
Master of Science in Communication Technology
June 2011
Stig Frode Mjølsnes, ITEM
Martin Gilje Jaatun, SINTEF
Lawrie Brown, UNSW@ADFA

Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Implementing a Secure Ad Hoc Network

Espen Grannes Graarud

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
FACULTY OF INFORMATION TECHNOLOGY, MATHEMATICS

AND ELECTRICAL ENGINEERING

PROBLEM DESCRIPTION

Student: Espen Grannes Graarud
Title: Implementing a Secure Ad Hoc Network

Description:

B.A.T.M.A.N. is a pro-active routing protocol for ad hoc networks that is designed to be
a simpler and more robust alternative to the OLSR protocol. The project work of Anne
Gabrielle Bowitz and Espen Graarud proposed to add routing message authentication in
B.A.T.M.A.N. using proxy certificate mechanisms.

This thesis work will determine the performance of this secured protocol in comparison
with the original B.A.T.M.A.N protocol, for instance by measuring network convergence
time. Tests should also be run to find how the secure protocol protects against known
attacks such as the wormhole attack.

Deadline: June 29, 2011
Submission date: June 29, 2011
Department: Department of Telematics
Supervisor: Stig Frode Mjølsnes, ITEM
Co-Supervisor: Martin Gilje Jaatun, SINTEF

Dr. Lawrie Brown, UNSW@ADFA

Trondheim, June 29, 2011

Stig Frode Mjølsnes, NTNU ITEM

Abstract

In emergency situations such as natural disasters the emergency personell should
be able to establish communication fast and reliably. Depending on the nature of
the disaster one cannot rely on existing communication infrastructure, or access
to centralized administration. Additionally the established communication needs
authentication in order to handle access control so only trusted parties can partake.
A suitable medium for such communication is wireless ad hoc networks, but their
flat structure make authentication a very challenging task.

In this thesis a system design for an ad hoc routing protocol combined with access
control is proposed, and implemented extending a popular routing protocol called
BATMAN. The proposed authentication scheme relies on special public key certifi-
cates called proxy certificates, and combined with a neighbor trust mechanism both
authentication and access control are managed in a secure manner.

Tests using mobile nodes running this implementation shows that the performance
of the proposed design is comparable to the original routing protocol (BATMAN)
used, and that the authentication process is manageable even for mobile ad hoc
networks.

iii

Preface

This master thesis is written by Espen Grannes Graarud and concludes my 5 year
master programme in Communication Technology specializing in Information Secu-
rity at the Norwegian University of Science and Technology, NTNU.

This thesis is a continuation of my and Anne Gabrielle Bowitz’ Information Security
specialization project that was proposed by Dr. Lawrie Brown of UNSW@ADFA,
Australia, and Martin Gilje Jaatun of SINTEF ICT, Norway.

I would like to thank my fellow student Anne for our great co-operation during the
project and for her thoughts and ideas during the writing of this thesis. I would
also like to thank my supervisors, especially Martin for his great weekly feedbacks
which was a great help along the way.

Finally I would like to thank my responsible Professor Stig Frode Mjølsnes from the
Department of Telematics at NTNU for his feedback on the system design.

Trondheim, June 29, 2011

Espen Grannes Graarud

v

Acronyms

3G 3rd Generation Mobile Telecommunications

AL Authentication List

AM Authentication Module

BATMAN Better Approach To Mobile Ad-hoc Networking

CA Certificate Authority

CBC Cipher-block Chaining

CRC Cyclic Redundancy Check

CRL Certificate Revocation List

DHCP Dynamic Host Configuration Protocol

DoS Denial-of-Service

ECC Elliptic-Curve Cryptography

EEC End-Entity Certificate

IV Initialization Vector

LLPKC Long-Lived Public Key Certificate

MAC Message Authentication Code

MANET Mobile Ad Hoc Network

NL Neighbor List

OASIS Open Advanced System for dISaster and emergency management

OGM Originator Message

OLSR Optimized Link State Routing

OSI Open Systems Interconnection

vii

OTP One-Time Password

PC Proxy Certificate

PC0 Proxy Certificate 0

PC1 Proxy Certificate 1

PKI Public Key Infrastructure

SP Service Proxy

SSO Single Sign-On

TTL Time To Live

Wifi Wireless Fidelity (See ’802.11’ in Definitions)

WOT Web Of Trust

Definitions

802.11 IEEE 802.11 standards for wireless computer networks on the 2.4, 3.6, and
5 GHz frequency bands.

Ad Hoc Network A self-organizing network with no form for pre-existing infras-
tructure or centralized administration.

Asymmetric Link If traffic is only possible in one direction, i.e. a node can receive
but not send packets to another node, the link in between them is called an
asymetric link.

Authenticated List A list containing the public keys, IP, roles, certificate validity
period, of all known and authenticated nodes in the network.

Authentication The process of verifying an alleged identification.

Authentication Module Addition to the B.A.T.M.A.N. protocol which takes care
of cryptographic functions and other additions. It also adds fields to the Orig-
inator messages which can contain a digital signature or signature fractions,
and sends other messages with nonces, certificates, and ALs.

Authentication Token Is something that can help the authentication process.
This could be e.g. a public key certificate or a smart card etc.

Authorization The process of deciding which rights, or access to which resources,
an authenticated identity can have.

Certificate Authority An entity that issues certificates in a Public Key Infras-
tructure (PKI).

Congestion A state in wich the the amount of traffic on a network surpasses the
stable amount of traffic the network can handle. I.e. congestion can make the
network useless if not handled by some control mechanisms.

Convergence Time The time it takes for the network to get to a stable state with
no route flapping after an event that has changed the network topology. E.g.
a node has died or moved and made a link inferior to other alternative links.

Elliptic-Curve Cryptography Public key cryptography based on the mathemat-
ical properties of elliptic curves.

ix

End-Entity Certificate A X.509 public key certificate of an end user. EECs can-
not be used to sign and issue other certificates, with the exception of Proxy
Certificates.

Ephemeral Key A temporary symmetric encryption key.

Keystream-material message A message containing an encrypted ephemeral key,
IV, nonce, and a digital signature used to generate the sender’s keystream.

Link-local See Neighbor.

Neighbor Neighbor refer to a direct neighbor, i.e. a node within transmitting range
for which you can communicate directly with.

Originator Synonym for a Batman interface which is a network interface utilized
by Batman.

Originator Message Batman protocol message advertising the existence of an
originator. They are used for link quality and path detection [NALW10].

Packet Delivery Ratio Amount of packets received divided by the number of
packets sent.

Pro-Active Routing Protocol A routing protocol that regularly broadcasts rout-
ing announcements and forwards routing announcements it receives, actively
discovering routes before (pro-active) they are needed for data traffic.

Proxy Certificate A X.509 certificate signed by a regular X.509 EEC. It is used
to assign roles to which the recipient can act on behalf of the signee.

Proxy Certificate 0 A proxy certificate belonging to a Service Proxy, able to issue
new proxy certificates (PC1), delegating its rights to the receiver of that proxy
certificate.

Proxy Certificate 1 A proxy certificate belonging to regular trusted nodes, not
able to issue other proxy certificates.

Public Key Infrastructure Every entities involved with the management (cre-
ation, distribution etc.) of public key certificates. Managed by the PKIX
working group of IETF.

Route Flapping Occurs when a node in a network continuously changes preferred
route between a source and destination pair creating route instability.

Routing Protocol A protocol that finds and creates paths, or routes, to other
nodes in the network.

Service Proxy Master node controlling the authentication and authorization func-
tions in the network. The SP has a PC0 issued by its regular long-lived public
key certificate.

x

Socket UNIX file descriptors or logical interfaces used to send and receive data
over a network interface.

Thread A separated program flow sharing memory with its parent process. Used to
utilize multiple CPUs or CPU cores, or to have more than one thread running
tasks at the same time.

Web Of Trust A decentralized trust model where trust of a node is established if
your trustees trusts that node.

X.509 Certificates Standard public key certificate standard managed by the PKIX
working group of IETF.

Contents

Problem Description ii

Abstract iii

Preface v

Acronyms vii

Definitions ix

1 Introduction 1
1.1 Motivation . 2
1.2 Contributions . 2
1.3 Objectives . 3
1.4 Limitations . 3

1.4.1 IP Address Configuration . 3
1.4.2 Detecting malicious behavior 3

1.5 Method . 4
1.6 Document Structure . 4

2 Background 7
2.1 Mobile Ad Hoc Network . 7

2.1.1 Routing . 8
2.1.2 Challenges . 9

2.2 B.A.T.M.A.N. 11
2.2.1 From OLSR to BATMAN . 11
2.2.2 BATMAN Protocol Explanation 11
2.2.3 BATMAN Daemon vs. BATMAN Advanced 12

2.3 Proxy Certificates . 13
2.4 Attacks on Mobile Ad Hoc Networks 14

2.4.1 Wormhole Attack . 14
2.4.2 Suppress Replay Attack . 15

2.5 Related Work . 15

3 System Design 17
3.1 Brief Overview . 17

xiii

CONTENTS

3.1.1 Initial Authentication . 17
3.1.2 Continuous Authentication . 18

3.2 Requirements . 19
3.2.1 Scenario . 19
3.2.2 List of Requirements . 20

3.3 Why use Proxy Certificates? . 21
3.4 Design Overview . 22

3.4.1 Entity Explanation . 23
3.4.2 Simple Example . 24

3.5 Authentication Phase . 26
3.5.1 Node Discovery . 27
3.5.2 Authentication Handshake . 28
3.5.3 Out-Of-Band Authentication 30

3.6 Authorized Operation . 30
3.6.1 Keystream generation . 31
3.6.2 Using One-Time Passwords from Keystream 33
3.6.3 Discovering Additional New Neighbors 34

3.7 Detailed Entity Description . 34
3.7.1 Proxy Certificate . 34
3.7.2 Service Proxy . 38
3.7.3 Authentication List . 38
3.7.4 Neighbor List . 39

3.8 Authentication Module Messages . 41
3.8.1 Node Discovery . 41
3.8.2 Authentication Handshake . 42
3.8.3 Keystream-Material Message 43
3.8.4 Modified Routing Announcements 44

4 Implementation 47
4.1 OpenSSL Library . 47
4.2 Authentication Module . 47

4.2.1 AM Thread . 48
4.2.2 AM Sockets . 48
4.2.3 Main Operation of the AM Thread 49

4.3 Proxy Certificates . 49
4.3.1 Generating PC Requests . 51
4.3.2 Generating PCs . 52
4.3.3 Verifying PCs . 52

4.4 Authentication List . 52
4.5 Neighbor List . 53
4.6 Keystream Generation . 53
4.7 Using One-Time Passwords . 54
4.8 Changes to the BATMAN Protocol 54

4.8.1 POSIX.C . 54
4.8.2 BATMAN.C . 55

xiv

CONTENTS

4.8.3 SCHEDULE.C . 55

5 Testing & Results 57
5.1 Test I - Initialization Phase . 57

5.1.1 Hypothesis . 57
5.1.2 Setup . 58
5.1.3 Procedure . 58

5.2 Test II - Route Convergence . 59
5.2.1 Hypothesis . 59
5.2.2 Setup . 60
5.2.3 Procedure . 60

5.3 Results . 61
5.3.1 Initialization Phase . 61
5.3.2 Route Convergence . 62

6 Discussion 65
6.1 Modified Routing Announcements Vulnerability 65

6.1.1 Wormhole Attack . 65
6.1.2 Suppress Replay Attack . 66
6.1.3 Possible Solution to the Suppress Replay Attack 66
6.1.4 Possible Solution to the Wormhole Attack 67

6.2 Key Usage . 68
6.3 Future Work - Extending the System Design 68

6.3.1 Initial Authentication with Long-Lived Public Key Certificates 69
6.3.2 Network Merging . 69
6.3.3 Multiple Service Proxies . 72

6.4 Experience with OpenSSL . 73
6.5 Out-Of-Band Authentication . 73

7 Conclusion 75

References 80

A Source Code 81
A.1 Complete Source Code . 81
A.2 Code Snippets . 81

A.2.1 AM Sockets Setup . 81
A.2.2 Proxy Certificate Extension 82
A.2.3 Setting Subject Name in PC 83
A.2.4 Adding Trusted Node to AL 83
A.2.5 Adding Trusted Neighbor to NL 84
A.2.6 Removing Trusted Neighbor to NL 85
A.2.7 Generate Ephemeral Key . 85
A.2.8 Generate Keystream . 86
A.2.9 Extension in BATMAN Class 87
A.2.10 Extension in SCHEDULE Class 89

xv

B Lab Setup 91

C Test Results 93
C.1 Numerical Results . 93

C.1.1 Test I - Original BATMAN 93
C.1.2 Test I - Modified BATMAN 94
C.1.3 Test II . 94

C.2 Logs . 95

D Scientific Paper 97

List of Figures

2.1 Difference between a regular infrastructure network and an ad hoc
network . 8

2.2 BATMAN’s Originator Message (OGM) packet format. 12
2.3 Flow of one OGM originating from the left-most node. 13
2.4 Wormhole attack between node A and B. 15

3.1 Different entities in the Simple Example. 24
3.2 Authentication handshake and keystream-material sharing between a

new node A and the SP. 26
3.3 Another node B joins the network from previous figure. 27
3.4 Discovery Phase between a SP and an unauthenticated node A. . . . 28
3.5 Handshake between a SP and an unauthenticated node A. 29
3.6 Keystream generation based on the supplied Nonce, Key and IV. . . . 32
3.7 Packet format for keystream-material messages. 43
3.8 One-time passwords and their sequence numbers appended to routing

announcements. 45

4.1 Main program flow in AM class. 50
4.2 Modified routing announcement (OGM) for extended BATMAN. . . . 54
4.3 IF-Statements in the Batman Class 56

5.1 Physical network layout used in test 1. When using the modified
version node B acts as the SP of the network 58

5.2 Physical network layout used in test 2. The Laptop (node C) is moved
further out of range and is periodically rejoining the network when a
Tablet Pc (node D) is moved within range. When using the modified
version node B acts as the SP of the network 60

5.3 In a network of three nodes, the time spent by the Service Proxy (SP)
from its first neighbor discovery and until both neighbors are added
to its routing table. 62

5.4 Routing path convergence time observed by a distant source node to
another sink node in the network. The source node is only sporadi-
cally connected to the network through a mobile intermediate node. . 63

6.1 Scene from scenario with actors from multiple organizations. 70

xvii

List of Tables

3.1 Requirements based upon our simplified and general scenario. 20
3.2 Values in Proxy Certificate 0 (PC0) 37
3.3 Values in Proxy Certificate 1 (PC1) if issued by the PC0 above. . . . 37
3.4 Authentication List (AL) content . 38
3.5 An Authentication List (AL) in a network with three trusted nodes. . 39
3.6 Neighbor List (NL) content . 40

4.1 Trusted node struct of the AL. 52
4.2 Trusted neighbor struct of the NL. 53

C.1 Test I using Original BATMAN. 93
C.2 Test I using Modified BATMAN. 94
C.3 Test II using both BATMAN versions. 94

xix

Chapter 1

Introduction

We have become accustomed to an almost complete presence of digital networks in
our daily lives. Everywhere you go, you can either plug your laptop into an ethernet
slot, connect your iPad to an available wifi hot spot, or just use your cell phone
via 3G mobile data network. However, this is not universally true throughout the
world. Many places are sparsely populated, or the people living there do not have
the resources to deploy such networks.

In emergency and/or military situations, this often applies. Even if it didn’t, the
networks may have been put out of operations due to the nature of the emergency
(i.e. tsunami destroying the infrastructure). As recent events here in Norway have
shown, internal errors might paralyze the whole network infrastructure1 making
emergency relief ineffective2, creating a sound argument for having a separate backup
emergency network. The military might also be in an hostile environment where they
cannot trust the network in place altogether.

Emergency search and rescue and military tactical operations can greatly benefit
from the use of digital communication for sharing operation critical information.
If they have no trusted data network available, they should therefore set up one
themselves. A realistic approach would have to be easy and quick to set up and be
self-managing, thus requiring minimal maintenance. It should to an extent always
be available to the participants wherever they go, which calls for using a wireless
network. Last but not least, the network needs to be trusted, i.e. you should trust
that the infrastructure is not compromised and that the communicating parties on
the network are who they claim to be.

A Mobile Ad Hoc Network (MANET) solves some of these requirements. It does not
need an existing communication infrastructure, it is self-organizing and the network
coverage range can easily be extended by placing intermediate nodes in strategic

1http://www.dagbladet.no/2011/06/16/nyheter/innenriks/telenor/16942385/ (Norwegian)
2http://www.dagbladet.no/2011/06/11/nyheter/ver/flom/naturkatastrofer/innenriks/

16880835/ (Norwegian)

1

http://www.dagbladet.no/2011/06/16/nyheter/innenriks/telenor/16942385/
http://www.dagbladet.no/2011/06/11/nyheter/ver/flom/naturkatastrofer/innenriks/16880835/
http://www.dagbladet.no/2011/06/11/nyheter/ver/flom/naturkatastrofer/innenriks/16880835/

CHAPTER 1. INTRODUCTION

locations. The latter requirement however, is a more challenging task in MANETs.

With the lack of infrastructure in MANETs and no guarantees that they are con-
nected to the Internet, establishing trust between the nodes becomes different from
how this is done on the Internet where we can rely on e.g. Public Key Infrastruc-
tures (PKIs).

In this thesis I will propose and implement a solution suggestion to establish a trust
mechanism, i.e. an authentication scheme, which combines features of a typical PKI
with some of the ideas behind Web Of Trust (WOT) [Zim95]. The system design
is presented in two parts, the part which has been implemented in Chapter 3, and
the ideas that I did not have time to implement are discussed as further work in
Chapter 6.

As one might expect, it is a very challenging task to achieve strong security for
MANETs and still have the benefits of its simple “plug and play” design. As real
world implementations go, there are a few trade-offs, and security cannot always win.
This design will not try to be 100% secure, but should be secure enough to deploy in
emergency situations. To back this claim, the Norwegian Army recently stated that
their new computer security guidelines is to rather have a usable (available) system
which might be open to attack, instead of a bad system which is impenetrable - as
long as they are able to monitor and take action against potential attacks3.

1.1 Motivation

The 7.0 magnitude earthquake that struck Haiti in 2010 showed us how huge relief
efforts easily become very inefficient when huge amounts of emergency relief person-
nel work at a scene with little or scarce communication throughout the area4. With
a trusted communication network like a secure MANET an operation like this could
become much more efficient, bringing the right amount of help to the right places
and at the right time.

1.2 Contributions

This thesis presents a novel design to achieve authentication and trust between nodes
in a secure ad hoc network. The popular ad hoc routing protocol called BATMAN
has been extended to become an instantiation of said design, which has never been
done before. Additionally, the use of proxy certificates for trust establishment for
ad hoc networks is also a novel approach to the problem.

3http://www.tu.no/it/article287598.ece (Norwegian)
4http://www.wired.com/magazine/2010/04/ff haiti/

2

http://www.tu.no/it/article287598.ece
http://www.wired.com/magazine/2010/04/ff_haiti/

1.3. OBJECTIVES

1.3 Objectives

The main objective of this thesis is to design and implement an authentication
extension to ad hoc networks based on a known routing protocol.

Secondly, other design ideas, or things that was supposed to be in the design but
did not make the time frame is discussed upon in contexts of both security and real
world performance.

Last, but not least, testing of the proposed design’s implementation should be done
to compare the performance of the new implementation against the original routing
protocol.

The problem description also mentions testing the implementation against known
security attacks. However, my responsible Professor Stig Frode Mjølsnes claimed no
such tests were necessary as the security of this design should rather undergo peer
review and testing, therefore these tests have not been done.

1.4 Limitations

1.4.1 IP Address Configuration

Autoconfiguration of network interfaces for ad hoc networks is a huge and difficult
task and will not be addressed in this thesis. Throughout this thesis the assumption
is that all nodes trying to participate in the same network is pre-configured with a
valid and unique IP on the correct subnet. It is also assumed their network interfaces
are correctly set up to connect to the correct wireless channels.

1.4.2 Detecting malicious behavior

One attack vector which will not be discussed in this thesis is if a legitimate node
acts maliciously, which might happen if the private key of a legitimate node is
compromised. The solution proposed in the thesis assumes all trusted nodes acts
with good intentions. There have been much research about detecting malicious
behavior in ad hoc network [PM04] [DOG+].

However, these kind of solutions are mainly designed for networks without any
authentication scheme at all, and is therefore just investigating malicious behavior
without trying to detect whether a node is compromised or not. These proposals
might therefore not be of the greatest interest, but should be studied to see if any
of their features can safely be applied to an ad hoc network with an authentication
system in place.

3

CHAPTER 1. INTRODUCTION

1.5 Method

The primary research method conducted in this thesis is the design science paradigm
for Information Systems research as described in [HM03]. The model and method ar-
tifacts of this paradigm are described in Chapter 3 whereas the instantiation artifact
is described in Chapter 4.

Much of the design (method artifact) comes from the specialization project last fall
[BG10], but some aspects of that design has been changed during the course of the
study and implementation in this thesis.

1.6 Document Structure

This thesis report is structured as follows:

Chapter 2: Background aims to give the reader the necessary insight about the
technologies, ideas and theories discussed later in this thesis.

Chapter 3: System Design proposes an original solution for an authentication
scheme for MANETs.

Chapter 4: Implementation presents the implementation of the system design.
The implementation is a modification of the Better Approach To Mobile Ad-hoc
Networking (BATMAN) source code.

Chapter 5: Testing & Results devise different tests for checking the performance
of the implementation compared to the original BATMAN implementation, and
presents the results of the tests.

Chapter 6: Discussion looks at some of the possible vulnerabilities in the pro-
posed design, talks a little about the experience of implementing such a system, and
takes up issues regarding extending the proposed system design even further.

Chapter 7: Conclusion makes conclusions about the security, and performance
of this system as well as how well it fulfills the requirements for the implementation.

Appendix A: Source Code shows a few of the most necessary code snippets and
links to the full source code available online.

Appendix B: Lab Setup shows how the machines used in the lab and tests were
set up.

Appendix C: Test Results presents the numerical results and the logs produced
in the tests.

Appendix D: Scientific Paper about adding security to the BATMAN protocol

4

written by myself, Anne Bowitz, and our supervisors Martin Jaatun and Dr. Lawrie
Brown.

Chapter 2

Background

This chapter aims to give the reader the necessary background to ad hoc routing,
attacks on ad hoc networks, and about the proxy certificates concept in order to
understand the concepts and discussions of this thesis.

2.1 Mobile Ad Hoc Network

An ad hoc network is a network of nodes which communicate with each other and
through each other, i.e. nodes act as both regular end nodes and as intermediate
nodes, similar to routers in regular networks. Because nodes in an ad hoc network
can route packets from one node to another until its destination, ad hoc networks
do not need an infrastructure with routers such as regular networks do [Per08].
Without an infrastructure ad hoc networks can be established spontaneously and
with no, or minimum, pre-configuration depending on the implementation in use.

Figure 2.1 depicts the difference between a regular wireless network and an ad hoc
network. In 2.1a there are three mobile nodes connected to each other through two
wireless access points (infrastructure), while in 2.1b there are five nodes connected to
each other and through each other. In infrastructure mode an end node only accepts
packets addressed to itself, while in ad hoc mode the node will try to forward packets
addressed to other nodes (on the network layer). They will however not accept
packets sent to other link-layer addresses.

A Mobile Ad Hoc Network (MANET) is a subset of ad hoc networks, in which
nodes are specified as non-stationary wireless nodes, i.e. a MANET consists of
several mobile nodes communicating with each other, and through each other even
while on the move. With MANETs nodes are always on the move and must therefore
update their routing tables continuously to make sure full paths between nodes are
updated as quickly as possible, i.e. a minimal routing path convergence is necessary.

7

CHAPTER 2. BACKGROUND

(a) Infrastructure Mode (b) Ad Hoc Mode

Figure 2.1: Difference between a regular infrastructure network and an ad hoc net-
work

In this thesis the terms “network”, “MANET”, and “ad hoc network” are used
interchangeably meaning a “MANET” as described in this section unless otherwise
specified.

2.1.1 Routing

There are many routing protocols for ad hoc networks and some of the popular
protocols are OLSR [CJA+03], B.A.T.M.A.N. [NALW10], Babel [Chr11], DSDV
[He02], and AODV [PBRD03] which all fall into one of the two main categories of
ad hoc routing - i.e. “reactive” and “pro-active” routing protocols. In this thesis a
pro active routing protocol is used in the system design, and as such an introduction
to this type of protocol is necessary.

Pro-active Routing Protocols

As the name suggests, a pro active routing protocol finds or creates routing paths
before, i.e. pro actively, the paths are requested. Essentially this means that the
routing protocol on a node has to regularly share routing information with other
nodes it can communicate with. This can be done in a huge variety of ways - from
storing full paths to all known nodes and broadcast this information to all nodes

8

2.1. MOBILE AD HOC NETWORK

regularly, to only storing a first hop in the direction of the known nodes, and only
telling your neighbors that you have a route to some other node instead of the full
route.

Each method might have some advantages over the other, i.e. storing full paths and
sending all this information to all nodes in the network might minimize the chances
of routing loops and route flappings, but this method would have a huge overhead in
signaling traffic. The latter method would have much less overhead, but it is more
difficult to avoid routing loops and/or route flapping.

Reactive Routing Protocols

In opposition to pro-active protocols, reactive protocols calculates and updates
routes when they are needed, i.e. when data is being sent. The advantages of
this strategy is conserving power used in obsolete/non-necessary routing calcula-
tions, but the downside being that the protocol might react more slowly to topology
changes.

2.1.2 Challenges

There are a multitude of challenges to solve in regards to ad hoc networking, and
especially so in mobile ad hoc networking. First there are challenges regarding
routing such as route flapping and routing loops, then there is the issue of power
conservation as mobile ad hoc nodes usually runs on battery power, and last, but
definitely not least, there is the issue of security.

Route Flapping

Route flapping is a term describing rapid route changes when there are multiple
possible routes between two nodes. Sometimes two routes might be almost equally
good and might stay that way for a while, which might lead routes in a node’s
routing table to constantly change between the two. In such scenarios a routing
protocol might solve the problem by not changing routes unless the other route is a
significantly better route, or if it has been slightly better for a longer period of time.
Which is the better solution is difficult to determine and is one of many reasons why
there are a huge amount of contesting ad hoc routing protocols, and this question
remains unresolved.

9

CHAPTER 2. BACKGROUND

Routing Loops

You have a routing loop if a path between two nodes passes through one or more
node(s) on the route more than once. When nodes have wrong, incomplete, or just
different routing information from one another then two nodes in the network might
choose to route the same packets through different paths, which might lead the
route to eventually return to nodes which have already received and forwarded said
packets.

In a MANET where routes might change very often, the chances of two nodes having
different routing information is high. Routing loops can therefore become a severe
problem in MANETs, suggesting implementations should use a protocol that has
some mechanisms to minimize the chances of routing loops, and/or detecting routing
loops and removing them after the fact.

Power Conservation

With mobile nodes in a MANET power consumption can become a huge hindrance.
Because pro active routing protocols sends routing information regularly, even if they
are not needed, they might be wasting energy compared to reactive protocols that
only calculates routing paths when application data is sent through the network.

This issue will also be very much affected by the security implementation on top of
the ad hoc routing protocol. If. for example, every packet is to be digitally signed,
a hashing operation and an public key encryption operation would be performed on
each packet - using a lot of energy. When designing the authentication solution this
issue needs to be addressed.

Security

Security can be divided in multiple fields of interest such as (but not limited to)
confidentiality, integrity, authenticity, and access control to name a few. Whatever
the security feature is, it usually depends on authentication.

Achieving a secure initial authentication is a very difficult task even in regular
networks, but using a verifiable identity based upon this initial authentication is
conquered using Public Key Infrastructures (PKIs). In a MANET, possibly without
Internet access, this task is again very difficult. Therefore, one ends up with the
original problem - doing initial authentication all over again. As this is topic is
greatly discussed throughout the thesis there is no point in elaborating more at this
point.

10

2.2. B.A.T.M.A.N.

2.2 B.A.T.M.A.N.

BATMAN [NALW10] is an increasingly popular routing protocol for wireless ad
hoc networks, as seen by the fact its taken into the Linux kernel net tree1. The
name is an abbreviation for “Better Approach To Mobile Ad hoc Networking”. The
motivation behind developing BATMAN was to replace the Optimized Link State
Routing Protocol (OLSR) [Mes10] because of the inherent difficulties that protocol
has, as explained below.

2.2.1 From OLSR to BATMAN

OLSR is a pro-active routing protocol, which means that participating nodes reg-
ularly exchange routing information with each other. According to the BATMAN
developers the problem with OLSR is that every node in the network calculates the
whole routing path, which is a complex way to do it. Not only is it difficult to make
sure all nodes have the same information at the same time, it also needs (relatively)
much storage and computation time. If nodes sit on different routing information
this concept leads to routing loops and heavy route flapping. The result is many
patches to the protocol that defies the protocol standard in order to make it more
suitable [Mes10].

The BATMAN developers therefore wanted to start with a clean slate. They decided
amongst other things that each node should only know the next hop, i.e. the link-
local neighbor that is the path between itself and the destination. In many ways,
what they did was to make a simpler and easier to understand protocol. For instance,
the way BATMAN calculates the optimal route, i.e. the next jump, is by comparing
the number of routing messages it has received from each node and who was the
last sender.

2.2.2 BATMAN Protocol Explanation

The routing messages sent in BATMAN are called Originator Messages (OGMs).
Figure 2.2 shows the packet format with all header fields. The OGM format has
changed since the draft specification was published [NALW10], but there is no official
publication with the new packet format as of yet. The updated packet format can
be found in the project’s internal documentation2. The packet format found in the
draft specification belong to the older version III of the BATMAN algorithm. The
algorithm used in this thesis is version IV.

The real workhorse of the packet is the “Originator Address” field which carries
1http://www.open-mesh.org/wiki/open-mesh/2011-03-17-batman-adv-and-the-penguin
2http://gitorious.org/batman-adv-doc/

11

http://www.open-mesh.org/wiki/open-mesh/2011-03-17-batman-adv-and-the-penguin
http://gitorious.org/batman-adv-doc/

CHAPTER 2. BACKGROUND

Figure 2.2: BATMAN’s Originator Message (OGM) packet format.

the host address of the node ’A’ that broadcasted the OGM. When a node ’B’
receives this message it checks if the originator address and source address of the IP
header are the same - if so the two nodes are direct neighbors. B then forwards the
OGM only changing the “Time To Live (TTL)” and “Previous Sender” fields. B’s
neighbors who receive this OGM from A through B also forwards the packet and
so on. All OGMs inside the BATMAN network are broadcasted and rebroadcasted
until the TTL has dropped to zero, or until the nodes receive an OGM they have
previously sent themselves.

This way all OGMs will be received and rebroadcasted by all nodes in the network
and all nodes will learn the existence of each other and which nodes are the first
hop between them and the other nodes, i.e. the first hop of the path. All nodes and
their first hops in their paths are stored in a list called an “Originator List”.

Figure 2.3 shows how an OGM is broadcasted and forwarded throughout the net-
work. The packet originates from the left-most node, and for each node that receives
the packet, they forward it to their neighbors again.

When a node which has already received and forwarded an OGM receives the same
OGM from another node at a later point - it drops that packet so the network
will not get flooded by forwarding the same OGMs until its TTL is zero. This is
also necessary in order to prevent routing loops. BATMAN uses sliding windows to
detect whether an OGM has been received before or not.

2.2.3 BATMAN Daemon vs. BATMAN Advanced

There are two completely different versions of the BATMAN ad hoc routing pro-
tocol3, and the one described so far has been the BATMAN Daemon, or batmand.
This version has the benefits of being a network layer protocol making the authenti-
cation scheme proposed in this thesis sound. However, there is a new version called
BATMAN Advanced, or batman-adv, which operates on the link layer instead. This

3http://www.open-mesh.org/wiki/open-mesh/BranchesExplained

12

http://www.open-mesh.org/wiki/open-mesh/BranchesExplained

2.3. PROXY CERTIFICATES

(a) TTL = 50 (b) TTL = 49

(c) TTL = 48 (d) TTL = 47

(e) TTL = 46

Figure 2.3: Flow of one OGM originating from the left-most node.

version breaks the standard layering principle as it routes packets throughout the
network on the link layer, encapsulating everything above such as IP and DHCP
packets. Because of this huge difference the design proposed in this thesis will not
work with batman-adv, at least not without major changes to the design. Note
therefore that whenever BATMAN is mentioned in this thesis, it is the BATMAN
Daemon (version 0.3.2) which is being referred to.

2.3 Proxy Certificates

A Proxy Certificate (PC) is a X.509 Certificate “(. . .) derived from, and signed by,
a normal X.509 Public Key End Entity Certificate or by another Proxy Certificate

13

CHAPTER 2. BACKGROUND

for the purpose of providing restricted proxying and delegation within a PKI based
authentication system.” [TET+04].

The idea behind PCs was to overcome challenges with authentication using e.g.
Single Sign-On (SSO) in a Grid Computing setting [FKTT98]. Here a user might
want to initiate a process that runs over several entities in the grid, and maybe even
after the user has logged off. Therefore a way to delegate the user’s rights to the
entities running the processes for him was necessary.

Simply understood, a PC is a public key certificate signed not by an Certificate
Authority (CA), but by an End-Entity Certificate (EEC) or another PC. With such
certificates one can delegate rights on behalf of one self, i.e. if you issue a PC to
some other entity, that entity will be able to act on your behalf. PCs allows the use
of restrictions, given in a proxyPolicy field. This way the issuer can decide which of
its own rights the receiver shall have, granted the issued PC cannot have more or
elevated rights than the issuer of the PC.

2.4 Attacks on Mobile Ad Hoc Networks

There are a multitude of attacks on mobile ad hoc networks [GBS10], and a lot of
them are essentially Denial-of-Service (DoS) attacks such as jamming. However, in
this thesis attacks on the routing model is of more interest and below are two very
different attacks on our routing model.

2.4.1 Wormhole Attack

A wormhole attack is an attack in which the attacker is able to set up a so called
wormhole between two distant nodes in the network, and using this wormhole to
e.g. copy a packet (such as in a replay attack) and send it to a receiver at the other
end before the original packet arrives (preplay).

Figure 2.4 shows the idea behind the wormhole attack. Here we have a network
of trusted nodes (green) and two malicious nodes (red). The trusted nodes are
communicating via wireless links, which the malicious nodes are able to pick up. The
wormhole between the two malicious nodes can be a fiber channel, or it might just be
a wireless radio link where the two malicious nodes have much higher transmitting
power than the trusted nodes, extending their transmitting range.

The simplest attack using this model against an ad hoc routing protocol would be
for the first malicious node (M1) to copy a routing announcement from node A, send
it through the wormhole to M2, and have M2 forward the packet to node B using
both mac layer and network layer address spoofing. If successful, i.e. this packet
arrives before the re-broadcasts from the other slower nodes, it would fool node B

14

2.5. RELATED WORK

Figure 2.4: Wormhole attack between node A and B.

to believe that node A is a direct neighbor and he would update his routing tables
accordingly.

2.4.2 Suppress Replay Attack

A suppress replay attack, sometimes called a pre-play attack, is an attack in which
an attacker is able to intercept and suppress a packet, or parts of a packet in air.
For instance, if a packet appended with some secret is sent over a radio link, the
attacker might be able to jam the first part of the packet and receive the secret.
The original recipient would also just receive the secret part, but would on the link
layer drop the packet because there would be a Cyclic Redundancy Check (CRC)
mismatch (or no CRC at all).

At this point the attacker could be able to create a new falsified packet, and append
it with the secret - which the recipient might trust depending on the authentication
scheme used.

2.5 Related Work

There are many proposals of security designs for MANETs, and a very few actual
implementations based on some specific routing protocols. None of the implemen-
tations found by this author would be applicable for the BATMAN protocol, but
some of the design proposals probably would.

15

Seno et al. propose a system design based on a distributed CA, using clustering of
nodes and an offline/out-of-band authentication scheme [HSBW11].

Another related authentication scheme is proposed by Dey and Datta which have
a more mathematical approach to the problem [DD11]. This solution requires a
predefined unique ID and special hardware with a hidden and secure algorithm (i.e.
smart card), and is probably better suited for a military application than emergency
situations.

Sanzgiri et al. proposed an authentication scheme for ad hoc routing called Authen-
ticated Routing for Ad hoc Networks (ARAN), by adding a signature extension to
the AODV reactive routing protocol [SLD+05].

Additionally, some believe the computational costs using asymmetric keys for ad
hoc authentication is too great which lead to the Ariadne protocol [HPJ05], and the
Secure Routing Protocol [PH02].

Nyre et al. published a design of an hierarchical authentication system for the OLSR
ad hoc routing protocol [NJT09].

The problems with most of the related work are their complexity, high computational
costs and/or non-scalability when networks running implementations based on their
design grow large - and these things are what separates this thesis from the other
works.

Chapter 3

System Design

This chapter portrays the design for the proposed implementation of the secure ad
hoc network. The design here is based on a functional pro-active ad hoc routing
protocol. The routing is left to the chosen routing protocol, i.e. Better Approach To
Mobile Ad-hoc Networking (BATMAN), and the changes made will not affect the
routing algorithm. The system design is an extension of the protocol, which requires
nodes to be authenticated and trusted before being allowed into the network. To
strengthen the system each node also has to verify its identity periodically, or it is
dropped from the network.

3.1 Brief Overview

In this section a short version of the system design is described. It is far from
complete when it comes to explaining the entities, messages being sent, system
states, and why certain choices have been made. This section is suggested to read
through in its entirety just in order to get an overview of what the system does,
leaving the explanations to the subsequent sections.

3.1.1 Initial Authentication

The network setup starts with an out-of-band authentication where a master node,
hereafter Service Proxy (SP), verifies new nodes. How this is done can be up to the
application, but let us assume that the actors carrying their communication devices,
hereafter nodes, physically meet the SP at the scene and verify each others’ public
keys out-of-band.

When a new node is discovered by the SP using regular routing announcements as
part of the pro-active routing protocol, the SP will invite the new node to a hand-

17

CHAPTER 3. SYSTEM DESIGN

shake to establish a trust relationship between the two nodes. In the invite message
the SP shares its certificate. If the node can verify the public key of that certifi-
cate, it will request a proxy certificate. If the SP can verify the new node’s public
key, too, it will issue a proxy certificate with (possibly) the rights to participate
in building the Mobile Ad Hoc Network (MANET) by broadcasting its own and
re-broadcasting other trusted nodes’ routing announcements. Note that the routing
announcements of the new node will not have been forwarded by other nodes up
until this point, and therefore the new node and the SP would have had to be direct
neighbors throughout this handshake.

3.1.2 Continuous Authentication

After being issued with a Proxy Certificate (PC) the newly authenticated node
will periodically “broadcast” - unicast to each neighbor - a message containing an
ephemeral key and corresponding Initialization Vector (IV), a pseudo-randomly gen-
erated nonce, and a digital signature over this message. The ephemeral key is en-
crypted with the neighbor’s public key (hence multiple unicasts instead of an actual
broadcast), but the digital signature is generated using the hash of the unencrypted
key and the other contents of the message. If you at this point want to see how this
keystream generation works, you can jump ahead to Figure 3.6.

After sending this signed “broadcast” to each neighbor, the node itself and its neigh-
bors will generate a keystream from the ephemeral key, IV, and nonce. The node
will then append two new bytes from this keystream to each routing announcement,
and re-broadcasts of neighbors announcements, sent from this point forward with
a sequence number for the recipient to be able to match this “extract” with the
sender’s keystream at an offset given by the sequence number. If the reader want to
see how this message, called a keystream-material message looks like he or she can
jump ahead to Figure 3.7.

The neighbors accepts a routing announcement if and only if:

• the routing announcement is appended with a key extract and,

• it matches the sender’s keystream at the sequence number offset and,

• that sender’s sequence number has not been received earlier (replay).

This “key extract” of the keystream is comparable to regular One-Time Passwords
(OTPs) as used by e.g. online banks and it is important to note that they are
not “connected” to the routing announcements sent, meaning they do not provide
integrity for the packet.

18

3.2. REQUIREMENTS

Note also that each node has its own keystream, and that it shares the message
above, hereafter “keystream-material message”, with each of its direct neighbors.
Each neighbor then use this node’s keystream to verify its routing announcements.

Whenever a routing announcement is forwarded by another trusted node, that node
will replace the one-time password with an OTP from its own keystream. This
way every node only checks its direct neighbor for authentication, which is a design
choice. This proposal assumes that because every node is verified by the SP in the
first place, all nodes in the network will be able to trust each other, which also
means they will trust their neighbors to properly verify their neighbors again.

When a trusted node discovers a new neighbor, which is a trusted node in the
network, they first have to exchange their PCs and verify the signatures on the
certificates. Their knowledge of the corresponding private keys to their PCs are
verified later when they check each other’s digital signatures on the keystream-
material messages. Each of the two nodes then stores the other’s public key, subject
name, id, role, and address in a list called Authentication List (AL).

After a neighbor is added to the AL, the node can then also add the neighbor to
another list, called a Neighbor List (NL). This list is used to keep track of current
direct neighbors and their current keystreams. While nodes in the AL are kept in
that list throughout the lifetime of the network, or until the lifetimes of the nodes’
certificates have expired, a node in the NL is removed when it is no longer a direct
neighbor.

3.2 Requirements

Ad hoc networks have some desired characteristics such as quick and inexpensive
setup and being independent of communication infrastructure, but they also impose
great challenges regarding security. The challenges regarding security can vary de-
pending the purpose and environment of the network which will be covered in this
section.

3.2.1 Scenario

The design and implementation presented in this thesis is mostly based on an emer-
gency situation scenario, in which a communication infrastructure is unavailable.

If there is a major emergency situation such as an earthquake or tsunami, it is likely
that parts of or the entire communication infrastructure at the scene is destroyed or
temporarily down. The remaining communication lines will probably be congested,
so only a small amount of the communication actually goes through.

19

CHAPTER 3. SYSTEM DESIGN

In this situation, it is of great importance that Emergency Personnel, such as
Paramedics, Firemen, Policemen and possibly even the Military, are able to commu-
nicate efficiently and therefore independently of the public communication infras-
tructure. They need a network in order to manage the the operation, and therefore
availability is probably the most important trait of this network. Secondly, they
should be able to trust the communication on the network - i.e. messages sent are
from whom they claim they to be.

Also, being able to authorize new actors on the scene, such as the Red Cross, can
be critical to the operation. These new actors will probably not have the necessary
authentication tokens, i.e. certificates, required by the authentication scheme in the
network.

3.2.2 List of Requirements

Based on the scenario above these requirements can be extracted and made into
general requirements that needs to be addressed by the system design. The work
presented here is based on several sources, most prevalent being the research from
the OASIS project [Sva08] [TJN09] [NJT09] and the doctoral project of Eli Winjum
carried out at UniK [WSK06].

Requirement Description
R1 A node must be authorized in order to get full rights in a network [DLRS01],

[SDL+02]
R2 A node without a recognized authentication token should be able to become

authorized if necessary
R3 Networks need a master node to handle authentication of new nodes
R4 Access control (after initial authentication) should work without centralized

nodes
R5 Different networks should be able to collaborate [WSK06]
R6 Only master nodes can decide access policies of users/nodes
R7 Nodes must not be able to alter their access policies

Table 3.1: Requirements based upon our simplified and general scenario.

An early study produced security requirements of ad hoc networks demanding that
the routing logic must not be spoofed or altered to produce different behavior
[DLRS01]. R1 is constructed from that requirement. During the OASIS project,
a requirement ensuring different actors such as police, fire and medical professionals
can participate in the network, gives R2 [TJN09].

Because of R2 there needs to be some sort of authority managing the authentication
and access management, which leads to R3. However, verifying nodes access rights
after the fact should be possible even without the availability of central managing
nodes, SPs, (R4) - also a requirement given by the OASIS project.

20

3.3. WHY USE PROXY CERTIFICATES?

The doctoral project of Winjum recommends seamless radio coverage over the whole
crisis area, possibly requiring merging or at least collaboration between different
networks, R5.

R7 comes implicitly from R6 because R6 would be useless if regular nodes could
alter their privileges without the permission of a master or management node. R6 is
necessary in this design as no authentication is required prior to the network setup,
and it is therefore no way to know which rights one actor/node should have. As will
be discussed in Chapter 6 the network might also be able to recognize authentication
tokens, such as long lived certificates, issued prior to this setup. If this is the case,
one might have to re-evaluate or account for this in these requirements.

The OASIS project had another important requirement which is not covered here,
but is important to mention - there should be mechanisms in place to detect misbe-
having nodes, i.e. already trusted nodes that act maliciously. This detection is not
covered in this thesis as pointed out in 1.4.2, but is nevertheless important to take
notice of.

3.3 Why use Proxy Certificates?

PCs, as described in Section 2.3, are used to delegate rights on behalf of their issuers.
That means that the issuer, i.e. the SP, can choose to delegate all or a subset of
its rights to the receiver of the PC. This can be very useful in a situation where
the nodes themselves are unable to properly authenticate themselves with their pre-
existing Long-Lived Public Key Certificates (LLPKCs) because the SP on the scene
has no way to verify their certificates. This can be true if their certificates are issued
by an unknown root certificate (Certificate Authority (CA)) or simply if there is no
Internet access and the certificate is signed by an unknown entity.

In addition, proxy certificates commonly have a short valid lifetime compared to
regular certificates, meaning an implementation using proxy certificates does not
necessarily need to implement a certificate revocation scheme, which makes for less
management operations in the management-hostile environment that are MANETs.
If a certificate is compromised in a MANET, the time of exposure is limited because
of the short valid lifetimes on the PCs. Regular LLPKCs on the other hand, could
be compromised throughout the lifetime of the network, or until revocation lists
were brought to the scene, out-of-band or by achieving Internet access later on.

Also, the SP could be interested in giving the node rights the node would not usually
have, depending on the situation. This is easier to achieve when the SP can delegate
its own rights. Different nodes can be given different rights, as long as they are a
subset of the SP’s rights. There are countless of different potential rights that can be
useful for a network, given the situation they are used in, and here is a few possible
rights/privileges to give the reader an understanding of the possibilities they give:

21

CHAPTER 3. SYSTEM DESIGN

• Announce itself - let the MANET know of your existence

• Re-broadcast other nodes’ announcements - reshape the network topology

• Announce a gateway - give the MANET access to another network or the
Internet

• Use the gateway - allow you to communicate outside the MANET

• Send and receive messages with a defined application - full application rights

• Only receive messages from a defined application - limited application rights

The different choices are essentially up to the SP managing the network. One can
ask why this is necessary, and again it depends on the application. If you are setting
up a MANET on the scene of a disaster to assist emergency personnel, you could
have some actors be able to organize the effort by sending orders/commands to
the other actors, while some actors only are allowed to receive the orders. In this
situation it might be of great importance to know that only verified nodes are able to
give commands, but the importance of getting this information available outweighs
the need to verify the nodes/actors receiving this information.

3.4 Design Overview

The secure ad hoc network designed here does not change any fundamental workings
of regular ad hoc routing protocols. When nodes have been authenticated and they
have verified their neighbors respectively, the routing announcements are generated,
broadcasted, forwarded, and handled by the routing protocol almost as usual. The
only addition to the routing protocol is the addition of one-time passwords (OTP) to
the routing announcements, and the handling of said OTPs. The routing algorithms
themselves are left completely unchanged.

The proposed design should work with most pro-active ad hoc routing protocols
operating on the network layer with limited alterations - but this design is specifically
made for the BATMAN [NALW10] routing protocol chosen for its simpler design
compared to e.g. OLSR [CJ10] and because it operates on the third layer of the
Open Systems Interconnection (OSI) model [Zim80]. Whether this design would
work on a link-layer protocol is unknown, and there is still a discussion whether
having routing protocols on the link-layer is a good thing, as it breaks the layering
principles of the OSI model [MDK10]. How this design is incorporated, or added,
to the BATMAN protocol will be explained in Chapter 4.

The basic principle of the proposed design is that an authenticated node accepts
other authenticated nodes’ routing announcements and forwards them as normal,
while discarding routing announcements from unauthenticated nodes. One or more

22

3.4. DESIGN OVERVIEW

nodes in the network will assume a role as master node(s), or a SP, with the extra
capability of authorizing new nodes into the network. A special certificate called
a PC [TET+04] will be used for authentication after this authorization has taken
place such that other nodes in the network will be able to authenticate and accept
the new node.

3.4.1 Entity Explanation

Before a simplified example can be given, a few new entities in this design needs
to be explained further. This is the short version, just enough for the reader to
understand the example - the full description of these entities and why they are
necessary will be given in Section 3.7. Some of these entities are portrayed in Figure
3.1. The portrayed entities will be used as a template for other figures later in this
thesis report.

• Service Proxy (SP) is responsible for tasks similar to that of a CA and has
the master role in the network. The SP is the entity that authorizes new nodes
and signs their PCs.

• Proxy Certificate 0 (PC0) is a PC belonging to a SP signed by its regular
LLPKC. This PC has a certificate depth of 0, thus we refer to it as a PC0.

• Proxy Certificate 1 (PC1) is a PC signed by a PC0 (i.e. by the private
key of the SP). All authenticated nodes in one network, have at least one PC1
signed by a SP from that network.

• Authentication List (AL) is a list containing the necessary information
about all known and authorized nodes in the network. All nodes keep a local
copy of the AL which they use to authenticate other nodes in the network.

• Neighbor List (NL) is a list containing the current trusted direct neighbors
with a copy of their keystreams used for verifying their routing announcements.
The NL is a subset of the AL and a node must be found in the AL before it
can be added to the NL.

• Authenticated/Trusted Node is a node which has been issued a PC1 from
the SP and is considered a trusted node in the network. This node can take
part in sending its own routing announcements and forwarding other authen-
ticated nodes’ routing announcements, i.e. they take part in changing the
network topology.

• Unauthenticated Node is a node which has not yet been authorized, or has
been denied access by the SP. It does not possess a certificate for which the
other nodes can verify, and its routing announcements are ignored by other
trusted nodes in the network.

23

CHAPTER 3. SYSTEM DESIGN

Figure 3.1: Different entities in the Simple Example.

3.4.2 Simple Example

Two nodes are within transmitting range of each other, i.e. they are direct neighbors.
One of the nodes is a SP and the other is unauthenticated. The pro-active ad hoc
routing protocol used on both nodes regularly broadcasts routing announcements,
so the two nodes learn of each others’ existence - i.e. they “discover” each other.
Upon reception of a routing announcement from the unauthenticated node, the SP
will invite the node for a handshake. The invite message contains the SP’s PC0
which assumably the unauthenticated node is able to verify, possibly based on a
prior out-of-band sharing of public key fingerprints.

After verifying the PC0, the unauthenticated node will send a PC request with its
own public key. If the SP is able to verify the sender’s public key (same assumption
as above) and the SP decides this node should have access to network, it will create
and sign a PC for this node - i.e. the node is issued a PC1.

When the handshake completes both nodes will add the other node of the handshake
to their AL - storing their id, address, unique subject name, role, and public key. All
the steps up to this point is portrayed in the first half of Figure 3.2. As illustrated
by the color of the node circle, the new node (A in the figure) is authenticated after
receiving the issued PC1.

Next, both the newly authenticated/trusted node and the SP will send one another
a packet called a “keystream-material message” containing their current (or new in
the case of the trusted node) ephemeral key, IV, nonce value and a digital signature
over the hash of these values. Before sending this message, the ephemeral key part
is encrypted with the recipient’s public key to keep this information secret. Note
that the digital signature however, is computed over the unencrypted key in order
to re-use this signature for all neighbors the node has to send this message to.

Both nodes can now generate each other’s keystream, hence the name “keystream-
material message”, used to verify the sender of subsequent routing announcements.
The keystream, address, id, an empty “last sequence number”, and an empty sliding

24

3.4. DESIGN OVERVIEW

window of the other node is then stored in the NL.

From this point forward, the two nodes use a two-byte extract of the keystream as
an one-time password and appends it, together with a sequence number (for finding
the correct offset in the keystream), to future routing announcements. This goes for
both original routing announcements from the node itself, and when they forward
other trusted nodes’ routing announcements. The two nodes never re-use the same
extract from the keystream, hence the name “One-Time Password (OTP)”, and they
use a sliding window stored in their NL to keep track of which extracts they have
received from their neighbor. This last part is crucial in order to be able to drop
announcements containing re-used extracts, avoiding replay attacks.

Whenever a new node is discovered by the SP the procedure above repeats, and
a new addition is made to the AL and NL. Other previously trusted nodes will
learn the identity of new authenticated nodes when they discover the new node and
initiate a PC and keystream-material exchange, which will be discussed later.

Figure 3.2 shows a message sequence chart of the messages sent between two nodes
during the simple example. The second half portrays the messages sent in a keystream-
material message and that they are added to the NL after these have been received,
and after the AL-addition. Routing announcements without One-Time Passwords
are sent periodically throughout the sequence until keystreams are generated and
shared, but this is left out of the figure as they do not affect the nodes. Only the
routing announcements in the beginning and in the end that are appended with
OTPs are portrayed as they show how the handshake is initiated (by discovery) and
ended after successfully ending the handshake and keystream material sharing.

If a new node enters transmitting range of the two nodes, similar messages are
exchanged, as shown in Figure 3.3.

Here we see that after node B has been fully authenticated and started broadcasting
routing announcements appended with its own OTPs, he and node A will “discover”
each other. Up until this point node A has ignored node B’s routing announcements
because they have not been appended with any valid/recognizable OTPs.

After they’ve discovered each other they share their certificates as seen in the figure.
Before continuing they need to verify each other’s certificate, which is to verify the
signature on the PC1’s up against the public key of the SP.

When both nodes have verified each other’s certificates, they send each other their
keystream-material messages, in which they verify each others’ signatures to actually
verify each other as the legitimate owners of the certificates. If they are able to verify
each others’ signature they will add each other to their AL and NL, respectively.

25

CHAPTER 3. SYSTEM DESIGN

Figure 3.2: Authentication handshake and keystream-material sharing between a
new node A and the SP.

3.5 Authentication Phase

This section is devoted to explain the phases a node goes through before and when
authenticating itself to the network. These phases should be similar for most network
layer pro-active routing protocols as the main trigger of these phases are the routing
announcements sent as per normal operation of any pro-active routing protocol.
This phase is necessary due to requirement R1 from Table 3.1.

26

3.5. AUTHENTICATION PHASE

Figure 3.3: Another node B joins the network from previous figure.

3.5.1 Node Discovery

Upon entering the network area, the node is both unauthenticated and unknown
to the network. Because it uses a pro-active routing protocol, the node regularly
broadcasts routing announcements to be received by any potential node in the area.
At this point an assumption that all nodes are configured with unique addresses and
with the same netmask is done in order to focus on the security challenges, rather
the non-trivial task of assigning addresses in MANETs (See Limitations in Section
1.4.1). With this assumption all nodes within transmitting range of the new node
can receive its broadcasts.

Simultaneously, the node also listens to other nodes’ routing announcements. De-
pending on the time interval between the broadcasts and whether the nodes within
each other’s transmitting range are asymmetrical, they will discover each other ap-
proximately at the same time.

Figure 3.4 illustrates the routing announcements periodically sent by two nodes
until they discover each other, and how the SP enters the authentication handshake
state while the new node does nothing. One of the nodes have already assumed the

27

CHAPTER 3. SYSTEM DESIGN

Figure 3.4: Discovery Phase between a SP and an unauthenticated node A.

master role and is a SP while the other node is unauthenticated.

The SP will have a PC0 and its AL has only one entry - itself. Note that if it had
authorized another node at an earlier point in time (but within the lifetime of the
PC) that node’s values would also be represented in the AL, even if the node was
outside the network at this point in time (physically).

The new node does not have any PC at this point, unless it has a PC issued within
and valid only for another network. This is however not covered here, and it is
assumed the node has no certificate at all. The same goes for its AL, or one can
rather say it has an empty AL.

3.5.2 Authentication Handshake

Once the two nodes have discovered each other, the SP will enter an authentication
handshake state, while the unauthenticated node will not do anything. The authen-
tication handshake state of the SP, and later of the other node, does not obstruct
regular routing announcements to be sent. The current state only affects how the
Authentication Module (AM) operates, not how the original routing protocol op-
erates. Actually, the handshake and all other messages and operations handled by
the AM is executed in a separate thread and sent and received using another socket
than the rest of the protocol. This is further elaborated in the next chapter.

Because the unauthenticated node does not enter a new state upon the discovery

28

3.5. AUTHENTICATION PHASE

Figure 3.5: Handshake between a SP and an unauthenticated node A.

of the SP, which could just be a regular authenticated node as well, there will
be no deadlock if for some reason the SP should never initiate, or invite to, the
handshake. This could happen for a multitude of reasons where the two nodes lose
their connectivity between each other because of the flaky nature of wireless ad
hoc networks, or the assumed SP was only a regular authenticated, trusted, node.
From the routing announcements it is not possible to derive whether a node is simply
authenticated, or if it also has master role capabilities being a SP. It is only possible
to derive, or rather it seems, that a node is authenticated in some network or not.

While the new node is “waiting” for an invite, or simply not doing anything other
than announcing its existence - the SP generates an invite message which is a mes-
sage containing its PC0. The invite will be directly addressed to the new node, and
not broadcasted as regular routing announcements are. The SP will then wait for
a certificate request (PC Request) for a short predefined time before aborting the
handshake and entering its ready-state. If the two nodes discover each other once
more, the SP will once again try to invite the other node to the handshake. If this
fails several times, the SP will eventually ignore all the discoveries of the other node
(based on address) for a predefined time before it tries again.

If the new node is able to verify the SP’s public key it will use its public key pair and
generate a PC request which it will send back to the SP. This request abides by the
rules for making a proxy certificate [TET+04], setting the “Issuer Name” the same
as the “Subject Name” from the received PC0, the “Subject Name” as the “Issuer
Name” appended with its own unique Common Name, which is the hash value of
its own public key, and setting the “Serial Number” to the same hash value.

Before issuing the PC1 the SP also has to verify the public key received in the
request message. As before, the knowledge necessary to be able to verify the public

29

CHAPTER 3. SYSTEM DESIGN

key is assumed to have been communicated out-of-band prior to this setup. The
PC1 is appended with the proxy policies the SP deems fit for the node, and then
signed with the SP’s private key. After sending the PC1 to the new node the SP
will add the new node to its local AL and the new node will, after verifying the
signature on its newly issued certificate, store the issued certificate for later and add
the SP to its own local AL. In Figure 3.5 the different states associated with the
different messages during the handshake is shown.

3.5.3 Out-Of-Band Authentication

Above, only brief mention was made to how the initial verification of each node’s
public keys were made. For this purpose, many authentication schemes have been
produced, but when it comes to MANETs, possibly with no Internet connection,
proper authentication becomes a difficult task. In the discussion in Chapter 6 dif-
ferent schemes will be discussed, but here only one “scheme” is accounted for.

If you have no pre-shared information between the parties involved in the network,
the simplest way to authenticate a new node is to use an out-of-band authentication.
This adheres to the R2 requirement in Table 3.2. The implementation of such an
authentication scheme will be discussed in the next chapter, and will only be briefly
mentioned here. In the PGP model new users will have to share their public key
fingerprint with the SP physically or through a different communication channel than
the one the authentication process is supposed to secure, and vice versa [Zim95]. By
doing this, the SP can store the fingerprint and use it to check the received public
key in the PC request for authenticity in order to make sure the new node is run by
the actual person he met and verified physically. The new node can similarly verify
the SP.

To implement this, the application running the routing protocol and the authen-
tication service could either read a file for “allowed” fingerprints, or simply have
user interaction with a pop-up window showing the fingerprint and asking the user
whether to trust the public key or not.

In this design chapter and in the implementation chapter this part will be ignored,
and rather assume that if you are a direct neighbor of the SP, you are automatically
allowed to enter the network and therefore no real verification of the certificates are
done. This must however, be thought through and most likely changed (!) in a
real-world implementation.

3.6 Authorized Operation

When a node has been issued a PC and become a trusted node in the network, it is
almost ready to take part in the sending and forwarding of routing announcements.

30

3.6. AUTHORIZED OPERATION

But before a node can take part in the routing in the network, there has to be a
way for the node to continuously re-authenticate itself to make sure the node is still
who it says it is.

A common practice would be to sign each and every routing announcement from this
point forward, and this would probably work in terms of authentication. However, as
the network become “flooded” by routing announcement broadcasts, these signatures
simply makes the packets too large. A signature from a 1024 bits RSA key can be
up to 1024 (maximum) bits in raw size, or approximately 1392 bits long if encoded
with Base64 encoding. In comparison the whole routing announcement packet used
in BATMAN is only 144 bits.

As seen, signing every message just does not scale very well when signatures can be
close to 10 times the size of the original packet. The first solution to this problem
many might think of would be to only sign a very few of the announcements, peri-
odically. This however, would be totally disastrous as this would have no protection
against spoofing attacks whatsoever. An attacker could wait for a legitimate node
to send a signed announcement and after this send his own fake announcements
spoofed with the legitimate node’s addresses.

The novel solution proposed here however, takes use of OTPs instead. The newly
authenticated/trusted node, talked about earlier, now has to be able to append
OTS!s (OTS!s) to its routing announcements, and to verify other nodes’ OTP as
it receives routing announcements from them.

3.6.1 Keystream generation

The OTPs are actually smaller extracts of larger keystreams shared between direct
neighbors in the network. When a node started its routing protocol daemon and
before discovering the SP in the previous step, it generates a high entropy pseudo-
random master key and a regular pseudo-random IV. The master key needs high
entropy to be as random as possible, because the security of this design relies on
this key to both be secret and not guessable.

When the node is ready to share its keystream for the first time, the node will
generate a new ephemeral key by encrypting Kephemeral = EKmaster{i} where i =
1, 2, 3 . . . and a corresponding IV generated in the same manner as the previous IV
for the master key. In addition, a large nonce is generated with a pseudo-random
function, also in the same pseudo-random fashion as the IVs. To elaborate, this
pseudo-randomness does not need strong randomness with a high entropy like the
master key, it only needs to be (with high probability) different each time it is
generated.

With the current ephemeral key, generated with i = 1, IV and nonce, the node can
now generate its first keystream to be used as OTPs for its routing announcements.

31

CHAPTER 3. SYSTEM DESIGN

The keystream is generated by encrypting the nonce with the ephemeral key multiple
times, each time extending the size of the keystream. Each encryption is a full
“Cipher-block chaining” AES encryption, i.e. each encryption step referred to here
(and later) are actually multiple encryptions using the AES-CBC mode.

In the first encryption (full AES-CBC) the supplied IV is used, while in the next
iterations a 16 byte extract of the output from the previous encryption (ciphertext)
are used as IV. To explain, this is basically a Cipher-block Chaining (CBC) mode
encryption of multiple AES-CBC blocks. Figure 3.6 shows the process assuming the
ephemeral key, IV and nonce have already been created.

Figure 3.6: Keystream generation based on the supplied Nonce, Key and IV.

In the figure there are some boxes marked with “Full AES-CBC encryption”. This is
meant to illustrate that within each of those boxes there is a full AES-CBC encryp-
tion taking place, with multiple steps according to the OpenSSL implementation of
AES-CBC. The reader should also notice that as the ciphertext output of each of
those boxes are much larger than the AES block size, therefore only an AES block
size extract at the end of the ciphertext is used as an IV for the next encryption
step, instead of the whole ciphertext which would usually be done in CBC as there
the ciphertext corresponds to the correct block size.

The lifetime of a node’s keystream is determined by two factors. First, the keystream
is updated at a regular time interval (60 seconds is used in this thesis’ imple-
mentation). Second, the keystream could be exhausted before this time interval.
For whichever comes first, a new keystream has to be generated, and shared with
all direct neighbors. Each time a new keystream-material message is created, the
ephemeral key is generated by increasing the plaintext i. I.e. the second time a
keystream is generated, the ephemeral key is EKmaster{2}. Note that for the new
keystream, a new IV and a new nonce are also pseudo-randomly generated.

Now, before this keystream can be used to authenticate routing announcements, the
node will have to share the keystream with its direct neighbors. This is done by
sending all the material necessary for the neighbor to create the keystream them-
selves and signing the message with your private key. I.e. the node will have to
send the ephemeral key, IV and nonce to its neighbor. Here it is crucial that the

32

3.6. AUTHORIZED OPERATION

key stays secret between the neighbors, therefore the node will have to encrypt the
ephemeral key with its neighbors’ public keys and send a unicast message with the
keystream material to each one of them. The details around sharing the keystreams
will be further explained in the following section regarding all messages sent in the
network (3.8).

The design behind the keystream changed during implementation, and is now a
hybrid between different known keystream generation schemes. This scheme would
possibly suffice, but should be replaced with a well known and tested scheme before
put to use in a real life scenario, or put to a great deal of testing before use. A well
known scheme that could be used is the S/Key scheme [Hal94] where if N amounts of
OTPs are needed, they are generated by creating Hash1(secret), Hash2(secret), . . . ,
Hashn(secret), where each hash or digest value is one password. The Hashn(secret) is
sent to the neighbors in the keystream-material sharing message while the passwords
are stored in the reversed order (from n to 1) in the senders keystream. The secret
is discarded.

3.6.2 Using One-Time Passwords from Keystream

Once the keystream has been shared with the neighbors, the node will begin to
extract smaller chunks of the keystream to use as OTPs for each routing announce-
ment it generates itself, or forwards from other trusted neighbors. In addition to
the OTPs appended to the announcements, the node keeps a counter, or sequence
number, to keep track of which OTP it has used in order not to use the password
twice.

Similarly the node will have to both verify the correctness of the OTPs received
in announcements from its trusted neighbors, and that they have not been received
before. If the OTP has been received before the announcement needs to be dropped,
and assumed to be part of a replay-attack. If the node would have accepted re-using
of one-time-passwords, an attacker could listen and record valid one-time-passwords
and re-use them with false routing information in order to disrupt the routing in
the network.

How to check for replayed one-time-passwords is further elaborated in the next
chapter, but simply put - a sliding window that records the last announcements is
used, setting a bit value to true if an announcement with the corresponding sequence
number has been received, and zero if not.

Note that this scheme is fully based on trust. You trust that your trusted neigh-
bors only send you their own announcements and forwards announcements from its
trusted neighbors. One can therefore say there is a trust-chain where you do not
explicitly verify the authenticity of all nodes’ announcements, because you trust
your neighbors to verify it for you, and their neighbors to verify it for them again
and so on. This scheme will not detect malicious behavior if some trusted node in

33

CHAPTER 3. SYSTEM DESIGN

the network is compromised, and would allow the malicious behavior to continue.
This is however mentioned under limitations in Section 1.4.2.

3.6.3 Discovering Additional New Neighbors

Up until this point, the node has only discovered the SP and after the authentica-
tion handshake shared their keystream material in order to be able to trust each
others’ routing announcements. Because of the trust mode being used in this design,
each routing announcement from the SP are trusted, even if they are re-broadcasts
(forwarded by the SP) originating from other nodes not yet known to the new node.
This means that the routing table of our node could possibly fill up with unknown
nodes, reachable through SP. To have all data streams go through the SP however,
would be less than ideal. If some of those nodes are direct neighbors of our node,
they should be able to communicate directly.

Therefore a discovery mode of other trusted (by the network at least) nodes needs to
be handled. Until now, if you received any routing announcements from an unknown
neighbor you would have dropped the packet. After becoming an authenticated
node, the node will now instead engage in a exchange of PCs with the other neighbor,
given the neighbor is authenticated. If the neighbor sends you a PC with a signature
of the SP which you are able to verify, you will add the node to your AL and send
him your PC - if you have not sent it already.

The verification of the ownership of the PC is not performed before receiving the
keystream-material message which occurs soon after sharing PCs. As a remainder
the keystream-material message is signed with the private key of the sender. There-
fore, assuming the nodes has not been compromised, the ownership of the neighbors
are verified by checking the validity of said signatures.

3.7 Detailed Entity Description

3.7.1 Proxy Certificate

In a scenario where actors try to communicate with each other, without the Internet
or other communication infrastructure available one cannot depend on a Public Key
Infrastructure (PKI) for authentication of the actors. One needs the option of being
able to verify actors physically (out-of-band) and then issuing them an authentica-
tion token to be used during this scenario. The reasoning to use a certificate at all
is due to requirement R4 from Table 3.1, because with an easily verifiable certificate
for all trusted nodes in the network all nodes can continue to verify each other even
if the SP is unavailable. This is where the Proxy Certificates comes in handy, while
regular End-Entity Certificates (EECs) are not as easy to verify, and also should

34

3.7. DETAILED ENTITY DESCRIPTION

not be used for issuing new regular certificates, per RFC2459 [HFPS99].

Using PCs this issue can be handled in a well-defined manner. The field “pCPath-
LenConstraint” is used for constraining the depth of the certificate chain below the
PC itself. I.e. if a PC has a pCPathLenConstraint of zero, the PC cannot issue any
other PCs itself, while if the pCPathLenConstraint value is one the PC can be used
to issue new PCs which again will have a pCPathLenConstraint of zero, and so on.

For our scenario, the pCPathLenConstraint value should never exceed one, or else it
will once again be complex to handle path validations. Every node trying to verify
a PC need to know the issuer of the certificate directly, and not indirectly through
root CAs as is possible if you have a PKI.

A PC is almost a regular certificate, except for some values that are forbidden to
use, some values that are required to use, and some values that must be used in a
well defined way [TET+04]. Below are the special fields that are included in this
system design:

• Subject Name: <Issuer Name> + “CN: <SHA-1(Public Key)>”

• Issuer Name: <Subject Name of Issuer>

• Serial Number: “<SHA-1(Public Key)>”

• X509v3 Extensions:

– Key Usage: “Digital signature, Key encipherment”
– ProxyCertInfo:
∗ pCPathLenConstraint: <0 or 1>

∗ proxyPolicy:
· policyLanguage: “id-ppl-anyLanguage”
· policy: “Role:<sp or authenticated>,Routing:<full or limited>,

Application:<full or limited>”

Per RFC3820 [TET+04] the subject name has the constraint that it “should be
unique amongst all Proxy Certificates issued by a particular Proxy Issuer”. The
modal verb “should” used in this requirement is used in order to ease this require-
ment so that a method creating a unique name with a high probability, but not
provable uniqueness, may be accepted. Therefore using a SHA-1 digest of the pub-
lic key used by the node is regarded as “good enough”, or “unique enough”. The
reason why this subject name should be unique is because it is the identity which
we later try to verify during authentication.

The same uniqueness requirement is true for the serial number, and allows the serial
number to be the same as the subject name except for the “CN:” prefix.

35

CHAPTER 3. SYSTEM DESIGN

The specifications requires the “Digital signatures” value for the “Key Usage” ex-
tension because a PC can be used to sign the keystream material messages. “Key
encipherment” is also necessary in this extension because other neighbors need to
use your public key to encrypt their ephemeral keys when they want to share their
keystream with you.

The “policyLanguage” field is set to the default value, leaving the language used in
the policy field later to be handled correctly by the application, rather than being
universally understandable.

Finally, the last field called “policy” might be of greatest interest. This field explains
what rights the given PC has for this design. Three values have been defined for
use in this design:

• Role - Node’s role in the network

• Routing - Whether the node can partake in the routing

• Application - Whether the node has access to the application layer

These values are specific to this design, and might not be desired in other applica-
tions. The first value, “role”, is used to declare which role the node has been given.
It can be “sp” which means the node as administrative rights in the network, or
“authenticated” meaning the node is trusted by the SP and should be trusted by all
other nodes in the network.

The “routing” value can be “full” or “limited”. If it is full the node is able to
generate and broadcast its own routing announcements, and forward its trusted
nodes’ routing announcements. This means the node partakes completely in the
network and might be placed in a path between two nodes in the network. The
“limited” value is used so a node can become an end-node, but not a node in a
path between other nodes. I.e., it can send its own routing announcements, but it
cannot forward other nodes’ routing announcements. If a node with limited rights
does forward other nodes’ announcements they must be dropped. In addition, a
detection system of misbehaving nodes should pick up this as potentially malicious
behavior, but this is not being implemented as previously explained in Limitations
(1.4.2).

The last value, “application”, is used to declare whether the node should have access
to the upper layers and being able to use the applications running on top of the
MANET. This restriction is useful if one has special devices in the field only used
to route/forward packets in the network, acting similar to routers in the regular
Internet, but not being able to e.g. respond to application requests. Nodes which
do not use the application layer will reside in each nodes’ routing tables, but should
not show up as available nodes on the upper layers.

36

3.7. DETAILED ENTITY DESCRIPTION

Proxy Certificate 0

A Service Proxy’s Proxy Certificate 0 (PC0) would typically be filled with the values
in the 3.2. For illustration, this PC has been issued by the SP’s regular LLPKC
issued by NTNU. The zero in the PC0 abbreviation is used to indicate that the

X.509 Field Value
Subject Name C=NO, L=Trondheim, O=NTNU, OU=ITEM,

CN=Espen, CN=<SHA-1(Public Key)>
Issuer Name C=NO, L=Trondheim, O=NTNU, OU=ITEM,

CN=Espen
Serial Number <SHA-1(Public Key)>
Key Usage Digital signature, Key encipherment
pCPathLenConstraint 1
policyLanguage id-ppl-anyLanguage
policy Role:sp,Routing:full,Application:full

Table 3.2: Values in Proxy Certificate 0 (PC0)

certificate is at a depth of zero and has a pCPathLenConstraint of one, meaning
that the SP is allowed to issue new PCs, but that the children of the PC0 cannot
be used to issue new PCs again.

Proxy Certificate 1

If the PC0 above was used to issue a regular Proxy Certificate 1 (PC1) to an au-
thenticated node, the values might look like the ones in Table 3.3. The interesting

X.509 Field Value
Subject Name C=NO, L=Trondheim, O=NTNU, OU=ITEM,

CN=Espen, CN=<SHA-1(PubKey(SP))>, CN=<SHA-
1(Public Key)>

Issuer Name C=NO, L=Trondheim, O=NTNU, OU=ITEM,
CN=Espen, CN=<SHA-1(PubKey(SP))>

Serial Number <SHA-1(Public Key)>
Key Usage Digital signature, Key encipherment
pCPathLenConstraint 0
policyLanguage id-ppl-anyLanguage
policy Role:authenticated,Routing:full,Application:full

Table 3.3: Values in Proxy Certificate 1 (PC1) if issued by the PC0 above.

part here is too see that the subject name contains the full subject name of the
issuer in addition to the hash value of the public key used in the PC1. Note also

37

CHAPTER 3. SYSTEM DESIGN

that the pCPathLenConstraint now denies the owner to issue other PCs using this
certificate.

Because the PC1 containing certain rights are signed by the SP, the holder of the
PC1 cannot change the rights without voiding the digital signature. This property
then assures requirements R6 and R7 from Table 3.1.

3.7.2 Service Proxy

The term Service Proxy (SP) was coined by Dr. Lawrie Brown of UNSW@ADFA
[Bro10]. SPs are used in place of regular CAs for PCs. The SP determines whether
a node should be issued a PC and if so which policies to attach. The SP drastically
distinguishes itself from regular CAs because it breaks the hierarchical model usually
associated with CAs when they are part of a PKI.

A SP can also be part of a PKI (issued a regular public key certificate), but because
of our scenario, it can be difficult or impossible to verify its regular certificate.
Therefore, this verification is handled out-of-band instead.

In this design, the SP is a master node which decides which nodes can get access to
the network and if so what rights they have, fulfilling requirement R3 from Table
3.1. The SP assigns its PC0 with all the rights which might be useful for the current
scenario, so that it can delegate those rights to other nodes when issuing them PC1s.
In a larger network, there would typically be more than one SP

3.7.3 Authentication List

The Authentication List (AL) is a local list that each trusted node including the SP
in the network maintain to keep track of which nodes they know and the necessary
information about them, as shown in Table 3.4. An AL stores these values for each
node they have met and shared their PCs with: Both the “ID” and “Subject Name”

Authentication List
ID
Address
Role
Subject Name
Public Key

Table 3.4: Authentication List (AL) content

fields stored for each node are unique, so one could ask why one needs the ID field
when the unique subject name is used in accordance with RFC3820 ([TET+04]).
The answer is actually quite simple, it is easier and safer to look for the ID value

38

3.7. DETAILED ENTITY DESCRIPTION

when searching in the AL because it is a number while the subject name value is a
text string.

For all nodes but the SP in the network, the first entry in the AL is the SP. This is
only natural because the SP is the first node they start to trust as it is the one node
that actually issued their PC in the first place. To illustrate this, if you go back to
the two nodes’ PCs in Tables 3.2 and 3.3 and you have a third node with these two
nodes in its AL, the AL might look like Table 3.5. Note that the arbitrarily chosen

Fields Values
ID 45251
Address 192.168.57.1
Role SP
Subject Name C=NO, L=Trondheim, O=NTNU, OU=ITEM, CN=Espen,

CN=<SHA-1(2AF2E5C75C. . .)>
Public Key 2AF2E5C75C. . .
ID 1341
Address 192.168.57.45
Role Authenticated
Subject Name C=NO, L=Trondheim, O=NTNU, OU=ITEM,

CN=Espen, CN=<SHA-1(2AF2E5C75C. . .)>, CN=<SHA-
1(DA912BC9F5. . .)>

Public Key DA912BC9F5. . .

Table 3.5: An Authentication List (AL) in a network with three trusted nodes.

values for e.g. the Public Key here does not show a complete size public key. Also,
the public keys stored in the AL would be stored as their real binary values, and
not Base64-encoded as the table portrays. In the subject name there is a common
name part with “SHA-1()” - meaning that the content here would actually be the
sha-1 digest of the content inside the parentheses.

3.7.4 Neighbor List

The Neighbor List (NL) is a list each node in the network maintains to keep track
of its current neighbors and the necessary information about them. Table 3.6 shows
the content fields for each entry in the NL. The first important thing to recognize is
that the node entries in the NL are not necessarily the same as the node entries in
the AL. When a node meets new neighbors and looses old direct neighbors (which
are still in the network nevertheless) new entries are added while old entries are
removed. This means also that the index in the two lists are not the same - and
here’s where the use of the ID field comes in. Whenever both lists has to be looked
up, the ID field is used in order to retrieve the same node from both lists.

Besides the ID and the address the keystream field should be expected to reside

39

CHAPTER 3. SYSTEM DESIGN

Neighbor List
ID
Address
Sliding window
Last sequence number
Keystream
Number of wrong OTPs
Time keystream received

Table 3.6: Neighbor List (NL) content

in the NL by the observant reader. If not, this is where the keystreams of your
neighbors are stored, and updated each time you receive a new keystream-material
message from said neighbor. There are four other fields too however, which might
not be expected by the reader. These fields play an important part in maintaining
this list and most importantly - replay attack protection.

First, the “Time keystream received” field stores the time (in seconds) when the last
keystream from this neighbor was received. The Authentication Module regularly
checks to see if it has not received keystreams from nodes in the NL for some time,
and purges all entries older than a defined time frame. This is mainly to keep the
NL up to date and short, as the keystreams take up memory storage.

The remaining three fields are quite more interesting, as they are used for replay
attack protection.

Sliding Window

The sliding window is a bit array of 64 bits size [PD07]. This window is used in
order to decide whether a routing announcement should be allowed through to the
routing protocol, or if the AM should block and drop the announcement. Each bit
in the window can either be 0 or 1, and it is used to declare whether an One-Time
Password (OTP) already has been received (bit set to 1) or not (bit set to 0).

The “last sequence number” field is used to indicate the last, or highest, keystream
sequence number of the routing announcements received from this neighbor. If the
last sequence number is X, then the sliding window corresponds to the the sequence
numbers between X-63 and X. I.e. the sliding window shows whether an OTP from
this range has been received or not.

For a node to accept a routing announcement from a direct neighbor (which is in
its NL), the following MUST be true:

• the OTP sequence number must either be inside the sliding window, or higher
than the current last sequence number, and

40

3.8. AUTHENTICATION MODULE MESSAGES

• the same sequence number must not have been received before, i.e. the bit at
its sliding window position must be 0, and

• the OTP must match the keystream at this sequence number offset.

Note that when a new keystream is calculated for a neighbor, the old sliding window
and last sequence number are reset so the same sequence numbers can be used again.

The last field, “Number of wrong OTPs”, is increased whenever a received routing
announcement fails the checks above, i.e. if its an too old sequence number, it has
been received before, or if the OTP does not match the expected OTP from the
keystream. If this value is too high, the node will delete the neighbor entry from
its NL and request a new keystream-material message. This value is reset to zero
when a routing announcement from the same neighbor pass all the checks above,
assuming the problem has been fixed.

3.8 Authentication Module Messages

This section describes the different messages sent within, or modified by, the AM
extension. This includes how they are created, what payload they contain, if and
how the information is secured from malicious actors, and to whom and how often
they are sent during normal operation.

Each AM message has a header field which declares what kind of message follows
in the payload and the unique ID of the sender. Some messages contain the exact
same payload, but might have different message identifiers because the message can
be sent by different purposes.

3.8.1 Node Discovery

Node discovery is not actually a part of the AM itself, but it is the main event that
triggers the AM and is described here to make the context more clear to the reader.

Whenever a trusted node receives a routing announcement containing an One-Time
Password (OTP) from a new neighbor, i.e. a node which is not in the Neighbor
List (NL), the trusted node needs to check the Authentication List (AL) to see if
the node is a trusted node. If the node can be found in the AL the trusted node
will request and send its keystream-material message.

If the neighbor is not found in the AL however, the node will send its PC and request
the neighbor’s PC. In addition, both nodes will after verifying the other nodes’ PC
send its keystream-material to the other.

41

CHAPTER 3. SYSTEM DESIGN

If the routing announcement does not contain an OTP at all, meaning the neighbor
is either a new or untrusted, regular authenticated nodes will ignore and drop it
as they do not take part in the authentication of new nodes. If the trusted node
is also the Service Proxy (SP) however, it will invite the unknown neighbor to an
authentication handshake before dropping the packet.

3.8.2 Authentication Handshake

The authentication handshake describes which messages are sent while authenti-
cating a new node to the network. If the handshake is successful the two nodes
participating in the handshake will share their keystream-materials with one an-
other.

Handshake Invite

The handshake invite message is a rather simple message. Its header declares that
it is an “invite message”, and the payload only contains the SP’s PC. The PC is
sent in the beginning in order for the new node to be able to verify the certificate
before engaging in the handshake.

Proxy Certificate Request

This message contains the field declaring it is a “certificate request message” and
its payload contains a X.509 REQ data structure [VMC02]. This data structure
is essentially a certificate without an issuer’s signature, containing all the values it
wishes the SP to grant it.

The request data structure also contains the extensions being used, and specifically
the sender will request certain rights through the policy field of the proxy certificate.
E.g. it can request full routing and full application rights as mentioned in Section
3.7.1.

Proxy Certificate Issue

Completing the handshake is a message containing the signed certificate. If the
SP was able to verify the new node’s public key, the SP would sign the request in
addition to adding some values, possibly changing some of the requested values, and
sending it all in one message.

After this message, the SP waits for the first keystream-material message from the
newly authenticated node as an acknowledgment from the recipient, after which the

42

3.8. AUTHENTICATION MODULE MESSAGES

SP sends its keystream-material to the new node as well.

3.8.3 Keystream-Material Message

This message contains two headers - a regular AM header declaring the type of
message and ID of the sender, and a special header declaring the different lengths
of the contents in the payload.

The payload contains everything needed to create the sender’s keystream, i.e. a
nonce, an ephemeral key encrypted with the recipients public key, an IV, and a
digital signature. The signature is used to prove the authenticity of the message,
i.e. to prove the integrity of the message content and to authenticate the sender
- or prove the sender is who it claims to be. The digital signature is created by
creating a message digest of the nonce, IV, and unencrypted (!) ephemeral key and
encrypting the message digest with the senders private key.

Figure 3.7: Packet format for keystream-material messages.

43

CHAPTER 3. SYSTEM DESIGN

As can be seen in Figure 3.7, the encrypted ephemeral key is appended at the end.
This, and the decision to make the digital signature from the unencrypted key, is
done in order to make the packet “re-usable” - remember this packet has to be sent
by the creator to each of its neighbors, and with this design only the ephemeral key
needs to be encrypted and appended to the “standard” packet for each recipient.
This not only makes the design easier, it saves overhead by not having to create a
digital signature for each recipient of the packet. In this figure it is assumed that
the nonce is 767 bits long, the IV 128 bits, and the RSA keys used to encrypt create
the signature and to encrypt the ephemeral key are 1024 bits. The additional bytes
come from being Base64 encoded in the message.

This message is sent to all neighbors periodically (changing the keystream), or when
the keystream has been exhausted - whichever comes first.

Keystream-Material Request

There is a special case the keystream-material sharing. If a node continuously re-
ceives routing announcements with bad OTPs, the node will assume the neighbor
has created a new keystream but its keystream-material message has not been suc-
cessfully received by this node. Because this often happens if the packet delivery
ratio is very low, the node also assumes that the other neighbor does not have its
keystream-material.

The node therefore generates a regular keystream-material message, only different
by the first header type declaring this to be a “keystream request”, and sends it to
its neighbor as if it was a new neighbor. Note that no new keystream-material is
created here, it is only a “re-sending” of the old packet appended with the current
ephemeral key (encrypted).

3.8.4 Modified Routing Announcements

The routing announcements are sent by the original routing protocol and not by the
AM, but a small but significant alteration to the routing protocol has to be made
in order to append the OTPs to the routing announcements.

The routing announcements are appended with 16 bits extracts from the keystream,
called one-time-passwords. Additionally, each routing announcement is also ap-
pended with a sequence number for which the offset of the keystream the OTP
matches. In the next chapter Figure 4.2 shows how the routing announcements for
BATMAN, which are called Originator Messages (OGMs), are modified with these
OTPs.

Figure 3.8 shows how the first five routing announcements, after a new keystream
is shared with neighbors, are appended with the five first OTPs from the new

44

Figure 3.8: One-time passwords and their sequence numbers appended to routing
announcements.

keystream. Additionally it shows the authentication sequence number appended
after the OTPs again, required by the recipient to know which OTP to match in
the sender’s keystream.

For each routing announcement a neighbor receives, it checks the OTP at the given
offset of the senders keystream and if it matches - it assumes the message is from
its trusted neighbor. If the OTP does not match the packet will be dropped as
discussed earlier.

Chapter 4

Implementation

This chapter goes into depth on how the design from the previous chapter is im-
plemented into the BATMAN protocol. Some code snippets will be shown in the
following sections when applicable, and the full source code can be found in Ap-
pendix A.

4.1 OpenSSL Library

All of the cryptographic functions such as encryptions, signatures, and X.509 pub-
lic key certificate creation and verification are created using functions from the
OpenSSL library [VMC02]. This library was not in the original implementation of
BATMAN, and has to be installed on the computers running this modified version
and added to the Makefile for the BATMAN implementation. How to install the
correct OpenSSL library in a Debian environment is explained in Appendix B, and
the modified Makefile is part of the full source code linked to in Appendix A.

4.2 Authentication Module

Almost all functionality added to BATMAN is within the borders of a separate
class called Authentication Module (AM). The first thing to notice about the AM
is that it runs in its own thread and sockets, so all authentication mechanisms run
concurrent to regular BATMAN routing operations. This separation was necessary
in order to have BATMAN behave normally during e.g. the authentication of a
node, so a large network should not suffer if an important node (centrally located)
is ’hung up’ in e.g. authenticating another node.

47

CHAPTER 4. IMPLEMENTATION

4.2.1 AM Thread

In the setup phase in the original batman class, an AM initiation function called
am thread init from the AM class is called. This function takes the network inter-
face name and its corresponding IP address and broadcast address as input. These
values are then stored locally in in the AM class for socket setup. For socket setup
see Section 4.2.2.

The function then goes on to create a new thread for the AM module which is the
main thread taking care of most of the additions in this implementation. The thread
first sets up two sockets for sending and receiving AM messages such as handshakes
and keystream-materials.

Next it generates a highly random (high entropy) master key using the OpenSSL
function RAND bytes, which has been properly seeded - see Section 4.8.1. This and
an IV generated with OpenSSL’s RAND pseudo bytes is then used to generate a
master key encryption context for AES encryption, before deleting the master key.
With the encryption context the necessary internal memory used by OpenSSL for
encrypting with this key is stored, and therefore the key and IV is of no more use by
themselves - making it a sound security choice to delete the key (and IV) entirely.

The next important action is to generate either a Proxy Certificate 0 (PC0) or a
Proxy Certificate (PC) request depending on whether you are a Service Proxy (SP)
or just a regular node trying to authenticate with the network.

After these steps the “initiation phase” of the AM thread is complete, and the rest
of the code runs in a loop until the BATMAN daemon is terminated.

4.2.2 AM Sockets

Two sockets are used for the AM module, one for sending and one for receiving
AM messages. Both sockets are bound to the interface device given by the AM
initiation function. The receive socket is then bound to a designated port 64305,
regular BATMAN runs on port 4305, and the send socket is explicitly allowed to
send to broadcast addresses. Sockets needs to be explicitly set to be allowed to
send to broadcast addresses in UNIX systems, as a protection mechanism. A code
snippet of the sockets set up is shown in the appendix under Section A.2.1.

There are several practical reasons to choose UDP sockets over TCP sockets for this
implementation. First and foremost, this system sends authentication handshake
messages and keystream-material messages to nodes which has no route in the rout-
ing tables. If a connection-oriented protocol would try this the messages would be
blocked on the kernel level and not sent. With an connectionless protocol like UDP
no mechanisms will block this message being sent, it will just send the message not
bothering whether the message is ever received by the recipient.

48

4.3. PROXY CERTIFICATES

Second, TCP was created with wired networks in mind, observing much less packet
loss. In Mobile Ad Hoc Networks (MANETs) the packet losses are much higher
than in wired and fixed infrastructure networks, and as nodes move around direct
paths between nodes change much more frequently. TCP is not suitable for such
environments because it will lead to a huge amount of re-sending of packets to “non-
existent” neighbors and much memory wasted in connection states being kept for
dead links.

4.2.3 Main Operation of the AM Thread

Most of the interesting operation in the AM class happens within a single loop run-
ning throughout the lifetime of the BATMAN daemon. The program flow through-
out this loop is shown in Figure 4.1.

For clarity the figure leaves out certain details, but the most important features are
depicted. The handle incoming messages are shown as a sub-process in the figure.
This is not true, but depicting all possible messages would not fit the figure, and
therefore left out altogether. However, each message are described in the following
sections.

The “New Neighbor” is one of the elements in the AM class that must be triggered
by the batman class. If the batman thread tells the AM thread a new neighbor
is discovered and the AM thread is in a ready state to handle new neighbors the
appropriate action is taken, whether the neighbor has been authenticated with the
network or not. Not shown in the figure is how a regular authenticated node will
act if a new neighbor which is not authenticated with the network is handled, but
this is taken care of in the batman class and not here.

The two last parts should be self-explanatory, they simply check the current time
and then compares this against time values set on the nodes own current keystream
to check if its old, or if any keystreams from other neighbors in the Neighbor List
(NL) are old and if so takes the appropriate action. Also checked is if a nodes
own keystream is getting exhausted, in which also the appropriate action, namely
creating and sharing a new one with each neighbor in the NL.

4.3 Proxy Certificates

The PCs in this implementation are containers for short lived 1024 bits RSA public
keys used in a single session only. Most of the design choices were taken into the
implementation, but some however, were left due to time constraint.

One such was that the original proxy certificate X.509v3 extension, introduced in
RFC 3820 called “proxyCertInfoExtension” was not used to carry the policies as

49

CHAPTER 4. IMPLEMENTATION

Figure 4.1: Main program flow in AM class.

50

4.3. PROXY CERTIFICATES

intended. Most of the OpenSSL documentation is not released to the general public
for free, and this X.509v3 extension was no exception. The only examples found,
amongst the original proxy certificate implementations from the Globus Project1,
but using the exact same setup did not work in my implementation. After some
investigation it seems no open source code projects using proxy certificates have
been published for years, giving me the idea that maybe the OpenSSL specifications
have changed during the last version updates and that proxy certificates have to be
implemented differently. The author have asked for an answer on this subject on
both emails to the developers of OpenSSL, the OpenSSL’s mailing lists, and on an
OpenSSL “IRC” channel2.

As a replacement for this extension, a commonly used free-text extension called
netscape comment has been used and the policy has been written in cleartext in-
side this comment. Because the design proposed used the id-ppl-anyLanguage and
allows the application to decide the language the policy is written in, this should
make no practical difference, other than not being a strictly RFC 3820 proxyCert-
InfoExtension.

4.3.1 Generating PC Requests

As mentioned earlier the PC requests are generated prior to the main loop of the
AM thread. This means the request is generated and ready prior to discovering new
neighbors, so the authentication handshake can be performed as quick as possible.

The request starts with creating and assigning a RSA key pair the size of 1024 bits.
If the reader take a look into the implementation he or she will see that the setup
for an Elliptic-Curve Cryptography (ECC) key pair is also there. Using ECC was
only scrapped at the very end because of problems regarding the keystream-material
exchange later on, where the author had problems with the ECIES algorithm.

The subject name is created a pseudo random function, contrary to using the SHA-
1 digest of the public key as proposed in the design. This was implemented this
way at the beginning quickly, and was supposed to be exchanged with the message
digest later on but because of time constraint there were no time to test whether
this subject name was set correctly. It should however be an easy and relatively
quick fix, but needs to be tested properly first - and probably be encoded in Base64.

After this the proxy certificate extension is added using the following function
openssl cert add ext req as seen in Section A.2.2.

All this data is stored as a X.509 REQ object and written to disk and sent during
the handshake in a PEM encoded format [Lin93].

1Globus Project: http://www.globus.org/toolkit/downloads/
2OpenSSL IRC Channel: #openssl on irc://irc.freenode.net

51

http://www.globus.org/toolkit/downloads/
irc://irc.freenode.net

CHAPTER 4. IMPLEMENTATION

4.3.2 Generating PCs

Generating PCs are much the same as creating PC requests, with the addition of
signing the certificate, changing the subject name, setting the issuer name, and
setting the valid lifetime of the certificate. The issuer name is simply set to the
subject name of the SP and the subject name is set as shown in Section A.2.3. The
valid lifetime is set from the current time, and until 8 hours from creation.

4.3.3 Verifying PCs

In this implementation PCs and their public keys are not verified during the initial
authentication phase. This implementation use the physical locality as the “out-
of-band verification”, which might be good enough if the SP only use an ethernet
cable which has to be directly connected to the new nodes trying to authenticate
themselves. However, in a real-world implementation this method has to be revised!

However, when the initial authentication with the SP is complete, nodes do ver-
ify each others’ PCs by checking the signature against the SPs public key using
X509 verify taking the received certificate and the SPs public key as input.

4.4 Authentication List

When a node has verified another node, it stores some information about that node
within a struct called trusted node. Then the struct is placed in a list called
Authentication List (AL) which stores one such struct for each known and trusted
node. Table 4.1 shows how this data structure looks like: At the beginning of the

Data type Variable Name
uint16 t id
uint32 t addr
uint8 t role
unsigned char * name
EVP PKEY * pub key

Table 4.1: Trusted node struct of the AL.

project, the AL was intended to be sent on the network and was therefore made
as an array, instead of a linked list. With additional time this list should however
be converted to a linked list for better performance and less memory waste. The
complete code snippet showing how a newly verified node is added to the AL is
shown in Section A.2.4.

52

4.5. NEIGHBOR LIST

4.5 Neighbor List

Similarly when a node receives a new keystream-material message from a neighbor
the neighbor is added to the NL. This list is also an array, and should also be
changed to a linked list, which contains a data structure called trusted neigh.
Below Table 4.2 shows this new data structure: Note here that while the design and

Data type Variable Name
uint16 t id
uint32 t addr
uint64 t window
uint16 t last seq num
unsigned char * mac
time t last rcvd time
uint8 t num keystream fails

Table 4.2: Trusted neighbor struct of the NL.

implementation changed during this thesis things have changed, and what used to
be a Message Authentication Code (MAC) in the NL is now a keystream, but the
names have not been changed in the current version of the implementation.

The code snippet in Section A.2.5 shows what happens whenever a new neighbor is
added, or a new keystream-material is received from a neighbor. The code snippet
in Section A.2.6 shows what happens whenever a node is removed from the NL due
to inactivity, i.e. not received its keystream-material for 130 seconds.

4.6 Keystream Generation

Before a keystream can be generated, its keystream-material must be generated (and
sent). The IV and nonce are both generated using OpenSSL’s RAND pseudo bytes
generating 16 and 767 Bytes of pseudo random data, respectively. The generation
of the ephemeral key is created using AES-CBC as shown in the code snippet in
Section A.2.7.

When the keystream-material has been created, they can be used to create the full
keystream on both ends. First the original nonce is encrypted using the ephemeral
key and IV as inputs to OpenSSL’s AES-CBC encryption. Next one tenth (1/10) of
the nonce will be XOR’ed with 1 and encrypted again with the AES-CBC encryption,
using the same key but using a part of the previous ciphertext as IV. This is done 9
times, so the second round the second part (between 2/10 and 3/10) of the nonce will
be XOR’ed with 2 and encrypted with the same key and IV from previous ciphertext
and so on until ten different (1 original and 9 modified) nonces has been encrypted.

53

CHAPTER 4. IMPLEMENTATION

All the ciphertexts is then added to one large buffer, which is this node’s keystream.
All of the operations above is shown in the code snippet in Section A.2.8.

4.7 Using One-Time Passwords

One-Time Passwords (OTPs) are handled within the context of the original BAT-
MAN protocol because adding and verifying them is performed when the original
protocol receives or sends them. How to add the OTPs are described in Section
4.8.3 while how to verify them are described in Section 4.8.2.

4.8 Changes to the BATMAN Protocol

Some changes are BATMAN specific or needs to be called from within the original
BATMAN protocol and these changes are described here.

Figure 4.2 shows how the modified batman packets, or Originator Messages (OGMs),
look like. The white area is not changed, except an unused version number is taken
and used in the ’Version’ field at the outset of the packet. The red area is added
by this implementation, containing both an OTP and its sequence number in the
keystream.

Figure 4.2: Modified routing announcement (OGM) for extended BATMAN.

4.8.1 POSIX.C

It is within the posix.c class that the daemon’s main function that initialized the
whole program lies. In here a small but important modification was made. Before
allowing the daemon to start, OpenSSL’s pseudo random number generator (PRNG)

54

has to be seeded with much high entropy random data. This is done by taking 1024
bytes from the UNIX environment’s /dev/urandom. If this seeding should fail, the
daemon is not started and the program killed.

4.8.2 BATMAN.C

It is in this class where the main thread in the original BATMAN runs, where it
receives OGMs, decides how to handle them, and whether to schedule to send own
or re-broadcast other nodes’ OGMs. Before entering the main loop, this class has
been modified to initiate the AM class by calling am thread init.

Inside the main loop which is loops for each received OGM there has been a mod-
ification to verify the OTP appended to the OGM. If the verification check is not
passed, the OGM is dropped, and possibly the AM class is told there is a new node.
The interesting code snippet from this class can be found in Section A.2.9 in it
entirety.

Figure 4.3 shows the flow chart through the main loop in BATMAN. Here you can
see where the AM modifications are put, and hopefully understand why they are put
there. The first checks before the modification are almost like sanity checks, which
must be passed before testing the OTPs should even be considered. After the AM
extension there are many checks which are more specific to the routing algorithm,
but they do not affect whether the OTPs should be checked, and if the OGM is
received from a new neighbor the AM extension has to notify the AM class of a new
neighbor before allowing the the subsequent checks to be made, or the OGM will be
handled when it quite possibly should not.

4.8.3 SCHEDULE.C

In the schedule class there are two functions which needs to be modified. The two
functions schedule forward packet and schedule own packet generates and puts
OGMs in a queue waiting to be send on behalf of other nodes or itself, respectively.
The modifications are the same using only different available parameters, and is
shown in Section A.2.10.

Again there is some variable name discrepancy because the design and implemen-
tation has evolved during the work of this thesis. The auth variable name used
actually means OTP and the auth value means the whole keystream. The line
below means that a value of 2 bytes size is to be copied from the keystream to the
OTP value in the bat packet, or OGM.
memcpy(bat packet->auth, auth value+2*auth seq num, 2);.

Figure 4.3: IF-Statements in the Batman Class

Chapter 5

Testing & Results

In this chapter two tests are described and their results presented and discussed.
The two tests measure and compare the time performance in two common stages for
both the original implementation of BATMAN, and the extended version proposed
and implemented in this thesis.

5.1 Test I - Initialization Phase

The “initialization phase” is the setup phase between two or more nodes trying to
create a network. With the original implementation of BATMAN this phase only
consist of two stages; namely discovering a neighbor node, and deciding to add the
node as a direct link, or “last-hop” per BATMAN terminology, in its routing table.

With the proposed design and implementation from this thesis, two more stages are
added. After the discovery, the authentication handshake stage and the keystream
sharing stage are conducted before the last stage where BATMAN adds the node as
a new direct link in its routing table.

The time measured here in this test is the time between the first discovery of a new
neighbor, until that node is added to the routing table.

5.1.1 Hypothesis

With the modified version of BATMAN proposed in this thesis, one should observe
a small extra delay in the setup of the network, compared to the original BATMAN
protocol. This extra delay should however, not be significantly higher, i.e. it should
be relatively constant and at no time should any linear increase in delay be observed.

57

CHAPTER 5. TESTING & RESULTS

5.1.2 Setup

Figure 5.1: Physical network layout used in test 1. When using the modified version
node B acts as the SP of the network

Figure 5.1 presents the setup of the test machines used to conduct this first test.
Node A and B are stationary boxes while node C is a laptop. Their hardware
specifications are described in Appendix B. The reasoning to use a different hardware
for node C is the need to create distance in the network, and that outside the ethernet
subnet for which the two other nodes were connected to, it would be easier to use a
laptop during setup. In the next test, this laptop is yet again moved further away.

An important feature to notice about how these nodes were set up is that node A
and C are outside each other transmitting range, meaning they need an intermediate
node to route their packets to and from each other. Node B is conveniently placed
with almost equal distance to each of the two other nodes.

The landscape the nodes are setup in is a typical office landscape, with varying
obstructing materials such as concrete, wood, and glass. A more ideal setup would
naturally be outdoors, as the network is intended for, but with the lack of mobile
nodes and time this became out of the option.

5.1.3 Procedure

In order to get the same behavior each run for the modified version, each run had to
be run discretely, i.e. after each run the daemon was shut down and restarted. This
way each run will include all four stages explained above: discovery, authentication
handshake, keystream material sharing, and routing table update. This was also
done on the original implementation, even though there are no authentication steps
in between, but in order to have the exact same procedure each time.

For each run, these steps were followed:

58

5.2. TEST II - ROUTE CONVERGENCE

1. Start Node A and C

2. Wait and make sure both nodes are stable

3. Start Node B

4. When both node A and C are discovered and added to routing table kill all
daemons

5. Record the log from node B

These steps were taken 10 times in order to have a reasonable data set and average.
Then for each of the 10 logs, record the time between the first routing announcement
received from a node, until both nodes have been added to the routing table.

5.2 Test II - Route Convergence

The next test is to check how quick route convergence the protocols deliver when
a path between nodes in the network changes. As with the previous test, a node
running the original protocol needs to discover a new direct neighbor and add it to its
routing table. In addition, it will have to receive not only the neighbors own routing
announcements, but also routing announcements it has forwarded on behalf of its
own direct neighbors. When this happens, the node receiving these re-broadcasts
determines new routes to possibly new nodes - adding them to its routing table.

Additionally, nodes using the modified BATMAN protocol needs to share their
keystream material with their new direct neighbor before adding that neighbor in
their routing table. When this has happened, any re-broadcasted routing announce-
ments from that neighbor is accepted and paths to those nodes are updated, or
added if new nodes. Note also that no authentication handshake or sharing of cer-
tificates are mentioned, as they are assumed to have been shared prior to this route
change.

5.2.1 Hypothesis

As before, a small and relatively constant (mathematical term) extra delay is ex-
pected when running the modified version of the protocol compared to running the
original. As the keystream material sharing only occurs between the direct neigh-
bors, it should only happen once during one run and not for each of the new nodes
added by the path through the direct neighbor - i.e. there should be no linear in-
crease in convergence time even if multiple new nodes are added to the routing table
with paths through a new neighbor.

59

CHAPTER 5. TESTING & RESULTS

5.2.2 Setup

(a) Initial Position - D out of range of C

(b) “Connected Position” - D within range of C

Figure 5.2: Physical network layout used in test 2. The Laptop (node C) is moved
further out of range and is periodically rejoining the network when a Tablet Pc
(node D) is moved within range. When using the modified version node B acts as
the SP of the network

For this test a new mobile node was needed. As Figure 5.2 shows the Laptop, or
node C, from the previous test is moved much further away, so far in fact the newly
added Tablet Pc, node D, needs to place itself with approximately the same distance
to node B as to node C in order for node C to take part in the network.

Node A and B is positioned at the same place as in the previous test, in the same
office landscape. The line of sight is, however better between node B and D, and
between D and C. Their line of sighs are only obstructed by a single wall with huge
windows.

5.2.3 Procedure

With this test running each of the 10 iterations discretely would be too time con-
suming, because it would have meant that the Laptop (node C) would have to be
physically moved inside the transmitting range of node B for each run. Instead the

60

5.3. RESULTS

laptop was only started within the range of the other nodes, in order to be autho-
rized and share certificates with the other nodes (only node B and D was necessary)
and then moved to its position long outside the transmitting range of the rest of
the network. After this “initial setup” plus some minutes to clear the neighbor lists,
these steps were followed:

1. Walk node D in between node B and C

2. Wait until the whole network has stabilized

3. Walk node D back out of node C’s range

4. Wait until BATMAN has cleared node D from other nodes routing tables, and
node D has cleared all other nodes from its routing table

5. If modified version is used, make also sure node D is removed from the Neighbor
List (NL) (should be before routing tables are cleared)

These steps were repeated 10 times for both implementations. The records used
from this test are from the logs of node C. The convergence times measured are the
time between each time a new neighbor (node D) is discovered by BATMAN, and
until a path to the furthermost node (A) is added to the routing table.

5.3 Results

In this section the results from the two tests above are presented and discussed in
terms of how they perform compared to the hypotheses. In both tests there were
only a dataset of 10 trials, which given the variance shown below does not provide
a statistical significant result. However, the first test shows good indication that
the modified protocol behaves as expected, while the results from the seconds test
are more ambiguous. The results below are presented in graphs, while all of the
numerical results and the test logs are found in Appendix C.

5.3.1 Initialization Phase

Figure 5.3 presents the first test’s results for both the original and modified version of
BATMAN. The two graphs shows the time in seconds on the y-axis and the trial/run
number on the x-axis. The two colored lines on the graphs shows the results from
first neighbor discovery until the first neighbor is added to routing table (green line)
and until both nodes are added to the routing table (red line).

The results from the original protocol, shown in Figure 5.3a, shows high variance in
the time needed to add one and two nodes to the routing table. For 7 out of 10 “first

61

CHAPTER 5. TESTING & RESULTS

(a) Original B.A.T.M.A.N. (b) Modified B.A.T.M.A.N.

Figure 5.3: In a network of three nodes, the time spent by the SP from its first
neighbor discovery and until both neighbors are added to its routing table.

nodes” the time needed is relatively equal, being about one second. For both nodes
to be added however, there are much more variance - varying from the best possible
time, i.e. equal to adding one node, and up above 3 times longer than adding one
node. As this is from the original implementation of BATMAN, this thesis will not
try to explain why this behavior is observed, nor does the author know exactly why
either.

Figure 5.3b shows the results from the modified version proposed in this thesis.
These results indicates that the behavior of the modified version seems to correlate
with the behavior expected from the hypothesis. A seemingly constant of about two
seconds seems to be added to the process of adding both nodes to the routing table.

Another interesting observation is that the time variance seems to be much less from
that of the original version. This might be because the authentication handshake
and the keystream sharing happens in a separate thread from the regular BATMAN
operations, meaning the BATMAN protocol continuously receives routing announce-
ments to process while the Authentication Module (AM) handles its part. The idea
being that while the AM thread runs the BATMAN thread “gets ready” to do its
part of the job.

5.3.2 Route Convergence

The results of the second test is shown in Figure 5.4. In this figure, the axes are the
same as in the figures above: y-axis shows the time in seconds, and the x-axis shows
the trial run. The red line shows the performance of the original implementation,
while the green line shows the modified.

As indicated earlier, this test’s results are somewhat unclear. While the results

62

5.3. RESULTS

Figure 5.4: Routing path convergence time observed by a distant source node to
another sink node in the network. The source node is only sporadically connected
to the network through a mobile intermediate node.

using the original implementation seems relatively uniform, with only about 1 second
variance, the results from the modified implementation is highly irregular.

Looking through the logs from this test one thing become apparent. With different
hardware on the different nodes in the network, their wireless cards send at different
strengths meaning while one node can receive packets from a “stronger node”, the
packets sent might not be received by the other nodes.

The BATMAN protocol messages (routing announcements) are sent quite often,
depending on the number of re-broadcasts being sent, meaning the time from when
a node is within transmitting range and until its broadcasts are received by nodes
within its transmitting range will be quite short. The AM messages however, was
mostly tested in an ideal environment where most packets were received, so this was
not properly accounted for. Therefore, if a routing announcement from a “stronger
node” is received by a “weaker node”, the weaker node might send its keystream
material without the other node receiving it.

Re-transmitting mechanisms based on guessing that the receiving node has not
received the AM messages are in place, but as the mechanism wait until it believes
the other node has not received, instead of knowing it instantly. This can of course
be managed adding ACK’ing to each AM message, which was not added initially
because of the wish to minimize overhead. This however, might have to be re-
evaluated.

63

Another thing to notice is how multiple trial runs using the modified version actually
performed better than the original version. This is impossible to explain talking
about the design and implementations themselves, but is probably most accurately
explained in the terms of external environment.

In this test, one major factor is the movement of the Tablet Pc, or node D. This
movement is not perfect, and will vary in speed, timing, and accurate position for
each run. As self-generated routing announcements are only generated once every
second, a difference in almost two seconds can be seen based on the difference in
distance each run. Also, the original implementation only starts its whole neigh-
bor discovery after an original (self-generated/produced) routing announcement is
received from a new neighbor. The AM is triggered on the first routing announce-
ment received from that new neighbor, even if that announcement is a re-broadcast
from another node in the new neighbor’s network.

Chapter 6

Discussion

6.1 Modified Routing Announcements Vulnera-
bility

The design was changed a bit during implementation, and with limited time some
parts did not make it to the implementation These things needs to be addressed
before the system can be used in a real world scenario. There are two attacks that
the system are still vulnerable to, namely the wormhole attack and the suppress
replay attack.

Because the routing announcements are unencrypted and the one-time-passwords are
just appended after the messages, these packets can be altered using the following
two attacks. In this section the two attacks are first explained, and then the section
goes on to describe possible solutions for both attacks.

6.1.1 Wormhole Attack

In a wormhole attack, see Figure 2.4, an attacker does not need to know the
keystream of a node in order to send that node’s routing announcements. If you
look at the figure from the background chapter you have a network of trusted nodes
in green, and two malicious nodes in red.

Assume the two attackers, M1 and M2, want to disrupt the network topology by
having node B believe node A (and vice versa) is a direct neighbor. Assuming the
out-of-band wormhole in the figure is a faster route between node A and B than
the “real” route through the network, M1 can simply forward the announcements
from A to M2. Then M2 does the same, except he also needs to spoof his network
and link layer addresses. When B receives the routing announcement from M2, he
believes it is from A and that A is a new direct neighbor.

65

CHAPTER 6. DISCUSSION

Now B will ask for A’s keystream-material, and M2 and M1 will forward this request
to A, which will dutifully reply with his keystream-material. Note that M1 needs to
spoof B’s addresses here, as well as forwarding B’s routing announcements. When
B receives the keystream through the wormhole, he is now able to verify the routing
announcements also sent through the wormhole, and soon will this route take priority
in his routing table as a strong direct link instead of going through other nodes in
the network to reach A.

This attack only distorts the network topology, but notice that because the routing
announcements’ integrity are not protected, and the content is not encrypted, the
attackers can possibly do greater damage by altering the content of the message. By
altering the content, they could possibly generate fake re-broadcast announcements
announcing untrusted nodes, possibly connecting a whole network of malicious nodes
to this trusted network. This alteration is not actually a wormhole attack, but it is
fair to say that the wormhole attack opens up to a variety of other attacks, such as
alteration of packet, dropping of packets etc.

6.1.2 Suppress Replay Attack

Another attack which is possible due to the fact that the one time passwords are not
“connected” to the routing announcements in any way is the suppress replay attack.
Suppose an attacker is able to jam the signals for a very short time, only enough to
distort the main payload of the routing announcement, while the one time password
and its sequence number are kept intact.

The trusted receiver of this distorted packet will ignore it, because he will not
understand the meaning of the packet. The attacker on the other hand, knows that
the following uncorrupt data is a valid one time password and its sequence number
from the sender’s keystream.

Because the original recipient of this packet did not understand the destroyed packet,
he will not know that this One-Time Password (OTP) is already used, and if the
attacker wishes to create a false routing announcement he can now do this and ap-
pend the OTP, which will be accepted by the original recipient. Note that also here
the attacker needs to spoof the addresses of the original sender of the announcement
which he partly jammed.

6.1.3 Possible Solution to the Suppress Replay Attack

A possible solution to the suppress replay attack, is to ensure message integrity in
addition to the authentication. The basic idea would be to create and append a
message digest of the announcement and an OTP from the keystream.

Using this idea, the OTP would never be sent visible, meaning at least one part

66

6.1. MODIFIED ROUTING ANNOUNCEMENTS VULNERABILITY

of the routing announcement is a secret between the sender and the authorized
receivers. The OTP has to be secret, or else an attacker could modify the message
and create a new digest, whereas with a secret OTP the attacker would not be able
to create an announcement which would give a verifiable digest value (collision).
The message would therefore look like the following:

Announcement|Hash(Announcement|OTP)|OTPSeqNum

Note that the full length of the message digest (hash value) would not have to be
appended to the message. A truncated version could be used, but when designing
such a system one needs to calculate how long the truncated digest should be. The
sliding window used to avoid replay attacks is only 64 bits long, and in the worst
case (best case for adversary) there are only two legitimate nodes in the network.
If this is the case, each node will send two announcements every second (BATMAN
protocol) meaning the window of opportunity for the attacker is only 32 seconds.
This means that the truncated digest should at least be of a size which is unfeasible
for an attacker to find a digest collision within 32 seconds of brute forcing.

However, this requirement might even be to strict, because the attacker also has
to find a collision which would produce valid values for the routing announcement
- making the attackers job much more complex. This is true because the routing
algorithms will drop any announcement containing values that does not “make any
sense”.

Note also that even IF we suppose the attacker was able to find a collision for
a valid announcement, the attacker would have to accomplish this continuously
again and again, because the routing protocol (BATMAN) requires several valid
announcements from a node before it updates its routes for that node. For each time
the attacker fails at finding a valid and fake announcement the routing protocol at
the receiving end figures this to be a bad or broken link, effectively killing the attack.
It might be that the original two bytes, and its 65536 (216) possible combinations
would be to difficult for an attacker to break.

6.1.4 Possible Solution to the Wormhole Attack

This attack vector is very difficult to to protect against. With the solution above,
many attacks dependent on the wormhole attack are thwarted because of packet
secrecy, integrity and authentication. However, the solution does not hinder an
attacker from replaying the exact same packets through a wormhole, in order to
alter the network topology. There has been a lot of research to find a good solution
to this attack, but most solutions are aimed towards stationary networks and not
Mobile Ad Hoc Networks (MANETs) [RH11].

One possible solution as pointed to by the article above is the use of “location aware
guard node” and graph theory [PL07] [LPM+05] to detect wormholes. The idea is

67

CHAPTER 6. DISCUSSION

that if you have special nodes spread out in the field at fixed points, where none
of these nodes are within each other’s transmitting range, one should never be a
neighbor of more than one node at a time. If you receive direct packets from two
nodes within a very short time frame, there might be indications that there’s a
wormhole in place replaying one of the special nodes’ announcements.

6.2 Key Usage

In the fields of information security and cryptography it is not considered a good
practice to use the same keys for different type of tasks such as encryption for
confidentiality and signing for integrity and authenticity. It is argued that using
only one key for different purposes brings a single point of failure to the design.
While this is true, sometimes the benefits of having single key for these purposes
are greater than the risk. In the proposed design the same public key pair is used
to digitally sign keystream-material messages as well as when encrypting (with the
recipient’s public key) the symmetric keys in the same messages. In addition, the
Service Proxys (SPs) use the same key to sign other nodes’ Proxy Certificates (PCs).

The benefits of only having a singe public key pair for each node in the network
is simplicity in the design. When it comes to the possible vulnerability if the one
key is compromised, the lifetime of each key which is bound by the relatively short
lifetime of PCs makes the window of opportunity for misuse of this key short and
damage low.

6.3 Future Work - Extending the System Design

The specialization project [BG10] that preceded this thesis mentioned other impor-
tant features the secure ad hoc network implementation should have. The things
mentioned in this thesis’ system design are actually implemented, but there are still
much more that should be added if this system should be used in real life emergency
situations.

In this section some important features which should be added, or at least studied,
are mentioned. They do add more complexity to the system, so it is probably better
to do a complete security and performance analysis on this thesis’ proposed design
before adding these features.

68

6.3. FUTURE WORK - EXTENDING THE SYSTEM DESIGN

6.3.1 Initial Authentication with Long-Lived Public Key Cer-
tificates

One limiting factor in the system design is the need for an out-of-band initial au-
thentication. With this limitation, every actor in the emergency scenario needs to
manually verify his or her identity to the network management handled by the SP.
With many actors, which would be typical in a large emergency situation like a nat-
ural disaster, this process might take up valuable time from the actual emergency
work - which contradicts the whole meaning of setting up the MANET at the scene
in the first place.

Now, if an actor has possession of a regular Long-Lived Public Key Certificate
(LLPKC) which the network SP is able to verify, this should be allowed without the
need of an out-of-band authentication. After the SP has verified the certificate, he
can now issue the the actor a proxy certificate, signed by him so that all nodes in
the network are able to verify the new node’s identity.

The question of whether the SP is able to verify the LLPKC is not necessarily easy
to answer. If the SP trusts the identity and knows the public key of the issuer of the
actor’s certificate, he is able to verify that this actor was trusted with this identity
(and rights) at some time. However, it does not mean this is true anymore - the
certificate might have been revoked.

In the absence of Internet access, Certificate Revocation Lists (CRLs) might not be
available to the SP. If this is the case, an evaluation of what to do with the actor
has to be done. Ideas that comes to mind might be to issue a very short lived PC,
maybe with limited rights, to the actor’s node so that it can start working now,
but has to re-authenticate later when CRLs has been brought to the scene either
out-of-band or by setting up Internet access. If no CRL is ever brought to the SPs
attention, he might want to require an out-of-band authentication later.

Either way, as this does not have to happen in the same out-of-band fashion as
the proposed design in this thesis requires, one could also allow the authentication
to happen even if the actor is not a direct neighbor of the SP, but is connected
through other nodes in the network. While in this implementation regular trusted
nodes drop the announcements from new unauthenticated nodes, they could rather
tunnel the announcement directly to the SP and have the authentication handshake
go through them.

6.3.2 Network Merging

Due to R5 of Table 3.1 and for this implementation to be really useful for emergency
services, which will consist of different types of actors and organizations, the im-
plementation should support merging of multiple ad hoc networks. For example, if

69

CHAPTER 6. DISCUSSION

paramedics set up their own network, and firefighters arrive with their own network,
co-operation between these networks should be supported.

Figure 6.1 (from the specialization project [BG10]) shows a possible scenario when a
large emergency situation such as a natural disaster has happened. The figure por-
trays 4 organizational actors, i.e. police, firefighters, paramedics, and the military,
which all run their own networks. Some of the networks co-operate through the use
of gateways, such as between the police and the other actors, and the paramedics
and firefighters co-operate by merging their networks.

Figure 6.1: Scene from scenario with actors from multiple organizations.

Choosing whether to merge two networks or not is mainly a security issue. Some
actors might have higher security concerns than others, e.g. military units does
not trust the other actors to merge with their networks, but they might still want
to communicate with them. This can for example be handled by having certain
gateway nodes being allowed to communicate with nodes outside the network in a
controlled manner.

Full Merging

A full merging means that two or more separately built and maintained networks
completely merge so that each node in each of the networks receive all the routing

70

6.3. FUTURE WORK - EXTENDING THE SYSTEM DESIGN

announcements being sent within the networks. What this basically means is that
the different networks become a single network.

The transition to from multiple to one network is not easy. Up to this point the
assumption has been that there is only one management node called SP in the
network. This will now change. With multiple networks merging into one there will
be multiple SPs managing the access control of the network. In the next section
having multiple SPs is discussed in greater detail.

There is one more major factor which needs to be addressed with full merging of
networks, namely how access control is defined. One now needs to assume that the
SPs either use the same policy languages to define what rights a node have been
attributed with, or that they have a way of translating these policy languages so
that they can be uniformly understood. For instance, in Section 3.7.1 three special
attributes and their values were used as an example of how a policy might look like:

• Role - Node’s role in the network

• Routing - Whether the node can partake in the routing

• Application - Whether the node has access to the application layer

Now, these attributes would seem to make sense in most applications of this system
design, but some implementations might even have more attributes. Their values
might also be different, because different networks might have different needs, for
instance the ’role’ attribute might have different values depending on what kind of
elements are present in the network. For instance, one network might have the “loca-
tion aware guard nodes” mentioned earlier in the network for wormhole protection,
while other network do not. With two such different networks, full merging might
not be feasible, but with smaller differences the obstacles might be manageable.

Limited Merging

Limited merging is a completely different technique than the one described above,
and probably easier to implement. With limited merging of two or more networks,
the networks stay autonomous with their own (possible) hierarchy, set of rules,
management nodes, and so on, while at the same time allowing the two (or more)
networks to collaborate. What constitutes the merging is that at least one node in
each network is set up with gateway capabilities, which can broadcast the existence
of another network to the nodes inside its own network.

Rules on the application layer must necessarily still be looked at, as they should
work over the different networks, but routing rules and other access controls can
stay hidden between the networks.

71

CHAPTER 6. DISCUSSION

Internet Gateway

Similar to limited merging, a node in a network may be given gateway capabilities
to announce Internet access to the network. Because all nodes belong to the same
MANET and the management is consistent within this one network, this capability
should be relatively easy to implement. The only thing the reader should notice is
that the policy field within the proxy certificates of the nodes can now be used to
declare whether the node should have Internet access or not by adding an Internet
attribute to the policy.

6.3.3 Multiple Service Proxies

Whenever full merging of two secure and managed MANETs happen as described
above two or more (!) SPs will end up in the same network (the emphasis on more
is used because one network might have more than one SP). This would be a chal-
lenging task to overcome, for these networks are inherently flat, or non-hierarchical.
Decision making in the network after this point would be difficult if one network (or
specifically one SP) sees itself as more important than the other.

It is probably better to say that for two networks to fully merge, they should see
themselves as equal counterpart where no network has more rights than the other,
and therefore the SPs have the same rights as each other. This means that nodes
issued by one SP, or said differently one SP’s children, are equally trusted by all
other nodes in the network, depending on the restrictions set in their PCs of course.

If all the SPs in the network are considered “equal”, then they are all equally trusted
to issue new nodes and introduce them to the network. The major requirement
missing for this scheme to happen is that all nodes in the network now needs to
know the public keys for all SPs.

It is likely that not all nodes in the network will ever become a direct neighbor
and therefore not receive the other SPs’ Proxy Certificate 0s (PC0s), but they will
meet nodes signed by those SPs. A way around this problem is to have each SP to
once in a while broadcast a digitally signed list to all its children nodes containing
the identities (unique subject names) and public keys for all other trusted SPs in
the network. Because this list is signed by a known SP, you are able to verify the
authenticity of this list and therefore implicitly verify and trust all nodes issued with
PCs from the other SPs.

72

6.4. EXPERIENCE WITH OPENSSL

6.4 Experience with OpenSSL

The experience with OpenSSL has been a challenging one. There is little documenta-
tion available, and only on some segments of the library. Many functions being used
in the implementation of this thesis are undocumented, or at least not in a freely
available documentation. Not to be confused, you can find most OpenSSL functions
in their documentation, but most of those functions are not explained, many do
not explain output and input to functions, and many functions have unclear names
making it a game of “guessing” which functions to use.

Most of the implementation has been understood by looking at a few available
examples online at different sites, some demos within the OpenSSL libraries, and
by asking the online community. For reference, I would personally recommend the
community at Stack Overflow1 rather than the OpenSSL mailing lists2 3 which have
not answered any questions I raised.

When I’ve had enough time I’ve documented the OpenSSL functions used in my
implementation, which can hopefully help someone planning to further implement
on this design, or other designs with similar functionality.

During the implementation and before completing the keystream sharing, ECC was
used instead of RSA for signing the certificates. In order to use ECC for the
keystream sharing, ECDH or ECIES had to be used. This however, was not an
easy task using OpenSSL, and the author had to change the public keys to RSA in
order to complete the keystream sharing in due time before turnging in this thesis.
One can easily argue that ECC should be used rather than RSA because of key
sizes, making much sense in MANETs.

6.5 Out-Of-Band Authentication

If an authentication scheme use some other medium to authenticate a user than
the medium for which the authenticated identities are supposed to use later, you
have an out-of-band authentication. For instance, when two computers interact over
the Internet, and the authentication scheme relies on some secret information being
transferred via e.g. SMS on the phone network, then this secret information is being
shared on an out-of-band authentication.

For the purpose of this thesis, a few out-of-band authentication schemes could be
handy, such as sharing public keys (or just their fingerprints) verbally between the
human actors, or using USB sticks. There is no requirement of sharing the public
keys however. If one can assume that you know with certainty that a communication

1http://stackoverflow.com
2openssl-dev@openssl.org
3openssl-users@openssl.org

73

http://stackoverflow.com
openssl-dev@openssl.org
openssl-users@openssl.org

is from the alleged identity, you can instantly grant this identity access and issue it
a PC. This can be true if the SP is plugged into one end of an ethernet cable, and
the other end of the cable is plugged into the actors machine. Then you know this
machine belongs to the actor and can be directly verified.

Another part of the out-of-band authentication can be that an actor has a non-
digital authentication token such as a passport, or a work related identity badge
issued by the emergency organization employing this actor. The SP might require
this person to show him this identity badge before being allowed into the network.
In other words, there are countless of different out-of-band authentication schemes,
and they will not be discussed here further.

Chapter 7

Conclusion

With this thesis I have shown that the problem of authentication in Mobile Ad
Hoc Networks can be managed using a special type of public key certificates called
proxy certificates, along with the use of one-time passwords. In this thesis a system
design for handling the authentication in a MANET is proposed along with its
implementation for UNIX systems. I have shown that a central node is only required
for initial authentication, while the subsequent operation of the MANET have no
such requirement due to the use of proxy certificates and a trust scheme.

Prior to this thesis, a comprehensive study of related works for authentication and
security in ad hoc networks was carried out during a specialization project in co-
operation with Anne Gabrielle Bowitz. During this study the main design ideas were
formed, but changes were made during this thesis to account for authentication of
nodes without a verifiable authentication token, and also during the implementation
when some specific goals became more clear.

An emergency scenario was constructed and used to create system design require-
ments. With the exception of one requirement, which has been deemed further
work, all requirements have been accounted for and handled in the proposed system
design.

The implementation of the system design was achieved by extending an existing
and popular ad hoc routing protocol called BATMAN. The extension should also
be portable to other network-layer pro-active routing protocols, with only minor
modifications.

Furthermore, the performance of the implemented system design was compared
to the original routing protocol implementation. These tests indicates that the
extension do not add much delay, but rather a small and constant delay. The tests
are, however not fully definite and they should probably be runned again with a
larger set of test-machines and with far more trials. Only this way can a linear time
delay be disproven. If further testing should prove a constant delay, there would be

75

no obvious performance issues with the proposed design.

Some tasks are left as future work. As noted in the discussion chapter, both worm-
hole attacks and suppress replay attacks might have to be countered. With an
powerful adversary both attacks could be successful on the proposed design, how-
ever two possible solutions (one more or less straight forward) were discussed. These
proposals are left as my suggestions to the science community for further work. A
peer review of the security assumptions and choices in the proposed design is also
left as further work.

References

[BG10] A.G. Bowitz and E.G. Graarud. Developing a Secure Ad
Hoc Network Implementation. Technical report, NTNU ITEM,
2010. https://github.com/espengra/secure-ad-hoc-network-doc/raw/
master/share/project.pdf.

[Bro10] L. Brown. Using Proxy Certificates for Mobile and Other Authentication
Needs, 2010. http://www.unsw.adfa.edu.au/∼lpb/papers/ssp10/xpc-
mob-10a.html.

[Chr11] J. Chroboczek. The Babel Routing Protocol. Technical report, RFC
Editor, 2011. http://www.rfc-editor.org/rfc/rfc6126.txt.

[CJ10] Thomas Heide Clausen and Philippe Jacquet. Optimized Link State
Routing Protocol (OLSR). Network Working Group, Last accessed De-
cember 19, 2010. http://tools.ietf.org/html/rfc3626.

[CJA+03] T. Clausen, P. Jacquet, C. Adjih, A. Laouiti, P. Minet, P. Muhlethaler,
A. Qayyum, and L. Viennot. Optimized Link State Routing Protocol
(OLSR), 2003. Network Working Group Network Working Group.

[DD11] H. Dey and R. Datta. A threshold cryptography based authentication
scheme for mobile ad-hoc network. In Natarajan Meghanathan, Bra-
jesh Kumar Kaushik, and Dhinaharan Nagamalai, editors, Advances in
Networks and Communications, volume 132 of Communications in Com-
puter and Information Science, pages 400–409. Springer Berlin Heidel-
berg, 2011.

[DLRS01] B. Dahill, B.N. Levine, E. Royer, and C. Shields. A secure routing pro-
tocol for ad hoc networks. Electrical Engineering and Computer Science,
University of Michigan, Tech. Rep. UM-CS-2001-037, 2001.

[DOG+] S.K. Dhurandher, M.S. Obaidat, D. Gupta, N. Gupta, and A. Asthana.
Network layer based secure routing protocol for wireless ad hoc sensor
networks in urban environments. In Wireless Information Networks and
Systems (WINSYS), Proceedings of the 2010 International Conference
on, pages 1–6. IEEE.

77

https://github.com/espengra/secure-ad-hoc-network-doc/raw/master/share/project.pdf
https://github.com/espengra/secure-ad-hoc-network-doc/raw/master/share/project.pdf
http://www.unsw.adfa.edu.au/~lpb/papers/ssp10/xpc-mob-10a.html
http://www.unsw.adfa.edu.au/~lpb/papers/ssp10/xpc-mob-10a.html
http://www.rfc-editor.org/rfc/rfc6126.txt
http://tools.ietf.org/html/rfc3626

REFERENCES

[FKTT98] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A Security Architec-
ture for Computational Grids. In Proceedings of the 5th ACM conference
on Computer and communications security, pages 83–92. ACM, 1998.

[GBS10] P. Goyal, S. Batra, and A. Singh. A literature review of security attack in
mobile ad-hoc networks. International Journal of Computer Applications
IJCA, 9(12):24–28, 2010.

[Hal94] N.M. Haller. The s/key (tm) one-time password system. In Symposium
on Network and Distributed System Security, pages 151–157. Citeseer,
1994.

[He02] G. He. Destination-sequenced distance vector (dsdv) protocol. Network-
ing Laboratory, Helsinki University of Technology, 2002.

[HFPS99] R. Housley, W. Ford, W. Polk, and D. Solo. Internet X.509 Public Key
Infrastructure Certificate and CRL Profile. Network Working Group,
January 1999. http://www.ietf.org/rfc/rfc2459.txt.

[HM03] A.R. Hevner and S.T. March. The information systems research cycle.
Computer, 36(11):111–113, 2003.

[HPJ05] Y.C. Hu, A. Perrig, and D.B. Johnson. Ariadne: A secure on-demand
routing protocol for ad hoc networks. Wireless Networks, 11(1):21–38,
2005.

[HSBW11] S.A. Hosseini Seno, R. Budiarto, and T-C. Wan. A Secure Mobile Ad hoc
Network Based on Distributed Certificate Authority. Arabian Journal
for Science and Engineering, pages 245–257, 2011.

[Lin93] J. Linn. Privacy Enhancement for Internet Electronic Mail: Part I:
Message Encryption and Authentication Procedures. Network Working
Group, 1993. http://www.ietf.org/rfc/rfc1421.txt.

[LPM+05] L. Lazos, R. Poovendran, C. Meadows, P. Syverson, and LW Chang.
Preventing wormhole attacks on wireless ad hoc networks: a graph the-
oretic approach. In Wireless Communications and Networking Confer-
ence, 2005 IEEE, volume 2, pages 1193–1199. IEEE, 2005.

[MDK10] D. Murray, M. Dixon, and T. Koziniec. An experimental comparison of
routing protocols in multi hop ad hoc networks. In Telecommunication
Networks and Applications Conference (ATNAC), 2010 Australasian,
pages 159 –164, 31 2010-nov. 3 2010.

[Mes10] Open Mesh. Why starting B.A.T.M.A.N.? open-mesh.org, Last
accessed december 19, 2010. http://www.open-mesh.org/wiki/why-
starting-batman.

78

http://www.ietf.org/rfc/rfc2459.txt
http://www.ietf.org/rfc/rfc1421.txt
http://www.open-mesh.org/wiki/why-starting-batman
http://www.open-mesh.org/wiki/why-starting-batman

REFERENCES

[NALW10] A. Neumann, C. Aichele, M. Lindner, and S. Wunderlich. Better Ap-
proach To Ad-Hoc Networking (B.A.T.M.A.N) draft-wunderlich-open-
mesh-manet-routing-00. Network Working Group, Last accessed Decem-
ber 19, 2010. http://tools.ietf.org/html/draft-wunderlich-openmesh-
manet-routing-00.

[NJT09] Å.A. Nyre, M.G. Jaatun, and I.A. Tøndel. A secure MANET routing
protocol for first responders. In Security and Communication Networks
(IWSCN), 2009 Proceedings of the 1st International Workshop on, pages
1–7. IEEE, 2009.

[PBRD03] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc on-demand distance
vector (aodv) routing, 2003.

[PD07] L.L. Peterson and B.S. Davie. Computer networks: a systems approach.
Morgan Kaufmann Pub, 2007.

[Per08] C.E. Perkins. Ad hoc networking. Addison-Wesley Professional, 2008.

[PH02] P. Papadimitratos and Z.J. Haas. Secure routing for mobile ad hoc
networks. In SCS Communication Networks and Distributed Systems
Modeling and Simulation Conference (CNDS 2002), volume 31. Citeseer,
2002.

[PL07] R. Poovendran and L. Lazos. A graph theoretic framework for preventing
the wormhole attack in wireless ad hoc networks. Wireless Networks,
13(1):27–59, 2007.

[PM04] A.A. Pirzada and C. McDonald. Establishing trust in pure ad-hoc net-
works. In Proceedings of the 27th Australasian conference on Computer
science - Volume 26, ACSC ’04, pages 47–54, Darlinghurst, Australia,
Australia, 2004. Australian Computer Society, Inc.

[RH11] M.N.S. Raote and M.K.N. Hande. Approaches towards mitigating worm-
hole attack in wireless ad-hoc network. IJAEST, 2(2):170–173, 2011.

[SDL+02] K. Sanzgiri, B. Dahill, B.N. Levine, C. Shields, and E.M. Belding-Royer.
A secure routing protocol for ad hoc networks. Network Protocols, IEEE
International Conference on, 0:78, 2002.

[SLD+05] K. Sanzgiri, D. LaFlamme, B. Dahill, B.N. Levine, C. Shields, and E.M.
Belding-Royer. Authenticated routing for ad hoc networks. Selected
Areas in Communications, IEEE Journal on, 23(3):598–610, 2005.

[Sva08] I. Svagard. Information security for field workers in crisis situations.
Technical report, SINTEF ICT, http://www.oasis-fp6.org/documents/
OASIS SP24 DDD 253 security SIN 1 0 pub.pdf, 2008.

79

http://tools.ietf.org/html/draft-wunderlich-openmesh-manet-routing-00
http://tools.ietf.org/html/draft-wunderlich-openmesh-manet-routing-00
http://www.oasis-fp6.org/documents/OASIS_SP24_DDD_253_security_SIN_1_0_pub.pdf
http://www.oasis-fp6.org/documents/OASIS_SP24_DDD_253_security_SIN_1_0_pub.pdf

[TET+04] S. Tuecke, D. Engert, M. Thompson, L. Pearlman, and V. Welch. Inter-
net X.509 Public Key Infrastructure Proxy Certificate Profile. Technical
report, RFC Editor, 2004. http://tools.ietf.org/html/rfc3820.

[TJN09] I.A. Tøndel, M.G. Jaatun, and A.A. Nyre. Security requirements for
MANETs used in emergency and rescue operations. In Security and
Communication Networks (IWSCN), 2009 Proceedings of the 1st Inter-
national Workshop on, pages 1–7. IEEE, 2009.

[VMC02] J. Viega, M. Messier, and P. Chandra. Network security with OpenSSL.
O’Reilly Media, 2002.

[WSK06] E. Winjum, P. Spilling, and Ø. Kure. Ad Hoc networks used in emergency
networks : the Trust Metric Routing approach. FFI Rapport, 2006.

[Zim80] H. Zimmermann. OSI reference model–The ISO model of architecture
for open systems interconnection. Communications, IEEE Transactions
on, 28(4):425–432, 1980.

[Zim95] P.R. Zimmermann. The official PGP user’s guide. 1995.

http://tools.ietf.org/html/rfc3820

Appendix A

Source Code

A.1 Complete Source Code

The source code is released in two different ways. The version used to produce the
test results in this thesis is released in a zipped package at the following address:

https://github.com/espengra/secure-ad-hoc-network-doc/raw/master/share/secure-
ad-hoc-network.zip

For the latest updated version there is a Git repository where you can download or
fork your own branch of the source code from the following address:

https://github.com/espengra/secure-ad-hoc-network

A.2 Code Snippets

In this section all the code snippets referred to from Chapter 4 are shown. They
might not reflect the source code perfectly, as some lines in between and re-organization
has been done to only include the most important steps. However, all the values are
the exact same as their counterparts in the source code.

A.2.1 AM Sockets Setup

i n t 3 2 t ∗ recvsock , ∗ sendsock ;
addr in fo h ints , ∗ r e s ;

/∗ Set fami l y in format ion ∗/
memset(&hints , 0 , s izeof h in t s) ;
h i n t s . a i f a m i l y = AF INET ;

81

https://github.com/espengra/secure-ad-hoc-network-doc/raw/master/share/secure-ad-hoc-network.zip
https://github.com/espengra/secure-ad-hoc-network-doc/raw/master/share/secure-ad-hoc-network.zip
https://github.com/espengra/secure-ad-hoc-network

APPENDIX A. SOURCE CODE

h in t s . a i s o c k t y p e = SOCK DGRAM;
h in t s . a i f l a g s = AI PASSIVE ;
h in t s . a i p r o t o c o l = IPPROTO UDP;

/∗ Puts the port−i n f o i n s i d e a addr in fo data s t r u c t u r e ∗/
ge taddr in f o (NULL, port , &hints , &r e s) ;

/∗ Assign f i l e d e s c r i p t o r f o r s o c k e t s ∗/
∗ recvsock = socket (PF INET , SOCK DGRAM, 0)
∗ sendsock = socket (PF INET , SOCK DGRAM, 0)

/∗ Binds the s o c k e t s to the network i n t e r f a c e ∗/
s e t sockopt (∗ recvsock , SOL SOCKET, SO BINDTODEVICE, i n t e r f a c e ,

s t r l e n (i n t e r f a c e) + 1)
s e t sockopt (∗ sendsock , SOL SOCKET, SO BINDTODEVICE, i n t e r f a c e ,

s t r l e n (i n t e r f a c e) + 1)

/∗ Binds r e c e i v e sock e t to the por t (r e s t o f the address i s
empty/ n u l l) ∗/

bind (∗ recvsock , res−>a i addr , res−>a i a d d r l e n) ;

/∗ Allow the send socke t to send broadcas t messages ∗/
int broadca s t va l = 1 ;
s e t sockopt (∗ sendsock , SOL SOCKET, SO BROADCAST, &broadcas t va l ,

s izeof int)

/∗ Set the send socke t to non−b l o c k i n g ∗/
f c n t l (∗ sendsock , F SETFL , O NONBLOCK) ;

A.2.2 Proxy Certificate Extension

Remember the author did not get the original proxyCertInfoExtension to work, so
it was changed with a netscape comment.

STACK OF(X509 EXTENSION) ∗ ext s = sk X509 EXTENSION new null () ;
o p e n s s l c e r t a d d e x t r e q (exts , NID netscape comment , ” c r i t i c a l ,

myProxyCertInfoExtension : 0 , 1 ”) ;

X509 REQ add extensions (x , ex t s) ;
sk X509 EXTENSION pop free (exts , X509 EXTENSION free) ;

The first digit with a 0 in the comment tells the role the node requests is only regular
’authenticated’. If this was 1 it would mean the node was a SP. The last digit is
used for routing rights. The 1 in the last digit means the node wishes full routing
rights, whereas a 0 would mean limited routing rights.

82

A.2. CODE SNIPPETS

A.2.3 Setting Subject Name in PC

X509 NAME ∗name , ∗ req name , ∗ i s suer name ;
req name = X509 REQ get subject name (req)
i s suer name = X509 get subject name (∗ pc0p)
name = X509 NAME dup(i s suer name)
req name entry = X509 NAME get entry (req name , 0) ;
X509 NAME add entry (name , req name entry , X509 NAME entry count (

name) , 0) ;
X509 set subject name (cert , name)

A.2.4 Adding Trusted Node to AL

void a l add (u i n t 3 2 t addr , u i n t 1 6 t id , r o l e t y p e ro l e , unsigned
char ∗ subject name , EVP PKEY ∗key) {

a u t h e n t i c a t e d l i s t [num auth nodes] = mal loc (s izeof (
t rus ted node)) ;

a u t h e n t i c a t e d l i s t [num auth nodes]−>addr = addr ;
a u t h e n t i c a t e d l i s t [num auth nodes]−> id = id ;
a u t h e n t i c a t e d l i s t [num auth nodes]−> r o l e = r o l e ;
a u t h e n t i c a t e d l i s t [num auth nodes]−>name = mal loc (

FULL SUB NM SZ) ;
memset (a u t h e n t i c a t e d l i s t [num auth nodes]−>name , 0 ,

FULL SUB NM SZ) ;

i f (s t r l e n ((char ∗) subject name)>FULL SUB NM SZ)
memcpy(a u t h e n t i c a t e d l i s t [num auth nodes]−>name ,

subject name , FULL SUB NM SZ) ;
else

memcpy(a u t h e n t i c a t e d l i s t [num auth nodes]−>name ,
subject name , s t r l e n ((char ∗) subject name)) ;

a u t h e n t i c a t e d l i s t [num auth nodes]−>pub key = opens s l key copy
(key) ;

i f (id != my id) {
EVP PKEY free (key) ;

}

num auth nodes++;

}

83

APPENDIX A. SOURCE CODE

A.2.5 Adding Trusted Neighbor to NL

void n e i g h l i s t a d d (u i n t 3 2 t addr , u i n t 1 6 t id , unsigned char ∗
mac value) {

int i ;
for (i =0; i<num trusted ne igh ; i++) {

i f (id == n e i g h l i s t [i]−> id) {

i f (addr == n e i g h l i s t [i]−>addr) {

i f (n e i g h l i s t [i]−>mac != NULL)
f r e e (n e i g h l i s t [i]−>mac) ;

n e i g h l i s t [i]−>mac = mac value ;
n e i g h l i s t [i]−>window = 0 ;
n e i g h l i s t [i]−> l a s t seq num = 0 ;
n e i g h l i s t [i]−> l a s t r c v d t i m e = time (NULL) ;
n e i g h l i s t [i]−>num keyst ream fa i l s = 0 ;

} else {

i f (mac value != NULL)
f r e e (mac value) ;

n e i g l i s t r e m o v e (i) ;

}

break ;

}

}

i f (i==num trusted ne igh) {

n e i g h l i s t [num trusted ne igh] = mal loc (s izeof (t r u s t e d n e i g h)
) ;

n e i g h l i s t [num trusted ne igh]−>addr = addr ;
n e i g h l i s t [num trusted ne igh]−> id = id ;
n e i g h l i s t [num trusted ne igh]−>mac = mac value ;
n e i g h l i s t [i]−>window = 0 ;
n e i g h l i s t [num trusted ne igh]−> l a s t seq num = 0 ;
n e i g h l i s t [num trusted ne igh]−> l a s t r c v d t i m e = time (NULL) ;
n e i g h l i s t [num trusted ne igh]−>num keyst ream fa i l s = 0 ;
num trusted ne igh++;

84

A.2. CODE SNIPPETS

}

}

A.2.6 Removing Trusted Neighbor to NL

int n e i g l i s t r e m o v e (int pos) {

/∗ F i r s t check whether t h i s node e x i s t s a t a l l (s a n i t y check)
∗/

i f (n e i g h l i s t [pos] == NULL) {
return 0 ;

}

/∗ Check whether keystream e x i s t s , remove i f so ! ∗/
i f (n e i g h l i s t [pos]−>mac != NULL)

f r e e (n e i g h l i s t [pos]−>mac) ;

/∗ Free up ne ighbor in memory ∗/
f r e e (n e i g h l i s t [pos]) ;

/∗ Re−arrange Neighbor L i s t to avoid scarce popu la t i on ∗/
int i ;
for (i=pos +1; i<num trusted ne igh ; i++) {

n e i g h l i s t [i −1] = n e i g h l i s t [i] ;
}

/∗ Fina l l y , number o f t r u s t e d ne i ghbor s has shrunk :) ∗/
num trusted neigh−−;

return 1 ;
}

A.2.7 Generate Ephemeral Key

void o p e n s s l k e y g e n e r a t e (EVP CIPHER CTX ∗ aes master , int
key count , unsigned char ∗∗keyp) {

unsigned char ∗ r e t ;
int i , tmp , o l ;

i f (keyp == NULL | | ∗keyp == NULL) {
r e t = mal loc (EVP CIPHER CTX block size (aes master)) ;

} else {

85

APPENDIX A. SOURCE CODE

memset (∗ keyp , 0 , EVP CIPHER CTX block size (aes master)) ;
r e t = ∗keyp ;

}

o l = 0 ;

/∗ Create p l a i n t e x t from key count − each new key w i l l be
c i pher o f i =1 ,2 ,3 . . . ∗/

unsigned char ∗ p l a i n t e x t = mal loc (s izeof (key count)) ;
memset (p l a in t ex t , 0 , s izeof (p l a i n t e x t)) ;
∗ p l a i n t e x t = (unsigned char) key count ;
int l en = s t r l e n ((char ∗) p l a i n t e x t) +1;

EVP EncryptUpdate (aes master , ret , &tmp , p l a in t ex t , l en) ;
o l += tmp ;
//Remove padding , not wanted f o r key !
EVP EncryptFinal (aes master , ret , &tmp) ;

f r e e (p l a i n t e x t) ;
∗keyp = r e t ;

}

A.2.8 Generate Keystream

/∗ Generate Keystream from Nonce ∗/

i f (∗ key count >1)
f r e e (auth va lue) ;

int rand l en = RAND LEN;
auth va lue = mal loc (rand l en ∗10+10) ;
a u t h v a l u e l e n = 0 ;

for (i =0; i <10; i++) {

/∗ Do encryp t ion ∗/
EVP CIPHER CTX c u r r e n t c t x ;
EVP EncryptInit(& cur r ent c tx , EVP aes 128 cbc () , current key ,

c u r r e n t i v) ;
unsigned char ∗tmp = o p e n s s l a e s e n c r y p t (& cur r ent c tx ,

current rand , &v a l u e l e n) ;
EVP CIPHER CTX cleanup(& c u r r e n t c t x) ;

/∗ Place c i p h e r t e x t in keystream ∗/
int auth pos = a u t h v a l u e l e n ;

86

A.2. CODE SNIPPETS

a u t h v a l u e l e n += v a l u e l e n ;
memcpy(auth va lue+auth pos , tmp , v a l u e l e n) ;

/∗ Change to new IV ∗/
memcpy(c u r r e n t i v , tmp , AES IV SIZE) ;

/∗ Al te r the Nonce b e f o r e next encryp t ion ∗/
int j ;
for (j =0; j<rand l en /10 ; j++) {

cur rent rand [j +(i ∗(rand l en /10))] = ((cur rent rand [j +(i ∗(
rand l en /10))]) ˆ i) ;

}

f r e e (tmp) ;
v a l u e l e n = RAND LEN;

}

A.2.9 Extension in BATMAN Class

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Begin Authen t i ca t ion Module Extension
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

/∗
∗ I f the daemon i s not au then t i ca t ed , or i t r e c e i v e s an

a u t h e n t i c a t i o n
∗ token which i t does not recognize , the a u t h e n t i c a t i o n

procedure in the
∗ Authen t i ca t ion Module i s c a l l e d . No packe t s r e c e i v ed when

a u t h e n t i c a t i n g
∗ w i l l be processed .
∗/

i f (num trusted ne igh) {
for (ne igh counte r = 0 ; ne igh counte r < num trusted ne igh ;

ne igh counte r++) {
i f (n e i g h l i s t [ne i gh counte r]−>addr == neigh) {

break ;
}

}
}

i f (ne igh counte r == num trusted ne igh) {

i f (my role == SP && my state == READY) {
new neighbor = neigh ;

87

APPENDIX A. SOURCE CODE

}

i f (my role == AUTHENTICATED && my state == READY) {
/∗ Check to see whether the o ther node i s AUTHENTICATED ∗/
i f (memcmp(&(bat packet−>auth) , empty check , 2) != 0)

new neighbor = neigh ;
}

goto s end packet s ;
}

i f (n e i g h l i s t [ne i gh counte r]−>mac == NULL)
goto s end packet s ;

i f (memcmp(n e i g h l i s t [ne i gh counte r]−>mac+(bat packet−>auth seqno
∗2) , bat packet−>auth , 2) != 0) {

p r i n t f (”MAC Extract did not match !\n”) ;

i f (my state == READY) {

n e i g h l i s t [ne i gh counte r]−>num keyst ream fa i l s ++;

/∗ Keystream i s consequen t l y f a i l , ergo need to handshake a
new one ∗/

i f (n e i g h l i s t [ne i gh counte r]−>num keyst ream fa i l s > 20) {
my state = WAIT FOR REQ SIG;
new neighbor = neigh ;
n e i g h l i s t [ne i gh counte r]−>num keyst ream fa i l s = 0 ;

}

}

goto s end packet s ;
}

/∗ Check whether the packe t i s new and not a rep layed packe t ∗/
i f (! t o o l s l i d i n g w i n d o w (bat packet−>auth seqno , n e i g h l i s t [

ne i gh counte r]−> id))
goto s end packet s ;

/∗ Everyth ing seems f ine , r e s e t f a i l c o u n t e r i f more than 0 ∗/
i f (n e i g h l i s t [ne i gh counte r]−>num keyst ream fa i l s != 0)

n e i g h l i s t [ne i gh counte r]−>num keyst ream fa i l s = 0 ;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ End Authen t i ca t ion Module Extension
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

88

A.2.10 Extension in SCHEDULE Class

/∗ Begin Authen t i ca t ion Module Extension ∗/

/∗ Add Signature Extrac t to OGM ∗/
i f (pthread mutex try lock (& auth lock) == 0) {

i f (auth va lue != NULL) {

memcpy(bat packet−>auth , auth va lue+2∗auth seq num , 2) ;
bat packet−>auth seqno = auth seq num ;
auth seq num ++;

}

pthread mutex unlock(& auth lock) ;
}

/∗ End Authen t i ca t ion Module Extension ∗/

Appendix B

Lab Setup

The computers used in the lab was setup with the following hardware:

• Intel Core 2 Duo 2.83 GHz processor

• 4 GB memory

• Atheros AR5413 802.11abg NIC

Further, they are setup with Ubuntu 10.4 (Linux Kernel 2.6.32-25-generic-pae) and
ath5k drivers for the wireless interfaces. The network interface is configured as
follows:
/ e tc /network/ i n t e r f a c e s

auto l o
i f a c e l o i n e t loopback

auto wlan0
i f a c e wlan0 i n e t stat ic
address 1 0 . 0 . 0 .X
netmask 2 5 5 . 2 5 5 . 2 5 5 . 0
pre−up i f c o n f i g wlan0 down
pre−up i f c o n f i g wlan0 hw ether XX:XX:XX:XX:XX:XX
pre−up iwcon f i g wlan0 mode ad−hoc e s s i d BATMAN channel 3

auto un i ca s t
i f a c e un i ca s t i n e t stat ic
address 1 0 . 0 . 0 .X
netmask 2 5 5 . 2 5 5 . 2 5 5 . 0
pre−up b r c t l addbr un i ca s t
pre−up b r c t l add i f un i ca s t wlan0
pre−down i f c o n f i g un i ca s t down

91

post−down b r c t l d e l i f un i ca s t wlan0
post−down b r c t l de lb r un i ca s t

To install batmand, run the following as root user:
make
make i n s t a l l
make c l ean

To run the batman daemon on a regular test node, use the following command:

batmand --role authenticated -d 4 wlan0

To run the batman daemin on the SP node, use the following command:

batmand --role sp -d 4 wlan0

Appendix C

Test Results

C.1 Numerical Results

This sections presents the actual numerical results the graphs in Chapter 5, and
their means and variances.

C.1.1 Test I - Original BATMAN

First OGM
Received
(s)

First
Route
Added (s)

Last
Route
Added (s)

Time to
Add One
(s)

Time
To Add
Both(s)

1 0.35 1.42 1.44 1.07 1.09
2 0.41 1.35 1.65 0.94 1.24
3 0.18 1.22 3.52 1.04 3.34
4 0.75 1.77 1.82 1.02 1.07
5 0.18 1.33 2.24 1.15 2.06
6 0.02 1.94 2.12 1.92 2.10
7 0.01 2.05 2.93 2.04 2.92
8 0.13 1.10 1.51 0.97 1.38
9 0.66 1.68 1.72 1.02 1.06
10 0.01 1.98 3.43 1.97 3.42

Table C.1: Test I using Original BATMAN.

Mean time to add first route: 1.31 seconds
Mean time to add both routes: 1.97 seconds

Standard deviation in time adding first route: 0,44 seconds
Standard deviation in time adding both routes: 0,91 seconds

93

APPENDIX C. TEST RESULTS

C.1.2 Test I - Modified BATMAN

First OGM
Received
(s)

First
Route
Added (s)

Last
Route
Added (s)

Time to
Add One
(s)

Time
To Add
Both(s)

1 0.03 3.17 3.45 3.14 3.42
2 0.33 3.89 4.10 3.56 3.77
3 0.69 3.69 3.98 3.00 3.29
4 0.76 3.81 3.96 3.05 3.20
5 0.27 3.29 3.58 3.02 3.31
6 0.66 3.61 4.15 2.95 3.49
7 0.31 3.56 4.05 3.25 3.74
8 0.22 3.20 4.23 2.98 4.01
9 0.36 3.41 3.99 3.05 3.63
10 0.64 3.54 3.59 2.90 2.95

Table C.2: Test I using Modified BATMAN.

Mean time to add first route: 3.09 seconds
Mean time to add both routes: 3.48 seconds

Standard deviation in time adding first route: 0,18 seconds
Standard deviation in time adding both routes: 0,30 seconds

C.1.3 Test II

Original Conver-
gence Time (s)

Modified Con-
vergence Time
(s)

1 5.75 2.05
2 4.97 4.64
3 6.62 4.04
4 4.60 1.72
5 4.64 3.35
6 6.34 3.10
7 5.65 12.76
8 6.06 10.18
9 6.16 12.01
10 3.72 6.60

Table C.3: Test II using both BATMAN versions.

Mean convergence time using original BATMAN: 5.45 seconds
Mean convergence time using modified BATMAN: 6.05 seconds

94

Standard deviation convergence time using original BATMAN: 0.88 seconds
Standard deviation convergence time using modified BATMAN: 3.93 seconds

C.2 Logs

All of the logs produced from the tests can be found at the following address:

https://github.com/espengra/secure-ad-hoc-network-doc/raw/master/share/results.
zip

Note that the logs are in the BATMAN “-v 4” format. For explanation see the man
pages for batmand.

https://github.com/espengra/secure-ad-hoc-network-doc/raw/master/share/results.zip
https://github.com/espengra/secure-ad-hoc-network-doc/raw/master/share/results.zip

Appendix D

Scientific Paper

Based on the work behind this and Anne Gabrielle Bowitz’ thesis, we have in collab-
oration with our supervisors Martin Gilje Jaatun and Dr. Lawrie Brown produced
a scientific paper for publishing. At the moment of this writing the thesis has been
submitted for approval at one international scientific conference.

The submitted copy is appended at the following page. This might be revised after
the submission of this thesis, and the updated version can be found at the following
address:

https://github.com/espengra/secure-ad-hoc-network-doc/raw/master/share/paper.
pdf

97

https://github.com/espengra/secure-ad-hoc-network-doc/raw/master/share/paper.pdf
https://github.com/espengra/secure-ad-hoc-network-doc/raw/master/share/paper.pdf

BatCave: Adding Security to the BATMAN Protocol
Blind review

Abstract—The Better Approach To Mobile Ad-hoc Networking
(BATMAN) protocol is intended as a replacement for protocols
such as OLSR, but just like most such efforts, BATMAN has
no built-in security features. In this paper we describe security
extensions to BATMAN that control network participation and
prevent unauthorized nodes from influencing network routing.

I. INTRODUCTION

This work developed from a perceived need to implement
a secure adhoc network that might be used in emergency
services, disaster assistance, and military applications. Such
a network needs to be established quickly, and without the
need for existing fixed infrastructure. However it also requires
controls to limit access to the network, in order to protect it
from intruders or unwanted bystanders. We propose extensions
to a suitable adhoc network routing protocol, BATMAN,
so that routing advertisements will only be accepted from
authorised stations on the network. We propose the use of
proxy certificates, which each client wishing to access the
network will generate, and which are signed by one of the
suitably authorised stations tasked with creating and manage-
ing the network. We assume these stations will be located with
suitable emergency services command units that the network
is being created to support.

The remainder of this paper is structured as follows:

II. RELATED WORK ON ADHOC NETWORK SECURITY

Our proposals evolved from work on developing a secure
restricted ad-hoc network for use by emergency services or
disaster response personnel [1], [2]. In such a network, access
must be managed, but be provided for members of multiple
authorities which might not have online access to verify their
identity. They focused on the design and implementation of
the needed extensions to the OLSR adhoc network routing
protocol. However they only made a brief mention of the use
of a public-key infrastructure to identify mobile clients and to
authorise their access to some restricted ad-hoc network. They
suggested that clients in a region would be pre-configured with
certificates that could be used to automatically grant them
access. They also noted that there needs to be some means
of granting access to mobile devices that are not known, for
personnal from out of region or from other services without
peering arrangements. They suggested that such devices can be
issued short-lived certificates, with limited rights, to grant them
access. However details of this were left mostly unspecified.

In other related work, short-lived X.509 certificates were
proposed as a suitable mobile authentication method for low
power or otherwise resource limited devices [3], [4]. The
main reasons they gave for choosing such certificates, which
are “conventional” X.509 certificates but with a much shorter

lifetime of hours to days, include a desire to avoid the cost
and overhead of checking a Certificate Revocation List (CRL)
or otherwise handling detection of revoked certificates. It was
also to allow the use of less computationally intensive algo-
rithms and key sizes than may be required in ”conventional”
X.509 certificates with lifetimes, and hence need for sufficient
strength against attack, over periods of months to years.

III. ADDRESSING LIMITIATIONS IN THE EXISTING WORK

Our proposed adhoc network security extensions address
some issues with the prior work noted above. First was the
choice of adhoc network routing protocol to modify. Although
OLSR is an Internet standard, several papers have suggested
thats its performance in practical trials is less than desired [5],
[6]. Of the other protocols tested, it appears that BATMAN
provided the best overall performance. We present further
details on this choice in the next section.

Next was the choice of types of certificates to use to
manage controlled admission to the network. The existing
proposals involve using a mix of conventional and short-lived
certificates, with the latter being generated in the field as
required to support admission of stations without existing,
verifiable, conventional certificates. However this means the
stations issuing these need to support some certificate authority
(CA) functionality, and have CA certificates available to sign
these newly created certificates (short-lived or otherwise).
Normal client stations would not normally have these.

We propose instead the use of proxy certificates, which
are X.509 certificates with specific proxy extensions, that
are signed either by another, conventional client certificate,
or by a proxy certificate (PC), as we detail later in section
VI-A. Hence any client station can potentially act a certificate
issuer, able to grant access to other stations. The problem
then becomes one of distributing knowledge of which stations
have that authority, which we address as part of our protocol
extensions. Note with our proposed use of proxy certificates,
they become an access token or capability used to gain access
to a service, in this case the adhoc network. This is very much
the opposite sense to current use of these certificates, which
are used by clients to delegate some of their access rights to
a server, particularly in the grid computing domain [7].

Another problem not explicitly addressed in the previous
work, is just what controls or restrictions were placed on the
process of issuing certificates to grant access to the network.
They identify the need to support differing categories of
stations needing access. Some may be automatically recog-
nized and trusted because they possess a conventional client
certificate issued by a CA known to the proxy issuing client,
most likely because both stations belong to the same service

or administrative structure. In this case it would be reasonable
to automatically issue the proxy certificate and grant network
access without any human intervention. Other clients may
not be immediately recognized, since they belong to other
services, are volunteers, or just not previous known. In such
cases it would seem reasonable to require manual verification
that the client should be granted access before issuing a proxy
certificate to them.

A further advantage in the use of proxy certificates is that
they support the specification of restrictions on their use. We
propose using this mechanism to assign different rights to dif-
ferent classes of clients. This could be used to indicate which
clients are delegated the right to also issue proxy certificates
granting access to other stations to the existing network. It
also could be used to indicate that some stations should only
be end-systems, and not used to relay traffic. Since X.509
certificates are widely recognized, it would also be possible to
use the issued proxy certificates to authorise and authenticate
the client’s use of specific upper-layer applications.

IV. B.A.T.M.A.N.

BATMAN [8] (“Better Approach To Mobile Ad hoc Net-
working”) is an increasingly popular routing protocol for
wireless ad hoc networks, which was developed with an
aim to replace the Optimized Link State Routing Protocol
(OLSR) [9]. OLSR is a pro-active routing protocol, which
means that participating nodes regularly exchange routing
information with each other. According to the BATMAN
developers, the problem with OLSR is that every node in the
network calculates the whole routing path, which is a complex
way to do it. Not only is it difficult to make sure all nodes
have the same information at the same time, it also needs
(relatively) much storage and computation time. If nodes sit
on different routing information this concept leads to routing
loops and heavy route flapping. The result is many patches to
the protocol that defies the protocol standard in order to make
it more suitable [9].

In BATMAN, each node should only know the next hop,
i.e., the link-local neighbor that is the path between itself and
the destination. BATMAN calculates the optimal route, i.e. the
next jump, by comparing the number of routing messages it
has received from each node and who was the last sender.

The routing messages sent in BATMAN are called OGM.
Figure 1 shows the packet format with all header fields. The
OGM format has changed since the BATMAN draft [8] was
published, but there is no official publication with the new
packet format as of yet. The packet format found in the
RFC draft belongs to the older version III of the BATMAN
algorithm. The algorithm used in this paper is version IV.

The real workhorse of the packet is the “Originator Ad-
dress” field which carries a host address of the node ’A’
that broadcasted the OGM. When a node ’B’ receives this
message it checks if the originator address and source address
of the IP header are the same - if so the two nodes are direct
neighbors. B then forwards the OGM only changing the “TTL”
and “Previous Sender” fields. All OGM inside the BATMAN

Fig. 1: BATMAN’s OGM packet format.

network are broadcasted and rebroadcasted until the TTL has
dropped to zero, or until they receive an OGM they have
previously sent themselves.

This way all OGM will be received and rebroadcasted by
all nodes in the network and all nodes will learn the existence
of each other and which nodes are the first hop between them
and the other nodes, i.e. the first leg of the path. All nodes
and their first hops in their paths are stored in a list called an
“Originator List”.

When a node which has already received and forwarded an
OGM receives the same OGM from another node at a later
point - it drops that packet so the network will not get flooded
by forwarding the same OGM until its TTL is zero. This is
also necessary in order to prevent routing loops.

V. REQUIREMENTS

Ad hoc networks have some desired characteristics such
as quick and inexpensive setup and being independent of
communication infrastructure, but they also introduce great
challenges regarding security.

A. Scenario

The design and implementation presented in this paper is
mostly based on an emergency situation scenario, in which
communication infrastructure is unavailable. If there is a major
emergency situation such as an earthquake or tsunami, it is
likely that parts or the entire communication infrastructure at
the scene is destroyed or temporarily down. The remaining
communication lines will then probably be congested, such
that little communication actually goes through.

In this situation, it is of great importance that Emergency
Personnel, such as Paramedics, Firemen, Policemen and the
Military, are able to communicate efficiently and therefore
independently of the public communication infrastructure.
They need this network in order to manage the the operation,
and therefore availability is probably the most important trait
of this network. Secondly, they should be able to trust the
communication on the network – i.e., messages sent are from
whom they claim they to be.

Also, being able to authorize new actors on the scene, such
as Red Cross, can be critical to the operation. These new actors
will probably not have the necessary authentication tokens,
i.e. certificates, required by the authentication scheme in the
network.

B. List of Requirements

Based on the scenario above these requirements can be
extracted and made into general requirements that needs to
be addressed by the system design. The work presented here
is based on several sources, most prevalent being the research
from the OASIS project [2] [10] [1] and Winjum et al. [11].

R1 A node must be authorized in order to get full rights
in a network [12], [13]

R2 A node without a recognized authentication token
should be able to become authorized if necessary

R3 Networks need a master node which handles access
control

R4 Access control (after initial authentication) should
not rely on centralized nodes

R5 Different networks should be able to collaborate [11]
R6 Only master nodes can decide access policies of

users/nodes
R7 Nodes must not be able to alter access policies they

are ruled by
An early study produced security requirements of ad hoc

networks demanding that the routing logic must not be spoofed
or altered to produce different behavior [12]. This means
authorization is required (R1) before someone can partake in
routing logic. The OASIS project [2] specifically considered
a situation where e.g. NGOs contribute to a rescue operation,
which means they need to somehow acquire credentials (R2),
but this must be administered by some authority (R3). R4
highlights the need for authenticated nodes to function au-
tonomously. A desire for seamless radio coverage over the
area gives us R5. R6 comes from the fact that it is not possble
to determine access policies prior to network setup, and R7
states the rather obvious, in that nodes that could alter the
access policy would violate R6.

VI. SECURITY SOLUTION OVERVIEW

The system design requires nodes to be authenticated and
trusted before being allowed into the network. Each node also
has to verify their identity periodically, or they are dropped
from the network.

The network setup starts with an out-of-band authentication
where a master node, hereafter referred to as a Service Proxy
(SP), verifies new nodes. How this is done can be up to the
application, but let us assume that the actors carrying their
communication devices, hereafter nodes, physically meets the
SP at the scene and exchange their public key fingerprints.

When a new node is discovered by the SP using regu-
lar routing announcements as part of the pro-active routing
protocol, the SP will invite the new node to a handshake
to establish a trust between the two nodes. The new node
will receive the SP’s certificate, and will after verifying the
fingerprint request a proxy certificate for itself. After verifying
the node’s fingerprint, the SP will issue a proxy certificate with
(possibly) the rights to participate in building the MANET by
broadcasting its own and re-broadcasting other trusted nodes’
routing announcements.

A. Why use Proxy Certificates?
. The Proxy Certificate (PC) is used to delegate rights on

behalf of the issuer. That means that the issuer, i.e. the SP,
can choose to delegate all or a subset of its rights to the
receiver of the Proxy Certificate. This can be very useful in a
situation where the nodes themselves are unable to properly
authenticate themselves with their pre-existing conventional
X.509 certificate if the SP on the scene has no way to verify
their certificates. This can be true if their certificates are issued
by an unknown root certificate (CA) or simply if there is no
Internet access and the certificate is signed by an unknown
entity (unknown to the SP), even if it knows and trusts the
root CA.

Also, the SP could be interested in giving the node rights the
node would not usually have on this specific scene, depending
on the situation. This is easier to achieve when the SP can
delegate its own rights.

An important feature of the PC is that the SP can delegate
different kind of rights, as long as it is a subset of its own
rights, to different nodes. There are countless of different rights
that can be useful, given the situation they are used in, but
here is a few possible rights/privileges to give the reader an
understanding of the possibilities they give:

• Announce itself - let the MANET know of your existence
• Re-broadcast other nodes announcements - reshape the

network topology
• Announce a gateway - give the MANET access to another

network
• Use the gateway - allow you to communicate outside the

MANET
• Send and receive messages with a defined application -

full application rights
• Only receive messages from a defined application -

limited application rights
If you are setting up a MANET on the scene of a disaster

to assist emergency personnel, you could have some actors be
able to organize the effort by sending orders/commands to the
other actors, while some actors only are allowed to receive
the orders. In this situation it might be of great importance to
know that only verified nodes are able to give commands, but
the importance of getting this information available outweighs
the need to verify the nodes/actors receiving this information.

B. Post-Authentication Operation
After being issued with a Proxy Certificate (PC) the newly

authenticated node will periodically “broadcast” - unicast to
each neighbor - a message containing an ephemeral key and
corresponding Initialization Vector (IV), a pseudo-randomly
generated nonce, and a digital signature over this message.
The ephemeral key is encrypted with the neighbor’s public
key (hence multiple unicasts instead of an actual broadcast),
but the digital signature is generated based on the unencrypted
key and the other contents of the message, and is thus identical
for all neighbors.

After sending this signed “broadcast” to each neighbor, the
node and its neighbors will generate a keystream from the

ephemeral key, IV, and nonce. The node will then append two
new bytes from this keystream to each routing announcement,
and re-broadcasts of neighbors’ announcements, sent from this
point forward with a sequence number for the recipient to be
able to match this “extract” with the keystream at an offset
given by the sequence number. The two bytes will then in
effect be a one-time password similar to that used by some
online banking applications. If this one-time password value
is absent or incorrect, the announcement will be dropped and
regarded as a spoofing message.

Whenever a routing announcement is re-broadcasted by
another trusted node, that node will first replace the sequence
number and one-time password that it has verified with the
next two bytes of its own key stream. This means that every
node only checks its direct neighbor for authentication, which
is a design choice. This proposal assumes that because every
node is verified by the SP in the first place, all nodes in the
network will be able to trust each other, which also means they
will trust their neighbors to properly verify their neighbors
again.

In order for trusted nodes to learn of newly trusted nodes
existence, the SP regularly broadcasts lists containing the id,
address and public key of each trusted node in the network.
This needs to be done, because before learning about a new
node the other trusted nodes will not accept any messages
from this node. This means the new node will not be able to
exchange its own PC with other nodes directly - only through
the SP.

The list, hereafter Authentication List (AL), also adds some
web-of-trust like capabilities. The list is signed by the SP,
which means the integrity of the list is guaranteed by the SP.
This means that if the SP should go offline, e.g. it could be out
of range, other trusted nodes in the MANET can continue to
broadcast the AL on behalf of the SP - to ensure all nodes in
the network know each other. This can be especially important
when the network grows large and become fully or partially
separated and nodes in one part may not have learnt of the
existence of newly trusted nodes yet. It also applies to trusted
nodes who have been offline while new nodes have been
verified, then re-enter the network while the SP is offline.

VII. SIMULATIONS

We have implemented both standard BATMAN and the ver-
sion with our security enhancements in the network simulation
package ns3.

Figure 2 presents Packet Delivery Ratio (PDR) and packet
delay results from the simulations running Secure BATMAN,
BATMAN and DSDV with 10 nodes and 10 traffic flows.

As seen from Figure 2a, the PDR values of all three
routing protocols all well above 80%. Interestingly, Secure
BATMAN’s PDR values also stay at approximately the same
level as the two other protocols. At pause time zero, which is
equivalent to continuous node movement, all three protocols
show their best behavior with the highest PDR values. This
is probably due to the fact that they all are ad hoc network
protocol tailored for networks with high node mobility.

When looking at the end-to-end latency in Figure 2b it is
surprisingly the Secure BATMAN protocol which has the best
results.

VIII. PROTOTYPE

We have implemented our proposed protocol changes by
modifying the BATMAN code distributed with a recent
Ubuntu Linux distribution.

A. Initialization Phase

Figure 3 presents neighbor discovery results for both the
original (Fig. 3a) and modified (Fig 3b) version of BATMAN.
The two graphs shows the time in seconds on the y-axis and
the trial/run number on the x-axis. The two colored lines on
the graphs show the results from first neighbor discovery until
the first neighbor is added to routing table (green line - marked
with “x”) and until both nodes are added to the routing table
(red line - marked with “+”).

The results from the original protocol, shown in Figure 3a,
shows high variance in the time needed to add one and two
nodes to the routing table. For 7 out of 10 “first nodes” the
time needed is relatively equal, being about one second. For
both nodes to be added however, there are much more variance
- variying from the best possible time, i.e. equal to adding one
node, and up above 3 times longer than adding one node. ’

Figure 3b shows the results from the modified version pro-
posed in this thesis. These results indicate that the behaviour
of the modified version seems to correlate with the behaviour
expected from the hypothesis. A seemingly constant of about
two seconds seems to be added to the process of adding both
nodes to the routing table.

Another interesting observation is that the time variance
seems to be much less than that of the original version.
This might be because the authentication handshake and the
keystream sharing happens in a separate thread from the
regular BATMAN operations, meaning the BATMAN protocol
continously receives routing announcements to process while
the Authentication Module (AM) handles its part. The idea
being that while the AM thread runs the BATMAN thread
“gets ready” to do its part of the job.

B. Route Convergence

The results of the second test are shown in Figure 3c. In
this figure, the axes are the same as in the figures above:
y-axis shows the time in seconds, and the x-axis shows the
trial run. The red line shows the performance of the original
implementation, while the green line shows the modified.

As indicated earlier, this test’s results are somewhat unclear.
While the results using the original implementation seems
relatively uniform, with only about 1 second variance, the
results from the modified implementation are highly irregular.

Looking through the logs from this test one thing become
apparent. With different hardware on the different nodes in
the network, their wireless cards send at different levels of
transmission power, meaning that while one node can receive

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900

P
a
c
k
e
t
D

e
liv

e
ry

 R
a
ti
o
 (

P
D

R
 %

)

Pause Times (s)

DSDV 10 nodes
BATMAN 10 nodes

Secure BATMAN 10 nodes

(a) PDR with varying pause times.

 0

 2

 4

 6

 8

 10

 0 100 200 300 400 500 600 700 800 900

P
a
c
k
e
t
D

e
la

y
 (

m
s
)

Pause Times (s)

DSDV 10 nodes
BATMAN 10 nodes

Secure BATMAN 10 nodes

(b) Packet delay with varying pause times.

Fig. 2: Simulations results from BATMAN, Secure BATMAN and DSDV (10 nodes and 10 source and sink pairs)

(a) Original BATMAN (b) Modified BATMAN (c) Routing path convergence time

Fig. 3: Neighbor discovery for original and secure BATMAN, and routing path convergence

packets from a “stronger node”, the packets sent might not be
received by the other nodes.

The BATMAN protocol messages (routing announcements)
are sent quite often, depending on the number of re-broadcasts
being sent, meaning the time from when a node is within
transmitting range and until its broadcasts are received by
nodes within its transmitting range will be quite short. The AM
messages however, was mostly tested in an ideal environment
where most packets were received, so this was not properly
accounted for. Therefore, if a routing announcement from a
“stronger node” is received by a “weaker node”, the weaker
node might send its keystream material without the other node
receiving it.

Re-transmitting mechanisms based on guessing that the
receiving node has not received the AM messages are in place,
but as the mechanism wait until it beleives the other node has
not received, instead of knowing it instantly. This can of course
be managed adding ACK’ing to each AM message, which was
not added initially because of the wish to minimize overhead.
This however, might have to be re-evaluated.

Another thing to notice is how multiple trial runs using the
modified version actually performed better than the original
version. This is impossible to explain talking about the design
and implementations themselves, but is probably most accu-

ratly explained in the terms of external environment.

IX. DISCUSSION

The proposed system design uses a novel solution to con-
tinuously verify routing announcements received from one’s
neighbors.For this system to be used on typical mobile devices
with all their constraints, limitations on computing power,
battery lifetime, and saturation in the wireless network must
be acknowledged.

Because all nodes in a MANET using a pro-active routing
protocol broadcast their routing announcements and forward
all received routing announcements, the network traffic will
increase exponentially to the amount of nodes in the net-
work and how closely bound they are. Therefore all routing
announcements need to be as small as possible. A typical
signature is usually one or two orders of magnitude larger
than a regular routing announcement, so by adding a signature
to the routing announcement - most of the data sent in the
network would be signature data. This is far from ideal.

The first solution that one would think of would be to
only sign a very few of the announcements, periodically. This
however, would be totally disastrous. This would have no
protection against spoofing attacks whatsoever, as an attacker
could wait for a legitimate node to send a signed announce-

ment and then send his own fake announcements spoofed with
the legitimate node’s address.

The solution proposed in this paper solves the problem
in a different manner. Since each node and its neighbors
generate a key stream that can be used to verify messages
from that node, only messages with a correct, previously
unused, “one-time password” will be accepted and forwarded
by any neighbor. Furthermore, since the keystream has to
be renewed periodically, any node not possessing the correct
proxy certificate will be dropped from the network upon
renewal.

This scheme is fully based on trust. You trust that your
trusted nodes will only send you its own annoucement (cor-
rectly) and rebroadcast only its trusted nodes announcements
without modification. If for some reason a trusted node should
behave maliciously, this scheme will not detect this and allow
the trusted node to potentially disrupt the network.

X. CONCLUSION

We have presented a security extension to the BATMAN ad
hoc routing protocol which handles controlled network admis-
sion and prevent unauthorized nodes from influencing routing
decisions in the network. Our ns-3 simulations indicate that
the security mechanisms do not place an undue burden on the
network nodes, and our protoype implementation confirms that
although further refinements are desirable, BatCave represents
a viable securty solution for ad hoc networks.

REFERENCES

[1] A. Nyre, M. Jaatun, and I. Tøndel, “A secure MANET routing protocol
for first responders,” in Security and Communication Networks (IWSCN),
2009 Proceedings of the 1st International Workshop on. IEEE, 2009.

[2] I. S. Svagård (editor), “Information security for field
workers in crisis situations,” SINTEF ICT, http://www.oasis-
fp6.org/documents/OASIS SP24 DDD 253 security SIN 1 0 pub.pdf,
Tech. Rep., 2008.

[3] P. K. Sharma, “Short-Lived Certificates as a Mobile
Authentication Method,” MSc Thesis, 2009. [Online]. Available:
http://orbit.dtu.dk/getResource?recordId=245323&objectId=1&versionId=1

[4] M. Pitkanen and H. Mikkonen, “Initalizing mobile user’s identity from
federated security infrastructure,” in Proceedings of the Second Interna-
tional Conference on Mobile Ubiquitous Computing, Systems, Services
and Technologies (UBICOMM 08), 2008, pp. 390–394. [Online]. Avail-
able: http://doi.ieeecomputersociety.org/10.1109/UBICOMM.2008.64

[5] M. Reineri, C. Casetti, and C.-F. Chiasserini, “Routing protocols
for mesh networks with mobility support,” in Proceedings of
the 6th international conference on Symposium on Wireless
Communication Systems, 2009, pp. 71–75. [Online]. Available:
http://ieeexplore.ieee.org/iel5/5277434/5285213/05285344.pdf?arnumber=5285344

[6] M. Abolhasan, B. Hagelstein, and J. C.-P. Wang, “Real-
world performance of current proactive multi-hop mesh
protocols,” in 15th Asia-Pacific Conference on Communications
(APCC09), Oct. 2009, pp. 44–47. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=5375690

[7] V. Welch, I. Foster, C. Kesselman, O. Mulmo, L. Pearlman, S. Tuecke,
J. Gawor, S. Meder, and F. Siebenlist, “X.509 Proxy Certificates for
Dynamic Delegation,” in Proceedings of the 3rd Annual PKI R&D
Workshop, Gaithersburg MD, USA, 2004.

[8] A. Neumann, C. Aichele, M. Lindner, and S. Wunderlich, “Better Ap-
proach To Ad-Hoc Networking (B.A.T.M.A.N) draft-wunderlich-open-
mesh-manet-routing-00,” Network Working Group, Last accessed De-
cember 19, 2010, http://tools.ietf.org/html/draft-wunderlich-openmesh-
manet-routing-00.

[9] O. Mesh, “Why starting B.A.T.M.A.N.?” open-mesh.org, Last accessed
december 19, 2010, http://www.open-mesh.org/wiki/why-starting-
batman.

[10] I. Tøndel, M. Jaatun, and A. Nyre, “Security requirements for MANETs
used in emergency and rescue operations,” in Security and Communi-
cation Networks (IWSCN), 2009 Proceedings of the 1st International
Workshop on. IEEE, 2009.

[11] E. Winjum, P. Spilling, and Ø. Kure, “Ad Hoc networks used in
emergency networks : the Trust Metric Routing approach,” FFI Rapport,
Tech. Rep., 2006.

[12] B. Dahill, B. Levine, E. Royer, and C. Shields, “A secure routing
protocol for ad hoc networks,” Electrical Engineering and Computer
Science, University of Michigan, Tech. Rep. UM-CS-2001-037, 2001.

[13] K. Sanzgiri, B. Dahill, B. Levine, C. Shields, and E. Belding-Royer, “A
secure routing protocol for ad hoc networks,” Network Protocols, IEEE
International Conference on, vol. 0, p. 78, 2002.

	Title Page
	Problem Description
	Abstract
	Preface
	Acronyms
	Definitions
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Objectives
	1.4 Limitations
	1.4.1 IP Address Configuration
	1.4.2 Detecting malicious behavior

	1.5 Method
	1.6 Document Structure

	2 Background
	2.1 Mobile Ad Hoc Network
	2.1.1 Routing
	2.1.2 Challenges

	2.2 B.A.T.M.A.N.
	2.2.1 From OLSR to BATMAN
	2.2.2 BATMAN Protocol Explanation
	2.2.3 BATMAN Daemon vs. BATMAN Advanced

	2.3 Proxy Certificates
	2.4 Attacks on Mobile Ad Hoc Networks
	2.4.1 Wormhole Attack
	2.4.2 Suppress Replay Attack

	2.5 Related Work

	3 System Design
	3.1 Brief Overview
	3.1.1 Initial Authentication
	3.1.2 Continuous Authentication

	3.2 Requirements
	3.2.1 Scenario
	3.2.2 List of Requirements

	3.3 Why use Proxy Certificates?
	3.4 Design Overview
	3.4.1 Entity Explanation
	3.4.2 Simple Example

	3.5 Authentication Phase
	3.5.1 Node Discovery
	3.5.2 Authentication Handshake
	3.5.3 Out-Of-Band Authentication

	3.6 Authorized Operation
	3.6.1 Keystream generation
	3.6.2 Using One-Time Passwords from Keystream
	3.6.3 Discovering Additional New Neighbors

	3.7 Detailed Entity Description
	3.7.1 Proxy Certificate
	3.7.2 Service Proxy
	3.7.3 Authentication List
	3.7.4 Neighbor List

	3.8 Authentication Module Messages
	3.8.1 Node Discovery
	3.8.2 Authentication Handshake
	3.8.3 Keystream-Material Message
	3.8.4 Modified Routing Announcements

	4 Implementation
	4.1 OpenSSL Library
	4.2 Authentication Module
	4.2.1 AM Thread
	4.2.2 AM Sockets
	4.2.3 Main Operation of the AM Thread

	4.3 Proxy Certificates
	4.3.1 Generating PC Requests
	4.3.2 Generating PCs
	4.3.3 Verifying PCs

	4.4 Authentication List
	4.5 Neighbor List
	4.6 Keystream Generation
	4.7 Using One-Time Passwords
	4.8 Changes to the BATMAN Protocol
	4.8.1 POSIX.C
	4.8.2 BATMAN.C
	4.8.3 SCHEDULE.C

	5 Testing & Results
	5.1 Test I - Initialization Phase
	5.1.1 Hypothesis
	5.1.2 Setup
	5.1.3 Procedure

	5.2 Test II - Route Convergence
	5.2.1 Hypothesis
	5.2.2 Setup
	5.2.3 Procedure

	5.3 Results
	5.3.1 Initialization Phase
	5.3.2 Route Convergence

	6 Discussion
	6.1 Modified Routing Announcements Vulnerability
	6.1.1 Wormhole Attack
	6.1.2 Suppress Replay Attack
	6.1.3 Possible Solution to the Suppress Replay Attack
	6.1.4 Possible Solution to the Wormhole Attack

	6.2 Key Usage
	6.3 Future Work - Extending the System Design
	6.3.1 Initial Authentication with Long-Lived Public Key Certificates
	6.3.2 Network Merging
	6.3.3 Multiple Service Proxies

	6.4 Experience with OpenSSL
	6.5 Out-Of-Band Authentication

	7 Conclusion
	References
	A Source Code
	A.1 Complete Source Code
	A.2 Code Snippets
	A.2.1 AM Sockets Setup
	A.2.2 Proxy Certificate Extension
	A.2.3 Setting Subject Name in PC
	A.2.4 Adding Trusted Node to AL
	A.2.5 Adding Trusted Neighbor to NL
	A.2.6 Removing Trusted Neighbor to NL
	A.2.7 Generate Ephemeral Key
	A.2.8 Generate Keystream
	A.2.9 Extension in BATMAN Class
	A.2.10 Extension in SCHEDULE Class

	B Lab Setup
	C Test Results
	C.1 Numerical Results
	C.1.1 Test I - Original BATMAN
	C.1.2 Test I - Modified BATMAN
	C.1.3 Test II

	C.2 Logs

	D Scientific Paper

