constraints in the workspace. Akinola et al. (2018)

There exists extensive previous work on the notion of grasping an object given that
the end-effector is already at the appropriate contact point, to initiate the actual

31
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grasping. If one is given a grasp which has proved itself to be good through the
appropriate metrics (for example the Ferrari-Canny metric), it does not matter
that it is perfect if the robot cannot reach it (Akinola et al., 2018).

Taking into account that the robot must be able to reach the grasp pose is detri-
mental for a successful bin-picking system. Given an optimal grasp from a grasp
planner, or a vision-based system as is the case with the SINTEF set-up, at least an
inverse kinematic solution must exist for the given pose. If there are no constraints
on the reachability of the robot, the optimal grasp is the best ranked grasp from the
planner. However, considering that the arm kinematics and the reachability of the
robot is a constraint on the system, additional consideration is necessary.

In its simplest form, checking for an inverse kinematics solution at the grasp candi-
date poses takes the arm kinematics and the robot into the equation. Once one has
a list of grasp candidates, the robot constraints are introduced and the reachability
comes into play. If there are no additional constraints, this is enough to find out
if a grasp is feasible or not (Saut and Sidobre, 2012). If the workspace is clear of
all obstruction and constraints other than the demand for reachability, an inverse
kinematics solution is a sufficient condition. The process then goes from

→ Find good grasp candidates, given the hand close to the object pose
→ Choose the optimal candidate based on grasp quality measures

to

→ Find good grasp candidates
→ Check the IK solution for candidates
→ Choose the optimal candidate based on grasp quality measures and that an

IK solution exists

5.2 Combining the problem

Combining the issues of motion planning and grasping, has improved the overall
picking results in comparison to solving them separately in multiple papers. A
few of these papers are presented here. In 2007, Berenson et al. published their
work on ”Grasp planning in complex scenes”, in 2009, Zacharias et al. published
their paper ”Online Generation of Reachable Grasps for Dexterous Manipulation
Using a Representation of the Reachable Workspace”, and in 2018, Akinola et al.
published their paper ”Workspace aware online grasp planning”. The methods and
ideas in these papers will be discussed briefly in this section.

Berenson et al. (2007) combined grasp analysis and manipulation planning tech-
niques to perform fast grasp planning in obstructed scenes. They also highlight the
issue with regards to planning a grasp where both gripper and object are disem-
bodied, and where the manipulator kinematics do not play a part. An illustrative
example is planning to grasp an object sitting on a table. If both gripper and
object were free-floating during the grasp planning phase and only operating on
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optimizing grasp properties, a grasp planner would spend as much time trying to
grasp the object through the table, as it would attempt to find grasps from above.
Furthermore it is stated, that the goal is not only to select a grasp that is stable,
but also to ensure that it is feasible, which is exactly in terms of what this project
is about.

Berenson et al. (2007) coin the term ”Grasp scoring function” where they combine
the demand for force closure, the feature of the object’s environment and the robot
kinematics. The method consists of a precomputation phase and an online one.
The precomputation uses a geometric model of the manipulator and the object to
be grasped to build a set of feasible grasps. The online phase computes a score for
each grasp using the grasp scoring function where the grasps are ranked according
to this function before they are validated by trying for an IK solution and checking
for collisions in the environment. Once a feasible grasp is found, a motion plan is
created to grasp. If the motion plan should fail, the algorithm returns to attempting
a plan for the grasp ranked second. By combining the environment and the robot
kinematics as well as grasp properties, they succeed in finding collision-free paths
to reachable and stable grasps.

Figure 5.1: ”Shows the reachability spheres across the workspace. The workspace
representation was cut (across the workspace) for better visibility of the structure”
(Zacharias et al., 2007)

Zacharias et al. (2009) look at two methods to ensure reachability of grasps. The
first method integrates the robot’s inverse kinematics into a grasp planner, and
the second method integrates their previously developed model of the reachable
workspace. In their first method, the grasp planner finds a valid grasp, before this
pose is checked for an inverse solution and whether or not the robot can reach
it.

Their second method uses a model of the reachable workspace denoted the ”ca-
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pability map”, presented in ”Capturing robot workspace structure: representing
robot capabilities” (Zacharias et al., 2007). To create the capability map, the the-
oretically possible workspace is enclosed by a cube and divided into smaller cubes.
In each of these smaller cubes, a sphere is inserted and on each of these spheres n
points are uniformly distributed. In each point, a coordinate system is generated
which serves as targets for checking the inverse kinematics. These spheres visual-
ize the reachable points in the workspace, and when concatenated, the reachable
workspace. This model can be used to estimate the workspace of the robot and
inspect reachability across it.

The capability map is a representation of the reachable sphere map. By providing
a grasp planner with this model, as a model of the robot’s reachable workspace,
the planner is able to predict the reachability of a grasp. See figure 5.1 for the
reachability spheres. Notice that this image along with the caption was collected
directly from Zacharias et al. (2007) and the paper ”Capturing robot workspace
structure: representing robot capabilities”, without any modification.

Figure 5.2: ”Top Row: Visualization of cross sections of the precomputed reach-
able space for a Fetch Robot and Staubli Arm with Barrett Hand. Green arrows
represent reachable poses, red arrows unreachable. This space is computed offline,
once for a given robot. Bottom Row: Signed Distance Field generated from the
above reachability spaces.” (Akinola et al., 2018)

Akinola et al. (2018) have designed a workspace aware online grasp planner that
considers the robot reachability along with grasp quality when deciding on the
optimal grasp. By solving these two aspects, motion planning and grasp quality,
jointly they show that it is possible to reduce the needed grasp planning time as
well as improve the success rate of the grasps. The goal is reached by introducing
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a bias in the reachability space that drives the end-effector along with the grasp
planner into accessible regions of the planning scene.

They generate a densely sampled reachability space offline, where a check for an
inverse kinematic solution is done, to establish whether that point in the space is
reachable. The reachability space is post-processed to become a signed distance
field, as can be viewed in figure 5.2. When creating the reachability space by just
checking for an inverse kinematic solution, the boundary to the unreachable portion
of the space is included. By also considering the distance to this boundary, dsdf, a
gradient becomes apparent. If there are any static obstacles in the planning scene,
these can also be added before computing the reachability space and the signed
distance field, such that these become part of the constraints on the planner. Both
the reachability space and the signed distance field are computed once, offline,
before the rest of the process is done online.

Since their method uses an optimization technique called simulated annealing which
handles nonlinearities well (Akinola et al., 2018), along with a significantly smaller
search space due to the knowledge of the reachability space, online grasp planning
can be done at a reasonable price computationally. Considering planners without
the same notion, a lot of time will likely be spent on planning grasps that are
not feasible. With the energy function describing reachability along with grasp
property, the optimization process drives the end-effector towards reachable areas
of the workspace by minimizing the energy, and finding ”low-energy” areas in the
workspace. After grasp planning, trajectory planning is done before the grasp is
executed. The energy function is:

E = G+ αR, (5.1)

where G is a measure (metric) of the grasp quality considering only the hand and
the object, whilst R is a measure of the reachability of the grasp pose and α is a
weighting parameter. (Akinola et al., 2018)

Akinola et al. (2018) build on the GraspIt! grasp planner when implementing their
work, where they add their energy function containing the combined grasp quality
term and reachability term. See figure 5.2 for the reachable space and the signed
distance field. Notice that this image along with the caption was collected directly
from Akinola et al. (2018) and the paper ”Workspace aware online grasp planning”,
without any modification.

When including the robot kinematics and the environment in the grasp plan-
ning process, a higher success rate is achieved, as shown by the works presented
here.
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Part III

Method and design
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Chapter 6

Implementation and
simulation

Based on the theory sections of this project, some form of testing on the SINTEF
set-up was essential to observe the application of some of the concepts discovered.
Considering the system set-up for this project, attempting to implement something
similar to Zacharias et al. (2009) and Akinola et al. (2018), and their work on
reachable workspace was of interest. Looking into how available a portion of the
workspace is, was of interest in terms of grasp success. By surveying the workspace
of a robot and identifying the reachable space in it, it could be possible to say
something about the availability of the grasps in that area. By looking into this
for the SINTEF set-up, it is possible to outline a method of checking the quality
of a grasp set.

→ Identify grasp candidates
→ Check for IK solution for candidates
→ Check if a collision-free path exists
→ Investigate and conclude on the reachability of this area

This chapter will be regarding own implementations and testing on the Sintef-setup,
inspired by the work done by Zacharias et al. (2009) and Akinola et al. (2018) to
investigate reachability. Furthermore, part of the project was to come up with and
test a metric for the reachability of different optimal grasps, this is also covered in
this chapter.

6.1 Metrics

A metric is a measurement of a specific characteristic of a system or phenomenon.
In this project it is assumed that any grasp available for testing, such as the grasps
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generated to execute experiments on, are optimal and already fulfill some kind
of grasp metric, for example the Ferrari-Canny metric. Hence, grasp metrics are
outside the scope of this work, and assumed to hold.

In terms of metrics for how easy it is to reach the proposed grasp, that is a different
demand. Two serial demands must hold for the grasps if they are to be considered
successful, regardless of the fact that the grasps themselves are deemed optimal.
The first demand we put on the grasps is naturally that there must exist an inverse
kinematics solution for the robot at the grasp pose, otherwise grasping is impossible.
Secondly, there must also exist a valid collision-free motion plan to said pose. If
pose conditions hold, the robot is able to move to this pose and grasp the object. If
there exists an IK solution and a plan exists, we deem the grasp reachable.

Tying this to for example the energy function Akinola et al. (2018) presented, where
it is assumed that the grasp part of the energy function can be neglected due to
its optimality, also making the trade-off variable r redundant, we get the following
simple expression to minimize:

E = G+ αR (6.1)

E = αR (6.2)

E = R (6.3)

Since our now very simple energy function is only one variable, the objective is
simply to choose the region of the workspace proven itself to have the highest
degree of reachability, and as such having scored the highest according to the
defined metric.

6.2 Description of experiment

From Akinola et al. (2018) and other sources it is known that a grasp is reachable
if there exists a motion plan to move the robotic arm from an initial or current
configuration to the goal configuration that places the gripper at the grasp pose.
The number one reason causing a motion plan not to be found is a lack of inverse
kinematic solution at the grasp pose. Other reasons include self collision or colli-
sions with other objects in the workspace (Akinola et al., 2018). From figure 3.5,
it is clear that with this set-up, self-collision and collisions with the environment is
a possibility. Not finding an inverse kinematic solution is also a risk. We observe
potential self-collisions with the camera house and collisions with the table, the bin
(edges) and the pillar.

The program Rviz was used to visualize the robot, it’s workspace and the gener-
ated grasp poses. The plug-in MoveIt! was used to plan a path to the potential
grasps.

Observing figure 6.1, the objective of the bin-picking process is to align the coor-
dinate system attached to the tool with the coordinate system at the grasp pose.
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This is indicative of a successful grasp. At the bottom of the image, several coor-
dinate systems are generated at a set height. These are meant to represent a set
of grasp poses. A subset of the workspace was sampled and poses were generated
with a set distance apart in both x and y direction with constant z, considering
that the bin to be picked from is planar. 18 points were created, and the same 27
poses were created in all of them to investigate both the properties of the points
in the space, and the poses.

Figure 6.1: A selection of grasp poses (evenly spaced coordinate system in the
bottom of the image) and the robot with camera house as viewed in Rviz

At each point, there are several rotated coordinate systems. This was done to in-
vestigate the reachability of multiple grasps at the same position, but with different
orientation. This is needed due to the extra degree of freedom in the final wrist
joint. Since the grasp given by the deep neural network is given only as a point
and a unit axis, an arbitrary rotation around this axis might provide a solution.
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The coordinate systems which are seen in the figure are thus manually generated,
to check if a rotation provides a solution.

The goal was, for each possible pose at each point, to save the following information:
the transformation matrix of the grasp pose given in the base coordinate frame;
T base
grip , a Boolean variable for whether or not there existed an inverse kinematic

solution at this pose, and if there was one, the joint angles, q, needed to reach
it. By first investigating if an IK solution was available, we avoided the task of
attempting to plan a path for a grasp known to be unreachable. Also, by this
two-step method, some computational effort is avoided, and the ability to check
ones results underway is available. An option to checking for an inverse kinematic
solution and then for a path with the corresponding joint angles, is to plan directly
with the grasp pose as this also is a possibility with MoveIt!.

Furthermore, after establishing whether or not there existed an IK solution, plan-
ning a path to check for collisions was necessary. That there exists an IK solution
is a good property, but is not sufficient for investigating reachability. So, if there
was an IK solution for a given grasp pose, the corresponding joint angles were
given to a path planner that checked for potential collisions. Since the program
has available the description of the robot, the pillar and the camera house, using
the plug-in MoveIt! would be able to provide the correct results.

After checking all poses for an IK solution and a collision-free path, if both prop-
erties were fulfilled, the grasp pose was said to be reachable and saved. If we
compare this method to the work done by Akinola et al. (2018), it is clear that
they sample the whole workspace, and we only a small section of it. Considering
that the placement of the bin in the SINTEF set-up currently is decided, initial
investigation into the reachability of this area and areas around this location was
of interest.

6.3 Results

Figure 6.2: Result presentation
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The next sections present the results from the experiment done on the SINTEF
set-up. The experiment was split into two parts, one part for checking for solutions
to the inverse kinematics problem at all generated poses, and one for investigating
whether or not there existed a motion plan to the poses using MoveIt!s built in
planner. The reason for using this planner was that it has readily available the
robot description file and was able to take into account the camera house attached
at the end-effector. In figures 6.3 to 6.7 the leftmost corner towards the reader
corresponds to the leftmost bottom corner of the heatmaps, as indicated in figure
6.2.

6.3.1 Checking for inverse kinematic solutions

Figure 6.3: IK coverage using the scan configuration as seed to the solver

Figure 6.4: IK coverage using the first set of initial joint values as seed to the solver
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As stated in the above section, the first test done on the grasp poses is the inverse
kinematics test. The solver is called for each and every one of the poses, and indi-
cates with a Boolean value whether or not there exists a solution for the particular
pose. In this project we did two rounds of experiments, with two different seeds.
A seed functions like an initial condition, and indicates where the solver should
start looking for a solution to the problem. To investigate both the performance
of applying different seeds as well as finding a good seed to increase the success of
grasping, two seeds were considered.

The first round was done with the robot scan configuration as the seed, the pose
where the manipulator scans the bin looking for the optimal grasp. This is also
the pose where it needs to be able to plan a path from. By using this seed, we
obtained the results seen in figure 6.3.

When looking at figure 6.3 we see the IK coverage when utilizing the scan configu-
ration as seed to the solver. It is somewhat surprising to see that there is a higher
coverage to the left of the area investigated and a lesser coverage to the right. It
was somewhat expected that there would be more problematic to find solutions
at the left most side as there previously have been some issues regarding collisions
with the base when coming in from this side. However, since paths are planned at a
later time and the inverse kinematic solution does not take into account collisions,
it is reasonable nonetheless. The reason for not having obtained a higher coverage
could be due to the constraints of the camera house.

The second round of experiments used the first set of joint angles generated as
the seed. When the first pose was generated, there existed an inverse kinematic
solution, and the joint angles needed to reach this, was used as a starting point for
the solver. This means that this seed is significantly closer to the area where the
grasps are, and where the gripper will need to be placed. By instead using this
seed, we obtained the following results, presented in figure 6.4.

When viewing figure 6.4 we see a slightly higher coverage of found solutions. Con-
sidering that the poses are exactly the same, it seems that the choice of seed has a
significant impact. This is supported by the observations made by Zacharias et al.
(2007) where they state that since an inverse kinematic solution for a redundant
robot (we have some freedom regarding the rotation of wrist 3) does not have
a unique solution, a starting solution that is already near the desired solution is
beneficial.
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6.3.2 Checking for motion plans

Figure 6.5: Motion plan coverage using the scan configuration as seed to the IK
solver

Figure 6.6: Motion plan coverage using the first set of initial joint values as seed
to the IK solver

By using the results obtained for whether or not we had an IK solution, the next
step was to see if it was possible to plan a path to obtain these joint angles and in
extension if the grasp pose was reachable for the robot. It is of course expected that
there exists no path if there is no IK solution, and in the following figures we see the
statistics showing whether or not there exists a path from the scan configuration
to the different poses. In figure 6.5 we see the results of attempting to plan a path
to joint angles found from the IK solver when using the scan configuration as the
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starting point, and in figure 6.6 the same objective, but using the first obtained
joint angles as seed.

Looking at figure 6.5, these are not very good results. We observe that there is
close to no coverage of viable motion plans to the left, but fortunately there are
some possibilities when going to the right, where perhaps it is more viable for the
robot to avoid a collision with the pillar it is placed on. In figure 6.6 however,
there is a significant increase in solutions, and there is a slightly better chance
of a viable motion plan if one can approach the ”rectangle of poses” from the
right. Considering that the different seed to the solver is the only variable that has
changed, this must contribute to the jump in solutions found. The next step in the
procedure, was to combine the results.

6.3.3 IK + motion-plan

Figure 6.7: Combined reachability in the space of interest

Combining the results obtained for the inverse kinematics solution and the motion-
plan results give the following overview. These points represent the percentage of
reachable poses at each of the points considering all the poses at the point. This
is simply an AND-operation between the Boolean values for the existence of an
inverse kinematic solution, and whether or not there existed a path to the pose.
It comes as no surprise then, that the existence of a motion plan plays the role of
limiting reactant and that the same result as for motion plan coverage is obtained,
as can be viewed in figure 6.7 for the second attempted seed. Hence, the result
for using the scan configuration as seed was identical as the results seen in figure
6.5.
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6.3.4 Interpreting the results

Scan config. as seed First joints as seed Difference

IK 59.67% 64.81% 5.14%

Path 6.38% 26.95% 20.57%

IK + Path 6.38% 26.95% 20.57%

Table 6.1: Overview of average results

When comparing the two seeds, there was a 5.14% increase in IK coverage from the
first to the second. This is not a huge increase, but significant enough to conclude
that it seems the better option. However, when planning a path, there was a 20.57%
increase in motion plans found when changing the seed to the latter. In addition
to this significant increase, the overall success of planning a path was significantly
lower than that of an inverse kinematic solution. It is difficult to conclude exactly
what has caused this effect, but it at least seems like the choice of seed to the solver
is of great importance for feasible solutions for path planning.

Based on the first figures, indicating the coverage of inverse kinematics solutions,
these seem like good results considering all the different rotations in each point.
That there is a 70% coverage in some areas of the region of interest seems to be
a positive result considering the constraint on the system in terms of the cam-
era house. The increase in coverage when changing the seed to be closer to the
solutions, also fit nicely with expectations.

It was of interest to observe that there existed so few motion plans compared to
inverse kinematic solutions, considering that the closest obstacle in the environment
to the robot is the pillar upon which it is placed. Even considering the size of the
camera house and the constraint this puts on the system regarding self-collisions
at the wrist, it seems a little peculiar to see that less than half of the poses which
there existed an inverse kinematic solution for has a feasible path to it.

Since the previous sections only dealt with the quality of different points and rota-
tions around them (18 points in space which contained 27 different poses), looking
into the ”quality” of the different poses was also of interest as a final check of
the results obtained. Especially considering the results obtained when attempting
path planning the following figures show how the different poses performed in the
region of interest. For example when viewing figures 6.8 and 6.9, the first pose
attempted had a full score for IK, it found a solution in all the points, whilst two
of the points where unfeasible in terms of a path.

We may also observe that there was a much higher coverage of obtainable paths
for the first five poses that were investigated. Considering the risks of a collision
with the base or a self-collision with the camera house, perhaps an idea is to
approach the grasping from an angle which minimizes these factors in terms of robot
poses and not only which points in the workspace that have an inverse kinematic
solution.
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Figure 6.8: Inverse kinematics coverage for the different poses
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Figure 6.9: Path planning coverage for the different poses
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Chapter 7

Discussion and results

7.1 Discussion

This project has been on grasp selection in bin-picking tasks for robotic manipulator
arm with end-effector geometric constraints, with a basis in the set-up employed
by SINTEF Digital Trondheim. The project has looked into different aspects of
robotic manipulators at the heart of the bin-picking problem and focused on the
investigation of reachability as a metric to evaluate different optimal grasps, and
how attainable they were. Furthermore, this simple metric of reachability was
investigated on the real system.

Based on the interpretations of the results in the previous chapter, we have con-
firmed that an inverse kinematic solution is a necessary condition for a grasp to be
reachable, as well as there must exist a path to reach this solution for it to be com-
pletely reachable. The investigations made into the SINTEF set-up with regards to
the reachability metric were inspired by state-of-the-art work on reachability and
the combination of grasp planning and motion planning as a single problem to be
solved, as shown in chapter 5.

Based on the results presented, it seems that the seed given to the inverse kine-
matics solver has a great impact on the results obtained, especially with regards
to path planning. This effect should be investigated further, to see if this truly
is the case, or if there might be something wrong with the data. Furthermore,
the reachability of the area investigated, using the seed which gave the most path
planning solutions, ended up with a reachability averaging 26.95%. This result
has potential for improvement, and parts of the future work should include a more
comprehensive look at the whole workspace of the robot with all its constraints, to
look into if there exists a better placement for the bin.
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7.2 Future work

With regards to future work based on this project, a few things could be valuable
to investigate further to obtain a more comprehensive study:

• Expand the part of the workspace that is explored for reachability to in-
vestigate where the optimal placement of the bin should be based on the
reachability condition. By doing a wider analysis of the workspace, an op-
timal placement of the bin could reveal itself such that one knows one has
the best base for bin-picking. It could also be beneficial to test different path
planners and inverse kinematics solvers and seeds.

• Look at more comprehensive metrics in terms of ranking grasps from best
to worst. In this project several grasps were looked at, but in terms of
ranking, this is for now binary. Either the grasp was reachable or it was
not. The points are then only ranked based on this score. An idea might
be to look more closely at how much time the process of checking for an
inverse kinematics solution takes in addition to planning time, as well as of
course the execution time the process of picking an object at a specific grasp
takes. Other metrics could include ranking grasps which demands for the
least change in the robot configuration.

• Look more into different robot configurations and how others have chosen
their configuration to best achieve good results. A theory search is required
to map this, and which set-ups have yielded the best results. Also consider
others who have used the UR5 robot and their solutions.

• It is worthwhile to look more into different types of set-ups in regards to
sensor placement. As of now the 3D camera is mounted at the end-effector of
the robot, and the gripper is placed on the side of the camera house resulting
in geometric end-effector constraints. There are at least two different methods
for camera placement; eye-in-hand and object-in-hand. These two methods
could be investigated further to do an analysis of the placement of the gripper
and if a change in set-up could increase the probability of reaching a grasp
by increasing the reachable space of the robot.

• A more comprehensive study of the workings of the SINTEF set-up and the
possibility to use the machine learning and computer vision to increase the
probability for a good grasp. Look more at the software aspect of the system,
and not limit the study to mostly hardware sensitive aspects.

7.3 Concluding remarks

The literature this project is based on gives insight into the importance of bin-
picking in industry as well as the technological challenges associated with it. Com-
bining the problem of grasp planning and motion planning as described in the
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literature review, has proven to increase the success rate of grasping significantly,
even to a point where grasp planning online has been a feasible alternative to
grasp databases and off-line created look-up tables. Based on these results, and
own findings through testing and simulation, the combination of these robot prob-
lems includes the robot and the environment in the grasping process, which seems
detrimental for success.

In this project the reachability of a UR5 manipulator with end-effector geometric
constraints has been investigated. As a metric to rank with what ease the given
optimal grasp poses were obtainable, a section of the workspace was investigated
for the existence of an inverse kinematic solution and the existence of a motion
plan to the said grasp poses. The coverage of inverse kinematics solutions were
in the 70% range, and quite similar in value when comparing the two seeds used
with the inverse kinematics solver, only an increase in around 5% separated the
first seed from the (closer to the solution) second seed. However, when the process
of looking for, and planning for, feasible paths from the set scan configuration in
the bin-picking system, a much less favorable trend in coverage became apparent.
The best results gave an average value of around 25% success, which is significantly
less than the coverage for inverse kinematic solutions. To conclude this part of the
project, some future work in investigating this prominent trend in less coverage for
motion plans is of interest.
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