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Problem Description

Secure wireless ad hoc networks possess many properties that are highly valuable
in e.g. emergency situations and military applications. By using X.509 certificates,
the ad hoc routing protocol B.A.T.M.A.N. has been modified in order to support
identification and authentication of mobile nodes trying to access a restricted ad
hoc network.

The new protocol design needs to be evaluated by performing tests under various
conditions and environments. However, this might be a challenging and expensive
task to do in a real-world system, thus it is recommended to simulate the routing
protocol using a network simulator.

ns-3 is an open source discrete-event network simulator for Internet systems. The
goal of this thesis is to extend ns-3 to support simulation of both the original and
modified B.A.T.M.A.N. protocol such that protocol design, interactions, and large-
scale performance issues can be investigated and compared.
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Abstract

New network protocols are continuously being developed, and a particularly interest-
ing area of research is in ad hoc networks. Due to their dynamic and self-organizing
nature with no infrastructure, they introduce properties that are very beneficial in
e.g. emergency situations and military applications.

BATMAN is an ad hoc network routing protocol which has been modified in or-
der to provide an authentication mechanism which only allows authorized nodes to
route traffic in the network. Routing protocols pose as a critical aspect to perfor-
mance in mobile wireless networks and it is important that the modifications done
for security purposes does not affect the routing performance significantly.

The goal of this study was to extend the network simulator ns-3 to support both
the original and modified version of the BATMAN protocol. Then the simulator
was used to study and evaluate the protocols’ design, interactions, and large-scale
performance issues.

Based on the observations from the simulations conducted with ns-3, the modi-
fied BATMAN protocol indicates that it does not perform significantly worse than
its counterpart despite the introduced security measures.
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Abbreviations

AES Advanced Encryption Standard

AODV Ad hoc On-Demand Distance Vector

ATM Asynchronous Transfer Mode

AM Authentication Message

B.A.T.M.A.N. Better Approach To Mobile Ad hoc Networking

CBC Cipher Block Chaining

CBR Constant Bit Rate

DARPA Defense Advanced Research Projects Agency

DSDV Destination Sequenced Distance Vector

DSR Dynamic Source Routing

EQ Echo Link Quality

HNA Host Network Announcement

IPv4 Internet Protocol version 4

IV Initial Value

MANET Mobile Ad hoc Network

MSC Message Sequence Chart

ns-2 Network Simulator 2

ns-3 Network Simulator 3

OGM Originator Message

OLSR Optimized Link State Routing

PC Proxy Certificate

PC0 Proxy Certificate 0
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PC1 Proxy Certificate 1

PDR Packet Delivery Ratio

PKI Public-Key Infrastructure

PKIX Public-Key Infrastructure using X.509

REAL REal And Large

RQ Receiving Link Quality

SP Service Proxy

Tcl Tool Command Language

TCP Transmission Control Protocol

TQ Transmit Link Quality

TTL Time To Live

UDP User Datagram Protocol

VINT Virtual InterNetwork Testbed



Definitions

Ad Hoc Network A self-organizing network with no requirements to pre-existing
infrastructure or centralized administration.

Ad hoc On-Demand Distance Vector (AODV) A reactive ad hoc routing pro-
tocol [PBRD03].

Advanced Encryption Standard Cipher Block Chaining (AES-CBC) The
Advanced Encryption Standard (AES) encryption in Cipher Block Chaining
(CBC) mode of operation.

Authentication Fields Two fields added to the Originator Message (OGM) used
in the modified BATMAN routing protocol containing extracts or one-time
passwords from the Authentication Key Stream.

Authentication Key Stream Key Stream generated with the AES-CBC algo-
rithm taking in a shared symmetric key, an IV value and a nonce as input. It
is used to authenticate and tie an a node to the OGMs it broadcasts to its
link-local neighbors.

Authentication Message Message used by the Secure BATMAN routing protocol
containing en ephemeral key, nonce value, and Initial Value (IV).

Constant Bit Rate Data traffic generated with a constant bit rate.

Destination Sequenced Distance Vector (DSDV) Proactive Mobile Ad hoc
Network (MANET) routing protocol. Routing updates are broadcasted or
multicasted by every node periodically (default 15 s) and when there is sig-
nificant changes in the network topology. Based on the routing updates a
node calculates paths to every node in the network using the Bellman-Ford
algorithm [PB94].

Direct Neighbor Refers to a node in a network which is reachable with a single
hop. This is also referred to as a link-local neighbor.

Discrete Event-based Simulation Simulated network where nodes trigger events,
such as a packet being sent, which is stored in a queue sorted by the scheduled
event execution time [WvLW09].

Emulator A system that is able to mimic function or behavior of another system.
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Empty OGM An OGM used in the modified BATMAN routing protocol contain-
ing an empty Authentication field.

Friis Propagation Model Simple transmission formula describing the propaga-
tion loss in a traffic flow between nodes [Fri46].

Host Network Announcement (HNA) Message used by a BATMAN Origina-
tor to inform other nodes in the network that it can be used as a gateway to
another network or host [NALWay].

Initial Authentication Phase Phase where nodes exchange and verifies Proxy
Certificate 0 (PC0) before exchanging ephemeral keys and generating authen-
tication key streams.

Interface Address IPv4 address assigned to a BATMAN node which is put in the
nodes self-generated OGMs.

Mobile Ad hoc Network (MANET) Ad hoc network were nodes can be highly
mobile.

NIST ATM Network simulator targeted for simulating and analyzing the behavior
of Asynchronous Transfer Mode (ATM) networks [GKS95].

ns-2 Discrete event network simulator written in C++ and OTcl based on the
REAL network simulator from 1989 [nsnayc].

ns-3 Modular discrete event network simulator written in C++ and Python.

One-Time Password A 16 bit extract from the Authentication Key Stream gen-
erated by a node running the modified BATMAN routing protocol.

Optimized Link State Routing (OLSR) A proactive ad hoc routing protocol
based on an optimization of the classical link state routing algorithm [CJay].

Originator Synonym for a node using the BATMAN protocol generating and
broadcasting own Originator Messages (OGMs).

Originator List A table maintained by every node in a BATMAN network which
consists of information about every other known originator in the network
[NALWay].

Originator Message (OGM) A message periodically broadcasted by a originator
to inform its link-local neighbors about its presence. [NALWay]

OTcl An object oriented extension of Tcl which is a scripting language.

Packet Delivery Ratio Defined as the ratio between the amount of received pack-
ets and the amount of packets actually transmitted.



Proactive Routing Protocol Routing protocols which periodically share routing
information in order to maintain their routing tables, also known as table-
driven protocol. The opposite of proactive routing protocol is the reactive
protocol.

Proxy Certificate A X.509 public-key certificate including a critical certificate
information extension used to delegate rights and restrictions within a network
[TET+ay].

Public-Key Certificate Electronic document containing most importantly a dig-
ital signature which ties a public-key to an identity.

Reactive Routing Protocol Routing protocols that only construct routing paths
when they are required, also known as on-demand protocol. The opposite of
reactive routing protocol is the proactive protocol.

Restricted Network Network established between nodes using the modified BAT-
MAN routing protocol where one central node acts like a Service Proxy (SP).

Service proxy A central node in a restricted network running the modified BAT-
MAN routing protocol with permission to sign and issue Proxy Certificates
(PCs) to other nodes.

SQLite A self-contained and serverless SQL database engine reading and writing
directly to ordinary disk files [SQLay].

Symmetric Key A symmetric key exchanged between nodes in a restricted net-
work and used when generating an Authentication Value.

VINT Project Research project funded by Defense Advanced Research Projects
Agency (DARPA) which provides improved simulation tools for network re-
searchers to use in the design and deployment of new wide-area Internet pro-
tocols [BBE+99].

X.509 Public-Key Certificate Public-key certificate standard managed by the
Public-Key Infrastructure using X.509 (PKIX) working group of IETF [HPFS02].
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Chapter 1

Introduction

Mobile Ad hoc Networks (MANETs) have certain characteristics and properties that
separate them from traditional computer networks. Most importantly they have no
requirements to pre-existing or fixed infrastructure and they need no centralized
administration maintaining the network. Here it is the participating nodes’ respon-
sibility to sustain routing paths between nodes and make sure that traffic is routed
efficiently and reliably from a source to a destination.

Crisis management after a major disaster, emergency situations, and rescue opera-
tions are frequently identified as application areas for MANETs [TJÅAN09]. These
are situations were resources might be scarce as well as conditions being unpre-
dictable and rapidly changing. Existing infrastructure is unreliable as it may be
damaged or congested and time is restricted. MANETs can be quickly and cost-
efficiently deployed, making them very valuable in situations such as these.

The nature of the situations mentioned above imply that providing information
security in MANETs is important when they are to be used here. For instance,
being able to restrict the access to a network would prevent valuable resources and
information being available or wasted on activities not related to the operation. Ac-
cess control also enables node authentication and the possibility of confidentiality
of information by only allowing authorized nodes to route traffic in the network
[TJÅAN09].

Routing protocols are a critical aspect to the behavior of and performance in MANETs
and pose as a natural place to apply security elements in order to achieve some sort
of access control. BATMAN is an ad hoc routing protocol with a simple and ro-
bust routing regime. Its limited complexity compared to many of its alternatives,
such as Optimized Link State Routing (OLSR), makes it easier to specify suitable
modifications for security purposes. A modified version of the BATMAN protocol
has been proposed where various security measures has been combined to provide a
restricted ad hoc network.

However, with limited resources it is also important that the added security mech-
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CHAPTER 1. INTRODUCTION

anisms do not substantially affect the overall performance and throughput of the
network. Thus the development of such new routing protocols requires testing and
evaluation against well-known protocols in various environments. Several network
simulators exists providing easily accessible resources to study new protocols and
models and has through time been the backbone of MANET research [NCÇ+11].

ns-3 is a discrete-event network simulator which strives to become a preferred, open
simulation environment for networking research and educational use. It was devel-
oped with the focus on improving the core architecture, software integration, and
simulation models of its popular predecessor, namely ns-2.

1.1 Objectives
The purpose of the work done behind this report is to extend the network simulator
ns-3 in order to support both the original BATMAN routing protocol as well as
the modified version. Using the implemented models in ns-3, the protocols’ perfor-
mances are then to be evaluated in a various range of simulation scenarios. Both
versions of the BATMAN protocols are also compared against a well-known and al-
ready existing routing protocol in ns-3, namely the Destination Sequenced Distance
Vector (DSDV) protocol.

The original goal was to implement all the security mechanisms added to the modi-
fied BATMAN protocol. However, due to time constraints, only the elements which
were considered the most important was implemented.

1.2 Limitations
Using network simulation to evaluate the performance of network protocols intro-
duces certain limitations by nature. Network simulators are based on statistical
models that attempt to resemble real life scenarios as close as possible. They are
therefore not always able to capture the true randomness and complexity of the real
world. This is further discussed in Chapter 4.

Also, running simulations is a time consuming and resource demanding task. Thus,
the amount of various simulations scenarios and simulation runs performed, are
adjusted with respect to the time and resources available.

1.3 Method
The work behind this project can roughly be split into four parts:

1. Research and study of background material

2. Implementation of the original BATMAN routing protocol in ns-3

2
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3. Add support for the security extensions to the BATMAN routing protocol in
ns-3

4. Use ns-3 to conduct simulations in order to observe, investigate and compare
the protocol design, behavior and performance of the different versions

1.4 Document Structure
The remainder of this report is structured in three main parts. Part one contains
necessary background material needed to understand the rest of the report such as
explanations of the BATMAN protocol as well as the security elements introduced
in the modified version. It also gives an insight into to how network simulation
works in addition to descriptions of various popular simulators used in research.

Part two of the report describes in detail how the two BATMAN versions are im-
plemented as routing models in the ns-3 network simulator.

The final part three explains how the simulations have been conducted and presents
the results retrieved from them. Here we also find a discussion of the results and a
final conclusion summing up the report.

Some appendices are also included to give a further explanations and deeper un-
derstanding of certain areas. It is remarked in the text if the subject is further
described in an appendix.

There is also an appendix which contains a paper based on the work done in this
thesis and the work done by Espen Grannes Graarud in his master thesis [Gra11].
The paper was written together with Martin Gilje Jaatun, Dr. Lawrie Brown, and
Espen Grannes Graarud and has been submitted to the ICDIM 2011 Conference 1.

1http://www.icdim.org/
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Chapter 2

BATMAN - Ad Hoc Routing
Protocol

This chapter provides the necessary background material required to understand the
basic dynamics behind ad hoc routing as well as the BATMAN routing protocol.
This is important in order to understand how the BATMAN protocol is modified
for security purposes and how it is implemented in ns-3.

2.1 Ad Hoc Network Routing
In an ad hoc network, it is the participating nodes’ duty to maintain and control
the communication within the network. This entails that nodes not only send and
receive data to and from each other, they must also relay traffic on behalf of other
nodes like a router. How the traffic is routed through the network depends on the
nodes’ routing tables which are maintained by a routing protocol.

Nodes in ad hoc networks are characterized by having the ability to be mobile
and still being able to route traffic in the network even though links to other nodes
change frequently. Networks where the nodes are mobile are often referred to as
Mobile Ad hoc Networks (MANETs).

The mobility of the nodes and the lack of infrastructure create a very dynamic
network with a topology that changes randomly and frequently. Due to this unique
behavior, regular network functionality such as routing is a challenging task. Clas-
sical routing protocols are not well suited for such networks, thus a number of
specialized protocols have been developed over the years. The most prominent
routing protocols for ad hoc networks are arguably Ad hoc On-Demand Distance
Vector (AODV), Destination Sequenced Distance Vector (DSDV), Dynamic Source
Routing (DSR), and Optimized Link State Routing (OLSR) [NCÇ+11].

New protocols for ad hoc networks are continuously being designed and amongst
these we find the protocol called B.A.T.M.A.N., or BATMAN, which is an abbre-
viation for ”Better Approach To Mobile Ad hoc Networking”. Due to its simple
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routing principles this protocol was chosen to be extended in order to achieve a re-
stricted ad hoc network with access control. The remainder of this chapter describes
the BATMAN protocol in further detail.

2.2 The BATMAN Routing Protocol
The development of the ad hoc routing protocol BATMAN was first initiated by
a group of developers working on the OLSR protocol. They felt OLSR contained
significant shortcomings and that the changes made to it in order to fix them were
breaking compatibility with the original protocol as described in RFC3626 [CJay].
Thus, a group of developers decided to design a new and simpler routing proto-
col called BATMAN that could hopefully become a better alternative to OLSR
[Mesayb].

The principle of the BATMAN routing protocol is simple; nodes, or originators
as they are also referred to, build their routing tables by flooding the network with
routing updates called BATMAN packets. The strategy for a node when finding the
best routes in the network, is to determine for each destination one single-hop neigh-
bor which can be utilized as the best next-hop towards the destination [NALWay].

The packet flooding starts with the Originators in the network periodically broad-
casting BATMAN packets thus informing their link-local neighbors about their ex-
istence (Step 1). Neighbors receiving the packets will rebroadcast them to their
own link-local neighbors (Step 2) which will in turn rebroadcast them again to their
neighbors (Step 3) and so on. The packets originated from the first node are in this
way eventually flooded through the entire network as illustrated in Figure 2.1.

Figure 2.1: Illustration of how a BATMAN packet is flooded through a network.

A BATMAN packet is flooded through the network until every node has received it
at least once, or until the packet’s Time To Live (TTL) has expired, or until it is
lost due to weak communication links. The details of a BATMAN packet are found
in Section 2.2.1.

The BATMAN routing protocol has over the years gone through several imple-
mentation and testing phases where improvements and changes have been made.
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The core routing algorithm has evolved, and at the time of writing the algorithm is
at generation IV [NAL07].

The latest generation added three new fields to the BATMAN packet, namely Previ-
ous Sender, Transmit Link Quality (TQ) and Host Network Announcement (HNA)
Length. These fields where added to improve the protocol’s handling of asymmetric
links, reduce routing overhead, and enable packet aggregation.

For simplicity the rest of this chapter first explains the BATMAN algorithm III.
The last section of the chapter is devoted to describing generation IV which has
basically just added functionality on top of the previous algorithm.

2.2.1 Packet Formats

A BATMAN packet consists of one Originator Message (OGM) together with zero
or more attached Host Network Announcement (HNA) extension messages. The
HNA messages are used when an originator wants to announce that it is connected
to another network or host.

However, this feature added by the HNAs is not a critical factor when understand-
ing how the basic BATMAN routing algorithm works. This report focuses on how
the performance of this basic routing is affected by the added security extensions
explained in Chapter 3. Thus, the HNA messages will not be implemented in the
network simulator and therefore not described any further here. However, some more
information about these messages can be found in Appendix A.1. Even though the
HNA messages are omitted, we sometimes refer to an OGM as a BATMAN packet.

When an OGM is broadcasted, it is encapsulated inside a User Datagram Protocol
(UDP) datagram as depicted in Figure 2.2.

Figure 2.2: A BATMAN packet encapsulated in a UDP datagram.

The OGM contains the most important information used by the BATMAN routing
algorithm. The messages have a fixed size of 12 Bytes and an illustration of their
general format is shown in Figure 2.3.
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Figure 2.3: Originator Message (OGM) Format.

The different fields in the OGM are shortly explained in the list below:

• Version
Identifies the BATMAN version of
the contained message.

• Flags
Bits indicating whether the sender
of the OGM is a link-local (direct)
neighbor or not.

• Time To Live (TTL)
Is used to limit the number of hops
an OGM can do in the network.

• Gateway Flags
Indicates if the node can act as a

gateway with access to the Inter-
net.

• Sequence Number
Number added by an originator to
every OGM it generates. The num-
ber is incremented every time a new
OGM is generated.

• Originator Address
The Internet Protocol version 4
(IPv4) address belonging to the
originator on which behalf the
OGM was generated.

The Gateway Flags are used when a node wants to announce that it can act like a
gateway to the Internet. If these flags are set, the Gateway Port field is set to the
desired tunneling port of the node acting like a gateway. For the same reasons as
for the HNA messages, these fields are also not utilized in the simulations and is
thus not described any further. How the remaining fields are used by the BATMAN
routing algorithm, is explained in the following sections.

2.2.2 Originator List
Every node running the BATMAN routing protocol maintains information about
all other known originators in a list called the Originator List. The list contains one
entry for each originator from which it has received an OGM and is used by the
node to choose the best next-hop to a destination.

For each known originator, the most important information a node must maintain
in its Originator List, is the following [NALWay]:

• Originator Address
The IPv4 address of the originator

as given in the corresponding field
of the received OGM.
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• Last Aware time
A timestamp that is updated when-
ever an OGM is received from the
given originator.

• Current Sequence Number
This field holds the sequence num-
ber from the last accepted OGM
from the given originator.

• Neighbor Information List
For each link-local neighbor of the
node from which it has received
an OGM from the given originator,
the following information must be
maintained:

– Sliding Window:
For each in-window sequence
number it is remarked if an

OGM with this sequence num-
ber has been received. Fur-
ther explained in Section 2.2.3

– Packet count:
The amount of sequence num-
bers recorded in the sliding
window. This value is used
as a metric when choosing the
best next-hop to the origina-
tor.

– Last Valid Time:
The timestamp when the last
valid OGM was received via
this neighbor.

– Last TTL:
The TTL of the last OGM
which was received via this
neighbor.

To clarify the concept of the Neighbor Information List; the link-local neighbors
of a node via which it has received OGMs originated from another originator in
the network, would typically reside in the Neighbor Information List belonging this
originator’s entry in the node’s Originator List. This concept is illustrated in Figure
2.4.

Figure 2.4: Illustration of the concept of the Neighbor Information List as seen from
node A.

The Originator List functions as a node’s routing table and is used when routing
traffic in the network. How paths, or best next-hops, are found using the information
is this list, is explained in next section.
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2.2.3 Sliding Window and Neighbor Ranking
The sequence number in a received OGM is the key information used by the routing
algorithm when choosing the best next-hop towards a destination. Here it is the
amount of accepted sequence numbers recorded from a link-local neighbor which is
used as a metric for the quality of links.

BATMAN utilizes a sliding window to keep track of the most recently received
sequence numbers. A sliding window is a set of numbers which slides across the
total range of numbers set aside for sequence numbers. When a node receives an
OGM, the sequence number in the message is accepted if it resides within this slid-
ing window. More about how the sliding window works can be found in Appendix
A.2.

In principle this means that a node chooses the best next-hop towards a desti-
nation depending on which link-local neighbor it has received the highest amount of
accepted OGMs which originated from the destination. The sliding window makes
sure that only the most recently received OGMs are counted and prevents duplicate
OGMs to be counted more than once.

Figure 2.5 illustrates this neighbor ranking with node A which has two neighbors,
S and T, that can be used as next-hops towards node B. Node A continuously re-
ceives OGMs which originates from node B but are rebroadcasted from both node S
and T. Node A ranks its neighbors by calculating how many rebroadcasted OGMs
(sequence numbers) from node B it has received via each neighbor.

Figure 2.5: An illustration showing the flow of rebroadcasts from node B to node A
and a very simplified version of node A’s Originator List.

The BATMAN protocol also ensures that the best single-hop neighbor is only se-
lected if it is reachable by a bidirectional link. This is further explained in the next
section.

2.2.4 Maintaining the Originator List
Maintaining the originator list involves broadcasting, receiving and rebroadcasting
OGMs. To inform other nodes about its presence, an originator generates and broad-
casts its own OGMs periodically with its own interface address in the Originator
Address field.
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Upon reception of an OGM, a node will silently drop the message before further
processing depending on some simple rules. Some of these are:

• Version stated in the OGM’s version field does not match the nodes own
internal version.

• Sender address of the packet is the node’s own interface address which means
that it’s own broadcast has just been echoed back to the node.

If however a node receives an OGM that contains its own interface address in the
Originator Address field, it means that the message was originally generated and
broadcasted from this node. As illustrated in Figure 2.6, an OGM has been rebroad-
casted from neighbor B back to the originator A. This is an indication that the link
can be used in both directions, also called a bidirectional link.

Figure 2.6: An example showing node A receiving a rebroadcast of its own OGM
from node B.

Before the OGM is rebroadcasted by node B, some fields must be changed such as
the TTL field and the Direct-link flag. All other fields are left unchanged.

If a received OGM is not dropped or a self-generated OGM, a node will rebroadcast
it after processing if it was received from a bidirectional link. A node considers a
link to a neighbor to be bidirectional if it has received a self-generated OGM with
the Direct-link flag set from that neighbor within a reasonable time.

Lastly, if a node has not received any OGMs from an Originator in its Origina-
tor List for a time longer than some timeout interval, this entry in the Originator
List is removed.
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2.3 BATMAN IV
Even though the BATMAN routing algorithm III ensures that only bidirectional
links are used when routing packets, the protocol showed significant shortcomings
when handling asymmetric links [Mes11]. To improve this weakness the developers
decided to add an 8 bit Transmit Link Quality (TQ) field which is explained in
Section 2.3.1.

By periodically flooding BATMAN packets, the BATMAN protocol creates a signif-
icant amount of overhead in networks that are dense and without heavy packet loss
[Mes11]. To reduce the routing overhead the developers introduced the Previous
Sender field which ensures that a node does not rebroadcast the same OGM more
than once. More about this in Section 2.3.2

The third and last field which was included in the OGM, is the HNA-length. This
was added to enable packet aggregation which combines several distinct OGMs into
one packet before broadcasting it.

The new OGM format after adding the three new fields is shown in Figure 2.7.

Figure 2.7: Format of the OGM in BATMAN IV.

2.3.1 Transmit Link Quality (TQ)
Link quality in BATMAN IV is divided into two parts, Receiving Link Quality (RQ)
and Transmit Link Quality (TQ). The RQ value is the amount of packets a node
receives from its neighbors.

BATMAN also keeps track of Echo Link Quality (EQ) which is the number of
rebroadcasts of a node’s self-generated OGMs received from its direct neighbors as
illustrated in Figure 2.8.

Using the values RQ and EQ, a node can derive the local TQ towards a direct
neighbor by performing the following calculation:
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Figure 2.8: Illustration of RQ, EQ and TQ.

EQ = RQ · TQlocal ⇒ TQlocal = EQ

RQ

This local link quality is propagated through the network to inform other nodes
about the transmit quality.

When a node generates own OGMs, the TQ field is set to the maximum length
(255) before it is broadcasted. A receiving direct neighbor calculates its own local
link quality and adds it to the received TQ value before rebroadcasting the OGM
with the new TQ value.

The new TQ value which is put in the OGM is found by performing the follow-
ing calculation:

TQ = TQreceived · TQlocal

An exampel of how the TQ values are calculated is shown in Figure 2.9.

Figure 2.9: Example of how the TQ in an OGM originated from node A is recalcu-
lated in two rebroadcast steps. TQ value of 100% means 255.

2.3.2 Previous Sender
The Previous Sender field was added to reduce echo rebroadcasting which produced
unnecessary overhead in the network. This echo cancellation ensures that a node
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rebroadcasts the same OGM only once after it has received it.

Upon reception of an OGM a node changes the Previous Sender field to the address
of the node it received it from before rebroadcasting it. Thus, if a node receives
an OGM with its own address in the Previous Sender field, it will silently drop the
message.

This echo cancellation is illustrated by an example in Figure 2.10.

Figure 2.10: An example showing the OGM originated from node A not being
rebroadcasted more than once by a node.

Since node B drops the OGM as shown in Figure 2.10, it does not rebroadcast the
same message again. Note that node A drops the OGM regardless of the Previous
Sender field due to the fact that it is a self-generated OGM.

2.3.3 Asymmetric Link Handling and Hop Penalty
To help ensure that the best bidirectional links are chosen by the BATMAN proto-
col, an additional value was introduced to penalize links that have poor Receiving
Link Quality (RQ).

This penalty is a weighted value and is found with the following function:

fasym = (100%− (100%−RQ)3)

The penalty has a big influence on the TQ value for links with large packet loss,
and only a small influence on links with little packet loss [Mes11].

A node using the BATMAN protocol is only aware of the best next hop towards
a destination and not the entire route. Thus, the node does not know how many
hops the route may consist of. In some networks it might be desirable to choose
the shortest path, as in the minimal amount of hops, to a destination in order to
reduce latency and save bandwidth [Mes11]. Therefore a hop penalty was also in-
troduced where every hop an OGM does, decreases the TQ value by a fixed amount.

Both the asymmetric penalty and the hop penalty are added to a TQ value from a
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received OGM message. The final calculation a node must perform on the TQ value
before rebroadcasting the OGM, is as follows:

TQ = TQreceived · TQlocal · fasym · hop penalty

More details about the BATMAN ad hoc routing protocol, can be found in Appendix
A. The next chapter explains how this BATMAN routing protocol is modified in
order to include features such as node identification and authentication.
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Chapter 3

BATMAN Security Extensions

Now that we have an understanding of how the BATMAN routing protocol works,
it is time to investigate how and where it is suitable to introduce security elements
to the protocol. The chapter first covers some of the common security issues in ad
hoc networks and then continues to describe how the BATMAN protocol is modified
in order to include an authentication mechanism.

The security design presented in this chapter is based on a design proposed in a
specialization project completed at The Norwegian University of Science and Tech-
nology (NTNU) [BG10].

3.1 Security in Ad Hoc Networks
Several challenges and issues are prominent due to ad hoc networks’ unique charac-
teristics as discussed in Section 2.1. The issues affect the networks’ design, deploy-
ment, and performance in addition to how security should be built in. Amongst the
major issues relevant for this thesis, we find:

• Resource constraints

• Unreliable medium

• Mobility of nodes

Mobile nodes used in wireless networks usually have limited resources available re-
stricting their computing capacity and battery power [YLY+04]. This affects the
choice of cryptography-based security mechanisms which might be computation-
intensive to perform.

Also, communication is done on a shared radio channel making it easy for a mali-
cious node to eavesdrop and perform attacks on the network. The communication
medium is also very unreliable compared to wired networks, which might result in
a high packet loss ratio [NALWay].
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Because of ad hoc networks non-hierarchical topology, classical and common secu-
rity measures are not well suited. Traditional computer networks are infrastructure-
based with central entities, such as routers and gateways, which create natural points
in the network to add security elements.

Finally, due to the mobility of the nodes, they can frequently join and leave a
network at any point in time. If there is no authentication mechanism present,
there is no association or relationship between nodes or networks making it easy for
an intruder to join a network and carry out an attack.

3.2 Areas of Application
Mobile Ad hoc Networks (MANETs) have a vast range of application areas. The
list below names some of the most common situations mentioned in various research
papers where MANETs are applicable:

• military operations

• crisis management after a major incident (e.g. war or natural disaster)

• emergency and rescue operations

• wireless sensor network

• collaborative and distributed computing

The protocol design proposed and described in this chapter mainly focuses on being
utilized in situations such as or similar to emergency and rescue operations. It is
important to consider the area of use for the network in order to consider the pos-
sible influences the scenario might have on how security should be applied.

In an emergency or rescue situation, it is natural to have groups of actors with
different roles which are in charge of various tasks. Usually there is always a central
actor or a central group of actors which have the responsibility of managing and co-
ordinating efforts during the entire operation [Dir07], e.g. the police during a search
and rescue operation. New actors arriving to the scene who wants to participate in
the operation, would normally have to report to this central administration in order
to be assigned a role or delegated a task [Dir07].

With this in mind, the rest of the chapter is devoted to describing the modifica-
tions done to the BATMAN protocol and the security measures added. From here
on this modified version is also sometimes referred to as ”Secure BATMAN” for
short.
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3.3 General Concept
The overall goal of the modified BATMAN protocol is to make nodes which are a part
of a restricted network, only accept routing updates (Originator Messages (OGMs))
from other nodes that are appropriately authenticated. This entails that they must
be in possession of some authentication token which proves their identity.

By only accepting OGMs from nodes that are authenticated, all other traffic sent in
the network will only be routed to or via trusted nodes. How this is accomplished
is explained in the following sections.

3.4 Proxy Certificates (PCs)
The tokens used to authenticate nodes are Proxy Certificates (PCs) [TET+ay].
These certificates are special versions of traditional X.509 Public-Key Certificates
containing a critical certificate information extension.

The extension indicates that the certificate is a Proxy Certificate (PC) and it con-
tains fields such as Proxy Path Length Constraint, Proxy Policy, and Proxy Certifi-
cate Path [TET+ay].

The policy field is the part of PCs that makes them beneficial to use as an authenti-
cation token in this context. This field enables the possibility of finer granularity of
access control by defining rights and restrictions in the network on the node which
it is issued to.

Thus, a node may not only be authenticated with its PC, but can also be dele-
gated different restrictions and rights in the network on behalf of the issuer.

3.5 Service Proxy (SP)
The node or entity who signs and issues PCs must have a central role with a higher
level of trust than other participating nodes in the network.

Introducing a central entity in a network which is characterized as being infrastructure-
less, might seem less than ideal. However, as mentioned in Section 3.2 in the area of
use for this kind of ad hoc network, it is common to find a central actor who man-
ages and administrates situations such as an emergency search and rescue operation.

Therefore, it is natural to assign this responsibility of signing and issuing PCs to a
central node in the network. We refer to this node as a Service Proxy (SP) and it
is in possession of a self-signed PC, called Proxy Certificate 0 (PC0), which it uses
to sign other PCs which will be referred to as Proxy Certificate 1s (PC1s).
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3.6 Continuous Authentication and Broadcasting
of OGMs

As mentioned in Section 3.3, nodes may only accept and process OGMs from other
nodes which have been properly authenticated. This means that every OGM broad-
casted in the network must somehow prove that it has been sent by an authenti-
cated node and that it has not been altered in transit. This can be accomplished
by digitally signing the OGM with the node’s private key from its PC0 [RSA78].
Confidentiality of the OGM can also be achieved by encrypting the message with
the receiver’s public-key.

However, every participating node in a BATMAN network by default generates and
broadcasts OGMs every second. In addition they also rebroadcast received OGMs
in between their self-generated OGMs, creating a lot of traffic in the network. Thus,
signing and encrypting every OGM a node transmits as well as validating every
message received, would be computationally infeasible given the nodes’ restricted
resources as discussed in Section 3.1.

To solve this issue of tying a node’s identity to it’s OGMs and validating received
OGMs without introducing a significant amount of work, the following solution is
proposed and explained in the next sections.

3.6.1 Authentication Key Stream
A node generates a symmetric key, referred to as the ephemeral key K, which it
unicasts together with a nonce n and an initial value IV to all of its authenticated
link-local neighbors1. The message is digitally signed for integrity and encrypted
with the neighbor’s public key from their PC1s for confidentiality, before it is trans-
mitted to the neighbors as shown in Figure 3.1.

Figure 3.1: An example of node A encrypting the Ephemeral Key K, nonce n, Initial
Value (IV), and digital signature sign. with the public-keys of its direct neighbors,
PUB and PUC, and unicasting it to them.

After the transmission, node A and its direct neighbors use the values from the
message to generate a key stream using AES-CBC encryption repeatedly. AES-CBC

1Entails that it has already received and verified the neighbors’ PC1s which is done in the initial
authentication phase explained in Section 3.7.1
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is the Advanced Encryption Standard (AES) algorithm in Cipher Block Chaining
(CBC) mode of operation. This means that a block of plaintext is XORed with the
previous cipher text block before it is encrypted with AES [FKGay] as illustrated
in Figure 3.2.

Figure 3.2: An illustration of AES-CBC encryption.

In this case it is the nonce value which is used as the plaintext to be encrypted. In
order to generate a large key stream based on the values received, the AES-CBC
encryption is repeated where the same nonce value is used but changed for each
repetition.

In this way, using the nonce together with the IV and ephemeral key K as in-
put, the AES-CBC encryption creates a chain of cipher text blocks which is referred
to as an Authentication Key Stream.

Since all the nodes A, B and C know the same input values, nonce repetition rules,
and key stream algorithm, this authentication key stream will be the same for ev-
eryone.

As illustrated in Figure 3.3, every OGM which is broadcasted by node A from then
on, contains a 16 bit extract of this authentication key stream called a One-Time
Password. It also appends a 16 bit sequence number that indicates which part of
the key stream the one-time password is taken from.

Upon receiving an OGM from node A, the neighbors B and C verify the one-time
password by comparing it to the corresponding authentication key stream they gen-
erated themselves.

The neighbors B and C also create their own Ephemeral Keys, nonces and IVs
and transmits them to their direct neighbors just as node A. This leads to every
node in the network being in possession of their own authentication key streams in
addition to one key stream for every direct neighbor they have.
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(a) OGMs containing value V1 and Offset 1. (b) OGMs containing value V2 and Offset 2.

Figure 3.3: Illustration of node A’s OGM transmissions containing extracts of the
Authentication Value V.

The point behind generating the key stream of a neighbor, is that it is now possible
to verify that future OGMs received from this specific neighbor is actually sent from
this neighbor.

Authentication is done hop-by-hop which means that a node only authenticates
its link-local neighbors even if an OGM did not originate from them. So, if node B
or C are to rebroadcast an OGM received and originated from node A, they replace
the one-time password put there by A with their own one-time password from their
own authentication key streams. This creates a form of ”web of trust” where a node
trusts the originator of an OGM if it is trusted by one of its authenticated direct
neighbors.

After a certain time interval, the nodes generates new Ephemeral Keys, nonces,
and Initial Values and repeat the behavior as explained above. This is to sustain a
continuous authentication of the nodes.

To make room for the one-time password and sequence number appended to ev-
ery OGM sent, two new fields is added as shown in Figure 3.4.

For simplicity, let’s refer to both these fields under the term Authentication Fields.
If nothing else it specified, when using the abbreviation OGM from now on in this
chapter, refers to this modified version of the original OGM.
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Figure 3.4: Illustration of the OGM format including the fields reserved for security
elements.

3.7 PC Signing and Issuing
A node who wants to join a restricted network must be in transmission range of the
network’s responsible Service Proxy (SP) in order to be issued a PC1.

When not part of any restricted network, a node broadcasts its OGMs as usual,
but with empty authentication fields. We refer to this as an empty OGM.

Upon receiving an empty OGM, the SP will engage in a certificate issuing pro-
cess with the node. This process is similar to how a regular X.509 certificate is
issued in traditional networks.

First the SP who received an empty OGM sends an invitation to the originator
asking it to create and return an unsigned Proxy Certificate (PC). The originator
generates a public-private key pair and sends the public-key in an unsigned PC back
to the SP. The SP then signs the certificate with its own PC0 before returning it
to the originator. This process in presented as a Message Sequence Chart (MSC) in
Figure 3.5.

The originator node is now a part of the restricted network and can be authenticated
by all other nodes possessing a PC1 signed by the same SP. How this verification
of each others PCs between nodes is performed, is explained in the next section.

3.7.1 Initial Authentication Phase
Before nodes can exchange ephemeral keys and generate Authentication Key Streams,
they need to exchange and verify PC1s. This step is called the Initial Authentication
Phase.

The phase is triggered if a regular node receives an OGM from a neighbor it has
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Figure 3.5: Illustration of the OGM format including the fields reserved for security
elements.

not yet authenticated. The nodes then continue to exchange and verify each others
PC1s which is performed in a process that is similar to how it is done with tradi-
tional X.509 certificates.

If the certificates are valid, the nodes exchange ephemeral keys and generate au-
thentication key streams and continue as explained in Section 3.6.1.

If the verification process fails, the nodes will not consider each other as authenti-
cated nodes, thus dropping every OGM sent from them. A node also drops an OGM
if the one-time password in the message is not verified.

If a node has verified a neighbors PC, but has not yet received a ephemeral key
from it, the node will drop the OGMs until it eventually receives a the necessary
information needed from which it can generate an authentication key stream.

3.8 Network Entities
The entities and elements introduced to the BATMAN protocol are summarized and
shortly described in Table 3.1.

The nodes also need to keep track of their authenticated direct neighbors including
their public-key, ephemeral key K, authentication key stream and last received key
stream sequence number. This information is added to the Originator List which is
maintained by every node as described in Section 2.2.2.
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Entity Description
Service Proxy (SP) Allowed to sign Proxy Certificates which will be

issued to nodes after they have been through an
authentication process with the SP.

Proxy Certificate (PC) Certificate generated by a node that has not
been signed yet.

Proxy Certificate 0 (PC0) Self-signed certificate belonging to a SP. This
PC will have the certificate depth of 0 thus we
refer to it as a PC0.

Proxy Certificate 1 (PC1) Certificate that can only be signed by a SP. A
node in possession of a PC1 is fully trusted node
in the network managed by the SP who signed
the certificate.

Ephemeral Key K A symmetric key generated by every node in the
network and unicasted together with a nonce
and IV value to every direct neighbor.

Authentication Key Stream Key stream generated from the AES-CBC algo-
rithm using the ephemeral key, IV and nonce as
an input.

Table 3.1: New entities and elements introduced to the modified BATMAN protocol.
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Chapter 4

Network Simulation

To get an understanding of the importance of simulating new network protocols,
this chapter first explains some basic knowledge about network simulation and its
limitations and advantages. The chapter then covers some of the most popular
network simulators used in research and education.

4.1 Network Simulation

New network protocols are continuously being designed and developed with the goal
of optimizing various operational requirements such as security, reliability, network
scaling, mobile networking, and quality-of-service support [BEF+02]. Studying pro-
tocols, both individually and interactively, under varied conditions is critical in order
to understand their behavior and characteristics.

Building testbeds and labs to study a network protocol can however be both diffi-
cult and expensive, especially in large-scale environments. In addition, testbeds and
labs are not always capable of reproducing some networking phenomenas, such as
wireless radio interference, thus making it difficult to compare and evaluate proto-
col designs. Lastly they can also be difficult to reconfigure and they have limited
flexibility [BBE+99].

Due to the challenges of making real-life models of communication networks, large-
scale network simulation has become an increasingly important tool to evaluate
protocol design. Various network simulators provide a rich opportunity for efficient
experimentation and provide various, but controlled and reproducible network con-
ditions.

Even though network simulators have several advantages compared to testbeds and
labs, they also have their limitations and drawbacks. Some of these are discussed in
the next section.
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4.1.1 Limitations

The goal of simulations is to model real-life systems as closely as possible. To imi-
tate real-life network phenomenas, e.g. propagation loss or node mobility, different
mathematical and statistical models need to be created. The models describe the
occurrence and behavior of different events and processes.

However, such models can never perfectly resemble the unpredictable behavior of a
real network. The precision in the simulation results are only as good as the models
used and are thus still only estimates or projected outcomes [BP96].

The details of a simulation is dependent on computer resources and power. Com-
puter limitations, such as memory and processing time, can e.g. limit the number
of network objects (nodes, links, and protocol agents) that a designer can simulate
[BEF+02].

All simulators adopt some level of abstraction which means that they can have
a configurable level of detail for different simulations. Users are with this able to
trade simulator performance against level of detail by adjusting the simulator ab-
straction. However, this introduces a risk of decreasing simulation accuracy when
increasing the level of abstraction [BBE+99].

4.1.2 Simulation Scenarios

As mentioned above, different mathematical models define the behavior of a simu-
lation. By applying sets of initial parameters and other variables, the behavior can
be changed to attempt to generate a representative simulation scenario.

When generating simulation scenarios the following areas should be assessed [BEF+02]:

• network topologies and dynamics that define realistic models of the movement
of mobile nodes

• representative data traffic models

• transmission range and reception power of nodes

Different models and parameters should be chosen such that they create a simula-
tion scenarios which tests the network protocol in the areas desired.

Chapter 6 in this report describes the different models used and parameters changed
in order to create representative simulation scenarios used to evaluate the BATMAN
protocols.
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4.2 Network Simulators
There are several network simulators with varying focuses targeting different areas
of research. Some only focus on a particular network type or protocol such as the
NIST ATM simulator, while others including ns-2 [BEF+02], ns-3, REAL, Opnet
and Insane, target a wider range of protocols [BEF+02].

However, using only one common simulation environment across research efforts
can yield many substantial benefits, including [BBE+99]:

• improved validation of the behavior of existing protocols

• a rich infrastructure for developing new protocols

• the opportunity to study large-scale protocol interaction in a controlled envi-
ronment

• easier comparison of results

Over the past decade, several network researchers have preferred using the network
simulator ns-2 when evaluating network systems and protocols [HRFR06]. However,
on the basis of some of ns-2’s shortcomings and issues, a new simulator, ns-3, has
been developed over the recent years. Both simulators are described in the sections
below.

4.2.1 ns-2
The network simulator 2, ns-2, is a simulation tool primarily targeted for networking
research and educational use. The simulator derives from the old network simula-
tor REal And Large (REAL) from 1989 which was developed with the motivation
of studying flow and congestion control schemes in packet-switched data networks
[BBE+99, Kesay].

In 1995 the first generation of ns was completed through the VINT project with
the hope of becoming a common simulator with advanced features to change the
then prominent protocol engineering practices [BEF+02]. The simulator continued
to evolve and the second generation, ns-2, was first released in 1996 and was a
major architectural change from ns-1 because of its split-level programming model
explained next [HRFR06].

ns-2 uses a discrete-event processor as its engine. The simulator provides as men-
tioned a split-level programming model where the simulation kernel is written in
C++ and the simulation setup is done in OTcl, an object oriented version of the
scripting language Tcl. The simulation kernel in C++ is responsible for the core
set of high-performance simulation primitives while the simulation setup is respon-
sible for the definition, configuration, and control of the actual simulation scenarios
[BEF+02].
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By utilizing both C++ and OTcl, the simulation maintenance, extension and de-
bugging was separated from the actual simulation itself making it easier to use.
In addition the developers and researchers avoided having to recompile the simula-
tor every time a structural change was made. This significantly reduced the total
amount of recompilations which were time-consuming in the timeframe the simula-
tor was introduced [HRFR06].

Being an open-source project, the simulator has received substantial contributions
from researchers and people who have used the simulator. However, ns-2 is currently
only lightly maintained due to the development work on ns-3 which is explained in
the following section.

4.2.2 ns-3
As mentioned in Section 4.2, the ns-2 suffered from several issues which prevented
the simulators scalability, extensibility and usability. Some of the key issues include:

• Split-level programming model
Few people are familiar to the C++/OTcl structure and the C++/OTcl linking
is poorly documented making it a hard to learn and debug. It also puts
restrictions on how objects in the simulator may be combined in new ways
[HRFR06].

• Scalability
This important property is considered one of the major concerns about ns-2
cited by its users [HRFR06]. The scalability issues is partly due to ns-2’s over-
all software architecture and that it is a sequential execution simulator which
creates bottleneck when attempting to simulate more sophisticated communi-
cation models e.g. wireless or higher-rate links on a single machine [HRFR06].

• Realism
ns-2 packets are not serialized and deserialized making them unable to function
with real-world network systems.

• Integration
ns-2 does not offer many opportunities to integrate with external software, e.g.
traffic generators such as iperf and tcplib, or network analysis software such
as Wireshark and tcptrace [HRFRay].

The development of ns-3 was initiated in 2006. The main project goals were to
develop a simulator that:

• is modular and easily extensible,

• puts more focus on collection of simulation data and statistics,

• has attention to realism and software integration, and
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• is flexible

In addition, it was more focus on maintaining an extensive documentation, API
[HRFR06].

ns-3 is also a discrete-event network simulator written purely in C++ but with
an optional Python interface. Simulation scripts describing simulation scenarios
can be written in either C++ or Python.

ns-3 mirrors real network components, protocols and APIs. For instance, a network
packet simulated in ns-3 is implemented in detail and is serialized and deserialized
when transmitted and received respectively. This increased realism makes the code
more reusable, modular, and portable. It also enables the simulator to be used
as an emulator in environments including real hardware, software, and networks
[HRFR06].

The simulator also provides an extensive tracing system which is a framework that
collects statistics by coupling trace sources and trace sinks in the simulator core.
The simulator is able to for instance generate packet traces captured in standard for-
mats such as .pcap which can be used together with Wireshark for post-processing
[nsnayb].

In order to avoid the issues from which ns-2 suffered from, ns-3 had to break com-
patibility with its predecessor. This entailed that the relatively large amount of
supported protocols in ns-2 could not be directly ported to ns-3, but needed to be
re-implemented.

Thus, since the simulator is still fairly new, few protocols and other network ap-
plications are supported by the ns-3 at the time of writing. Figure 4.1 shows the
different models which are currently implemented in the ns-3 simulator:

However, the simulator is actively supported and the open-source community con-
tinuously contributes with new models and helps validate existing ones. Thus, there
is a reason to believe that number of supported models will grow in the future.

A more detailed description of the ns-3 architecture is found in Chapter 5 where the
implementation of the BATMAN routing models in ns-3 is described.

4.3 Related Simulation Studies
Both ns-2 and ns-3 explained above have been used to evaluate a range of different
routing protocols tailored for MANETs [Ver11].

However, support for the BATMAN routing protocol has not yet been implemented

33



CHAPTER 4. NETWORK SIMULATION

Figure 4.1: Some of the different models implemented in the ns-3.10 release of the
simulator.

in any network simulators [Mesaya]. Thus no simulations with this protocol have
been published at the time of writing.
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Chapter 5

Implementation

Two new routing models were implemented as routing models in ns-3 including the
original BATMAN and a simplified version of the secure BATMAN protocol.

This chapter covers how the ns-3 network simulator is organized and how imple-
mentation of these two protocols fit into the simulator’s structure. The chapter also
describes in more detail how they were implemented including explanations of the
most important functions, classes and subclasses as well as their main attributes
and components.

The Destination Sequenced Distance Vector (DSDV) protocol is the newest ad hoc
routing protocol added to the latest stable release ns-3.10 at the time of writing
[NCÇ+11]. The ns-3 model of this protocol was used as a source of inspiration when
implementing the BATMAN routing protocol in ns-3. The implementation was also
inspired by studying the real-life BATMAN protocol and its RFC draft [NALWay].

5.1 ns-3 Architecture
Figure 5.1 gives a schematic view of how the source code in ns-3 is organized. It
shows that the simulator is divided into separate modules where the modules only
have dependencies to other modules placed beneath them. A ns-3 module is built
as a separate software library where ns-3 programs can link the modules they need
in order to conduct their simulations. A module may consist of one or more models
which are abstract representations of real-world objects, protocols, devices and so
on [nsnaya].

The core of the simulator consists of the three modules core, common and simulator.
Together they create a generic simulation foundation which is common across all pro-
tocol, hardware, and environmental models making it usable for any kind of network,
not just only IP-based networks.

The two modules in the top layers of Figure 5.1, helper and test, are supplements
to the C++ core API. ns-3 programs, also referred to as simulations scenarios or

37



CHAPTER 5. IMPLEMENTATION

Figure 5.1: Software organization of the ns-3 simulator, based on the figure from
[nsnayb].

scripts, can access the core API directly or use the high-level wrappers and encap-
sulations found in the helper module [nsnayb].

The other layers in Figure 5.1 add the networking-specific components of ns-3. For
instance, the internet-stack module includes implementations of protocols such
as User Datagram Protocol (UDP) and Transmission Control Protocol (TCP) while
the routing module provides different models of Internet Protocol version 4 (IPv4)
routing protocols.

The organization of ns-3 provides a modular source code where different models
can be added to a module without having to make changes to other modules or the
ns-3 structure. The BATMAN routing protocol was implemented in the routing
module which is highlighted in Figure 5.1. A BATMAN helper class was also im-
plemented to assist when using the BATMAN protocol in simulation scenarios.

The remainder of this chapter first explains how the original BATMAN protocol
was implemented as a routing model in ns-3. It then describes how this model
was used as a base when implementing a routing model for the simplified Secure
BATMAN protocol.

5.2 Class Interaction
The relations between the BATMAN classes implemented in the routing module,
are presented in Figure 5.2.

As the figure illustrates, ns3::batman::RoutingProtocol is a subclass of the al-
ready implemented abstract base class ns3::Ipv4RoutingProtocol. This class per-
forms the main routing tasks and contains functions that connect the routing model
to the rest of the ns-3 core.
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Figure 5.2: Class Diagram for the BATMAN routing model in ns-3 omitting at-
tributes and methods due to size issues.

The ns3::batman::OriginatorList class contains a collection of originator list en-
tries declared in the ns3::batman::OriginatorListEntry class. These entries are
equivalent to the originator list entries as explained in Section 2.2.2. Every originator
list entry also has a neighbor information list which includes a set of neighbor in-
formation entries declared in the ns3::batman::NeighborInformationEntry class.

The ns3::batman::BatmanHeader class implements the packet format and it is
extended from the existing ns3::Header base class.

Two additional classes are also implemented in the BATMAN routing model, namely
ns3:batman:bitarray and ns3:batman:ringbuffer. These classes only contain
functions used to update the sliding windows belonging to neighbor information list
entries. Since they do not have any other tasks in the routing model they are omit-
ted from the class diagram in Figure 5.2 and not described in more detail. The rest
of the classes mentioned above are further explained in the following sections.

5.3 Originator Message (OGM)

The ns3::batman::BatmanHeader class defines the format of the BATMAN packet
which consists of one OGM and zero or more optional Host Network Announcement
(HNA) extension messages. But, as discussed in Section 2.2.1, the HNA feature is
not used during the simulations and is therefore not implemented in ns-3.

The OGM without the optional trailing HNA messages, was implemented after
the format from BATMAN IV explained in Section 2.3 and is illustrated in Figure
5.3.
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Figure 5.3: Format of the OGM excluding the optional HNA messages.

The fields which are not used, Gateway Flags, Gateway Port, and HNA Length, are
not omitted in the implementation, just set to zero when running the protocol.

The ns3::batman::BatmanHeader class includes two important methods inherited
from the abstract base class ns3::Header, namely Serialize and Deserialize.
These methods convert the BATMAN header into a byte buffer in its network rep-
resentation and makes it possible to use the routing protocol in simulations which
interact with real-life networks as discussed in Section 4.2.2.

5.4 Originator List
A node’s Originator List is equivalent to an ordinary routing table and it is defined
in the ns3::batman::OriginatorList class as a C++ map. This class includes
methods to add, delete, update, purge and look up entries in the Originator List.

A node stores an entry in its Originator List for every originator from which it
has received an OGM just as described in Section 2.2.2 and 2.2.4. These originator
list entries are defined in the ns3::batman::OriginatorListEntry class and holds
the following information:

• Originator Address

• Last Aware Time

• Last Time To Live

• Current Sequence Number

• Next Hop

• Neighbor Information List

Every originator in a node’s Originator List may be reached via several link-local
neighbors. These neighbors are added as entries in the Neighbor Information List
which is a C++ map called m neighborInformationList. The entries in the list
are declared in ns3::batman::NeighborInformationEntry class and contains the
following attributes:

40



5.5. BATMAN ROUTING PROTOCOL

• Neighbor Address

• Last Valid Time

• Last Time To Live

• Sliding Window for rebroad-
casts of own OGMs (Echo Link

Quality (EQ))

• Sliding Window for total re-
ceived OGMs from this neigh-
bor (Receiving Link Quality
(RQ))

The information in this list is used by the protocol to choose the best next-hop
towards the originator to which the list belongs as described in Section 2.2.3.

5.5 BATMAN Routing Protocol
The main routing logic is performed in the ns3::batman::RoutingProtocol class
making it the most important component in the BATMAN routing model. The
class inherits functions from its parent class such as RouteInput and RouteOutput
which tie together the network layers in the simulator. It also combines functions
from the other classes in the model to build and maintain a node’s Originator List.

The main functions in the ns3::batman::RoutingProtocol class, are:

• BroadcastOriginatorMessage

• RecvOriginatorMessage

• ReBroadcastOriginatorMessage

The function BroadcastOriginatorMessage is in charge of periodically broadcast-
ing OGMs on behalf of a node as explained in Section 2.2. Is keeps a timer called
OriginatorIntervalTimer which triggers the periodic broadcasts of an OGM.

RecvOriginatorMessage handles the processing of received OGMs. Here an OGM
first goes through some initial checks verifying its Version field, Previous Sender
field and so on. If all checks are passed, it is then investigated whether the received
OGM is a self-generated OGM rebroadcasted from a neighbor. If this is the case,
the function CountRebroadcast is called which updates this neighbor’s EQ value
which is the amount received rebroadcasts of self-generated OGMs as explained in
Section 2.3.1.

Two other important checks performed is found in the functions BidirectionalCheck
and DuplicatePacketCheck. DuplicatePacketCheck examines if the OGM has al-
ready been received by checking if the sequence number in the OGM has been
marked in the corresponding sliding window. If not, the sliding window is updated
and the RQ value of the neighbor who sent the OGM is updated.

BidirectionalCheck uses both the RQ and the EQ value to check if the sender
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of the OGM is a bidirectional neighbor. If the neighbor turns out to be bidirec-
tional, the calculations described in Section 2.3.1 is performed and a new Transmit
Link Quality (TQ) value is calculated. This new value is put in the OGM if it is to
be rebroadcasted.

If the OGM is both received from a bidirectional neighbor and is not a duplicate
packet, the function UpdateOriginator is called. This function updates the neigh-
bor ranking choosing the best link-local neighbor as the next-hop towards the orig-
inator of the OGM.

Finally, the OGM is rebroadcasted if it has passed all the checks and has a Time To
Live (TTL) value more than zero. The function ReBroadcastOriginatorMessage
changes the appropriate fields in the OGM before it rebroadcasts it.

5.6 Routing Attributes and Default Values
Table 5.1 shows some important attributes and their default values used in the
implementation.

Attribute Defaults Description
DEFAULT VERSION 4 BATMAN version
MAX SEQUENCE NUMBER 65535 Maximum sequence number allowed
DEFAULT TTL 50 Default Time To Live value
OGM BROADCAST INTERVAL 1 s Periodic interval between broadcasting

of OGMs
TQ LOCAL WINDOW SIZE 64 Size in bytes of the sliding window used

when calculating TQ values.
PURGE TIMEOUT 200 s Lifetime of an originator list entry

which has not been updated recently.
HOP PENALTY 5 Penalty added to an OGMs TQ value

for every hop made in the network.
MAX TQ VALUE 255 Maximum TQ value possible.

Table 5.1: BATMAN attributes and their default values.

5.7 Protocol Validation
As mentioned in Section 4.3, the BATMAN routing protocol has not been imple-
mented in any network simulator before. Thus, in order to validate the protocol it
had to be compared against its real-life counterpart. Detailed debug output from a
simple simulation and a small real-life network was studied to ensure that the pro-
tocols behaved identically. Later it was also compared against a well-known routing
protocol, DSDV, during various simulations as explained in Chapter 6.
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5.8 BATMAN Security Extensions
The newly implemented routing model supporting the original BATMAN protocol
was used as a base when implementing the second routing model for the Secure
BATMAN protocol. As mentioned in Chapter 1, parts of the Secure BATMAN
protocol was not implemented in the ns-3 routing model due to time constraints.
Even though the ns-3 network simulator provides a modular simulator core which
is easily extensible, it is still a complex tool which takes some time to learn. In
addition, the time taken to validate the routing model for the original BATMAN
took longer than expected. Thus, only the most important elements of the Secure
BATMAN routing protocol was implemented in the ns-3 model.

5.8.1 Simplified Secure BATMAN
The main focus when implementing a simplified version of Secure BATMAN was to
try capturing the security elements which affects the total routing performance the
most. The added work which the Secure BATMAN imposes on the original protocol
can roughly be summarized into three main steps:

1. Proxy Certificate (PC) signing and issuing,

2. verification of other nodes’ PCs, and

3. continuous authentication of received OGMs

Assuming that a node is issued a Proxy Certificate 1 (PC1) which is valid during
an entire emergency and rescue operation for instance, this first step is performed
only once at the very beginning of the operation.

Also, the exchanging and verification of other nodes’ PC1s is also done once. After
a node’s PC1 has been verified, the nodes start to exchange authentication material
packets and generating key streams as explained in Section 3.6.

Thus, it is this continuous authentication of OGMs which probably has the most
continuous impact on the total routing performance of the protocol. The implemen-
tation of the routing model therefore prioritized on including the functionality where
authentication material is created and shared as well as the continuous verification
of one-time passwords in received OGMs.

5.8.2 Cryptographic Functions and OpenSSL
The cryptographic functions added to the routing model were based based on and
inspired by the work done by Espen Grannes Graarud on his master thesis at The
Norwegian University of Science and Technology (NTNU) [Gra11]. His thesis in-
volved developing a real-life implementation of the Secure BATMAN protocol.

The functions are created using the OpenSSl cryptographic library. This is a library

43



CHAPTER 5. IMPLEMENTATION

containing implementations of the industry’s best-regarded algorithms, including
encryption algorithms such as Advanced Encryption Standard (AES) and RSA as
well as message digest algorithms and message authentication codes [VMC02].

The following sections describe the new classes added and the most important func-
tions and attributes included in the Secure BATMAN ns-3 routing model.

5.8.3 Packet Format
As explained in Section 3.6.1, the OGM was extended by adding two new fields in
order to include the authentication mechanisms. The format is shown in Figure 3.4.

Similar to the original BATMAN implementation, the the packet format is defined in
ns3::securebatman::SecureBatmanHeader which is extended from ns3::Header.

In addition to the ns3::securebatman::SecureBatmanHeader, a new class called
ns3::securebatman::SecureAmHeader is also implemented in the routing model.
This class defines the Authentication Message (AM) which is used to share key
stream material used to generate key stream. How the AM is used is explained in
the next section and the format of the AM is shown in Figure 5.4.

Figure 5.4: Illustration of the Authentication Message (AM) used to share key
stream material with neighboring nodes.

5.8.4 Key Stream Material and Key Stream Generation
The most important functions added in this model is:

• GenerateKeystreamMaterial

• GenerateKeyStream

• GenerateNeighborKeyStream

44



5.8. BATMAN SECURITY EXTENSIONS

• CheckOneTimePassword

The first step done by a node running the secure BATMAN protocol, is to generate
its own ephemeral key, nonce and Initial Value (IV) which it transmits in an AM to
its link-local neighbors. After the transmission it generates its own authentication
key stream and continues to broadcast regular OGM containing one-time passwords
from this key stream.

All the functions used for cryptographic purposes such as ephemeral key genera-
tion are defined in the new class called am. The functions residing in this class use
tools from the OpenSSL library as mentioned in Section 5.8.2.

If a node receives an AM for the first time from a link-local neighbor, it retrieves
the values from the message and generates the neighbors authentication key stream
by using the function GenerateNeighborKeystream. For every OGM received from
now on from this specific neighbor, the function CheckOneTimePassword is used to
verify the one-time password in the OGM.

A timer called m amPacketIntervalTimer was also added to trigger the genera-
tion of new key stream material to be transmitted to neighbors. This is to sustain
continuous authentication as explained in Section 3.6.1.
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Chapter 6

Simulation Setup

The previous chapter explained how both versions of the BATMAN protocol are
implemented as routing models in ns-3. This chapter describes the different scenarios
simulated in ns-3 using these routing models, as well as the different metrics that
were measured during the simulations.

6.1 Performance Metrics
The main goal of the simulations is to measure both the original and the modified
BATMAN protocol’s ability to react to network topology changes while still contin-
uing to successfully deliver packets efficiently to a destination.

This ability can be defined by a selection of performance metrics which is measured
during the simulations and then analyzed and compared. The following metrics are
valuable when evaluating the performance of a routing protocol [CBD02, BMJ+98]:
• Packet Delivery Ratio (PDR): The amount of packets received divided

by the amount of packets actually sent by the application layer.

• Routing Overhead: The total amount of routing packets (OGMs) measured
in bytes transmitted during the entire simulation.

• Packet Delay: The time taken by a packet when transmitted from a source
to a destination measured at the MAC layer.

The PDR gives an indication of the protocol’s loss rate which affects the maximum
throughput that the network can support. Routing overhead shows the scalability
of the protocol while the transmission delay indicates how efficient the protocol is
when choosing the best path to a destination. All these metrics will be monitored
and measured during the simulations conducted.

6.2 Mobility Models
Mobility models describe the movement of a node during a network simulation. This
includes the direction of movement, velocity and acceleration of the node over time.
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Several mobility models exist in ns-3 and the most relevant for the simulations
performed in this report, are [CBD02]:

• Random Walk Mobility Model: Describes mobility patterns were a node
moves from its current position to a new random destination moving with
random speed.

• Random Waypoint Mobility Model: Mobility model which also includes
pause times between the changes in destination and speed.

• Random Direction Mobility Model: Describes node movement patterns
where the nodes are forced to move to the edge of the simulation area before
changing direction and speed.

The models mentioned above are all entity mobility models which define the move-
ment of the nodes independently of each other. The two first models are the most
common mobility models used by researchers [CBD02].

The mobility model utilized in the simulation scenarios in this report, is the Ran-
dom Waypoint Mobility Model. Even though it is one of the most commonly used
models in ad hoc research, it is proved that it suffers from certain issues which
might affect the performance results from simulations [BRS03, CBD02]. However,
this issue can be avoided by following some simple recommendations. One of these
recommendations is to discard the initial simulation time produced by the model
[CBD02]. Thus, a small ”settling time” is introduced before traffic is sent in the
network in order to hopefully reduce the potential impact of this issue.

6.3 Methodology and Simulation Setup
Running a simulation in ns-3 works by writing a program which describes a simula-
tion scenario including the different combinations of models used from the ns-3 core,
e.g. node movement model, Internet-stack model, and traffic generation application.

By changing the parameters belonging to the models used, different variations of
the scenario can be made in order to test different aspects, e.g. changing the pause
time parameter in the Random Waypoint Model.

The different parameters, simulation scenario and methodology of how the simu-
lations were executed, were inspired by previous studies involving simulations with
other ad hoc routing protocols [NCÇ+11, BMJ+98, DPR00].

6.3.1 Physical Space and Node Movement
The simulations are performed using a varying amount of nodes, 10, 20 and 30,
which are moving in a rectangular flat space (1500x300m2).
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The nodes movement is as mentioned described by the RandomWaypointMobility
model already implemented in ns-3. The nodes’ velocity is set to vary between 0
and 20 m/s during a simulation run and every run is done with 10 different pause
times varying from 0 to 900 seconds.

The total simulation time for every simulation run is set to 900 seconds. This
means that a simulation scenario running with pause time 0 seconds entails that
nodes are moving continuously with no stops. When using a pause time of 900
seconds, the nodes stay at a fixed position the entire simulation run.

6.3.2 Traffic Generation and Flows
All nodes transmit and receive constant data traffic to and from other nodes in
the network. Based on the previous studies, a packet size of 64 bytes was cho-
sen due to very low PDR values when using a larger packet size (>500 bytes)
[NCÇ+11, BMJ+98].

The nodes are configured to generate Constant Bit Rate (CBR) traffic using the
OnOff application in ns-3 with a data rate of 4 packets/s (256 Bps). The simulator
is configured to create as many traffic flows as the amount of nodes in the network
and it is ensured that every node both receives and transmits data.

Nodes generate CBR traffic using 802.11b MAC over the Friis propagation loss
model [Fri46] to limit the nodes transmission range [NCÇ+11, BMJ+98].

All the simulation parameters that are constant for every simulation run, is sum-
marized in Table 6.1.

Parameter Value
Node Velocity 0 - 20 m/s
Packet Size 64 bytes
Data Rate 256 Bps
Settling Time 30 s
Simulation Time 930 s
BATMAN OGM Broadcasting Interval 1 s

Table 6.1: Simulation parameters that stay constant for every simulation run.

6.3.3 Simulation Statistics and Data Collection
The ns-3 tools DataCollector and DataCalculator, are used to count and gather
data and statistics from different trace sources and sinks couplings in the ns-3 core.

The data collected is averaged over 10 repeated simulation runs to get an central
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tendency of the data set. This sums up to about 300 simulation runs for one routing
protocol with different variations of the simulation scenario as illustrated in Table
6.2.

Repetitions Node Count Pause Times (s)
0

100
10 . . .

800
900
0

100
10 x 20 . . .

800
900
0

100
30 . . .

800
900

Table 6.2: Illustrations of the different parameter combinations used and amount of
repetitions of the simulation runs.

After a simulation run has completed, the DataCollector is in charge of storing
the data in a SQLite database [SQLay] for post-processing and analysis.

Due to some memory allocation issues when running simulations with the Secure
BATMAN routing model, this protocol was not simulated with a node amount
higher than 10.

6.4 Running the Simulations
The simulations are controlled by a simulation script which launches the different
simulation scenarios with the different parameter combinations. It is also in charge
of querying the SQLite database and parsing results for creating graphs with Gnu-
plot [BCC+ay].

The order of the steps performed by the simulation script is described in the list
below and illustrated in Figure 6.1.

1. Start simulation script

2. Script runs the simulation scenario written in C++ specifying the different
parameters to be used (pause time, amount of nodes etc.)
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3. Simulation scenario measures and store data from the simulation in the SQLite
database

4. Simulation script queries the database and store data points in a file

5. Simulation script invokes Gnuplot to create the graphs from the data points
received and parse from the database

The Figure 6.1 illustrates the workflow of the simulation script.

Figure 6.1: Workflow and involved entities during the lifetime of the simulation
script.

The simulation script can be found in Appendix C.

6.5 Simple Performance Comparison of DSDV and
BATMAN

BATMAN’s main principle is that routing information is flooded through the net-
work and thus shared amongst every single participating node. The flooding is
achieved by every node broadcasting routing information which is rebroadcasted
through the network until all the other nodes have received the information. This
creates a lot of traffic and increases the possibility of packet collisions and interfer-
ence. Also network scalability becomes an issue.

The developers justify this design choice with the fact that wireless networks are by
nature very lossy and a high packet loss is expected [NALWay]. Thus, the simplest
and most efficient way of maintaining the network, is to simply flood it with routing
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information and expect that a large majority of the packets will be lost.

DSDV is also a proactive routing protocol, but it produces however way less routing
overhead compared to BATMAN. Therefore, it would be interesting to also investi-
gate how the performance of this protocol is compared to BATMAN when exposed
to a more lossy wireless environment.

This comparison was done by performing the same simulations as explained above,
but decreasing the nodes’ transmission power to reduce their transmission range.
This creates weaker links between nodes making a more unstable network. Thus,
the protocols were tested in what is referred to as one ”strong network” and one
”weak network”.

The results from the simulation scenarios described, are presented in the next chap-
ter.
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Chapter 7

Simulation Results

This chapter presents the results from the different variations of the simulation sce-
nario described in the previous chapter. In general the results show that the Secure
BATMAN protocol performs at the same level as both the original BATMAN and
Destination Sequenced Distance Vector (DSDV). The additional simulations con-
ducted with the original BATMAN protocol and DSDV indicate that BATMAN
does not show signs of outperforming DSDV in a ”weak network”.

Figure 7.1 shows Packet Delivery Ratio (PDR) and packet delay results from the
simulations running the Secure BATMAN, BATMAN and DSDV with 10 nodes and
10 traffic flows.
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Figure 7.1: Results from BATMAN, Secure BATMAN and DSDV running with 10
nodes and 10 source and sink pairs.

As seen from the graphs in Figure 7.1a, the PDR values of all three routing protocols
stay well above 80%. Interestingly, the Secure BATMAN protocol’s PDR also stay
at approximately the same level as the two other protocols. At pause time zero,
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which is equivalent to continuous node movement, all three protocols show their
best behavior with the highest PDR values.

When looking at the average packet delay in Figure 7.1b it is surprisingly the Secure
BATMAN protocol which has the lowest values.

As mentioned in Section 6.5, the same simulations were run with decreased trans-
mission power in order to create a weaker network. The Figure 7.2 shows the PDR
values and packet delays derived from the simulations results.
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Figure 7.2: Results from BATMAN, Secure BATMAN and DSDV running with 10
nodes and 10 traffic flows where the transmission power has been reduced.

From reducing the transmission power the PDR values drop significantly as shown
in Figure 7.2a. This is due to the fact that packets no longer reach as far as in the
previous scenario and the routing overhead create more collisions and interference
since the signals are weaker. Still all three protocols preform almost equally well at
delivering packets from source to destination.

The packet delays of all the three protocols presented in Figure 7.2b, are slightly
increased in this scenario. This is natural as the packets probably have to use longer
paths (more hops) to arrive at the destination since the signals are weaker. Still it
is the Secure BATMAN protocol which has the lowest average packet delays.

Figure 7.3 shows the routing load in bytes produced by the three protocols dur-
ing both of two first scenarios, with and without reduced transmission power.

As expected, both BATMAN and Secure BATMAN create way more load on the
network compared to DSDV. However, all three protocols create an approximately
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Figure 7.3: Routing overhead of BATMAN, Secure BATMAN and DSDV running
with 10 nodes and 10 traffic flows.

constant load on the networks in both scenarios.

The next simulations conducted increased the number of nodes as well as the amount
of traffic flows. These simulations were only conducted with the original BATMAN
and DSDV due to the issues stated in Section 6.3.3.

Figure 7.4 presents the PDR results from both BATMAN and DSDV with 20 nodes
both without and with reduced transmission power. The same is repeated with 30
nodes and traffic flows and also presented in Figure 7.4.

The situation depicted in the graphs in Figure 7.4, show that also here the DSDV
protocol is slightly better at delivering packets than BATMAN despite the reduced
transmission power.
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Figure 7.4: PDR values from the simulations with BATMAN and DSDV running
20 and 30 nodes and traffic flows.
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Chapter 8

Discussion

This chapter discusses some of the results presented in the previous chapter point-
ing out important performance aspects they highlight. The chapter also discusses
protocol validation and the experience of working with the ns-3 simulator. A short
evaluation of the security of the Secure BATMAN protocol is also included.

8.1 Performance Results
According to the results presented in the previous chapter, the Secure BATMAN
routing protocol does not perform significantly worse than its original counterpart
or Destination Sequenced Distance Vector (DSDV) protocol.

The protocol’s Packet Delivery Ratio (PDR) are in both scenarios, ”weak network”
and ”strong network”, at the same level as the original BATMAN and DSDV. It indi-
cates that its ability to route and deliver application data is not significantly affected
by the added security elements. The extra checks and computations performed
when transmitting Authentication Messages (AMs), receiving one-time passwords,
and generating key streams do not affect the total delivery rate of the protocol.

The Secure BATMAN protocol actually gives the lowest packet delay during both
simulation scenarios. However, since the packet delay is measured at MAC level this
entails that also routing protocols are registered. Thus the average value measured
for the Secure BATMAN protocol is likely to be reduced due to the transmissions
of the extra AMs as described in Section 5.8.

All three routing protocols are proactive meaning that routing information transmit-
ted in the network will be significant as mirrored in the results. As expected, both
BATMAN and the Secure BATMAN impose more load on the network compared
to DSDV. However, this added routing load affects neither the protocols’ PDR nor
average packet delay.

The Secure BATMAN has less routing overhead than the original BATMAN. This
is probably due to the periodic exchange of AMs between nodes which reduces the
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total amount of BATMAN packets which are flooded through the network. Thus
the average routing overhead produced by the Secure BATMAN protocol is reduced.

However, despite their vastly different amounts of overhead, all three protocols have
routing loads that stay nearly constant in both scenarios also with varying pause
times. This is expected due to the fact they are proactive routing protocols which
means that the routing information is transmitted periodically and is therefore not
as affected by changes in the topology or network environment.

The original BATMAN protocol was further tested and compared against DSDV
in scenarios containing more nodes and traffic sources. Simulations were done in
both ”strong network” and ”weak network”. The results from these simulations
show that DSDV perform slightly better than BATMAN.

It was expected that the BATMAN protocol probably would perform better or
at least the same as DSDV in a network which was weaker and had lossy links.
However, according to the behavior mirrored in the PDR measured during the sim-
ulations, this is not the case. BATMAN is always slightly below DSDV.

Not all aspects of the Secure BATMAN routing protocol were implemented in ns-3
as explained in Section 5.8. Also, the protocol was not tested in environments with
more nodes and more traffic. However, since the protocol in the first simulations
did perform similar to its original counterpart, we can assume that it would behave
identically in these situations as well.

8.2 Security Design Choices of the Secure BAT-
MAN

As Section 3.2 describes, the main goal of the security measures introduced to the
BATMAN protocol, was to include a form of access control mechanism in Mobile Ad
hoc Networks (MANETs) which were to be used in emergency situations and similar.

The proposed design described in Chapter 3 does present a solution which accom-
plishes this. It enables nodes part of a restricted network to verify if the Originator
Message (OGM) received is sent from a authorized node.

However, the design does have some weaknesses and issues which should be assessed,
some of which include:

• Security weaknesses

• Procedure of Proxy Certificate (PC) issuing

• Service Proxy (SP) presence

• Multiple SPs
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• Network Merging

Even though the security design manages to create a network only allowing autho-
rized nodes to send routing updates, there are some security weaknesses which can
disrupt the topology of the network. Some security attacks exploiting these vulner-
abilities include e.g. wormhole attack [HPJ06] and suppress replay attack [Gon92].
Both attacks are challenging to prevent in wireless networks, but can possibly be
avoided by ensuring integrity and confidentiality of the routing updates (OGMs)
sent. However, adding more security mechanisms must be balanced with the avail-
able resources in ad hoc networks as discussed in Section 3.1.

Some of the other issues mentioned in the list above include aspects involving the
functionality of the restricted ad hoc network after the authentication mechanism
has been introduced. For instance the situation where multiple SPs are present
establishing several distinct restricted networks. If the different networks wish to
merge, this must be solved in some matter. There is also the situation if the SP
disappears, then no new nodes can join the network anymore. The security design
described in Chapter 3 must be extended in order to solve these issues.

8.3 Protocol Validation
As mentioned in Section 4.3 and 5.7, the BATMAN protocol has not yet been im-
plemented in any network simulator at the time of writing. Thus, there was no
possibility of validating the behavior of the protocol implemented in ns-3 except
from comparing it to the real-life protocol.

So, the behavior of the implemented protocol was verified by manually studying
and comparing detailed verbose debug output from both the real-life protocol and
the routing model implemented in ns-3. Seen from these tests, the protocols behave
identically calculating the correct values used during routing and making the same
routing decisions.

8.4 Experience Working with ns-3
ns-3 presents itself as being a powerful simulator with great capabilities and a mod-
ularity which makes it relatively easy to extend.

However, the simulator has a steep learning curve. Partly due to its higher degree
of realism, the complexity of the simulator is increased compared to ns-2. Low-level
details are introduced at an early stage of the implementation process increasing
the time and effort required to understand the simulator well enough in order to
introduce new elements. However, when this initial learning curve is conquered, the
simulator shows its wide range of possibilities. In addition, the simulator’s frame-
work for data and statistics collection as well as experiment control is good.
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Due to its complexity and lack of supported models, the opportunity to quickly
test and study research ideas is not as trivial. In many ways ns-2 would be preferred
in these situations having implemented support for more models.

ns-3 is however actively supported and developed thus the simulator should evolve
and include more models and increased documentation in the future.

Running simulations is time consuming and resource demanding. It was expected
to be able to run more simulations than what was actually done, but due to time
and resource constraints, this was not possible. Doing several changes in between
long simulation runs was not an option.
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Chapter 9

Conclusion

The goal of the work behind this report was to extend the network simulator ns-3 in
order for it to support the BATMAN ad hoc routing protocol and a modified version
of the same protocol. The modified version, Secure BATMAN, included security el-
ements which provided an authentication mechanism. Both implementations were
then to be used to conduct simulations evaluating and comparing the protocols’
performance in various scenarios.

Before the implementation in ns-3 was started, a comprehensive study was done
to investigate the different network simulators available. An effort was also made
to understand the background of the most prominent network simulators including
their advantages and limitations.

The report presents the implementation of the BATMAN protocol in ns-3 including
details about the different components, important attributes and class interactions.
Due to time constraints, not all aspects of the Secure BATMAN protocol was imple-
mented. However, the most important elements considering the affect they would
have on the total routing performance, was added to the routing model in ns-3.

The main goal of the security measures introduced to the BATMAN protocol, was to
include a form of access control mechanism in Mobile Ad hoc Networks (MANETs)
which were to be used in e.g. emergency and rescue situations. The hope was to
include these security elements without them significantly impacting the overall per-
formance and functionality of the protocol.

The results derived from the simulations running the modified BATMAN protocol
indicate that the routing performance of this protocol is not substantially affected
by its security extensions.

The BATMAN protocol was also evaluated in denser networks with higher packet
loss. Compared to the Destination Sequenced Distance Vector (DSDV) protocol,
the results from the simulations include the fact that the BATMAN protocol does
not perform as well or better in the environments in which it is supposed to be
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superior.

Overall it is shown that BATMAN is a protocol which can be easily extended for
security purposes and the simulations indicate that the added elements do not com-
promise the protocols performance. Also, the original BATMAN protocol has not
been implemented in any network simulator yet, thus the work done here is a good
step towards it finally being supported by a network simulator.

9.1 Further Work
Future work would first of all include spending more time validating the BATMAN
protocol implemented in ns-3.

Also, the remaining security elements should be added to the Secure BATMAN
routing model implemented in ns-3. This includes Proxy Certificate (PC) signing
and issuing by a Service Proxy (SP) and exchanging and verification of Proxy Cer-
tificate 1s (PC1s) between nodes in the network.

After the complete Secure BATMAN routing protocol is implemented in ns-3, new
simulations should be conducted evaluating the impact these additional elements
impose on the protocol’s routing performance.
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Appendix A

BATMAN Routing Protocol
Details

A.1 Host Network Announcement (HNA)
A HNA message has a fixed size of 5 Bytes. A node appends one or more HNAs
when it wants to announce a gateway to another network or host.

Figure A.1: HNA message Format.

The different fields found in this message are:

• Netmask
Indicates the size of the announced network.

• Network Address
The IPv4 network address of the announced network.

A.2 Sequence Numbers and Sliding Window
Sequence numbers cycle from 0 to 216− 1 and start from 0 again when reaching the
maximum value. Since the number range is limited, all arithmetical operations done
must be performed using using modulo 216.

In-Window Sequence Numbers:
These numbers represent the latest accepted sequence numbers. The window
ranges from the current sequence number of the originator to WINDOW SIZE
- 1 sequence numbers below it. The current sequence number of a node is
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not updated if an Originator Message (OGM) from this originator is received
containing an In-Window Sequence Number. It is however marked in the
sliding window that an OGM with this In-Window Sequence Number has
been received.

Out-Of-Range Sequence Numbers:
These are all the sequence numbers that are not within the In-Window range
and are considered as the the new or next-expected Sequence Numbers. The
current sequence number is set to the sequence number in an received OGM
if this number is out of range. Thus the sliding window is moved and the
number which are not inside the window anymore are dropped.

A.3 Neighbor Ranking in BATMAN IV
The BATMAN IV needs to keep track of two different Transmit Link Quality (TQ)
values:

• The local TQ value which is the transmission quality towards every link-local
neighbor

• The global TQ value which is the link quality towards every multi-hop neighbor

The local TQ towards a link-local neighbor is calculated using the Receiving Link
Quality (RQ) and Echo Link Quality (EQ) value of the neighbor. The global TQ
value is the average of all recently received TQ values in OGMs received from a
distinct neighbor. This global TQ is now used when choosing the best neighbor as
next-hop towards a neighbor.

A.4 Sliding Windows in BATMAN IV
The BATMAN algorithm keeps track of received packets over a time interval using
a sliding window similar to the one explained in Section A.2. The amount of packets
(sequence numbers) registered in a neighbors sliding window, is referred to as the
neighbor’s RQ value.

The BATMAN also keeps a sliding window to keep track of the received TQ values
in OGMs which is used to calculate the global TQ used in neighbor ranking.



Appendix B

Hardware Details

The simulations were performed on a computer with the following hardware speci-
fications:

• Intel Core 2 Duo 2.83 GHz processor

• 4 GB memory

In addition, the computer was running Ubuntu 10.4 LTS - the Lucid Lynx (Linux
Kernel 2.6.32-25-generic-pae).
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Appendix C

Simulation Script

C.1 Script

#! / bin / sh

PAUSE=”0 100 200 300 400 500 600 700 800 900 ”
TRIALS=”1 2 3 4 5 6 7 8 9 10”

echo WiFi Experiment Example

pCheck=‘which s q l i t e 3 ‘
i f [ −z ”$pCheck” ]
then

echo ”ERROR: This s c r i p t r e q u i r e s s q l i t e 3 ( w i f i−example−sim does not )
. ”

e x i t 255
f i

pCheck=‘which gnuplot ‘
i f [ −z ”$pCheck” ]
then

echo ”ERROR: This s c r i p t r e q u i r e s gnuplot ( w i f i−example−sim does not )
. ”

e x i t 255
f i

pCheck=‘which sed ‘
i f [ −z ”$pCheck” ]
then

echo ”ERROR: This s c r i p t r e q u i r e s sed ( w i f i−example−sim does not ) . ”
e x i t 255

f i

export LD LIBRARY PATH=$LD LIBRARY PATH: bin /

# Remove e x i s t i n g database
i f [ −e data . db ]
then

echo ” K i l l data . db? ( y/n) ”
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read ANS
i f [ ”$ANS” = ” yes ” −o ”$ANS” = ”y” ]
then

echo De le t ing database
rm data . db

f i
f i

# Compile the s imu la t i on s c e n a r i o with the d i f f e r e n t parameters , and
run the number o f t r i a l s

for pause in $PAUSE
do

for t r i a l in $TRIALS
do

echo
echo Pause time $pause , T r i a l $ t r i a l
export NS GLOBAL VALUE=”RngRun=$ t r i a l ”
. / waf −−run ”main−s c e n a r i o −−format=db −−batman=1 −−pause=$pause −−

s t a r t =30 −−stop=930 −−sou r c e s =20”
done

done

# Create SQL command to get packet d e l i v e r y r a t i o
PDR CMD=”SELECT rx . run , avg ( ca s t ( rx . va lue as r e a l ) / ca s t ( tx . va lue as

r e a l ) )
FROM S i n g l e t o n s rx , S i n g l e t o n s tx
WHERE rx . v a r i a b l e = ’ onoffRx ’ AND tx . v a r i a b l e =’onoffTx ’
GROUP BY rx . run
ORDER BY rx . run ASC; ”

# Get OnOff packet de lay r e s u l t s
DELAY CMD=”SELECT o n o f f . run , ( avg ( on o f f . va lue ) /1000000000)

FROM S i n g l e t o n s o n o f f
WHERE o no f f . v a r i a b l e = ’ onof fDelay−average ’
GROUP BY o n o f f . run ; ”

# Get MAC packet de lay r e s u l t s
MACCMD=”SELECT mac . run , ( avg (mac . va lue ) /1000000000)

FROM S i n g l e t o n s mac
WHERE mac . v a r i a b l e = ’ macDelay−average ’
GROUP BY mac . run ; ”

# Amount transmit ted and r e c e i v e d BATMAN packets AVG!
BATMANCMD=”SELECT batmant . run , batmant . value , batmanr . va lue

FROM S i n g l e t o n s batmant , S i n g l e t o n s batmanr
WHERE batmant . v a r i a b l e = ’batmanTx ’ AND batmanr . v a r i a b l e = ’batmanRx ’
GROUP BY batmant . run ; ”

# Amount transmit ted and r e c e i v e d DSDV packets AVG!
DSDV CMD=”SELECT dsdvt . run , dsdvt . value , dsdvr . va lue

FROM S i n g l e t o n s dsdvt , S i n g l e t o n s dsdvr
WHERE dsdvt . v a r i a b l e = ’ dsdvTx ’ AND dsdvr . v a r i a b l e = ’ dsdvRx ’
GROUP BY dsdvt . run ; ”



# Get everyth ing !
ALL CMD=”SELECT ∗ FROM S i n g l e t o n s ; ”

# Query the SQLite Database
s q l i t e 3 −noheader data . db ”$PDR CMD” > t e s t . data

# Parse the data
sed − i ” s /run−//” t e s t . data
sed − i ” s / |/ /” t e s t . data

# Run gnuplot s c r i p t and c r e a t e graph
#gnuplot main−delay . gnuplot
#gnuplot main−overhead . gnuplot
gnuplot main−pdr . gnuplot

echo ”Done ; ”





Appendix D

Additional Simulation Results

Figure D.1 show the routing overhead produced by the original BATMAN protocol
and the DSDV protocol running 20 nodes and traffic flows in two scenarios.
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Figure D.1: Routing overhead produced by BATMAN and DSDV running with 20
nodes and 20 source and sink pairs where the transmission power has been reduced.
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Figure D.2 show the routing overhead produced by the original BATMAN protocol
and the DSDV protocol running 30 nodes and traffic flows in same scenarios as
above.
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Figure D.2: Routing overhead produced by BATMAN and DSDV running with 30
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Appendix E

Paper

The following paper was written based on this master thesis as well as the work done
by Espen Grannes Graarud in his master thesis [Gra11]. It was written together
with Martin Gilje Jaatun, Dr. Lawrie Brown, and Espen Grannes Graarud and has
been submitted to the ICDIM 2011 Conference 1.

1http://www.icdim.org/
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BatCave: Adding Security to the BATMAN Protocol
Blind review

Abstract—The Better Approach To Mobile Ad-hoc Networking
(BATMAN) protocol is intended as a replacement for protocols
such as OLSR, but just like most such efforts, BATMAN has
no built-in security features. In this paper we describe security
extensions to BATMAN that control network participation and
prevent unauthorized nodes from influencing network routing.

I. INTRODUCTION

This work developed from a perceived need to implement
a secure adhoc network that might be used in emergency
services, disaster assistance, and military applications. Such
a network needs to be established quickly, and without the
need for existing fixed infrastructure. However it also requires
controls to limit access to the network, in order to protect it
from intruders or unwanted bystanders. We propose extensions
to a suitable adhoc network routing protocol, BATMAN,
so that routing advertisements will only be accepted from
authorised stations on the network. We propose the use of
proxy certificates, which each client wishing to access the
network will generate, and which are signed by one of the
suitably authorised stations tasked with creating and manage-
ing the network. We assume these stations will be located with
suitable emergency services command units that the network
is being created to support.

The remainder of this paper is structured as follows:

II. RELATED WORK ON ADHOC NETWORK SECURITY

Our proposals evolved from work on developing a secure
restricted ad-hoc network for use by emergency services or
disaster response personnel [1], [2]. In such a network, access
must be managed, but be provided for members of multiple
authorities which might not have online access to verify their
identity. They focused on the design and implementation of
the needed extensions to the OLSR adhoc network routing
protocol. However they only made a brief mention of the use
of a public-key infrastructure to identify mobile clients and to
authorise their access to some restricted ad-hoc network. They
suggested that clients in a region would be pre-configured with
certificates that could be used to automatically grant them
access. They also noted that there needs to be some means
of granting access to mobile devices that are not known, for
personnal from out of region or from other services without
peering arrangements. They suggested that such devices can be
issued short-lived certificates, with limited rights, to grant them
access. However details of this were left mostly unspecified.

In other related work, short-lived X.509 certificates were
proposed as a suitable mobile authentication method for low
power or otherwise resource limited devices [3], [4]. The
main reasons they gave for choosing such certificates, which
are “conventional” X.509 certificates but with a much shorter

lifetime of hours to days, include a desire to avoid the cost
and overhead of checking a Certificate Revocation List (CRL)
or otherwise handling detection of revoked certificates. It was
also to allow the use of less computationally intensive algo-
rithms and key sizes than may be required in ”conventional”
X.509 certificates with lifetimes, and hence need for sufficient
strength against attack, over periods of months to years.

III. ADDRESSING LIMITIATIONS IN THE EXISTING WORK

Our proposed adhoc network security extensions address
some issues with the prior work noted above. First was the
choice of adhoc network routing protocol to modify. Although
OLSR is an Internet standard, several papers have suggested
thats its performance in practical trials is less than desired [5],
[6]. Of the other protocols tested, it appears that BATMAN
provided the best overall performance. We present further
details on this choice in the next section.

Next was the choice of types of certificates to use to
manage controlled admission to the network. The existing
proposals involve using a mix of conventional and short-lived
certificates, with the latter being generated in the field as
required to support admission of stations without existing,
verifiable, conventional certificates. However this means the
stations issuing these need to support some certificate authority
(CA) functionality, and have CA certificates available to sign
these newly created certificates (short-lived or otherwise).
Normal client stations would not normally have these.

We propose instead the use of proxy certificates, which
are X.509 certificates with specific proxy extensions, that
are signed either by another, conventional client certificate,
or by a proxy certificate (PC), as we detail later in section
VI-A. Hence any client station can potentially act a certificate
issuer, able to grant access to other stations. The problem
then becomes one of distributing knowledge of which stations
have that authority, which we address as part of our protocol
extensions. Note with our proposed use of proxy certificates,
they become an access token or capability used to gain access
to a service, in this case the adhoc network. This is very much
the opposite sense to current use of these certificates, which
are used by clients to delegate some of their access rights to
a server, particularly in the grid computing domain [7].

Another problem not explicitly addressed in the previous
work, is just what controls or restrictions were placed on the
process of issuing certificates to grant access to the network.
They identify the need to support differing categories of
stations needing access. Some may be automatically recog-
nized and trusted because they possess a conventional client
certificate issued by a CA known to the proxy issuing client,
most likely because both stations belong to the same service



or administrative structure. In this case it would be reasonable
to automatically issue the proxy certificate and grant network
access without any human intervention. Other clients may
not be immediately recognized, since they belong to other
services, are volunteers, or just not previous known. In such
cases it would seem reasonable to require manual verification
that the client should be granted access before issuing a proxy
certificate to them.

A further advantage in the use of proxy certificates is that
they support the specification of restrictions on their use. We
propose using this mechanism to assign different rights to dif-
ferent classes of clients. This could be used to indicate which
clients are delegated the right to also issue proxy certificates
granting access to other stations to the existing network. It
also could be used to indicate that some stations should only
be end-systems, and not used to relay traffic. Since X.509
certificates are widely recognized, it would also be possible to
use the issued proxy certificates to authorise and authenticate
the client’s use of specific upper-layer applications.

IV. B.A.T.M.A.N.

BATMAN [8] (“Better Approach To Mobile Ad hoc Net-
working”) is an increasingly popular routing protocol for
wireless ad hoc networks, which was developed with an
aim to replace the Optimized Link State Routing Protocol
(OLSR) [9]. OLSR is a pro-active routing protocol, which
means that participating nodes regularly exchange routing
information with each other. According to the BATMAN
developers, the problem with OLSR is that every node in the
network calculates the whole routing path, which is a complex
way to do it. Not only is it difficult to make sure all nodes
have the same information at the same time, it also needs
(relatively) much storage and computation time. If nodes sit
on different routing information this concept leads to routing
loops and heavy route flapping. The result is many patches to
the protocol that defies the protocol standard in order to make
it more suitable [9].

In BATMAN, each node should only know the next hop,
i.e., the link-local neighbor that is the path between itself and
the destination. BATMAN calculates the optimal route, i.e. the
next jump, by comparing the number of routing messages it
has received from each node and who was the last sender.

The routing messages sent in BATMAN are called OGM.
Figure 1 shows the packet format with all header fields. The
OGM format has changed since the BATMAN draft [8] was
published, but there is no official publication with the new
packet format as of yet. The packet format found in the
RFC draft belongs to the older version III of the BATMAN
algorithm. The algorithm used in this paper is version IV.

The real workhorse of the packet is the “Originator Ad-
dress” field which carries a host address of the node ’A’
that broadcasted the OGM. When a node ’B’ receives this
message it checks if the originator address and source address
of the IP header are the same - if so the two nodes are direct
neighbors. B then forwards the OGM only changing the “TTL”
and “Previous Sender” fields. All OGM inside the BATMAN

Fig. 1: BATMAN’s OGM packet format.

network are broadcasted and rebroadcasted until the TTL has
dropped to zero, or until they receive an OGM they have
previously sent themselves.

This way all OGM will be received and rebroadcasted by
all nodes in the network and all nodes will learn the existence
of each other and which nodes are the first hop between them
and the other nodes, i.e. the first leg of the path. All nodes
and their first hops in their paths are stored in a list called an
“Originator List”.

When a node which has already received and forwarded an
OGM receives the same OGM from another node at a later
point - it drops that packet so the network will not get flooded
by forwarding the same OGM until its TTL is zero. This is
also necessary in order to prevent routing loops.

V. REQUIREMENTS

Ad hoc networks have some desired characteristics such
as quick and inexpensive setup and being independent of
communication infrastructure, but they also introduce great
challenges regarding security.

A. Scenario

The design and implementation presented in this paper is
mostly based on an emergency situation scenario, in which
communication infrastructure is unavailable. If there is a major
emergency situation such as an earthquake or tsunami, it is
likely that parts or the entire communication infrastructure at
the scene is destroyed or temporarily down. The remaining
communication lines will then probably be congested, such
that little communication actually goes through.

In this situation, it is of great importance that Emergency
Personnel, such as Paramedics, Firemen, Policemen and the
Military, are able to communicate efficiently and therefore
independently of the public communication infrastructure.
They need this network in order to manage the the operation,
and therefore availability is probably the most important trait
of this network. Secondly, they should be able to trust the
communication on the network – i.e., messages sent are from
whom they claim they to be.

Also, being able to authorize new actors on the scene, such
as Red Cross, can be critical to the operation. These new actors
will probably not have the necessary authentication tokens,
i.e. certificates, required by the authentication scheme in the
network.



B. List of Requirements

Based on the scenario above these requirements can be
extracted and made into general requirements that needs to
be addressed by the system design. The work presented here
is based on several sources, most prevalent being the research
from the OASIS project [2] [10] [1] and Winjum et al. [11].

R1 A node must be authorized in order to get full rights
in a network [12], [13]

R2 A node without a recognized authentication token
should be able to become authorized if necessary

R3 Networks need a master node which handles access
control

R4 Access control (after initial authentication) should
not rely on centralized nodes

R5 Different networks should be able to collaborate [11]
R6 Only master nodes can decide access policies of

users/nodes
R7 Nodes must not be able to alter access policies they

are ruled by
An early study produced security requirements of ad hoc

networks demanding that the routing logic must not be spoofed
or altered to produce different behavior [12]. This means
authorization is required (R1) before someone can partake in
routing logic. The OASIS project [2] specifically considered
a situation where e.g. NGOs contribute to a rescue operation,
which means they need to somehow acquire credentials (R2),
but this must be administered by some authority (R3). R4
highlights the need for authenticated nodes to function au-
tonomously. A desire for seamless radio coverage over the
area gives us R5. R6 comes from the fact that it is not possble
to determine access policies prior to network setup, and R7
states the rather obvious, in that nodes that could alter the
access policy would violate R6.

VI. SECURITY SOLUTION OVERVIEW

The system design requires nodes to be authenticated and
trusted before being allowed into the network. Each node also
has to verify their identity periodically, or they are dropped
from the network.

The network setup starts with an out-of-band authentication
where a master node, hereafter referred to as a Service Proxy
(SP), verifies new nodes. How this is done can be up to the
application, but let us assume that the actors carrying their
communication devices, hereafter nodes, physically meets the
SP at the scene and exchange their public key fingerprints.

When a new node is discovered by the SP using regu-
lar routing announcements as part of the pro-active routing
protocol, the SP will invite the new node to a handshake
to establish a trust between the two nodes. The new node
will receive the SP’s certificate, and will after verifying the
fingerprint request a proxy certificate for itself. After verifying
the node’s fingerprint, the SP will issue a proxy certificate with
(possibly) the rights to participate in building the MANET by
broadcasting its own and re-broadcasting other trusted nodes’
routing announcements.

A. Why use Proxy Certificates?
. The Proxy Certificate (PC) is used to delegate rights on

behalf of the issuer. That means that the issuer, i.e. the SP,
can choose to delegate all or a subset of its rights to the
receiver of the Proxy Certificate. This can be very useful in a
situation where the nodes themselves are unable to properly
authenticate themselves with their pre-existing conventional
X.509 certificate if the SP on the scene has no way to verify
their certificates. This can be true if their certificates are issued
by an unknown root certificate (CA) or simply if there is no
Internet access and the certificate is signed by an unknown
entity (unknown to the SP), even if it knows and trusts the
root CA.

Also, the SP could be interested in giving the node rights the
node would not usually have on this specific scene, depending
on the situation. This is easier to achieve when the SP can
delegate its own rights.

An important feature of the PC is that the SP can delegate
different kind of rights, as long as it is a subset of its own
rights, to different nodes. There are countless of different rights
that can be useful, given the situation they are used in, but
here is a few possible rights/privileges to give the reader an
understanding of the possibilities they give:

• Announce itself - let the MANET know of your existence
• Re-broadcast other nodes announcements - reshape the

network topology
• Announce a gateway - give the MANET access to another

network
• Use the gateway - allow you to communicate outside the

MANET
• Send and receive messages with a defined application -

full application rights
• Only receive messages from a defined application -

limited application rights
If you are setting up a MANET on the scene of a disaster

to assist emergency personnel, you could have some actors be
able to organize the effort by sending orders/commands to the
other actors, while some actors only are allowed to receive
the orders. In this situation it might be of great importance to
know that only verified nodes are able to give commands, but
the importance of getting this information available outweighs
the need to verify the nodes/actors receiving this information.

B. Post-Authentication Operation
After being issued with a Proxy Certificate (PC) the newly

authenticated node will periodically “broadcast” - unicast to
each neighbor - a message containing an ephemeral key and
corresponding Initialization Vector (IV), a pseudo-randomly
generated nonce, and a digital signature over this message.
The ephemeral key is encrypted with the neighbor’s public
key (hence multiple unicasts instead of an actual broadcast),
but the digital signature is generated based on the unencrypted
key and the other contents of the message, and is thus identical
for all neighbors.

After sending this signed “broadcast” to each neighbor, the
node and its neighbors will generate a keystream from the



ephemeral key, IV, and nonce. The node will then append two
new bytes from this keystream to each routing announcement,
and re-broadcasts of neighbors’ announcements, sent from this
point forward with a sequence number for the recipient to be
able to match this “extract” with the keystream at an offset
given by the sequence number. The two bytes will then in
effect be a one-time password similar to that used by some
online banking applications. If this one-time password value
is absent or incorrect, the announcement will be dropped and
regarded as a spoofing message.

Whenever a routing announcement is re-broadcasted by
another trusted node, that node will first replace the sequence
number and one-time password that it has verified with the
next two bytes of its own key stream. This means that every
node only checks its direct neighbor for authentication, which
is a design choice. This proposal assumes that because every
node is verified by the SP in the first place, all nodes in the
network will be able to trust each other, which also means they
will trust their neighbors to properly verify their neighbors
again.

In order for trusted nodes to learn of newly trusted nodes
existence, the SP regularly broadcasts lists containing the id,
address and public key of each trusted node in the network.
This needs to be done, because before learning about a new
node the other trusted nodes will not accept any messages
from this node. This means the new node will not be able to
exchange its own PC with other nodes directly - only through
the SP.

The list, hereafter Authentication List (AL), also adds some
web-of-trust like capabilities. The list is signed by the SP,
which means the integrity of the list is guaranteed by the SP.
This means that if the SP should go offline, e.g. it could be out
of range, other trusted nodes in the MANET can continue to
broadcast the AL on behalf of the SP - to ensure all nodes in
the network know each other. This can be especially important
when the network grows large and become fully or partially
separated and nodes in one part may not have learnt of the
existence of newly trusted nodes yet. It also applies to trusted
nodes who have been offline while new nodes have been
verified, then re-enter the network while the SP is offline.

VII. SIMULATIONS

We have implemented both standard BATMAN and the ver-
sion with our security enhancements in the network simulation
package ns3.

Figure 2 presents Packet Delivery Ratio (PDR) and packet
delay results from the simulations running Secure BATMAN,
BATMAN and DSDV with 10 nodes and 10 traffic flows.

As seen from Figure 2a, the PDR values of all three
routing protocols all well above 80%. Interestingly, Secure
BATMAN’s PDR values also stay at approximately the same
level as the two other protocols. At pause time zero, which is
equivalent to continuous node movement, all three protocols
show their best behavior with the highest PDR values. This
is probably due to the fact that they all are ad hoc network
protocol tailored for networks with high node mobility.

When looking at the end-to-end latency in Figure 2b it is
surprisingly the Secure BATMAN protocol which has the best
results.

VIII. PROTOTYPE

We have implemented our proposed protocol changes by
modifying the BATMAN code distributed with a recent
Ubuntu Linux distribution.

A. Initialization Phase

Figure 3 presents neighbor discovery results for both the
original (Fig. 3a) and modified (Fig 3b) version of BATMAN.
The two graphs shows the time in seconds on the y-axis and
the trial/run number on the x-axis. The two colored lines on
the graphs show the results from first neighbor discovery until
the first neighbor is added to routing table (green line - marked
with “x”) and until both nodes are added to the routing table
(red line - marked with “+”).

The results from the original protocol, shown in Figure 3a,
shows high variance in the time needed to add one and two
nodes to the routing table. For 7 out of 10 “first nodes” the
time needed is relatively equal, being about one second. For
both nodes to be added however, there are much more variance
- variying from the best possible time, i.e. equal to adding one
node, and up above 3 times longer than adding one node. ’

Figure 3b shows the results from the modified version pro-
posed in this thesis. These results indicate that the behaviour
of the modified version seems to correlate with the behaviour
expected from the hypothesis. A seemingly constant of about
two seconds seems to be added to the process of adding both
nodes to the routing table.

Another interesting observation is that the time variance
seems to be much less than that of the original version.
This might be because the authentication handshake and the
keystream sharing happens in a separate thread from the
regular BATMAN operations, meaning the BATMAN protocol
continously receives routing announcements to process while
the Authentication Module (AM) handles its part. The idea
being that while the AM thread runs the BATMAN thread
“gets ready” to do its part of the job.

B. Route Convergence

The results of the second test are shown in Figure 3c. In
this figure, the axes are the same as in the figures above:
y-axis shows the time in seconds, and the x-axis shows the
trial run. The red line shows the performance of the original
implementation, while the green line shows the modified.

As indicated earlier, this test’s results are somewhat unclear.
While the results using the original implementation seems
relatively uniform, with only about 1 second variance, the
results from the modified implementation are highly irregular.

Looking through the logs from this test one thing become
apparent. With different hardware on the different nodes in
the network, their wireless cards send at different levels of
transmission power, meaning that while one node can receive
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Fig. 3: Neighbor discovery for original and secure BATMAN, and routing path convergence

packets from a “stronger node”, the packets sent might not be
received by the other nodes.

The BATMAN protocol messages (routing announcements)
are sent quite often, depending on the number of re-broadcasts
being sent, meaning the time from when a node is within
transmitting range and until its broadcasts are received by
nodes within its transmitting range will be quite short. The AM
messages however, was mostly tested in an ideal environment
where most packets were received, so this was not properly
accounted for. Therefore, if a routing announcement from a
“stronger node” is received by a “weaker node”, the weaker
node might send its keystream material without the other node
receiving it.

Re-transmitting mechanisms based on guessing that the
receiving node has not received the AM messages are in place,
but as the mechanism wait until it beleives the other node has
not received, instead of knowing it instantly. This can of course
be managed adding ACK’ing to each AM message, which was
not added initially because of the wish to minimize overhead.
This however, might have to be re-evaluated.

Another thing to notice is how multiple trial runs using the
modified version actually performed better than the original
version. This is impossible to explain talking about the design
and implementations themselves, but is probably most accu-

ratly explained in the terms of external environment.

IX. DISCUSSION

The proposed system design uses a novel solution to con-
tinuously verify routing announcements received from one’s
neighbors.For this system to be used on typical mobile devices
with all their constraints, limitations on computing power,
battery lifetime, and saturation in the wireless network must
be acknowledged.

Because all nodes in a MANET using a pro-active routing
protocol broadcast their routing announcements and forward
all received routing announcements, the network traffic will
increase exponentially to the amount of nodes in the net-
work and how closely bound they are. Therefore all routing
announcements need to be as small as possible. A typical
signature is usually one or two orders of magnitude larger
than a regular routing announcement, so by adding a signature
to the routing announcement - most of the data sent in the
network would be signature data. This is far from ideal.

The first solution that one would think of would be to
only sign a very few of the announcements, periodically. This
however, would be totally disastrous. This would have no
protection against spoofing attacks whatsoever, as an attacker
could wait for a legitimate node to send a signed announce-



ment and then send his own fake announcements spoofed with
the legitimate node’s address.

The solution proposed in this paper solves the problem
in a different manner. Since each node and its neighbors
generate a key stream that can be used to verify messages
from that node, only messages with a correct, previously
unused, “one-time password” will be accepted and forwarded
by any neighbor. Furthermore, since the keystream has to
be renewed periodically, any node not possessing the correct
proxy certificate will be dropped from the network upon
renewal.

This scheme is fully based on trust. You trust that your
trusted nodes will only send you its own annoucement (cor-
rectly) and rebroadcast only its trusted nodes announcements
without modification. If for some reason a trusted node should
behave maliciously, this scheme will not detect this and allow
the trusted node to potentially disrupt the network.

X. CONCLUSION

We have presented a security extension to the BATMAN ad
hoc routing protocol which handles controlled network admis-
sion and prevent unauthorized nodes from influencing routing
decisions in the network. Our ns-3 simulations indicate that
the security mechanisms do not place an undue burden on the
network nodes, and our protoype implementation confirms that
although further refinements are desirable, BatCave represents
a viable securty solution for ad hoc networks.
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