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This paper considers the problem of centralized spectrum allocations in wireless sensor networks towards the following goals:
(1) maximizing fairness, (2) reflecting the priority among sensor data, and (3) avoiding unnecessary spectrum handoff. We cast
this problem into a multiobjective mixed integer nonconvex nonlinear programming that is definitely difficult to solve at least
globally without any aid of conversion or approximation. To tackle this intractability, we first convexify the original problem using
arithmetic-geometric mean approximation and logarithmic change of the decision variables and then deploy weighted Chebyshev
norm-based scalarization method in order to collapse the multiobjective problem into a single objective one. Finally, we apply
simple rounding method in order to obtain approximate integer solutions. The results obtained from the numerical experiments
show that, by adjusting the weight on each objective function, the proposed algorithm allocates spectrum bands fairly with well
observing each sensor’s priority and reduced spectrum handoffs.

1. Introduction

The demand of allocating and using the radio frequency
spectra is rapidly growing due to increasing number of
wireless and mobile communication applications, where the
industry has reached the limits of current static spectrum
allocation. However, actual measurements illustrate that the
scarcity is not a result of heavy usage of the spectrum.
It is merely due to the inefficiency of the static spectrum
allocation pursued by regulators [1].

Dynamic spectrum allocation may resolve this paradox
by opening assigned, but sparsely used, spectrum resources
to secondary users [2–4]. It exploits underutilized spectrum
resources along time or frequency dimension and provides
efficient and intensive dynamic spectrum access through the
detection of spectrum opportunity and adaptive modulation.

Such dynamic spectrum access schemes can be consid-
ered in wireless sensor networks (WSNs) as well. Typical

WSNs are composed of resource-constrained sensors respon-
sible for monitoring physical phenomena and reporting to
sink points. One of the primary objectives of WSNs is to
transmit monitored results timely and concurrently, without
using large amount of network resources. The dynamic
spectrum access becomes very vital to achieve such timely
and concurrent transmissions in WSNs; for instance, in a
WSN for real time surveillance system [5, 6] or real time
machine-to-machine communications [7], the transmissions
of video or image data captured by the sensors require
high bandwidth and multiple spectra [8]. Subsequently, the
following major principles can be made.

1.1. Fair Allocation of Idle Spectrum Bands. If too many
sensors attempt to transmit their data simultaneously, current
idle spectrum resources may be insufficient to support all
transmissions. In this situation, scarce spectrum resources
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should be allocated as fairly as possible; in addition, it is nec-
essary to prioritize the transmissions. This can be achieved
bymaximizing proportional fairnesswith demanding weights
[9]. The main difference between max-min fairness and
proportional fairness is that the latter is in a sense less fair
in terms of the demanding volume assignment but more
effective in terms of the total utilization achieved by all
participants [10].

1.2. Avoiding Unnecessary Spectrum Handoff. The other pri-
mary objective of WSNs is long time functionality. However,
dynamic spectrum access leads to supplemental energy con-
sumption at each sensor due to spectrum handoff. Spectrum
handoff occurs when (1) primary user is detected or (2)

current spectrum condition becomes worse; sensors move
to the “best matched” available spectrum band. It has been
measured that not only decoding and channel estimation
but also frequency or timing synchronization consumes a
certain amount of power [11]. It means that themore frequent
spectrum handoffs lead to the more power consumption.
Moreover, due to the latency caused by spectrum sensing,
decision, and handoff procedures, quality degradation is
inevitable during spectrum handoff [12]. Hence unnecessary
spectrum handoff should be eliminated [13, 14].

1.3. Centralized Spectrum Allocation. The problem of
dynamic spectrum allocation in cellular network has
been studied widely. Various centralized or distributed
algorithms are summarized and compared in [15]. In
centralized scheme, a centralized authority (e.g., base
station or dedicated coordinator) detects and identifies
spectrum opportunities and allocates the identified spectra
to secondary users in accordancewith a predefined policy. All
these procedures may be done separately by different entities,
that is, detector, identifier, and allocator. Undoubtedly there
is an overhead of message exchange since the centralized
authority (or allocator) should propagate the results of
spectrum allocation into sensor swarm whenever it receives
transmission requests. In addition, if sensors are distributed
in a wide area, more detectors may be needed.

In distributed scheme, each secondary user competes
with one another to access available spectrum resources.
Thus each user should have an ability to detect the spectral
opportunities and determine an optimal strategy tomaximize
its benefits (e.g., number of spectrum bands). If the dis-
tributed scheme is deployed to WSN, all sensors should have
a fully operating cognitive radio. However it is not feasible
to implement full features of cognitive radio in such energy-
limited sensor nodes.Thus, in amoderate size ofWSN, where
sensors are not distributed widely, for example, a healthcare
system in an intensive care unit, the centralized scheme is
preferred to the distributed one.

In this paper, we consider the problem of the centralized
spectrum allocations in a WSN of moderate size; that is,
all sensors are located within a cell or segment boundary.
We assume that sensors, which are going to transmit data
immediately or in near future, request spectrum resources to
their dedicated coordinator. Then the coordinator allocates

each sensor spectrum resources: (1) as fairly as possible, (2)
reflecting the priority among sensors, and (3) avoiding unnec-
essary spectrum handoff. We formulate this problem into a
multiobjective, more clearly, bicriteria and biobjective, mixed
integer nonlinear nonconvex programming that is, however,
known as intractable without any aid of modification or
approximation.

Our approach to tackle this problem is summarized
as follows. First, we convert the original formulation into
a quasiequivalent form that is convex through arithmetic-
geometric mean approximation and logarithmic change of
decision variables. Then we relax the integer constraint,
so-called NLP relaxation, and collapse the multiobjective
optimization problem (MOP) into a single objective one
using scalarization based on weighted Chebyshev norm (also
called supremum or infinity norm [16]) problem by which we
canmaintain the convexity and achieve NLP relaxed solution
which satisfies weak Pareto optimality. Finally, we perform
simple rounding algorithm on the NLP relaxed solutions in
a sequence of steps in order to obtain approximated integer
solutions. A noticeable advantage of the proposed approach
is that it enables finding fairly good approximated integer
solutions within reasonable computation time. It is already
proved that approximate solution obtained by the series of
arithmetic-geometric mean approximations converges to a
point satisfying the Karush-Kuhn-Tucker conditions of the
original problem [17]. We estimate the integer solution of
rounding method by comparing it with NLP relaxed solution
that gives crude upper bounds of the original problem.

The rest of this paper is organized as follows. In Section 2,
we present the related work and summarize our main
challenges. In Section 3, the problem formulation is given.
In Section 4, we describe the procedure of tackling the
intractability: convexification, scalarization, and rounding. In
Section 5, the results of numerical experiments are described.
Finally we conclude this paper in Section 6.

2. Related Work

In [18], the authors consider the deployment of cognitive
radio toWSNs and suggest that, by adjusting the constellation
size, different data rate can be achieved which will directly
influence the power consumption of each node and in turn
will affect the lifetime of the whole sensor network. They
deploy a distributed spectrum allocation strategy with the
assumption that the full functions of cognitive radio, that
is, detection, identification, and exploitation of spectrum
opportunities, are installed at each sensor node. In [19], the
authors apply dynamic spectrum access in the time domain
by exploiting white spaces between bursty transmissions of
multiaccess communication channels. They mention that if
sensors communicate sporadically and at a low rate, it appears
reasonable to assume that such systems could efficiently reuse
the remaining white spaces.

There are many research literatures that have investigated
the centralized spectrum allocation. We list some of them
below.
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In [20], a scheme to achieve proportional fair rate alloca-
tion in multiuser OFDMA system is proposed. The authors
deal with fully exclusive subcarrier allocation without any
consideration of interference. They apply heuristic algorithm
of relatively high complexity.

In [21, 22], the dynamic spectrum allocation among base
stations is considered. In [21], the authors apply genetic
algorithm in order to allocate spectra while maximizing the
spectral efficiency and satisfying each base station’s service
rate. However, the genetic algorithm is not appropriate for a
multiobjective optimization with multiple constraints since
if we consider only a population that satisfies all constraints
during the entire procedure of the genetic algorithm, the
solutions tend to be stagnated at the local optimal [23]. If we
use the algorithm without concerning any of the constraints,
few solutions subject to all the constraints can be obtained.
In [22], the authors propose dynamic spectrum planning that
reflects the volume of supported demand at each base station
based on its distribution statistics and local interference
condition, and they also address a long-term stability and the
proportional fairness.

In [24, 25], downlink channel (or subcarrier) allocation
problems are considered, and low complex heuristic-based
algorithms are proposed in order to solve the problem in
reasonable time. The main objectives are to minimize the
required transmit powerwhile satisfying the rate requirement
and data error rate constraint of each user [24] andmaximize
the total number of active subcarriers that can be supported
to unlicensed users [25], respectively.

In [26], the authors propose an intuitional heuristic algo-
rithm for proportional fair rate allocation. They express the
problem using nonlinear convex programming and estimate
the heuristic algorithm by comparing its results with the
optimal solution.

In [27], the authors model the joint power control and
rate allocation problem in a multiuser CDMA system as geo-
metric programming, which can be converted into a convex
form easily. They have also considered the proportional fair
rate allocations.

In [28], the authors prove that the region of feasible
signal-to-inference ratio (SIR) is strictly convex if it has
logarithmic scale. As a result, they show that the problem
of finding a power vector that maximizes a weighted sum
of logarithmic SIR is strictly convex, which coincides with
the power control problem of achieving maximal weighted
proportional fair SIR among users.

In [29], the authors have considered a game theory based
bandwidth allocation mechanism in WiMax environments.

Comparing to the abovementioned related work, our
main contributions can be highlighted as follows. We con-
sider the issue of spectrum handoff, which means the prob-
lem is formulated as having discrete variables. A separate
objective function has been established for the spectrum
handoff instead of expressing it as a constraint in order to get
several active solutions. (If we include the spectrum handoff
in the constraint set, the number of spectrum handoffs will
be bounded to a parameter that cannot be tuned during
the problem solving in order to achieve reduced spectrum
handoffs. Therefore, if the decision maker expects the active

improvements in two or more objectives simultaneously by
only one-shot problem solving, it is inevitable to model
the problem into an MOP [16].) Accordingly, the problem
is formulated as a multiobjective mixed integer nonlinear
programming (MO-MINLP). Furthermore, convexification,
scalarization, and rounding method have been employed to
make the problem more tractable.

3. Problem Formulation

We formulate our centralized spectrum allocation problem
as an MO-MINLP. Prior to describing the formulation, the
following assumptions are made.

(1) Available spectrum resources are expressed as a
number of spectrum units, and the bandwidth of
each spectrum unit is fixed, for example, subcarrier
in OFDM or subband in multiband ultrawide band
(UWB).

(2) Each sensor can transmit over noncontiguous fre-
quency bands concurrently [20, 24, 30].

(3) Similar to [26, 27], each receiver sensor declares its
desired signal-to-interference noise ratio (SINR).The
SINR value reflects a specific required level of bit
error rate (BER) since there is an explicit relationship
between BER and SINR according to modulation
schemes.

(4) All sensors can access entire idle spectrum resources.
It means that sensors are distributed within the
cell or segment boundary where primary nodes are
associated.

(5) Similar to general centralized methods, the detec-
tion of spectrum opportunities, identification, and
exploitation are always correct, and a dedicated coor-
dinator does all these processes. Furthermore, the
dedicated coordinator also lies within the same cell
or segment boundary with the sensors.

(6) The process of the spectrum allocation is performed
in every start of predefined epoch, where the coordi-
nator detects idle spectrum units and the sensors that
requested spectrum resources. The epoch may also
start whenever the coordinator receives demands of
spectrum units or periodically. Moreover, there is no
change in the channel condition within each epoch.

(7) We consider direct communications among only
sensors as shown in [31].

(8) Actually, a spectrum handoff occurs at a receiver as
well as a transmitter. However, it is impossible to
avoid the handoffs in both transmitter and receiver if
both were not coupled in the last epoch and currently
synchronizedwith different spectrumunits.Hence, in
this paper, we consider the spectrum handoff at only
a transmitter.
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Based on the above assumptions, the MO-MINLP can be
described as follows.

Parameters

(i) 𝑉: set of sensors that request spectrum units for their
transmissions.

(ii) 𝑆: set of idle spectrum units.
(iii) 𝐿

𝑖𝑠
(binary): it indicates that spectrum unit 𝑠 was

used by sensor 𝑖 at its previous transmission phase.
It means that, currently, sensor 𝑖 is synchronized with
the spectrum unit 𝑠. We assume that the sets 𝑆 and
𝑉 vary in every transmission epoch.Thus we suppose
that the current 𝐿 reflects the optimal solution of right
previous epoch.

(iv) 𝑤
𝑖
: weight given in accordance with the priority of

sensor 𝑖. The higher priority a sensor has, the more
spectrum units will be allocated. It means that the
priority reflects the demand of spectrum units.

(v) 𝑃max
𝑖

: maximal transmission power available at sensor
𝑖.

(vi) INSRmax: 1/SINRmin, where SINRmin is the minimal
SINR that corresponds to strict QoS constraint.

(vii) 𝐺𝑠
𝑖𝑗
: channel gain between sensors 𝑖 and 𝑗 over

spectrum unit 𝑠.

Decision Variables

(i) 𝑥
𝑖𝑠
(binary): it indicates that sensor 𝑖 occupies spec-

trum unit 𝑠.
(ii) 𝑝
𝑖𝑠
: transmission power for sensor 𝑖 in spectrum unit

𝑠.
(iii) INSR

𝑖𝑠
: reciprocal of SINR of sensor 𝑖 in spectrum

unit 𝑠, defined as

INSR
𝑖𝑠
=
∑
𝑗∈𝑉\{𝑖}

𝑥
𝑗𝑠
𝑝
𝑗𝑠
𝐺𝑠
𝑗𝑘
+ 𝜎2

𝑝
𝑖𝑠
𝐺𝑠
𝑖𝑘

, (1)

where 𝜎2 is noise power.

Objectives. Consider the following:

Maximize𝑓
1
= ∑
𝑖∈𝑉

𝑤
𝑖
ln(∑
𝑠∈𝑆

𝑥
𝑖𝑠
) (2)

Maximize𝑓
2
= ∑
𝑠∈𝑆

∑
𝑖∈𝑉

𝐿
𝑖𝑠
𝑥
𝑖𝑠 (3)

s.t.

𝑐
1
: 𝑥
𝑖𝑠
INSR
𝑖𝑠
≤ INSRmax

𝑖
∀𝑖 ∈ 𝑉, 𝑠 ∈ 𝑆, (4)

𝑐
2
: ∑
𝑠∈𝑆

𝑥
𝑖𝑠
𝑝
𝑖𝑠
≤ 𝑃

max
𝑖

∀𝑖 ∈ 𝑉, (5)

𝑐
3
: 𝑥
𝑖𝑠
∈ {0, 1} ∀𝑖 ∈ 𝑉, 𝑠 ∈ 𝑆. (6)

According to the definition in [20], a resource allocation
scheme 𝑃 is proportionally fair if and only if, for any other
feasible allocation scheme𝑀, we have

𝑃 = argmax
𝑀

∑
𝑖∈𝑉

𝑤
𝑖
ln𝑅(𝑀)
𝑖

, (7)

where 𝑤
𝑖
is the weight of user 𝑖 and 𝑅

(𝑀)

𝑖
is the average

resource of user 𝑖 by an allocation scheme 𝑀. The weight
reflects each user’s priority to the proportional fair allocation
as well (i.e., we give more resources to the user with higher
priority) [9, 28].

Therefore, by maximizing 𝑓
1
, we can achieve maximal

proportional fairness in terms of the number of spectrum
units allocated to each sensor and reflect the priority of each
sensor simultaneously.

By maximizing 𝑓
2
, we can let each sensor keep holding

the spectrum units used in the previous transmission epoch.
Constraint 𝑐

1
indicates that there is a corresponding SINR

threshold that determines whether or not packet transmis-
sion is successful. That is, if 𝑐

1
is satisfied then the intended

receiver can receive the packet correctly, and, otherwise, the
packet is lost [32]. Constraint 𝑐

2
indicates that no sensor

can use more transmission power than its maximal available
transmission power.

Unlike the general fair “rate” allocation schemes [20, 26,
27], we consider fair “spectrum unit” allocations here due to
the following reason: as shown in constraint 𝑐

2
, each sensor

is guaranteed to achieve SINR at least larger than SINRmin.
Since the SINR values directly correspond to the rates and
if it is guaranteed that each sensor achieves the exact same
SINR as SINRmin, the fair spectrum unit allocation will yield
the “coarse-grained” fair rate allocation.

However, the problem is intractable due to its nonconvex-
ity and discrete variables. For this reason, we manipulate the
objective functions and apply a series of approximations.

Henceforth, we denote the single objective optimization
problem with only the objective function 𝑓

1
and the con-

straints asΩ(𝑓
1
) and the one with only 𝑓

2
and the constraints

asΩ(𝑓
2
), respectively. In addition, we denote the problem by

both the objectives and the constraints asΩ(𝑓
1
, 𝑓
2
).

4. Tackling the Intractability

Webegin the convexification processwith relaxing the integer
constraint; that is, we drop (6).

4.1. Convexification of Ω(f
1
) and Ω(f

2
)

4.1.1. Convexification of Ω(f
1
). We convert the original func-

tion 𝑓
1
into an equivalent log-sum-exp function form that is

proved to be convex [17, 27, 33] by defining 𝛽
𝑖𝑠
= ln(𝑥

𝑖𝑠
) and

𝛾
𝑖𝑠
= ln(𝑝

𝑖𝑠
) for all 𝑖 ∈ 𝑉 and 𝑠 ∈ 𝑆, where −∞ ≤ 𝛽

𝑖𝑠
≤ 0 and

−∞ ≤ 𝛾
𝑖𝑠
≤ ln(𝑃max

𝑖
). ThenΩ(𝑓

1
) is reformulated as follows.

Objective. Consider the following:

Maximize𝑓∗
1
= ∑
𝑖∈𝑉

𝑤
𝑖
ln(∑
𝑠∈𝑆

𝑒
𝛽𝑖𝑠) (8)
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Step 1. Generate initial feasible solution vectors 𝛽 and 𝛾.
Step 2. For all 𝑖 ∈ 𝑉 and 𝑠 ∈ 𝑆, evaluate 𝛼

𝑖𝑠
with the initial vectors

𝛽 and 𝛾 using (11).
Step 3. Condense the objective function 𝑓∗

1
into 𝐶V(𝑓∗

1
).

Step 4. Solve the resulting NLP.
Step 5. Terminate the 𝑘th loop if |𝑓∗

1
(𝑘) − 𝑓

∗

1
(𝑘 − 1)| ≤ 𝜔. Otherwise

go to Step 2 with solution vectors 𝛽 and 𝛾 obtained at Step 4.

Algorithm 1: Condensation algorithm.

s.t.

𝐶V (𝑐
1
)

: ln( ∑
𝑗∈𝑉\{𝑖}

(
𝑒(𝛽𝑖𝑠+𝛽𝑗𝑠+𝛾𝑗𝑠−𝛾𝑖𝑠)𝐺𝑠

𝑗𝑘
(𝐺𝑠
𝑖𝑘
)
−1
(INSRmax

𝑖
)
−1

+𝑒(𝛽𝑖𝑠−𝛾𝑖𝑠)𝜎2(𝐺𝑠
𝑖𝑘
)
−1
(INSRmax

𝑖
)
−1

))

≤ 0

∀𝑖 ∈ 𝑉, 𝑠 ∈ 𝑆,

𝐶V (𝑐
2
) : ln(∑

𝑠∈𝑆

𝑒
(𝛽𝑖𝑠+𝛾𝑖𝑠)(𝑃

max
𝑖

)
−1
) ≤ 0 ∀𝑖 ∈ 𝑉.

(9)

Nonetheless the reformulated one is not a convex
optimization [33]. Therefore, we deploy arithmetic-
geometric mean approximation (in geometric programming,
arithmetic-geometric mean approximation is used for
condensing a posynomial function into amonomial function;
therefore it is called also local monomial approximation [34])
[17, 34] as

∑
𝑠∈𝑆

𝑒
𝛽𝑖𝑠 ≥ ∏
𝑠∈𝑆

(
𝑒𝛽𝑖𝑠

𝛼
𝑖𝑠

)

𝛼𝑖𝑠

, (10)

and the inequality becomes an equality if

𝛼
𝑖𝑠
=

𝑒𝛽𝑖𝑠

∑
𝑠∈𝑆

𝑒𝛽𝑖𝑠
, ∀𝑖 ∈ 𝑉, 𝑠 ∈ 𝑆. (11)

Then the objective is condensed as

Maximize𝐶V (𝑓∗
1
) = ∑
𝑖∈𝑉

𝑤
𝑖
ln(∏
𝑠∈𝑆

(
𝑒𝛽𝑖𝑠

𝛼
𝑖𝑠

)

𝛼𝑖𝑠

)

= ∑
𝑖∈𝑉

𝑤
𝑖
∑
𝑠∈𝑆

𝛼
𝑖𝑠
(𝛽
𝑖𝑠
− ln𝛼

𝑖𝑠
) ,

(12)

which becomes affine, and the optimization problem can be
solved by condensation algorithm, Algorithm 1 [17].

As condensing the objective function 𝑓∗
1

into 𝐶V(𝑓∗
1
)

always yields underestimated solutions, each NLP in the
condensation iteration loop tries to improve the accuracy of
the approximation to a particular maximum in the original
feasible region. In addition, the algorithm is convergent and
always produces the approximate solution that satisfies the
Karush-Kuhn-Tucker conditions of the original problem [17].

4.1.2. Convexification of Ω(𝑓
2
). As done in the convexifica-

tion ofΩ(𝑓
1
), we let 𝛽

𝑖𝑠
= ln(𝑥

𝑖𝑠
) and 𝛾

𝑖𝑠
= ln(𝑝

𝑖𝑠
) for all 𝑖 ∈ 𝑉

and 𝑠 ∈ 𝑆, where −∞ ≤ 𝛽
𝑖𝑠
≤ 0 and −∞ ≤ 𝛾

𝑖𝑠
≤ ln(𝑃max

𝑖
).

Then 𝑓
2
is converted into a convex form:

Minimize𝐶V (𝑓
2
) = ∑
𝑠∈𝑆

∑
𝑖∈𝑉

𝐿
𝑖𝑠
𝑒
−𝛽𝑖𝑠 . (13)

The above formulationmakes 𝛽
𝑖𝑠
close to 0, where 𝐿

𝑖𝑠
= 1

in order to minimize its value. Thus we can derive the same
results as the ones obtained by maximizing 𝑓

2
.

4.2. Scalarization of the Multiobjective Optimization Problem.
For solving MOPs, one of the most widespread approaches
is scalarization, where MOPs are replaced by suitable scalar
optimization (i.e., single objective optimization) problems
involving possibly some additional parameters and con-
straints.With the help of the scalar problem, not only can one
optimal solution of the multiobjective optimization problem
be found but also approximations of the whole solution set
can be generated by a variation of the parameters. In this
paper, we are interested in maintaining the convexity of
the scalarized problem as well as guaranteeing weak Pareto
optimality at least by minimizing the distance between ideal
solutions (i.e., Pareto Frontier) and feasible objective region.
To this end, we deploy a scalarization method based on
weighted Chebyshev norm problem [16].

We consider anMOPwith a vector of decision variables x
and a vector of objective functions f(x) = [𝑓

1
(x), . . . , 𝑓

𝑟
(x)]𝑇

as follows.

Objectives. Consider the following:

Minimize 𝑓
𝑚 (x) , 𝑚 = 1, . . . , 𝑟 (14)

s.t.

ℎ
𝑙 (x) ≤ 0, 𝑙 = 1, . . . , 𝑡. (15)

To begin with, we normalize each𝑚th objective function
𝑓
𝑚
to be given 0 as theminimum value and 1 as themaximum

value as follows:

𝑓
𝑚𝑛 (x) =

𝑓
𝑚 (x) − 𝑓

𝑚
(x∗
𝑚
)

𝑓
𝑚𝑤 (x) − 𝑓

𝑚
(x∗
𝑚
)
, (16)
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where 𝑓
𝑚𝑤

= max
𝑗=1,...,𝑟

𝑓
𝑗
(x∗
𝑗
) and x∗

𝑗
is the optimal

design vector obtained when only 𝑓
𝑗
is minimized. That is,

the distance between its optimal solution and worst solu-
tion normalizes each objective function. Then the weighted
Chebyshev norm problem is defined by additional variable 𝑧
as follows.

Objectives. Consider the following:

Minimize 𝑧, (17)

s.t.

𝛿
𝑚
𝑓
𝑚𝑛 (x) ≤ 𝑧, ∀𝑚 = 1, . . . , 𝑟,

ℎ
𝑙 (x) ≤ 0, 𝑙 = 1, . . . , 𝑡,

(18)

where 𝛿
𝑚
> 0 is the weight of𝑓

𝑚
(notice that the 𝛿

𝑚
expresses

relative weight rather than absolute weight). By solving this
scalarized problem, the maximal distance between the ideal
solution (𝑓

𝑚
(x∗
𝑚
)) and the feasible objective region (𝑓

𝑚
(x))

is minimized. (This scalarized problem corresponds to the
problem that achieves the weighted fairness between objec-
tive values within min-max (i.e., supremum, and also called
maxminimization) criterion. There is another scalarization
approach that considers the proportional fairness between
objective values [35]. But it fails to maintain the convexity
of original problem.) It is easy to check that the weighted
Chebyshev norm problem maintains the convexity if the
original problems are convex; that is, all 𝑓

𝑚
(x) and ℎ

𝑙
(x) are

convex. Definitely, as an objective function has higher weight,
it is liable to be emphasized relatively more than others.

We can envisage the linear combination of objective
functions, such as 𝛿

1
𝑓
1
+ 𝛿
1
𝑓
1
, in order to scalarize the mul-

tiobjective optimization problem. However the Chebyshev
normalization is preferred to the linear combination due to
the following reasons.

(1) The unit and scale of each objective are different: one
expresses the number of handoffs and the other one
expresses fairness value in terms of the number of
spectrum. So we need to normalize the scales of the
objectives.

(2) The linear combination does not guarantee the bal-
ance (fairness) between the two objectives. Surely,
adjusting the weight of each objective may yield
the balanced outcome but it is quite difficult to
find the adequate weights. However, our approach
yields balanced output without the weight values (i.e.,
delta 1 and delta 2).Thenwe can control theweight of
each objective by adjusting the weight values. Surely,
this approach is more straightforward.

If we denote𝐶V(𝑓∗
1
) and𝐶V(𝑓

2
) by𝑔
1
and𝑔
2
, respectively,

the problem Ω(𝑓
1
, 𝑓
2
) is converted into a single objective

optimization problem by Chebyshev norm problem.

Objectives. Consider the following:

Minimize 𝑧, (19)

s.t.

𝐶V (𝑐
1
) : ln(

( ∑
𝑗∈𝑉\{𝑖}

(𝑒(𝛽𝑖𝑠+𝛽𝑗𝑠+𝛾𝑗𝑠−𝛾𝑖𝑠)𝐺𝑠
𝑗𝑘
+ 𝑒(𝛽𝑖𝑠−𝛾𝑖𝑠)𝜎2))

(𝐺𝑠
𝑖𝑘
)
−1
(INSRmax

𝑖
)
−1

)

≤ 0

∀𝑖 ∈ 𝑉, 𝑠 ∈ 𝑆,

𝐶V (𝑐
2
) : ln(∑

𝑠∈𝑆

𝑒
(𝛽𝑖𝑠+𝛾𝑖𝑠)(𝑃

max
𝑖

)
−1
) ≤ 0 ∀𝑖 ∈ 𝑉,

𝑐
4
: 𝛿
1
× (

−∑
𝑖∈𝑉

𝑤
𝑖
∑
𝑠∈𝑆

𝛼
𝑖𝑠
(𝛽
𝑖𝑠
− ln𝛼

𝑖𝑠
) − 𝑔∗
1

𝑔
1𝑤

− 𝑔∗
1

) ≤ 𝑧,

𝑐
5
: 𝛿
2
× (

ln (∑
𝑠∈𝑆

∑
𝑖∈𝑉

𝐿
𝑖𝑠
𝑒−𝛽𝑖𝑠) − 𝑔∗

2

𝑔
2𝑤

− 𝑔∗
2

) ≤ 𝑧,

(20)

where𝑔∗
1
is the optimal valuewhen only𝐶V(𝑓∗

1
) isminimized

and 𝑔∗
2
is the optimal value when only 𝐶V(𝑓

2
) is minimized.

Similarly, g
1w is the value of 𝐶V(𝑓∗

1
) when only 𝐶V(𝑓

2
)

is minimized and g
2w is the value of 𝐶V(𝑓

2
) when only

𝐶V(𝑓∗
1
) is minimized. We apply 𝛼

𝑖𝑠
obtained when solving

Ω(𝑓
1
) by condensation. Therefore, prior to solvingΩ(𝑓

1
, 𝑓
2
),

we should solve Ω(𝑓
1
) and Ω(𝑓

2
), respectively; the global

solution of all these problems can be computed using a
general NLP solving method such as interior point method
[36].

4.3. Rounding Algorithm. Regardless of convexity and lin-
earity, a problem with integer constraints is in general very
hard to solve. In this paper, we apply a simple rounding
method introduced in [34] for finding approximated integer
solutions of Ω(𝑓

1
, 𝑓
2
). We also use the rounding method to

find the integer solutions ofΩ(𝑓
1
) andΩ(𝑓

2
) for the purpose

of evaluation.The algorithm of the roundingmethod is given
as Algorithm 2.

In Step 2, we first solve NLP relaxed and convexified
problems. In Step 3, rounding is performed with rounding
distance 𝜉, which is the distance between 𝑥

𝑖𝑠
and its nearest

integer. Then the feasibility is checked with the rounded
solutions in Step 3. If the rounded solutions are not feasible,
we reduce the rounding distance by 𝜉 (i.e., the rounding
condition is made stricter) and perform the rounding and
feasibility check again. Otherwise, in Step 5, we compute
integer solutions using the original objective functions for
the problem Ω(𝑓

1
) and Ω(𝑓

2
), and, for the problem Ω(𝑓

1
,

𝑓
2
), we compute weighted summation of two normalized

objective values since a single-valued metric is required for
determining whether the iteration should proceed further or
not. In Step 6, we update the best solution until the current
iteration and fix the rounded solutions as parameters for the
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Step 1. best sol:= 0;
old sol:= 0;
𝛽:= {𝛽

𝑖𝑠
: ∀𝑖 ∈ 𝑉 and ∀𝑠 ∈ 𝑆};

𝛾:= {𝛾
𝑖𝑠
: ∀𝑖 ∈ 𝑉 and ∀𝑠 ∈ 𝑆};

Step 2. Solve NLP relaxed problem with the solution vectors 𝛽 and 𝛾;
Step 3. for each 𝛽

𝑖𝑠
∈ 𝛽 begin

if (󵄨󵄨󵄨󵄨exp [𝛽𝑖𝑠] − 1.0
󵄨󵄨󵄨󵄨 ≤ 𝜉)

𝑥
𝑖𝑠
:= 1;

else
𝑥
𝑖𝑠
:= 0;

end
Step 4. Check the feasibility of the original problem with the rounded x.

if not feasible begin
𝜉:= 𝜉 − 𝜁;

goto Step 3;
end

Step 5. Compute integer solution int sol of each objective function:
(1) For Ω(𝑓

1
),

int sol:= 𝑓
1
= ∑
𝑖∈𝑉

𝑤
𝑖
ln(∑
𝑠∈𝑆

𝑥
𝑖𝑠
);

(2) For Ω(𝑓
2
),

int sol:= 𝑓
2
= ∑
𝑠∈𝑆

∑
𝑖∈𝑉

𝐿
𝑖𝑠
𝑥
𝑖𝑠
;

(3) For Ω(𝑓
1
, 𝑓
2
),

int sol:= 𝛿
1
𝑓
1𝑛
+ 𝛿
2
𝑓
2𝑛

where 𝑓
1𝑛
and 𝑓

2𝑛
are normalized 𝑓

1
and 𝑓

2
respectively computed by (16).

Step 6. if (int sol > best sol)
best sol:= int sol;

Step 7. for each 𝛽
𝑖𝑠
∈ 𝛽 begin

if (𝑥
𝑖𝑠
= 1)

𝛽:= 𝛽 − {𝛽
𝑖𝑠
}; // if 𝑥

𝑖𝑠
= 1, fix 𝛽

𝑖𝑠
as a parameter for next rounding iteration.

End
Step 8. if (|𝑜𝑙𝑑 𝑠𝑜𝑙 − 𝑖𝑛𝑡 𝑠𝑜𝑙| < 𝜀)

Terminate the algorithm;
else
old sol:= int sol;

goto Step 2;

Algorithm 2: Rounding algorithm.

next iteration in Step 7. Finally, if we conclude that the integer
solutions are converged within a certain level, we terminate
the rounding algorithm.

Although the rounding algorithm is quite efficient and
easy to implement, it often produces infeasible solutions.
To make matters even worse, it is extremely difficult to
fit the rounded solutions into the constraints. However
we observe that it works well for our problems since all
the objective functions and constraints involve exponential
function, which means that the NLP solver has a tendency
to produce the variables bisected into very small or large
values in order to seek the maximum (or minimum) results.
To illustrate this phenomenon, we choose a small sensor
topology where 5 sensors are distributed uniformly in a
20m × 20m square and assume 20 idle spectrum units. We
compute the NLP relaxed solutions of all the problems and
plot them in Figure 1 where, for the problem Ω(𝑓

1
), the

outputs of the condensation algorithm are plotted.

As shown in Figure 1, we observe that some variables
are quite close to 1 and a few of them are exactly 1, while
some other variables are relatively very small. As a result, we
can parameterize these bisected variables easily in the first
rounding, which enables the next rounding to begin with
reduced set of variables. In addition, we observe that the
variables converge to feasible integer solutions within a few
rounding iterations. We show this result in the next section.

5. Numerical Experiments

For the experiments, we consider a sensor field of 100m ×

100m rectangular area where 15 sensors are uniformly
distributed and assume that all the sensors request trans-
missions. We generate each sensor’s transmission target
randomly, which may result in one-to-many or many-
to-one communications as well as one-to-one. The other
main experimental parameters are listed in Table 1. We use
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Figure 1: NLP relaxed solutions of variable 𝑥
𝑖𝑠
for all 𝑖 ∈ 𝑉 and 𝑠 ∈ 𝑆, forΩ(𝑓

1
). We plot the solution after the condensation.

the channel gain modeled as 𝐺
𝑖𝑗

= 𝐾
0
⋅ 10𝛿𝑖𝑗/10 ⋅ (𝑑

𝑖𝑗
)
−V,

where 𝛿
𝑖𝑗
is random Gaussian variables with zero mean and

standard deviation equal to 6 dB, 𝐾
0
= 103 that captures

system and transmission effects such as antenna gain, and
carrier frequency, and 𝑑

𝑖𝑗
is the distance between sensors 𝑖

and 𝑗, and 𝜐 is the power falloff factor. We let 𝜐 = 3. We
implement all the experimental codes in C language using
IPOPT [36] library that implements an NLP solver with
interior point method. To illustrate that the condensation
algorithm yields well converged NLP solution of the problem
Ω(𝑓
1
) we measure the function value, 𝐶V(𝑓∗

1
)—defined in

(14)—on each iteration of the condensation procedure, and
Figure 2 shows the measured results. As shown in the graphs,
we can observe that the function value 𝐶V(𝑓∗

1
) converges to a

stationary value as the condensation proceeds.
Table 2 lists the number of rounding iterations required

to arrive at the given termination condition 𝜀 = 10−8.
It is observed that the rounding algorithm converges to

the termination condition within a few iterations as a rule
except in the case of the problem Ω(𝑓

2
).

We evaluate the multiobjective solutions determined by
the scalarization method by comparing with each single
objective solution. Not only the integer solutions but also
the NLP relaxed solutions are compared with varying the
weight on each objective function, that is, 𝛿

1
and 𝛿

2
. The

results are plotted in Figure 3; we perform this evaluation
with 60 different random channels that satisfy 95%maximum
allowable error of 0.1 dB and plot the average values over
those samples.The label of𝑋-axis on each graph corresponds
to the pair of weight on each objective function; from left to
right, while 𝛿

1
increases, 𝛿

2
decreases. In the legend, “INT-

f1” and “INT-f2” are associated with the integer optimal
values of the corresponding objective functions determined
by the scalarization method and rounding algorithm; “NLP-
f1” and “NLP-f2” correspond to the NLP relaxed optimal
values of the corresponding objective functions obtained after
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Table 1: Main experimental parameters.

Experimental parameter Value
Number of sensors (𝑛) 15
Number of idle spectrum
units 60

Weight (𝑤
𝑖
)

Assign a uniform random
variable between 1 and 20 on

each sensor
𝐿hold 0.1
𝜎
2 10−10 W

𝑃max
𝑖

1mW for all 𝑖 ∈ 𝑉

INSRmax
𝑖

−10 dB
Termination condition for the
condensation algorithm 𝜔

0.1

Initial rounding distance (𝜉) 0.9999
Rounding distance decrement
(𝜉)

0.0001

Termination condition for the
rounding algorithm (𝜀)

10−8 forΩ(𝑓
1
) and Ω(𝑓

1
, 𝑓
2
) and

0 forΩ(𝑓
2
)

𝐿hold: probability that each sensor holds a spectrum unit at its previous
transmission phase.

Table 2:The number of rounding iterations required for the integer
solutions with the termination condition 𝜀.

Problem 𝑁 = 15

Ω(𝑓
1
) 2

Ω(f 2) 9
Ω(𝑓
1
, 𝑓
2
) (𝛿
1
= 0.001, 𝛿

2
= 1.0) 2

Ω(𝑓
1
, 𝑓
2
) (𝛿
1
= 0.01, 𝛿

2
= 1.0) 2

Ω(𝑓
1
, 𝑓
2
) (𝛿
1
= 0.1, 𝛿

2
= 1.0) 3

Ω(𝑓
1
, 𝑓
2
) (𝛿
1
= 1.0, 𝛿

2
= 1.0) 3

Ω(𝑓
1
, 𝑓
2
) (𝛿
1
= 1.0, 𝛿

2
= 0.1) 2

Ω(𝑓
1
, 𝑓
2
) (𝛿
1
= 1.0, 𝛿

2
= 0.01) 2

Ω(𝑓
1
, 𝑓
2
) (𝛿
1
= 1.0, 𝛿

2
= 0.001) 2

the scalarization. In addition, the items with “∗” in the legend
correspond to the single objective solutions. In this graph, we
plot the NLP relaxed and integer solutions using the original
objective functions, 𝑓

1
and 𝑓
2
in (2) and (3), respectively.The

remarkable results are as follows: (i) both the NLP relaxed
solutions and integer solutions of 𝑓

1
and 𝑓

2
in Ω(𝑓

1
, 𝑓
2
)

are apparently proportional to their respective weights; (ii)
the solutions determined by the scalarization method are
strictly bounded to each of the single objective solutions;
(iii) the integer solutions are very close to the NLP relaxed
solutionswith the factor of less than 2 for both of the objective
functions [14].

Next we measure how fairly the spectrum resources are
allocated. To show this, we compute fairness index using (21)
and plot it in Figure 4. Fairness index is widely used metric
that measures the level of fairness. As it is close to 1, the
allocation is fairer. We also plot spectrum utilization using
(22) in order to show how well the spectrum resources are
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Figure 2: The transition of the function value 𝐶V(𝑓∗
1
) as the

condensation proceeds.

utilized.We plot the average results obtained over 60 different
random channels:

FI =
(∑
𝑖∈𝑉

((∑
𝑠∈𝑆

𝑥
𝑖𝑠
) /𝑤
𝑖
))
2

[𝑛∑
𝑖∈𝑉

((∑
𝑠∈𝑆

𝑥
𝑖𝑠
) /𝑤
𝑖
)
2
]

(21)

SU = ∑
𝑖∈𝑉

∑
𝑠∈𝑆

𝑥
𝑖𝑠

|𝑆|
, (22)

where 𝑛 is the number of sensors.
Figure 4 shows that, as the weight on 𝑓

1
increases, also

the fairness index increases generally. It is observed that the
highest fairness index is yielded on ⟨0.5, 0.5⟩, and as 𝑓

1
gets

more weight, it decreases slightly, which conforms to the
attribute of the proportional fairness; if there are unallo-
cated resources, maximal proportional fairness is achieved
as allocating them despite of suffering the deterioration
in the fairness index. On the other hand, maximal max-
min (or min-max) or strict fairness does not endure such
deterioration.

To supplement with the evaluation results, we measure
both integer and NLP relaxed function values of 𝑓

1
, 𝑓∗
1
, 𝑓
2
,

and 𝑓∗
2
and fairness index and spectrum utilization under

different SINR constraints (i.e., with varying INSRmax in
constraint 𝑐

1
) fixing the weight pair as <0.5, 0.5>. We also

measure the average value over 60 sampled random channels
in these experiments. The results are plotted in Figure 5.
As expected, it is noticed that all the function values and
spectrum utilization increase as INSRmax increases. With
regard to the fairness, the highest fairness index is yielded
when INSRmax = −10 dB, and it is measured as 0.8563129;
when INSRmax = −7 dB, the fairness index is measured
as 0.8515264 that is lower than the case of INSRmax =
−10 dB. However, both the integer and NLP relaxed values
of 𝑓
1
are higher when INSRmax = −7 dB due to the higher

spectrum utilization, which complies with the attribute of the
proportional fairness, less fairness but higher utilization.
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Figure 3: Evaluation of 𝑓
1
and 𝑓

2
achieved by the scalarization method. The label of𝑋-axis on each graph corresponds to the pair of weight

on each objective function, ⟨𝛿
1
, 𝛿
2
⟩. The integer solutions obtained by the rounding algorithm are also evaluated by comparing them to the

NLP relaxed solutions.
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weights.

6. Conclusions

This paper deals with the problem of spectrum allocation
in resource-constrained wireless sensor networks with the

following goals: (1) maximizing fairness, (2) reflecting the
priority among sensor data, and (3) avoiding unnecessary spec-
trum handoff. The first two goals are achieved by maximizing
weighted proportional fairness. Therefore the problem has
been formulated as an optimization with two different objec-
tive functions: multiobjective optimization. The multiobjec-
tive optimization is an indispensable tool for decisionmaking
if the benefit of a decision does not depend only on one object.
The object is further mapped by one scalar-valued function,
that is, scalarization. We deploy the scalarization method
based on Chebyshev norm problem in order to maintain
the convexity of the objective functions and constraints.
Prior to applying the scalarization, the original objective
functions are convexified by the arithmetic-geometric mean
approximation and logarithmic change of decision variables.
Also, all the constraints are transformed into log-sum-exp
function form that is strictly convex. Furthermore, in order
to find the good approximate integer solutions, a simple
rounding algorithm is used, which is quite efficient due
to the exponential feature of the problem. The numerical
experiments illustrate the efficiency of the proposed solutions
including the condensation and rounding algorithm. Fur-
thermore, by the discreet adjustment of the weight on each
objective function, the proposed algorithm performs well
in achieving the balanced multiobjective solutions. Finally,
it is illustrated that, given the weight of each sensor, the
algorithm allocates spectrum units fairly as well as yielding
high spectrum utilizations when 𝑓

1
has relatively higher

weight than 𝑓
2
.
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