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Abstract

Robotic bin-picking is the problem of grasping objects placed randomly in a bin and moving
the objects to a desired location one by one. The problem often arises in industrial settings
where items come out in bulk and need to be processed individually. Bin-picking exists as of
today at the intersection between industrial application and academic research; task-specific
systems exists in the industry, and the research community is executing extensive research to
find a more general solution to this problem. This thesis aims to support this research trend
by investigating grasp selection in a robotic bin-picking system where end-effector geometric
constraints are present.

The problem at hand can be summarized as: ”given a valid grasp on an object, how easy
or difficult is it for the robot to reach said grasp while considering all its constraints?” This
work investigates a step-wise answer to this question. To motivate the solution, a background in
robotics, grasping and motion planning is given. Furthermore, current research within combined
grasp- and motion planning, with a focus on workspace representation of accessible regions is
presented.

Working with the robot set-up in simulation, the first step towards answering this question,
was to map an appropriate part of the workspace of the robot. This workspace mapping was
undertaken in order to place the bin optimally in terms of how much of the bin area can be
reached by the robot. The workspace map is created by organizing the coverage of inverse
kinematic solutions across it, along with investigating if a path can be found to the different
regions of the space. When placing the bin optimally in terms of inverse kinematic solution- and
path existence, the threshold on how easy a grasp could be reached in the bin was lowered.

In this new bin area (optimized with respect to reachability and path existence), new maps were
constructed. Since the objective of the work was to identify ”easy to reach”-grasps, it was of
utmost importance to also map this new bin space in terms of the two metrics, 1) reachability
and 2) path existence. By testing different motion planners with several optimization objectives
in this area, even more information about the bin space becomes apparent. The metrics 3) path
length, 4) planning time needed, and 5) the execution time utilized for different paths to cover
the bin space provide more information. Using these aforementioned metrics, the most ”easy-
to-reach” regions in the bin could be identified. The path reachability map of the bin includes
these metrics, implicitly including inverse kinematics, path planning and collision-checking in
the map.

The work culminates in the use of the path reachability map in an algorithm, where robot
abilities are taken into account when choosing a grasp to attempt. A cost function evaluates
if the grasp is valid in terms of inverse kinematics and path existence, whilst also taking into
account the efficiency of the grasp in terms of a previously identified path. Paths that are
short, take little time to plan and execute are preferred over less efficient grasps, enabling faster,
more ”robot friendly” picking. Based on these results, faster and more efficient picking can be
achieved by including robot capabilities in the grasp selection process.

The work undertaken during this period and the results mentioned also culminated in a paper
entitled ”Robotic Bin-picking under Geometric End-Effector Constraints: Bin Placement and
Grasp Selection” submitted to the International Conference on Control, Mechatronics and Au-
tomation 2019 (Gravdahl et al., 2019), which is presented in its entirety in the appendix.
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Chapter 1

Introduction

The following thesis titled ”Grasp selection in bin picking tasks for robotic manipulator arm
with end-effector geometric constraints”, details and explains the work completed during the
spring of 2019 concluding a 2-year masters degree at the Norwegian University of Science and
Technology. The work presented here builds on the results obtained from the specialization
project within the same thematic completed during the fall of 2018. This introductory chapter
will begin with motivating the problem of bin-picking and outlining the problem formulation
with regards to this theme. Furthermore, the assumptions shaping the work will be presented,
before the contributions of the work are accounted for. This chapter concludes with an outline
of the remaining chapters, describing briefly the content of this thesis.

1.1 Motivation

†To motivate the thematic of bin-picking, and why this is an interesting problem from both a
scientific and industrial point of view, a complementary example is presented.

Imagine that you are tasked with moving 10 apples from one crate to another. This seems a
simple enough problem to solve. You grab one apple, with either hand, move the apple to its
desired location and you put it down or drop it in the second crate. And then you repeat the
process nine more times.

In the completion of this task you have used your eyes as a 3D sensor, scanned the environment,
estimated the distance to the apples, registered its position and orientation with a ”reference
apple” in mind and decided which apple it is best to grab first based on how they all are
positioned in the crate. You have used previous experience and knowledge to estimate its
consistency, weight and centre of mass. This enables you to know where to grab the apple for
an optimal grip, how hard you should grab it, how tight you should hold it when you move it
and when you can drop it into the bin without damaging it. Using your fingers and palm as a
gripper with force feedback to hold the apple enables you to adjust your grip as to not damage
it as well, as you can feel the force you are exerting on the apple.

When you scanned your environment you also knew how far away the second crate was and what
the optimal path you should take to unload the apple was. The process of moving the apples
was not difficult, but you used your own sensors and actuators in real-time to achieve the goal.

†The example in this section is a reiteration of the same example, also presented in the specialization project
(Gravdahl, 2018)

1
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Perhaps you also tried to optimize the process after having moved a few of the apples? Maybe
you moved because you thought you could get the job done faster if you stood closer to the second
crate, but then moved back because this made it harder to grab an apple from the first crate?
All these aspects and processes we take for granted to solve this problem must be transferred
to a robot for it to manage the same task, but how can we make it see its surroundings and let
it know or teach it how it should grab the apple without damaging it? And how can we make
a robot aware of whether it actually can grab the apple or not when it has figured out how to
grasp it?

Robotic bin-picking is a classic robot problem, where the objective is to achieve a pick-and-place
routine in a randomized environment. The robot is presented with a bin, containing some object
or parts and its task is to pick an item, one at the time, and place them safely in the next bin.
In an industrial setting this could for example be on to the next conveyor belt or a new work
station. This is a tedious task for humans where we perhaps do not reflect on the complexity
of it, and being able to employ robots in our place would allow an increase in efficiency and
predictable timing of for example an assembly process.

1.2 Problem formulation

1.2.1 Bin-picking set-up

Figure 1.1: Photo of the robot cell at SINTEF
Digital Trondheim. Notice especially the cam-
era housing with the L-shaped gripper attached.
Photo courtesy of Katrine Seel, MSc, SINTEF
Digital.

The title of this thesis is ”Grasp selection in bin-
picking tasks for robotic manipulator arm with
end-effector geometric constraints”, and in Fig-
ure 1.1 the robot cell can be seen. The cell is
the space where the robot operates, also contain-
ing the different items in its immediate surround-
ings; for example the bin containing the objects
that are to be picked and the table the bin is
placed upon. The robot is a UR5 (Universal
Robots), and at its final link, the end-effector,
a big box can be seen. This camera housing pro-
tects a Zivid 3D camera that is used to scan the
bin seen on the table with the parts in it, and is
what constitutes the ”end-effector geometric con-
straints”. This is what is called an eye-in-hand
contraption, where the sensor is placed in ”the
hand” of the robot. The L-shaped object on the
side of this camera housing ends in a suction cup
used for gripping the objects. The robot base is
placed on a pedestal which can be seen as the
black cylinder behind the camera housing.

In this system, the 3D sensor obtains depth im-
ages, point clouds, of the distribution of cylindri-
cal objects in the bin, which can be seen in Figure
1.2. The sensor obtains the position and orienta-
tion of the objects from the point cloud. Which
object to grasp is decided by a dual-resolution
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convolutional neural network (Dyrstad et al., 2018) that takes the point cloud of the current
distribution of objects in the bin as input. The motivation behind using a neural network to
determine the best way to grasp an object will be accounted for at a later time, as well as how
the grasps are presented to the robot. The neural network supplies a list of grasps in prioritized
order, where the first grasp outputted is attempted by the robot. If the path to the grasp or the
grasping itself fails, the next grasp in the list is chosen. If the grasp and path to it is successful,
a new point cloud is captured by the 3D sensor and the process begins anew. The flow of this
part of the system can be seen in Figure 1.3.

Figure 1.2: Cylindrical objects to be picked from plastic bin covered with felt. Photo courtesy of Katrine
Seel, MSc, SINTEF Digital

Figure 1.3: Illustration of the current work flow in the bin-picking system at SINTEF Digital Trondheim.

1.2.2 Assignment

Bin picking is the problem of grasping objects randomly placed in a bin. This is a problem
that often occurs in industrial settings where objects come out of a production line packaged in
bulk, without isolating individual objects, and where the objects are transported to a second
production line that subsequently must isolate and process these objects individually. Informa-
tion from a 3D-sensor is used to compute many possible grasps based on how the objects are
placed in the bin. When the 3D-sensor is attached to the robotic arm performing the grasps this
imposes additional constraints on how the robotic manipulator arm can move while avoiding
self-collisions and collisions with the bin or other parts of the environment. The overall goal
of this assignment is to find a way to judge which grasps are favourable for grasping with the
robotic manipulator arm.

Assignment:

• Make a literature review of state-of-the-art methods relevant to achieve the described goal
• Design one or more metrics suitable to evaluate different grasps, which then can be used

to judge the performance of different methods. The picking should preferably be carried
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out as fast as possible, but it might be useful to consider other metrics, for instance related
to safety.

• Set up a simulation environment suited for testing. The simulation should be a represen-
tation of the physical setup that SINTEF and NTNU already using for bin picking.

• Implement at least one of these methods, and test it in the simulated environment

1.3 Assumptions

To limit the scope of this thesis, the following assumptions are made, and assumed to hold true
for the duration of the work period:

• The work accomplished within this thesis is all based upon the bin-picking set-up depicted
in Figure 1.1. This includes the specific gripper, robot and remaining design. Other robot
set-ups or bin-picking solutions will not be considered, and the results concluded upon are
valid for this set-up only, as the work is only tested on this system.

• The grasps supplied to the robot for picking are supplied by a neural network. These
grasps are considered optimal in terms of grasp quality, meaning that it is assumed that
all the grasps provided are valid. The functionality of the neural network and how the
grasps are produced is not part of this work. The aspects of the grasp selection process
that is decisive for the completion of this work will be explained at the appropriate place
in the text. The functionality of the network and image processing which will not be
discussed further.

• The pose estimation by the Zivid 3D camera, and the calibration of this sensor is assumed
to be correct and in order. The functionality of the sensor and its associated calibration
routines is outside the scope of this thesis.

• The current placement of the bin as seen in Figure 1.1 is based upon the optimal range
of the sensor in terms of obtaining quality images. During the process of this work, this
optimal range is not considered.

1.4 Contributions

This thesis has been conducted in cooperation with SINTEF Digital Trondheim, under the
supervision of senior researcher Esten Ingar Grøtli and MSc Katrine Seel. The Robot Operating
System (ROS) workspace forms the basis upon which this work is built, and has been provided
in its entirety by SINTEF Digital. Contributions will first be given in order of chapter in a list,
and then in a more comprehensive manner.

Contributions include, in order of chapter:

• An overview of previous research conducted on the combination of grasp planning and
motion planning found in Chapter 6, based on the literature review conducted on the
themes separately in Chapter 4 and 5 respectively.

• A method for mapping the workspace of a UR5 with end-effector geometric constraints is
presented in Chapter 7. Also in this chapter, how to use the workspace map to identify
optimal bin placement in terms of the map characteristics is presented. Furthermore, for
this optimal placement, a method for also mapping this space is accounted for.

• An algorithm taking into account the robot abilities and its path reachability is presented,
implemented and tested in Chapter 8, concluding the work.
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• This thesis has culminated in an article available appendix A titled ”Robotic Bin-picking
under Geometric End-Effector Constraints: Bin Placement and Grasp Selection” sub-
mitted to the 7th International Conference on Control, Mechatronics and Automation
(Gravdahl et al., 2019).

In this work, it will be shown that mapping the workspace of the robot manipulator arm,
positioning the bin based on this workspace mapping, and thoroughly re-mapping this space
with potential grasps offline can increase picking success. The picking success is increased by
placing the bin in a more accessible region of the workspace, as well as prioritizing grasps
corresponding to short path lengths and low time consumption. Using this mapping data in
conjunction with the output from the neural network to connect these subsystems, it is possible
to re-arrange the preferred output from the neural network in terms of the robots ability to
pick the objects, prioritizing grasps reachable by the robot. Mapping in this context refers to
creating a map of the robot abilities. Due to the additional constraints on the system imposed
by the pedestal, the camera housing, and potential collisions with the bin, in addition to an
inverse kinematic (IK) solution existing, a collision-free motion plan must exist for a pose to be
reachable.

The contributions of this work include utilizing the combined result of IK solutions and motion-
plan existence in the workspace to place the bin optimally. Optimally in this context refers to
the region of the workspace with the highest concentration of IK solutions and motion-plans.
Furthermore, in this optimal region, different planners and optimization objectives from the
Open Motion Planning Library (OMPL) (Şucan et al., 2012) was investigated in terms of several
metrics; path existence, path length, planning time and execution time. Moreover, a method for
introducing the aforementioned metrics of the robot into the grasp selection process, without
the need for explicitly querying an IK solver, path-planner or collision-checker is described,
implemented and tested upon the simulated environment.

1.5 Outline

The report is organized into chapters with the following main content:

• Chapter 2: A background in bin-picking is introduced, with a discussion regarding its
challenges and motivating the importance of doing research within this field.

• Chapter 3: A background in robotics is presented, including the definitions of the robot
workspace, the configuration space and robot kinematics. In this chapter, the structure of
the Robot Operating System (ROS) is introduced along with the most important libraries
and plug-ins utilized in this work.

• Chapter 4: A brief introduction to robotic grasping and associated definitions is given.
The grasps supplied within the system at hand is also detailed here.

• Chapter 5: Motion planning is defined and introduced from an algorithmic perspective,
along with the functionality of motion planning algorithms used in this thesis.

• Chapter 6: The definition of path reachability is given. A literature overview of work con-
ducted on combining motion planning and grasping in an integrated system is presented,
along with reflections on impacts these implementations might have on the set-up at hand.

• Chapter 7: This chapter details the method and some of the results obtained during the
work. This includes:
→ A reiteration of work done on grasp selection previously on the SINTEF set-up.
→ Workspace mapping of the UR5 based on the metric path reachability.
→ Bin placement based upon this workspace mapping and metric.
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→ Creation of path reachability maps in the new region the bin is placed.
→ A procedure for testing of different planners and optimization objectives in terms of

different path metrics.
• Chapter 8: This chapter details the main results and contains a case study detailing the

use of the path reachability algorithm and the results obtained with its use.
• Chapter 9: Concluding remarks are made, and suggestions for future work is accounted

for.
• Appendices: In the appendix, the article titled ”Robotic Bin-picking under Geomet-

ric End-Effector Constraints: Bin Placement and Grasp Selection” submitted to the 7th
International Conference on Control, Mechatronics and Automation is presented in its
entirety.



Chapter 2

Bin-picking background

Randomized bin-picking is the problem of picking objects from one location where they are
distributed randomly and place them in another location, often in a more ordered fashion. The
problem often occurs in industrial settings. Several workstations may exist for a production
line where individual parts are clustered together and must be moved to a second stage in the
process for further work. The objective is to pick and place each individual part from a bin
of many. The following sections will detail the problem of randomized bin-picking, as well as
discuss the motivation behind looking for a solution to the problem, and the impact a solution
might have on the industry.

2.1 Bin-picking

A bin-picking system is a mixture of technologies working together towards a main goal. The pro-
cess of bin-picking has been nicely summarized by Kraft et al. (2014) into these four steps:

1. Use a sensor system to detect an object in the bin and its position and orientation (pose).
2. Find and select an appropriate way to grasp the object.
3. Execute the appropriate robot motion to grasp the object.
4. If the grasp was successful, move the object to a desired location.

The task at hand; detect object, plan a grasp, plan and execute a robot motion, and move the
object to a new location. As with the apple example in the previous chapter, the process itself is
clear in its goal, and it is a comprehensible problem. However, when investigating each of these
well defined steps in the process, a plethora of sub-steps become apparent. With the theme of
this work in mind, step 3 in the list by Kraft et al. (2014) above resembles the objective the
most. The goal is not only to execute the appropriate robot motion to reach a grasp, but focus
on grasps that are easy to reach for the robot. This step is accessible in understanding, but
several smaller steps must be considered.

A bin-picking system is not a ”one system fits all” application. Which type of robot one wishes
to use, and its reach as well as its geometry and design will constrain a bin-picking system to
operate within the constraints enforced by the robot (Bogue, 2014). Also considering the item
to be picked is of utmost importance. The same system can not necessarily be used to pick
both needles and wooden logs for example, even though the software side of the system can be
the same in design. If these two items are to be picked, a robot with a larger payload limit will
be necessary to pick the logs, whilst for picking the needles a lightweight robot with perhaps

7
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a magnet gripper of sorts will suffice. The type of gripper will also need to be customized to
the system at hand. The objects to be picked also dictate the kind of vision system that is
to be used, so a choice of sensor is also something to consider. This goes for both the type of
objects as well as how randomly they are placed in the bin, which can range from organized to
completely random (Bogue, 2014). Palletizing for example, can be thought of as an ”ordered”
bin-picking process, and this is widely implemented in the industry.

A bin-picking solution is often tailored specifically to one type of object, vision system and
robotic set-up. Marvel et al. (2012) have undertaken a technology readiness study of bin-picking
and mention metrics that a bin-picking system may be evaluated on the basis of. When a
solution has been obtained, three principal performance metrics can be used to evaluate the
solution; speed, efficiency and accuracy (Marvel et al., 2012).

The speed of the solution refers to both the time needed to pick an object, called picking time,
as well as the rate of the picking, the bandwidth. A slow solution to the bin-picking problem,
even though it is a solution, might not fulfill the demands of the industrial parties interested
in using such a system. When automating a process, one is often interested in increasing the
bandwidth, to get more work done over a lesser time period. The next performance metric
mentioned is the efficiency of the solution. This refers to the amount of time used to acquire
an object from the bin, compared to the amount of time spent searching and processing the
information needed to pick it, the grasping quality and how efficiently the robot moves in and
out of the bin. If a system is very fast in the robotic picking, it has high speed, but spends
twice as long planning a full picking operation, and the robot often collides with the bin, the
system is not very effective. In terms of using a system in the industry, reliability is key, and if
the system is not very efficient, problems in predicting how much can be manufactured and the
output volume of products will prove difficult to estimate. The final metric is the accuracy of the
system, and refers to how small the measurement error is in both object recognition and pose
estimation. Using a reliable, efficient system will be decisive if it is to be used in the industry
(Marvel et al., 2012).

When reflecting over these performance metrics, the efficiency of the system entails the most
details where the robot is at the centre. An educated guess as to what is the limiting factor
within this metric leads to the robot motion generation step. A robot motion and its execution
time will be much longer than the time needed to plan for a grasp relatively speaking. From
this it is possible to deduce that more efficient picking can be obtained with more optimal robot
motions, and prioritizing grasps that are accessible to the robot, also in terms of collisions. It
is at least, an area worth keeping in mind.

Along with the three performance metrics, three primary challenge domains are also presented
by Marvel et al. (2012), that highlight well the complicated structure of bin-picking systems
from an industry perspective. This perspective is particularly useful, since it is in this domain
the applications are most likely to be used. The challenge domains are sensing, hardware issues
and solution integration (Marvel et al., 2012).

The sensing domain includes algorithm development with respect to the sensors involved and
the optimization of the work cell; the space where the robot operates including any obstructions.
A common input to the 3D sensor, which is to identify the parts in the bin, is a CAD-model
of the objects. If the sensor for example is ill-calibrated, one runs the risk of not being able
to detect any objects. And if no object is detected, no picking can be carried out. Another
aspect of the sensing domain is lighting conditions in the work cell. Light sources may provide
challenges with reflectivity, as is a challenge in the system at hand, and shadows ”confusing”
the sensor which may lead to a misinterpretation of the image data. Product variations due to
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previous steps in the manufacturing process or damages or inconsistencies with the bin may also
lead to misinterpretation and false detection due to a mismatch between the CAD model and
the object detected (Marvel et al., 2012). The challenges within this domain are many, but the
field of robot vision has experienced a rapid development in later years (Bogue, 2014).

The second challenge domain is hardware. This includes the reach of the robot and how it
handles the objects it is to acquire. This also includes the robot gripper. The positioning of
the robot in the cell, perhaps also constrained by other machines or robots, may limit its ability
to reach certain grasps or points in its workspace (Marvel et al., 2012). This has been an issue
with the set-up at hand, where for example the robot has problems when interacting close to
the pedestal it is stood upon.

The third problem domain, which Marvel et al. (2012) claim to be the most difficult one, is
solution integration. This is a more general problem domain as it is not specifically related
to the robot set-up or specific other hardware or software solutions. The cost of a bin-picking
system includes of course the investment in the system, but also the time it takes to integrate
the system in existing production lines, how much time it takes to get the system online, and
how versatile it is in its use. If the system is too task-specific, it will only function optimally
on a few tasks, but if it is too general it might not satisfy the needs of the buyer in terms of
efficiency and speed. This domain also includes bridging the gap between those who are to
integrate a system and the developer of it when it comes to knowledge about the system as a
whole, and that both parties must have realistic expectations considering what one can expect
from a robotic bin-picking system (Marvel et al., 2012).

2.1.1 Motivation and importance

Robotic bin-picking serves its purpose by fulfilling the three D’s of robotics; dirty, dull and
dangerous (Vasilash, 2017). Moving objects from place to place is a dull and repetitive task,
which by design is an optimal task for a robot. Palletizing for example, can be seen as a subset
of bin-picking where the location of the pallets are known and organized. Their goal position
is also orderly, and the use of robots when it comes to palletizing is widespread in the industry
today, particularly due to the repetitive nature of the task. Bin-picking can also handle the
dirty and dangerous. If a solution to the bin-picking problem can be found generally, it can be
applied to near everything that needs picking. This will then include industrial processes that
are contaminated. If robots can be used in place of humans when it comes to high-polluting
materials like radioactive waste, this would be an additional advantage. Being able to bin-
pick other objects like razor blades or syringes would also limit human exposure to potentially
dangerous objects. The motivations behind solving randomized bin-picking are many, and a few
are accounted for here.

With a more general bin-picking solution, the availability of reasonable solutions would increase
and become available to all industry segments, independent of size. If a solution is found, the
solution integration problem domain as accounted for by Marvel et al. (2012) might also shrink
in size due to the demand for more ”easy to integrate” solutions. The collective knowledge of
bin-picking systems would also increase, and not be limited to those who produce a system,
has a system or those who perform research within the field. This again would contribute to
overcoming the challenges regarding both solution integration and hardware issues, since an
increased availability often sparks interest and knowledge.

If a solution should be found, this would decrease the need for large expensive specific machinery
like tumblers that ”shake” individual components over a distance such that that align for further
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processing. A solution to the bin-picking problem would lead to them outperforming tumblers
and other expensive machinery in terms of cost (Bogue, 2014). A solution would also entail an
increased flexibility in system set-ups when specific machinery is not applicable anymore, and
widespread use of the bin-picking system will again breed new ideas and solutions.

If more industry segments have available to them bin-picking systems, this would provide a
decreasing cost in terms of work hours should the picking be done by hand. In addition, increased
efficiency, predictability and reliability in production volume would be experienced, which often
leads to increased speed and larger production volumes (Bogue, 2014).



Chapter 3

Robotics

†The definition of a robot is a programmable, multifunctional manipulator designed to move
material, parts, tools or specialized devises through variable programmed motions for the perfor-
mance of a variety of tasks. From this definition we can extract the concept of reprogrammability,
meaning that we may again and again utilize a robot in different tasks, and this gives a robot
its utility and adaptability. Some of the most commonly stated advantages of the introduction
of robots is decreased labour costs, an increased flexibility with regards to its reprogrammabil-
ity and the creation of more humane working environments where robots are able to perform
dangerous, repetitive and dull operations (Spong et al., 2006).

3.1 Rigid bodies and motion

To be able to comment on how easy or difficult it is for a robot to reach a certain grasp, a
background in robotics is necessary. Though this thesis is regarding grasp selection, subjects
such as rigid motion and rotation play a central role. In robot manipulation the geometry of
the three-dimensional space is of utmost importance, and these types of topics will be presented
in this chapter, along with other robot related subjects.

3.1.1 Rotations

A rotation matrix in three dimensions belongs to the group SO(3), the special orthogonal group
of order 3 (Spong et al., 2006). The set of all matrices that are orthogonal and have a determinant
equal to 1 exist in this group, defined by:

SO(3) = {R | R ∈ R3×3, RTR = I and det R = 1}. (3.1)

The rotation matrix Ra
b from frame a to frame b can be interpreted in two ways; either as the

coordinate transformation from b to a or as a rotation matrix where a vector pa in a is rotated
to the vector qb by qa = Ra

bp
a. The rotation of a composite rotation is the product of the

rotation matrices, such that Ra
c = Ra

bR
c
b.

†This chapter bears similarities to chapter 3 in the specialization project (Gravdahl, 2018). However, multiple
sections are rewritten, and several new sections are added

11
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For rotations φ, θ and ψ around the principal axes, x, y and z respectively, the following holds
and can be proven, where sα = sinα and cα = cosα (Egeland and Gravdahl, 2002):

Rx(φ) =




1 0 0

0 cφ −sφ
0 sφ cφ


 ,Ry(θ) =




cθ 0 sθ

0 1 0

−sθ 0 cθ


 and Rz(ψ) =




cφ −sφ 0

sφ cφ 0

0 0 1


 . (3.2)

3.1.2 Transformations

The concept of a rotation matrix can be expanded to include both orientation, as in Equation
(3.2), and position, d, of one coordinate frame relative to a another frame. This is called a
homogeneous transformation matrix T, defined as:

T =

[
R d

0> 1

]
∈ SE(3), (3.3)

where SE(3) is the special Euclidean group of order 3, defined as:

SE(3) =

{
T | T =

[
R d

0T 1

]
, R ∈ SO(3) and d ∈ R3

}
. (3.4)

When utilizing a homogeneous transformation matrix, we may describe the pose of a coordinate
frame in terms of either a pure rotation, a pure translation or a combination of the two, relative
to another coordinate frame. The inverse of the transformation matrix is defined as

(
Ta

b

)−1
=

Tb
a and the product of composite transformations is the same as for rotation matrices Ta

c =
Ta

bT
c
b (Egeland and Gravdahl, 2002). Transformation matrices form the basis of the Denavit-

Hartenberg convention which is a popular way to describe the forward kinematics of a robot
configuration, as will be further explained in Section 3.5.

3.2 Workspace

Front Tilted

Figure 3.1: Workspace of the UR5 (Universal Robots A/S, 2016). © 2009-2019 Universal Robots A/S
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A robot is composed of links with joints in-between to form a kinematic chain. A joint can
either be revolute, have a rotation, or prismatic, have an extension. The workspace of a robot
is the volume swept out by the manipulator end-effector, or more easily put, its reach. This
space is limited by the manipulator geometry and a manipulator is often chosen based upon the
workspace, with regards to the task the robot is to perform in mind. Constraints on motors
and actuators will need to be taken into account as well as the robot work cell and possible
obstacles. The workspace is commonly split into the dexterous workspace and the reachable
workspace. The reachable workspace consists of all the points the robot can reach with its end-
effector. Moreover, the dexterous workspace is the space where the robot for example can grasp
an object and still move all its joints, and not be at a singularity. The dexterous workspace is
then a subset of the reachable workspace. (Spong et al., 2006).

If a robot is to avoid an obstacle or locate an object, using workspace coordinates is advantageous
since the coordinates of the robot position and the position of the object would be given in the
same coordinate frame. However, not all coordinates by this representation are within reach,
since the robot is non-linearly constrained by its own geometry, for example by a link between
two joints. Using the configuration space assists in solving this problem. (Russell and Norvig,
2016)

3.3 Configuration space

Figure 3.2: Photo of the UR5
6DOF robot (Universal Robots
A/S, 2016). © 2009-2019 Uni-
versal Robots A/S

An alternative to representing the manipulator in Cartesian co-
ordinates as in Section 3.2, is to represent it as a function of its
joint variables. If the manipulator is a chain of rigid links, its
base is fixed and the values of the joint variables are known, it
is straightforward to find the coordinates of any point on the
manipulator.

Let q = [qi, qi+1, ..., qn]> be a column vector of dimension n,
where the elements q are the joint angles, i is the number of the
joint and n is the number of joints. We may then state that the
robot is in configuration q, where qi = θi for a revolute joint
and qi = di for a prismatic joint (Spong et al., 2006).

The configuration of a manipulator is then the complete specifi-
cation of the location of every point on the manipulator (Russell
and Norvig, 2016). The set of all possible configurations is called
the configuration space C, or the C-space. This space represents

the set of all transformations that can be applied to a robot given its kinematics (Kavraki and
LaValle, 2008). The advantage of the C-space is that a robot with a complex geometry can be
mapped to a single point in this space, where the number of joints, n is the dimension of the
space. This space is particularly useful when it comes to motion planning as will be further
demonstrated throughout this text.

The number of joints n of a robot is commonly referred to as the degree of freedom, DOF, of
the robot. For example, a robot with six revolute joints will have six degrees of freedom since
we have three parameters to denote its position and three to denote its orientation in R3. From
this is follows that the C-space of the UR5 is of dimension 6.
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3.4 Forward Kinematics

The forward kinematics problem is concerned with finding the position and orientation of the
last link in the kinematic chain, often the position of the end-effector with an attached tool,
for example a gripper. This is done by attaching a coordinate system to each link in the chain
making up the robot. Usually one does this design by attaching coordinate system oixiyizi to
link i, such that the coordinates of the ith link are constant in coordinate system i.

With each joint, a joint variable qi, is associated; often qi = θi for revolute joints and qi = di for
prismatic joints. The inertial frame is usually attached at the robot base and denoted as the 0-
frame, (o0x0y0z0). This can also be named the world frame. When each link has been assigned a
coordinate system and with the homogeneous transformation matrices in mind, suppose that Ai

is the transformation matrix giving the position and orientation of coordinate frame (oixiyizi)
with respect to (oi−1xi−1yi−1zi−1). Since we have introduced the general coordinate qi, Ai is
a function of only one joint variable dependant on if the joint is revolute or prismatic, Ai =
Ai(qi).

By this we may now express every point on the robot in terms of its joint variables qi and by
multiplying A1(q1) up until An(qn) we can find the position and orientation of the last attached
coordinate system given in the inertial frame:

T0
n = A1(q1) · . . . ·An(qn) (3.5)

The forward kinematics problem is thus to find the pose of the final attached coordinate system,
usually given in the inertial frame. The problem consists of knowing the joint variables and
multiplying outwards in the kinematic chain. By using different conventions, such as the DH-
convention, this is a solvable problem with one solution (Spong et al., 2006).

3.5 Denavit-Hartenberg convention

The Denavit-Hartenberg convention, or DH-convention, is used to find the forward kinematics
of a manipulator. By following the convention, which entails choosing frames for each link in
a set fashion, the problem is simplified and each transformation Ai is a product of four basic
transformations. The final product for each link will be:

Ai = Rotz(θi) ·Transz(di) ·Transx(ai) ·Rotx(αi), (3.6)

where θi, di, ai and αi are parameters associated with link and joint i,

Rot =

[
R 0

0> 1

]
and Trans =

[
I3×3 p

0> 1

]
, (3.7)

where the appropriate rotations R and translation p is used such that

Ai =




cθi −sθicαi sθisαi aicθi

sθi cθicαi −cθisαi aisθi

0 sαi cαi di

0 0 0 1



. (3.8)

By a systematic and proven way of choosing the coordinate frames for the manipulator one can
decrease the number of variables needed from six to four. For a complete overview of how to
choose the frames according to this convention, see for example the book ”Robot modeling and
control” by Spong et al. (2006).
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3.6 Inverse kinematics

Figure 3.3: Example of the ”elbow up, elbow down”
phenomenon yielding multiple IK solutions, illustrated
with a planar 2DOF robot.

The general inverse kinematics, IK, prob-
lem is the opposite of the forward kinemat-
ics problem. Given the pose of the end-
effector or the desired origin of the last
attached coordinate frames, how must the
joint variables be assigned to achieve this
configuration? So, given the desired pose
of the end-effector, H ∈ SE(3), find a
solution which satisfies the following rela-
tion by identifying q1 . . . qn (Spong et al.,
2006).

T0
n(q1 . . . qn) = H, (3.9)

T0
n(q1 . . . qn) = A1(q1) · · ·An(qn) (3.10)

A problem with inverse kinematic solutions
is that they are not unique. This is gen-
erally not a problem on paper, but when
working with a robot, this leads to choices.
The simplest example is a 2DOF planar
robot, which will have two solution, elbow joint up or elbow joint down. Which configura-
tion to choose is a choice that needs to be made by the engineer, often with a specific task in
mind, or considering the robot work cell.

Consider the simple planar robot with two joints shown in Figure 3.3. Moving the joints changes
the (x, y)-coordinates of the gripper and the elbow. The robot can thus be described by the
coordinates of the elbow and gripper, (xe, ye) and (xg, yg) respectively, relative to the environ-
ment. These four coordinates describe the full workspace of the robot (workspace coordinates)
and the manipulation of these coordinates allow full reach in the workspace and can describe the
location of the manipulator in the environment. We may also represent the robot configuration
by its joint angles instead of the joint positions in the configuration space (θg, θe) (Russell and
Norvig, 2016).

Viewing the figure, it is clear that the combination of (xe, ye) and (xg, yg) as well as (xe2, ye2)
and (xg2, yg2) in workspace coordinates, and (θ1, θ2) as well as (θ12, θ22) in configuration space
coordinates will all yield the same pose for the end-effector. With this, we know that the IK
problem for this 2DOF planar manipulator has two solutions.

3.7 Motion planning

When dealing with robots, the objective is usually to allow the robot to execute some task,
re-position and complete the same, or a different, task. Since all robotic manipulation includes
some degree of motion, motion planning is central for a robotic system. A difference between
between path planning and trajectory planning is common to consider.
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3.7.1 Path planning

As previously stated, a robot has a unique configuration space, C-space, which is the set of all
possible robot configurations. When planning a collision-free path, ensuring that the robot does
not make contact with an obstacle is central. Defining the space the robot can move in and the
space to avoid can be done by using the workspace W and the configuration space C, by dividing
the C-space into the configuration space obstacle and the free configuration space (Spong et al.,
2006).

From Kavraki and LaValle (2008); let the closed set O ⊂ W represent the workspace obstacle
region, and A(q) ⊂W represent the points occupied by the robot at configuration q ∈ C. Then
the C-space obstacle region can be defined as:

Cobs = {A(q) ∩ O 6= ∅}. (3.11)

Since A(q) and O are closed sets in W, the obstacle region Cobs is a closed set in C. By this, the
set of configurations that avoid collisions, Cfree is defined as:

Cfree = C \ Cobs. (3.12)

To summarize, the configuration space obstacle is the set of all robot configurations for which
the robot collides with an obstacle and the free configuration space is the set difference between
the whole configuration space and the obstacle. (Spong et al., 2006)

The path planning problem can be summarized as finding a path from qs, an initial joint
configuration, a starting point, to qf , a final joint configuration where obstacles are avoided
when traversing the path. Formally defined by Spong et al. (2006) a collision-free path from qs

to qf is a continuous map;

γ : [0, 1]→ Cfree, where γ(0) = qs and γ(1) = qf . (3.13)

Methods for path planning, to find these collision-free paths, are many, and the use of sampling-
based motion-planners will be explained in Chapter 5. Path planning does not depend on
the variable time, whilst the next section on trajectory planning does just that (Spong et al.,
2006).

3.7.2 Trajectory planning

A trajectory, unlike a path, is a function of time. By employing the same notation as for path
planning, qs = q(ts) and qf = q(tf ), where the difference tf − ts is the time needed to execute
a given trajectory. From this we can present path planning as a subset of trajectory planning
where a path is a trajectory completed during one time unit. In some cases, paths are specified
by a series of end-effector poses, where the IK solution gives a sequence of joint configurations.
Since the trajectory is time varying, velocity and acceleration information can be found by
differentiation, and as such these variables can be controlled and used in the planning. Consider
for instance the velocity close to an obstacle in comparison to the velocity which can be employed
in the free space (Spong et al., 2006).
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3.8 Robot Operating System

Having defined bin-picking and accounted for some of the primary aspects of robotics, other
necessities in the robotic system are introduced here. Furthermore, the structure of the robot
operating system, ROS, will be briefly explained, and the main ROS building blocks used in
this thesis will be accounted for. The following sections consider the specific inner workings of
the system at hand needed to solve the task; finding a way to identify with what ease a robot
can reach a specific grasp pose. The whole system naturally consists of much more than what
is supplied here, but this is beyond the scope of this work.

”ROS, Robot Operating System, is an open-source, meta-operating system for your robot”
(ROS, 2019). ROS runs on UNIX-based platform, and aims to be language independent, for
exmaple the interface for Python is utilized in this work. On of the goals of ROS is to increase
collaboration, and to facilitate code reuse independently of the hardware one works with. As
long as manufacturers of robots supply the drivers, ROS can be used on practically any robot
independent of the proprietary languages of manufacturers. This in turn enables increased
sharing of competence and code (ROS, 2019).

ROS has three levels, the filesystem level, the computational graph level and the community
level. The community level consists of resources such as ROS Wiki and the distributions (ROS,
2019). The filesystem level consists of the packages installed on the computer when ROS is
installed, and the computational graph level is how these packages interact with each other, and
the robot at hand.

The computational graph level dictates the interaction between data structures in ROS. The
Master in the computational graph keeps track of all the nodes in network. ”A node is a process
that performs computation” ROS (2019). One node can perform path planning, and another
node could visualize the scene (such as the ROS Visualizer, Section 3.8.1). The nodes connect to
each other through the use of messages, a data structure. To identify the content of a message,
topics are used. A node can publish to a topic or subscribe to one. Nodes often do not know
if another node is listening to the topic they are publishing, and vice versa. For more direct
request and replies, services are used. ”A node can offer a service, and a client node can use the
service by sending the request message and awaiting the reply” (ROS, 2019).

3.8.1 ROS Visualizer

ROS Visualizer, RViz, is a 3D visualization tool for ROS, a graphical interface. It supports using
plug-ins for many kinds of available topics, and allows the user to visualize the robot workspace,
the robot itself and for examples paths that are executed. Rviz is utilized in this work due
to the nature of the problem at hand, path planning and grasp analysis (ROS, 2019), it is an
advantage to see paths being executed. Many of the images presented further in this thesis are
screengrabs from RViz.

3.9 MoveIt

MoveIt functions on top of ROS. It builds on the ROS messaging system and utilizes RViz
for visualization. MoveIt provides functionality for motion- and path planning, kinematics and
collision-checking etc., and is the primary source for a lot of robot manipulation in ROS (MoveIt,
2019). An advantage of using MoveIt is that it supports the use of the Universal Robotic
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Description Format (URDF). The format is a common way to describe the design and geometry
of a robot manipulator. This allows for introducing a complete visual of the robot in RViz (ROS,
2019). MoveIt uses the URDF for collision-checking, so that a complete description of the robot,
and for example its tool if this is large, is advantageous (MoveIt, 2019). The URDF-file for the
SINTEF set-up includes the camera housing at its end-effector, allowing this to be considered
when checking for a collision when planning to a pose. Path planning is central in this work
and the MoveIt plug-in was quickly utilized in conjunction with the Open Motion Planning
Library.

3.9.1 Open Motion Planning Library

These sections will briefly introduce OMPL, whilst Chapter 5 will go into detail on what
sampling-based motion planner are, the functionality of different sample-based planners, and
their fundamental building blocks. The Open Motion Planning Library, OMPL for short, is a
library for sampling-based motion planners, and contains implementations of a variety of state-
of-the-art algorithms designed to solve motion planning problems. OMPL is the most used, and
maintained, planning library for the MoveIt plug-in for ROS (Şucan et al., 2012).

The motivation behind OMPL is traced back to that finding paths and motion plans for a wide
variety of robotic applications is critical for optimal utilization of the system. To illustrate, Şucan
et al. (2012) use the example of search-and-rescue robots. These robots are dependant on being
able to continuously plan safe and efficient paths through rubble and obstructed environments
when completing their task, and without a motion planner this would be quite difficult. OMPL
was designed for motion planning research, education within robotics and end-users in robotics
industry purposes and intended to be useful in practical applications, making it wide in its
use.

3.9.2 tf

World
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Figure 3.4: The robot based on the URDF-
file, visualized in RViz using tf to keep track
of coordinate frames.

tf is a library enabling keeping track of multiple
coordinate frames over time. For any manipulation
task, information on where an object is in relation
to the robot is decisive. To be able to compare the
two, the pose of the object and that of the robot
end-effector, it is common to attach a coordinate
system to each object and present the transforma-
tion of each of them in the same coordinate system.
tf was designed to solve this issue and provide a
standard way to keep track of frames and transform
data in robotic systems (Foote, 2013).

The data structure of tf is a graph, where coordi-
nate frames are nodes and transforms are the edges
between them (Foote, 2013) (a more comprehensive
explanation on graphs and trees is available in Sec-
tion 5.1.1). For example, viewing Figure 3.4, the
frame at the base, and the frame at the shoulder link
of the robot can be seen as nodes, and the transform
required to bring the shoulder to the base is the edge
between them. Bringing the base to the shoulder
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would require the inverse transform. It is common to represent all the transforms representing a
robot with respect to the same fixed frame, most often the base frame. Viewing the figure, the
transform of the final coordinate frame at the tool point, tp for short, given in the base frame
is given by the following relation and is maintained by the tf library:

T base
tp = T base

shoulder T
shoulder
elbow T elbow

wrist1 T
wrist1
wrist2

Twrist2
wrist3

Twrist3
ee T ee

tp . (3.14)

The coordinate frames supplied by the library follow the color code (x, y, z)→ RGB. The x-axis
is always red, y is always green and the z-axis is always blue. It should also be noted that the
frame seen inside the pedestal below the base frame is the world frame.

3.9.3 move_group

The move_group node provides functionality for, among other things, setting path goals, cre-
ating motion plans and executing them. The node communicates with the robot through top-
ics and actions. For example it communicates to obtain current state information from the
joint_states topic. Moreover, the node monitors transform information from the ROS tf
library so it at all times is aware of the robot’s pose in the workspace. In this work, the python
interface for the move_group node using the MoveGroupCommander class was used. The class
contains multiple functions, for example to set motion planning goals, specifying the planner
from OMPL to be used and setting an allowed planning time (MoveIt, 2019).

One advantage of ROS is the ability to visualize the computational graph, a connection of
running nodes with connecting topics. This aids in seeing which nodes are communicating and
supplies the user with valuable information regarding data flow. A simple example of such a
graph is shown in Figure 3.5. The Figure depicts several nodes in circles, connected by topics, the
arrows between the nodes. Observe for example the node which is the move_group. This node
receives information on coordinate systems circled in blue over the topic /tf which keeps track
of the different transforms present in the scene. The nodes circled in blue are four coordinate
systems defining the corners of the bin in the set-up. The move_group node also receives
information from the ur_driver on the status of the joint_trajectory for example. The
node ur_driver will be supplied by the manufacturer of the robot, and enables the user to
program the robot through ROS since relevant robot information is stored in this node.

Another example of data flow in Figure 3.5 is the ur_driver providing the joint_states to
the robot_state_publisher which again supplies this as a tf_static (static transform)
to the move_group. Also take note of the node /tf2_buffer_server storing the transforms
present in the scene.

What can be deduced from this graph is that the move_group, the node that is used for path
planning has information on the robot state at any given time, along with any other coordinate
systems present in the scene. This makes it possible for example to instruct the move_group
to align two coordinate systems since it has the information on all of them. For grasping, as
is an important topic in this work, the move_group can be instructed to align the coordinate
system of the tool point of the robot (found in the /robot_state_publisher through the
topic joint_states supplied by the ur_driver) with for example a bin corner (any node
circled in blue), or any other arbitrary coordinate system published to the robot scene. If two
coordinate systems can be aligned, a path from one to the other exists, the coordinate system
is reachable by the robot.
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Figure 3.5: Example of a ROS computational graph depicting dataflow between nodes and what topics
are communicated over. Nodes circled in blue are coordinate systems defining the bin corners in the
set-up, and the topics marked in green is the robot configuration given as a series of transforms at a given
time instance.



Chapter 4

Grasping

In a bin-picking system, identifying and being supplied grasps is central. In this chapter, the
definitions of a good grasp will be explored, grasping with different kinds of tools will be briefly
considered, and the functionality of a vacuum gripper will be explained. Furthermore, how
grasps are obtained will be looked into, along with a detailed explanation on how these ”good
grasps” are found in this set-up using a dual-resolution convolutional neural network (Dyrstad
et al., 2018).

4.1 What is a ”good grasp”?

4.1.1 Defining grasping

†To motivate and define grasping, forces and torques are commonplace. These forces and torques
can be represented in a 6D space, called the wrench space. Let Ww denote this space. A wrench
is a vector www ∈ Rp, and is defined according to Ferrari and Canny (1992) as:

www =

(
F

τττ

)
, (4.1)

where F is the force components of the wrench vector, and τττ is the torque vector. In considering
3D objects the dimension of this space is p = 6. Advantages of using the wrench space includes
that any force and torque can be represented by a point in this space (Ferrari and Canny, 1992).
The magnitude of a wrench is also defined by Ferrari and Canny (1992) as:

‖www‖ =

√
‖F‖2 + λ ‖τττ‖2, (4.2)

where choosing λ = 1 is equivalent to the L2 norm of the wrench. The objective behind
introducing wrenches is that some grasps are better than others, and grasps that can withstand
and balance any external force and torque at the contact points can be considered good grasps.
This leads to closure properties of grasps.

†This section is similar to material also found in the specialization project. It is supplied here to complement
the documentation (Gravdahl, 2018)

21
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Figure 4.1: Illustration
of form- and force closure.
The drawing is inspired by
a similar figure found in
Bajd et al. (2010).

Consider a gripper with N contact points. This can either be a parallel
gripper, a three-fingered hand, or another multi-fingered tool used for
grasping. These contact points can be modelled differently, often as
one of three different models; a frictionless contact point, a frictional
point contact or as a soft contact. A frictionless contact point is con-
sidered a contact where only the normal force in the contact point
exists. In a frictional point, both a normal force and a tangential
force can be exerted. A soft contact ”also allows the finger to exert
a pure torsional moment about the common normal at the point of
contact” (Bicchi and Kumar, 2000). At each of these contacts, the ob-
ject is subjected to a normal force, a tangential force and a a torsional
moment about the normal (Bicchi and Kumar, 2000).

Let W denote the combined wrench matrix, containing the N
wrenches of the N contact points on an object. A grasp has the property of force closure if
for any arbitrary wrench vector ŵ̂ŵw, there exists an intensity vector λλλ such that (Bicchi and
Kumar, 2000)

Wλλλ = ŵ̂ŵw. (4.3)

Similarly, another closure property is form closure. A grasp with N wrenches is said to be form
closed if there exists a λλλ > 0 and W is full rank such that (Bicchi and Kumar, 2000)

Wλλλ = 0. (4.4)

Figure 4.1 illustrates examples of both form closure (left) and force closure (right) for a two-
fingered gripper, where the objective is to grasp the purple circle. The property names reflect
how the object is constrained by the gripper.

4.1.2 Vacuum gripper

The use of a suction cup differs from the use of robotic fingers in terms of there only being one
contact point. The force exerted on the object is the force needed to compress the suction cup,
since a valid grasp is often one where complete vacuum can be achieved such that the object
can be lifted. Suction is useful in a wide variety of applications due to an increased freedom
in what objects can be grasps (Kessens and Desai, 2011). The size of a two-finger gripper for
example must be adjusted to accommodate the size of the object such that it is able to fulfill
for example force-closure as seen in Figure 4.1. A suction cup however, as long as the surface
area of the cup is within the appropriate size range to be able to lift, is not that dependent on
the design of the object. Consider also the weight of an object, independent of its geometry.
A two-finger gripper is more focused on the geometry of the object in terms of finding stable
contact points to exert a force. A suction cup can be more versatile in terms of manipulating
objects of similar weights as long as one contact surface can be found to obtain vacuum upon
contact. The use of a suction cup can increase the robots capability of manipulating the object
(Kessens and Desai, 2011).

Tools or objects attached at the final link impose the greatest torque on the robot. As with any
tool attached to the robot end-effector, its weight and design dictate payload capabilities. The
size of a suction cup must be optimized to maximize the range of manipulable object shapes and
sizes (Kessens and Desai, 2011). A larger suction cup will be able to lifter larger and heavier
things, whilst a smaller suction cup will be more able to adjust to the surfaces of objects to
be picked. If the surface of an object is rough, a smaller suction cup would aid in obtaining a
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complete seal, but if the rough object in addition is large, a larger suction cup must perhaps be
utilized to be able to lift it. A solution to this weight-off is to utilize several suction cups of the
appropriate size to fulfill the demand of a complete seal, and use enough cups to be able to lift
(Kessens and Desai, 2011).

A good grasp with a suction cup can be summarized as a grasp where the suction cup is of the
appropriate size to obtain a seal on the object and be able to lift it, whilst exerting a force that
compresses the cup to obtain this seal, whilst not moving the objects to be picked with this
force.

4.2 Obtaining grasps

Now that grasping has been introduced, the next question is how these grasps are obtained in
a system. The following two sections will explain grasp planners briefly, and give a thorough
explanation on how the grasps in this system are found. A grasp planner often relies on force-
closure and the notion of being able to resist a wrench applied at a contact points, whilst these
demands are not prominent with the use of a suction cup.

4.2.1 Grasp planners

Grasp planners are a popular way of obtaining grasps for different applications. In essence, a
grasp planner takes the end-effector/tool and an object as input, and supplies as output valid
grasps on the object by evaluating some metric, for example based on the force-closure property.
What has been an obstacle for grasp planners in robotic applications, is that they often assume
that the tool and the object are alone in the environment, and often that they are free-floating
in space. For example, consider the objects in the bin in this set-up. If a grasp planner was used
to plan grasps on the objects, it would just as often spend time on evaluating grasps coming up
through the table than it would spend time on evaluating grasps from above, assuming one and
one cylinder alone in the environment (Akinola et al., 2018). Of course, the only valid grasps
would be the ones from above since we cannot grasp through the table. OpenRAVE (Diankov
and Kuffner, 2008), OpenGRASP (León et al., 2010) and GraspIt! (Miller and Allen, 2004)
are examples of grasp planners. It should also be mentioned that several grasp planners are
including robot kinematics in the grasp planning schemes due to demand.

4.2.2 System at hand

The grasps in this system are supplied by a dual-resolution convolutional neural network trained
on simulated data (Dyrstad et al., 2018). The motivation behind this application will be de-
scribed here. Furthermore, the specific format of the grasps supplied to the robot will be
accounted for.

The motivation behind utilizing a neural network as opposed to a grasp planner, is the desire to
develop a system independent of the objects to be picked aiming for a more general solution to
the bin-picking problem. As previously mentioned, a grasp planner is dependent on the model of
both the object and the tool to do the picking, but with this approach it will be more available
to reuse the network on other applications, both robot-, gripper- and object-wise. Even though
also the network requires a model of the object, it can be retrained. (Dyrstad et al., 2018)
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The objects to grasp in this set-up are reflective steel parts, which results in the images lacking
data in varying degree due to reflectivity. The workaround, is to train the network on a large
data set of synthetic images meant to simulate the missing data in the real images. By training
on synthetic images one avoids the process of labeling a large data set, by supplying pointers
for the network instead. A number of valid grasps were supplied to the network for training, as
well as the model of the object. (Dyrstad et al., 2018)

Figure 4.2: Illustration of
the end-effector tool and
grasps supplied by the neu-
ral network. The goal is to
align ztp with v, and the the
tool center point with d.

Figure 4.3: Successful grip
with gripper. v is aligned
with ztp, and the contact
point is at d. Photo cour-
tesy of Katrine Seel, MSc,
SINTEF Digital

The use of a dual-resolution net-
work allows for twofold consid-
eration of the scene. The net-
work enables high accuracy in a
focus region when placing a grasp
and estimating the pose of an ob-
ject, as well as enabling enough
of an overview of the scene to
avoid collisions with other objects
to picked in the bin. (Dyrstad
et al., 2018)

A grasp is considered valid if there
are no collisions present with ei-
ther other objects in the bin or
the bin itself. The use of a local
collision-checker ensures these col-
lisions are avoided, but a collision-
check for the robot manipulator

arm is not considered when planning for the grasps. Multiple grasps are generated for each
part, but only one is chosen. This choice is made by favouring grasps which are close to the
world z-axis, and in the direction of the camera frame. (Dyrstad et al., 2018)

The input to the neural network is a depth image of the current distribution of objects in the bin
courtesy of the 3D camera, and the output is multiple grasp pairs, {di,vi}, where i ∈ {1, . . . , N},
N ∈ N, di ∈ R3 is a point and vi ∈ R3 is an approach vector.

When grasping an object in this set-up there is a coordinate frame attached to the suction cup,
the tool point, and the objective is to align the ztp-axis with the approach vector v supplied
and d with the tool center point, see Figure 4.2. Since the approach vector is not a complete
coordinate system, a rotation about this axis can present multiple solutions. This indicates that
a rearrangement of the joint angles of the robot might aid in obtaining a valid grasp.

Going forward, it is assumed that grasps supplied by the neural network are optimal in the sense
of grasp quality. When the network supplies its list of grasps, we assume these are indeed valid
and preferred grasps. With this assumption, considering the robot abilities in terms of reaching
these grasps will be considered.



Chapter 5

Motion planning in-depth

The objective of motion planning is to find a collision-free path from an initial start configuration
qs to a final configuration qf whilst avoiding obstacles in the workspace and self-collisions. It
is clear that the collision-free path from qs to qf is a continuous map γ : [0, 1] → Cfree, where
γ(0) = qs, γ(1) = qf and Cfree is the unobstructed part of the configuration space, as defined in
Section 3.7. Since motion-planning is a decisive part of this work this chapter will deal with the
subject from an algorithmic perspective to gain insight in the planners and their functionality the
way they are implemented, and used, in OMPL, and how it connects with the work done.

5.1 The geometric path planning problem

The fundamental motion planning problem, or the geometric motion planning problem, must be
defined to be able to pick it apart and study its components. The following definition is adopted
from the Springer Handbook of Robotics, Part 5: Motion Planing (Kavraki and LaValle, 2008)
and is as follows:

Given

1. A workspace W, where either W = R2 or W = R3.
2. An obstacle region O ⊂W.
3. A robot defined in W. Either a rigid body A or a collection of n links: A1, A2, ..., An.
4. The configuration space C (both Cfree and Cobs are then defined).
5. An initial configuration qs ∈ Cfree.
6. A goal configuration qf ∈ Cfree. The pair (qs,qf ) is often called a query.

Compute a continuous path, γ : [0, 1]→ Cfree, such that γ(0) = qs and γ(1) = qf .

This problem is also known as the piano mover’s problem. When viewing this list of requirements
to be able to solve the motion planning problem, the effort of finding all the components vary.
For example, the workspace is often dependent on the robot geometry, and should be possible
to acquire. The same goes for the obstacle region, provided the obstacles are stationary in the
environment. Cfree and Cobs however, are more challenging to obtain due to the complexity of
directly computing them. In addition, the dimensionality of the C-space is often high (Kavraki
and LaValle, 2008).

In terms of the computational complexity of the problem, it was found and can be shown,
that the problem is PSPACE-hard (Kavraki and LaValle, 2008). PSPACE-hard problems are
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problems that can be solved by a deterministic Turing machine with a polynomial amount of
space; these are difficult problems. PSPACE-hard problems are believed to be more difficult than
NP-hard problems. A problem is NP-hard if if there is an algorithm that can guess a solution
to the problem and verify this solution in polynomial time (Russell and Norvig, 2016).

It is due to the complexity of the path planning problem that alternative approaches to finding
good paths emerged in the form of sampling-based planning. Sampling-based planners do not
model the exact geometry of the C-space and avoids this computationally expensive operation,
but at the cost of not being able to provide the guarantees of a complete algorithm. A complete
and exact algorithm is able to provide the definitive answer; ”there does not exist a path to this
configuration”. Instead, sampling-based planners will, provide a weaker form of completeness; ”if
a solution path exists, the planner will eventually find it”, this is known as an algorithm being
probabilistically complete (Şucan and Kavraki, 2010). Sampling-based planners are for this
reason, and the fact that they have proved themselves efficient for a large number of different
problems, the method of choice for a very general class of problems (Kavraki and LaValle,
2008).

Sampling-based planners investigate Cobs implicitly, by exploiting advances in collision detection
algorithms that compute whether a configuration is collision-free. A planner samples different
configurations to construct a data-structure that stores one-dimensional C-space curves which
represent collision-free paths. Since Cobs is not entered directly, these planners are applicable to
a large range of robots considering that they make use of collision-detection software which is
a vital part of any robotic system which requires paths to be found. The way the valid paths
are chosen depends on what objective a planner uses. A sampling-based planner which seeks to
minimize the path length will thus choose the shortest paths from configuration to configuration
until the goal is reached. Planners differ in how they sample configurations, and what type of
data structure is constructed to hold the collision-free paths, and a typical distinction is between
single- and multi-query approaches. (Kavraki and LaValle, 2008)

5.1.1 Graphs and trees

A brief introduction to graphs and trees is needed before discussing singe- and multi-query
planners, since these data structures are heavily used in these algorithms. The majority of
this background theory is gathered from ”Introduction to Algorithms” by Cormen et al. (2009).
First, the concept of a graph is introduced along with a quick explanation. Then, trees are
introduced and briefly explained. Graph theory is a vast topic and only a small selection of
terms, examples and explanations are given in the following sections.

5.1.1.1 Graphs

A directed graph G is a pair (V,E), where V is a finite set and E is a binary relation on V .
An example of a directed graph is shown in Figure 5.1. The set V is the vertex set on G and
its elements are the vertices of the graph. The set E is the edge set of G, and its elements are
the edges of G. Vertices are often represented by circles, and edges by arrows between them
(Cormen et al., 2009).

In an undirected graph, G = (V,E), the edge set E consists of unordered pairs of vertices rather
than ordered pairs which is the case for an ordered graph. An example of an unordered graph
can be seen in Figure 5.2. That is, an edge is a set {u, v}, where u, v ∈ V and u 6= v. Using the
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convention in Cormen et al. (2009) and using the notation (u, v) for an edge, in an undirected
graph (u, v) and (v, u) is the same edge. (Cormen et al., 2009)

Figure 5.1: An ex-
ample of a directed
graph

Figure 5.2: Exam-
ple of an undirected
graph

A path of length k from a vertex u to a ver-
tex u′ in a graph G = (V,E) is a sequence
〈ν0, ν1, ..., νk〉 of vertices such that u = ν0 and
u′ = νk, and (νi−1, νi) ∈ E for i = 1, 2, .., k.
The length of a path is the number of edges in
the path. If there is a path p from u to u′, one
says that u′ is reachable from u via p. In a di-
rected graph, a path p = 〈ν0, ν1, ..., νk〉 forms
a cycle if the starting position is the same as
the final position; ν0 = νk. In an undirected
graph, a path p = 〈ν0, ν1, ..., νk〉 forms a cycle
if k > 0, ν0 = νk, and all edges on the path
are distinct. A graph with no simple cycles is
acyclic. The term simple here refers to all vertices in the path being distinct (Cormen et al.,
2009).

5.1.1.2 Trees

Figure 5.3: An example of a free
tree.

Trees can be said to be a subset of graphs, since all trees are
graphs, but not all graphs are trees. A free tree is an undirected
graph which is acyclic, where the term ”free” often is omitted.
An unconnected tree is often referred to as a forest, since it
consists of two or more stand-alone trees. In a tree all vertices
are reachable from other vertices through simple paths, and any
vertex can be the starting node. As mentioned a tree is acyclic,
but with a cycle it is neither a tree nor a graph. A tree can also
be rooted, where one of the vertices are distinguished from the
others and called the root of the tree. A vertex of a rooted tree
is often referred to as a node. (Cormen et al., 2009)

5.2 Multi-query planners

A distinction is made between multi- and single-query planners, recall that the pair (qs,qf )
is often called a query. In multi-query planners, an undirected graph G, where the edges are
collision-free paths, and the vertices are collision-free configurations, is computed once for a
static problem. The undirected graph is created to map the connectivity properties of Cfree in a
precomputation step. When the graph is completed, multiple queries can be made in the same
environment using the same graph, often called a roadmap. (Kavraki and LaValle, 2008)

An example of a multi-query planner is the Probabilistic Roadmap Method, PRM, created by
Kavraki et al. (1996). PRM consists of a learning phase, and a query phase. In the learning
phase, robot configurations in Cfree are randomly sampled and checked for collisions before they
are declared vertices V to create a probabilistic roadmap. The simple edges, E, between them
are connected using a fast internal motion planner. This internal motion planner is called the
local planner, and is often adapted depending on the application. The local planner attempts
to connect two vertices in the graph with a line segment. Let q1, . . . ,qm denote the discretized
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line segment of m configurations, such that for any consecutive configurations (qi,qi+1), qi is
no longer than some ε away from the robot configuration at qi+1, where ε is a small positive
constant. For each configuration, qi+1, ε away away from qi, the configuration is checked for
collisions. If all m configurations are found to be collision-free, the path is deemed valid and can
be used as an edge E (Kavraki et al., 1996). The value of ε is often determined experimentally
dependant on the layout of the robot workspace and the obstacles present, since checking every
point along the line would require an infinite amount of calls to collision-checking (LaValle,
2006).

The roadmap created is attempting to present the connectivity of Cfree, and is saved as an
undirected graph G(V,E). The roadmap does not uniformly cover Cfree, but is denser in more
difficult to reach regions of the workspace. By increasing the connectivity in these regions, the
planner is able to efficiently solve problems requiring it to maneuver in narrow passages (Kavraki
et al., 1996).

Following the learning phase, several queries, (qs,qf ) can be answered using the same graph,
since the graph is a representation of Cfree. This is done by specifying the start and final
configurations, and attempting to map these two configurations to nodes in the graph. When
this is achieved, a graph search is performed with the objective of identifying edges connecting the
two. An edge (u, v) is a feasible path connecting the two configurations, since the local planner
has already found the edge valid. When the appropriate edges are identified, the concatenation
of these path segments results in a valid path for the robot (Kavraki et al., 1996).

The use of a collision-checker is decisive in path-planning. The goal of the collision-checker is to
return information on possible contacts between objects in the workspace. For sampling-based
planner to be effective, fast collision-checking is crucial. There exists many different collision-
checkers, and some can return information on how close to a collision a configuration is. This
can aid in predicting more generally about the validity on larger regions of C. When traversing
the graph on search for a collision-free path, paths are often validated using a collision-checker
incrementally with a small step along the valid edges of the graphs (Kavraki and LaValle, 2008),
such as the method of the local planner described above.

The type of local planner is important when considering time consumption. If a powerful
planner is used, in terms of the probability of it finding a path if one exists, this results in fewer
calls to the planner, but more time spent on each call. Consequently fewer configurations are
needed to answer a query. If a less powerful planner is used, it will need more configurations
to map the connective of Cfree, but each call to the planner will be computationally cheaper.
Considering that the queries need to be answered ”quasi-instantaneously” (Kavraki et al., 1996),
a fast planner is preferred, where a more dense roadmap is constructed. It is also worth noting
that the best results obtained by Kavraki et al. (1996), were found using a deterministic local
planner.

To summarize, multi-query planners can be represented by the following steps, quoted from the
Handbook of Robotics, chapter 5 (Kavraki and LaValle, 2008). Initialization: Let G(V,E) be
an undirected initially empty graph. Vertices will correspond to collision-free robot configura-
tions, and edges to collision-free paths. Configuration sampling: A configuration is sampled
from Cfree called α(i), where α(·) is a sample sequence and i is the ith entry in this sequence.
Neighborhood computation: A metric ρ : C × C → R is defined as a distance measure used to
locate configurations, q, in the neighborhood of α(i). Edge consideration: For vertices q not
belonging to the graph yet, an attempt to connect them to the existing graph by an edge is
made. Local planning method: Given α(i) and q ∈ Cfree, a local planner is used to construct a
collision-free path between the two. Edge insertion: The edge from α(i) to q is inserted into the
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set E. Termination criteria: The algorithm usually terminates when a predetermined number
of vertices are identified and in the map. (Kavraki and LaValle, 2008)

5.3 Single-query planners

Single-query planner operate slightly different from multi-query planners. These types of plan-
ners build tree structures when simultaneously attempting solve a query (qs,qf ). The objective
of these planners is to map the connectivity of Cfree fast, for a single query.

With single-query planners, the graph G can be organized in several ways. One method is to
allow qs to be the root of a rooted tree and then span the tree looking for a solution from this
node. Another option is to grow two trees, one from qs and one from qf , and connect the trees
when they are within range of each other. This bi-directional approach may aid in finding paths
in narrow passages in the workspace. Sampling-based methods combine sampling and searching
to overcome the problems of local minima such as narrow passages (LaValle, 2006).

An approach that yields good results, uses an incremental sampling and searching approach
to construct a search tree which covers Cfree densely. A dense sequence of samples is used
in the construction of the tree. If this sequence of samples is random, the resultant tree is
called a Rapidly Exploring Random Tree, an RRT, and if it is deterministic, the resultant tree is
referred to as a Rapidly Exploring Dense Tree, an RDT. These methods were originally designed
to handle motion planning under differential constraints (LaValle, 2006), like limitations on the
robot velocity v and acceleration a (Şucan et al., 2012).

In the tree, several main branches are constructed first to reach the outer portions of Cfree, and
more and more branches are added gradually as more vertices and edges are found, densely
covering the space. As the number of iterations increases, the resolution of the representation
of Cfree increases also. Recall as well that Cobs is not explicitly represented and that collision-
checking when constructing the tree is important. The higher the resolution the more certain
one can be that obstructions will be avoided (LaValle, 2006).

When the tree is constructed and Cfree is explored, a query can be answered by performing a
search in the tree. There are several ways to search for the valid path from qs to qf . Consider a
single-tree approach where the tree is grown from qs. An approach is to densely sample with a
sequence α(·), and insert qf at regular intervals to investigate if this vertex is reachable from the
closest vertex to it in the tree grown from qs. Another approach is to perform the bi-directional
search, where two trees are grown, one from qs and one from qf . In a balanced bi-directional
search, the trees are kept equal in size (LaValle, 2006).

Figure 5.4: Figure inspired by Kuffner
and LaValle (2000). Illustration of an
RRT extending its cover of a space by
growing the tree one ε at a time.

The summary of steps undertaken for single-query plan-
ners is also given in the Handbook of robotics, chapter
5 by Kavraki and LaValle (2008), and is repeated here.
Initialization: Let G(V,E) represent an undirected search
graph, where V contains a vertex for one or more con-
figurations, where qs is commonly present, and the edge
set E is empty. It is also not uncommon that qf is in V
(LaValle, 2006). As with multi-query planners, the ver-
tices are collision-free robot configurations and the edges
are collision-free paths. Vertex selection method: Choose
a vertex qcurrent ∈ V for expansion. Local planning
method: For some qnew ∈ Cfree which is either a sam-
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pled configuration or part of another tree, attempt to plan a path such that qcurrent is the start
state and qnew becomes to goal state. The resultant edge must be checked for collision. If this
step fails, qcurrent is chosen anew. Inserting the edge in the graph: Insert the new found edge
in E, as an edge from qcurrent to qnew, and if qnew is not already in V , it is added as a vertex.
Check for a solution: Determine if G(V,E) constitutes a solution to the query (qs,qf ). If a
solution has not been found, the algorithm again returns to deciding upon a new qcurrent.

5.4 Path planners in use

Meijer et al. (2017) have undertaken a study of the performance of the different planners included
in OMPL, and tested each one on three different manipulators, and three different objectives, to
benchmark results depending on the task to be solved. Based upon their work, three planners,
which later will be used for testing with the set-up at hand, were selected for this work. OMPL
supplies 23 different sampling-based motion planners, and as such to make a choice based upon
already executed benchmarking was advantageous. The three planners of interest and their
functionality will be detailed in the following sections, whilst motivation behind the choice,
their use and specific performance for the set-up at hand will be accounted for in Chapter
7.

5.4.1 LBKPIECE

In the case of real-world robotic application, dynamic constraints need to be taken into account.
This is what is known as kinodynamic motion planning. The algorithm LBKPIECE, lazy bi-
directional kinodynamic planning by interior-exterior cell exploration, is one such planner. The
LBKPIECE is the lazy, bi-directional version of KPIECE which was designed specifically for
robotic applications with complex dynamics. In addition to fulfilling the goal of creating motion
plans for complex systems, there is no requirement for state sampling or use of distance metrics
between states (Şucan and Kavraki, 2010).

The algorithm KPIECE iteratively constructs a tree of motions in the configuration space of
the robot. Each motion µ is a function of a state (configuration), a control and a time duration;
µ(s, u, t). It is also possible to split the time duration into t1 and t2 and superposition the
motions. The control u is applied for the duration of t from s, which is what produces a motion.
During the exploration and growing of this tree, it is a requirement to try to cover as much
of the configuration space as possible. The KPIECE uses an approximation of the state space
by employing grids of different resolutions which reflect the degree of previous exploration by
the tree. For example, a course grid can be used to identify regions where little exploration
has been done, and a finer grid to see where in this region more exploration is warranted. The
discretization of the state space for KPIECE consists of k levels, L1 . . .Lk, where each grid is a
multiple of a previous one in resolution. For the implementation in OMPL of LBKPIECE there
is only one level of discretization. The first level is the one with the highest resolution (Şucan
and Kavraki, 2010).

The prefix LB in LBKPIECE means that planner is lazy and bi-directional. This means two
trees are grown and maintained, one from qs and one from qf , in the hope of them connecting
somewhere in the middle of the path. A lazy planner in this context means that collision-
checking of nodes and edges is delayed until the query phase. When a solution candidate is
identified in the tree, a path from qs to qf , only then are the configurations and path segments
checked to see if they are in Cfree (Şucan et al., 2012). If a path contains a collision, the edges
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and nodes that constituted a collision are often removed from the tree before a new query is
made, and this process is continued until a collision-free path is found. If a node is in collision,
all edges associated with this configuration are removed, so a check of the node is often made
first (Bohlin and Kavraki, 2000).

5.4.2 RRTConnect

RRTConnect was originally designed to plan motions for a human arm modelled as a 7DOF
kinematic chain for animated grasping and manipulation. However, it has proved itself useful in
planning collision-free motions for rigid bodies both in 2D and 3D, as well as for a 6DOF PUMA
robotic manipulator arm. The objective behind the design of the algorithm was the desire to
maintain the good properties of a probabilistic roadmap, a multi-query scheme, in terms of
reliability but designed for single-query path planning. (Kuffner and LaValle, 2000)

Recall, from Section 5.3 that a Rapidly-exploring Random Tree, an RRT, is a data structure
and sampling-scheme which searches high-dimensional spaces like the C-space, and attempts to
cover the space by expanding its tree structure as illustrated in Figure 5.4. The key idea behind
an RRT is to explore unexplored regions of this space. Furthermore RRTs arrive at a uniform
coverage of the space, which is another advantage of probabilistic roadmaps there was interest
in projecting onto a single-query planner. (Kuffner and LaValle, 2000)

The RRTConnect algorithm is designed specifically for path planning problems without differen-
tial constraints. The method is based on two ideas; growing two trees, one from qs and one from
qf , and using a heuristic ”that attempts to move over longer distances” (Kuffner and LaValle,
2000). Viewing Figure 5.4, where the growth of an RRT is shown, the Connect heuristic is a
greedy function which instead of extending the tree one ε, iterates this step until either q or an
obstacle is reached. The configuration q in this instance is a collision-free configuration in the
space (Kuffner and LaValle, 2000).

The algorithm RRTConnect builds two trees, Ts and Tf , one from qs as can be seen in Figure
5.4, and an equal one from qf where both are maintained simultaneously. In each iteration of
the algorithm, a new vertex is added to either of the trees and an attempt to connect them is
made. When trying to connect the trees, the nearest vertex in the other tree and the vertex
just added are tried. The roles of the trees are then swapped and a new vertex is attempted
added to the other tree. The algorithm is based on RRTs explained in Section 5.3, and when
advancing towards a new configuration in the space, collision-checking is done before the edge
is inserted in the trees. When the tree is constructed, queries can be answered quickly (Kuffner
and LaValle, 2000).

5.4.3 SBL

The algorithm SBL, Single-Query, Bi-Directional, Lazy in Collision Checking, is as the name
suggest both single-query and bi-directional. It is to solve a single motion planning problem,
and it builds two trees, one from qs and one from qf attempting to connect these two. It is a
PRM planner, it builds a probabilistic roadmap to answer the query, and it has lazy collision-
checking, meaning it delays checking for collisions until it is absolutely necessary. As with other
sampling-based planners, Cfree is not mapped explicitly, but a collision-checker returns whether
q ∈ Cfree, given any q ∈ C (Sánchez and Latombe, 2003).

A PRM planner, as accounted for in Section 5.2 samples the configuration space at random
and saves the collision-free configurations as vertices V . The edges between the vertices are
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simple paths, straights segments in the space, and denoted E. The sets V and E make up the
probabilistic roadmap. A PRM can either be multi-query, where a roadmap is built once and
queried multiple times for the same environment, or single-query, building a new roadmap for
each query. In a changing environment, a single-query planner will be preferred.

According to Sánchez and Latombe (2003), PRM planners spend most of their time collision-
checking. Several ways to reduce this time usage is listed by the authors and include designing
faster collision-checkers, building smaller roadmaps to reduce the time spent checking for a
collision and delaying collision-checking until it is needed. The authors opted for the latter option
(Sánchez and Latombe, 2003). In comparison to RRTConnect for example, path segments are
only added to the tree if it is found collision-free during the growth phase of the tree. Here, the
path segments are added without this consideration, and this is dealt with afterwards.

Sánchez and Latombe (2003) define a metric d over C: ”for any q ∈ C, the neighbourhood of q
of radius r is the subset B(q, r) = {q′ ∈ C | d(q,q′) < r}. With d = L∞, the metric used by
SBL, is an n−D cube” (Sánchez and Latombe, 2003).

The algorithm is given two parameters; s, which is the number defining how many vertices V are
to be generated in the roadmap and ρ, a distance threshold. Two configurations, for example
q1 and q2 are considered close, if the L∞ distance between them is less than ρ (Sánchez and
Latombe, 2003);

iff sup
(
|(q1 − q2)|

)
< ρ→ q1 close to q2. (5.1)

The planner builds two trees Ts and Tf , rooted at qs and qf . Which tree is grown varies to
keep the size of the trees consistent. If one tree grows disproportionately large, the advantages
of bi-directional search disappears (Sánchez and Latombe, 2003).

For each expansion of the roadmap, a collision-free vertex is added to the roadmap. The ”lazy”
part of the algorithm with regards to delaying collision-checking is reserved for checking the
path segments. In each expansion of one of the trees, the two are attempted connected by the
previously defined metric. Let m denote the newly added vertex, and m′ the closest vertex to
it in the other tree (the one not being grown at this iteration). If the distance between them,
d(m,m′) < ρ, m and m′ are connected by an edge called the bridge. The alternating growth
of the trees is done s times, and if a path γ from qs to qf has not been found there either
does not exist a path, or it has not been found. Recall, that sampling-based planners are non-
deterministic. If a bridge is found, this is the final path segment needed to connect Ts and Tf

via the path γ (Sánchez and Latombe, 2003).

It is at this point the path segments in the trees, including the bridge, are tested for collision.
It is known at this point, that the vertices are collision-free since this was a demand for them to
be added to the roadmap, but the segments have not been checked. For each path segment, w,
there is an associated index κ(w), indicating how much of the path segment has been checked
for collision. If κ(w) = 0, only the vertices connected by w are tested collision-free, whilst
if κ(w) = 1, both vertices and the midpoint of w are collision-free. The necessary collision-
checking is then performed to investigate if this path answers the query (Sánchez and Latombe,
2003).

If the path is not collision-free, the segment containing the collision is removed from the graph.
This results in the roadmap becoming two trees again. If the colliding segment is the bridge,
the two trees are the same as before the collision-checking. If the colliding segment is another
segment than the bridge, a transfer of vertices from one tree to another is made of the collision-
free vertices, and a new attempt is made to connect the two trees (Sánchez and Latombe,
2003).



Chapter 6

Motion planning + grasping

Bin-picking problems and set-ups are a concoction of different technologies, utilizing different
forms of technology, from computer vision to pose estimation to robot actuator control. Multiple
fields are combined to find solutions to the bin-picking problem. During the theory work for this
thesis, and for the specialization project, one finds readily available ”separate solutions” to the
different sub problems that go into the bin-picking problem, such as looking at optimal grasp
planning assuming the tool point or end-effector already is at the pose of the grasps, and optimal
motion planning to a pose, not considering if this pose is an optimal grasp. The hypothesis and
basis for this work regarding this conundrum is that a combination of optimal grasp and optimal
path planning to said grasp must be combined to obtain good results.

6.1 Reachability vs. Path Reachability

”The reachability of a robot manipulator to a target is defined as its ability to move its joints
and links in free space in order for its hand to reach the given target” (Ying and Iyengar, 1995).
Furthermore, Ying and Iyengar (1995) define the ”Reachability Test” as testing ”whether the
robot has the ability to move its joints for its hand to reach the given target”. Recall, that all
the points the robot can reach in the workspace is commonly called the reachable workspace.
With the definition of the reachable workspace as stated, the reachability of a given point is a
problem of testing whether the point is within the reachable workspace of the robot. If at least
one point on an object can be reached, the object is said to be reachable by the robot. (Ying
and Iyengar, 1995)

When transferring this to a bin-picking system, the given target is the given grasp we would like
to reach. How well a robot can reach this given grasp is closely related to its reachability. If the
reachability of the robot is ”good” for a given grasp we can be more certain that the robot will
be able to reach the grasp.

To the extent of the author’s knowledge, there exists some ambiguity on the use of the term
reachability in robotics. In (Ying and Iyengar, 1995), they define the reachability of a robot
as something to do with the robot’s ability to move. However, for example in Zacharias et al.
(2007), Zacharias et al. (2009) and Berenson et al. (2007) it refers to the existence of an inverse
kinematic solution only. The existence of an IK solution is not equivalent to a valid motion
plan existing, especially not in a robot scene with constraints and obstacles. In the rest of
this work, reachability will refer to the existence of an IK solution, and the term path reachabil-
ity is introduced, and will refer to instances where an IK solution and a collision-free path exists.

33
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Definition 6.1. Consider a point p in the reachable workspace of a robot manipulator. If
there exists an inverse kinematic solution at p, a motion plan can be found from the current
configuration qs to the final configuration qf at p, and this path from qs to qf is in Cfree,
meaning it is collision-free, then the point p is said to be path reachable.

6.2 Separated solutions

†Bin-picking is, as previously mentioned, a concoction of different technologies, and branches
within those technologies. Attempting a solution of the bin-picking problem by solving it part
by part seems a good strategy due to the complexity of the system as a whole. Combining
solutions to subsystems is reasonably assumed to lead to the solution of the system as a whole.
As such, following this reasoning, much research has been done on one of two things; finding
good trajectories to reach a desired pose and finding high quality grasp candidates. This leads
to a new problem: an optimal pose for grasping may not be feasible to reach for the robot due
to constraints in the workspace (Akinola et al., 2018).

There exists extensive previous work on the notion of grasping an object given that the end-
effector is already at the appropriate contact point, to initiate the actual grasping. If one is
given a good grasp it does not matter that it is perfect if the robot cannot reach it (Akinola
et al., 2018).

Taking into account that the robot must be able to reach the grasp pose is decisive for a
successful bin-picking system. Given an optimal grasp from a grasp planner, or a vision-based
system as is the case with the SINTEF set-up, at least an inverse kinematic solution must exist
for the given grasp pose. If there are no constraints on the reachability of the robot, the optimal
grasp is the best ranked grasp from the planner. However, considering that the arm kinematics
and the reachability of the robot is a constraint on the system, additional consideration is
necessary.

In its simplest form, checking for an inverse kinematics solution at the grasp candidate poses
takes the arm kinematics and the robot into the equation. Once one has a list of grasp candidates,
the robot constraints are introduced and the reachability comes into play. If there are no
additional constraints, this is enough to find out if a grasp is feasible or not (Saut and Sidobre,
2012). If the workspace is clear of all obstruction and constraints other than the demand for
reachability, an inverse kinematics solution is a sufficient condition. The process then goes
from

→ Obtain grasp candidates
→ Choose the optimal candidate based on grasp quality measures

to

→ Obtain grasp candidates
→ Check the IK solution for candidates
→ Choose the optimal candidate based on grasp quality measures and that an IK solution

exists

Saut and Sidobre (2012) state that if there are no additional constraints other than the robot
constraints an IK solution is sufficient for introducing the robot into the grasp planning process.

†The majority of the section labeled ”Separated solutions” is copied from the specialization project (Gravdahl,
2018)
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Seeing as this is rarely the case in a real-life application such as with the set-up at hand, an IK
solution should perhaps be viewed as only a necessary condition to be certain of the reachability
of a pose in the workspace. Since there are constraints and obstructions with the camera housing
attached to the robot arm, and the bin itself constitutes a possible collision, together with the
objects to be picked, an IK solution does not seem to suffice. A path must also exist and
this path must be collision-free, to be able to say with absolute certainty that the grasp is
feasible/reachable/possible.

6.3 Combining the problem

Regardless of the method used for grasp selection, planning for a grasp is generally done, in
much of the research according to Berenson et al. (2007), with the prerequisite of the object
being alone in the environment. Furthermore for grasp planning, the assumption that the tool
is already at the object and ready for grasping is common, and brings with it the fact that the
robot kinematics are not taken into account. (Berenson et al., 2007)

Again, we encounter the issue of a perfect grasp generated for an object, might not be reachable
by the robot tasked with grasping it. The assumption that the object to be grasped is alone
in the environment, can hold true for multiple applications, but in our case with bin-picking
we have both obstacles (pedestal) and random behaviour (distribution of cylinders in the bin
changing throughout picking procedure) close to the object to be picked; the pedestal and the
camera housing make up static and moving potential collisions, and the remaining contents of
the bin and the bin itself constitutes constraints on the movement close to the chosen grasp.
The goal should be to not only select a valid grasp, but also ensure that this grasp is feasible
for the robot to reach.

In the following sections, the main results and approaches of seven particularly relevant papers
on the combination of grasp and motion planning will be summarized and discussed. This
presentation will be concluded by a statement on which of the works weigh the heaviest on the
implementations found in Chapter 7.

6.3.1 The work of Berenson et al. (2007)

Berenson et al. (2007) combined grasp analysis and manipulation planning techniques to perform
fast grasp planning in complex scenes, presented in their article titled Grasp planning in complex
scenes. Their framework uses the force closure property to evaluate grasps, and find good grasps,
when the object they are to pick is alone in the environment. The framework relies on sampling
to find a set of good grasps for each of the objects in the environment. When having found this
set for the objects that are to be grasped, they pose the question; ”which one should be chosen
for a given environment?”. Instead of choosing the first grasp that fulfills the force-closure
property, is reachable and has a collision-free path to it, they propose a more organized fashion
to handle this choice.

The set of grasps which fulfill the force-closure property is potentially large, and checking each
of the grasps randomly can become a time consuming affair. This approach is disregarded, and
they propose using a grasp-scoring function, that take into account the kinematics of the robot,
as well as the local environment around the objects to be picked. The so-called grasp-scoring
function is used to rank grasps in the grasp set, obtained from the sampling procedure, and
when they are ranked, bidirectional RRTs are used to plan a path. See Chapter 5 for more
information on motion planners, including RRTs.
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Their method is two-fold, one precomputation step which is done offline and one on-line com-
putation step. In the precomputation step, the result is a grasp set where all grasps fulfill
force-closure. Grasps that do not fulfill this property are not of interest. In the online step, the
first part is to rank the grasps according to the grasp-scoring function which takes into account
the local environment of the object and the robot kinematics, and then test the grasp according
to their ranking by looking for an inverse kinematic solution and a collision-free path. Finally a
trajectory is planned to the grasp with the highest ranking. Shall this trajectory fail, the grasp
ranked second by the grasp-scoring function is tried. The process continues like this until a valid
trajectory is found. Since the grasps already have been ranked, one knows that a grasp with a
valid trajectory also fulfills force-closure.

The grasp-scoring function objective is to trim away unnecessary computation time spent on
useless computations which arise when the environment and the manipulator kinematics are
taken into account. The force-closure property is only a sufficient demand on the grasp if the
object and the end-effector are floating in free space, which is never the case. Considering that
a contact surface for the object always will exist, such as for example a metal cylinder resting in
the bin in the SINTEF set-up, grasps through the bottom of the bin need never be considered.
Knowing this increases the efficiency of the grasp planning, since a number of theoretically valid
grasps on the object from below will never be valid due to the environment design. Moreover, the
kinematics of the robot and its reach can trim away more invalid grasps with a quick check into
the inverse kinematics of the robot, or grasps found outside of the robot workspace (Berenson
et al., 2007). Thus, the goal of the grasp-scoring function is to take into account all necessary
information about both the robot kinematics and the environment, based on the probability
that a grasp be successful, again based on the surroundings of the grasp.

Let

G(O,E,P), (6.1)

be the score of the grasp, defined by the grasp policy parameters P, on object O, in environment
E. The object considered is defined by the parameter O, and E changes when the environment
does. The function G consists of three parts. Gq(P), which is the force-closure score of P found
during the precomputation step. Gb(E,P), which is the robot-relative position score, which is
the parameter that takes into account the position of the robot in the scene. Ge(O,E,P) is
the environment clearance score, which allows for consideration of the environment around the
object when computing the grasp score. After the previously defined Gs are calculated, they
are combined:

G(O,E,P) = ec1·Gq(P) · ec2·Gb(E,P) · ec3·Ge(O,E,P), (6.2)

where ci, i = 1, 2, 3 are weighting parameters determining the relative importance of the charac-
teristics of the grasp.

Berenson et al. (2007) tested their framework on two set-ups in simulation and on one set-up
in experiments. The foundation of the experiment was to compare the efficiency of the grasp-
scoring function, G(O,E,P) to the same procedure without ranking the grasps according to
said function. Fifty grasp were tested. In one experiment these 50 grasps were not sorted by
the grasp-scoring function, whilst in another they were. The grasp-scoring function approach
outperforms the unsorted approach consistently in terms of how many attempts at grasping was
needed until a successful grasp was found on the object.

The procedure described by Berenson et al. (2007) of orderly ranking grasps based on the robot
kinematics and the local environment of the grasp is advantageous to consider for the robot set-
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up at hand. A map of the workspace, and obtaining information about the availability of the
environment around where the bin is placed, could potentially improve the picking process.

6.3.2 The work of Zacharias et al. (2007)

Figure 6.1: ”The maximum workspace of
the right arm is overestimated by the en-
veloping cube which is divided into sub-
cubes of 300mm side length” (Zacharias
et al., 2007). © 2007 IEEE

In the article titled Capturing Robot Workspace Struc-
ture: Representing Robot Capabilities, Zacharias et al.
(2007) introduce a compact representation of their
robots reachability and directional structure informa-
tion for the whole workspace. They label this repre-
sentation of the workspace as the capability map, and
claim it to be a good representation for finding easy
to reach poses in three dimensions. By also including
directional structure, the robot is able to place its tool
in easy to reach regions in the workspace.

A robot arm’s workspace is not uniform with respect to
reachability (here referred to whether or not an inverse
kinematic solution exists for a certain pose), and it is
therefore necessary to capture directional information
of different workspace areas; there are certain regions
that only can be reached from certain directions. In
general, Zacharias et al. (2007) needed a representa-
tion of manipulator capabilities that could be used to
deduce which places are easy to reach for the robot arm.
If only a specific direction is off interest, this direction

should be applicable in the map, and filtering out all other directions not of interest.

Zacharias et al. (2007) extract their workspace structure through four steps; discretization,
randomized sampling, analysis and optimization processes. The discretization step envelopes
the robot into a cube with length, width and height twice the arm length of their robot, and
this cube is divided into smaller cubes to obtain a discrete representation of the workspace as
can be seen in Figure 6.1.

In each of the subcubes, a sphere with diameter equal to the width of the subcube is generated,
and N equally distributed points on the sphere are generated. For each of these points, they
generate a coordinate frame, which again is rotated in each of the points. Each of these resulting
frames are meant to represent a potential tool point frame which will need to be tested for reach
by the robot by checking the inverse kinematic solution for this particular frame. If they find one
solution for a particular point p on the sphere, this p is marked in an underlying data structure.
The randomly sampled configuration is supplied to the inverse kinematic solver as the initial
conditions. Since they are working with a kinematically redundant robot (7DOF) which does
not have a single unique solution, supplying a starting solution to the solver already near the
solution, is computationally beneficial (Zacharias et al., 2007).

When the spheres are all mapped, they visualize the reachability of each of their cubed regions.
Zacharias et al. (2007) then introduce the reachability index D, which is a measure of the
reachability of a region defined as

D =
R

N
· 100 with R ≤ N, (6.3)
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where N is the total number of points on a sphere, and R, the number of valid inverse kinematic
solutions found on this sphere. The resultant variable D will then give a percentage represen-
tation of the reachability of this region. Furthermore, the spheres are coloured according to
their reachability index, which range from D ∈ [0, 76]. Looking at Figure 6.2 also taken from
their article, as expected the spheres with the lowest reachability index is at the border of the
workspace, and a distance away from the base at approximately half the arm length we find a
region of good reachability.

Figure 6.2: ”Shows the reachability spheres across
the workspace. The workspace representation was
cut for better visibility of the structure” (Zacharias
et al., 2007). © 2007 IEEE

The reachability index is a directionless mea-
sure, it does not inform where on the spheres
the IK solutions were found. Consider that
on one sphere, all the solutions were found on
one side, this is not explicit in this presen-
tation, this measure only presents an average
success percentage for each sphere. The next
step of Zacharias et al. (2007) was to look
more closely into exactly where of the sam-
pled spheres solutions were found, and have a
more comprehensive impression of the results
by also including desirable angles of approach
in the regions of the workspace based on where
on the spheres solutions were found.

This type of workspace representation is of in-
terest within this thesis as the initial goal of
this work (see Chapter 7) is to find an op-
timal placement of the bin in the set-up. A
representation of the workspace and a corresponding visualization will aid in this process. Fur-
thermore, directions, and where potential grasps need to be approached from is relevant for this
work due to the extra freedom that reveals itself when the UR5 is given a point and approach
vector from the neural network, and not a complete coordinate system.

Tying this in with the SINTEF set-up, a procedure which can say something about the best
angle to come at a grasp from, or have some information about directional approach would be
beneficial. For example it has been experienced that grasps which must be approached from the
left of the base fail far more often than grasps from north, south and east direction

The objective of Zacharias et al. (2007) was to find a capability map of their manipulator, and
due to the design of their robot which has a torso, adjust the placement or incline of this torso
as to move the most capable regions of the robot, to the object to be grasped. The objective of
the task with the robot at SINTEF is the other side of the coin; a mapping of the workspace was
desirable to find, such as to place the bin in the most reachable region of the workspace. The
goal with the set-up at hand is to move the bin to the most reachable region, whilst Zacharias
et al. (2007) wanted to move the reachable region to the object.

6.3.3 The work of Zacharias et al. (2009)

In this paper, Zacharias et al. (2009), examine two strategies to incorporate the reachability of
the robot into the grasp planning. Firstly, they incorporate an IK solver directly into a grasp
planner, and secondly they use their previously established model of the reachable workspace,
their capability map, presented in Zacharias et al. (2007), see also Figure 6.2.
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The aim of their work was to obtain reachable grasps online for a multi-fingered robot. Since
finding stable and optimal grasps is computationally expensive, and in addition the grasps are to
be reachable, the process would not be possible to execute online. The focus was placed on a sec-
ond category of planners that generate good grasps, rather than optimal ones. The randomized
grasp planner that they utilize is independent of the kinematics of the robot, thus it can generate
several good grasps on an object, but will also give grasps not necessarily reachable.

The planner they use have several steps to it which filter out grasps on an object; generate
random contact points→ check feasibility with respect to hand kinematics→ check for collision,
both with object and self → check for force-closure. The idea of Zacharias et al. (2009) was to
implement an additional kinematic reachability test within the planner to introduce the planner
to the robot. Their reachability test consisted of taking the frame attached to the hand given
in the base frame and checking for an IK solution. If one could be found, the grasp passed the
additional test. To ensure grasps that are not reachable do not take up additional computation
time in the planner, the reachability test was placed as the first test after the step where random
contact points on the object are generated.

The next module of the work in this paper consists of feeding the planner the capability map
for the workspace which was presented in Section 6.3.2 discussing the generation of the map.
By using the capability map the planner could be decoupled from the integration of an IK
solver. Their capability map describes from what directions regions of the workspace can be
approached. When introducing the map into the filtering steps in the grasp planner (generate
random contact points→ check feasibility→ check for collision→ check for force-closure) it can
be determined if the region the grasp exists in is reachable, and from what direction it must be
approached. The capability map is implemented in the grasp planner making it able to predict
if a grasp is reachable or not, but does not supply (one of) the arm configuration which are
valid at this pose. By using the capability map Zacharias et al. (2009), unreachable grasp were
discarded early.

In addition to implementing the reachability concept in the grasp planner, Zacharias et al.
(2009) also consider obstacles in the workspace and the need for collision-checking. An obstacle
influences the reachability of nearby regions in the workspace. This region of influence also
increases when the obstacle is placed close to the robot base, since the robot often operates in
this region. By subtracting the obstacle region of influence from the reachability sphere map, a
new capability map could be computed which included the influence of an obstacle. By giving the
grasp planner this new capability map, collision-avoidance was included in the planner without
introducing the robot and object model to the planner. Since the capability map is not a perfect
representation, a final collision-check was performed at the end of the process.

By including the capability map in the grasp planner as another module and not changing
the planner itself, the only change which needs to be made to utilize this set-up on another
manipulator is to compute a new capability map for it. It is worth noting that other sources,
such as Fontanals et al. (2014) also discuss and utilize such capability maps.

Seeing this in the context of the SINTEF set-up, this type of representation of the workspace
and knowing something beforehand about the different regions in the workspace will be valuable
in terms of sorting the grasps coming from the neural network. Since the grasp planner in this
context is the output from a neural network completely decoupled from the robot kinematics,
being able to quickly supply some information about the region the grasp is in, is highly valuable
information to avoid unnecessary attempts at picking. The intention for the SINTEF set-up is
to represent a type of capability map as a large look-up table where reachability and path
information is the first to be checked.
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6.3.4 The work of Vahrenkamp et al. (2010)

Vahrenkamp et al. (2010) state that for grasping an object, several tasks have to solved; finding
a feasible grasp, calculating an IK solution and finding a collision-free path. Instead of working
with the workspace of the robot, they incorporate the demands on grasping into a probabilistic
planning approach using RRTs. Their planner searches for feasible grasps during the motion
planning stage such that needing knowledge beforehand regarding grasping poses is not necessary
(Vahrenkamp et al., 2010). This is in contrast with for example the work of Zacharias et al.
(2009) who incorporate robot kinematics into a grasp planner. Here, Vahrenkamp et al. (2010)
incorporate grasp planning in what is originally a motion planner structure. The search for
feasible grasps in this implementation focuses on reachable configurations for the robot, and
this limits the computation of grasp poses to those that are reachable.

Planning grasping motions based on a pre-defined set of grasps is common. An offline generated
set of grasps exist, and IK solutions are searched for in the planning process, for example with
the use of a grasp planner like GraspIt by Miller and Allen (2004). The combined grasp and
motion planner by Vahrenkamp et al. (2010) is called ”Grasp-RRT” and combines the search
for a collision-free path with online planning for a feasible grasp. There is no explicit qf in the
motion planning problem, since multiple grasp poses and approach directions are possible until
one reaches the object to be grasped. Recall, that RRTs span a tree structure attempting to
cover Cfree densely. The start configuration of the robot qs is defined in an RRT, along with the
6D pose of the object to reach, pobj. Using qs as the node of the tree, the RRT builds from this
node a tree of collision-free configurations (recall that the nodes are collision-free configurations
and vertices are collision-free paths). For every new configuration qi, the grasp center point
(of the grasp), pi, is calculated and saved. When a new node of the RRT is selected, the tool
center point is moved toward a feasible grasping pose. The resultant node in the RRT when
planning towards pobj defines a potential grasping pose. There is no need for a check of the
IK solution at the potential grasping pose, because all the vertices of the tree are collision-free
configurations and have paths to them, meaning the IK solutions are implicitly included. This
grasping pose at the final node is then checked by a grasp quality measure. If this measure is
above some defined limit of quality, the grasping motion is readily available since it is found in
the RRT already grown.

Considering this work in relation to works utilizing a capability map, this work places a larger
focus on path availability in the planning process. With the set-up at hand it was desirable
to attempt paths early in the process and having some information on path existence available
before attempting a grasp, not necessarily checking for a path once a grasp had been decided
upon.

6.3.5 The work of Vahrenkamp et al. (2013)

A slightly different aspect of combined motion planning and grasping can be found in Vahrenkamp
et al. (2013). In this work, the robot base is placed favourably to reach a given grasp, instead of
favourable grasps being planned in reachable parts of a stationary base workspace. The capabil-
ities of a robot can be presented in a map such as in the work of Zacharias et al. (2007), where
IK solutions and joint limits are included. This type of map is beneficial for quickly querying
about the reachability of a certain point in the workspace. The type of representation can also
be used to support the search for a suitable robot base pose for grasping.

In the paper named ”Robot Placement Based on Reachability Inversion”, Vahrenkamp et al.
(2013) present an approach for inverting reachability data in order to generate a distribution
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in SE(2) of potential base poses for grasping. SE(2) is the special Euclidean group of order
2, and consists of the C-space where a rigid body in 2D can rotate and translate in the plane
(LaValle, 2006). With their inverse reachability representation they transform the capability
representation to an object-oriented view, instead of a robot oriented one (Vahrenkamp et al.,
2013).

Figure 6.3: ”The reachability distribution of
the robot’s right TCP. The kinematic chain
covering hip and right arm with 10 degrees
of freedom was used for generation while
manipulability, self-distance and joint limits
were incorporated for determining the qual-
ity” (Vahrenkamp et al., 2013). © 2013 IEEE

In an offline step, the robot’s capabilities in terms of
reaching and grasping is computed. This is done by
discretizing the workspace into small cubes, voxels,
before filling these cubes with possible tool point
placements. To build the representation, reacha-
bility information (IK solutions) is used. Further-
more, information on the distance between links of
the robot are used to penalize being in a configu-
ration with limited maneuverability, and the joint
limits when considering singularities. This data will
be a representation of the tool point given in the
base frame (Vahrenkamp et al., 2013).

Once the previously mentioned data has been gener-
ated, it can be inverted to supply suitable robot base
poses with respect to grasps needed to be reached in
the workspace, instead of generating a good grasp
given a base pose. This inverted map can also be
generated offline such that querying it online will
not be too time consuming.

This type of representation is particularly useful
for a mobile robot in a human-centered environ-
ment (Vahrenkamp et al., 2013). Vahrenkamp et al.

present an example of a mobile robot opening a dishwasher. The placement of the robot base
is a more intuitive way to solve the problem, rather than having a fixed-base robot attempt to
reach the handle from a stationary position, even though a ”direct” capability map might aid in
finding a proper approach direction for solving the task. Considering the specific grasp needed
to open the dishwasher, it is a better solution to allow this pose be the fixed one, and move the
base accordingly.

Considering the use of an inverse reachability map in the work of Vahrenkamp et al. (2013) and
its ability to guide the base towards a stationary grasp, confirms the idea of using a ”direct”
path reachability map for finding good grasps in the set-up at hand. In the SINTEF set-up, the
robot base is of course fixed, but the use of the workspace representation before it is inverted
and used by Vahrenkamp et al. (2013) is advantageous to investigate. Since the ”dishwasher-
grasp” is stationary, and there exists multiple grasps to choose from in the set-up at hand, the
procedure of collecting data offline and using it online with the robot confirms that a workspace
representation could be advantageous.

6.3.6 The work of Haustein et al. (2017)

In the paper ”Integrating Motion and Hierarchical Fingertip Grasp Planning” by Haustein et al.
(2017), an algorithm that simultaneously searches for high fingertip grasping and a collision-free
path to said grasp is presented. They show that their planner can achieve reachable high-
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quality fingertip grasps in cluttered scenes. Their methods assumes that the geometry, state
and kinematics of the robot is known (they use a 13DOF robot), along with the geometry of
the environment the robot operates in as well as the geometry and the pose of the object to
grasp.

The framework consists of two main components; one motion-planner, and one grasp-planner
for the hand to obtain good grasps with the appropriate contact points on the objects. Both
the motion- and grasp-planner share current knowledge of Cfree. Let CG denote the goal region
of the grasp, containing the goal configurations. The grasp-planner, goal sampler, for the hand
provides to the motion planner configurations that obtain high-quality fingertip grasps for the
hand in this region. The motion-planner queries the goal sampler for this information in turn,
reliant upon their shared knowledge of Cfree (Haustein et al., 2017).

The objective is to allow the motion planner to search for goal configurations from qs and find a
path in Cfree, to the goal configurations supplied by the goal sampler. As the motion-plan search
continues, trees are constructed, the information on Cfree increases, and this aids in guiding the
search towards the goal region CG. The planner they use is bidirectional and attempts to grow
two trees, one from qs and one from goal configurations supplied by the goal sampler, to find
a reachable grasp. To provide such configurations, the grasp planner needs knowledge of Cfree,
which it obtains from the motion planner.

Even though this paper is regarding fingertip grasping and the system at hand employs a suction
cup, the methods are interesting in terms of the ability to combine grasp and motion planning
into one.

6.3.7 The work of Akinola et al. (2018)

In their paper ”Workspace Aware Online Grasp Planning” Akinola et al. (2018) provide a
framework for workspace aware online grasp planning by incorporating the notion of reachability
into the online grasp planning process. In the offline process, a dense reachability space is
constructed for the manipulator and its environment, where for a given sampled pose a check
of the existence of an IK solution is done. The reachability space is post-processed to a signed
distance field, which includes a points distance from the border of the reachable workspace. The
distance field is used in the grasp planning to guide the grasping away from unreachable regions
and towards regions of higher reachability, increasing the chance of success.

By utilizing the IK solutions to sampled poses in the workspace, the resultant map is binary in
nature; either a grasp is reachable, or it is not. The reachable workspace of a robotic manipulator
has a boundary between where the robot can and cannot reach. To incorporate a gradient in their
map, Akinola et al. (2018) utilize the distance to this manifold, which they call dsdf, where ”sdf”
stands for signed distance field, to also rate potential grasp poses on how far they are from this
manifold separating the reachable and unreachable workspace. By using this representation and
this implementation, reachable grasps obtained a positive ”sdf”-value and unreachable grasps
had negative ”sdf”-values. Once the map is ready, it can be queried for a pose in the workspace
and its binary reachability value and the distance from the border of the reachable workspace
is returned.

Since the notion of a ”good grasp” has no intuition with regards to reachability, the reachability
map of Akinola et al. (2018) is used to guide the grasp planning into low energy regions of the
space, where it is clear the reachability is good. Since the reachability map has a gradient, it
can be optimized in terms of this energy consideration. Akinola et al. (2018) use simulated
annealing which is an optimization technique for approximating global optima for functions. By
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1) Query Reachability Space 2) Create Reachability SDF 3) Reachability-Aware
Grasp Planning

4) Trajectory Planning 5) Grasp Execution

Offline Online

Figure 6.4: Workspace Aware Online Grasping Framework - Offline: 1) the robot’s reachability space
is queried for IK solutions that are free of collisions with the robot itself and static objects such as walls
and tables. 2) An SDF is created from the reachability space. Online: 3) Grasp planning is quickly
accomplished utilizing and reachability space SDF. 4) A motion plan for one of the planned grasps. 5)
Trajectory executed by the robot for stable grasp (Akinola et al., 2018). © 2018 IEEE

using this technique they ensure that sampling for grasps is only done in reachable regions of
the workspace.

Viewing Figure 6.4, the structure of the framework of Akinola et al. (2018) can be seen. In the
online phase of the process, grasp planning is done by using the reachability signed distance
field. When grasps are found, planning a motion to the grasp is done and executed by the
robot.

Akinola et al. (2018) state that a grasp is reachable if a motion plan can be found to move
the arm from its current configuration to a goal configuration that places the end-effector at a
desired pose. Yet, only the existence of an IK solution is incorporated in the reachability map
and paths are planned at a later stage in the online phase. Since the grasps in the system at
hand are planned independently of the reachability, grasp planning will not be incorporated in
this work, since we assume the grasps from the network to be valid. The most relevant part of
this work is the construction of the reachability space and signed distance field, and how this
may be incorporated as an additional step in the system at hand.

6.3.8 Remarks

In conclusion, the works of Zacharias et al. (2007), Vahrenkamp et al. (2013) and Akinola
et al. (2018) supply inspiration in terms of using a map to display the robot abilities in the
workspace it operates in. A workspace representation containing the robot capabilities in terms
of accessibility and reachability would be an implicit way to categorize the workspace enabling
the inclusion of the robot in the grasp selection process. With the use of a map, one is also free
to populate it with the characteristics important for a particular application. Taking the set-up
at hand as an example, the existence of paths to different parts of the configuration space was of
foremost importance, whilst for example in the work of Vahrenkamp et al. (2013) configurations
some distance away from singularities were deemed important for their application. As will be
demonstrated in the following chapter, the use of such capability maps is a decisive part of the
work.

Furthermore, Berenson et al. (2007) and Vahrenkamp et al. (2010) use a grasp-scoring function
and a grasp-quality measure respectively to rate the grasps in their environment in terms of robot
abilities. This aspect of the combination of grasp planning and motion planning also served its
purpose as inspiration. As will become apparent in the following chapters, the combination of a
type of capability map, and the use of a cost function to evaluate the grasps to be reached has
been implemented. Inspired by these works, the implementation of this type of function became
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an implicit part of the map data structure, where a query into the map returns grasp quality
information in terms of the existing paths to the queried area.



Chapter 7

Method

Figure 7.1: Photo of the bin-picking set-
up, courtesy of Katrine Seel, MSc SIN-
TEF Digital. Notice the pedestal (1), cam-
era housing (2), suction cup (3), fastening
mechanism (4)(5), and bin with reflective
steel parts (6).

This chapter will document the methods used and
present some of the results obtained. Results are pre-
sented in conjunction with the method to highlight
choices made and conclusions reached to bring the work
forward. This chapter begins with an introduction to
the system set-up specifically with grasp selection in
mind. The chapter continues with a reiteration of pre-
vious work done on the set-up at hand, also with grasp
selection in mind. The results obtained during the
specialization project will be presented and serves as
motivation for mapping the workspace of the robot.
The workspace mapping will then be presented. This
section includes the methods used for mapping, which
traits are mapped, and other issues encountered during
the work. The section concludes with deciding upon a
new bin placement to replace the current. Following
this bin placement, a new mapping is undertaken. The
new bin area is presented, discretized and sampled, be-
fore several planners and optimization objectives are
used to map the area. Several metrics used for compar-
ing planners are also presented. Following this testing,
the most appropriate planner is decided upon.

The motivation behind mapping the workspace, re-
placing the bin, and mapping the new bin area, is to be
able to use this map of the robot’s path reachability in

conjunction with the output from the neural network. The use of this path reachability map will
be outlined, and an algorithm demonstrating its use will be presented. This chapter concludes
with a case study, where real grasps from the neural network are used to present functionality
of the algorithm, and it will be shown that incorporating the robot’s abilities when choosing a
grasp increases picking success.
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7.1 System set-up

The system at hand is a bin-picking loop with all the belonging traits; pose estimation, a 3D
sensor, a robotic manipulator arm, a robot scene, a workspace, the need for path planning etc.
For this set-up, a dual-resolution convolutional neural network trained on simulated data is
used to supply the grasps (Dyrstad et al., 2018). Another popular approach is to utilize grasp
planners for the same purpose, such as GraspIt! (Miller and Allen, 2004), OpenRAVE (Diankov
and Kuffner, 2008) and OpenGrasp (León et al., 2010).

The bin-picking system set-up used comprises a UR5 robotic manipulator arm, a Zivid 3D
camera and a vacuum gripper to pick reflective parts from a bin. The vacuum gripper is what
is known as the tool point, tp for short. To supply a grasp, it is important to obtain sufficient
depth information from the images of the distribution of parts in the bin, see Figure 7.1. An eye-
in-hand configuration provides flexibility in this regard. Information from the camera is used to
compute multiple grasps based on how objects are placed in the bin. When the sensor is attached
to the robotic arm performing the grasping, additional constraints on how the manipulator can
move whilst avoiding self-collisions and collisions with the bin or other parts of the environment
are imposed. A characteristic of the grasps supplied by the network (Dyrstad et al., 2018), is that
they are decoupled from the robot tasked with reaching them. The network has no knowledge
about the existence, and kinematics, of the robot. This raises the issue of reachability, and the
need for coupling these two aspects; optimal grasp generation in terms of the object geometry,
and prioritizing grasps that are reachable for the robot.

The issue at hand is determining with what amount of ease the robot can reach a specific pose
in the workspace, and to find a way to judge which grasps are favourable for reaching with
the robotic manipulator arm. The following sections detail the results obtained attempting a
solution to this problem. The results were obtained in simulation, using a simulator supplied
by Universal Robotics (Universal Robots A/S, 2019), and upon it, working with the Robot
Operating System (ROS) workspace structure for the physical system.

The solution flow chart attempted in this work can be seen in Figure 7.2, where each of the
yellow boxes will be detailed, culminating in a study of the functionality. The yellow boxes
also indicate the main contributions made in this thesis, and is an extension of the flow chart
presented in Chapter 1, Figure 1.3.

Figure 7.2: Illustration of solution workflow. The flow chart depicts the steps taken to find a solution to
the task at hand. First, a mapping of the workspace will be done in order to place the bin optimally in
terms of most grasps reached. Once the bin is placed based on the mapping a path reachability map will
be made, before this map will be used to sort the grasps coming from the neural network, maintaining
the modularity of the system as a whole.
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7.1.1 Supplying a grasp

The current placement of the bin is based on the optimal range of the Zivid 3D camera, which is
50-60cm from the objects. This 3D camera is placed within a camera housing of substantial size
(marked 2 in Figure 7.1) which further limits the arm configuration space. Due to this demand,
the UR5 was placed upon a pedestal.

The grasps chosen for picking in this set-up are supplied by a dual-resolution convolutional
neural network trained on simulated data (Dyrstad et al., 2018). The input to the network is
a point cloud of the current distribution of parts in the bin, and the output is multiple grasp
pairs, {di,vi}, where i ∈ {1, . . . , N}, N ∈ N, di ∈ R3 is a point and vi ∈ R3 is an approach
vector. The network supplies four lists of grasp pairs, one for each quadrant in the bin. A grasp
is said to be valid if there are no local collisions with other objects in the bin. The output pairs
from the network are ordered based on their closeness to the world z-axis pointing up through
the pedestal, and in the direction of the camera frame. The motivation behind focusing solely
on grasp planning in the neural network, is that it can be robot agnostic.

Since the output of the neural network is a point and an approach vector only, a change in
joint configurations whilst keeping the TCP stationary at the point, may lead to multiple viable
solutions. As a result of this characteristic, several coordinate frames were sampled with the
origin at the same point, but with different orientations, as will be motivated further in this
chapter. It is worth noting again, that since additional constraints on the system in terms of
the pedestal and the camera housing were present, the need for finding a collision-free path was
decisive.

7.1.2 End-effector geometric constraints

Figure 7.3: Model of the camera housing ge-
ometry. The green circle on top of the housing
is the point of attachment for the robot end-
effector. The L-shaped object has the suction
cup attached to the end of it, with the struc-
ture also housing the pressurized air supply.

The robot operates under different types of con-
straints, where the focus of this work is on the end-
effector geometric constraints; the camera housing
and attached gripper. Differential constraints are
constraints placed on the kinematics of the robot,
for example limitations on q̇ and q̈, limiting the
movement of the robot due to constraints on its ac-
tuators. Geometric constraints however, deal more
with the geometry of objects and how they influ-
ence the pattern of movement permitted. The con-
straints can refer to geometric parts in the environ-
ment such as static obstacles, or objects attached to
the robot.

Let the task of moving from qs to qf be an op-
timization problem without constraints other than
the physical limitations on the system. When this
path is planned, the only need for collision-checking
arises when there is a risk of self-collision or satura-
tion in the joints. Let it now be a constrained opti-
mization problem, where the camera housing, grip-
per and pedestal are included. Collision-checking is
now not only needed to check for self-collisions in
the joints, but also checking if the geometry of the
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camera housing interferes with either the pedestal or the robot links. Both the pedestal and
the camera housing with gripper attachment is part of the URDF-file (file describing the robot)
used when working with the set-up. The geometric constraints imposed on the system are thus
taken into account when planning for a path, which is a decisive part of this work.

7.2 Previous work on grasp selection on the SINTEF set-up

†Using the visualization tool RViz, a 3D visualization tool for ROS, the set-up can be visualized.
Figure 7.4 is a screenshot from one such visualization run upon a simulated UR5 robot true to
the system at hand

This thesis furthers the work done during the specialization project within the same thematic
boundaries; grasp selection in bin-picking tasks for robotic manipulator arm with end-effector
geometric constraints. In the following paragraphs, a summary of the results obtained during
the specialization project, done during the autoumn of 2018, will be given, along with a detailed
description of the experiment executed.

1
2

3

4

5
6

7

Figure 7.4: Visualization of the specialization
project experiment as seen in rviz. 1) pedestal
where the robot is placed, 2) robot pose at the
scan configuration and Zivid 3D camera, 3) visu-
alization of the path from the scan configuration
to an experimental grasp, 4,5,6) actual placement
of the bin corners in the physical setup, 7) exper-
imentally generated grasps for investigation dur-
ing the specialization project

The project was centered around the notion of
reachability and path-existence, and how easy or
difficult it was, and is, to reach a certain point in
the workspace of a robot. This was done to look
into how easy it is to reach a grasp deemed opti-
mal by the neural network, since this network
does not take into consideration that a robot,
with constraints on its links and actuators, must
be able to reach it. The work consisted of in-
vestigating a ”patch” of the workspace, meant to
represent the current placement of the bin.

The project is best described by observing Fig-
ure 7.4, where everything is labeled. Firstly, the
robot is stood upon a pedestal (indicated by the
number 1) in a robot cell and consists of a UR5
robot with a specialized camera housing, contain-
ing a Zivid 3D camera (2), and a vacuum grip-
per (coordinate system at the end of L-shaped
object attached to camera housing). The robot
pose at this instance, as indicated by the same
number (2) on the figure, is currently one of four
scan configurations. The scan configuration is
the pose the robot scans the bin from with the
3D camera, to select an appropriate object to
grasp among the many objects in the bin.

Imagining a compass when looking at Figure 7.4,
this is the ”north” scan configuration. South,
west and east configurations also exist. The ob-
jective of having multiple permanent scan config-

uration like this is flexibility in finding valid grasps, and the freedom to capture images from

†Reiteration of the work done in the specialization project (Gravdahl, 2018)



7.2. PREVIOUS WORK ON GRASP SELECTION ON THE SINTEF SET-UP 49

several angles. For example, the robot may scan in a particular pattern; first from the north
configuration, then from the east, south and finally the west configuration. This also means
that it is from this pose (or these poses) one must plan a path to the given grasp. Since the 3D
camera is attached to the end-effector as opposed to having it placed stationary in a different
location within the cell, it is necessary for the robot to withdraw from the bin between each
picking operation. This is due to the need to reevaluate the new picking opportunities by cap-
turing a new 3D image which in turn is sent to the neural network which gives a new optimal
object to pick given the current distribution of objects in the bin. It is highly likely that the
distribution has changed compared to the last image captured.

The bin is placed upon a table beneath the robot (this is not visible in the visualization). In
connection with a different experiment, the vacuum gripper was placed in the inner corners of
the bin and the corresponding pose was saved, such that the robot pose in the four corners given
in the base coordinate system was available and known. In Figure 7.4 three of these bin corners,
visualized with coordinate systems, are visible and indicated with the numbers (4), (5) and (6).
Using these four corners, the ”patch” (7) was generated by systematically sampling points and
generating different orientations in the points. Each of the coordinate systems shown in the
”patch”(7) is meant to represent a grasp from the neural network that the robot must reach,
Tbase

gripi
. A sampling pattern of 3 × 6 points equidistantly apart centered in the bin was decided

upon for this initial mapping; this gives 18 sampled points in total.

Figure 7.5: Generation of optimal grasps for testing during the specialization project. In the left photo,
the bin corner coordinate systems are published to RViz. In the middle photo, the same coordinate
system is generated at equally distanced x- and y-coordinates. In the right photo, each of the coordinate
systems in the middle photo are present, whilst a full ”bundle” of coordinate systems are seen in the the
down left corner. In this point there are 27 coordinate systems with coinciding origins.

Viewing Figure 7.5 and Algorithm 1, the procedure for generating test grasps, and results on
how easy it is to reach a grasp, is outlined. Firstly in the leftmost image, the bin corners are
published to RViz. With each iteration of the inner for-loop in Algorithm 1, 18 coordinate
systems are sequentially visualized with the same orientation. After the first 18 are published,
the next orientation in generated, before this as well is published to the scene, at every point.
When looking at the rightmost image in the figure, the final visual of one of the points is shown.
When the outer for-loop in Algorithm 1 concludes, there are 18 points in the area of the bin,
with 27 orientations with coinciding origins in each of the points. To conclude, there are 27
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Algorithm 1: Algorithm for experiment done in the specialization project

for every set combination of x- and y-coordinates do
for all specified rotations of the generated coordinate system do

generate Tbase
gripi

;

if there exists an inverse kinematics solution then
check for a valid path using MoveIt and the joint angles from the IK solution;

else
go to next coordinate system;

end

end
save information for post-processing;

end

different z-directions where it is possible to approach with the vacuum gripper, to be able to
look into both reachability and path reachability of the points.

At each point in the xy-plane (18 of them), and for each orientation (27 in each point), the
objective was to align the coordinate system seen at the vacuum gripper, to the coordinate
system generated in the ”patch”. The code first checked for an inverse kinematics solution, and
if it found one, checked if there also existed a valid path for the robot to take to this coordinate
system by manipulating its joint angles qi, i ∈ [1, 6]. To summarize, the objective for each of the
coordinate systems was to obtain:

Tbase
tp = Tbase

gripi
, (7.1)

where Tbase
tp is the pose of the tool point given in base coordinates at the scan configuration,

and Tbase
gripi

is the grasp given in the same base coordinate system.

For each coordinate system, the transformation matrix given in the base, Tbase
gripi

was saved, along
with a Boolean value for whether or not there existed an IK solution. If a solution was found,
the corresponding joint angles needed to reach his pose were saved and passed along to the built
in path planner obtained through the plug-in MoveIt, which looked for a valid path. MoveIt
bases its planning on the description of the robot within the simulator, meaning it also takes
into account the geometry of the camera house and any possibility of self-collisions or collisions
with environmental obstacles.

Lines of the output table which was used for post-processing, had the following structure de-
pending on whether there was a path or not;

Tbase
grip IK? qi

Tbase
grip 1 ; True ; (q1, q2, q3, q4, q5, q6)

Tbase
grip 2 ; False ; None

After the experiments were done, post-processing was necessary to visualize the obtained results.
The results were saved in a a large table containing the information for each of the 27 rotations
in the 18 points, 486 lines in total. This meant that each 18th line corresponded to information
regarding the same point. The data was sorted and heatmaps were used to present the data.
To also be able to separate inverse kinematics solution and path success results from each
other, separate heatmaps were created. Heatmap presentation was chosen as an intuitive way
to visualize the results, also inspired by the presentation design of Zacharias et al. (2007).
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Figure 7.6: On the left: screenshot from RViz taken of the patch under investigation from above. On
the right, an example of a resultant heatmap. The numbers within each of the slightly different coloured
rectangles represents the percentage of IK solutions found at this point. As such, if all 27 poses in 1
of the 18 points had a valid inverse kinematic solution, the corresponding rectangle would contain the
number 100 and be bright green.

Two types of experiments were executed where the only difference was the seed to the inverse
kinematic solver. The two seeds were; the joint angles at the scan configuration, and, the joint
angles of the first obtained inverse kinematic solution. The seed of an IK solver is in essence the
initial conditions of the search process to find a solution. The closer to the actual solution the
seed is, the more likely a solution is to be found (Zacharias et al., 2007). The objective behind
looking into two different seeds was to investigate this effect on the results.

The result heatmaps are 3× 6 in size, the same dimension as the number of points investigated,
as can be seen in Figure 7.6. The results are presented in the form of four heatmaps; one for the
coverage of inverse kinematic solutions with the scan configuration joint angles as the seed and
one for the path coverage with the same seed, one with the first obtained joint solutions as seed,
and one with its corresponding path coverage. Note that these results are twofold; first an IK
solution was searched for, and after that, a path to these valid joint angles was attempted.

The results are also summarized inTable 7.1. From this table along with the result heatmaps,
the best seed to use for the inverse kinematics solver is a set of joint angles close to where we
expect the solution to be. Considering the seed is the initial conditions for the search for a
solution, this conclusion is in line with expectation. Since multiple inverse kinematic solutions
are possible, the fact that there is a difference in path reachability is due to the different joint
angles found to reach the same pose, due to the different seeds. A conclusion which can be
drawn from this albeit limited data set, is that the further away from the solution the seed is,
the worse the path availability becomes. Combining the two traits, IK and path coverage, by a
simple AND-operation, gives the final path reachability of the current bin area. This result in
total is naturally constrained by the path existence as this is poorer than the inverse kinematic
solution coverage.

Table 7.1: Overview of averaged results for both IK and path coverage, for both seeds.

Scan config. as seed First joints as seed Difference

IK 59.67% 64.81% 5.14%

Path 6.38% 26.95% 20.57%

IK + Path 6.38% 26.95% 20.57%
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(a) Percentage coverage of inverse kinematic solu-
tions, using the joint angles of the scan configura-
tion as seed to the solver

(b) Percentage coverage of availability of path
availability using the resultant joint angles from
the inverse kinematic solutions found

(c) Percentage coverage of inverse kinematic so-
lutions in the experimental bin, using the output
joint values from the first grasp that gave a solu-
tion as seed

(d) Percentage coverage of availability of path
availability using the resultant joint angles from
the inverse kinematic solutions found

Figure 7.7: Top row: Results of inverse kinematic coverage and availability of paths to these solutions,
using the scan configuration joint values as seed to the solver. The numbers in the squares are percentage
values. Bottom row: Results of inverse kinematic coverage and availability of paths to these solutions,
using the first valid joint angles a path could be planned to as seed to the solver. The numbers in the
squares are percentage values.

7.3 Mapping the robot workspace

With the results from the specialization project in mind, see Figure 7.7a, b, c and d, the
placement of the bin in the workspace seems sub-optimal. Considering the best final results
with regards to path reachability in Figure 7.7d, where the number of valid paths is shown in
percentage, there is significant potential for improvement. There was interest in continuing this
work of looking into path reachability and with what ease a robot can reach a grasp, and finding
a better placement of the bin in the workspace to increase success percentage. Furthermore,
after a better, or optimal, placement in terms of maximizing grasp success was found, different
planners and planning objectives from OMPL implemented through MoveIt were of interest
to look into. Finally, after having found optimal placement, a best possible planner and an
objective, it was to be investigated if the procedures found here could be used to filter the
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output grasps from the neural network efficiently. If an additional check on the output from the
neural network could be done to tie it together with the robot and its kinematics, this would be
advantageous as to increase picking success.

The initial work was to find an optimal placement of the bin, to decide on the best part of
the workspace to test different planners and metrics in. It was of course possible to trawl
the whole workspace and test planners and reachability metrics, but finding a smaller space
to do experiments in would assist in increasing the resolution of the results. In addition, off-
line planning such as when using a simulator is limited in computational time, mostly by the
necessary planning time the program demands to look for valid paths to grasps. The first phase
of the experimental procedure was to trawl the reachable workspace only looking at valid paths
and find a single level in the xy-plane to do specific further work in.

7.3.1 Expanding the volume of interest

Figure 7.8: Visualization of the eight closest voxels
to the robot base constructed by expanding a unit of
1 in each direction. The outline of these are marked
in cyan. Also note the coordinate systems defining
the corners

Based on the work done during the specializa-
tion project, where only a small part of the
workspace was looked into, a natural continu-
ation of this work was to investigate a larger
part of it. There were two main objectives
for expanding the volume. The first reason to
do so was to optimize the placement of the
bin in the most path reachable workspace of
the robot. Previously, its placement had been
based the optimal range of the Zivid 3D cam-
era, which has an optimal range of 50-60cm
from the objects it is to capture images of.
To find a true optimal placement, a thorough
testing procedure was necessary. To improve
and streamline the picking process with a pre-
sumably better success rate when comparing
to the current placement of the bin, a larger
part of the workspace had to be analyzed.
Secondly, by optimizing placement of the bin,
specific testing in this area with a higher res-
olution would be possible. It was expedient
to look into optimization metrics after having
found an optimal placement of the bin, for an increased degree of accuracy in terms of how easy
it is to reach a given grasp.

Since a visualization of the set-up was available in RViz, it was natural to use this also when
looking at a larger volume. A feature of RViz is a voxel, a 3D pixel, grid assisting in viewing
the 3D-space in which the robot operates. This grid can be seen in figures taken from the
visualization tool RViz, for example in Figure 7.8. It has been defined that the base of the robot
is the reference frame for kinematics and planning. With the base as the centre, RViz spans a
cubed volume about this point divided into voxels around the robot set-up. Each cube has a
width, height and length of 1, which is a non-dimensional unit of the visualization tool where
the size is adjustable in the interface. As a starting point, it was advantageous to utilize this
grid. The transformation of all corners given in reference to the base in the first eight voxels
was known, and can be seen in Figure 7.8.
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The initial task of this work was to find the level or height in the workspace at which the reach
of the robot was the greatest, constrained by the geometry of the workspace and itself. Consider
for a moment, that the UR5 at hand did not have end-effector constraints in terms of the camera
housing and attached vacuum gripper, but that the end-effector was coinciding with the tool
centre point, Tee

base = Ttp
base. Then, the task of finding the most reachable part of the workspace

could be solved by looking at the already known workspace geometry, as can be seen in Figure
3.1, and choosing the height at which the radius of the sphere was the greatest. If this indeed
had been the case, any self-collision would be available through the constraints put on θi, where
θ denotes a revolute joint in the kinematic chain, and i ∈ [1, N ], N being the number of joints.
However, due to the additional imposed limitations on the system supplied by the size and
geometry of the camera housing, where the greatest impact is an added chance of self-collision
during movement, a different approach than only looking at the workspace geometry needed to
be undertaken.

7.3.2 Limiting the workspace

How much of the workspace needed to be analyzed, how much is too little, and how much is
too much? As can be seen in the figures from the visualization, as well as pictures of the robot
set-up, a large portion of the robot cell, the space surrounding the robot, is obstructed by the
pedestal upon which it stands, and the physical fastening mechanism for a Kinect motion sensor.
This sensor will not be discussed further as it is outside the scope of this work, only its influence
on the workspace will be focused on. The fastening mechanism can be seen as the start of a grey
triangle in Figure 7.9a to the left of the robot, and is physical. By this logic, it was assumed
that this part of the workspace would be less reachable than the unobstructed parts opposite
it. In addition to this, the robot arm and camera housing has leads running along it for power,
and doing work in this particular area obstructs movement of the robot further.

(a) Visualization from the side (b) Visualization from above

Figure 7.9: Screen grab from Rviz, visualization of the voxel enveloping the current placement of the
bin, from two different perspectives, marked in yellow.

The current placement of the bin is enveloped by the volume marked in yellow in figures 7.9a
and 7.9b. The volume is one of the eight voxels surrounding the robot. The start of the grey
triangle to the left of the robot in both figures is the physical fastening mechanism for the
Kinect sensor. The fastening mechanism takes up a large part of the cell and obstructs this
area significantly. It was therefore deemed unnecessary to map this part of the workspace seeing



7.3. MAPPING THE ROBOT WORKSPACE 55

as it would certainly impact the reach of the robot and its ability to plan paths around this
structure. Furthermore, we also observe the pedestal the robot base is placed upon. By looking
at Figure 7.9a, the right bottom volume marked in yellow seems to be the cube where the robot
is furthest away from the physical fastening of the Kinect sensor. Furthermore, when looking
at this figure, it seems that the robot has the most possibility of movement in this volume, and
as such the best reachability. Hence, the voxel foremost of interest became this one, marked in
both Figure 7.9a and 7.9b from different views.

7.3.2.1 Inverse kinematic coverage

After having decided that the volume seen in figures 7.9a and 7.9b was to be a starting point,
it was of interest to quickly check this volume in terms of inverse kinematic coverage, classic
reachability. Since planning a path with MoveIt takes longer than checking if there exists an
inverse kinematic solution, this was the first hurdle, and a more efficient way to check if the
volume decided upon was sufficient.

The corners of the voxel were defined and points and orientations were generated in a 6×6×11-
grid. This 6× 6 resolution in the xy-plane was deemed sufficient enough to observe behaviour.
A slightly higher resolution in the z-plane was decided upon to observe behaviour change with
the height, where increments of 0.1 were done for z ∈ [−1, 0]. At this point, the goal was to find
an optimal value along the z-axis for placement of the bin, and as such this had a higher priority
than placement in the xy-plane initially. The idea was to find the best z-placement first, and
then in that height optimize placement in the xy-plane.

Algorithm 2: Algorithm for checking inverse kine-

matics availability in the workspace of interest

for all defined test grasps do
generate Tbase

gripi
;

for all coordinate systems do
call inverse kinematic solver;
if there exists a solution then

save True;
else

save Falsr;
end

end

end

It was necessary to see if the RViz-defined
voxel was sufficient to use for the experi-
ments of finding optimal placement of the
bin. This was done simply, by checking for
an inverse kinematic solution for each of
the coordinate systems published and an-
alyzing the results. For instance if there
were many IK solutions found at the bor-
ders of the voxel, this would suggest that
the search area needed to be expanded, so
as not to overlook a better placement of the
bin.

In Algorithm 2, the procedure of checking
for an IK solution is outlined. In essence it
only conveys that for each of the published
coordinate systems, the inverse kinematic
solver is called, and if a solution was found,

for the script to save the variable True to correspond with the pose of the particular test grasp.
If no solution was found, False was saved. For post-processing, a large table for each of the
different z-levels was available. The Boolean variables for whether there was a solution or not
were organized, and a 3D-plots was generated, see Figure 7.10.

The 3D plot is oriented such that the robot base is the column to the left. Note that the colour
green indicates a high concentration of IK solutions, and that red indicates a low concentration of
solutions. The inverse kinematic solver does not take into account the pedestal in the workspace,
which is why one can see that solutions were found inside it in the figure. In addition, this is
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Figure 7.10: Resultant 3D IK map for volume initially of interest

also why investigating if a path exists is of utmost importance to get accurate results for optimal
placement.

Again, the existence of IK solutions was checked only to see if the volume of the existing 3D
voxel in RViz was large enough to continue the work in. Following the procedure of having
used the IK mapping to investigate if the decided upon part of the workspace was large enough,
the conclusion became that it was an insufficient volume. This can be seen from the high
concentration of solutions on the border to the next voxel. The hypothesis was that the plan
coverage would give somewhat similar results to the IK map, but this was not guaranteed.
By looking at the 3D plot, there is a higher percentage of solutions inside the cube than at the
borders, even though there are solutions found there as well. After having reached the conclusion
that this defined volume was not adequate, expansion was necessary.

7.3.3 Expanding into a second voxel

Figure 7.11: The expanded volume of interest. The cube to the
right was insufficient due to many IK solution found on the border
to the cube to the left. Note that they overlap at the base.

When viewing the results from
what was thought to be a suffi-
cient part of the workspace, the
voxel previously described, it was
indeed not enough to obtain com-
plete results. The IK map was
a strong indication of the possi-
bility of finding regions of high
path reachability also in the next
voxel. The expanded volume can
be seen in figure, 7.11 in blue.
Here both cubes are outlined. The
assumption of limited maneuver-
ability and obstructions around
the fastening mechanism for the
Kinect sensor still holds, but more
of the workspace in front of the
robot and to the left had to be

investigated. Due to the fastening mechanism, it was hypothesized that the overall path reacha-
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bility would be somewhat lower on the left, than on the right. For simplicity, when mapping the
space consisting of these two cubes as seen in Figure 7.11, each cube was mapped individually
and the total results were combined conclusively.

7.3.4 Non-deterministic planners

Figure 7.12: Test layer for investigat-
ing the non-deterministic behaviour of the
planners.

The goal at this stage was to map the path reachabil-
ity of the a portion of the workspace, the volume out-
lined in Figure 7.11. Instead of only representing the
presence of IK solutions, the existence of collision-free
paths were to be included. When starting this work
and implementing path planning procedures and test-
ing them, a matter revealed itself which significantly
influenced the results. Due to the non-deterministic
nature of the planners in OMPL which are sampling-
based, see Chapter 5 for background, the planning pro-
cedure did not return the same path each time it was
run.

Since the planners are random in nature, there is no
guarantee that the planning pipeline returns the same
result each time even under the exact same conditions.
This also includes that we run the risk of the planner
saying that there is no path to a specific pose, even if
one actually exists. This is due to the random sampling
of the workspace when the planner looks for a path. All
the planners in OMPL are sampling-based and have

this characteristic. Since this presented an interesting behaviour, it was of interest to see how
different, and to what order of magnitude, the results could become with a large enough data
set.

To look into this non-deterministic behaviour before starting the big-scale data collection on
all points, rotations and layers in the volume of interest, the horizontal layer in the middle of
the right voxel became the test layer for this phenomenon, see Figure 7.12. The choice of using
this layer was made mainly to ensure that a fair amount of feasible points existed, since it was
hypothesized that further down in the voxel the coverage would be worse since it is further for
the robot to reach.

To look into the random nature, a script checked for a path to all 36 points (6× 6-resolution in
the xy-plane) for the 27 orientations (36 · 27 = 972 test grasps in total). A path was attempted
25 times without any editing between instances. The program had the exact same prerequisites
for all tests; the default planner was used, the planner was allowed a 5 second planning time
and the optimization objective of the planner was to choose the shortest path lengths. When
post-processing the results, the number of found paths was recorded and plotted against its
occurrence, the results can be seen in Figure 7.13. With a larger data set it could be speculated
that the distribution of the results is Gaussian in nature, but a conclusive results can not be
guaranteed here.
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Figure 7.13: Histogram: Number of paths found for an attempt at a path to all 972 coordinate systems,
plotted against the occurrence. The planner used was LBKPIECE.
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Figure 7.14: Box plot illustrating the
behaviour of the behaviour of a non-
deterministic planner, LBKPIECE.

A box plot of the data can also be constructed, to look
for tendencies of a normal probability distribution. The
data is likely normally distributed as the mean almost
coincides with the median, and the box plot is roughly
symmetric about this value. From Figure 7.14, where both
the mean and median is marked, we may deduce that the
distribution is close to normal. The mean of the data
set is 303.8, and the median is 303. Since the number of
paths found needs to be an integer, we may say that the
mean and median are ”one off”. From this plot, we can
observe a close to normal distribution, with a slight skew
towards lower values. The box itself contains 50% of the
information and has a height of about half the span of the
data, and this looks to be in line with the observations
(Walpole et al., 1998). Even though both Figure 7.13 and
7.14 show tendencies towards a normal distribution, this
cannot be said with complete certainty, as extrapolating
outside a model is less than ideal, and should be done with
care.

As a result of this inquiry, it was decided that when con-
tinuing on with mapping the workspace, the procedure of

looking for a path was to be executed 5 times to saturate the results. Since, if there at one
time is found a path, a path does indeed exist regardless of it not having been found at another
instance. Ideally, this number should be much higher, but due to time-constraints, 5 repetitions
was deemed sufficient to demonstrate the effect. From the article titled ”Performance Study
of Single-Query Motion Planning for Grasp Execution Using Various Manipulators” by Meijer
et al. (2017) this finding is supported as they state that due to the randomization of sampling-
based motion planners, planning problems have to be run multiple times to provide saturated
results on the performance (Meijer et al., 2017).
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7.3.5 Workspace mapping

Figure 7.15: Visualization of the right voxel
under investigation, with one published coor-
dinate system in each of the defined points

Since optimal placement of the bin was first prior-
ity, it was decided that default settings from MoveIt
were to be used. The overall goal was to test multi-
ple planners, objectives and metrics in the optimal
part of the workspace in terms of path reachability,
but for this first iteration on the search for optimal-
ity, default would do. The default planner LKB-
PIECE1 was used with the shortest path length op-
timality objective. The planner was allowed 5 sec-
onds to look for a path and the longest valid segment
fraction was set to 0.01 which is the number defin-
ing the fraction of the configuration space we assume
is collision-free when the robot is in a collision-free
configuration q, and is used when investigating if a
path or configuration is collision-free (MoveIt, 2019).
The attempt at a plan was made 5 times.

For finding optimal placement the same 11 layers
that were used when checking for an inverse kine-
matic solution was generated in both cubes. The
resolution in the z-direction was again higher than
the resolution in the xy-direction, since height was

of foremost importance. The algorithm implemented when checking for a valid path can be seen
in Algorithm 3.

Looking at Figure 7.15, the points that were checked can be seen, here only seen in the right
voxel. The points are here represented with just one coordinate system. In each of these
points, 27 different orientation were checked, such that significant exploration of another joint
configuration resulting in a solution could reveal itself. This ”degree of freedom” is supplied by
the fact that the grasps generated from the neural network in the real system is just a point
and an approach vector, and not a full coordinate system which can coincide with the gripper
coordinate system. As such, a change in robot configuration might supply a successful grip, and
had to be tested.

The coordinate systems were published to the scene, and tested for a path systematically. As
Algorithm 3 outlines, one coordinate system is created, the transformation matrix of this grasp
given in base coordinates is defined as the goal pose for the planner, and if there is a path to
this pose which both has an inverse kinematic solution and a collision-free path, the path will
be executed. Following the execution of the path, a path back to the scan configuration is found
and executed, before the results are saved to file.

7.3.5.1 Mapping procedure: Plan to pose

For the specialization project, outlined in Section 7.2, two metrics were checked consecutively,
where both needed to be fulfilled for the grasp to be path reachable. The first metric was that
there needed to exist an IK solution. The second demand was that a path could be planned
and executed to the joint configuration, the output of the IK solver. The procedure for this is
outlined in Algorithm 1. As such, the IK solution was checked first, and if it that was a success,
the output joint angles from the solver were passed to the planning pipeline in MoveIt. If also a
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Algorithm 3: Algorithm for mapping the workspace in terms of path reachability

for variations in height z do
for every point (x, y) do

for all defined orientations about (x, y, z) do
generate Tbase

gripi
;

plan a path to the pose with MoveIt;
if there exists a path to the specified pose then

save True;
execute the path;
return to scan configuration;

else
save False;
go to next coordinate system;

end

end

end
save information on path coverage for post-processing;

end

path could be found, the grasp was said to be path reachable for the robot. Note again, that the
grasp supplied by the neural network, does not take into account that a robot needs to reach it,
only that it is the optimal way to pick an object based on the distribution of the parts in the
bin at a given time.

In this work however, planning to the grasp pose, and not the joint angles, provided the ad-
vantage of checking for both an IK solution and a collision-free path simultaneously, limiting
the work done on each coordinate system. This is simply an advantage to MoveIt. The met-
ric used in this first part of the thesis, finding an optimal placement of the bin by workspace
mapping, makes use of the same metrics as in the specialization project, but with a slightly
different implementation; planning directly to a pose which both checks for an IK solution and
a path, instead of looking for one of the IK solutions and planning to the corresponding joint
angles.

When planning to a pose it was of great importance to handle the different warnings and error-
messages which indicated whether there was a collision-free path to the grasp or not, and ensure
that the proper conclusions on the validity was reached by the script. There were three main
possible outcomes for a planning instance:

1. An IK solution does not exist: ”Unable to sample any valid states for goal

tree”. The default planner which was the planner of choice for the mapping is bi-
directional, meaning that it builds a tree from both the start and the goal state and
attempts to connect the trees to find a valid traversal of the graph. If there are no valid
states found for the goal tree, it is reasonable to assume an IK solution does not exist.

2. The planner did not find a path within the allotted time, but an IK solution existed:
”Fail: ABORTED: No motion plan found. No execution attempted”. This er-
ror is the primary reason for the need to saturate the results. An instance where this
exception was raised, might be valid the next time it is tried, due to the random sampling
of configurations when attempting to find a path by the planner.

3. An IK solution existed, and a path had been found, but it was discovered that the path
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contains a collision with either itself or the pedestal: ”Computed path is not valid. . .”,

”. . .Found a contact between ’upper arm link’ (type ’Robot link’) and

’camera house’ (type ’Robot link’), which constitutes a collision”

To briefly summarize, the metric used when mapping the workspace is threefold; an IK solution
must exist, a path must be found, and the path must be collision-free. If these demands are all
met, the pose is said to be path reachable. The planning procedure, outlined in Algorithm 3,
was executed five times to saturate the results (Meijer et al., 2017), without any interference
between instances. When all five iterations were done, a table for each iteration was available.
This table contains the homogeneous transformation for each grasp given in the base frame along
with a Boolean value corresponding to whether or not the potential grasp is path reachable or
not. Saturating the results was then as simple as OR-ing the Boolean values for each run. This
procedure is outlined in Algorithm 4. If for any of the planning instances a path was found, a
path does indeed exist to this pose.

Algorithm 4: Algorithm for saturating the results of the

workspace mapping in terms of path reachability.

for all instances of T base
gripi

do

if any of Tbase
gripi

, i ∈ 1, . . . , 5 is path reachable

then
Tbase

gripi
= path reachable

else
Tbase

gripi
= not path reachable

end

end

The results of the mapping are pre-
sented with heatmaps, where one in-
dividual square represents a point in
the workspace containing the 27 ori-
entations. Each of the squares con-
tains the percentage score of how
many of the sampled poses in that
particular point were successful. The
color scale of the results goes from
red to green, where red is low reach-
ability and green is high reachabil-
ity.

An example of a point result can be
seen in Figure 7.16. Out of 27 orien-

tations in this point, 18 of them were reachable by the robot and had a valid path executed to it.
As in the work of Zacharias et al. (2007), and their use of reachability indices and reachability
spheres, the percentage and colour is calculated by the same formula, seen in Equation (7.2).
In the equation, nxy is the total path reachability score in percent for a point represented by a
square in the level map, rxy is the number of path reachable grasps in the point, and Nxy is the
total number of possible grasps in said point.

nxy =
rxy
Nxy

· 100, where Nxy = 27 (7.2)

nxy =
18

27
· 100 = 66.6667% ≈ 67%, (7.3)

67

Figure 7.16: Example of path reachability in a point, here represented by a point in the workspace with
67% path reachability
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7.3.5.2 Results from right voxel

Figure 7.17: Cross section in the xy-plane of the
mapped right voxel at z = −0.5. The numbers
inside the squares shows successful path planning
percentage, with the legend to the right of the
figure explaining the coloured squares.

After having mapped the right voxel, heatmaps
like the one in Figure 7.17 were obtained, 11 in
total, one for each increment in the z-direction.
The heatmap in the figure is the result cross-
section at z = −0.5 presented for illustration.
There are several observations to be made from
the heatmaps using this illustration. Firstly, the
right edge of the area is relatively unreachable
by the robot and gives an overall ”red” score on
path reachability. This same characteristic was
observed with the other 10 heatmaps. This in-
dicates that the volume under investigation was
sufficiently large in this direction.

Secondly, the right bottom corner of the area
creates an unreachable circle segment, indicat-
ing that this is the border of the 6DOF spherical
manipulator workspace. In the other 10 heatmaps, we observe the same characteristic with
varying radii. Note again the illustration of the spherical workspace of the UR5, without a tool,
supplied by Universal Robotics, shown in Figure 3.1. This indicates that the border between the
reachable and unreachable workspace has been included in the mapping and is sufficient also in
this direction. Thirdly, the top left corner, which is the robot base and the pedestal upon which
is stands, is completely unreachable by the robot. This is of course because test grasps also were
generated inside this pedestal. Note that collision-checking was not part of the procedure when
checking for IK solutions alone.

However, the left border of the area in Figure 7.17 shows a high degree of path reachability,
a higher degree than initially anticipated. The hypothesis initially was that the centre of this
area would be more path reachable then this left border since this area is part of the cube
diagonally opposite the fastening mechanism for the Kinect sensor. Fortunately, by the check
for IK solutions previously executed, results were also available in the voxel to the left, continuing
the map beyond this area of high reachability. The observation of high path reachability on the
left border of the heatmap was observed for the remaining 10 heatmaps as well, confirming the
need for the expansion of the mapping as dicussed in Section 7.3.3.

7.3.5.3 Results from left voxel

The procedure for obtaining the data describing the left voxel was identical to the one which
gave the results for the right, see Algorithm 3. The resultant xy-plane cross section at z = −0.5
is shown in Figure 7.18. Note that this is the same level that Figure 7.17 portrays, but for
the left side of the volume seen in Figure 7.11. As expected, since this cube is closer to the
obstruction that is the Kinect fastening mechanism, the total path reachability is lesser than for
the right voxel.

Some of the same observations can be made for the results of this left cube as for the right,
and it mirrors it nicely. The left border of the map is substantially less path reachable then the
remaining part of the map, and gives also here an overall ”red” score. This can be observed for
the remaining 10 heatmaps for the left side of the base.
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Figure 7.18: Cross section in the xy-plane of
the mapped left voxel at z = −0.5. The numbers
inside the squares shows successful path planning
percentage, with the legend to the right of the
figure explaining the coloured squares.

Secondly, it is also possible in this cross section
to see the boundary of the spherical workspace of
the robot in the left bottom corner of the figure.
Thirdly, as expected, the highest concentration
of reachable poses is found at the right-hand side
border. It is also interesting to observe here, the
influence from the physical fastening mechanism
at the back of the set-up. The greatest difference
between figures 7.17 and 7.18 is the top row of
points, where the left top row is far less path
reachable than the one on the right; these are
the test grasps closest to the obstruction.

From the heatmaps in figures 7.17 and 7.18, it
is possible to deduce that a sufficient part of the
workspace has been covered by the mapping. The
remaining work as of this point to obtain a com-
plete visual of the volume mapped is to combine

the results for the right and left side, as will be explained in the next section.

7.3.5.4 Resulting plots from combined volume

It was advantageous to implement the mapping procedure separately for each voxel, and then
combine the results afterwards. The only change which then had to be made in the implemen-
tation was which voxel grid corner was used as the origin for coordinate system generation.
Combining the results from both voxels in this manner resulted in an overlap in the results.
This is visible in Figure 7.11 where the outlines of the cubes coincide in the middle.

Viewing Figure 7.19, which is a side by side view of the path reachability coverage for the two
voxels, cross-sectioned at z = −0.5, we observe this overlap. The results for the column at x = 5
in Figure 7.19a and the results for the column at x = 0 in Figure 7.19b are similar. Viewing
Figure 7.19, it is clear that the combined result of these two areas gives a complete image of the
path reachability of this part of the workspace. Within this overlap the best results were chosen.
Viewing the columns previously mentioned, the only difference between them is the result at
y = 1.

For the right voxel, it was found that a path to 8 out of the 27 orientations existed, resulting in
a total path reachability score of

nxy =
rxy
Nxy

· 100, where Nxy = 27 (7.4)

nxy =
8

27
· 100 = 29.6 ≈ 30% (7.5)

For the left voxel, it was found that a path existed to 7 of the 27 orientations, giving a total
path reachability score of

nxy =
rxy
Nxy

· 100, where Nxy = 27 (7.6)

nxy =
7

27
· 100 = 25.9 ≈ 26% (7.7)
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However, since the eighth path was found in one of the planning instances, a path to it exists.
In the total path reachability map for this level, the value at y = 1 becomes 30, and not 26.
Recall that if there once was found a path, it does indeed exist.

The results for each xy-level in the z-direction were combined where they overlapped to supply
the total path reachability coverage in the workspace of the robot deemed the most accessible.
The results for all levels can be seen in Figure 7.20. The visualization of the results in this
manner supplied the information needed to place the bin optimally in terms of path reachability
in both x, y and z-direction.

(a) Left-hand level at z = −0.5 (b) Right-hand level at z = −0.5

Figure 7.19: Results from both left and right mapping, illustrating a complete overview of the path
reachability at level z = −0.5.
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Figure 7.20: Path reachability map: Path reachability of the volume seen in Figure 7.11, split into the
cross sections resulting from an increment by 0.1 in the z-direction. The numbers inside the squares are
percentage path reachability scores for the particular point, and the color scheme goes from red (low path
reachability) to green (high path reachability).
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7.4 Bin placement based on mapping

Table 7.2: Average path reachability of both voxels
along with the total results. Note that the total is
not the average of the left and right voxel due to the
overlap.

Level Left [%] Right [%] Total [%]

0 51.23 57.30 53.54

−0.1 48.77 56.79 51.83

−0.2 44.96 52.98 48.06

−0.3 41.15 48.97 44.16

−0.4 37.04 45.78 40.23

−0.5 31.38 39.30 34.34

−0.6 24.69 28.19 25.42

−0.7 18.83 21.30 19.07

−0.8 14.20 16.15 14.47

−0.9 8.74 9.98 8.72

−1.0 3.70 4.32 3.73

With the results shown in Figure 7.20 the in-
formation needed to place the bin optimally
in terms of path reachability was available.
Viewing the results, it is clear that level 0
in Figure 7.20 is the layer with the high-
est number of successful paths on average.
This level is also presented in Figure 7.21a.
The heatmaps do not take into account ex-
plicit directional preferences of the robot, but
is the total results from all approach direc-
tions.

This result was not unanticipated as it is the
level closest to the centre of the workspace,
the base. It is also the region of the theo-
retical workspace with the largest span. Even
though it was likely the best option, due to the
imposed constraints of the pedestal and the
camera housing, it had to be validated. Table
7.2 summarizes the results for all the mapped
levels, and it is the total map at level 0 which
gives the best average results. In addition to
being the level with the highest average path

reachability, the dark green ”patch” in the middle was also the region with the highest concen-
tration of successes when comparing this area with the other level maps in the z-direction in
Figure 7.20.
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(a) Path reachability heatmap seen from above:
Optimal level based on average hit rate along with
a concentrated area with high reachability. The
numbers in the squares represent percentage path
reachability for the points and the colors reflect
this scale from red (low) to green (high)
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(b) Reachability heatmap seen from above: Cov-
erage of IK solutions in the top level of the
workspace. The numbers in the squares represent
percentage IK solutions for the points and the col-
ors reflect this scale from red (low) to green (high).

Figure 7.21: Comparison of the reachability map and the path reachability map of the robot

The heatmaps produced are representations of the path reachability of the robot in its workspace.
The map in Figure 7.21a is the path reachability heatmap, meaning that both an IK solution and
a collision-free path must exist to the test poses for the pose to be marked valid. For comparison,
the reachability map of the same level is presented in Figure 7.21b, this contains IK solution
information exclusively. By comparing the two, one can observe that the path reachability map
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is a more conservative estimate of accessible regions in the workspace.

Naturally, obstacles in the workspace changes the reachability characteristics of the workspace
and how the workspace looks in terms of kinematic reach and path coverage. According to
Zacharias et al. (2009), the region of influence of an obstacle increases, the closer it is to the
robot base. By placing the same obstacles in different regions of the workspace, they showed
that when the object was placed close to the base, it had more of an impact on the capabilities
of the robot. The reason for this behaviour is that the region close to the base is often swept by
the robot since it is natural for the robot to move close to the center of its workspace; the base.
The bin, which is not visualized in Rviz, can be viewed as an obstacle due to its edges and must
be considered when planning a path. Keeping this in mind, it seemed reasonable to place the
bin well away from the base whilst still maintaining good coverage.

The metric for placing the bin is as previously mentioned; the highest concentration of total
test grasps making up the totals maps that both have an IK solution and a valid collision-free
path planned to them, in an area equivalent to that of the bin. The objective of the following
sections is to find this area in the level with the highest success rate, z = 0, level with the base.
In the following sections the bin will be placed on the basis of highest hit average hit rate, and
approach directions preferable by the robot will be briefly discussed.

7.4.1 Concerning the sampled points

Seeing the results in level 0, seen in Figure 7.21a, placing the bin such that the point with
100% reachability is covered should be of great interest, and served as the starting point for
placement. Since the routine of ”drawing” the bin in Rviz starts with defining a corner of the
bin and spanning two vectors of the appropriate lengths perpendicular to each other from this
point, the starting point became the point to the left of this 100%-point. When spanning the
bin from this point in RViz, the optimal point ends up on the edge of the bin, where no grasps
will originate. Due to this, the whole bin was moved away from the base until the optimal
point with the best hit rate was roughly centered, and in an area where grasps would originate
from. The reason the whole bin was moved away from the base was to minimize its impact
on possible collisions with the end-effector when grasping. The final placement of the bin can
be seen in Figure 7.22, where the heatmap for the level has been layered upon the new bin
placement. The reason that the heatmap expands outside the border of the image with the bin,
is that the squares in reality are points which were placed on the border of the voxels under
investigation.

74 85 78 52 22

44 59 78 81 59 30

74 74 89 81 59 30

96 96 93 78 44 22

1e+ 02 89 85 56 30 3.7

59 63 44 30 3.7 0

11 30 52 59 37 0

19 41 56 67 52 44

26 52 74 85 74 74

22 41 74 89 96 96

3.7 33 56 81 93 1e+ 02

0 7.4 30 48 63 59

Figure 7.22: Optimal placement for bin. Both placed optimally in z-direction and xy-direction
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7.4.2 Concerning the rotations in the points

(a) All valid potential grasp poses in the left voxel (b) All valid potential grasp poses in the left voxel

Figure 7.23: All valid potential grasp poses in both voxels at the optimal level in terms of path reacha-
bility z = 0. Only the poses with both an IK solution and a valid path to them are visualized

In all 36 points (sampling in a 6× 6 grid), 27 different orientations were investigated. Viewing
Figure 7.23, the orientations that had a valid path to them can be seen. This figure is the
”real” view of the heatmap seen in Figure 7.21a. The heatmaps up until now have conveyed
the average path reachability score of the points in the workspace, whilst disregarding which
orientations have been more successful than others. Consider for instance a path reachability
score of 50%, but all successes being coordinate systems where the z-axis points in the same
general direction. Recall, that it is the z-axis of the test grasps that need to coincide with the
ztp-axis for a grasp to be successful.

It was therefore of interest to also consider if there were some directions that more often than
others led to a valid solution being found. As such, the data concerning each of the orientations,
instead of each of the points are considered here. An excerpt of the table containing these
rotations and their success with regards to path reachability can be seen in Table 7.3. The
complete table is available in the appendix, B.1. In the table, the top bar chart for each entry is
the path reachability for the orientation in the right voxel, and the bottom bar chart corresponds
to the same in the left voxel.

A summary of the results include, that grasps coming in from above have a tendency to perform
well in both voxels. When looking at grasps coming in towards the base from west, these
perform well in the right voxel, but have fewer hits in the left. The same goes for grasps coming
in from east, towards the base; these perform better in the left voxel when compared to the
right. However, there exists some examples of the opposite also holding true, such that this
conclusion is somewhat weak, and should be investigated further.

Previously, when the bin was placed as in Figure 1.1, it has been experienced that grasps coming
in towards the base and the bin from the left had been problematic due to the potential collision
with the pedestal when the robot has to maneuver past this. The hypothesis was that grasps
from west are worse than from north, east and south, skewing the optimal placement of the
bin into the right voxel. This is partially supported by the findings here, and also supported
by the lesser degree of path reachability on the left side of the overlap as opposed to the right
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in Figure 7.21a. There is a greater degree of path reachability further away from the base in
the left voxel than in the right, leading towards the conclusion that the further away from the
pedestal the robot is in the left voxel, the easier it is to maneuver in towards the bin. In the
right voxel, characteristics of the opposite can be observed, where there is a larger degree of
path reachability closer to the base.

Table 7.3: Overview of approach directions in the optimal level in terms of path reachability. Note that
this is only the four first lines of the complete table given in Appendix B.

Grasp Statistics

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

...
...

7.5 Optimal level mapping

Figure 7.24: New placement of
bin in the workspace, with one di-
rection of test grasps shown

Based on the analysis undertaken in the previous section, a
new placement of the bin was available, based on path reach-
ability mapping of a large part of the workspace of the robotic
manipulator arm with end-effector constraints taken into ac-
count. Placement in terms of the highest concentration of
path reachability in both x-, y-, and z-direction had been
achieved. The new placement of the bin can be seen in Fig-
ure 7.24, in relation to the robot. It can also be seen that
the optimal placement in terms of path reachability reaches
across the two cubes mapped.

With this new placement, several tasks were of interest to
complete. First, sampling this area to be able to map it with
an appropriate resolution was to be done. The sampling was
to be reasonable in terms of the size of the bin and the objects
to be picked. Secondly, after an appropriate sampling rate
was decided upon, several different planners from OMPL,
implemented using MoveIt, were to be tested in this new
bin placement to be able to determine which planner and
planning objective was the most effective for the set-up at
hand. The planners were all to be tested and compared in
terms of path reachability as with the workspace mapping, as
well as the metrics path length, planning time and execution
time of the obtained paths.
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Following the data collection on the different planners, the appropriate planner and optimization
objective was to be used along with the data collected as a compliment to the grasps supplied
by the neural network to incorporate the robot kinematics and its abilities in the grasp selection
process. Since the bin and its immediate surroundings is the main region of the workspace the
robot will operate in, this can be viewed as a task-specific workspace mapping. The objective was
to use known, offline gathered data, to constitute an additional step in the grasp selection process
by being able to guide the grasps from the network, {di,vi}, towards easy to reach regions of
the bin, whilst maintaining the modular structure of the system. The following paragraphs will
deal with the sampling, the planners and the data collection. Chapter 8 will outline the use of
the data together with real grasps supplied by the neural network, and present the algorithm
used to include the additional path reachability test.

The possible tool point placements used to map the new bin area will be from here on referred
to as test grasps. A test grasp is a pose with the homogeneous transformation Ttest

j , consisting
of the rotation matrix of the test grasps given in the base frame, Rtest

j , and the position vector
of the test grasps in the base frame, dtest

j .

7.5.1 Sampling the bin

Figure 7.25: Dimensions of the bin and
the diameter of the cylindrical objects to
be picked

As can be seen in the results from the total workspace
mapping in Figure 7.20, the sampling is sparse. This
sparse sampling of possible configurations that the
robot needed to reach, was done to be able to deter-
mine with some degree of accuracy the best level to
test different planners and planner objectives in, and
where to sample more densely. Now that the optimal
level in terms of best path reachability degree had been
determined, a different sampling scheme had to be em-
ployed.

Considering the bin dimensions and the objects to be
picked, illustrated in Figure 7.25, an appropriate sam-

pling rate had to be decided upon. In a worst case situation in terms of surface area available
for grasping, all parts would stand upright in the bin. This worst case situation is used as the
basis for deciding on sampling rate. The diameter of the cylindrical objects is 3.2cm, and the
dimensions of the bin is 26 × 36cm. Considering all objects standing upright and allowing for
some space in between them, it was estimated that 7 objects would fit along the shorter side of
the bin, and 10 objects along the longer side. Allowing for two samples per part, with the size of
the suction cup in mind, 14×20 points were to be sampled within the new bin area. Considering
again the final degree of freedom at the tool point brought on by the output from the neural
network being only a point and a vector, and not a complete coordinate system, the need for
exploring several orientations in each point was still present. Employing the same scheme as in
the workspace mapping, 27 different orientations were made in all points, to ensure sufficient
exploration. Recall, that a change in robot joint configuration might lead to a solution. This
brings the number of total test grasps to 14 · 20 · 27 = 7560.

As with the workspace mapping, saturation of the results as accounted for in Section 7.3.4
proved equally important in this case. Viewing Figure 7.26, the difference between one attempt
at a path can be seen compared to the coverage with five attempts at a path. In the figure, the
image to the far left is the new bin placement with one orientation of test grasps shown. The
middle image is the result of planning a path once to all orientations in all points, and the result
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Figure 7.26: Presentation of the importance of saturating the results with non-deterministic planners.
To the left: new bin placement with one orientation of possible grasps shown. In the middle: path
reachability in the new bin obtained by planning once for a path, the average path reachability is 86.93%.
To the right: path reachability in the new bin area allowing for five planning attempts, the average path
reachability is increased to 95.70%. Both results were obtained using the planner LKBPIECE and the
optimization objective minimizing path length.

is an average path reachability of 86.93%. By planning a path five times instead of once, the
average path reachability is raised to 95.70%. The results in the figure were obtained with the
planner LKBPIECE (Şucan and Kavraki, 2010) with the optimization objective ”minimizing
path length” from the Open Motion Planning Library (OMPL) (Şucan et al., 2012).

7.5.2 Optimization objectives

A sampling-based motion planner attempts to find a feasible path, any collision-free path, be-
tween the start and final configurations. OMPL supports setting an optimization objective
which biases the planners towards optimizing a path according to this objective. By setting
an optimization objective, the planner will attempt to answer the query (qs,qf ) whilst also
satisfying the path quality metric that is the optimization objective. A common path quality
metric is for example the shortest path quality metric which attempts to find the shortest path
when traversing the graph on search for the solution (Şucan et al., 2012).

There is also an important distinction between optimizing planners and non-optimizing planners.
Optimizing planners, in the context of OMPL at least, will use the entire allotted planning time
attempting to find a better path than the initial feasible plan it might have found. For example
it may find a feasible path, which is the shortest up until that moment, after 1 seconds, but it
will use the rest of the planning time searching for a shorter one. A non-optimizing planner will
return the first feasible plan it finds (Şucan et al., 2012).

In OMPL there are several optimization objective which will be explained in the following para-
graphs. These objectives are minimizing path length, maximizing the minimum path clearance,
a mechanical work objective attempting to minimize the mechanical work done by the robot,
and a state cost integral objective which minimizes a cost-function defined over the configuration
space. These are all different ways of looking at the cost of a path, and it is assumed that costs
of smaller motions can be super-positioned to obtain the total cost of the paths (Şucan et al.,
2012).
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7.5.2.1 Path length and maximizing minimum path clearance

Figure 7.27: Example paths of differ-
ent objectives. The grey circle in the
middle is an obstruction which constitutes
a collision. The path closest to it is a
”shortest path”, whilst the one along the
edge is a ”maximize minimum clearance”
path. Inspired by visualizations found on
the OMPL documentation website (Şucan
et al., 2012)

The minimizing path length objective attempts to find
a feasible path from the start state qs to the final
state qf which also is the shortest one. This objective
attempts to minimize the sum of accumulated edges
when traversing the graph. Recall that the nodes of
a graph are collision-free configurations and edges are
the paths. The weight of an edge can be viewed as the
path length so the goal is to minimize this sum. (Şucan
et al., 2012)

The maximizing minimum path clearance objective at-
tempts to maximize the clearance to objects in the en-
vironment by choosing paths far away from obstruc-
tions in the configuration space. The paths chosen for
this objective seem to balance going in the direction of
the goal as well as steering clear of any obstructions.
View for example Figure 7.27 where two example paths
from the same start to the same final configuration are
illustrated. The one which stays along the border of
the workspace is attempting to maximize its clearance
from the obstruction in the middle (large circle). This

path is longer than the other one, which illustrates a shortest path solution, as described in the
section above.(Şucan et al., 2012)

7.5.2.2 Mechanical work and general state cost integral

The notion of mechanical work and the general state cost integral are closely related. To illustrate
the functionality of these two objectives, the definitions utilized by Jaillet et al. (2010) will be
presented.

Let P be a path of length l, and let c : C → R≥0 be a cost function mapping the space C

where a query is to be answered, to a positive number. The cost function is defined such that
at each configuration q, there exists an associated cost c(q) > 0. The path P is represented
by γ : [0, l] → C, where γ(s) = q(s) ∈ P, s ∈ [0, l]. Moreover, the parametric cost function
v : [0, l] → R≥0 of a path is defined as v(s) = c ◦ γ(s) = c(γ(s)) = c(q(s)) (Jaillet et al.,
2010).

The following expression produces a notion of the cost of the path and is a more reliable criterion
than for example average cost or maximum cost according to Jaillet et al. (2010). v(s) is the
parametric cost of a path and the integral of the cost long the path is defined as:

S(P) =

∫ l

0
v(s)ds (7.8)

The function v(s) varies along along the path, and this variation can be viewed as mechanical
work. Positive variations of the function can be viewed as ”forces acting against motion, and
producing mechanical work” (Jaillet et al., 2010). Take for instance a path going over a hill in
the configuration space defined by a cost function; going up this hill will cause loss of ”energy”
as more needs to be spent on going up. When the function has a negative variation no ”energy”
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will be lost. When looking for these ”low mechanical work paths”, a small penalty proportional
to the distance of the path segment is added, to favor paths that are short, when comparing path
segments of equal mechanical energy. Jaillet et al. (2010) define the work of a path as:

W (P) =

∫

P+

∂v

∂s
ds+ ε

∫

P

ds, (7.9)

where P+ is the part of the path where the slope of the path is positive, and the constant ε is
the small penalty guiding the process to favor short paths when a choice between two segments
of equal energy is encountered (Jaillet et al., 2010).

Figure 7.28: Example of functionality of the T-RRT
algorithm, inspired by Jaillet et al. (2010). Consider
the contours an elevation in 2D terrain with height
1. If the objective was to find a feasible path, the
path going over this ”hill” is not unthinkable. With
the T-RRT which works with cost functions and me-
chanical work, the path around this hill might be
preferred.

Consider as a real-world example a robot in
rocky terrain that is to perform outdoor nav-
igation, an example presented by Jaillet et al.
(2010). The objective is to find a path to a
goal from an initial configuration, where the
start is on one side of a hill and the goal
state is directly opposite, as depicted in Figure
7.28. Think of the coloured contours as part
of a cost-function defined on the configuration
space representing this hill. The T-RRT algo-
rithm, which is the one depicted in the figure,
uses a cost-function as an additional input to
the path planning problem. The optimization
objectives ”state cost integral” and ”mechani-
cal work”, are particularly applicable in these
types of scenarios. If the only objective was
to find a feasible short path, the path going
over this hill might be preferred. However, for

the T-RRT at least, which utilizes the cost framework, the path going around the hill is likely
to be preferred; it could be deduced cost-optimal. Even though the path might be longer, less
mechanical work, less cost, is probable (Jaillet et al., 2010).

7.5.3 Metrics for classifying planners

When mapping the workspace to find optimal placement, the default settings for planner and
optimization objective was used; LBKPIECE which sought to find the shortest path from the
start configuration qs to the final configurations qf . The mapping consisted of looking into
whether or not there existed a path to a grasp, and recording the results for uniformly distributed
test grasps in part of the workspace. Only one metric was used as criterion, albeit composed of
several steps; IK solution, path found, and path found to be collision-free in the post-processing
of said path, for this mapping.

The objective of this part of the thesis was to compare different planners from OMPL with a
selection of path quality metrics/optimization objectives and compare performance to be able
to determine if one is better than the other and find the one best suited for the bin picking
design, as it is today, at SINTEF Digital Trondheim. To compare performance, a simple check
of whether or not a path exists was hypothesized to not be sufficient. Partly due to this being
only one metric providing only one marker of comparison, but also due to the randomized nature
of the planners themselves. When mapping the workspace, the data was saturated by running
the data collection five times, but in this instance for many more grasps, limitation on time
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became a factor which needed to be considered. Tests were also here repeated five times, as this
seemed a sufficient number to get a representative average, while at the same time not being
too time-consuming.

The fact that a grasp is path reachable, as done with the workspace mapping, is only one
criterion which gives very limited information on planner and objective performance. Of course,
if one planner and one objective were to stand out with a significantly better result regarding
path reachability, this could be theorized to suffice. However, when comparing the planners,
more metrics/criteria had to be considered to make the results as robust and informative as
possible.

When deciding upon metrics to rank results on the basis of, inspiration was drawn from Meijer
et al. (2017) and their benchmarking work regarding use of OMPL with a UR5 robot. They
looked at several benchmarks and compared the following metrics; solved runs, computing time
and path length. Solved runs refer to how many of their paths were valid in the environment;
whether an IK solution existed, a path could be found within the allotted planning time and
whether or not this path was found to be collision-free. Computing time refers to the time
needed by the planner to calculate a path, and the path length is just that, the length of the
path.

Solved runs, or the degree of path reachability, was a metric already available in the implementa-
tion of this work. If there existed an IK solution and a collision-free path, the grasp was marked
in the underlying data structure that it indeed was valid. This metric is also the most important
one, considering that any tests subsequently done on this test grasp would be unnecessary. Since
this is a corner stone of the work, this metric was of course utilized when looking at planners
and objectives.

Information on computing time needed by the planners is a metric which could be detrimental
in terms of concluding on the quality of a grasp when connected with whether a grasp is path
reachable. Consider for example two grasps, which are both reachable, and thus ranked equal in
terms of path reachability since this is a Boolean value. If one of the grasps was found to be path
reachable by the planner after 2s and the path for the other grasp was found in 0.1s, this latter
grasp would then rank above the former when considering the two criteria in unison.

Algorithm 5: Excerpt of algorithm used for

finding planning time

print("Start planning")
start = time.time()
plan = move group.plan()
end = time.time()
print("Done planning")
planning time = end - start

The time it takes the planner to find a solution
is presented to the user in the terminal (echoed).
However, it proved difficult to obtain for usage in
the script since it does not exist as a variable in
the Python application program interface (API)
for ROS. One way of solving this is with the help
of the internal clock of the computer. In the API,
the action of planning a path is done by calling
the plan-command for the move group-class.
When finding the planning time, the time before
planning was recorded, the plan-command was

called, the time was recorded again, and the difference between the two was calculated and
labeled ”planning time”. Since the actual planning time from OMPL was visible in the terminal,
it was possible to compare the two parameters, and hopefully verify the procedure. For one
complete test of all test grasps in the bin, 7560 different grasps, the first and last ten planning
times were copied from the terminal and compared to the timed variable from the script. For
both the data sets, a consistent deviation of 0.10 seconds between the actual value and the
timed value was found. Down to two decimal places this is a valid approach, and the variable
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was kept as a metric usable for comparison and ranking of grasps. It was important to note
however, that the third decimal and onward in this deviation is not consistent and must be
considered measurement noise. The planning time can only be guaranteed up until two decimal
places.

When calling the plan-command, the returned variable is an array of configurations in the
workspace the robot will pass through en route to the goal pose. These configurations present
information on joint position, velocity and acceleration for the path, as well as the variable
time_from_start. The length of the path became the measure of taking the length of the
array the plan consists of. If the path is short, fewer robot configurations would be necessary
to reach it. If a path is longer, more configurations are needed. The metric is relative to other
paths, and does not necessarily have a unit, but is just the number of configurations needed
by the planner to construct a complete path. To record the execution time of each path, the
last robot configuration in each plan was identified, and the variable time_from_start was
extracted from this entry in the plan.

Two rows in the resultant table for each planner could for example look like this, dependent on
the test grasp:

Ttest
j Path Path length Planning time Execution time

Ttest
1 ; True ; 38 ; 0.65218186378479 ; 4.80159859

Ttest
2 ; True ; 30 ; 0.25548410415649414 ; 3.648819854

Ttest
3 ; False ; ; ;

7.5.4 Testing

Based on the work of Meijer et al. (2017), who also utilized a UR5, a selection of planners to
investigate for the set-up at hand were chosen on the background of their results. The function-
ality of each of these planners are outlined in Chapter 5. The choice was based upon comparing
their benchmark tests and viewing their results. Meijer et al. (2017) test each manipulator on
their ability to place a grasp, pick a grasp and place a grasp with motion constraints. The first
benchmark is designed to reveal which planner produces the best results when moving out of
a constrained space, and the second is designed to identify which of the planners perform well
when moving into a constrained space (Meijer et al., 2017). Tying this together with the set-up,
both these tasks are to be undertaken if one views moving in and out of the bin as moving in
and out of a constrained space. The third benchmark includes motion constraints, which they
compare to holding level a glass of water, and was the benchmark with the least impact on
the task at hand. The performance metrics they utilize are solved runs, computing time and
path length. Solved runs refer here to the number of feasible, or optimal paths with the use of
an optimal planner, found during a planning session. This is equivalent to the degree of path
reachability.

Viewing the results for the first benchmark, there were several planners which performed well for
the UR5 in terms of solved runs, but fewer that performed as well in terms of computing time
and path length. The planners ProjEST, KPIECE, LBKPIECE, RRTConnect and BiTRRT
were the best performers for this benchmark. SBL and EST also performed satisfactory. Fur-
thermore, looking at the second benchmark, only the planners SBL, BKPIECE, LBKPIECE,
RRTConnect and BiTRRT produced results for the UR5. LBKPIECE and RRTConnect were
the best performers in terms of all three metrics, solved runs, computing time and path length.
When comparing SBL and BiTRRT, SBL has a significantly higher computing time, but no
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outlier data when it comes to path length. BiTRRT however, has some outliers. Since short
path lengths were sougth to ensure fast picking in the set-up at hand, the choice fell on SBL.
On the basis of these results, the three planners that were to be tested became: LBKPIECE,
RRTConnect and SBL.

OMPL supports 23 different planners and several optimization objectives. The three planners
chosen were discussed in Chapter 5, and their results are presented here. The user has some
freedom in setting the configuration parameters for each planner. Default settings for each
planner were used and the planning time was set to 5 seconds for all results presented here.
There are two important configuration parameters which are worth noting. The first is the
”projection evaluator” which takes a list of joints as an approximation of the configuration
space. This parameter is set to joints(shoulder_pan_joint,shoulder_lift_joint).
This parameter is in use in the planner LBKPIECE.

The second parameter is the ”longest valid segment fraction” which determines the resolution of
the collision-checking when traversing a path on search for one that is feasible. This parameter
is set to longest_valid_segment_fraction: 0.01. The collision-checker implemented
in OMPL discretizes the edge between two nodes to a set number of states and checks each
configuration for collisions. This parameter is the fraction of the configuration space assumed
to be collision-free when the robot is not in collision in a certain configuration. In this case,
where it is set to 0.01, we assume the robot can move in 1% of the configuration space and still
be collision-free (MoveIt, 2019). The size of this variable affects the behaviour of the planners,
and declaring it a smaller value led to some time out issues when the allowed planning time was
as strict as it was.

The test set-up is similar to the algorithm used for planning to potential grasp poses in the
workspace outlined in Algorithm 3, with a few changes. The data collection algorithm for
testing the different planners by making a path reachability map of the new bin area as well as
collecting information on the metrics accounted for in Section 7.5.3 for each of the planner is
outlined in Algorithm 6:

Algorithm 6: Algorithm for creating path reachability maps and data collection for planners under

investigation

for every point (x, y) in the new bin do
for all defined orientations about (x, y, 0) do

generate the test grasp Ttest
j ;

define goal pose of the planner as the test grasp frame;
plan a path to the pose with MoveIt;
if the pose is path reachable then

save Ttest
j and True;

record computation time;
extract planning time;
extract path length;

else
save Ttest

j and False;

end

end

end



Chapter 8

Results

8.1 Optimal level mapping

To compare planners and metrics, it was advantageous to plot the different information to
visualize it. Since each of the test sets were run five times, the results first had to be combined.
Whether or not a test grasp was path reachable or not became a matter of employing Algorithm
4; if there was found a path at one instance, a path exists. For the path length, an average size
was chosen, if there were found for example three paths out of five tries, these three numbers were
averaged, and the final result was set as the parameter for that test grasp. The same procedure
was carried out for planning time and execution time as well. Furthermore, to be able to compare
the different planners and objectives, plots were made, covering their performance in accordance
with the metrics.

When running Algorithm 6 on the the three different planners with all four optimization ob-
jectives, 12 saturated sets of data are available. To determine which planner and objective
which performed the best, the data was plotted in a box plot, where path length, planning time
and execution time is presented, see Figure 8.2. The statistics on path reachability degree is
presented using a bar graph, shown in Figure 8.1.
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Figure 8.1: Total percentage path reachability for the planners LBKPIECE, RRTConnect and SBL
with the optimization objectives in order: minimizing path length, maximizing minimum path clearance,
minimizing mechanical work and minimizing the general state cost integral. Note that the y-axis goes
from 95% to 96%.
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Figure 8.2: Box plot of all planner and optimization objectives tested. Top row: LBKPIECE. Middle
row: RRTConnect, Bottom row: SBL. The results for the optimization objectives are in the same order
in all plots; minimizing path length, maximizing minimum path clearance, minimizing mechanical work
and minimizing the general state cost integral. All axes with respect to metrics of interest (columns) are
equal. In each box, the red line within the blue rectangle represents the median value of the data set.
The blue box in each plot contains the 2nd and 3rd quartile of the data. This indicates that results which
lie between 25% and 75% of the distribution is contained by the box. The red crosses are data points
considered outliers, and the ”whiskers” extends to data not considered outliers (MathWorks, 2019).
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Viewing first Figure 8.1 where each bar is the percentage degree of total path reachability for
a planner and objective. Note that the y-axis goes from 95% to 96%, meaning all planners
performed well in terms of this metric. Still, there are slight differences, and RRTConnect with
the optimization objective mechanical work performs the best with a total path reachability of
just above 95.9%.

Secondly, view Figure 8.2 and the first column to the left. These three plots show the distribution
of path lengths of all of the paths for the three planners and objectives. These results are quite
similar, but RRTConnect performs slightly better than the other two planners. It has a smaller
median than the two other planners. LBKPIECE has the least amount of outliers considering
this metric, and RRTConnect has the worst outlier with the mechanical work optimization
objective.

Moving on to the next column of results, the middle column portraying the planning time dis-
tribution of the different planners and objectives. It is immediately apparent that RRTConnect
outperform both SBL and LBKPIECE with regards to this metric, except with the state cost
objective. All planners have a significant stretch towards the upper limit for planning time (5s),
but on average RRTConnect is the best performer here. When it comes to the final metric,
execution time, this looks to have the same structure as path length. This is not unanticipated,
since the length of the path and the time needed to traverse it will be closely related. Take
for example the outlier of RRTConnect with the mechanical work objective in path length; the
corresponding execution time can be seen for the same objective in this final column. The same
conclusions are reached for this metric, RRTConnect slightly outperforms the other two plan-
ners, also in terms of the amount of outliers. The optimization objective maximizing minimum
clearance objective is the best performer in execution time.

Based on viewing the plots and the previous discussion, the planner RRTConnect is the best
performer, and due to the consistent distribution of data using the maximizing minimum clear-
ance objective, this is the best choice of planner and objective for the set-up at hand among the
tested planners. Also looking at this planner and objective with regards to path reachability,
it is the second best result considering RRTConnect alone, and performs just as well as the
best results obtained with LBKPIECE. This planner and objective performs the best in path
length and execution time, performs well in planning time, and is the second best option in path
reachability.

In Figure 8.3, the path reachability map made with RRTConnect and optimization objective
maximizing minimum path clearance can be seen. Recall that in each of these small squares,
there are 27 different orientations where the colour is indicative of the percentage of how many
of these were path reachable. For each of these path reachable orientations, a path with a
corresponding path length, planning time and execution also exists. These final three metrics
are not represented in the map, but is stored in another data structure with connections to the
map.

Seeing that the metrics up for testing were path length, planning time and execution time, one
can argue that path length and execution time are closely related as a shorter path would take
less time to traverse. To investigate this assumption, the path length and execution time of
several of the planners and objectives were made, and one of these plots can be seen in Figure
8.4. This plot is of the planner LBKPIECE with optimization objective minimizing path length.
The same type of behaviour was observed with other planers and objectives.

In the figure, all the points represent a path’s length and the corresponding execution time. The
blue line is the linear fit to the data set. The red line indicates another trait of the data; when
the path is relatively short, it can be seen that the execution time is also relatively low. This
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Figure 8.3: Path reachability map made with RRTConnect and optimization objective maximizing
minimum path clearance. There is one square for each sample in the bin, and the colour indicates
percentage coverage.

red line seems to be the lower bounds on how fast a path can possibly be. It is indicative of
the fastest paths possible in terms of the constraints on the robot actuators, the servos cannot
move faster. Since this property is observed consistently, there is not a pure linear relationship
between path length and execution time, meaning that they are not linearly dependent. It is
thus advantageous to use both metrics in a total cost function, as will be illustrated in the
following case study.
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Figure 8.4: Plot of the path length as function of the execution time. The data set is from a planning
session using LBKPIECE with the optimization objective minimizing path length.
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8.2 Case study

Figure 8.5: System flow with the implementation of the path reachability map as a method to sort the
grasps.

After the best path reachability map had been decided upon, the map using the planner RRT-
Connect and the optimization objective maximizing minimum path clearance, it was of interest
to use the map as an additional step in the grasp selection process. Now we have available a
generous amount of information on path reachability, path length and time consumption for
this planner and objective, called the path reachability map. The goal now was to use this
information to bias the grasp selection in the system towards grasps that are path reachable
and ”good” for the robot. Considering the robot’s reach has not been included previously in
the system, a method to do this was of interest. Viewing again Figure 8.5 (same as Figure 7.2),
this is the work flow implemented and tested in the following sections.

Provided a grasp from the neural network, we can find the test grasp that most resembles the
true grasp, and then be able to return information on path length and time. Take for instance
the network outputting 100 grasps in order ranked on the quality of the grasp. We then wish
to rearrange this ranked list based on similar test grasps and their attributes.

8.2.1 Prerequisites

The neural network outputs sets of grasp pairs (di,vi), where di is a point and vi is the approach
vector for the grasp. The most common reasons a grasp fails are collisions with the bin edges
or with other objects in the bin. If and when a grasp fails, the system automatically moves on
the next grasp from the network, without capturing a new point cloud and obtaining a new list
of grasps. The probability that objects move if a grasp fails due to collision with the objects in
the bin has been experienced to be high. It is due to these events, that the bin area has been
split in four; to increase the chance of successfully grasping an object. For example, if a grasp
fails in the south eastern quadrant of the bin due to collision, it is less likely that this disturbs
the distribution in the north western quadrant such that the grasp pairs given here still might
be valid.

For each quadrant in the bin, the neural network was called to output 100 grasps in order. Next,
the grasp set was pruned automatically to remove grasps given outside the bin, or on the edges
of the bin. In Figure 8.6, the grasps from the neural network can be seen as the clusters of
coordinate frames. In the figure, the same grasps are shown both in the current placement, and
the new placement of the bin. Furthermore, to make a complete frame from the pairs (di,vi) to
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be able to test the algorithm soon to be presented, the x-axis of the neural network grasps were
set to coincide with the x-axis of the tool centre point at the point di, see the frame attached
to the tool in the figure. Recall, RGB→ (x, y, z). Prerequisite number one for testing is thus to
complete the grasp pairs such that a complete frame is available.

(a) Grasps from the neural network in the
north western corner given in both the cur-
rent placement of the bin, and the new.

(b) Grasps from the neural network in the
north eastern corner given in both the cur-
rent placement of the bin, and the new.

(c) Grasps from the neural network in the
south western corner given in both the cur-
rent placement of the bin, and the new.

(d) Grasps from the neural network in the
south eastern corner given in both the cur-
rent placement of the bin, and the new.

Figure 8.6: Grasps from the neural network in both the current and the new bin placement. The grasps
from the neural network are the clusters of coordinate systems. Recall the following: x, y, z.
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Figure 8.7: Transforming the neural net-
work grasps from the current placement to
the new placement. 1) marks the current
placement, 2) marks the rotated current
placement, 3) marks the new placement,
and 4) marks the base coordinate system.
α is the rotation angle between the current
and new placement, and p is the required
translation to align the two bins.

The grasps from the neural network are given relative
to the current placement of the bin, the placement seen
in Figure 7.4. Transforming the grasps to the new
bin, as shown in Figure 7.24, enables testing of the
algorithm. Since the current placement, and the new
placement had been done separately, it was first neces-
sary to find the transformation between the two, to be
able to represent the grasps from the neural network in
the new bin area. The second prerequisite is to trans-
form the grasps from the neural network to the new bin
area.

To find the rotation angle between the current and new
placement, the dot product between the vectors of the
short sides of the bin was taken:

cosα =
sc · sn
|sc| · |sn|

, (8.1)

where α is the angle between the bins, sc ∈ R3 is the
vector describing the short side of the bin in the current
placement and sn ∈ R3 describes the short side of the
bin in the new placement, see Figure 8.7. After having
identified this angle and rotated the bin, the translation
could be found.

The vector needed to translate the bin was found as the
Euclidean distance from one corner of the rotated bin
in the current placement to the same corner in the new
placement. The grasps from the neural network needed
to be transformed by the same sizes as the bin. The
complete transformation needed to obtain the grasps in

the equivalent placement in the new bin, provided the current bin already was rotated is:

Tgrasp, new bin = T1T2Tgrasp, current binT4 (8.2)

Tgrasp, new bin =




1 0 0 px

0 1 0 py

0 0 1 pz

0 0 0 1







cosα − sinα 0 0

sinα cosα 0 0

0 0 1 0

0 0 0 1




Tgrasp, current bin Tee
tp, (8.3)

where T1 is the translation from the current placement to the new placement, by finding the
vector p connecting the two. Recall that the current placement of the bin has already been
rotated by α, see Equation (8.1), such that the distance from each corner in the (rotated)
current placement to each corner in the new placement were all vectors of equal size. T2 is a
rotation about the base z-axis to rotate the grasps from the neural network, Tgrasp, current bin, to
the new placement. Note, that this is not a rotation about the z-axis of the grasps themselves,
but by the base z-axis pointing up from the pedestal, also marked in Figure 8.7. Furthermore,
the grasps from the neural network are given in the robot base with respect to the end-effector,
Tbase

ee , and must be transformed to the tool center point by the static transform Tee
tp. Note again

the use of pre-multiplication for operations about the fixed base frame and post-multiplication
for operations on the grasps themselves.



84 CHAPTER 8. RESULTS

The third and final prerequisite required to use the path reachability map, is the appropriate
saturation and normalization of the information in the map. For each test grasp in the new bin
area, recall that 5 attempts at a path were executed. This meant that there were five reachability
maps with associated path lengths, planning times and execution times. To saturate the results
with respect to path reachability, a Boolean value, this was simply the operation of OR-ing this
value. Furthermore, due to the sampling-based nature of the planners, the same path was rarely
returned. So for each test grasp, the average of the found path lengths, planning times and
execution times were used in a final saturated path reachability map. Viewing Figure 8.8, the top
row shows the histograms for the average values of path length, planning time and execution
time respectively.
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Figure 8.8: Histograms of averaged values of path length, planning time and computation time. Top
row: plotted on a linear scale, notice the substantial right skew. Bottom row: same data plotted on a
logarithmic scale, notice the data more resembling a normal distribution.

When viewing the top row of plots in Figure 8.8, it is clear that the data has a significant right
skew, with a substantial amount of outliers in the upper regions. Since the objective here is
to compare and weight the metrics (path length, planning time and execution time), a proper
normalization scheme is decisive. As we want to compare sizes different in nature, they have to
be normalized equally.
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If one was to normalize this data with a max-min normalization by the following formula:

normalized value =
current value−minimum value

maximum value−minimum value
, (8.4)

which attempts to focus the data around the mean, outliers disturb this process. Due to the
right-skewness and the amount of outliers, a different approach had to be undertaken.

View again, Figure 8.8, but the bottom row. These are the same values plotted on a logarithmic
scale, where it can be observed that the outliers have a lesser impact on the distribution, the
”tail” of the graphs has been shortened. If the logarithm of the data set produces a normal
distribution, one has a log-normal distribution (Walpole et al., 1998). It is clear that the data
does not have a perfect normal distribution in these bottom row plots, but it is significantly
more normal than the plots in the top row.

Since a logarithmic presentation of the data provided a distribution more closely resembling a
normal distribution, albeit far from perfect, the choice fell on using a logarithmic normalization
of the data set. An alternative to using a log normalization, is to use a square root or reciprocal
normalization (Kenny, 1987). All three metrics must be normalized using the same scheme to be
compared correctly, and the log normal distribution was the one where they were most similar
in behaviour. Furthermore, the logarithmic normalization suppresses the impact outliers have
on the data set. Since the data is more concentrated around lower values, we want the outliers
to interfere less with the normalization, and damp their impact on the data.

To normalize the data according to a logarithmic distribution, the terms of the normalization
seen in Equation (8.4) were ”log-ed” and implemented:

normalized value =
log(current value)− log(minimum value)

log(maximum value)− log(minimum value)
(8.5)

8.2.2 Implementation

After the grasps from the neural network were provided, the path reachability map had been
saturated, and the metrics had been normalized, an algorithm which composes the path reach-
ability test had to be implemented:

• Given the grasps from the neural network, the test grasp resembling it the most is to be
identified.

• The path length, planning time and execution time for this corresponding test grasp is
then looked up in the map (a large table).

• A cost function is evaluated based on the attributes of the test grasp for each grasp from
the network.

• The grasps from the neural network are re-arranged based on this cost and returned to
the picking loop.

Tgrasp, new bin is now the exact same grasp from the neural network given in the current bin
placement, simply transformed to be given in the new bin area. From here on Tgrasp, new bin will
be referred to as Tnn

i to mean the ith grasp pose from the neural network, abbreviated nn.

Recall the following relations for the pose of the test grasps generated, and the grasps provided
by the neural network:

Tnn
i =

[
Rnn

i dnn
i

0> 1

]
and Ttest

j =

[
Rtest

j dtest
j

0> 1

]
. (8.6)
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Furthermore, path length, planning time, and execution time are normalized average values such
that they can be compared with regards to how much each of these sizes influence the cost of
a grasp. The path length will be referred to as φ3, planning time φ4 and execution time φ5, as
the metrics φ1 and φ2 are related to identifying the test grasp which resembles a true neural
network grasp the most. This will be accounted for in the following section.

Figure 8.9: Illustration of φ1 and
φ2. φ1 is the Euclidean distance be-
tween dnn and dtest and φ2 is the
geodesic distance between Rtest and
Rnn

The first step in identifying which test grasp resembles a
grasp from the neural network the most is a check of the
distance between the network grasp point and all test grasp
points in the data set, and choosing the closest test grasp. So,
for each grasp from the network and all the test grasps, we
calculate the Euclidean distance φ1 : R3 × R3 → R≥0:

φ1(d
nn
i ,dtest

j ) = |dnn
i − dtest

j |, (8.7)

where dnn
i is the position vector of the grasp from the neural

network and dtest
j is the jth test grasp position vector. After

the point closest resembling the neural network grasp point is
found, there are 27 options for rotation, where a comparison
of the 3D rotations must be done to identify the approach
angle closest in magnitude. Based upon the work of Huynh
(2009), the metric in Equation (8.8), φ2 : SO(3)× SO(3)→
R≥0, is applied to all test grasps and compared to the neural
network grasps. The matrix logarithm is defined as follows:
Let A ∈ Cn×n, then B ∈ Cn×n is a logarithm of A if eB = A

(Bernstein, 2018).

φ2(R
nn
i ,Rtest

j ) =
∥∥∥log(Rnn

i (Rtest
j )>)

∥∥∥ , (8.8)

where SO(3) is the special orthogonal group of order 3, R≥0 is the set of non-negative real
numbers, log(·) is the matrix logarithm, Rtest

j is the rotation part of the transformation matrix
describing the test grasp j, and Rnn

i is the same for the neural network grasps.

The ‖.‖ (2-norm), gives the magnitude of the rotation angle Huynh (2009). The metric returns
values in the interval [0, π), where the objective is to find the smallest geodesic distance between
the neural network grasp and test grasps. The pseudo code is outlined in Algorithm 7. The first
two for-loops return the test grasp closest in φ1 and φ2, and the next loop evaluates the cost
function J for each grasp, and enables sorting.

After the closest test grasp has been returned, the attributes of this test grasp in terms of path
length, planning time and execution time, φi, i ∈ [3, 4, 5], is to be evaluated by the help of a
cost function;

Ji = αφ3 + βφ4 + δφ5, (8.9)

where α, β and δ are weighting parameters enabling prioritization of characteristics that are more
important than others in an application. Now that φi, i ∈ [3, 4, 5] are normalized, Algorithm 7
ensures that path reachable grasps with low computation times and short paths are prioritized
over less ideal grasps, and allows the highest rated grasp to be the one best for the robot as
well. Information on IK, path-existence, collision-checking and time consumption is implicitly
included in the cost function J as it is calculated offline, and is accessible faster than the time
it would require to do the operations sequentially for each grasp from the network.



8.2. CASE STUDY 87

Algorithm 7: Path reachability test: Algorithm using the path reachability map for rearranging grasps

from the neural network taking into account the robot capabilities.

Input: Robot capabilities in terms of path reachability map and corresponding information on
path length, planning time and execution time, and list of grasps from neural network

Output: Re-arranged list of grasps in terms of path reachability
for all grasp from neural network Tnn

i do
for all test grasps Ttest

j do

calculate φ1(d
nn
i ,dtest

j ) and φ2(R
nn
i ,Rtest

j );

end
return the closest test grasp in φ1 and φ2;

end
for each test grasp corresp. to a network grasp do

if the grasp is path reachable then
calculate cost of each grasp;
Ji = αφ3 + βφ4 + δφ5;

else
Ji =∞;

end

end
sort grasps with respect to J ;

8.2.3 Evaluation

To evaluate the functionality of the algorithm, all weights, α, β and δ were set to 1 such that
path length, planning time and execution time of the paths were considered equally important,
since these three aspect influence how fast a full picking cycle is.

A comparison between the list of grasps from the neural network and the re-arranged list of
grasps when considering path reachability, had to be investigated. To do so, the first 10 grasps
from the network, unsorted on path reachability, and the first 10 grasps from the re-arranged
list were recorded. The average cost J = αφ3 + βφ4 + δφ5 of these groups was calculated and
plotted in a bar chart, seen in Figure 8.10. There is one plot for each quadrant in the bin.

Viewing the figure, the columns to the right in each group represent the average cost of the first
10 grasps from the network, not considering path reachability. The columns to the left in each
group represent the average cost of the first 10 grasps of the sorted list. The value of 10 was
chosen to obtain a representative average when comparing the cost J . When comparing the two,
it can be seen that when including path reachability, grasps with a short path length, planning
time and execution time, are prioritized. Note that the y-axis goes to infinity since some of the
grasps preferred by the network were unreachable by the robot in the south west quadrant of
the bin, this is illustrated in Figure 8.10 by the grey column. When comparing the results for
the south-east and south-west regions in the bin in terms of a higher cost, this is consistent with
the slightly lower level of path reachability in these regions as can be seen in Fig 7.26.

The time the algorithm requires to process and sort the grasps from the neural network and the
map in one quadrant is under a quarter of a second, and in theory it should be able to process all
four quadrants in under a second to account for path reachability. The results indicate that faster
picking can be achieved when including path reachability as a separate module in the bin-picking
system, whilst still keeping the neural network focused on grasp planning alone.



88 CHAPTER 8. RESULTS

North east quadrant South west quadrant South east quadrant North west quadrant

Path length cost
Plan time cost
Exe. time cost

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

950

1000

1050

1100

1150

1200

1250

A
v
e

ra
g

e
 c

o
s
t

Quadrants in the bin

Figure 8.10: Comparison of the average cost of the first 10 grasps from the neural network (column to
the right) and the first 10 grasps from the re-arranged list based on path reachability (column to the left)
The average cost is split into the average sub costs of path length, planning time and execution time for
the grasps.



Chapter 9

Conclusion

9.1 Concluding remarks

In this work, a mapping of the workspace of the system shown in figure 1.1 has been undertaken.
Based on this mapping, the region of the workspace with the highest path reachability was
chosen as the best location for placing the bin, when considering that a robot needs to reach
the objects to be picked and the grasps provided by the neural network. Due to the constraints
on the end-effector, and the constraints in the robot cell such as the pedestal and the bin,
collision-free paths had to be found and considered. After placing the bin, several planners and
optimization objectives from the Open Motion Planning Library were tested on their ability
to plan and execute possible grasps in this new bin area. The planner RRTConnect was the
best performer when trying to find paths that maximized the minimum path clearance. A path
reachability map based on this planner and objective was constructed and used in an algorithm
for predicting whether or not a path could be found to the different grasp poses. This procedure
is kept separate from the neural network which supplies the grasps, and is based on the path
reachability map. The algorithm evaluates a cost function weighting the metrics path length,
planning time and execution time found by the planner, which is used to skew the grasps chosen
for picking towards grasps reachable by the robot, and where a path exists, is efficiently planned
and quickly executed. The algorithm was tested on real grasps from the neural network in
simulation and the results indicate that faster ”robot friendly” picking can be achieved when
taking path reachability into consideration.

9.2 Future work

In the future, the algorithm should be tested on the physical system in depth to investigate if
the picking time is influenced considerably by the extra check on the path reachability. The
time it takes to run the algorithm and outputting the grasps in a new order in all four quadrants
is theorized to be under one second, but this would need to be investigated on the physical
system.

In addition, a new robot configuration to capture depth images from should be found and
considered when creating the path reachability map, if re-positioning of the bin is undertaken.
Considering still, that the 3D camera needs to capture point clouds 50-60cm from the bin to
supply a grasp, it is preferred the robot operates in the most path reachable region of the
workspace and that a weight-off between the camera distance and path reachability should be

89
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undertaken. With the current placement of the bin, the point clouds are captured from a region
of high path reachability where the robot rarely will operate, and the bin is placed sub-optimally
when considering the same condition. If re-positioning of the bin is to be undertaken on the
physical system, ensuring a quality pose to capture point clouds from will need to be considered
also. There might then be some difficulties in reaching this type of height above the bin, since
this hypothesized pose will have a lower path reachability than it has today. If the camera pose
is to be changed, a new offline generation of the robot capabilities, path reachability map, must
also be done, since path planning is included in the map and this pose is the start state.

Furthermore, it would be of interest to also include in the cost function, how well a grasp’s
likeness is to the test grasp it is coupled with in the algorithm. In this implementation, the
grasp most similar in φ1 and φ2 was chosen without considering how much alike they were. As
an example, view Figure 9.1, where two pairs of coordinate systems are shown. On the left, there
are two coordinate systems where φ1 are φ2 are relatively small in size. The z-axes are almost
coinciding, so in this instance it seems that the test grasp matches quite well the grasp from the
neural network, and it is probable that the attributes of this test grasp represents the neural
network grasp. Viewing the two coordinate systems on the right however, these differ quite a
bit in φ1 are φ2, and it is not equally probable that this test grasp represents the attributes of
the neural network grasp here. A suggestion for future work is thus to change the cost function
from

J = αφ3 + βφ4 + δφ5 (9.1)

to something like

J = χφ1 + ψφ2 + αφ3 + βφ4 + δφ5, (9.2)

where χ and ψ are weighting parameters for the Euclidean and the geodesic distance between
the grasps respectively. The metrics should also be normalized by for example dividing φ1 by π,
since the interval of this size is [0, π]. φ2, the Euclidean distance could for example be divided
by the difference dmax − dmin.

Figure 9.1: Two examples of differences in φ1 and φ2, motivating including these metrics in the cost
function in the future to also weigh how much a test grasp resembles the neural network grasp provided.

Moreover, the distribution of objects in the bin is not uniform in height z. The bin is 7mm deep
and the objects are 3.2cm in diameter. This means that the objects can overlap in both x, y and
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z-direction. The reachability map currently only exists in the xy-plane at the optimal z-height
in terms of path reachability. This height is at z = 0. Developing several path reachability
maps at varying heights, covering the bin also in the z-direction, at for example mm-intervals
throughout the bin, would greatly increase the resolution of the map. This could potentially
improve the prediction of the path reachability of the grasps significantly.

When planning for a path, the bin should be physically introduced in the planning scene. This
would allow the planner to view the sides of the bin as possible collision, and make sure that these
types of collisions can be avoided. After the bin has been added, new maps, both workspace and
path reachability, should be generated. The inclusion of an obstruction in the path reachability
map would be a way to implicitly include IK coverage and path existence, as done in this work.
In addition, the testing of more planners from OMPL or other available libraries may yield a
planner outperforming the choice made in this work.
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Robotic Bin-Picking under Geometric End-Effector Constraints:
Bin Placement and Grasp Selection

Irja Gravdahl1, Katrine Seel2 and Esten Ingar Grøtli2

Abstract— In this paper we demonstrate how path reacha-
bility can be taken into account when selecting among prede-
termined grasps in a bin-picking application, where grasps are
supplied independently of the robot at hand. We do this by
creating a map of the workspace to optimally place the bin
with regards to the existence of an IK solution and a collision-
free path, a necessary condition for systems with obstructions
in the workspace. Furthermore, we densely re-map this region
and based on this map predict whether a grasp is reachable by
the robot. Moreover, an algorithm is implemented to weight the
grasps in terms of path existence, length and time consumption.
The algorithm was tested on real grasps from the neural
network in simulation and the results indicate that faster
picking can be achieved when taking path reachability into
consideration.

I. INTRODUCTION

Bin-picking is a concoction of technologies, and branches
within those technologies. Attempting a solution of the bin-
picking problem by solving it part by part seems a good
strategy due to the complexity of the system as a whole.
Combining solutions to subsystems is reasonably assumed
to lead to the solution of the system as a whole. Following
this reasoning, much research has been done on one of
two things; finding high quality grasp candidates based on
the geometry and pose of the objects to be picked, and
finding good trajectories to reach a pose associated with the
grasp. However, this dividing strategy can be problematic: it
may not be feasible to reach the pose for the robot due to
constraints in the workspace [1].

There exists extensive previous work on the notion of
grasping an object given that the end-effector is already at the
appropriate contact point to initiate the actual grasping, e.g.:
[2]. A grasp may be deemed good through the appropriate
metrics, for example the force closure property [3], but must
be rejected if the robot cannot reach it [1].

For a given grasp, the existence of an Inverse Kinematic
(IK) solution is sufficient, if the workspace is otherwise clear
of obstructions [4]. However, for most practical implemen-
tations, both arm kinematics and reachability considerations
are necessary.

As an example, consider the system seen in Fig. 1, which
has additional constraints in terms of an eye-in-hand vision
system, is placed upon a pedestal, and the bin it is to pick

*The work reported in this paper was supported by the centre for research
based innovation, SFI Manufacturing in Norway, Grant No. 262900. The
work is partially funded by the Research Council of Norway under contract
number 237900.

1Corresponding author: irja.gravdahl@ntnu.no, Department of Engineer-
ing Cybernetics, NTNU, Norway.

2SINTEF Digital Trondheim, Norway

Fig. 1: Photo of the bin-picking set-up at SINTEF Digital, Trond-
heim. Notice the pedestal (1), camera housing (2), picker (3),
fastening mechanism (4)(5), and bin with reflective steel parts (6).

from constitutes an additional obstruction in the workspace.
These constraints influence the robot’s ability to move freely
in its workspace. An inverse kinematic solution is hence only
necessary, and the existence of a collision-free path to the
appropriate pose must be ensured, for the grasp pose to be
reachable for the robot.

The use of a grasp planner (e.g.: [5], [6] and [7]) is a
popular choice to generate grasps for picking. The grasps
chosen for picking in this set-up are supplied by a dual-
resolution convolutional neural network trained on simulated
data [8]. The input to the network is a point cloud of the
current distribution of parts in the bin, and the output is
multiple grasp pairs, {di,vi}, where i ∈ {1, . . . ,N}, N ∈ N,
di ∈ R3 is a point and vi ∈ R3 is an approach vector. The
network supplies four lists of grasp pairs, one for each
quadrant in the bin. A grasp is said to be valid if there are
no local collisions with other objects in the bin. The output
pairs from the network are ordered based on their closeness
to the world z-axis and in the direction of the camera frame.
The motivation behind focusing solely on grasp planning
in the neural network, is that it can be robot agnostic. The
implementation to include reachability considerations to re-
arrange the output pairs in this paper is designed as a separate
module to sustain the modular nature of the bin-picking
system.

In this paper, we show that by mapping the workspace of



the robot manipulator arm, positioning the bin based on this
workspace mapping, and thoroughly re-mapping this space
with potential grasps offline can increase picking success by
placing the bin in a more accessible region in the workspace,
as well as prioritizing grasps corresponding to short path
lengths and time consumption. Using this mapping data in
conjunction with the output from the neural network to
connect these subsystems, we can re-arrange the preferred
output from the neural network in terms of the robots ability
to pick the objects, prioritizing grasps reachable by the robot.
Mapping in this context refers to creating a map of the robot
abilities. Due to the additional constraints on the system
imposed by the pedestal, the camera housing, and potential
collisions with the bin, in addition to an IK solution existing,
a collision-free motion plan must exist for a pose to be
reachable.

The contributions of this work include utilizing the com-
bined result of IK solutions and motion-plan existence in
the workspace to place the bin optimally. Optimally in this
context refers to the region of the workspace with the highest
concentration of IK solutions and motion-plans. Furthermore,
in this optimal region, the planner LKBPIECE1 [9] (Lazy
Bi-directional KPIECE with one level of discretization) with
optimization objective path length from the Open Motion
Planning Library (OMPL) [10] was investigated in terms of
several metrics; path existence, path length, planning time
and execution time. Moreover, a method for introducing the
aforementioned metrics of the robot into the grasp selection
process, without the need for explicitly querying an IK
solver, path-planner or collision-checker is described.

Building on the work of [1], [11] and [12] where the
existence of an IK solution is used as a criterion when
selecting a grasp, we propose in this paper also to include
existence of a collision-free path in the grasp selection
process. This collision checking is particularly useful when
considering geometric constraints, exemplified by the large
volume of the 3D sensor in the system at hand.

The rest of this paper is organized in the following way; in
section II, previous research on combined grasp- and path-
planning will be discussed. Section III will formulate the
problem to be solved, and section IV will deal with the
methods used, and a discussion of the results. Lastly, the
paper is concluded and future work is discussed.

II. PREVIOUS RESEARCH

To the extent of the authors knowledge, there exists some
ambiguity on the use of the term reachability. In [13], they
define the reachability of a robot as ”its ability to move
its joints and links in free space in order for its hand to
reach the given target”, indicating the term involving some
movement from one state to another. However, for example
in [11], [12] and [14] it refers to the existence of an inverse
kinematic solution only. In the rest of this paper, reachability
will refer to the existence of an IK solution, and the term
path reachability will refer to instances where an IK solution
and a collision-free path exists.

When combining motion-planning and grasp planning,
there exists a substantial amount of research that either
implements grasp planning in motion planners or robot ca-
pabilities in grasp planners, as a way to include reachability.

In [14], information on the robot kinematics, the local
environment of the object to be grasped, and the force-
closure property of the grasp is encoded in a grasp-scoring
function, which is used to rank a precomputed set of grasps.

The use of offline generated ”capability maps” for ma-
nipulators, a term used by [11] and applied to improve
grasp planning in [12], is useful when incorporating robot
kinematics with grasp planning. The capability map contains
information about the reachability of the robot and aids in
predicting if a grasp is reachable. In addition, [11] include
directional preferences in the map, so that information on
appropriate approach directions can be incorporated. When
capturing the workspace structure in this map, the whole
workspace of the robot was discretized, and sampled to
obtain a uniform distribution of possible Tool Centre Point
(TCP) configurations. For each of these TCP configurations,
IK calculations were done, and if a solution existed, the
point was marked reachable. This procedure results in a
representation containing the probability of a grasp being
reachable by the robot. By feeding a grasp planner this
capability map, the grasp planner is decoupled from explicit
implementation of the robot kinematics, but information on
the success probability will be available such that unreach-
able grasps can be discarded early.

An integrated planner, Grasp-RRT, is presented in [16],
combining the search for a valid trajectory, a feasible grasp
and an inverse kinematic solution, the central elements of
grasping. The method does not rely on precomputed grasps
like in [11] and [12], but finds feasible grasps whilst planning
a path for the robot.

In [1], a framework for workspace aware online grasp
planning is provided. By using a precomputed representation
of the reachable workspace called the reachability space
where potential TCP poses are queried, they use this to bias
the robot towards more reachable regions of the workspace.
Planning for a grasp is only done in these more accessible
regions, limiting the time spent searching for grasps in less
reachable regions.

III. PROBLEM FORMULATION

The bin-picking system set-up used in this paper comprises
a UR5 robotic manipualtor arm, a Zivid 3D camera and a
vacuum gripper to pick reflective parts from a bin. To supply
a grasp, it is important to obtain sufficient depth information
from the images of the distribution of parts in the bin. An
eye-in-hand configuration provides flexibility in this regard.
Information from the camera is used to compute multiple
grasps based on how objects are placed in the bin. When the
sensor is attached to the robotic arm performing the grasping,
additional constraints on how the manipulator can move
whilst avoiding self-collisions and collisions with the bin or
other parts of the environment is imposed. A characteristic
of the grasps supplied by the network [8], is that they



are decoupled from the robot tasked with reaching them.
The network has no knowledge about the existence, and
kinematics, of the robot. This raises the issue of reachability,
and the need for coupling these two aspects; optimal grasp
generation in terms of the object geometry, and prioritizing
grasps that are reachable for the robot.

The issue at hand is determining with what amount of
ease the robot can reach a specific pose in the workspace,
and to find a way to judge which grasps are favourable for
reaching with the robotic manipulator arm. The following
sections detail the results obtained attempting a solution
to this problem. The following results were obtained in
simulation, using a simulator supplied by Universal Robotics
[17], and upon it, working with the Robot Operating System
(ROS) workspace structure for the physical system.

IV. METHODS AND RESULTS

A. Current placement of bin in workspace

1
2

3

4

5
6

7

Fig. 2: Visualization of current set-up as seen in RViz. 1) pedestal
where the robot is placed, 2) robot pose at the scan configuration
and Zivid 3D camera, 3) visualization of the path from the scan
configuration to an experimental grasp, 4,5,6) actual placement of
the bin corners in the physical setup, 7) experimentally generated
grasps for investigation

The current placement of the bin is based on the optimal
range of the Zivid 3D camera, which is 50-60cm from the
objects. This 3D camera is placed within a camera housing
of substantial size (marked 2 and 3 in Fig. 2) which further
limits the arm configuration space. Due to this demand, the
UR5 was placed upon a pedestal, see Fig. 2. Since the output
of the neural network is a point and an approach vector
only, a change in joint configurations whilst keeping the TCP
stationary at the point, may lead to multiple viable solutions.
As a result of this characteristic, several coordinate frames
were sampled with the origin at the same point, but with
different orientations. It is worth noting, that since additional
constraints on the system in terms of the pedestal and the

camera housing were present, the need for finding a collision-
free path was detrimental.

B. Expanding possible regions for bin placement

First, the level in the workspace at which the reach of
the robot was the greatest, constrained by the geometry of
the workspace and itself had to be identified. Utilizing RViz
as a visualization tool, a larger portion of the workspace
was sampled and tested. It was vital that the sampling was
broad enough in all directions to capture also the limits of the
workspace. Viewing Fig. 3, the portion of the workspace that
was investigated can be seen. The rest of the workspace was
deemed less accessible due to the layout of the robot cell,
and therefore unnecessary to map. The triangular structure
at the back of the robot for example, is physical.

Fig. 3: Outline of the regions of the workspace being mapped. For
implementation reasons the mapped region was divided in two.

The two cubes seen in Fig. 3 were discretized, and a 11×6
grid in the xy-direction, with an increment of 0.1 in the z-
direction, was created. MoveIt! and OMPL [10] were used
to plan a path directly to the sampled pose, succeeding only
if there existed an IK solution and a collision-free path.

In each xy-plane, a 2D heatmap was produced to visualize
the results. The path reachability coverage from both cubes
in Fig. 3 were combined, and the optimal level in terms of
best average path reachability was revealed to be the level
flush with the base at z = 0, seen in Fig. 3 as the opaque
orange level. The level map at z = 0 can be seen in Fig. 4.
This result was not unanticipated as it is the level closest to
the centre of the workspace, the base. It is also the region of
the theoretical workspace with the largest span. Even though
it was likely the best option, due to the imposed constraints
of the pedestal and the camera housing, it had to be validated.
This level had an average path reachability of 53.53%, but
as can be seen from Fig. 4, there is a distinct area where the
path reachability is very high. In addition to being the level
with the highest average path reachability, the dark green
”patch” in the middle was also the region with the highest
concentration of successes when comparing this area with
the other level maps in the z-direction. For comparison, the
heatmap portraying only the IK solutions at this same level is
shown in Fig. 5. It is clear that the path reachability heatmap
is a more conservative estimate of accessible regions in the
workspace.
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Fig. 4: Path reachability heatmap seen from above: Optimal level
based on average hit rate along with a concentrated area with high
reachability. The numbers in the squares represent percentage path
reachability for the points and the colors reflect this scale from red
(low) to green (high)
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Fig. 5: Reachability heatmap seen from above: Coverage of IK
solutions in the top level of the workspace. The numbers in the
squares represent percentage IK solutions for the points and the
colors reflect this scale from red (low) to green (high).

Note, that the representation of the optimal level as can
be seen in Fig. 4 is directionless and does not take into
account which approach directions are more favourable for
the robot. The number in the squares are path reachability
indices calculated by the following formula [11];

ni j =
ri j

Ni j
·100 i, j = 1,2, . . . ,11 (1)

where ni j is the total path reachability score in percent for
a point represented by a square in the level map, ri j is the
number of path reachable TCP frames in the point, and Ni j
is the total number of possible TCP test frames in said point.

C. New bin placement and mapping

When placing the bin based on the workspace mapping on
path reachability, the bin was placed such that the point with
100% path reachability in the middle of Fig. 4 was roughly
centered in the bin. As per this point, the bin was optimally
placed in both x-, y-, and z-direction, in terms of maximizing
path reachability.

After positioning the bin, it was desirable to thoroughly
map this area in the same manner as the workspace was
mapped, and use information on potential TCP placements
as a compliment to the grasps supplied by the neural network
to incorporate the robot kinematics and its abilities in the
grasp selection process. Since the bin and its immediate sur-
roundings is the main region of the workspace the robot will
operate in, this can be viewed as a task-specific workspace
mapping. The objective was to use known, offline gathered
data, to constitute an additional step in the grasp selection
process by being able to guide the grasps from the network,
{di,vi}, towards easy to reach regions of the bin.

(a) New placement of bin in
the workspace, with one direc-
tion of test grasps shown

(b) Comparison between one
planning instance and five in-
stances, saturating the results.

Fig. 6: New bin placement and path reachability in the area

When mapping this space, see Fig. 6a, several metrics
were of interest to collect; the homogeneous transformation
of the test grasp, Ttest

j , consisting of the rotation matrix of
the test grasps given in the base frame, Rtest

j and the position
vector of the test grasps in the base frame dtest

j , the length of
the calculated path to the test grasp, the planning time needed
by the planner and the execution time of the path. Provided
a grasp from the neural network, we could find the test grasp
that most resembles the true grasp, and then be able to return
information on path length and time. Take for instance the
network outputting 50 grasps in order ranked on the quality
of the grasp. We then wish to rearrange this ranked list based
on similar test grasps and their attributes. Note, that for both
the workspace mapping (volume shown in Fig. 3) and for
the mapping of the new bin placement, it was necessary to
attempt a plan several times to saturate the results [18]. This
is due to the randomized nature of sampling-based motion-
planners, which if given enough time will find a path if one
exists, but is unable to return information on the existence
of a path [19]. Tests were repeated 5 times, as this seemed
a sufficient number to get a representative average, while at
the same time not being too time-consuming. The effect of
testing once for a path, and testing five time for a path can
be seen in Fig. 6b, where the average path reachability goes
from 86.93% to 95.70%.

The sampling in the bin is based upon the size of the
objects to be picked and their size compared to the bin.
The bottom area of the bin is 26× 36cm and the radius of
the cylinder objects is 3.2cm. In a worst case situation with
regards to surface area available for grasping, the objects will
stand upright, and approximately 7×10 objects would fit on
the borders. Allowing for two samples per part, there are
14× 20 points sampled evenly in the bin. In each of these
points, there are 27 different orientations to ensure sufficient
exploration of the possibility of another joint configuration



providing a solution. This brings the number of total test
grasps to 7560, for which it is possible to compare neural
network grasps with, and conclude on the robots ability. In
Fig. 6a the new placement of the bin is shown, along with
one orientation of test grasps.

After a map of the bin space containing information on
metrics of interest for each test grasp was saved in a look-
up table, an algorithm which composes the path reachability
test had to be implemented:
• Given the grasps from the neural network, the test grasp

resembling it the most is to be identified.
• The path length, planning time and execution time for

this corresponding test grasp is then looked up in the
table.

• A cost function is evaluated based on the attributes of
the test grasp for each grasp from the network.

• The grasps from the network are re-arranged based on
this cost and returned to the picking loop.

The first step to identifying this test grasp is a check of the
distance between the network grasp point and all test grasp
points in the data set, and choosing the test grasp closest.
So, for each grasp from the network and all the test grasps,
we calculate the Euclidean distance φ1 : R3×R3→ R≥0:

φ1(dnn
i ,d

test
j ) = |dnn

i −dtest
j |, (2)

where dnn
i is the position vector of the grasp from the neural

network and dtest
j is the jth test grasp position vector. After

the point closest resembling the neural network grasp point is
found, there are 27 options for rotation, where a comparison
of the 3D rotations must be done to identify the approach
angle closest in magnitude. Based upon the work of [20],
the following metric, φ2 : SO(3)×SO(3)→ R≥0, is applied
to all test grasps and compared to the neural network grasps,

φ2(Rnn
i ,R

test
j ) =

∥∥∥log(Rnn
i (Rtest

j )>)
∥∥∥ , (3)

where SO(3) is the special orthogonal group of order 3, R≥0
is the set of non-negative real numbers, log(·) is the matrix
logarithm, Rtest

j is the rotation part of the transformation
matrix describing the test grasp j, and Rnn

i is the same
for the neural network grasps. The ‖.‖ (2-norm), gives the
magnitude of the rotation angle [20]. The metric returns
values in the interval [0,π), where the objective is to find
the smallest geodesic distance between the neural network
grasp and test grasps. The pseudo code for the implemented
algorithm is outlined in Algorithm 1.

The algorithm ensures that path reachable grasps with
low computation times and short paths are prioritized over
less ideal grasps, and allows the highest rated grasp to
be the one best for the robot as well. Information on IK,
path-existence, collision-checking and time consumption is
implicitly included in the cost function J as it is calculated
offline, and is accessible faster than the time it would require
to do the operations sequentially for each grasp from the
network.

Viewing the algorithm, φi, i ∈ [3,4,5] refers to the nor-
malized average values of path length, planning time and

Algorithm 1: Algorithm for re-arranging grasps to account
for robot abilities

Input: Robot capabilities in terms of test grasps and
list of grasps from neural network

Output: Re-arranged list of grasps in terms of path
reachability

for all grasp from neural network Tnn
i do

for all test grasps Ttest
j do

calculate φ1(dnn
i ,dtest

j ) and φ2(Rnn
i ,Rtest

j );
end
return the closest test grasp in φ1 and φ2;

end
for each test grasp corresp. to a network grasp do

if the grasp is path reachable then
calculate cost of each grasp;
Ji = αφ3 +βφ4 +δφ5;

else
Ji = ∞;

end
end
sort grasps with respect to J;

execution time of the path to the test grasps. α , β and δ are
weighting parameters enabling prioritization of characteris-
tics that are more important than others.

D. Testing

The grasps from the neural network are given relative to
the current placement of the bin, the placement seen in Fig.
2. Transforming the grasps to the new bin, as shown in Fig.
6a, enables testing of the algorithm.

To evaluate the functionality of the algorithm, all weights,
α , β and δ were set to 1 such that path length, planning
time and execution time of the paths were considered equally
important, since these three aspect influence how fast a full
picking cycle is.

A comparison between the list of grasps from the neural
network and the re-arranged list of grasps when considering
path reachability, had to be investigated. To do so, the first 10
grasps from the network, unsorted on path reachability, and
the first 10 grasps from the re-arranged list were recorded.
The average cost J = αφ3 +βφ4 +δφ5 of these groups was
calculated and plotted in a bar chart, seen in Fig. 7. There
is one plot for each quadrant in the bin.

Viewing the figure, the columns to the right in each group
represent the average cost of the first 10 grasps from the
network, not considering path reachability. The columns to
the left in each group represent the average cost of the first
10 grasps of the sorted list. The value of 10 was chosen to
obtain a representative average when comparing the cost J.
When comparing the two, it can be seen that when including
path reachability, grasps with a short path length, planning
time and execution time, are prioritized. Note that the y-axis
goes to infinity since some of the grasps preferred by the
network were unreachable by the robot in the south west
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Fig. 7: Comparison of the average cost of the first 10 grasps from
the neural network (column to the right) and the first 10 grasps
from the re-arranged list based on path reachability (column to the
left) The average cost is split into the average sub costs of path
length, planning time and execution time for the grasps.

quadrant of the bin, this is illustrated in Fig 7 by the grey
column. When comparing the results for the south-east and
south-west regions in the bin in terms of a higher cost, this
is consistent with the slightly lower level of path reachability
in these regions as can be seen in Fig 6b.

The results indicate that faster picking can be achieved
when including path reachability as a separate module in the
bin-picking system, whilst still keeping the neural network
focused on grasp planning alone.

V. CONCLUSIONS

In this work, a mapping of the workspace of the system
shown in Fig. 1 has been undertaken. Based on this mapping,
the region of the workspace with the highest path reacha-
bility was chosen as the best location for placing the bin,
when considering that a robot needs to reach the objects to
be picked. Due to the constraints on the end-effector, and the
constraints in the robot cell such as the pedestal and the bin,
collision-free paths had to be found and considered. After
placing the bin, an algorithm for predicting whether or not a
path could be found to the grasp pose was implemented on
the system, separate from the neural network which supplies
the grasps. The algorithm evaluates a cost function including
metrics such as path length, which is used to skew the grasps
chosen for picking towards grasps reachable by the robot,
and where a path exists. The algorithm was tested on real
grasps from the neural network in simulation and the results
indicate that faster picking can be achieved when taking path
reachability into consideration.

In the future, the algorithm should be tested on the
physical system in depth to investigate if the picking time
is influenced considerably by the extra check on the path
reachability. In addition, a new robot configuration to capture
depth images from should be found and considered when
creating the path reachability map, if re-positioning of the
bin is undertaken. Furthermore, it would be of interest to

also include in the cost function, how well a grasp’s likeness
is to the test grasp it is coupled with in the algorithm.
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Appendix B

Complete table concerning
rotations

Table B.1: Overview of approach directions in the optimal level in terms of path reachability (complete)

Grasp Statistics
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