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Abstract

In exchange for large quantities of data and processing power, learning algorithms have yielded models that
provide state of the art predication capabilities in many elds. However, the lack of strong guarantees on
their behaviour have raised concerns over their use in safety-critical applications.

It can be shown that neural networks with piecewise a ne (PWA) activation functions are themselves PWA,
with their domains consisting of a vast number of linear regions. Research on this topic has focused on
counting the number of linear regions, rather than obtaining the explicit PWA representation. This thesis
presents a novel algorithm that can compute the PWA form of fully connected neural networks with ReLU
activations. Several case studies regarding the usefulness of this representation in terms of modeling and
control are undertaken. Nominal stability results for a simple dynamical system based on a small neural
network are obtained via the Lyapunov method for PWA systems, and suggestions for extending the approach
to neural networks of arbitrary size are outlined. Moreover, the practicality of using MPC and data-driven
methods to control neural networks is investigated.
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1 | Introduction

The past few years of research have been dominated by a modern-day, functional form of alchemy. In
exchange for large quantities of data and processing power, learning algorithms have yielded models that
provide state-of-the-art prediction capabilities in innumerable elds of research. Examples include the
forecasting of stock prices for high speed trading, accurate predictions of protein folding, and playing all
manner of games at a superhuman level. However, the lack of strong guarantees on their behaviour have
raised concerns on their use in safety critical applications, particularly within engineering.

At the centre of this excitement lies deep neural networkswhich have been proven to be so-callediniversal
approximators (see Cs/ji (2001)). In other words, these networks can be scaled up and tted to data of
arbitrary complexity, even random noise, as shown in Raghu et al. (2017).

The main strength of these models, their exibility, is also a danger. Reasoning about their behaviour, and
explaining their output is notoriously di cult, leading to the term "black boxes". This makes it di cult to
provide any performance or safety guarantees. There are already reports of fatal accidents. For example, a
self-driving car hit and killed a pedestrian (Said (2018)), despite the logs showing that the pedestrian had
been seen and recognised by the system. This has hindered adoption in safety-critical applications.

There is a need for new methods that can further the analysis of these models. Recent research has shown
that neural networks that only use piecewise a ne (PWA) activation functions can themselves be expressed
as a PWA function de ned on convex polyhedra, although the number of regions is enormous (Montufar
et al. (2014); Pascanu et al. (2013); Raghu et al. (2017)).

However, there has been little research into explicitly nding and working with the PWA representation of
neural networks. This is unfortunate, as there is a wealth of literature on PWA functions, particularly in the
context of modeling and control. The premise of the work is to address this. The contribution of this thesis
is:

A novel algorithm that converts neural networks into an exact PWA representation that can be
visualised and analysed.

An investigation into the potential applications of the algorithm to modelling and control problems
through a series of case studies .

The structure of the work is as follows. Chapter 2 presents the guiding questions for this work and related
research, as well as some preliminary comments on notation and relevant background theory on optimisation,
n-dimensional polyhedra, nonlinear systems theory, PWA systems, and neural networksChapter 3 fully
formulates the problem, and discusses the approach taken to create the algorithm as well as how the case
studies were designed.Chapter 4 begins by motivating the design of the algorithm through the use of
examples, and then presents the algorithm proper along with some optimisations and an analysis of its
runtime complexity with respect to network size. Chapter 5 presents four case studies in modeling and
control, demonstrating the potential of the approach as well as some of the pitfalls.Chapter 6 discusses
the results, the limitations of the work, and potential avenues for further development. The conclusions of
this thesis are presented inChapter 7 .



2 | Background

Three guiding questions were chosen to direct the focus of the research.
How can a neural network be converted to its piecewise a ne form?
How can the stability of a dynamical model based on a neural network be veri ed?
Is it practical to design controllers for dynamical neural network models?

The overarching aim of the work is then to nd satisfactory answers to these questions.

2.1 | Related work and the state of the art

This thesis begins with the idea that neural networks using piecewise a ne (PWA) activations are themselves
PWA functions. This is shown in Eldan and Shamir (2015), along with a proof that large enough networks
can approximate any PWA function on convex polyhedra. Note that this last point does not imply that the
linear regions of the network can beany set of polyhedra, only that the output is the same.

Later studies of the linear regions of networks started with the need to understand howexpressivea neural
network is, and how this changes with its architecture (number of layers, width of layers, etc). A more
expressive network has the ability to compute more complex, rich functions. Research has concluded that
increasing the depth of a network has a bigger impact on expressivity than increasing the width of existing
layers (Eldan and Shamir (2015); Telgarsky (2015)).

The premise of this research is that a network with many linear regions is more exible/malleable. However,
this is di cult to interpret, as the number of regions of a network will change as it undergoes training. Other
expressivity measures have been developed, such as output trajectory length (Raghu et al. (2017)), however
this does not relate directly to the linear regions and the PWA representation of neural networks.

Serra et al. (2018) presents upper and lower bounds on the maximum number of regions that improve on
previous results (Montufar et al. (2014)), along with a mixed-integer formulation from which the regions can
be counted by enumerating the integer solutions. For a network with input dimensiond, L hidden layers,
each with n nodes and ReLu activation, the asymptotic bounds for themaximal number of regions are:

) Ny 1d.d

Lower: (d) n 2.1)
Upper: O(n)
Note that the upper bound is exponential in both d and L. The most challenging aspect in terms of analysis
is that researchers are interested in networks with both large input dimensiond and many hidden layers
(large L). The number of linear regions of such a network is enormous. It is likely due to this that (to the
best of the authors knowledge) there are no previous works that detail methods to explicitly obtain and work
with the PWA representation of neural networks.

A closely related problem is the enumeration of cells/regions and intersections in hyperplane arrangements.
A hyperplane arrangement is simply a collection of full-dimensional hyperplanes in some space, such as a set
of lines in R?. As will be shown in Chapter 4 (and is shown in the previous citations regarding the linear
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regions of networks), there is a sense in which each hidden node in a neural network can be associated with a
hyperplane, such that that the node is active on one side and inactive (clipped to zero by the ReLU function)
on the other. The study of hyperplane arrangements is a rich topic, with some decades of results. A compact
and rigorous discussion of hyperplane arrangements is given in Stanley (2006), while Zaslavsky (1975) gives
an upper bound on the maximal number of regions fom hyperplanes in R:

(2.2)
j=0

As with the bounds in (2.1), this expression grows quickly with both d and n, but not exponentially.

Working with these objects in a nhumerical setting is di cult. The MPT toolbox for MATLAB (Herceg et al.
(2013)) provides this functionality, as well as support for representing functions over sets, piecewise dynamical
systems, and computing explicit MPC controllers, making it the obvious choice for the implementation. It
relies on the equally useful optimisation toolbox YALMIP (L fberg (2004)), which was also utilised. The
MPT toolbox performs the majority of its set operations by solving LPs. These operations are covered
conceptually in section 2.3.4.

There is good reason to be interested in neural networks within the context of modeling and control. Recently,
some fascinating connections have been drawn between neural networks and di erential equations. The
expression for the hidden state in the successfuksidual network has a similar form to that of the typical
Euler method: yh+1 = yn + hf (yn;tn). This seems to suggest that the network implements a rudimentary
numerical integrator, which has previously motivated researchers to design residual network architectures that
mimic more advanced numerical integrators like RK4, and also PDEs (Ruthotto and Haber (2018)). More
interestingly, in the popular paper (Chen et al. (2018)) the authors were instead inspired to "parametrise the
hidden state" of a neural network and use a numerical integrator to evaluate it. What this actually means
in practice is that the dynamics of some system is learned by a neural network, and a an ODE solver is
then applied to the output of the network. The real contribution of this paper is then a method to perform

e cient backpropagation through the numerical solver. This allows the models to be trained on measured
trajectories by simulating their dynamics and backpropagating the error over the whole trajectory.

This is not the rst instance of a neural network being used to learn dynamics. In Leontaritis and Billings
(1985), a model called theNonlinear AutoRegressive network with eXogenous inputgor NARXnets), was
introduced, and further investigated in Siegelmann et al. (1997). Autoregressive models use a number of
their previous outputs to predict the next output. They are often used to describe random processes, and
are in fact very similar to multistep simulation methods. "Exogenous"” just implies that some of the inputs
are external, thus allowing the dynamic model to have control inputs. Being older, NARXnets have been
studied more, and a scheme to use MPC with them is described in Chapter 8 of Grancharova and Johansen
(2012).

While networks have been used to model dynamical systems, it should be noted that they do not follow
typical physical conservation laws, and so their outputs may not be realistic. E orts to correct this have
focused on simulating scenes of objects by predicting movement and detecting collisions (see Grzeszczuk et al.
(2000) and Chang et al. (2016)).

In addition to the PWA representability of neural networks and their ability to model dynamics, this thesis was
also inspired by the eld of explicit nonlinear MPC. In particular, the algorithms presented in Grancharova
and Johansen (2012) outline how approximate solutions to the explicit MPC problem can be obtained for
arbitrary nonlinear systems. The approach is to locally approximate the mp-NLP problem using mp-QPs over
convex polyhedra. This is very related to the approximation of nonlinear functions using PWA functions,
which is again related to neural networks. Grancharova and Johansen (2012) also dedicate a chapter to
applying MPC to the previously mentioned NARXnets. Another work involving neural networks and MPC

is Chen et al. (2018), where the explicit MPC control law is approximated by a PWA representable neural
network using reinforcement learning. These links are discussed further in section 6.2.
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2.2 | Notation

In general, the following conventions will be used.

Scalar values , such as an element of some matrix, are written in lower case, with no special formatting.
Examples: a; b;c:::.

Vectors and matrices are denoted with bold symbols. Matrices are capitalised W, Z, N ), while
vectors are not X, y, z).

A vector v is always given as acolumn vector , so that v' is unambiguously arow vector .

Discrete sets are written with calligraphic font, i.e. R, W, P, N. When constructing a set of objects
that are denoted with some letter, the set will be written as the calligraphic version of the same letter.
For example, P = fPjg.

Regions of some space are written as unformatted upper case letters, i.e.D R". To di erentiate
these objects further, upper-case Greek letters such as are used when appropriate.

Assignment (in the context of algorithms ) is written using a left arrow, i.e. s 5.

Concatenation of 2 discrete sets is written as A k B. This was chosen instead of the typical
Z = fA;B;Cg (as done in MATLAB), because the latter could imply that Z is a nested set of sets,
rather than a attened, concatenated set.

2.3 | Theory

2.3.1 | Dynamical Systems and Control

This section gives an overview of the terminology used when modeling dynamical systems and designing
controllers. A more in-depth source on nonlinear systems is Khalil (2002).

State Equation

The state of a system represented as a vectox. To express how this state evolves with time, astate
equation is used, which is an Ordinary Di erential Equation (ODE) in terms of Xx:

x = f(tx;u) (2.3)

Heret is the time, x the state, and u is an input vector that can be used to control the system. The properties
of f may be used to de ne acontrol law , or controller , u = u(x) that generates an input value in response
to measurements.

If the controller is chosen well, the statex will converge to a desirable value. The choice of controller will
often depend on what type of systemf is. If the system is linear, it has the form:

x(t) = A(Ox(t) + B (tu(t) (2.4)

This is a linear time-varying system (LTV ). If the parameter time dependence is removed, then the
system islinear time-invariant (LTI):

x(t) = Ax (t)+ Bu (1) (2.5)
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LTls are a well studied class of systems, and there are many e ective control design strategies for them.
Given a state equation and a control law, we can plug in foru to obtain the closed loop dynamics

x = f(tx;ux))= f(tx) (2.6)

This is an example of anunforced system . while (2.3) is aforced system. Removing the time dependence
yields an autonomous system
x = f(x) 2.7)

The properties of the closed loop system (2.6) can now be analysed to understand how the system will behave
when the controller is connected to it. The concept ofstability is especially important.

Stability

Any x such that x = 0 is called anequilibrium point . Assume now thatx = 0 is an equilibrium point
(the coordinates can always be shifted so that this is true). The equilibrium point can be stable, to varying
degrees:

Unstable : if not stable

Stable : if 8 Othereisa 0 such that jjx(0)jj =) j x@®)j 8t
Asymptotically stable (AS) . if stable and jjx(0)jj =) limyy x(t)=0
Globally asymptotically stable (GAS) cif x(t)! Oast!l for any x(0).

Instability implies that the state will diverge. In a real-life system this can cause unexpected behaviour and
damage to the system/environment, and must be avoided.Stability by itself implies that given an initial
state, there is a region that the state will never leave. For example, the Earths orbit around the Sun is for
all intents and purposes stable.AS is a more desirable property, as it guarantees that the state converges to
some value, as long as the initial state lies within some stable region. This is called thegion of attraction
Finally, GAS implies that the region of attraction is in nitely large, containing all possible initial states.

Stability can sometimes be proven by studying the properties of the closed loop equation. In the case of the
LTI x = Ax, it is sucient that the eigenvalues of A are strictly negative in order for the system to be
GAS. This is not the case for nonlinear systems. As a simpli cation, a common approximation is tdinearise
nonlinear systems at their equilibrium points, such that they can be locally expressed as the linear system
X = Ax . If the linearised system is AS atx = 0, then it can be concluded that the nonlinear system is also
AS within some region aroundx = 0. An estimate of the size of this region is then necessary.

Lyapunov Method

A simple and elegant method for verifying the stability of a system is theLyapunov method . The premise
is that the energy of a stable physical system will tend to zero as time progresses. The Lyapunov method uses
some strictly positive scalar functionV (x) in place of actual energy content, called theLyapunov function

The method states that the system is stable if there exists a Lyapunov function such that:
V(0)=0
V(x)>0; 8x 60
v(x)= &f(x) 0
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If \L(x) < Oinstead, then the system is AS.

A common choice for the Lyapunov function isV (x) = x TP x, whereP is a real symmetric matrix. For the
linear systemx = Ax , then:
VL(x)= x"(ATP + PA)x (2.8)

If a matrix P can be found so thatATP + P A is negative de nite, then according to the Lyapunov method
the equilibrium point is AS. While this is not interesting for a linear system (recall that x = Ax is GAS
if the eigenvalues ofA are strictly negative), this argument can also be applied to nonlinear systems that
can be approximated as a stable linear system arounad = 0. The matrix P can then be used to estimate a
region of attraction. A more rigorous treatment of the Lyapunov method can be found in Khalil (2002).

2.3.2 j Optimisation

This section explains what an optimisation problem is, and introduces the most important problem classes.
For more detailed information about optimisation and various algorithms, see Nocedal and Wright (2006).

Overview

At its most general, optimisation is about nding a point X that is optimal in terms of some metric (maximum
prot, minimum time, minimum area, etc) while satisfying a set of constraints (budget, fuel, etc). These
constraints may be equalities (denoted by E), or inequalities (denoted by I ). A general optimisation
problem can be formulated as:

rrlin f(x) (2.9)
st. ¢(x)=0; 8 2E (2.10)
G(x) 0, 8i2l (2.11)

The function (2.9) is called the objective , while (2.10) and (2.11) are theconstraints . Note that if the
maximum to some function is instead required, it can be negatedmin f (x).

Any potential solution to the problem must satisfy the constraints, i.e. it must be a feasible point . The set
of all feasible points is thefeasible set .

There may be multiple solutions to the problem, which are calledlocal solutions . A global solution is the
best solution among many, but is generally di cult to nd except in some special cases (see next section).
Various techniques can be used to get closer to the global optimum, such as simply running the optimisation
algorithm many times at di erent starting points and selecting the best results.

Convexity

An important concept in optimisation is convexity . If an optimisation problem is convex, any local solution
must be a global solution. This makes the problem signi cantly easier, and once the solution is found the
search can be stopped as there is no better solution.

A problem is convex if:
(a) The objective function f (x) is convex

(b) The feasible set is convex
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A scalar function is convex if the following is true for any x andy.

fo)+@  Hfly) fOx+@ )y) 8 2[0]] (2.12)

This can be understood as selecting any two points on the function and drawing a line between the two
points. If the function itself always lies beneaththe line, then it is convex. This gives it a natural "bowl
shape", where there is a global minimum. Incidentally, if the opposite is true (the function value always lies
above the line), then the function f is concave, and f is convex.

A convex set has a similar property: if a line is drawn between any two points inside the set, then every point
on the line must also lie within the set. This means that the set has no extremities. For the feasible set to
be convex, the equalities (2.10) must bdinear and the inequalities (2.11) must be concave.

Linear Programming (LP)

If the objective (2.9) and the constraints are linear functions, then the problem is alinear program (LP).
These are extremely common, and are the most relevant for this thesis. The general formulation of an LP is:

min c'x (2.13)
st. Ax = b (2.14)
X 0 (2.15)

Note that the equalities are expressed as a matrix equation, while the inequalities have been replaced by
x 0. In fact, any LP with linear constraints can be converted to this form.

All LPs are convex, as all the functions are linear. The objective function is a hyperplane, while the feasible
set is a convex polyhedron (see section 2.3.4). The solution will be "pressed against" a subset of the inequality
constraints, such some of the elements of are zerd. These constraints are calledactive . Note that equality
constraints are always active.

This is the basis of the successfudimplex method , which makes a guess of which constraints are active, and
then keeps switching them out until it reaches an optimum point. This can be seen as the algorithm hopping
from vertex to vertex on the surface of the polyhedral feasible set. For these reasons, the simplex method
belongs to a family of active-set nethods. The simplex method and its revisions are very e ective for small
to medium sized LPs, while the largest LPs are usually solved with interior point methods, which instead
move towards the optimum through the bulk of the feasible set before moving along the surface towards the
solution.

Quadratic Programming (QP)

Another important type of optimisation problem is the quadratic programming problem:

min %XTGXT +cTx (2.16)

X

st. a'x=b; 8i2E (2.17)
alx by 82l (2.18)

Limagine rolling a ball down a uniform slope, until it hits the straight lines of the inequality constraints. The ball will nestle
into one of the corners, or lie perfectly balanced on one of the edges.
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Here G is a symmetric matrix. If G is a positive semide nite matrix, then the problem is convex, and the
problem is similar in complexity to an LP. QPs are often used when the square of certain variables needs to
be minimised, which could correspond to the square error of some signal. For this reason, QPs are suitable
for expressing some cost that needs to be minimised, i.e. in dynamic optimisation (see section 2.3.3).

Nonlinear Programming (NLP)

If an optimisation problem has a nonlinear objective function or some nonlinear constraints, then it is known
as anonlinear program . The problem can still be convex, as long as the objective is convex, the equality
constraints linear, and the inequality constraints concave (see section 2.3.2). In general however, NLPs tend
to be non-convex, and have the most general formulation:

min f (x) (2.19)
st ¢(x)=0; 8i2E (2.20)
G(x) 0O, 8i2l (2.22)

NLP solvers often locally approximate the problem with an easier one (such as LPs or QPs) at each step.
The solutions to these subproblems can then are used as starting point for the next step, where a new local
approximation is made. Despite being an approximation, this process allows the algortihm to converge to
local optima when it is already su ciently close. When the starting point is far from an optimum, other
techniques must be used, although these are not discussed here. A very successful class of algorithms that
solve QP subproblems at every timestep is called Sequential Quadratic Programming, or SQP.

Parametric Programming

The solution to parametric optimisation problems are themselves functions.

f()=min f(x;)

st. c(x)=0; i2E (2.22)
c(x) 0;iz2l
If contains several parameters, then the problem is referred to as multiparametric problem , or mp

problem for short. The optimal solutions are typically returned as piecewise functions, and the domains that
they are valid on. This type of optimisation problem has been studied extensively in connection with Model
Predictive Control.

2.3.3 | Model Predictive Control

Model predictive control (MPC) is a popular and e ective family of control strategies that use online dy-
namic optimisation to generate control inputs. This section explains how dynamic optimisation problems
are formulated, gives a brief look at MPC, and how explicit solutions to the problem can be obtained. For a
more detailed examination of MPC, Rawlings and Mayne (2009) is an excellent resource.
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Dynamic optimisation

Given a discrete dynamic modelx; + 1 = f (x;;u;) of a system and a control objective, it is possible to
frame the problem of selecting a suitable sequence of inputs as an optimisation problem. Assuming that the
control objective is to set x = 0, then the solution to the following problem minimises the "error" or "cost"

of applying the input sequence:

X 1

rTLin EXtT+1 QX 41 + dj Xgs1 + éutTRu ¢+ d)uy (2.23)
t=0

S.t. X1 = F(X¢;uUy) (2.24)

It is also possible to place constraints on the state and input. N is called the horizon of the problem,
as it controls how far ahead the method should look. If there are inaccuracies in the model, longer term
predictions will less accurate, yielding bad results for largeN. Equation (2.23) is also known as anite
horizon optimal control problem.

It is possible to formulate an in nite horizon optimal control problem by letting N !'1 , and requiring
that the sum in (2.23) converges to zero ax ! 0. The solution can then be obtained by solving thealgebraic
Ricatti equation  (not given here), yielding the optimal control law:

u(x)= Kx (2.25)

This controller is commonly known as thelinear quadratic regulator , or LQR .

Receding Horizon Method

Solving a nite horizon optimal control problem yields a sequence of inputs that can be applied to the system.
However, in practice the model used in the optimisation problem will always di er slightly from reality, such
that the longer term predictions will become increasingly unreliable.

Any practical controller must implement some kind of feedback loop. If the solution to (2.24) can be obtained
e ciently, the problem can be solved repeatedly every timestep, and the rst input in the solution sequence
can then be applied to the system, discarding the rest. This is called theeceding horizon approach , and
forms the basis for a set of methods callednodel predictive control (MPC). The optimisation problem is
usually made more e cient by linearising the model (2.24), yielding a linear MPC  controller.

MPC has some advantages over traditional, hard-coded controllers. It is easy to set up and extend, and
0 ers an acceptable degree of performance even before tuning as it always computes an optimal control input
according to the objective function. It also easily facilitates bounds on the state and inputs, as these can be
expressed as linear constraints in the optimisation problem. The disadvantages include the computational
requirements, the need for a fairly accurate model, and a more complex stability analysis.

Explicit MPC

While normal MPC methods solve the optimisation problem online, this may be intractable for cost-e cient
microcontrollers. To get around this, the explicit solution to the dynamic optimisation problem can be
computed and stored, such that the online computation is replaced by a simple lookup. This can be expressed
as a mp-QP problem.

The explicit solution takes the form of a function that takes in any state and returns the corresponding
rst optimal input. This is challenging, because the dynamic optimisation problem must be solved for the
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entire state space. However, it has been proven that a linear MPC controller can be expressed as a PWA
function de ned on polyhedral subregions (Bemporad et al. (2002)). This allows the optimal input to be
found by searching through the polyhedra to nd the one that contains the current state and computing the
corresponding a ne control law.

2.3.4 | Computational Geometry

This section gives a brief overview over the mathematical objects used in this work, how to represent them,
and some of their properties. Fukuda et al. (2004) is an approachable resource on computational geometry
and working with polyhedra.

Hyperplanes and Half-Spaces

A hyperplane is the n-dimensional generalisation of lines and planes. The set of all points lying on a
hyperplane can be described using a single (underdetermined) linear equation of the form:

wix=b (2.26)

For example, a line inR? would be w;x; + WoX» = b, while a plane in R® becomesw; X1 + WoXs + WaXs = B,
In order to express a line inR3, another equation is needed, which corresponds to adding a row ta " in
(2.26)

The coe cients of (2.26) can be understood geometrically. The vectorw is normal to the surface of the
hyperplane, which determines the orientation. The equation can now be transformed slightly without a ecting
the hyperplane:

. _ b

nwi2 Wiz

(2.27)

The term on the right hand side, ”W% now describes the shortest (signed) distance from the origin to the
hyperplane. This shows that if b = 0, the hyperplane must pass through the origin. Ifb > 0, then the
normal W will be pointing away from the origin, and vice versa. This can be visualised by rst settingb=0,
allowing the hyperplane to pass through the origin. Then, the hyperplane is pushed a distanc% (going

backwards if b < 0 in the direction of its normal).

Note that this gives a certain directionality to a hyperplane. If the signs of (2.26) are ipped ( w'x = b),
then the hyperplane will remain in place, but its normal will now point in the opposite direction. This has
signi cance when hyperplanes are used innequalities:

xjw'x b (2.28)

The regions of space de ned by (2.28) is called #alf-space , as the hyperplane essentially cutsR? in two,
leaving half the space.

2Note that if wg is set to zero in the latter equation, it would be the same to the former equation. However, the result would
still be a plane in R3! This is because (2.26) is actually a system of equations (of 1 equation), to which the hyperplane is the
solution space. X3 is a free variable with no weight, so the solution space can have arbitrary  x3.
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Arrangements of Hyperplanes

When several hyperplanes irR? are plotted together in an arrangement, they may intersect in all manner of
ways, cordon o regions of space, and form overall interesting shapes.

Consider a collection of lines inR2. The enclosed regions between the lines will all be irregular polygons,
while the unenclosed regions will stretch o to in nity. An important property of the regions is that none of
the angles will be oblique (greater than180 ), also known asconvexity . This will always be the case for a
polygon de ned using in nitely long lines, as trying to increase one of the angles by rotating one of the lines
will just cut o more of the polygon.

Higher dimensional hyperplane arrangements are far more complex than line arrangements, as the hyperplanes
can intersect in far more ways. For example, given three non parallel planes iR 2, each pair of planes will
intersect along a line. The three lines will then intersect at a single point, called avertex . This is in contrast

to R?, as all hyperplanes are just lines, and they can only intersect at points. This trend continues in
even higher dimensions, where 5-dimensional hyperplanes will intersect in 4-dimensional hyperplanes, which
intersect as 3-dimensional hyperplanes, and so on.

Convex Polyhedra

Convex polyhedra can be de ned in terms of hyperplanes arrangements: a convex region of space bounded
by hyperplanes. They may also be understood as the feasible set of a set of linear inequalities. These linear
inequalities are called theH-representation  of the polyhedron’.

XjAX b (2.29)

Here, each rowA] of A and each elementh of b correspond to the half-spaceA[x b. Together, they
describe a region of space. Note that the region may be empty!

The A matrix and b vector may be combined into a single matrixH = A b . The advantage of this
compacti ed H-representation is that every polyhedron can now be represented with a single matrix, where
the number of columns is one more than the spatial dimension, and the number of rows corresponds to the
number of constraints. The H matrix and the H-representation can therefore be considered synonymous,
which the rest of this work will re ect.

Equality Constraints

Lower dimensional polyhedra, such as a at square inR3, may also be represented by adding equality
constraints. This may be represented as an additional matrix, where each row corresponds to an equality.
This matrix will be called the He matrix . However, any equality constraint can be expressed as the
intersection of 2 inequality constraints. For example, the linear constraintWx = b may be expressed as:

Wx b\ Wx b (2.30)

Therefore, any set operation that can work with inequality constraints can easily be extended to equalities as
well. Note that the equalities and inequalities are still usually kept separate, as many solvers for optimisation
problems can use the equality constraints to simplify the optimisation problem.

3They can also intersect along a whole line, if two lines are exactly the same. This degenerate case is neglected.
4There is an equivalent representation called the V-representation, which consists of a set of vertices and rays. It is expensive
to convert between the two, so it is normal to choose one. This thesis uses the H-representation only.
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Basic Set operations

Only convex polyhedra are H-representable. However, arbitrary shapes can be described by using collections
of convex polyhedra. This comes with some challenges, such as how it can be ensured that all of the
polyhedra in the collection remain disjoint, how to perform operations on the whole collection, etc. A list
of the operations that are used in this work are given below. More detailed descriptions of each of these
operations may be found in appendix A. An even more detailed summary of how to work with collections of
convex polyhedra is given in Baotic (2009).

Checking if a polyhedron is empty
Intersection of 2 convex polyhedra
Union of 2 convex polyhedra
Set di erence of 2 polyhedra P=Q)
Complement of a polyhedron
Chebyshev centre of a polyhedron

Removing redundant hyperplanes from the H-representation

2.3.5 | Piecewise A ne (PWA) Systems

Piecewise a ne systems are a useful and exible modeling tool. This section describes their description, and
some basic methods. For more detailed examples of PWA systems and their stability properties, see Lazar
(2006).

Formulation

This thesis mainly considers discrete time PWA functions, which may be de ned as:

Xte1 = AiXe + i X2 (2.32)

where z; is the state at time t, ; is some polyhedral region of the state space that has a corresponding
transition matrix A; and o set vector f;. The behaviour of the system changes depending on which region

i the state is in. Despite being everywhere linear/a ne, PWA functions can approximate any nonlinear
system arbitrarily well, at the expense of adding more regions. These system are also sometimes called
switched systems , which refers to the switching of the model dynamics as the state crosses from one region
to another.

As in section 2.3.1, the coordinates are assumed to be shifted so that = 0 is an equilibrium point. This
implies that for any region ; that contains the origin, f; = 0.

If the system has input, then the state can be augmented such thaz = x u T This yields:

Xt
Ut

T

Xt+1 = A Bj +fi X¢ ur o 2 (2.32)

Note that the region ; now describes a region of space in the augmentestate-input space. This is often
simpli ed so that the regions only vary with the state, reducing the complexity of the system.

Xee1 = AiXe + Biug + i X 2 (2.33)
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Stability and Positive Invariant Sets

Given a dynamical systemx = f (x), a set is called positive invariant  if:
x(02 =) x()2 8>0

In other words, if the system has its initial state within a positive invariant set, it will never leave that
sef’. The positive invariant set can therefore be seen as a region of stability (not asymptotic stability) for
the systemx = f(x). For piecewise systems, the positive invariant set becomes a set of regions that the
system will never leave. Themaximal positive invariant set is the largest possible set that is still positive
invariant. Procedures for checking positive invariantness and nding the maximal invariant set are given in
appendix B.

Lyapunov method for PWA systems

The Lyapunov method (see section 2.3.1) can be applied to PWA systems. If the invariant set contains an
equilibrium point, the point is AS if there is a valid Lyapunov candidate for the system over the positive
invariant set. If there is no single Lyapunov candidate for all regions of the system, it may also be de ned as
a piecewise function. For continuous time systems, the Lyapunov function must still be continuous. However,
this does not need to be the case when working with discrete time PWA systems! In this case, the Lyapunov
function is instead required to decrease whenever the system transitions between regions. In order to verify
this, all possible transitions between regions must be identi ed.

Transition maps and reachable sets

This discussion is limited to autonomous discrete time PWA systems. Given the dynamicg4+; = AjX¢ + f;
and a region j, all possible x;+; can be computed as the ane map of ;. This is called the forward
reachable set , and can also be expressed as:

Xter = AiXe+ Fijxe 2 (2.34)

where A; and f; are the system matrix and o set vector corresponding to region ;. The backward
reachable set can also be found, as the inverse a ne map of ;. It can be understood as the set of all states
that could have reached ;.

Xt ] Xter = AiXe+ fiiXen 2 (2.35)

However, computing the backwards reachable set is more complicated when working with a PWA function,
as the state may have started in a di erent region ;, where the dynamics(A;;f;) are di erent.

To simplify calculations, the transition map is de ned. The map consists of a square adjacency matrix’
that contains all possible transitions from a source regions ; to another region ;j, and a collection of the
subregionsR where the transitions occur. The elements of the matrixT can be expressed as:

nlifgij X2 i =) Aix+f;2 j

Ti = 0 otherwise

(2.36)
The elements ofR are then the subregions j . Note that a region may transition to itself! A procedure for

computing the transition map is given in the appendix B. More details may be found in the documentation
of the MPT toolbox for MATLAB (Herceg et al. (2013)).

SNote that this is di erent from the concept of a  region of attraction , as the latter implies that the state will converge to an
equilibrium point.
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2.3.6 | Neural Networks

Formulation

A neural network is an idealised computational model inspired by the behaviour of neurons in the brain. A
basic neural network is composed of many nodes arranged in a series of layers. Typically the layers are fully
connected, such that there is a weighted edge between every node in a layer and the next layer, as can be
seen in gure 2.1. The intermediate layers are callechidden layers .

Figure 2.1: Example of a neural network with 2 input nodes, 2 output nodes, and 2 hidden layers with 5 nodes each.
The diagram is coloured such that the orange nodes have an activation function, while the grey nodes do not. This
colour scheme will be followed throughout the thesis.

The signals pass through the network from left to right, passing along the weighted edge to the next node.
All of the inputs entering a node are then added. Nodes will also have &ias term that is added to their
input. This is sometimes indicated in gures as an additional edge coming down from above, though this has
not been shown here for clarity.

The connections between layers is equivalent to a matrix multiplication, while the bias terms are just an
addition. This implies that each layer performs an a ne transformation of the form W () + b on the output
of the previous layer. Fortunately, the result of two a ne transformations a single a ne transformation:

Wn( (W2a(Wix + b1) + b))+ by

(2.37)
=W, W,LoW X +(h«,+ + W, WzW]_b_]_)
Crucially, some of the layers may have anactivation function (drawn in orange in the gures). This
prevents the network from simplifying, and is what gives neural networks their representational power. The
activation function for layer i is written as ;. The network can now be written:

n (Wn()+ bn) 2 (Wa()+ b)) 1 (Wi()+ b1) (x) (2.38)

To compact the notation further, the weights and bias of each layer are placed into a homogeneous transfor-
mation matrix:
Wk bk

Pe= "o 1

(2.39)
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This is called this the parameter matrix  of layer k. This will make later operations much easier to
express. Relaxing the notation a little, the composition operator is applied to matrix multiplication such
that: (P, P1)x = P,P1x. The network can now be expressed as a series of alternating matrix multiplications
and activation function applications.

x

n Phn 2 P2 1 Pa1 (2-40)

Note that a 1 has been concatenated to the state vector. This notation is similar to the way that neural
networks are typically implemented; as long strings of operations, also known as computational graphs. The
advantage of this is highlighted by (2.40); neural networks are very susceptible to thehain rule. This allows
them to be easily di erentiated in terms of their parameters, which makes them easy to optimise and t to
a dataset.

Training Neural Networks

The training of a neural network is an iterative process where the network is presented with a data point,
graded according to somdoss function , and then updated based on the di erence between its prediction
and the expected value from the dataset. This is known asupervised learning , as it relies on the dataset
having an output for every piece of data that it contains, although supervised learning encompasses more
than just neural networks.

A common loss function is simply the squared error between the networks predictiog* and the actual output
y.

L(y;9) =iy  9ii3 (2.41)

Then, the parameters of the network can be changed through the use of an update law, also known as an
optimiser . The simplest is gradient descent.

@L
@P

Here is the learning rate , and it determines how large the update should be. is usually set quite

low, typically around 0:001 Other popular optimisers include Stochastic Gradient Descent with Momentum

(SGDM), RMSProp, and ADAM. These add adaptive learning rates and momentum terms to the base

gradient descent algorithm for improved convergence. ADAM is considered by many to be the most e ective
optimiser.

P, (2.42)

In order for the network to reach an acceptable level of performance, it must typically pass over the entire
dataset multiple times. Each pass over the dataset is called aepoch.

Activation Functions

Any nonlinear function can in theory be used as an activation function, and there are a wide variety. One
choice istanh x, as it maps all x into the range [ 1;1], making it very well behaved.

In this thesis, only the Rectifying Linear Unit, or ReLU , is considered. This is not necessarily a limitation,
as RelLU is one of the most commonly used activation functions.

relu(x) = max(0; x) (2.43)
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Its behaviour is simply to clip any negative inputs to zero. It is e cient to implement, and it mitigates the
vanishing gradient and exploding gradient  problems® that a ect larger networks.

Using RelLU can cause problems as well. During training, the parameters of a node might be adjusted in
such a way that its output will always be negative, so that ReLU will then clip it to zero. This means that its
parameters will never be updated, and it will remain "dead". This is known as thedead neuron problem.
Leaky RelLU is a similar activation function that avoids dead neurons.

leaky(x) = max( x;X ) (2.44)

where << 1. This gives the function a small gradient for negative x, allowing the error signal to pass
through during backpropagation.

6The deeper a network is, the further the backpropagation process has to propagate the error. As mentioned, this is done
using the chain rule. The gradient of the activation function in each layer thus works as a multiplier: if it is below unity the
error signal will vanish, and vice versa. This makes it di cult to train the earlier layers of a network. ReLU’s gradient is 1 if
x> 0, and O otherwise.



3 | Method and approach

Referring back to the guiding questions outlined at the start of section 2, there are two main issues that need
to be addressed:

(a) A practical, reasonably e cient algorithm is needed to perform the conversion from neural network to
PWA function.

(b) Itis unclear whether the resulting PWA functions will be practical for analysis. This should be inves-
tigated further.

The MPT toolbox for MATLAB (see Herceg et al. (2013)) provided the necessary computational geometry
features for the algorithm in (a). An overview of the set operations that it provides are given in section 2.3.4.
The software also supports PWA dynamical systems, MPC control, explicit MPC, and searching for Lyapunov
functions, which was heavily utilised for the case studies. The MPT toolbox itself depends on the YALMIP
toolbox (L fberg (2004)), which acts as a layer between MATLAB users and a variety of optimisation solvers.

The PWA conversion algorithm was implemented entirely in MATLAB. Because of this, the algorithm was
written to parse neural networks that have been de ned using the Deep Learning Toolbox from Mathworks.
This is seen as a compromise, as the most popular deep learning frameworks are written in Python. Since
September 2017 it has been possible to transfer neural network model across platforms by using the Open
Neural Network Exchange (ONNX) standard 1. However, there still remain some challenges and bugs (see the
discussion in 6.1. Therefore, in order to simplify matters as much as possible, everything was implemented
in MATLAB and converting ONNX models was left as future work.

Once the algorithm was complete, some preliminary investigations into its practical use had to be undertaken.
The case studies were designed with variety in mind, and were created by considering a broad overview of
possible combinations of models and controllers (see table 3.1). Research on control synthesis for PWA sys-
tems has been predominantly focused on MPC and energy-based methods. Controllers are also sometimes
learnt, as in reinforcement learning or behavioural cloning. For brevity, only MPC and data-driven (which
are assumed PWA-representable) methods are considered.

The following cases (in order of complexity) were investigated:

Case |: As a proof of concept, a LTI system with a neural network controller was converted to its PWA
form and analysed using the Lyapunov method.

Case Il : This case study applies the same procedure as Case | to a more complex system, with the aim
of seeing how the methods handle increased complexity. The system was selected to be a pendulum, as
it exhibits simple nonlinear behaviour. Importantly, it has 2 states, making it possible to visualise the
dynamics. A neural network was used to learn the dynamics of an unforced damped pendulum through

a process of random sampling. The network is then converted to a PWA system, and the stability of
the system is investigated using the Lyapunov method.

Case Il : It is of interest to see how MPC techniques can be applied as-is to neural network models.
This would reduce the di culty of designing controllers for neural network models, and give the closed
loop system desirable stability properties. Extending case Il, a network is used to learn the dynamics

1Read more about ONNX here: https:/github.com/onnx/onnx
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of a forced pendulum. The system is then connected to an MPC controller, with the aim of inverting
the pendulum.

Case IV : This case considers the possiblity of using neural network models and controllers in a closed-
loop, and investigates how this a ects the PWA representation of the closed-loop. Neural network
controllers as a result of reinforcement learning or genetic optimisation are already used in some ap-
plications. The system under consideration is a ctional nonlinear spring. A neural network is then
trained on data describing the force characteristic of the spring.

controller
none MPC Data-Driven
model LTI - - Case |
NL Case |I* | Case llI* Case IV*
Data-driven | Case Il | Case Il Case IV

Table 3.1: Overview of possible combinations of models and controllers, and
where this is investigated. *These cases are investigated approximately, as non-
linear systems can be approximated arbitrarily well by PWA systems and can be
lumped with data driven models.



4 | Algorithm: PWA Conversion

Before a formal introduction of the algorithm, a step-by-step, example driven overview of the process of
converting a simple network to its PWA is presented. This is done in order to build an intuitive understanding
of the inner working of the network as well as its transformation to its PWA representation. Although the
discussion is limited to networks that use the popular ReLU activation function, the developed methods can
be extended to networks with any piecewise linear/a ne activation functions, i.e. Leaky ReL U or maxout (see
Pascanu et al. (2013)). After the examples, the main algorithm is presented along with some optimisations.
The chapter concludes with a quantitative evaluation of the computational runtime associated with the
algorithm and its subroutines.

4.1 | Derivation of the algorithm via examples

4.1.1 | Example 1: Simple network

Figure 4.1: Simple network with 2 inputs and 1 hidden layer with 3 nodes. Each node de nes a hyperplane that
bisects the input space (in this case ?). The activation pattern corresponding to each of the 7 regions is shown as a
colour code.

First consider a neural network with 2 inputs and 1 hidden layer with 3 nodes and RelLU activation (see
gure 4.1). The output layer is neglected for now, because it will not a ect the linear regions of the network
(see next example). The compact neural network notation from the preliminaries (see section 2.3.6) can be
used to express the network as:

o=
NN

f(x)= (Px)= (4.1)

= X
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where P is the parameter matrix that describes the connection weights between the input and the hidden
layer. The activation function is ReLU, which is a vector function that operates on each element of a
column vector, clipping negative values at zero: (x) = max(0 ;x). Equation (4.1) can then be written as:

2
! max(0;w{ x + by))
X _ Bmax(O;w]x + bz))é
1 7 4max(0;w]x + b))
1

F(x) = V(\)’ bl 4.2)

The vector w represents thei™™ row of W . Each row corresponds to the output of a node. Each row/node
has two modes: one where the output is clipped to zero (because” x + b 0), and one where the output
iswTx + b. The boundary between these two modes is given bw ' x + b = 0, which de nes a hyperplane.
Each node thus bisects the input space, only outputting a positive, nonzero value if the point x is on the
positive side of the corresponding hyperplane. To visualise this directionality, hyperplanes will be drawn with
a shaded side, as can be seen in gure 4.2.

Figure 4.2: Each node with ReLU activation has two modes: one where it is active and one
where it is inactive. Hyperplanes are drawn with a shaded side representing the inactive side.

The arrangement of these hyperplanes de nes a set of polyhedral regions in the input space, each correspond-
ing to a di erent set of active nodes. This is referred to as theactivation pattern . Applying the ReLU
function results in the negative elements of the output being clipped to zero. The e ect of the ReLU nonlin-
earity is therefore better described as adeactivation function, although this term will not be used to avoid
confusion. From (4.1) it can be seen that thedeactivation of a node is equivalent to setting the corresponding
row in the P matrix to zero. The function in each region is therefore described by its own copy of the?
matrix, but with inactive rows being set to zero. This is shown explicitly for the simple network in table 4.1.

As there are no further layers, this is the complete PWA representation of the simple network in gure 4.1.
Note that the activation function () has been completely removed from the expression.

4.1.2 | Example 2: Adding an output layer

Figure 4.3: Adding another layer with no activation will not e ect the linear
regions at all. However, it will modify the P matrix of each region de ned by the
previous layers.
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Region | Corresponding Function
2 3
w! by
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Table 4.1: The complete PWA representation for the network with
1 layer with 3 nodes. Each region computes its own transformation,
with some of the rows zeroed out.



CHAPTER 4. ALGORITHM: PWA CONVERSION 22

Adding an output layer with no activation is straightforward. The resulting network is shown in gure 4.3.
The second layer has no activation, and computes the function:

Wo by X _ WoW; Wwob+h x

o 1717 o 1 1 (4.3)

f(X)= Pox =

where P; represents the transformation matrix corresponding to regioni, as shown in table 4.1. The e ect of
adding another layer with no activation can be seen as just a multiplication between the parameter matrix of
the new layer and the parameter matrices of each region. This suggests that adding layers with no activations
will not a ect the linear regions. Adding a layer with any number of nodes will have the same form:

Wo h) X _ WoWi Woh"'bo X

o 1P~ 0 1 1 (4.4)

f(X)= Pox =

4.1.3 | Example 3: Adding ReLU activation

Figure 4.4:  Simple network with 2 hidden layers. Note how the last node bisects
each of its active regions in a di erent way, yet remains continuous across regions,
such that it appears to bend at the boundaries of the previous layer.

An activation is now added to the last node of the network in gure 4.3. The ReLU function deactivates the
node in certain regions, switching it on and o . As before, there is a boundary that describes this switching
behaviour. However, this time the input space consists of multiple regions de ned by the previous layers.
Importantly, the parameter matrix P; for each region is di erent, implying that the boundary introduced by
the last node will be di erent for each region. The result will be similar to what is depicted in gure 4.4.

The new boundary will be continuous across boundaries (otherwise the PWA function as a whole would be
discontinuous!), but it will "bend" as it crosses them. This pattern continues as more layers are added, as
new boundaries will bend when intersecting the boundaries of all previous layers. An example is given in
gure 4.5,
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Figure 4.5: The hyperplane de ned by a node will "bend" at all boundaries of
the previous boundaries. The gure shows this e ect by adding more layers.

Applying the nonlinearity is relatively simple. Every region found so far is associated with its own uniqueP
matrix, which de nes the output of each node in that region. The procedure from the rst example can then
be applied separately to each region, yielding the new set of regions. The subregions inherit their parens
matrix, with the inactive rows zeroed out.

With this in place, the process of converting the network to its PWA form can be generalised to any number
of layers. The missing piece is then the method to nd the regions de ned by each layer.

4.1.4 | Example 4: Finding the regions

The boundaries de ned by a layer of nodes can be viewed as a hyperplane arrangement (see section 2.3.4).
The regions of the arrangement can be expressed as the set di eren&'nH , where H is the union of all the
hyperplanes. However, the MPT toolbox does not yield the correct partition when performing this operation.

It was found that this is because it does not support the representation of open sets.

One solution is to approximate the hyperplanes using thin, full-dimensional regions. Such a region can be
constructed as the space between the hyperplane and a very slightly shifted copy. If the hyperplane has the
form Wx = b, then the thin region can be expressed as:

fxjWx  bg\f xj Wx b+ g 0< << 1 (4.5)

It was found that =10 7 worked well. Values lower than =10 2 fell below the tolerance level used by
the MPT toolbox, and were ignored.

While this approach is simple, it resulted in numerical errors later due to the gaps it introduces between
regions. A more exact partitioning algorithm was needed.

As explained in section 2.3.4, nding the intersection of two convex polyhedra in the H-representation is
cheap, as it only involves the concatenation of their constraints. Thus, given a polyhedroi® and a hyperplane
W x = b that bisects P, it is simple to nd the 2 subregions.

T=P\f xjWx bg
P\f xj WXx b

(4.6)

The question is thus reduced to whether or not the hyperplane intersects the polyhedron. Fortunately, this
can also be obtained cheaply. ReplacingVx = b with 2 equivalent inequalities (see section 2.3.4), the
H-representation of the intersection is obtained by concatenating all of the constraints. If there is no feasible
point, then there is no intersection, which can be veri ed using a feasibility LP (see appendix A).

The regions of a hyperplane arrangement can therefore be found in an iterative fashion, as shown in gure 4.6.
For every hyperplane, iterate through the previously found regions and check for intersections. If there is an
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Figure 4.6: Example of how the regions of a hyperplane
arrangement can be found iteratively. While simple, the
drawback is that the number of bisections performed will
increase drastically with the number of hyperplanes.

intersection, nd the two subregions, and insert them into the list of regions, removing the old region. This
algorithm forms the core of how the ReLU nonlinearity is applied in the full algorithm. A formal write-up
can be seen in gure 2.

Using this procedure, the number of observed regions was measured for a variety of di erent input dimensions
and arrangements. The results can be seen in 4.7. The runtimes of the algorithm is omitted here, as this is
investigated more fully in section 4.4.

4.2 | Algorithm

As seen in section 4.1, a neural network can be converted to its PWA representation in an iterative fashion,
starting at the input layer. Each subsequent layer is then parsed, building up a collection of known linear
regions. The algorithm can be summarised as:

1.
2.
3.

5.

Get the next layer
Multiply the P matrices of all currently known regions with the P matrix of the layer

If the layer has an activation (ReLU), iterate over all known regions and partition them using the
procedure from Example 1.

The P matrices of all new regions are updated by nding interior points and checking which rows of
P are inactive. The inactive rows are set to zero.

If there are more layers, go to point 1. Otherwise, return the set of known regions.

The set of currently known regions and their correspondingP® matrices is called theworking set W. Every
element in W will be a tuple of the form (D; P ), whereD is the domain andP is the parameter matrix that
de nes the a ne transformation computed within that region.
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Figure 4.7: Measured average number of regions vs the theorectical maximum according to
Zavslavsky’'s Theorem (see (2.2)). The average number of regions diverges from the maximum
signi cantly as the number of hyperplanes increases. Increasing the dimension also appears to
increase this gap.

The neural network N is also represented as a list of tuples of the fornfP N; ), which represent the layers.
PN is the transformation performed by the connection weights, and is the activation function (if any).
is always assumed to be the RelLU function.

Collections (discrete sets) of parameter matricesP; and regionsD; are labeledP and D respectively. To
make the full algorithm more readable, it has been split into three operations.

(i) layer_compose() : When encountering a new layer, this operation applies the corresponding a ne
transformation to all regions in the working set W.

(i) repartiion() : Apply the nonlinearity by computing the boundaries w'x = b and solving the
hyperplane arrangement problem, as described in 4.1.4.

(iif) calculate_P() : Once the new regions have been found, the new parameter matrix for each of them is
calculated by zeroing out the inactive rows of the previous parameter matrix.

An overview of the algorithm is shown in Algorithm 1. The operations are given in Algorithm 2. The notation
follows the conventions described in the preliminaries (section 2.2).

The main loop iterates over the layers of the network, performing all three operations exactly once for each of
the regions currently in the working set (if the layer has an activation, typically true for all layers, excepting
the last). As the size of the working set will increase after processing each layer, it is clear that the worst case
performance of the algorithm will depend greatly on the total depth of the network. However, it is not clear
how much the working set will increase. For example, some regions in the working set may be intersected
multiple times by the node boundaries in the next layer, while others will not be intersected at all. The
runtimes are investigated further in 4.4.

1. layer_compose() : Thanks to the compact notation from 2.3.6, this operation involves one matrix
multiplication per region in the working set W. The cost will increase linearly with the size of the work-
ing set, but it will be far lower than the other operations. For example, performing 10000 multiplications
with [100 100]matrices takes around 0.5 seconds on a laptop.

2. calculate_P() is also linear wrt to the regions in W, and performs one matrix multiplication. How-
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Algorithm 1:  Overview of the PWA conversion algorithm.
Resul: W = (D1;P1);:::;(Dn;Pn)
begin de nitions
N = (PN; 1);u5(PN; ) = layers of neural network
d = input dimension

end
fn main(N) is
W (R%1g4)
foreach (PN; ) 2N do
w layer_compose(W, PN)
if then
Whew
for (Dj; Pj) 2W do
Dnew repartition(  Dj, Pj)
Phew calculate_P( Dpew, Pi)
Whew W new K Zip( Dpew, Prew)
end
W W hew
end
end

ever, it must obtain an interior point of each region. The interior point for a polyhedron with an
H-representation is calculated by solving an LP to nd the Chebyshev centre of the region (see 2.3.4).
This can be solved e ciently. As an example, for 1000 non-empty 12-dimensional regions with 50 con-
straints each and a random parameter matrix with 500 rows, this operation takes around 0.01 seconds
on a laptop.

3. repartition()  solves the hyperplane arrangement problem for some initial region by iteratively bi-
secting it into subregions with a hyperplane. The main source of complexity is that it must check
for intersections with all of the subregions that it has identi ed so far, the number of which quickly
explodes, as shown in equation (2.2). Section 4.4 investigates the runtime aEpartition() in some
detail.

4.3 | Optimisations

In order to improve the performance of the algorithm, two optimisations were made. The rst optimisation
improved repartition() by reducing the number of intersection checks. The second optimisation involved
parallelising the algorithm, which was extremely e ective.

(i) Reducing intersections check by repartition() : The original algorithm described in 4.1.4 con-
siders each hyperplane alone, checking if it intersects all currently known regions. When it nds an
intersection, it divides the region and replaces it with the subregions. The optimised code instead
organises the regions in a tree structure, and storing the subregions as children of a parent region. If a
hyperplane does not intersect a parent region, then it will not intersect any of the subregions. In this
way, the number of intersection checks can be reduced signi cantly. The result is reconstructed at the
end by performing a depth rst search of the tree, returning the leaf nodes. The improved algorithm is
vastly more e cient for larger hyperplane arrangements. However, as will be shown in section 4.4, this
did not re ect in the runtimes of the main algorithm.

(i) Parallelisation : It was noted that the algorithm could be easily parallelised when the working set
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Algorithm 2:  Elementary operations required for the PWA conversion

fn layer_compose(W, T) is
foreach (Dj; P;) 2W do
\ P, TP
end
return W
end
fn repartiton( D, P) is
D D
foreach row (wj; b) 2 P do
B x jwix+h=0
Dactive X J WjTX h
Dinactive X J WjTX < Q
Dnew D
foreach D; 2D do
/* If the boundary intersects this region...
if D;j\ B 6 ; then
Dnew D new k Di\ Dactive k Di\ Dinactive
end
D D new
end
return D
end
fn calculate_ P( D, P) is
foreach D; 2D do
X interior_point(  Dj)
y Px
Pnew P
foreach y; 2 y do
if y; Othen
/* Set the ith row of Phew to zero
Prew[i; ] O

end
end
end
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Figure 4.8: Overview of the algorithm. The node boundaries of each layer form a hyperplane
arrangement in all of the regions of the previous layers.

contained more than one region. Each region in the working set has its own parameter matrix which

is independent from the rest of the regions. This allowsrepartition() to be run on each region
independently. The results can safely be concatenated afterwards, as there is nho chance of the subregions
overlapping. This optimisation was particularly e ective.

4.4 | Runtime

All runtimes were measured using a machine with a 6-core, 3,5 GHz processor and 16 GB of RAM. The
results forrepartition()  and its optimised version in terms of the number of hyperplanes have been presented
together in gure 4.9a. The runtimes are also presented in terms of the number of regions in gure 4.9b.
This shows that the runtime is roughly proportional to the number of regions found.

The optimisation of repartition()  focused on reducing the number of intersection checks that it performs.
These checks were counted, and the results are shown in gure 4.11. The relative improvement of the
optimisation is shown in gure 4.10.

The runtime of the main algorithm was measured with/without the optimisations and with/without paral-
lelisation. Networks up to input dimension 4 were recorded, as the number of regions quickly exploded and
the runtimes became too long.
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Figure 4.9: The runtime of repartition() increases signi cantly with the number of nodes/hyperplanes. The
optimisation yields signi cant savings for higher numbers of hyperplanes. The runtime also appears to be somewhat
linear wrt to the number of regions found, as expected.
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Figure 4.10: Relative improvement in runtime after optimisation. It appears to scale extremely well with the number
of regions, and the bene ts are more pronounced with larger input dimensions.

Figure 4.9b shows that the runtime complexity is directly proportional to the number of regions found. A
more surprising result is that the e ect of increasing the dimension (and thus the size of the required LPs)
is almost negligible in comparison. This suggests that it is the high number of calls to the LP solver, rather
than the size of the LPs, that dominates the time complexity.
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Figure 4.11: Number of intersection checks performed before and af-

ter the optimisation. As seen before, the optimisation is more e ective
for larger problems.
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(b) Runtime of main() after parallelisation on
a 6-core machine

Despite the large performance gains the optimisation of repartition

promised,

it only gives a slight performance boost in the main algorithm. This is likely due to the small

size of the subproblems that are passed down torepartition()

Parallelisation was much

more e ective, with the performance increasing by a factor almost equal to the number of

cores used.



5 | Case Study Results

5.1 | Case study I: Simple LTI system

As a proof of concept, this study aims to control some simple system using a small neural network, obtain the
PWA form of the closed loop system, and then to apply the Lyapunov method to verify stability. Consider
the following LTI:

_ 2 01 01
X= 02 3 X g2 (5.1)

An optimal control law was computed using LQR (see section 2.3.3 usin® = |, and R = 1. The resulting
linear control law was found to be:

u= Kx = 2998 2241 x (5.2)

The control law u(x) and the network output can be plotted as 3D surfaces, shown in 5.1a. The closed loop
systemisx = (A BK )x, and the eigenvalues ofA BK ) are 0:2207and 0:7622 The system is GAS
because the eigenvalues are both negative.

A small neural network was trained to imitate this control law. The network had 1 hidden layer with 5
nodes and ReLU activation. The training data was generated by randomly samplingu(x) 50000 times using
the normal distribution N (0;100). The SGDM optimiser was used with a learning rate of 0.001. After 30
epochs, the loss wa®:1565 10 8. The network was then converted to its PWA representation (see gure
5.1b). Qualitatively, the PWA representation of the network appears to be identical to u(x).

(@) Optimal LQR control law u(x) = Kx (b) PWA representation of imitation neural network

Figure 5.1:  All hyperplanes have congregated together in the middle of PWA representation of the neural
network, producing a at output.

31
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With the PWA representation of the network in hand, the closed loop dynamics with respect to 5.1 were
found. An attempt was made to nd a Lyapunov function that could prove global stability. However, this
proved to be an infeasible problem, as the full closed loop dynamics did not lie within a positive invariant
set. To solve this, the maximum positive invariant set was found using the MPT toolbox. However, due
to software limitations this can only be done for nite sets, which requires that additional constraints be
introduced. The simplest approach is to just restrict the state to lie within some box.

Two di erent sets of constraints were chosen,jjxjj; < 100and jjxjj1 < 100Q and the maximum positive
invariant set was computed for both. The results are shown in gure 5.2. Interestingly, the invariant set
appeared scale-invariant, as relaxing the constraints had no e ect on the appearance of the invariant set.
This suggested that asx ! 1 , the size of the invariant set might grow inde nitely, eventually covering all of
R?. This could not be veri ed using the selected tools. Despite this, the positive invariant set can be made
as large as needed, and a stability veri cation can be performed for the selection.

With the constraints in plane, another attempt to nd a Lyapunov function was made, and a feasible solution
was found (see gure 5.3a, thereby showing asymptotic stability within the positive invariant set.

(@) Maximal positive invariant set for jjxjj1 < (b) Maximal positive invariant set for jjxjj1 <
100 100

Figure 5.2: Maximum positive invariant set computed for two di erent state constraints.
The set appears scale-invariant, suggesting that the stable region might grow inde nitely with
state constraints. Note that additional boundaries are introduced by the process of nding the
invariant set; these correspond to the transition regions within each region (see 2.3.5).

Comments

Despite the simplicity of the system, the stability analysis was involved than expected. First, a nite
subset of the PWA regions had to be specied by placing constraints on the state, then a positive
invariant set had to be computed, before searching for a Lyapunov function. The benet of this
approach is that it can be applied to any autonomous PWA system.

It was also shown that global stability is di cult to prove, as it is only practical to work with nite
positive invariant sets. This is only a theoretical issue however, as real-world systems will have state
constraints. If a positive invariant subset within the constraints can be found, then stability can be
veri ed.























































































