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Abstract 
Monopiles are the predominant foundation solution for offshore wind turbines. Due to 

much smaller length to diameter ratio (L/D) compared to conventional piles used in the 

offshore oil and gas industry, the soil mechanisms mobilized by a monopile under lateral 

loading are different from those by a slender pile. This has initiated large scale research 

projects such as the PISA project, which confirmed that the soil reaction curves used for 

slender pile design (e.g. API) are unsatisfactory and highlighted the need for the soil 

reaction curves to be calibrated against finite element analyses (FEA).  

To address this need, an optimization tool for calibrating site-specific soil reaction curves 

has been developed in this study. The optimization tool calibrates the reaction curves by 

scaling the lateral reaction springs (p-y), to replicate a target (commonly FEA) pile 

response. The generality and robustness of the tool is validated through various 

exercises.  

In recent years, the offshore wind industry has seen rapid development in Asia, where 

soft clays and layered clay profiles are commonly encountered. Noting that most of 

research on monopile design has been focused on stiff over-consolidated clays in the 

past, this study investigates the soil reaction curves for monopile design in soft clays and 

layered profiles. The performance of a proposed multi-spring beam-column framework is 

tested against a comprehensive parametric finite element analysis. The tested soil 

strength profiles included normally consolidated clay to lightly over-consolidated clays, 

and layered profile where a normally consolidated clay is underlain by a more competent 

over-consolidated clay layer. Four pile geometries were tested, with a length over 

diameter ratio ranging from 3 to 10. The multi-spring model gave a good match when 

simulating the longer monopiles (L/D of 7 and 10) in all soil profiles. Whereas for the 

shorter piles (L/D of 3 and 5) the proposed framework predicts generally softer response 

than predicted by FEA. The optimization tool was utilized to investigate the corrections 

needed. The analyses showed that the accuracy of the predicted monopile response in 

the soft clay was significantly increased by a simple scaling factor of the displacement 

variable (y) in the p-y springs. The scaling factor was found to be more sensitive to the 

stress-strain behavior of the soil than to the shear strength or monopile geometry. For 

the layered soil profiles, the only pile geometry noticeably affected by the layering effect 

was the pile with an L/D-ratio of 5, embedded 60% into a stiffer bottom layer. Analyses 

of the calculated stiffness corrections showed that the weaker upper soil layer 

experienced an increase in strength, as opposite to the stronger lower soil layer, which 

experienced a reduction in strength capacity. 

The hypothesis of a scaling relationship between the soil damping at element level and at 

the soil-pile level was tested by comparing the damping calculated by FEA for a 

horizontal pile slice with the corresponding soil damping curve. Eight different sets of 

stiffness reduction (stress-strain) and damping curves covering various over 

consolidation ratios and plasticity indexes, were examined in FEA. The FEA confirms a 

scaling relationship between soil damping at element level and the soil-pile interaction 

level. For the same damping ratio, the normalized pile displacement (y/D) can be scaled 

from the corresponding shear strain by a factor of 3.3.  
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Sammendrag 
Monopeler er den mest brukte fundamenteringen for havbaserte vindturbiner. En 

monopel kjennetegnes ved at den har kortere lengde i forhold til diameter (L/D), sett i 

sammenheng med konvensjonelle slanke peler brukt i olje- og gassindustrien. Følgelig er 

jordmekanismen ved sideveis lasting av monopeler annerledes enn hva som er erfart ved 

slanke peler. Dette har ført til store forskningsprosjekter slik som PISA prosjektet, som 

fastslo at reaksjonsfjærene som brukes for å designe slanke peler (for eksempel API) er 

utilstrekkelige ved dimensjonering av monopeler. Prosjektet trakk også frem behovet for 

at reaksjonsfjærene blir kalibrert mot analyse utført ved bruk av elementmetoden. 

For å imøtekomme dette behovet er det innen denne oppgaven blitt utviklet et 

optimaliseringsverktøy for å kalibrere reaksjonsfjærer mot stedsspesifikke grunndata. 

Optimaliseringsverktøyet kalibrerer reaksjonsresponsen fra jorden ved å skalere de 

laterale reaksjonsfjærene (p-y). Ved diverse optimaliseringsoppgaver er generaliteten og 

allsidigheten til verktøyet bekreftet. 

I løpet av de siste årene har offshore vind-bransjen hatt rask utvikling, særlig i Asia. Der 

består mye av grunnforholdene av svak leire og lagdelte leirprofiler. Som følge av at 

mesteparten av monopel-forskningen hittil har satt lys på stiv over-konsolidert leire, vil 

denne oppgaven fokusere på monopel-responsen i svakere og bløtere leire, samt lagdelte 

leirprofiler. Ytelsen av et foreslått designverktøy bestående av reaksjonsfjærer som 

beskriver monopelresponsen ved hjelp av bjelketeori er testet mot en omfattende 

parametrisk analyse utført ved elementmetoden. De simulerte jordprofilene inkluderte 

styrkeprofiler med normal konsolidert til lett over-konsolidert styrke. Lagdelte leirprofiler, 

der et normal konsolidert leirlag lå over et stivere over-konsolidert lag ble også testet. 

Fire pel geometrier ble testet, med et lengde-diameter-forhold varierende mellom 3 og 

10. Det foreslåtte designverktøyet ga gode resultater for de lengre monopelene (L/D lik 7 

og 10). Mens for de kortere pelene (L/D lik 3 og 5) ga design-verktøyet generelt en for 

stor deformasjonsrespons. Optimaliseringsverktøyet ble benyttet for å undersøke hvilke 

korreksjoner som trengs. Analysene viste at nøyaktigheten i deformasjonsresponsen økte 

signifikant ved en enkel konstant skaleringsfaktor for forskyvningsvariablen (y) i p-y 

fjærene. Skaleringsfaktoren var mer følsom for spenning-tøyningsoppførselen til jorda 

enn til skjærstyrken eller pel geometrien. For de lagdelte leirprofilene var den eneste pel 

geometrien som ble merkbart påvirket, pelen med L/D-faktor lik 5, med 60% forankret i 

det stivere bunnlaget. Analyser utført ved bruk av optimaliseringsverktøyet viste at det 

svakere øvre leirlaget opplevde en økning i styrke, i motsetning til det sterkere nedre 

leirlaget, som opplevde en reduksjon i styrkekapasitet.  

Hypotesen om at det eksisterer et skaleringsforhold mellom jorddempingen på 

elementnivå og jord-pel nivå ble testet ved å sammenligne dempningen kalkulert ved 

elementmetoden for et horisontalt stykke av en pel-modell med den tilsvarende 

jorddempingen. Åtte forskjellige jordprofiler, med forskjellige over konsoliderings forhold 

(OCR) og plastisitetsindekser ble testet i en elementmetode modell. Resultatene 

bekrefter at det finnes et skaleringsforhold mellom jorddempingen på elementnivå og for 

jord-pel nivå. For likt dempningsforhold kan den normaliserte pelforskyvningen (y/D) bli 

skalert fra den tilsvarende skjærtøyningen med en faktor på 3.3.  
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Nomenclature 
Latin Symbols 

d Damping factor 

D Diameter 

E Error function 

Edispl Displacement error 

Erot Cross-sectional rotation error 

ESF Shear force error 

EBM Bending moment error 

ED Dissipated energy 

ES0 Potential energy 

EI Bending stiffness 

f Loading frequency 

G Shear modulus 

G0 Initial shear modulus 

IP Plasticity index 

J empirical API parameter 

L Pile length below mudline 

m Moment 

m-r Moment rotation spring 

N Number of loading cycles 

Np Bearing capacity factor 

Npd Ultimate bearing capacity factor 

p  Resistance 

pmod Spring modifier for the p-response 

pu Ultimate soil resistance 

p-y Lateral reaction spring 

r Rotation 

s  Shear force at pile tip 

Su Shear strength 

s-u Base shear resistance spring 

u  Lateral displacement of pile tip 

y  Lateral displacement 

ymod Spring modifier for the y-response 
 

Greek Symbols 

𝛼 Pile interface roughness 

𝛾 Shear strain 

𝛾′ Effective unit weight 

𝛾𝑒 Elastic shear strain 

𝛾𝑝 Plastic shear strain 

𝛾𝑓
𝑝
 Plastic shear strain at failure 

ε50 API parameter 

𝜁 Damping ratio 

𝜉 Scaling factor 

σ0’ Pre-consolidation stress 

𝜏 Shear stress 
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API American Petroleum Institute 

CPT Cone Penetration Test 

DSS Direct Simple Shear Strength 

FEA Finite Element Analysis 

OC Over-Consolidated 

OCR Over Consolidation Ratio 

NC Normally Consolidated 

NGI Norwegian Geotechnical Institute 

PISA Pile Soil Analysis Project 
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1.1 Background 

2018 saw the continuing of the decade-long trend of strong growth in renewable energy 

sector, which contributed to a third of the added global power generation capacity. This 

increase was mainly due to new additions from solar and wind energy, which accounted 

for 84% of the growth (IRENA, 2019). Norwegian Energy Partners (NORWEP) estimated 

that by 2023 the capacity of the global installed offshore wind to be at 61.3 GW, where 

the European and Asian market would produce approximately 57% and 39% respectively 

(NORWEP, 2018). Between the end of 2018 and the end of 2022, the Asian market is 

expected to increase its capacity from 4.9 GW to 23.9 GW. China is estimated to be the 

largest contributor, with 55% of the Asian market share.  

As Figure 1.1 visualizes, there are several types of foundations for offshore wind 

turbines, with the monopile foundation having the largest market share (Technavio, 

2019). However, from a geotechnical standpoint, there are several challenges related to 

the design of these monopile structures. Firstly, due to small length over diameter ratio 

for the monopiles, the soil mechanisms mobilized by a monopile is significantly different 

from conventional slender piles used for offshore oil and gas platforms. This has led to 

extensive research on the monopile structure in recent years, such as the PISA project 

(Byrne et al., 2017) which developed a multi-spring framework by extensive field testing 

and numerical analyses of monopiles. The model importantly accounts for the 

contribution of soil resistance from the pile tip and shaft friction, in addition to lateral 

resistance along the pile, which is the only component considered in conventional slender 

pile design. Furthermore, in an offshore wind farm which covers a considerable area, 

large variation in soil conditions is typically encountered. A wind farm consists of many 

turbine locations and site-specific monopile design is required for each of the locations. 

Recognizing the important differences in soil mechanisms between a monopile and a 

conventional slender pile, guidelines by DNVGL for monopile design (DNVGL, 2018) 

requires that soil springs for monopiles should be calibrated against finite element (FE) 

analyses. This calls for the need of an efficient optimization tool to calibrate soil reaction 

springs based on finite element analyses.  

The past research efforts on monopile design have been mostly devoted to monopiles in 

stiff over-consolidated clays that are typically encountered in the North Sea. And indeed, 

the majority of the offshore wind developments to date have concentrated in this region. 

However, as the industry expands rapidly in Asia, where soft clay and layered soils are 

commonly encountered, it calls for research on monopile design methods that suit those 

geotechnical conditions.  

1 Introduction 
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Figure 1.1: Definition of wind turbine components. From DNVGL-ST-0126 (DNVGL, 2018). 

1.2 Objectives 

Wind turbines are dynamic sensitive structures. Its dynamic response is strongly 

influenced by the boundary condition provided at the seabed, which is characterized by 

soil-pile interaction stiffness and damping. The problems investigated in this thesis are 

divided into three different parts, two focusing on the soil reaction springs (stiffness), 

and one focusing on the damping: 

The first part of this thesis is concerned with an optimization tool. The tool is developed 

to calibrate soil reaction springs based on pile responses calculated by finite element 

analyses. The performance and robustness of the tool is verified and tested  

The second part of this thesis is concerned with the soil reaction springs for monopile 

design in soft clay and layered profiles. Most of the existing soil reaction models available 

in the literature today were derived for a uniform clay. The performance of the existing 

soil reaction models is yet to be tested in soft clay and layered clay profiles. For this 

purpose, a comprehensive finite element parametric study is performed, investigating the 

monopile response in single normally consolidated to lightly over-consolidated soil profile 

as well as layered clay profiles. The performance of existing soil reaction spring models 

for capturing the pile response are tested. 

The third part of the thesis is concerned with the damping in soil-pile interaction. An 

investigation is performed to seek the link between the soil damping at element level 

(damping ratio vs cyclic shear strain) and the damping at the soil-pile interaction level 

(damping ratio vs normalized pile displacement). 

Accordingly, the study has the following three main objectives: 

• Develop and validate an optimization for calibrating soil reaction springs based on 

finite element results. 

• Perform FE parametric analyses of monopiles in soft clay and layered clay profiles 

and test the performance of existing soil reaction models against the FE results.  

• See the link between the soil damping at element level and at the soil-pile 

interaction level.  
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1.3 Limitations 

All geotechnical analyses conducted within this thesis were performed assuming 

isotropic- strength and stiffness conditions and a fully rough soil-pile interface.  

The analyses also assumed the pile to be “wished-in-place”, meaning that the pile 

installation process was not modelled explicitly. Studies have shown that the soil 

immediately adjacent to the pile wall will be highly remolded during pile installation 

(Sagaseta et al., 1997), (Renzi et al., 1991). Due to a combination of immediate pore 

pressure change as the pile tip passes by, thixotropy and pressure dissipation the soil 

regains some of the initial shear strength. This is commonly accounted for by assigning a 

representative roughness factor. Despite that this study focused on a fully rough soil-pile 

interface for simplicity, the effect of interface roughness can be easily incorporated in 

practice.   

 

1.4 Structure of the Thesis 

Each activity and its corresponding methodology are described within a separate chapter 

with a discussion and a conclusion where it is natural. The thesis is arranged in the 

following structure: 

Chapter 2 gives a theoretical foundation for solving the problems formulated for this 

thesis. By presenting the development of research activities conducted within the subject 

of laterally loaded piles, starting from principles derived in the 1960s up to present day, 

a wide understanding of the subject is achieved. Relevant principles regarding damping is 

presented at the end of the chapter. 

Chapter 3 is a documentation chapter, regarding the developed optimization tool. The 

principles of the tool are presented, and the tool is validated by various optimization 

tasks. 

Within chapter 4 the pile response in soft clay, and layered clay profiles are investigated 

through finite element analyses. The results of the finite element analyses are compared 

to pile responses calculated by a multi-spring beam-column model. For situations where 

the multi-spring model did not perform adequately, the optimization tool is used to get a 

better understanding of the response mechanisms. The chapter ends with a discussion of 

the results, where the calculated spring modifiers are analyzed further to investigate the 

effect of the soft clay and soil layering. 

Chapter 5 investigates the hypothesis of a scaling relationship between soil damping at 

element level and the soil-pile interaction level existing. The soil damping is calculated 

using Darendeli principles (Darendeli, 2001). The pile damping is found through finite 

element testing.  

Chapter 6 concludes by highlighting the findings, and recommendations for further work 

is discussed.  
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The pile geometry affects the soil deformation patterns, which again affects the pile 

response. Piles are typically characterized by their length over diameter (L/D) ratio, 

where an L/D less than 6 are typically characterized as a monopile. Within this section, 

the theory of slender pile and monopile behavior is presented by following the historical 

development and research activities conducted within these subjects. Relevant theory 

regarding damping is presented at the end of the chapter.   

2.1 Pile design under lateral loading 

In many constructions where foundation is needed the magnitude of lateral loading may 

be of a large character. For instance, situations such as traffic, collisions, waves, 

earthquakes, wind and earth pressure all generate situations in which the lateral loading 

will be of a significant value. In terms of the foundation of the substructure, piles will be 

much better suited than, for instance, a shallow foundation to resist these types of 

forces. The pile mobilizes a resistance in the soil, directly opposite to the direction of the 

applied lateral load, as it is embedded into the ground.  

There are two types of resistance mobilized in the ground: soil-pile interface side 

resistance (as friction and adhesion), shown as (a) in Figure 2.1 and the soil-pile 

interface compressive resistance (as normal stress), shown as (b) in Figure 2.1. These 

two types of resistance generates a resistance (p), which can be measured as a function 

of the lateral deflection (y) of the pile (Salgado, 2008). Plotting the resistance against 

deflection results in a p-y curve, shown as (d) in Figure 2.1:  

 

Figure 2.1 Representation of the shear force H, and lateral resistance p, at different load 

levels reaching the ultimate lateral bearing capacity (c). Salgado (2008), figure 13-31. 

2 Theoretical foundation 
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2.1.1 p-y method 

Based on a “Winkler modelling approach”, also known as the p-y method, the p-y curves 

are modeled using a series of uncoupled springs along the pile. In reality, the soil is a 

continuous medium that surrounds the pile. In a Winkler model the pile is divided into 

different segments, where each segment has its own p-y curve described by a non-linear 

spring. The springs act independently of each other (Caselunghe & Eriksson, 2012). The 

concept is visualized in Figure 2.2:  

 

Figure 2.2: Modeling the soil-pile system using Winkler springs. Nonlinear springs 
described by p-y curves are used to model the deflected pile shape. From Salgado 
(2008), figure 13-34. 

The overall pile response is solved by beam-column analysis, following the “Euler-

Bernoulli beam” theory (Bauchau & Craig, 2009). The ultimate lateral bearing capacity is 

defined as the peak value of the p-y curve. 

 

2.1.2 API 

In the 1950s, a group of five oil companies initiated a research study on laterally loaded 

piles for offshore structures. The piles were long relative to the pile diameter, commonly 

known as slender piles. The research included activities such as field testing, laboratory 

model testing and development of correlations for design. The tests were performed in 

soft normally consolidated marine clay. The result of the research (Matlock, 1970) 

provided the basis of the current industry guidelines, published by the American 

Petroleum Institute (API, 2014). The recommendation is mathematically described as: 

𝑝𝑢 = (3 +
𝐽𝑧

𝐷
) 𝑆𝑢 + 𝛾′𝑧 

𝑝

𝑝𝑢
= 0.5 (

𝑦

𝑦𝑐
)
0.33

≤ 1 

𝑦𝑐 = 2.5𝜀50𝐷 

where J is a dimensionless empirical factor, Su and γ’ is the undrained shear strength and 

the effective unit weight of the soil respectively at depth z. D is the pile diameter, pu is 
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the ultimate lateral bearing pressure, denoted pL in Figure 2.1 (d) and y is the lateral 

displacement. ε50 is defined as axial strain at which 50% of maximum deviator stress is 

mobilized in an undrained compression test. Full mobilization is achieved at y=8yc. 

The bearing capacity factor (Np) is calculated as the resistance over shear strength 

(p/Su). The ultimate bearing capacity (Npd) is defined as pu/Su. The API-recommendation 

is limited by a “flow-around capacity” of Npd equal to 9, hence the onset depth of flow-

around mechanism is the depth in which the Np is equal to 9. 

2.1.3 Finite Element Analysis 

The use of finite element analysis (FEA) is essential when analyzing the monopile 

response. The pile response provided by FEA is in general seen as the most realistic 

solution. Thus, in the development of design models the researches strive to capture the 

FEA soil response with the use of simple and logical design models. Applying the finite 

element (FE) method requires a certain skillset. The use of FEA is costly in terms of 

computational requirements, and it is time consuming.  

The concept of the FEA is to divide a complex geometry into smaller segments, called 

elements, which are connected by nodes. Within each element, one can apply a set of 

element equations to describe the desired events. These equations are commonly partial 

differential equations, which consist of boundary- and/or initial conditions, valued to 

describe the desired action. The simple equations that model the individual elements are 

put together in a larger system of equations to model the entire problem. By solving 

these equations, one may describe numerous physical problems accurately. The division 

of the geometry may affect the results, as more elements in general gives a more 

accurate solution but will in return demand higher computational power. The division of 

elements are commonly known as meshing. A finer mesh will result in more elements 

and higher accuracy compared to a coarser mesh, which is of larger elements and 

requires less computational efforts.  

There are several commercial finite element programs. The ones relevant for this thesis 

are Plaxis 3D (Plaxis, 2017) and Abaqus (Abaqus, 2017).  

 

2.2 Soil failure mechanism 

A slender pile in clay will experience two soil failure mechanisms (Zhang et al., 2016). In 

the upper part a conical wedge failure mechanism occurs. At the depth where the bearing 

capacity, NP, exceeds the ultimate bearing capacity factor, NPd, the soil fails in a localized 

flow-around mechanism. For monopiles, a rotational failure mechanism will form as well, 

at the lower half of the pile (Hong et al., 2017). The different failure mechanisms are 

further explained in the following. 

2.2.1 Wedge failure 

As described in classical Rankine’s theory at the ultimate lateral bearing capacity the soil 

will deform in a wedge failure. At the front of the pile a passive conical wedge will form, 

as shown in Figure 2.3. 
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Figure 2.3 (a): Soil deformation mechanism. (b): The conical wedge as seen from above 

the soil surface. From Murff and Hamilton (1993). 

There are two types of wedge failures, with and without suction. For instance, in 

situations where fast wave loading appears, or if the drainage path is blocked by a 

mudmat, suction may occur at the rear side. If suction is available, the deformation of 

the soil on the rear side is assumed to have the shape of an active conical wedge. Murff 

and Hamilton (1993) showed that this phenomena may have the effect of doubling the 

unit resistance. If suction is not available, the pile will displace unaffected by the soil at 

the rear side, and a gap will form as seen in Figure 2.3 (b). 

Murff and Hamilton (1993) came up with a set of equations to describe the shapes of the 

conical wedges, for both passive and active wedges in clay. The equations are applicable 

when describing cases with both linearly increasing strength, and for two-layered soil 

systems.   

2.2.2 Plane strain flow-around 

Below the wedge, the soil is assumed to flow horizontally around the pile. Randolph and 

Houlsby (1984) investigated the ultimate lateral resistance on a pile in a soil medium, 

exposed to purely horizontal displacement, and described the failure mechanism as:  

As the pile is pushed laterally through the soil, a region of high mean stress will occur in 
the front of the pile and of low stress behind the pile. The soil will flow around the pile from 

front to back. (Randolph & Houlsby, 1984, p. 614).  

The deformation patterns will vary as of what roughness (α) the pile-soil interface has. 

Figure 2.4 visualizes the deformation pattern for a smooth interface (α=0), and a fully 

rough interface (α=1).  
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Randolph and Houlsby (1984) presented equations for describing the flow-around 

deformation by lower- and upper bound analysis. Martin and Randolph (2006) presented 

equations by upper bound analysis. 

 

Figure 2.4 (a): Flow-around mechanism for a smooth pile (α=0). (b): Flow-around 
mechanism for a fully rough pile (α=1). From Randolph and Houlsby (1984). 

The soil will start to deform in a plane strain failure mechanism at the depth where the 

ultimate lateral bearing capacity factor is mobilized. There are several theories regarding 

what depth level the soil will start to fail in a plane strain flow-around mechanism, some 

of these are presented along with the p-y frameworks in later sections.  

The ultimate bearing capacity factor will vary by the roughness of the pile. In general, 

Npd is found to vary linearly from 9.14 to 9.20 (lower and upper bounds) for a fully 

smooth interface, to 11.94 (exact) for a fully rough interface (Zhang et al., 2016).  

 

2.2.3 Rotational mechanism 

The characteristic properties of a monopile are relatively different from a slender pile, 

making an impact on the failure mechanism of the soil located below the wedge failure. 

Monopiles are, in general, stiffer constructions relative to a slender pile due to a lower 

L/D ratio (typically equal or less than 6 for a monopile, compared to a typical ratio of 20-

40 for a slender pile.) The flow-around failure may not be relevant for the monopile at 

all. The soil around the monopile will react in a wedge failure along the upper part of the 

pile, and a rotational mechanism along the lower part and the pile tip (Zhang & 

Andersen, 2019a). As opposite of a slender pile, two additional mechanisms may be of 

relevance, namely the soil resistance at the pile tip, and the vertical component of the 

skin friction mobilized along the monopile. The mobilized friction along the pile will shape 

the wedges into having a more curved shape. The differences are illustrated in Figure 

2.5. 
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Figure 2.5 (a): Typical soil failure mechanisms for a slender pile. (b): Failure 
mechanisms for a monopile with no plane strain flow-around failure and no tension gap 
at the rear side. Notice that by pile friction the wedges should have a more curved shape 

then illustrated. From Zhang and Andersen (2019a). 

As the load level increases, the rotation center of the pile lowers along the pile (Zhang & 

Andersen, 2019a). The depth of the rotation center impacts the curvature of the 

rotational scoop mechanism below the pile tip, which may influence the assumed pile tip 

interaction mechanism. Zhang and Andersen (2019a) showed that the error of replacing 

the rotational scoop below the pile tip by a pure sliding mechanism is negligible.  

Zhang and Andersen (2019a) presented a conceptual framework for analyzing the 

response of a monopile. The framework includes the tip resistance mobilized by the 

rotational mechanism by the inclusion of base shear-displacement (s-u) springs at the 

pile tip. The mathematical formulation is presented in section 2.4.2. 

 

2.3 Ultimate lateral bearing capacity in clay 

The soil properties of the North Sea are commonly described as an over-consolidated stiff 

clay. As illustrated by Figure 2.6, the North Sea is the main location of the European 

offshore wind activities. Thus, a lot of the research previously conducted has been trying 

to capture the soil response in a stiff over-consolidated clay.  

The difference in soil properties has led to multiple design recommendations, each trying 

to describe a site-specific response. In addition to the previously mentioned API-

guidelines, a selected set of recommendations are presented in the following. 
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Figure 2.6: Wind farms in the Irish Sea, North Sea and the Baltic Sea, as per 14.10.18. 
From 4coffshore (2018). 

 

2.3.1 Murff and Hamilton (1993) 

Murff and Hamilton (1993) proposed the following framework for calculating p-y curves: 

          𝑁𝑝 = 𝑁1 − 𝑁2𝑒
−𝜉∗𝑧
𝐷  

                            𝜉 = 0.25 + 0.05𝜆     𝜆 < 6 

                           𝜉 = 0.55   𝜆 ≥ 6 

𝜆 =
𝑆𝑢0

𝑆𝑢1 ∗ 𝐷
 

where N1 is the limiting Np-factor where a flow-around mechanism will occur, N1-N2 is the 

Np-value at the soil surface. Su0 is the shear strength intercept at sea floor, Su1 is the rate 

of increase of shear strength with depth. D is the pile diameter, and z is the depth of 

interest. No suction was assumed. 

2.3.2 Jeanjean (2009) 

By carrying out multiple centrifuge tests and finite element analyses, Jeanjean was able 

to measure the soil response in a lightly over-consolidated clay (Jeanjean, 2009). The 

study consisted of cyclic loading as well as monotonic push to failure. By measuring the 

lateral deflection of the pile, the relevant force data was back-calculated using Euler-

Bernoulli beam theory (Bauchau & Craig, 2009). Jeanjean further developed the 

framework proposed by Murff and Hamilton (1993) for a linearly increasing shear 

strength profile, with a modified expression for the calculation of the bearing capacity 

factor, Np. The following framework was proposed: 

𝑁𝑃 = 12 − 4𝑒
−𝜉∗𝑧
𝐷  
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where ξ is calculated using the same principles as described in the Murff and Hamilton 

(1993)  recommendation. Jeanjean proposed a flow-around capacity of Npd equal to 12, 

and a Npd of 8 at mudline for double wedge failure. 

As discussed by Zhang, Andersen and Tedesco (2016), at mudline a Np value at 

approximately 3.5 and 7 for single wedge and double wedge failure respectively, is found 

to be more realistic. The centrifuge tests did not reveal any sign of a gap developing on 

the rear side of the pile, thus the framework assumed the development of an active 

wedge.  

2.3.3 Nichols et al. (2014) 

Based on literature and finite element analyses, Nichols et al. (2014) proposed a p-y 

formulation including the effect of soil strength anisotropy. The following framework was 

proposed: 

𝑝𝑢 = 𝑁𝑝0𝑆𝑢 + 𝛾′𝑧 

𝑁𝑝0 = 4 + 2 (
𝑧

𝐷
)
0.6

 

where γ’ is the average submerged unit weight. Su included the state of anisotropy by 

describing the undrained shear strength as the average of the triaxial extension strength 

(𝑆𝑢
𝐸), and the direct simple shear strength (𝑆𝑢

𝐷𝑆𝑆). A gap was allowed to form at the back 

of the pile, hence a single passive wedge mechanism occurred. The value of pu was 

limited to 11.9Su, thus proposing a Npd-factor of 11.9.  

2.3.4 Zhang et al. (2016) 

By conducting a literature review, Zhang, Andersen and Tedesco discussed the topic of 

ultimate bearing capacity of laterally loaded piles in clay and concluded with a proposed 

generalized recommendation for the p-y formulation (Zhang et al., 2016). The impact of 

multiple factors, such as suction, relative pile stiffness, soil weight and onset depth of 

flow-around mechanism was discussed. In cases where a gap is considered to occur, the 

bearing capacity factor was proposed as: 

𝑁𝑝 = 𝑁𝑝0 +
𝛾′𝑧

𝑠𝑢𝑚 + 𝑘𝑧
≤ 𝑁𝑝𝑑 

For cases where no gap is considered, the unit weight of the soil will be irrelevant as the 

active wedge forming on the rear side of the pile will cancel out the passive wedge at the 

front. The bearing capacity factor was proposed as: 

𝑁𝑝 = 𝑁𝑝0 ≤ 𝑁𝑝𝑑 

where Np0 is the bearing capacity factor in idealized weightless soil with no suction, 

calculated by: 

𝑁𝑝0 = 𝑁1 − (𝑁1 − 𝑁2) [1 − (
𝑧/𝐷

𝑑
)
0.6

]

1.35

 

𝑁1 = 11.94 

𝑁2 = 3.22 

𝑑 = 16.8 − 2.3 log10(𝜆) ≥ 14.5 
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𝜆 =
𝑆𝑢𝑚
𝑘𝐷

 

𝑁𝑝𝑑 = 9.14 + 2.8𝛼 

Sum is the shear strength at soil surface, k is the shear strength gradient with depth, and 

α is the pile roughness, varying between 0 and 1 for a smooth to rough pile respectively.  

The flow-around mechanism will occur at the depth where Np = Npd. The paper also 

investigated two practical considerations namely the effect of axial loading, and soil 

strength anisotropy. The effect of the soil strength anisotropy, was included by defining 

the shear strength as: 

Table 2.1: Proposed shear strength of anisotropic clay profiles by Zhang et al. (2016). 

Single wedge (no suction) Su = 0.75Su
DSS + 0.25 Su

E 

Double wedge (with suction) Su=Su
DSS, assuming Su

DSS = Su
Average 

Flow-around Su = Su
DSS 

 

2.4 p-y curves for monopiles 

When designing pile foundations, the current practice is to use the guidelines presented 

by API (API, 2014). As previously mentioned, the API guidelines were mainly developed 

for slender pile application. One of the highlighted findings from the PISA-project was the 

confirmation that the API guidelines are unsatisfactory for design of monopile foundations 

(Byrne et al., 2017). Thus, a new field of research arose. The most relevant contributions 

within the field of designing monopiles are presented in the following.  

2.4.1 Zhang and Andersen (2017) 

Zhang and Andersen (2017) performed a parametric study of the p-y response of a pile 

slice, simulating a stiffness spring, using the FEA-software Plaxis 3D (Plaxis, 2017). By 

performing a wide range of soil stress-strain behavior and pile-soil interface parameters, 

they found a set of scaling factors to connect the stress-strain response of the soil and 

the p-y response. By normalizing the mobilization of shear stress given as τ/Su to a 

normalized point at the p-y curve, p/pu, the level of mobilization was described as equal 

(τ/Su = p/pu). The shear strain γ was scaled to match the corresponding normalized 

lateral displacement y/D by using two scaling coefficients, ξ1 and ξ2, applied at the elastic 

shear strain and plastic shear strain, respectively. The connection is illustrated in Figure 

2.7 and summarized below. 

 

Figure 2.7: Illustration of proposed p-y model for calculating the flow-around soil 
response. From Zhang and Andersen (2017). 
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𝜉1 = 2.8 

𝜉2 = 1.35 + 0.25𝛼 

𝛾𝑒 =
𝜏

𝐺0
 

𝛾𝑝 = 𝛾 − 𝛾𝑒 

𝑝𝑢 = 𝑁𝑝𝑆𝑢 

𝑁𝑝 = 9.14 + 2.8𝛼 

Where γp and γe is the plastic and elastic shear strain respectively. pu is the ultimate soil 

resistance. α is the roughness factor, varying from 0 to 1, giving an Np in the range of 

9.14-11.94 for smooth to rough pile interfaces. G0 is the initial shear modulus.  

The model provided an approach to use site-specific p-y curves in design, based on 

simple DSS shear tests without the need of advanced numerical analysis.  

 

2.4.2 Zhang and Andersen (2019a) 

Zhang and Andersen (2019a) proposed a conceptual framework specific for monopile 

analysis in clay. The framework presents a new model for wedge failure analysis and a 

base shear model (s-u) to capture the shear forces mobilized at the pile tip. The model 

divides the soil failure mechanisms into three separate parts:  

1. Above the rotation point, p-y curves for wedge failures are described as: 

𝑝

𝑝𝑢
= 1 − 2

[−(
𝑦𝑝

𝑦50
𝑝 )

𝑛

]

 

𝑛 = 0.55 − 0.05
𝑧

𝐷
≥ 0.325 

𝑦 = 𝑦𝑒 + 𝑦𝑝; 𝑦50 = 𝑦50
𝑒 + 𝑦50

𝑝
 

Where y50 is the displacement at half of the spring mobilization, made up by an 

elastic and a plastic component.  

(
𝑦50
𝑒

𝐷
) (
𝐺0
𝑠𝑢
) = 0.6 + 0.28 (

𝑧

𝐷
) − 0.029 (

𝑧

𝐷
)
2

 , 𝛼 = 1.0 

(
𝑦50
𝑒

𝐷
) (
𝐺0
𝑠𝑢
) = 0.6 + 0.41 (

𝑧

𝐷
) − 0.039 (

𝑧

𝐷
)
2

 , 𝛼 = 0 

𝑦𝑒

𝐷
 = 2(

𝑦50
𝑒

𝐷
)(

𝑝

𝑝𝑢
) 

The normalized plastic displacement at half mobilization is found by scaling the 

soil stress-strain parameter, described as: 

𝑦50
𝑝

𝐷
= [𝑎 + 𝑏 (

𝑧

𝐷
)]𝛾𝑓

𝑝
 

𝑎 = 0.01 + 0.015𝛼 
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𝑏 = 0.10 − 0.06𝛼 

𝛾𝑓
𝑝
 is the plastic failure strain. As suggested by Yu, Huang and Zhang (2015), the 

ultimate bearing capacity, pu is calculated by: 

𝑝𝑢 = (𝑁𝑝0𝑠𝑢 + 𝛾
′𝑧)𝐷 

where γ’ is the effective unit weight. 

𝑁𝑝0 = 𝑁1 − (𝑁1 − 𝑁2) [1 − (
𝑧/𝐷

𝑑
)
0.6

]

1.35

− (1 − 𝛼) ≤ 𝑁𝑝𝑑 

𝑁1 = 11.94 ; 𝑁2 = 3.22 

𝑑 = 14.5; 𝑁𝑝𝑑 = 9.14 + 2.8𝛼 

2. Below the rotation point a rotational mechanism occurs. The failure mechanism 

follows the same formulations as presented by the plane strain flow-around failure 

by Zhang & Andersen (2017).  

3. At the pile tip, a base shear model was proposed. Using the same scaling concept 

as for the plane strain flow-around p-y springs, the established shear force at pile 

tip, s, vs lateral displacement, u, is calculated by scaling the stress-strain 

response at pile tip by the following formulations: 

𝑠

𝑠𝑢𝑙𝑡
=
𝜏

𝑆𝑢
 

𝑢

𝐷
= 𝜉1𝛾

𝑒 + 𝜉2𝛾
𝑝 

𝜉1 = 0.3 

𝜉2 = 0.12 

𝑠𝑢𝑙𝑡 = 0.25𝜋𝐷
2𝑆𝑢 

The terminology is visualized in Figure 2.8. The depth of the rotation point is found 

through an iterative procedure. By assuming wedge failure along the entire pile depth, 

one may calculate the initial rotation point. As discussed in Zhang and Andersen (2019a) 

the vertical skin friction mobilized by the pile-soil interface initiates a curved wedge (as 

described in classic earth pressure theory). This effect is included by the bearing capacity 

factor Np. The vertical skin friction will also form a resistance against the overturning 

moment. This effect is accounted for by including a moment-rotation (m-r) spring as 

presented in the next section.  
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Figure 2.8: Visualized terminology for proposed framework model by Zhang and 
Andersen (2019a). 

 

2.4.3 A multi-spring model for monopile analysis in soft clays 

“A multi-spring model for monopile analysis in soft clays” was submitted by Dr. Zhang on 

May the 15th 2019 and is not published as of the date of the submission of this thesis. 

Some of the results presented in the paper were applied in this thesis, thus the relevant 

literature is presented. 

By theoretical derivation, Zhang formulated a theoretical foundation for a moment-

rotation spring (Zhang, 2019b). The spring was formulated by the same principles as 

shown for the flow-around failure mechanism presented by Zhang and Andersen (2017), 

namely by scaling the stress-strain response of the soil. By defining the level of soil 

mobilization divided by the interface roughness of the pile, (τ/Su)/𝛼, as equal to the 

normalized bending moment M/Mmax, the corresponding rotation, r (θ in Figure 2.9), 

could be found by scaling the shear strain. The scaling was done by using two scaling 

factors, ξe and ξp, applied at the elastic shear strain, γe and the plastic shear strain, γp 

respectively. 

The scaling concept is visualized in Figure 2.9, and summarized below: 
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Figure 2.9: Illustration of the proposed m-r model for calculation of the spring response. 

From Zhang (2019b). 

𝑀

𝑀𝑚𝑎𝑥

= (
𝜏

𝑠𝑢
) /𝛼 

𝜃 = 𝑟 =
8

𝜋
(𝜉1𝛾

𝑒 + 𝜉2𝛾
𝑝) 

𝜉𝑒 = 1.15 

𝜉𝑝 = 0.45 

𝑀𝑚𝑎𝑥 = 𝐷
2𝜏𝑚𝑎𝑥 = 𝐷2𝛼𝑠𝑢 

For pile roughness, 𝛼, below 1, a cut-off was applied at M/Mmax equal to 1.  

 

2.4.4 PISA 

A joint industry project, PISA (Byrne et al., 2015a), was conducted with the purpose of 

developing a new design method for large diameter monopiles under lateral loading. The 

project was divided into three separate parts of work: 

Field testing (Byrne et al., 2015b) 

To replicate typical soil conditions found at many locations in the North Sea, the field 

testing was conducted at Cowden in north-east England and Dunkirk in northern France. 

The soil conditions at those areas were stiff to very stiff over-consolidated ductile 

Quaternary clay, and dense to very dense marine Pleistocene sands respectively. In total, 

28 piles were tested, mainly in terms of monotonic loading, although some were tested 

by cyclic loading. The field tests were used in developing the numerical analysis model. 

Numerical modelling (Zdravković et al., 2015) 

The soil conditions were simulated using an expanded generalized version of the Modified 

Cam Clay model, where the model utilized a “Hvorslev” surface on the dry side 

(Zdravković et al., 2015). The numerical study did not consider installation effects. 
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Development of a new design method 

The new design method was based on an extension of the existing p-y approach, adding 

additional soil reaction terms, as visualized in Figure 2.10 and Figure 2.11. 

 

Figure 2.10: Framework for the proposed finite element model for monopile foundations. 
Note that displacement y is denoted as v. From Byrne et al. (2015a). 

 

Figure 2.11: A distributed moment is included as a function of the vertical shear stress 

action on the pile surface. From Byrne et al. (2015a). 
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With each of the different soil reaction terms defined as: 

• Distributed load curve: Defines the p-y relationship, having the same function as 

a conventional p-y curve. 

• Distributed moment curve: As the pile rotates, a vertical skin friction mobilizes 

along the pile interface, described by a distributed moment curve.  

• Base shear curve. Defines the relationship between the lateral displacement of the 

pile tip and base shear force.  

• Base moment curve. Defines the relationship between moment at base and the 

rotation of the pile tip.  

The pile is modelled using Timoshenko beam theory, which is an extension of 

conventional Euler-Bernoulli beam theory (Bauchau & Craig, 2009). Timoshenko beam 

theory includes shear strain effects. The model resulted in a 1D-model of the beam 

element, which use the lateral response prediction as input parameters.  

Results (Byrne et al., 2017) 

The lateral response prediction of the soil may be divided into two proposed design 

methods. The “Rule-based method”, and the “Numerical-based method”. The rule-based 

method may be considered the conventional method, where the soil reaction curves are 

generated using pre-defined mathematical functions. The reaction springs are computed 

including several complex parameters, such as the variation of the small-strain shear 

modulus G0 with depth, typically measured by conducting a seismic cone test. For sands 

the variation of in-situ vertical effective stress with depth is required in addition to G0. 

For clays the method requires data of the undrained shear strength. This may be 

obtained using CPT- or triaxial-testing, ideally both. The more advanced numerical-based 

method calculates the soil reaction springs using a 3D FE model. An overview of the 

analysis procedure is presented in Figure 2.12. 

 

Figure 2.12: Analysis procedure presented by the PISA project. From Byrne et al. (2017). 
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The design procedure suggests that the rule-based method is applied for the initial 

feasibility design. Then, the soil reaction curves for monopiles should be validated using 

FEA. Each monopile at a desired windmill site may be optimized by using site-specific soil 

reaction curves at the proposed 1D-model.  

In addition, the PISA-project highlighted the following findings: 

• Confirmation that the current design guidelines (e.g. API) are unsatisfactory for 

the design of monopile foundations.  

• A database of field-testing data with varying diameter and pile length, both 

monotonic and cyclic loads.  

• Less conservatism in the design as the design framework was developed focusing 

on monopile design, which is likely to promote less costs. 

 

2.5 Layered soil profile 

The challenges within the issue of soil layering is yet to be thoroughly investigated by the 

research community, compared to many of the other subjects within the soil mechanisms 

regarding laterally loaded piles. Yang and Jeremić (2005) carried out a finite element 

study of the behavior of a single pile in elastic-plastic soils. The paper researched the pile 

behavior in two different layered soil profiles, a clay-sand-clay model, and a sand-clay-

sand model, which were compared to the pile behavior in uniform clay and sand profiles. 

The paper discovered a change in the lateral resistance for both models. The clay-sand-

clay model provided an increase in the lateral capacity in the upper clay layer up to one 

pile width above the upper sand interface for small pile displacements (0.5%D). For large 

pile displacements (8-10%D), the increase of lateral resistance extended only one finite 

element above the upper sand interface. The clay layers also effected the lateral 

resistance of the sand layer. For the sand-clay-sand model, the clay experienced an 

increase of its lateral resistance by 10%-40%. In addition, the intermediate clay layer 

had significant effects on the lateral resistance of the upper sand layer. 

Murff and Hamilton (1993) considered a two-layered clay profile with l1 and Su1 

describing the thickness and strength respectively of the top layer. By calculating the 

equivalent thickness, le, of the top layer with the same strength as the bottom layer, Su2, 

the soil profile is analyzed by: 

9
𝑙𝑒
𝐷
+ 12.72𝑒−

0.55𝑙𝑒
𝐷 = 9𝑆𝑢𝑟

𝑙1
𝐷
+ 12.72𝑒−

0.55𝑙1
𝐷 − 12.72(𝑆𝑢𝑟 − 1) 

where Sur = Su1/Su2.  
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2.6 Damping 

2.6.1 Equation of motion 

For a system that is experiencing external forces, the motion may be described by the 

equation of motion: 

𝑚�̈� + 𝑐�̇� + 𝑘𝑢 = 𝑓(𝑡) 

The equation of motion is based on equilibrium of forces, namely the inertia (𝑚�̈�), 

damping (𝑐�̇�) and elastic (𝑘𝑢) force. k is the linear elastic stiffness coefficient. c is the 

viscous damper coefficient and m is the mass. 𝑢, �̇� and �̈� is namely the displacement, 

velocity (du/dt) and acceleration (d2u/dt2) respectively, of the system. f(t) is external 

force(s). The definitions are visualized in Figure 2.13:  

 

Figure 2.13: A mass-spring damper system. From the Norwegian Geotechnical Institute 

(NGI). 

The undamped natural frequency 𝜔𝑛 of a system is defined as: 

𝜔𝑛 = √𝑘/𝑚 

with the damped natural frequency defined as: 

𝜔𝐷 = 𝜔𝑛√1 − 𝜁
2 

where 𝜁 is the damping ratio, defined as: 

𝜁 =
𝑐

2𝑚𝜔𝑛
 

The natural period is defined as: 

𝑇𝐷 =
2𝜋

𝜔𝐷
 

Damping is defined as the process by which free vibration steadily diminishes in 

amplitude. There are multiple types of damping: 

• Viscous damping 

• Hysteretic damping 

• Coulomb (or friction) damping 

• Radiation (or geometric) damping 

For soil damping there are mainly two forms: radiation damping and hysteric material 

damping, where radiation damping is neglectable for frequencies below 1 Hz. The 

dominant contributors to dynamic loading of offshore wind turbines are the wind and 

wave loads (Seidel, 2014). The majority of the wind and wave loads have frequencies 
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below 1 Hz (Carswell et al., 2015), thus making hysteretic damping the most dominant 

type of soil damping.  

2.6.2 Hysteretic damping 

By plotting the mobilized force in the damper and the springs: 𝑓𝐷 + 𝑓𝑆 = 𝑐�̇� + 𝑘𝑢 against 

the displacement 𝑢 (Figure 2.14 (A)) for one hysteresis loop, the dissipated energy 𝐸𝐷 is 

defined as the area within the loop. The potential energy (or elastic energy) 𝐸𝑆0 is defined 

as the maximum potential energy stored in each cycle of motion (area below fS(uMAX)) 

(Figure 2.14 (B)). 

 

Figure 2.14 (A): Mobilized damping and elastic force for one hysteretic loop. (B): 
Definition of dissipated energy𝑬𝑫 and potential energy 𝑬𝑺𝟎. From NGI. 

Using the terminology presented in Figure 2.14, the potential energy 𝐸𝑆0(𝑢), and the 

dissipated energy 𝐸𝐷 in one hysteresis loop is mathematically defined as: 

𝐸𝑆0(𝑢 = 𝑢0) =
𝑓𝑆𝑢0
2

=
𝑘𝑢𝑢0
2

=
𝑘𝑢0

2

2
 

𝐸𝐷 = ∫𝑓𝐷𝑑𝑢 = ∫ (𝑐�̇�)�̇�𝑑𝑡
𝑇𝐷

0

= ∫ 𝑐�̇�2𝑑𝑡 =. . = 𝜋𝑐𝜔𝑢0
2

2𝜋
𝜔

0

= 2𝜋𝜁
𝜔

𝜔𝑛
𝑘𝑢0

2 

 

2.6.3 Damping ratio, D 

By the presented definition of ED and ES0 the damping ratio is rewritten as: 

𝜁 =
1

4𝜋

1

𝜔/𝜔𝑛

𝐸𝐷
𝐸𝑆0

  

All activities conducted within this thesis that include damping were assumed to occur at 

resonance, hence 𝜔 = 𝜔𝑛. Thus, by rewriting the equation above, the equivalent damping 

ratio (and hysteretic damping factor D) is defined as:  

𝜁𝑒𝑞 =
1

4𝜋

𝐸𝐷
𝐸𝑆0

= 𝐷 
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2.6.4 Darendeli damping curves 

Darendeli (2001) presented a framework for estimating the damping ratio, D, based on 

soil properties and/or lab testing. The framework utilizes a modulus reduction curve for 

the given soil, which may be found through lab testing by the Masing principles 

(MASING, 1926). By using two curvature coefficients the damping curve estimated from 

Masing behavior may be scaled to fit the experimental observations.  

The model expresses the normalized reduction curves as: 

𝐺

𝐺0
=

1

1 + (
𝛾
𝛾𝑟
)
𝑎 

Where a is a curvature coefficient, 𝛾𝑟 is the reference strain at 𝛾𝑟 = 𝛾𝐺/𝐺0=0.5, as visualized 

by Figure 2.15. 

 

Figure 2.15: Visualization of the definition of the reference strain, 𝜸𝒓 at the stiffness 

reduction curve. Note that G0 is denoted Gmax. From Darendeli (2001), figure 6.1. 

This term is included in the definition of the material damping curve, expressed as: 

𝐷 = 𝑏 ∗ (
𝐺

𝐺0
)
0.1

∗ 𝐷𝑀𝑎𝑠𝑖𝑛𝑔 + 𝐷𝑚𝑖𝑛 

Where b is a scaling coefficient which accounts for the number of loading cycles. Dmin is a 

constant to adjust the curve to cope with small-strain damping. The definition of DMasing 

follow the following mathematical expressions: 

𝐷𝑀𝑎𝑠𝑖𝑛𝑔 = 𝑐1𝐷𝑀𝑎𝑠𝑖𝑛𝑔,𝑎=1.0 + 𝑐2𝐷𝑀𝑎𝑠𝑖𝑛𝑔,𝑎=1.0
2 + 𝑐3𝐷𝑀𝑎𝑠𝑖𝑛𝑔,𝑎=1.0

3 

Where: 

𝐷𝑀𝑎𝑠𝑖𝑛𝑔,𝑎=1.0 =
100

𝜋
[4
𝛾 − 𝛾𝑟 ln (

𝛾 + 𝛾𝑟
𝛾𝑟

)

𝛾2

𝛾 + 𝛾𝑟

− 2] [%] 

𝑐1 = −1.1143𝑎
2 + 1.8618𝑎 − 0.2523 

𝑐2 = 0.0805𝑎2 − 0.0710𝑎 − 0.0095 

𝑐3 = −0.0005𝑎
2 + 0.0002𝑎 + 0.0003 
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2.6.5 Estimation of Darendeli Damping variables 

By performing a large number of soil sample tests, Darendeli established a data bank to 

estimate the input values for his damping model, based on common soil properties. The 

input parameters were estimated as a function of the pre-consolidation stress (σ0’), over 

consolidation ratio (OCR), plasticity index (Ip), number of loading cycles (N), and the 

loading frequency (f). The model consists of 18 different model parameters (Φ1-18). The 

parameters for the damping model are calculated by:  

𝛾𝑟 = (𝜙1 + 𝜙2 ∗ 𝐼𝑝 ∗ 𝑂𝐶𝑅
𝜙3) ∗ 𝜎0

′𝜙4 

𝑎 = 𝜙5 

𝐷𝑚𝑖𝑛 = (𝜙6 + 𝜙7 ∗ 𝐼𝑝 ∗ 𝑂𝐶𝑅
𝜙8) ∗ 𝜎0

′𝜙9 ∗ [1 + 𝜙10 ∗ ln(𝑓)] 

𝑏 =  𝜙11 + 𝜙12 ∗ ln (𝑁) 

The model parameters (Φ1-18) were estimated by analyzing the response of various soil 

samples, and derived using the First-order, Second-moment, Bayesian Method (FSBM) 

(Darendeli, 2001). Relevant for this thesis is the mean value presented for clays by 

Darendeli (2001), reproduced in Table 2.2: 

Table 2.2: Model parameters presented for “Clays”. From Darendeli (2001), Table 8.11. 

φ1 0.0258 φ10 0.368 

φ2 0.00195 φ11 0.466 

φ3 0.0992 φ12 0.0223 

φ4 0.226 φ13 -5.65 

φ5 0.975 φ14 4 

φ6 0.958 φ15 -5 

φ7 0.00565 φ16 -0.725 

φ8 -0.1 φ17 7.67 

φ9 -0.196 φ18 2.16 
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The Hornsea Wind Farm outside of England is one of many large offshore wind farms 

being developed today. The wind farm will have a capacity of approximately 2400 MW, 

covering the average daily need for over 2 million British homes. The wind farm spans 

over a total area of 696 km2 (Orsted, 2019), thus encountering a large variety of 

geotechnical conditions, making site-specific analyses a vital part of the design process to 

keep the costs low. The PISA project (Byrne et al., 2017) carried out extensive field 

testing and numerical analysis to develop a new multi-spring framework for analyzing the 

monopile response in a conventional beam-column approach. One of the findings 

highlighted from the project was a confirmation that the current design guidelines (API, 

2014) were unsatisfactory for the design of monopile foundations. The project also called 

for the necessity of using finite element analysis (FEA) when calibrating soil reaction 

springs. DNVGL-ST0126 (2018) requires that the soil reaction springs are calibrated by 

FEA. For this purpose, an optimization tool has been developed. The main function of the 

tool is to calibrate adequate soil reaction springs for any type of pile (slender pile, 

monopile etc.), in complex soil layering using a target pile response. The following 

chapter describes the details of the different functions of the tool, as well as verifying the 

tool itself. To describe the tool, some definitions for the terminology were established. 

The terminology is presented at the end of this chapter (section 3.4).  

 

3.1 Methodology  

To develop the optimization tool, the numerical computing program MATLAB (MATLAB, 

2018) is used. The idea is to apply a certain set of modifiers to the calculated resistance 

(p) and displacement (y) values derived from a p-y formulation and scale the p-y curves 

to get a better fit to a target pile response (often FEA). This is done for each separate p-y 

spring along the pile. Zhang and Andersen (2017) showed that there exists a scaling 

factor between the stress-strain response of the soil and the p-y spring response.  

To calculate the pile response by the reaction springs beam-column analyses are 

conducted, using the software “NGI-Pile”. NGI-Pile is written in MATLAB by Dr. Zhang 

and was originally developed for analyzing piles under lateral cyclic loading. NGI-Pile is 

an equilibrium solver-based software and gives adequate solutions in terms of pile 

loading by following the principles of a conventional beam-column model. NGI-Pile 

follows a response spring approach and contains various p-y formulations. The 

optimization tool is designed to provide calibrated soil reaction springs, independent of 

any type of p-y formulation. The ones applied within this section are the p-y frameworks: 

• API clay Matlock (1970). 

• Zhang and Andersen (2017) flow-around monotonic p-y curves. 

 

 

 

3 Optimization tool 
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3.1.1 Running the tool 

To get the desired p- and y-modifiers, the tool needs minimum one target pile response, 

which presents the pile response at a specific load level. The pile response is 

characterized by the deformation response (displacement/rotation) and/or cross-

sectional structural forces (shear force/bending moment) along the pile length under a 

certain load applied laterally at the top (load level, H). This data can be acquired by 

different methods, e.g. in the validation-section of this chapter, the target pile response 

is calculated by FEA and field testing (Byrne et al., 2015b). One pile may have multiple 

target pile responses corresponding to the different load levels the pile has been tested 

for. An example of a target pile response is presented in Figure 3.1. The values displayed 

are valid for load level H=486 kN. There are two more target pile responses that are 

going to be accounted for when calculating the modifiers for this example, namely 

H=1098 kN and H=3711 kN. The target pile response for each of these load levels are 

presented on separate spreadsheets in the same way as for the displayed target pile 

solution for load level H=486 kN.  

 

Figure 3.1: Target pile response, for load level H=486 kN for Pile 2, described in section 
3.2.1. The target pile responses for load levels H=1098 kN and H=3711 kN are also used 
as input and has similar spreadsheets. 

The modifiers for each load level are calculated through an iterative procedure. The tool 

iterates by testing various modifiers to get the predicted pile response that most 

resembles the target pile response. Each spring gets the one p- and y-modifier that best 

replicates the target pile response at the corresponding load level at that depth. 

Consequently, each spring will be assigned one p- and y-modifier (load level modifiers) 

per load level. After the modifiers for each load level are calculated the optimal modifiers 

are calculated as the average of each load level modifier, producing one optimal p-

modifier and one optimal y-modifier per spring. To visualize the process, the modifiers 

calculated by minimizing, with respect to cross-sectional rotation, are presented in Figure 

3.2. The figure presents both the calculated load level modifiers and the average 

modifiers using the target pile responses presented in Figure 3.1. 
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Figure 3.2: Calculated p- and y-modifiers for the different load levels, along with the 

optimal (average) modifiers. The upper 30 meters are above mudline. 

After the optimal modifiers are calculated, the tool calculates the final pile behavior at the 

different load levels, and the change of error between the original pile response (no 

modifiers applied) and the pile response using the modified stiffness springs. Following 

the calculation of minimizing the cross-sectional rotation, the result of using the average 

p- and y-modifiers (Figure 3.2) are presented in Figure 3.3: 

 

Figure 3.3: Cross-sectional rotation response at the applied load levels. “py with mod” 
and “py no mod” are the rotation responses with/without modifiers applied calculated 
by reaction springs. 
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3.1.2 Implementation of p-y formulations 

The optimization tool is designed to scale all p-y springs, independent of formulation. The 

modifiers are implemented as direct scaling factors of the calculated p- and y- curves. 

For this exercise, the modifiers are applied at the API clay Matlock (1970) and Zhang and 

Andersen (2017) flow-around formulation by the following mathematical formulations.   

API clay Matlock (1970) 

The API clay Matlock (1970) recommendation provides equations for calculating pu and yc 

directly. Hence, the modifiers are applied by: 

𝑝𝑢 = 𝑝𝑢,0 ∗ 𝑝𝑚𝑜𝑑 

𝑦𝑐 = 𝑦𝑐,0 ∗ 𝑦𝑚𝑜𝑑 

where pu,0 and yc, are calculated by the conventional framework.  

Zhang and Andersen (2017) flow-around monotonic p-y curves 

The Zhang and Andersen flow-around recommendation (2017) describes the p-y 

response as a function of different variables. Hence, the implementation of the p- and y- 

modifiers are somewhat more complicated compared to the API clay Matlock 

recommendation. The modifiers are implemented by defining: 

(
𝐺0
𝑆𝑢
)
𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑

= (
𝐺0
𝑆𝑢
)
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

∗
1

𝑦𝑚𝑜𝑑
 

(𝑝𝑢)𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 = (𝑝𝑢)𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 ∗ 𝑝𝑚𝑜𝑑 

(𝛾𝑓
𝑝
)
𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑

= (𝛾𝑓
𝑝
)
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

∗ 𝑦𝑚𝑜𝑑 

where pmod and ymod are the scaling factors (modifiers). With a basis on the formulations 

presented in section 2.4.1. It can be proven mathematically that these implementations 

lead to the following derivations: 

𝑃 =
𝑝

𝑝𝑢
∗ 𝑝𝑢 ∗ 𝑝𝑚𝑜𝑑 = 𝑝 ∗ 𝑝𝑚𝑜𝑑 

𝑌 =
𝑦

𝐷
∗ 𝐷 = ((𝜉1

𝜏

𝐺0
+ 𝜉2𝛾

𝑝)𝐷) ∗ 𝑦𝑚𝑜𝑑 

The equations describes a specific point (P,Y) at the p-y curve. For explanation of the 

different parameters, the reader is directed to section 2.4.1.  

 

3.1.3 Iteration procedure  

The iteration procedure is based on principles adopted by the method of least squares. 

Each spring has one or more squared residual(s) to be minimized by the iteration 

procedure. For the activities conducted within this thesis, a squared residual is defined as 

the squared difference between the target pile response and the spring calculated pile 

response, for a chosen minimizing variable. Four minimizing variables are available: 

lateral/horizontal displacement, rotation, cross-sectional shear force and bending 

moment. In the following section the target pile response is denoted as a FEA solution. 

The squared residual is normalized by dividing it by its corresponding target pile 
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response. The normalized squared residual is denoted as the error regarding the 

respective minimizing variable. Note that the definitions stated for the terms “residual” 

and “error” are solely for describing the iteration process conducted herein and are not to 

be confused with other definitions conducted in conventional statistical theory. Each 

minimizing variable has its own error calculated by the same principles, e.g. 

displacement error for a specific spring is calculated as: 

𝐸𝐷𝑖𝑠𝑝𝑙(𝑝𝑚𝑜𝑑,𝑖) = √(
𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝐹𝐸𝐴 − 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑝𝑦(𝑝𝑚𝑜𝑑,𝑖)

𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝐹𝐸𝐴
)

2

  

where Displacementpy(pmod,i) is the pile displacement at a certain depth, calculated by the 

reaction springs, using the modifiers at iteration step i for the p-y spring. DisplacementFEA 

is the target pile response at the corresponding depth, for this example, the pile 

displacement calculated by FEA. The tool is designed to minimize an error function, E. For 

cases when optimizing for one minimizing variable, the error function is set equal to the 

error of the chosen variable. If optimizing for multiple minimizing variables, the error 

function is defined as the sum of the different errors for each variable, equally weighted, 

e.g. when optimizing for all four minimizing variables the error function at a specific 

spring with modifiers at iteration step i is defined as: 

𝐸(𝑝𝑖) =
𝐸𝐷𝑖𝑠𝑝𝑙(𝑝𝑚𝑜𝑑,𝑖) + 𝐸𝑅𝑜𝑡(𝑝𝑚𝑜𝑑,𝑖) + 𝐸𝑆𝐹(𝑝𝑚𝑜𝑑,𝑖) + 𝐸𝐵𝑀(𝑝𝑚𝑜𝑑,𝑖)

4
 

where ERot(pmod,i), ESF(pmod,i) and EBM(pmod,i) is the rotation-, shear force- and bending 

moment error respectively, with modifier pi applied. The minimizing errors are defined by 

the same approach as presented for the displacement error above. This may lead to a 

situation where the modifiers will improve one error, while decreasing the accuracy of 

another. The tool finds the solution adequate as the improvement of one error is of a 

larger size than the decrease of the other.  

The user decides if the tool iterates for the p- or the y- modifier first. The overall iteration 

process is conducted by iterating all springs for the chosen modifier first, then, using the 

iterated modifiers, the other modifier is iterated. For instance, when iterating for the p-

modifier first, the y-modifiers are kept equal to one, until individual p-modifiers for all 

springs are found. The iteration for the y-modifier are then conducted using the iterated 

p-modifier for all springs while iterating for the y-modifiers. The section below describes 

the iteration process when iterating for the p-modifiers first. For clarification, Figure 3.4 

presents the iteration process by a flow chart. The mathematical formulations are 

presented after a description. 

The iteration procedure starts by performing two actions. A calculation of the p-y 

response with all modifiers equal to one and a calculation of the corresponding error 

function for each spring as defined in the equation(s) above. The second step of the 

iteration is performed by setting all the p-modifiers equal to an upper limit defined by the 

user and calculating the corresponding pile response and error function. If the error 

function has decreased, the tool registers the new value of the error function as the 

lowest, along with the modifier. If the error function has increased it is assumed that the 

optimal modification value is below the upper limit, and a new round of calculations is 

started by setting the p-modifier equal to the middle of the previous tested parameter, 

and the optimal solution at that time. When a spring has a new all-time low value for the 

error function, the p-modifier is stored as the new optimal modifier along with the value 

of the error function. The tool calculates the next p-modifier value to be tested as the 

middle of the new optimal modifier, and the one tested prior to the optimal modifier. The   
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Figure 3.4: Flow chart of the iteration process for the p-modifier for one spring. The 
same principles are conducted when iterating for the y-modifier. 

solution has converged when the difference between the value of the error function 

calculated for the previous and the current modifier are below a user set value, named 

the convergence limit (conv). If the iteration converges towards the initial modifier value 

of 1, a new round of iterations is started by changing the modifier to the lower limit, 

defined by the user. The tool will follow the same principles, calculating a converged 

modifier solution based on the same halving principle procedure as described for the 

upper limit solution. After finding the optimal p-modifiers, the iteration process is 

repeated by the same principles for the y-modifiers. By applying this procedure for each 

separate spring along the pile embedded into the ground, p- and y-modifiers are found 

for each separate spring. By defining i as the iteration step, the process of iterating the 

p-modifier for one spring is mathematically described as: 
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𝑖 = 1:   

𝑑 = 1 

𝑝𝑚𝑜𝑑,𝑖=1 = 1.0 

𝐸𝑟𝑟𝑜𝑟𝑀𝑖𝑛𝑑=1 =  𝐸(𝑝𝑚𝑜𝑑,𝑖=1) 

𝑝𝑜𝑝𝑡,𝑑=1 = 𝑝𝑚𝑜𝑑,𝑖=1 

𝑖 = 2:   

𝑝𝑚𝑜𝑑,𝑖=2 = 𝑈𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 

                                    𝑑 = 𝑑 + 1, 𝐸(𝑝𝑚𝑜𝑑,𝑖=2) < 𝐸𝑟𝑟𝑜𝑟𝑀𝑖𝑛𝑑=1 

𝐸𝑟𝑟𝑜𝑟𝑀𝑖𝑛𝑑=2 =  𝐸(𝑝𝑚𝑜𝑑,𝑖=2), 𝐸(𝑝𝑚𝑜𝑑,𝑖=2) < 𝐸𝑟𝑟𝑜𝑟𝑀𝑖𝑛𝑑=1 

                  𝑝𝑜𝑝𝑡,𝑑=2 = 𝑝𝑚𝑜𝑑,𝑖=2, 𝐸(𝑝𝑚𝑜𝑑,𝑖=2) < 𝐸𝑟𝑟𝑜𝑟𝑀𝑖𝑛𝑑=1 

𝑝𝑚𝑜𝑑,𝑖=3 = 𝑝𝑚𝑜𝑑,𝑖=1 +
𝑝𝑚𝑜𝑑,𝑖=2 − 𝑝𝑚𝑜𝑑,𝑖=1

2
 

𝑖 ≥ 3:   

𝑑𝑖𝑓𝑓 = 𝐸(𝑝𝑚𝑜𝑑,𝑖) − 𝐸(𝑝𝑚𝑜𝑑,𝑖−1) 

                𝑝𝑜𝑝𝑡,𝑑+1 = 𝑝𝑚𝑜𝑑,𝑖, 𝐸(𝑝𝑚𝑜𝑑,𝑖) < 𝐸𝑟𝑟𝑜𝑟𝑀𝑖𝑛𝑑    

𝐸𝑟𝑟𝑜𝑟𝑀𝑖𝑛𝑑+1 =  𝐸(𝑝𝑚𝑜𝑑,𝑖), 𝐸(𝑝𝑚𝑜𝑑,𝑖) < 𝐸𝑟𝑟𝑜𝑟𝑀𝑖𝑛𝑑         

𝑝𝑚𝑜𝑑,𝑖+1 =

{
 
 

 
 𝑝𝑚𝑜𝑑,𝑖 +

𝑝𝑜𝑝𝑡,𝑑 − 𝑝𝑚𝑜𝑑,𝑖

2
, 𝑑𝑖𝑓𝑓 > 0

𝑝𝑜𝑝𝑡,𝑑 +
𝑝𝑜𝑝𝑡,𝑑+1 − 𝑝𝑜𝑝𝑡,𝑑

2
, 𝐸(𝑝𝑚𝑜𝑑,𝑖) < 𝐸𝑟𝑟𝑜𝑟𝑀𝑖𝑛𝑑

𝑝𝑜𝑝𝑡,𝑑 +
𝑝𝑚𝑜𝑑,𝑖 − 𝑝𝑜𝑝𝑡,𝑑

2
, 𝑑𝑖𝑓𝑓 < 0  𝑎𝑛𝑑 𝐸(𝑝𝑚𝑜𝑑,𝑖) > 𝐸𝑟𝑟𝑜𝑟𝑀𝑖𝑛𝑑

 

                         𝑑 = 𝑑 + 1, 𝐸(𝑝𝑚𝑜𝑑,𝑖) < 𝐸𝑟𝑟𝑜𝑟𝑀𝑖𝑛𝑑 

The iteration procedure continues until the difference (diff) value is below the user 

defined convergence limit (conv). As previously mentioned, if the solution converges 

towards a modifier equal to one, the tool repeats the same procedure setting the 

modifier equal to the lower limit, instead of the upper limit at iteration step two. To 

capture neighboring trends, the tool performs the iteration process at all springs 

simultaneously. Meaning that step one (i=1) is applied at all springs, followed by step 

two (i=2) applied at all springs, then step three etc. After a spring-modifier has 

converged, the modifier for that specific spring is kept constant. The tool iterates until all 

springs have converged towards a specific modifier. When iterating for the p-modifier at 

first, the tool will find all converged p-modifiers before it starts to iterate the y-modifier 

by the same principles as for the p-modifiers. The different p-modifiers are kept constant 

equal to the pre-calculated converged value during the y-modifier iteration.  

Figure 3.5. presents an example of the error function for one specific spring, plotted 

against the modifier values. Upper- and lower limit were chosen as 1.5 and 0.5 

respectively. The points display the calculated error function at different modification 

values. The optimal solution was found to be 1.0737, and 1.000244 for the p- and y-

modifiers respectively.  
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Figure 3.5: The iteration process started at the lower limit with a modification value 
equal to 0.5, then halving it to 0.75, until it converged toward an optimal modifier value 
equal to 1. Hence, the tool applied the upper modifier value equal to 1.5. Following the 
same halving principle, the solution converged towards 1.0737, and 1.000244 for the p- 

and y-modifier respectively. NB: To get a better visualization of the iteration process, the 
iteration started at the lower limit, as opposite of the description above. 

Due to numerical issues, the tool excludes a minimizing variable for a spring if the FEA-

result is below a certain value. For lateral displacement and cross-sectional rotation, the 

minimum values were defined as 5% of the maximum value of the corresponding 

minimizing variable. For bending moment and shear force, the error calculation is 

excluded if the FEA-calculated response is below 1% of the maximum value of the 

corresponding minimizing variable.  

3.2 Validation 

The tool serves its purpose if it is able to find adequate soil reaction springs that would 

have an improved prediction of the chosen minimizing variable(s) for the pile response. 

To achieve this goal, the tool needs to calculate adequate soil reaction springs 

independent of the chosen p-y formulation, and the pile- and soil properties. Thus, the 

tool is validated by three parts:  

• Pile geometry variation: The robustness of the tool is tested by calculating 

adequate modifiers for several pile geometries in an idealized normally 

consolidated clay profile.  

• Site-specific soil profile: The tool is tested by using field data from the PISA-

project as the target pile response. The soil profile has a large variation of shear 

strength.  

• Alternative p-y formulation: The generality of the tool is tested by calculating 

reaction springs with a basis on the API clay Matlock (1970) formulation. 
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In all cases, each minimizing variable is tested separately, before all available minimizing 

variables are tested combined. The reduction of error for each spring is normalized by: 

𝐸𝑟𝑟𝑜𝑟 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 [%] =
𝐸(𝑝𝑖=1) − 𝐸(𝑝𝑜𝑝𝑡)

𝐸(𝑝𝑖=1)
∗ 100 

where E is the error function as described in section 3.1.3. Hence, an error reduction of 

100% indicates that the spring-calculated pile response, with the modifiers applied is 

completely alike the target pile response. An error reduction of 0% indicates that there is 

no change in the pile behavior, consequently a negative error reduction indicates that the 

difference between the FEA- and spring calculated pile response have increased. The 

error reductions presented in the sections below, are calculated as the average error 

reduction of all pile-springs. The results are discussed, and noticeable results are 

visualized by various plots.  

 

3.2.1 Pile variation 

The tool should be as robust and versatile as possible. Therefore, it should be able to 

calculate accurate modifiers, independent of pile properties. Hence, the tool is validated 

by optimizing three different piles with various length relative to diameter (L/D) ratios. 

The pile response is calculated using three spring components. The p-y formulation 

presented by Zhang and Andersen (2017), the base shear (s-u) and moment rotation 

(m-r) springs, presented in Zhang and Andersen (2019a) and (2019b) respectively. The 

iteration is conducted by optimizing the y-modifier first. 

The target pile response solutions were calculated in the finite element software Abaqus 

(Abaqus, 2017), by Dr. Zhang. To limit the complexity of the problem, the soil was 

modeled based on the following assumptions:  

• The soil is described with an isotropic stress-strain profile with linearly increasing 

shear strength with depth.  

• No tension gap occurring, hence the soil is assumed weightless.  

For more details on the methodology regarding the soil model and Abaqus calculations, 

the reader is referred to the description of the Abaqus model used in Zhang and 

Andersen (2019a, p. 100). The remaining relevant soil parameters are summarized in 

Table 3.1. 

Table 3.1: Soil properties. 

G0/Su [-] γp
f  [-] α (Pile-soil interface 

roughness factor) 

Shear strength [kPa] 

z = depth below mudline [m] 

ϕ [˚] 

1000 0.10 1 0.1 + 1.5z 0 

 

Three different piles are tested, ranging from a L/D-ratio of 5 to 10. The load is applied 

laterally at the pile top. Young’s modulus for the pile is set equal to 210 GPa. The 

element length is chosen to be 0.5 m, giving one node/spring every half. Upper limit is 

equal to 2, lower limit is equal to 0.5. Other relevant properties are summarized in Table 

3.2. 
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Table 3.2: Pile geometries used for validation. 

 Diameter 

[m] 

Stick-up 

[m] 

Penetration depth 

[m] 

L/D [-] Wall thickness 

[m] 

Pile 1 

6 30 

30 5 

0.06 Pile 2 42 7 

Pile 3 60 10 

 

Displacement 

Table 3.3: Error reduction when minimizing with respect to displacement. 

 Load level [kN] Error reduction [%] 

Pile 1 

486 56.18 

1098 88.56 

1648 80.36 

Pile 2 

486 47.03 

1098 64.68 

3711 59.77 

Pile 3 

973 22.05 

2195 67.58 

7423 60.37 

 

The tool provides more accurate solutions for each of the load levels across the different 

pile geometries. To visualize the results the displacement with/without modifiers along 

with the FEA displacement for pile 1 and its associated modifiers are presented in Figure 

3.6. and Figure 3.7. 

 

Figure 3.6: The displacement of pile 1 with and without modifiers and the FEA calculated 

displacement for three different load levels.  
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Figure 3.7: The modifiers for each load level are calculated separately. The final 
modifiers are calculated as the average value of the modifiers for each load level, 
presented as the solid black line. 

 

 

Shear force 

Table 3.4: Error reduction when minimizing with respect to shear force. 

 Load level [kN] Error reduction [%] 

Pile 1 

486 27.62 

1098 21.20 

1648 16.21 

Pile 2 

486 45.10 

1098 29.07 

3711 -45.41 

Pile 3 

973 36.17 

2195 21.94 

7423 -131.91 

 

The tool performs adequately when minimizing with respect to shear force.  
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Bending moment 

Table 3.5: Error reduction when minimizing with respect to bending moment. 

 Pile Load [kN] Error reduction [%] 

Pile 1 

486 -21.15 

1098 -24.57 

1648 -67.70 

Pile 2 

486 -106.35 

1098 -81.41 

3711 -112.47 

Pile 3 

973 -179.88 

2195 -563.60 

7423 -455.16 

 

Even though the Zhang and Andersen (2017) formulation was developed with a basis on 

stiffer clay profiles, the formulation gives a good prediction of the pile response with no 

modifiers applied, especially for the longer piles (pile 3). For this case, a weakness of the 

tool is observed. The tool finds adequate modifiers at the top section of the pile and stop 

iterating this section. These modifiers were kept constant, while the rest of the pile 

iteration continued. These top modifiers influenced the calculated bending moment 

further down the pile, making the pile response with the modifiers applied worse off. The 

incident is visualized in Figure 3.8 and Figure 3.9 for pile 3 by presenting the calculated 

bending moment, and the average change of error (𝐸(𝑝𝑖=1) − 𝐸(𝑝𝑜𝑝𝑡)). As the bending 

moment prediction is precise initially, the normalized bending moment error is highly 

sensitive, giving error reductions of a large negative magnitude.  

 

Figure 3.8: Bending moment with and without modifiers, compared to FEA for pile 3. A 
reduction in accuracy is observed. 
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Figure 3.9: The average change of error for pile 3. An increase in precision is observed at 
the top 15 meters of the pile below mudline (node 60), thus keeping the calculated 
spring modifiers at top constant. 

 

 

Rotation 

Table 3.6: Error reduction when minimizing with respect to cross-sectional rotation. 

 Load level [kN] Error reduction [%] 

Pile 1 

486 64.61 

1098 53.43 

1648 62.88 

Pile 2 

486 70.65 

1098 38.26 

3711 74.81 

Pile 3 

973 43.80 

2195 54.00 

7423 73.37 

 

The tool performs adequately when minimizing with respect to cross-sectional rotation.  
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Combined displacement, shear force, rotation and bending moment 

Table 3.7, 3.8 and 3.9 presents the calculated error reduction for pile 1, 2 and 3 

respectively when minimizing with respect to all variables.  

Table 3.7: Error reduction for pile 1 when minimizing with respect to all variables. 

Pile load [kN]  Error reduction [%] 

486 Displacement 55.62 

CS Rotation 58.67 

Bending moment 18.94 

Shear force 7.09 

Combined 35.25 

1098 Displacement 64.56 

CS Rotation 55.81 

Bending moment 17.50 

Shear force 20.26 

Combined 36.92 

1648 Displacement 65.79 

CS Rotation 62.19 

Bending moment -9.57 

Shear force 28.00 

Combined 39.85 

 

 

Table 3.8: Error reduction for pile 2 when minimizing with respect to all variables. 

Pile load [kN]  Error reduction [%] 

(Change of error) 

486 Displacement -33.81 (-2.19) 

CS Rotation 83.29 

Bending moment -10.21 (-0.72) 

Shear force 46.71 

Combined 34.70 

1098 Displacement 11.66 

CS Rotation 80.84 

Bending moment 17.36 

Shear force 53.18 

Combined 48.65 

3711 Displacement -5.13 

CS Rotation -5.35 

Bending moment 5.91 

Shear force 36.01 

Combined 21.65 
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Table 3.9: Error reduction for pile 3 when minimizing with respect to all variables. 

Pile load [kN]  Error reduction [%]  

(Change of error) 

973 Displacement -41.61  

(-1.32) 

CS Rotation 61.92 

Bending moment 55.64 

Shear force 25.81 

Combined 20.13 

2195 Displacement 70.45 

CS Rotation 76.70 

Bending moment 51.56 

Shear force 52.84 

Combined 43.50 

7423 Displacement 32.55 

CS Rotation 39.62 

Bending moment 34.67 

Shear force 47.27 

Combined 33.37 

 

As previously discussed, the spring model performed very good, resulting in large 

negative normalized error reductions at small deteriorations. For instance, for the 

displacement response for pile 3 (Table 3.9.). At load level 973 kN, the average error 

reduction is -41.61%, even though the change of error is only -1.32%. 

To visualize the results, the average change in error for each minimizing variable for pile 

1 is presented below in Figure 3.10. The solid lines show the optimal error change, while 

the bars show the error change with the modifiers applied. The error reduction may be 

visualized as the area of the bars “divided” by the area created by the optimal line.  
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Figure 3.10: The average change in error for the load levels, when optimizing for all four 
minimizing variables for pile 1. The bars show the change in error, while the solid lines 

are the optimal solution for that specific variable corresponding to the same color. 

 

3.2.2 Soil strength variation 

To validate the robustness of the tool, field test data from the PISA project (Byrne et al., 

2015b) is used as the target pile response. The pile response is calculated using three 

spring components. The p-y formulation presented by Zhang and Andersen (2017), the 

base shear and moment rotation springs, presented in Zhang and Andersen (2019a) and 

(2019b) respectively. The iteration was conducted by optimizing the y-modifier first.  

FEA-data is in general considered the most accurate description of reality achievable by a 

computer simulation. But it may give an idealized picture which may lead to a smooth 

and theoretical numerical connection for force- and displacement values along the pile 

depth. In reality the case may be different. Factors and variables which are out of our 

hands to control and measure are hard to model in a finite element model. Hence, to 

validate the robustness of the tool, field test data from the PISA project is used as the 

target pile response.  

The methodology and execution of the field testing are presented by Byrne et al. 

(2015b). The target response is the rotation and bending moment data from field testing 

at a glacial till site in Cowden, tested by monotonic loading. The strength profile varies 

between 40-128 kPa (Byrne et al., 2017). The stiffness profile is based on the stiffness 

degradation data reported by Powell and Butcher (2003) and by the experience of Dr. 

Zhang, based on soil plasticity and over consolidation ratio. Due to relatively short piles 

(7.6m embedded into the ground), the element length is equal to 0.2.  
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The validation is conducted by optimizing with respect to rotation and bending moment. 

First separately, then combined. The results are presented by the average error 

reduction for all springs at the various load levels, along with figures showing the pile 

response and the average change in error for each node/spring. The soil properties and 

pile geometry are summarized in Table 3.10, Table 3.11 and Figure 3.11: 

Table 3.10: Soil properties. 

G0/Su [-] γp
f  [-] α (Pile-soil interface 

roughness factor) 

γ' [kPa] ϕ [˚] 

500 0.20 0.3 0 (No tension crack behind the pile) 0 

 

 

Figure 3.11: Assumed strength profile for Cowden test site (Zhang & Andersen, 2019a). 

Table 3.11: Pile geometry. 

Diameter [m] Stick-up [m] Penetration depth [m] L/D [-] Wall thickness [m] 

0.762 10 7.6 10 0.025 

 

 

Rotation  

Table 3.12: Error reduction when minimizing with respect to rotation. 

Pile load [kN] Error reduction [%] 

113 73.55 

395 87.05 

 

The results are visualized in Figure 3.12 and Figure 3.13 by the pile cross-sectional 

rotation and change of error. 
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Figure 3.12: Cross-sectional rotation of the PISA field pile and the pile response 
calculated from reaction curves. Please note that the legend wrongfully says that the 
solid line is FEA Results. The solid line is the field test data. 

 

Figure 3.13: The average change in error for each node/spring of the pile. Note at the 
mudline and pile bottom, there are no rotation data which led to the gaps in the plot. 
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Bending moment 

Table 3.13: Error reduction when minimizing with respect to bending moment. 

Pile load [kN] Error reduction [%] 

113 -196.35 

395 -85.33 

 

As visualized by Figure 3.14 and Figure 3.15, the same phenomena as discussed in 

section 3.2.1. occurred when minimizing for bending moment solely. 

 

 

Figure 3.14: Bending moment response. Please note that the legend wrongfully says that 
the solid line is FEA Results. The solid line is the field test data. 
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Figure 3.15: The average change of error. An increase of error prediction is observed at 
the top 3 meters below mudline (Node 50-65). 

 

Combined rotation and bending moment 

Table 3.14: Error reduction when minimizing with respect to all variables. 

Pile load [kN]  Error reduction [%] 

(Error change) 

113 Rotation 70.95 

Bending moment 4.55 

Combined 49.95 

395 Rotation 76.37 (+94.64) 

Bending moment -80.87 (-5.71) 

Combined 66.93 (44.25) 

 

The optimization tool calculates adequate modifiers that increase the accuracy of all 

variables, except for the bending moment at load level 395 kN. The pile rotation and 

bending moment are visualized in Figure 3.16. 
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Figure 3.16 left: Cross-sectional rotation of the pile with and without the modifiers 
applied. Right: Bending moment of the pile with and without the modifiers applied. 
Please note that the legend wrongfully says that the solid line is FEA Results. The solid 
line is the field test data. 

The average change in error per spring is presented in Figure 3.17. 

 

Figure 3.17: The average change in error for the different load levels, when optimizing 
for both cross-sectional rotation and bending moment. The bars show the change in 

error. The solid lines are the optimal solution for that specific variable corresponding to 
the same color. 
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3.2.3 API approach 

To validate the generality, the tool is tested using the API clay Matlock (1970) 

formulation. The FEA results for pile 1, as described in section 3.2.1., are used as the 

target pile response.  

The API clay Matlock (1970) formulation has proven to perform inadequately when 

calculating the pile response of a monopile (Byrne et al., 2017), (Zhang et al., 2016). 

Hence, the tool will serve its purpose if it can provide adequate soil reaction springs, by 

scaling the API stiffness curves. 

Pile 1 is chosen as it has the lowest L/D of the tested piles. The pile geometry is 

presented in section 3.2.1., Table 3.2. 

The API-framework assumes wedge failure with no suction occurring. Thus, an effective 

unit weight of the soil layer of 7 kN/m3 is assumed. The relevant parameters for the are 

presented in Table 3.15.  

Table 3.15: Soil parameters. 

Shear strength [kPa]  

z = depth [m] 

J [-] ε50 [-] γ' [kN/m3] α  γp
f  [-] G0/Su [-] ϕ [˚] 

0.1 + 1.5z 0.5 0.01 7 1 0.10 1000 0 

 

 

Displacement 

Table 3.16: Error reduction when minimizing with respect to displacement. 

Pile load [kN] Error reduction [%] 

486 93.11 

1098 91.17 

1648 93.91 

 

As seen in Figure 3.18, the API p-y formulation with optimal spring modifiers applied 

provide a good match to the finite element analysis. The modifiers increase the accuracy 

through the entire pile depth.  

As seen by Figure 3.19, the tool did not calculate modifiers at the depth of 21 to 25 m. 

Within this depth, the displacement was below 5% of the maximal FEA-pile displacement 

value, thus validating the exclusion function of the tool. 
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Figure 3.18: Pile response when minimizing for lateral displacement. 

 

Figure 3.19: p- and y-modifiers applied at the stiffness springs. 
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Shear force 

Table 3.17: Error reduction when minimizing with respect to shear force. 

Pile load [kN] Error reduction [%] 

486 -196.94 

1098 -44.34 

1648 -27.90 

 

The tool does not perform well when minimizing with respect to shear force solely. As 

seen by Figure 3.20, the pile response with the modifiers applied at the reaction springs 

follows no specific pattern.  

 

Figure 3.20: Shear force, with and without modifiers. 

 

 

Bending moment 

Table 3.18: Error reduction when minimizing with respect to bending moment. 

Pile load [kN] Error reduction [%] 

486 -18.67 

1098 -23.75 

1648 -15.68 

 

As visualized by the change of error in Figure 3.22, the same phenomena as previously 

discussed (section 3.2.1.) occurred when optimizing with respect to bending moment.  
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Figure 3.21: Bending moment, with and without modifiers applied. 

 

 

Figure 3.22: The average change in error for each node when minimizing with respect to 
bending moment. 
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Rotation 

Table 3.19: Error reduction when minimizing with respect to rotation. 

Pile load [kN] Error reduction [%] 

486 95.83 

1098 88.91 

1648 92.02 

 

The modified stiffness springs give a good math to the FEA-calculated pile response. 

 

Figure 3.23: Cross-sectional rotation, with and without modifiers applied compared to 
FEA. Note that the x-axis is plotted in log-scale for a better visualization of the results. 
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Combined displacement, shear force, bending moment and rotation 

Table 3.20: Error reduction when minimizing with respect to all variables. 

Pile load [kN]  Error reduction [%] 

(Error change) 

486 Displacement 86.34 

CS Rotation 93.90 

Bending moment -8.14 (-1.47) 

Shear force 9.08 

Combined 79.03 

1098 Displacement 84.68 

CS Rotation 87.47 

Bending moment -6.28 

Shear force 20.79 

Combined 77.46 

1648 Displacement 90.16 

CS Rotation 91.24 

Bending moment 4.42 

Shear force 46.91 

Combined 86.16 

 

When optimizing the stiffness springs for all minimizing variables, the tool performs very 

well. In particular, the cross-sectional structural forces have better response relative to 

the ones calculated optimizing for one force response solely. As visualized by Figure 3.24 

and Figure 3.25, the force responses follow a smooth pattern and are matching the FEA-

calculated pile response better. The lateral displacement and cross-sectional rotation do 

perform very well, as previously seen in conducted validation tests.   

 

Figure 3.24: Shear force response, with and without modifiers applied compared to FEA 
when minimizing all variables. 
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Figure 3.25: Bending moment response, with and without modifiers applied compared to 
FEA when minimizing all variables. 

 

Figure 3.26: The average change in error for the different load levels, when optimizing 
for all four variables. The bars show the change in error, while the solid lines are the 
optimal solution for that specific variable, corresponding to the same color. 
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3.3 Summary 

When optimizing the variables separately, the tool gives adequate results when 

minimizing with respect to the deformation variables. The accuracy of the shear force 

prediction has some various results, decreasing in some, while increasing in others. The 

decrease was particularly visible when using the API clay Matlock (1970) formulation, 

indicating that the tool has difficulties to converge towards an optimal solution. The 

bending moment response decreases in accuracy for all cases. The tool should be used 

with caution when minimizing with respect to either of the two cross-sectional structural 

force variables separately. 

When minimizing for all variables combined, the tool gives good results for all cases 

tested. The calculated stiffness spring modifiers provides an increase of accuracy for both 

deformation response and cross-sectional structural forces. When minimizing with 

respect to all the variables the tool performs well, thus fulfilling its purpose of finding 

effective soil reaction springs, to get a more precise pile response. 

 

3.4 Terminology 

Minimizing variable – What error one wants to minimize (displacement, shear force, 

rotation, bending moment or a combination free of choice.) 

Target pile response/load level – The solution the tool tries to duplicate, by using 

reaction springs with modifiers applied (for the stiffness spring). The target pile response 

is presented at a certain load level. One pile may have multiple target pile responses. 

Error – The difference between the target pile response and the calculated pile response 

using response springs, for a given variable, divided by the target pile response value. 

Error function – The value that the tool tries to minimize through iteration. For multiple 

errors, each error is equally weighted and summarized, forming the error function.  

Load level modifiers – The modifiers calculated for each load level.  

Optimal modifiers – The final modifiers, calculated as the average modifier value of the 

load level modifiers.  

Upper limit – Upper limit value for the modifiers. 

Lower limit – Lower limit value for the modifiers.  

Convergence limit – When the difference between the value of the error function between 

the latest iteration steps are below the convergence limit, the solution for that specific 

spring has converged, and the optimal modifier is registered.  
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4.1 Introduction 

To date, most of the offshore wind turbine activities has been concentrated in the North 

Sea in Europe, where the soil conditions mostly consists of stiff over-consolidated (OC) 

clay or very dense sand, because of previous glacier activities. However, in recent years, 

the offshore wind industry has seen a rapid expansion in Asia, and particularly in China. 

These regions present geotechnical conditions that are different from what typically 

encountered in Europe. Soft clays and layered soil profiles are commonly encountered. 

The research published in public domain has mostly concentrated on modelling the 

monopile response in single layered clay, with uniform strength. Very little research has 

looked at monopile response in soft normally consolidated (NC) clay, and the effect of 

layering.  

In this chapter, the performance of a multi-spring beam-column framework for modelling 

monopile response is tested for a range of pile geometries in soil profiles consisting of NC 

clay and layered soil profiles. The test is performed by comparing the pile response 

calculated by finite element analyses (FEA) and the predictions by the multi-spring beam-

column model. For cases where the existing framework does not perform adequately, the 

optimization tool is used to find what stiffness corrections is needed to get a better 

match.  

 

4.2 Multi-spring beam-column model 

The multi-spring beam-column model consist of three components, namely the stiffness 

spring (p-y) presented by Zhang and Andersen (2017), a base shear (s-u) component for 

the pile tip resistance presented by Zhang and Andersen (2019a) and a moment rotation 

spring (m-r), mobilized by the side friction of the pile, presented in Zhang (2019b). All 

spring components are based on a principle of scaling the stress-strain response of the 

soil. This principle is illustrated for the p-y spring in Figure 4.1. 

 

Figure 4.1: Scaling principle for the p-y spring. From Zhang and Andersen (2017). 

4 Pile response in soft clays and layered clay 

profiles 
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The elastic and plastic shear strains are scaled by separate scaling factors. A summary of 

the model components and their corresponding scaling factors is presented in Table 4.1. 

For explanation of the different variables, the reader is directed to section 2.4. The pile 

response is found by a conventional beam-column analysis.  

Table 4.1: Summary of the multi-spring beam-column model. 

Model 

component 

Description 

p-y 

𝑝

𝑝𝑢
=
𝜏

𝑠𝑢
 

𝑦

𝐷
=  𝜉1𝛾

𝑒 + 𝜉2𝛾
𝑝 

𝜉1 = 2.8 

𝜉2 = 1.35 + 0.25𝛼 

𝛾𝑒 =
𝜏

𝐺0
 

𝛾𝑝 = 𝛾 − 𝛾𝑒 

𝑝𝑢 = 𝑁𝑝𝑠𝑢 

𝑁𝑝 = 9.14 + 2.8𝛼 

where 𝛼 is the pile roughness 

s-u 

The base shear resistance is calculated by the same principles as for the 

p-y spring, namely by scaling the stress-strain response of the soil at the 

pile tip by the following set of equations: 
𝑠

𝑠𝑢𝑙𝑡
=
𝜏

𝑠𝑢
 

𝑢

𝐷
= 𝜉1𝛾

𝑒 + 𝜉2𝛾
𝑝 

𝜉1 = 0.3 

𝜉2 = 0.12 

𝑠𝑢𝑙𝑡 = 0.25𝜋𝐷2𝑠𝑢 

where D is the pile diameter 

m-r 

𝑀

𝑀𝑚𝑎𝑥

= (
𝜏

𝑠𝑢
) /𝛼 

𝑟 =
8

𝜋
(𝜉1𝛾

𝑒 + 𝜉2𝛾
𝑝) 

𝜉1 = 1.15 

𝜉2 = 0.45 

𝑀𝑚𝑎𝑥 = 𝐷2𝜏𝑚𝑎𝑥 = 𝐷
2𝛼𝑠𝑢 

if 𝛼 is below 1, a cut-off is applied at M/Mmax equal to 1. 

 

4.3 Finite element model 

The finite element analyses are conducted in the commercial finite element software 

Abaqus (Abaqus, 2017). Different soil profiles and pile geometries are tested.  

4.3.1 Geometry and meshing 

The finite element (FE) models are discretized using C3D8R (first order, reduced 

integration brick) elements. Abaqus allows the user to prescribe biased seeding along an 

edge. To achieve adequate numerical efficiency and accuracy, a cylindrical zone with a 

radius of 2D from pile center is meshed with a finer mesh, with the element size 

decreasing towards the pile-soil interaction. At the pile tip level, the mesh is divided into 

thin horizontal layers to improve the accuracy of base shear resistance. For the layered 
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soil profiles, the same approach is taken at the transition between the layers. Figure 4.2 

and Figure 4.3 illustrate the FEA model in single-layered and double-layered soil profiles 

respectively. The details of the meshing are presented in Figure 4.4 and Figure 4.5.  

 

Figure 4.2: Meshing and geometry of the Abaqus model in single-layered soil profiles, 
L/D = 5. 

 

Figure 4.3: Meshing in double-layered soil profiles, L/D = 5.  
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Figure 4.4: Details of the refined mesh area within a radius of 2D from the pile. 

 

Figure 4.5: Details of the meshing for the transition between pile and soil. 

By defining surface to surface contact pairs, the pile-soil surfaces are modeled as fully 

rough interfaces. Thus, the two surfaces (front and back of the pile under loading) will 

not slide relative to the soil. These conditions lead to the failure mechanism occurring in 

the soil, and not at the interface. Separation after contact is not allowed, meaning there 

is no gap occurring. The tested pile is assumed to be at an offshore location, with weak 

(low shear strength) clay at the mudline. Thus, the soil at the active side of the failure 

mechanism collapses, and suction occurs on the rear side. This suction may be visualized 

by the phenomena of walking barefoot on the sea floor. If the foot is raised quickly, one 

feels a sort of suction underneath the foot, pulling it back towards the sea floor. This is 
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explained by the fact that most clays at the sea floor have a relatively low permeability. 

Hence, there is not enough time for the water that was squeezed out of the pores when 

the foot stamped down to return to its equilibrium state when the foot is raised, and a 

vacuum within the pores is established. The same phenomena is assumed to occur under 

pile loading, and the interface of the backside of the pile will stay connected through the 

loading process. Thus, a gap is not allowed to occur.  

4.3.2 Pile geometry 

Due to symmetric conditions, only half of the pile is modeled. Hence, the vertical face of 

the pile side is given symmetric boundary conditions (no rotation or displacement out of 

the plane.) The pile is modeled as a solid pile, with isotropic elastic material behavior. 

The Youngs modulus of the solid pile was recalculated to match the bending stiffness (EI) 

of the pipe pile that is modeled (Table 4.2). The Poisson’s ratio is equal to 0.3. The force 

is applied laterally at the pile head 30 meters above mudline.  

To capture the effect of the pile size, four different piles are simulated. The following 

properties are tested. 

Table 4.2: Pile geometries. 

L/D [-] Diameter [m] Penetration depth [m] Wall thickness [m]  Stick-up [m] 

3 6 18 0.06 30 

5 6 30 0.06 30 

7 6 42 0.06 30 

10 6 60 0.06 30 

 

4.3.3 Soil model 

The response of the soil is modeled using the Mohr-Coulomb model. Friction and 

dilatancy angles are set equal to 0˚, thus simplifying to a Tresca model. Undrained 

conditions are assumed, specifying the Poisson’s ratio as 0.48. The elastic Youngs 

modulus E is kept constant through the calculations, making the elastic strain component 

equal to: 

𝛾𝑒 =
𝜏

𝐺
 

where G is the equivalent shear modulus found through the relationship: 

𝐺 =
𝐸

2(1 + 𝜈)
≈
𝐸

3
 

Abaqus allows the user to specify the plastic shear strains, 𝛾𝑝, at different mobilization 

stages described by the shear stress, 𝜏, relative to the shear strengths, Su. Thus, the 

non-linear plastic soil response is captured by pre-calculating the soil response using the 

NGI-ADP model (Grimstad et al., 2012) at different mobilization levels.  

The NGI-ADP model is a total stress soil model. It is commonly used when simulating 

undrained anisotropic behavior of clay. The model follows a Tresca type yield criterion. 

The model assumes the following plastic hardening rule: 

𝜏

𝑆𝑢
= 2

√𝛾𝑝/𝛾𝑓
𝑝

1 + 𝛾𝑝/𝛾𝑓
𝑝 
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where 𝜏 is the currently mobilized shear stress, Su is the DSS (direct simple shear) 

strength of the soil, 𝛾𝑝 is the current plastic shear strain, and the 𝛾𝑓
𝑝
 is the plastic shear 

strain at failure. For elastic shear strain it follows: 

𝛾𝑒 =
𝜏

𝐺0
=
𝜏/𝑆𝑢
𝐺0/𝑆𝑢

 

where the relationship G0/Su describes the ratio between the strain stiffness at low 

mobilization over shear strength and is assumed constant. Thus, the soil behavior may 

be described by the parameters 𝛾𝑓
𝑝
, G0/Su and Su. 𝛾𝑓

𝑝
 and G0/Su may be used as curve 

fitting parameters, to capture the stress-strain behavior of any site-specific soil. 

For simplicity the soil is assumed to be weightless and have isotropic strength and 

stiffness properties. There is no gap occurring. Thus, the contribution from the passive 

and active wedge cancels each other out, making the weightless soil assumption valid.  

To capture the response of different stress-strain behaviors, the soil profiles are tested 

for two different values of plastic shear strain at failure, 𝛾𝑓
𝑝
. G0/Su is kept constant equal 

to 1000. Five different shear strength soil properties are established, making it ten 

different soil profiles to be tested in total. The soil profiles are presented in Table 4.3. 

Table 4.3: Strength profiles used for testing. 

Identification Shear strength, 𝑆𝑢 [kPa] 

z is the depth below mudline [m] 

Plastic shear strain at failure, 𝛾𝑓
𝑝
 

[-] 

Soil profile 1 𝑆𝑢 = 0.1 + 1.5𝑧 0.02 

0.10 

Soil profile 2 𝑆𝑢 = 10 + 1.5𝑧 0.02 

0.10 

Soil profile 3 𝑆𝑢 = 0.1 + 1.5𝑧,     0 <  𝑧 ≤ 12 

𝑆𝑢 = 50,                             𝑧 > 12 

0.02 

0.10 

Soil profile 4 𝑆𝑢 = 0.1 + 1.5𝑧,     0 <  𝑧 ≤ 12 

𝑆𝑢 = 100,                           𝑧 > 12 

0.02 

0.10 

Soil profile 5 𝑆𝑢 = 100 0.02 

0.10 

Soil profiles 1 and 2 are designed to simulate normally consolidated to lightly over-

consolidated clay profiles. Soil profile 1 is defined as an ideally normally consolidated soft 

clay profile with shear strength linearly increasing with depth. Soil profile 2 is defined as 

a lightly over-consolidated clay profile, with the same linearly increasing strength 

gradient as for soil profile 1.  

Soil profiles 3 and 4 are designed as two layered soil profiles. Each soil profile consists of 

the identical normally consolidated soil profile as for soil profile 1 to the depth of 12 

meters, where the strength increases rapidly, simulating a stiffer soil profile.  

Soil profile 5 is included to validate the FE-model, and to investigate how the reaction 

springs performs when calculating shorter monopiles in a stiffer clay profile.  

Each pile is tested in each soil profile, in total 40 FE-analyses.  
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4.3.4 Validation 

The p-y spring component of the multi-spring beam-column model was developed to 

capture the flow-around soil failure mechanism in stiffer OC clays with an uniform shear 

strength (Zhang & Andersen, 2017). Thus, it is assumed that the multi-spring beam-

column model performs well when calculating the pile response for the longer monopiles, 

which experiences a larger amount of flow-around soil failure. By this assumption, soil 

profile 5 (Table 4.3) is used for validation of the finite element calculated pile response. A 

comparison between the multi-spring model and the finite element calculated pile 

response for the longer piles (L/D of 10) is presented in Figure 4.6 and Figure 4.7, with 

the plastic failure strain equal to 0.02 and 0.10 respectively. Note that the legends in the 

plots below wrongfully says “py-calculated”. The pile responses are calculated using the 

aforementioned multi-spring beam-column model.  

 

Figure 4.6 Pile response comparison for soil profile 5, L/D=10, 𝜸𝒇
𝒑
=0.02 (Appendix A.5.7). 

 

Figure 4.7 Pile response comparison for soil profile 5, L/D=10, 𝜸𝒇
𝒑
=0.10 (Appendix A.5.8). 

A good match is demonstrated for the predicted lateral displacement, rotation and cross-

sectional bending moment, while the cross-sectional shear force predicted by the finite 

element model is not as precise. The force is applied at pile head 30 meters above 

mudline, and is the only force influencing the pile above mudline. Thus, the cross-

sectional shear force should be equal to the corresponding load level until reaching 

mudline, which is the case for the spring calculated piles. The results of the comparison 

are presented in Appendix A.5. It is assumed that the deformation response from the 
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finite element model is captured correctly, while the shear force response is not fully 

captured.   

4.4 Methodology 

The pile is loaded monotonically at the pile-top by a lateral distributed pressure over the 

pile head until reaching soil failure. The equivalent point load, F, at different load levels is 

calculated by: 

𝐹 = 𝜋
𝐷2

4
𝑞𝑡 ∗ 2 

where q is the applied distributed pressure, D is the diameter, and t is the time step, 

ranging from 0 to 1, where the load is applied proportional to the time steps. Hence, 

t=0.25 implies a load level where 25% of q is applied, and t=1 equals the final load level. 

As the model is a half-pipe model, the force is multiplied by 2 to find the equivalent force 

for a full circular pile. Abaqus allows the user to extract results at various time steps, 

making it possible to extract the pile response at different load levels. The corresponding 

pile response calculated by the multi-spring beam-column model is found by conventional 

beam-column analyses. For cases where the multi-spring model does not perform 

adequately, the finite element calculated pile responses and their corresponding load 

levels are used as the target pile responses in the optimization tool.  

Figure 4.8. shows the soil displacement at failure for soil profile 1, L/D=7. The active and 

passive wedges are clearly visible, and they tend to have the same size. A rotational soil 

failure mechanism is observed, forming at the lower half of the pile embedment. Similar 

results are observed in the other models as well. The deformed model at failure is 

presented in Figure 4.9. Note that the color scaling used for plotting is different, thus the 

color plots of Figure 4.8. and Figure 4.9. cannot be directly compared. 

 

Figure 4.8: The soil displacement at failure presented in an undeformed model, without 

the pile visualized. L/D = 7, soil profile 1, 𝜸𝒇
𝒑
= 0.02. 
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Figure 4.9: Model at failure, showing the displacement. L/D = 7, soil profile 1, 𝜸𝒇
𝒑
= 0.02 

 

4.5 Results  

To increase the readability, the results presented herein are showing the lateral pile 

displacement for the soil profiles consisting of 𝛾𝑓
𝑝
= 0.02 only. The full pile responses 

(deformation and cross-sectional force) from the comparison between the FEA and multi-

spring model for all soil profiles are presented in Appendix A. Appendix B presents the 

monopile response analyses using the optimization tool. Although the Abaqus model does 

not catch the cross-section force response properly it is still included in the plots, as a 

rough estimate to give an indication of the total performance of the spring model. 

As seen in Figure 4.12 and Figure 4.13, the multi-spring model performs well in the soft 

NC clay and the layered soil profiles for the longer piles (L/D-ratio of 7 and 10). An 

excellent match is observed for mostly all soil profiles in terms of deformation responses. 

For the piles with an L/D-ratio of 3 and 5 (Figure 4.10. and Figure 4.11. respectively) the 

multi-spring model seems to predict a softer response, relative to the response 

calculated by FEA. As seen in several of the results (Figure 4.10 (a), (b), Figure 4.11 (a), 

(b), Figure 4.12 (a)), the finite element model and the multi-spring model seems to 

interpret the pile response at high load levels differently.  

Figure 4.14 presents the mobilized stresses in soil profile 4 at full mobilization for long 

piles in the finite element model. To investigate the influence of the top soft clay layer for 

the long piles, the deformation response in a soil profile consisting of 0.1 kPa shear 

strength in the top 12 meters of the seabed, and 100 kPa below is calculated for a pile 

with an L/D-ratio of 10. Plastic shear strain at failure is equal to 0.02. The results are 

compared to the finite element results presented in Figure 4.13 (d). The result is 

presented in Figure 4.15, showing that the shear strength of the top soil layer does not 

influence the pile response noticeably before reaching high stress mobilization levels.  
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Figure 4.10: Comparison of lateral pile displacement for pile with an L/D-ratio of 3: (a) 

soil profile 1; (b) soil profile 2; (c) soil profile 3; (d) soil profile 4. 𝜸𝒇
𝒑
= 0.02 for all soil 

profiles. The legend wrongfully says “py-calculated”. The pile responses are calculated 
using the aforementioned multi-spring beam-column model. 
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Figure 4.11: Comparison of lateral pile displacement for pile with an L/D-ratio of 5: (a) 

soil profile 1; (b) soil profile 2; (c) soil profile 3; (d) soil profile 4. 𝜸𝒇
𝒑
= 0.02 for all soil 

profiles. The legend wrongfully says “py-calculated”. The pile responses are calculated 
using the aforementioned multi-spring beam-column model. 
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Figure 4.12: Comparison of lateral pile displacement for pile with an L/D-ratio of 7: (a) 

soil profile 1; (b) soil profile 2; (c) soil profile 3; (d) soil profile 4. 𝜸𝒇
𝒑
= 0.02 for all soil 

profiles. The legend wrongfully says “py-calculated”. The pile responses are calculated 

using the aforementioned multi-spring beam-column model. 
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Figure 4.13: Comparison of lateral pile displacement for pile with an L/D-ratio of 10:  (a) 

soil profile 1; (b) soil profile 2; (c) soil profile 3; (d) soil profile 4. 𝜸𝒇
𝒑
= 0.02 for all soil 

profiles. The legend wrongfully says “py-calculated”. The pile responses are calculated 
using the aforementioned multi-spring beam-column model. 
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Figure 4.14: L/D = 10, 𝜸𝒇
𝒑
= 0.02, soil profile 4. Soil stresses mobilized at failure. 

 

Figure 4.15: Pile deformation response with/without the soft NC layer. L/D=10, 𝜸𝒇
𝒑
=0.02.  
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The multi-spring model appears to perform adequately for all pile types embedded in the 

stiff clay in soil profile 5. Thus, validating the multi-spring model as a proper design tool 

for mostly all types of piles in uniform stiff clay profiles. The results form a basis for 

determining what cases to be further investigated by the optimization tool. 

Mostly all cases for the piles with an L/D-ratio of 3 and 5 embedded in the soft NC clay 

and the layered clay profiles seems to have a too soft response prediction relatively to 

the FEA results (Figure 4.10 and Figure 4.11). Thus, these piles are analyzed further by 

using the optimization tool to scale the stiffness (p-y) springs. The base shear and 

moment rotation springs are still using default parameters. An equally weighted 

combination of the Abaqus-calculated lateral pile displacement and cross-sectional 

rotation are used as the target pile response. The pile response comparison results are 

presented in Appendix B, with the corresponding p- and y-modifiers presented in 

Appendix C. The spring modifiers provides a significantly better accuracy of the predicted 

pile responses. The modifiers tend to be relatively constant for the entire pile length, 

indicating that the soil mechanisms are calculated correct, but not scaled properly by the 

spring model. Figure 4.16 visualizes the deformation response of a pile with an L/D-ratio 

of 5, embedded into soil profile 1, with the plastic failure strains equal to 0.02. The 

corresponding modifiers are visualized by Figure 4.17.  

 

Figure 4.16: Predicted deformation using the optimized stiffness springs. Soil profile 1, 

L/D = 5, 𝜸𝒇
𝒑
= 0.02. The legend wrongfully says “py-calculated”. The pile responses are 

calculated using the aforementioned multi-spring beam-column model. 
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Figure 4.17: Stiffness spring modifiers applied. 

 

4.6 Discussion 

The discussion is divided into two separate parts. First the performance of the multi-

spring model in the normally consolidated and the layered clay profile is discussed. Then, 

a discussion and further analyses of the stiffness corrections calculated by the 

optimization tool for the monopiles in normally consolidated and layered soil profiles are 

conducted.  

4.6.1 Performance of the multi-spring model 

The performance of the soil reaction spring model for various pile geometries are 

discussed, and noticeable results are highlighted. 

L/D = 10 

In general, the multi-spring model performs well, giving nearly identical results for the 

longer piles1 for all soil profiles. Thus, it can be established that the multi-spring model 

performs well for longer monopiles (L/D = 10) in softer clays, as well as for the layered 

strength profiles. In the layered soil profiles, 80% of the pile is embedded into the stiffer 

bottom layer.  

                                           
1 Appendix: A.1.7., A.1.8, A.2.7., A.2.8., A.3.7., A.3.8., A.4.7., A.4.8., A.5.7. and A.5.8. 
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L/D = 7 

The multi-spring model performs adequately for the piles with an L/D-ratio of 7. All piles 

and load levels give a good match2, except at the load levels close to failure of the soft 

soil in soil profile 1. At these load levels3 the mobilized soil strength is close to its 

capacity limit. This may lead to different interpretations in the Abaqus model relative to 

the numerical approach of NGI-PILE. Both approaches follow the same non-linear soil 

profile.  

L/D = 3 & 5 

The multi-spring model seems to predict the pile response of the monopiles (L/D = 3 and 

5) in soil profile 5 adequately4. Thus, validating the applicability of the multi-spring model    

for monopile analyses in stiffer clay profiles.  

For the normally consolidated, and the layered clay profiles the multi-spring model seems 

to predict a softer response than the FEA5. Thus, larger pile- displacements and rotations 

are observed.  

Sources of error 

Possible sources of error that may be of relevance are properties such as the meshing of 

the Abaqus model and the load step application. For several of the cases, the pile 

response at the highest load levels differ from patterns observed at earlier load levels6. 

Thus, it is assumed that the Abaqus model may not give a perfect description of the pile 

response at load levels close to failure. This phenomenon is explained by numerical 

overshoot due to discretization error. In some of the cases the phenomena made it look 

as if the response by the multi-spring model and the FEA-response correlates better at 

higher loads7.  

4.6.2 Monopile analyses using the optimization tool 

With a basis in the results from the performance analyses (Appendix A), the monopiles 

are analyzed further using the optimization tool. Analyses for both the normally 

consolidated, and layered soil profiles are conducted. The optimization tool provides 

modifiers (Appendix C) that lead to an improvement in the pile response (Appendix B). 

The results are discussed in the following. 

In general, the pile response calculated using the modified stiffness springs tend to give 

a better match to the FEA calculated pile response. All load levels seem to increase its 

accuracy, except for the highest load level. This is as excepted as the earlier load levels 

are at the steeper stage of the p-y curve, where a more linear type of curve is observed. 

As the optimal modifiers are calculated as the average of the different load level 

modifiers, the entire pile response is difficult to catch, as the pile response is non-linear.  

                                           
2 Appendix: A.1.5., A.1.6, A.2.5., A.2.6., A.3.5., A.3.6., A.4.5., A.4.6., A.5.5. and A.5.6. 
3 Appendix: A.1.5. and A.1.6., H = 12004 kN and H = 11771 kN, respectively 
4 Appendix: A.5.1., A.5.2., A.5.3. and A.5.4. 
5 Appendix: A.1.1., A.1.2., A.1.3, A.1.4, A.2.1., A.2.2., A.2.3., A.2.4., A.3.1., A.3.2., 

A.3.3., A.3.4., A.4.1., A.4.2., A.4.3. and A.4.4. 
6 Appendix: A.1.1., A.1.3., A.1.4., A.1.5., A.1.6., A.2.1., A.2.3., A.3.6., A.3.8., A.4.8., 

A.5.1., A.5.2., A.5.4., A.5.5. and A.5.6. 
7 Appendix: A.1.4. and A.3.6. 
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The modifiers may be visualized as stiffness corrections. An p-modifier below 1.0, and a 

y-modifier above 1.0 implies that the spring calculated response is too stiff relative to the 

soil and vice versa. All piles are optimized by iterating for the y-modifiers first. In 

general, all y-modifiers have a modifier value below 1.0, implying that the pile response 

calculated by the multi-spring model has too large deformations. This may be explained 

by the fact that the pile response is calculated by different strength mobilization levels. 

The Zhang and Andersen (2017) formulation was developed for slender piles in stiffer 

clay profiles. Thus, a high mobilization level for a slender pile implies that large portions 

of the soil adjacent to the pile adopt a plastic behavior, leading to large pile 

deformations. At the corresponding mobilization level for the monopiles in the softer clay 

profile, a smaller portion of the soil has adopted plastic behavior, thus lower 

deformations. This could be accounted for by applying lower scaling factors (𝜉1 and 𝜉2) for 

the shear strains calculating the normalized displacement (y/D) in the Zhang and 

Andersen (2017) formulation.  

The spring responses in the normally consolidated (soil profile 1 and 2) and the layered 

clay (soil profile 3 and 4) are explored in the following.  

4.6.2.1 Normally consolidated clay 

The calculated p- and y-modifiers for the normally consolidated clay profiles are relatively 

constant, thus it is assumed that the average value of the modifiers will give a 

representative description of the required spring corrections. The p-modifier is close to 

1.0, thus for practical considerations it is assumed to have no influence on the scaling of 

the springs. To visualize the effect of the soil stress-strain relationship and the pile 

properties, the average y-modifiers are plotted against the L/D of the pile: 

 

Figure 4.18: Average y-modifiers for the normally consolidated clay profile. 

As seen in Figure 4.18, the effect of the pile dimensions (L/D) seem to be small as of 

practical considerations. The effect of the plastic failure strain has a direct impact on the 

calculated spring response. This is explained by the fact that a higher plastic failure strain 
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will lead to larger soil strains prior to full soil mobilization. The deformation response 

calculated by the spring model is of a larger character (relative to the FEA pile response). 

Thus, it is sensible that the y-modifiers are closer to 1.0 at the higher plastic failure 

strains, as less corrections are needed to match the actual soil deformation. The effect of 

the plastic failure strain could be accounted for by conducting sensitivity studies of the 

plastic scaling coefficient, ξ2 in the Zhang and Andersen (2017) formulation. There may 

be a possibility to formulate it as a function of the plastic failure strain.  

4.6.2.2 Layered clay profile 

There is a significant difference in the influence of the stiff bottom layer between the two 

different pile properties tested. In the cases regarding the piles with an L/D-ratio of 3, a 

third of the pile is embedded into the stiffer layer, and the bottom layer has close to no 

impact when comparing the calculated modifiers with the modifiers for the corresponding 

pile in soil profile 1. In the cases regarding the piles with an L/D-ratio of 5, 60% of the 

pile is embedded into the stiff layer. The y-modifier is in the same range as earlier, 

between 0.6 and 0.8. While the p-modifier tends to behave differently for the pile lengths 

embedded in the different soil layers. The effects are visualized by plotting the average 

p- and y-modifiers for the upper- and lower soil profile for the piles with an L/D-ratio of 5 

(Appendix C.2.2.) in Figure 4.19. 

 

Figure 4.19: Average p- and y-modifiers for the layered soil profiles, with 60% of the pile 
embedded into the stiffer bottom soil layer (L/D = 5). The plastic failure strain is 

denoted as gfp. 

As seen by Figure 4.19, the stiff lower soil layer influences the soft upper layer for all soil 

profile cases. The strength of the upper soil layer increases in all cases (average p-

modifier above one) and decreases in the lower layer. The effect is particularly visible in 

the stiffer stress-strain profiles with a plastic failure strain of 0.10.  
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By these results, it is established that layering will not affect the pile response noticeably 

in cases where a stiff soil profile encircles less than a third of the bottom pile length. 

Monopiles embedded 60% into a stiffer lower layer are affected by the layering effect.  
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5.1 Introduction 

An assessment of large-scale offshore wind power in the US showed that the support 

structures of a monopile contributed approximately 20-25% of the total capital cost 

(Musial & Ram, 2010). Damping is directly connected to the costs as it affects the result 

of the design load, which in turn influences the fatigue design of the structure. Higher 

damping can lead to lower design loads, and therefore a reduction of the material 

required. For an offshore wind turbine, the sources of damping are multiple, e.g. 

aerodynamic, hydrodynamic, structural and soil damping. Out of these sources of 

damping, the characterization of the soil damping has been considered the most complex 

parameter to model (Carswell et al., 2015). Darendeli (2001) presented a framework for 

estimating the damping for a specific soil profile as a function of pre-consolidation stress 

(σ0’), over consolidation ratio (OCR), plasticity index (Ip), number of loading cycles (N), 

and the loading frequency (f). This section investigates if it is possible to find a 

connection between the estimated soil damping, and the pile damping without the need 

of using a comprehensive finite element (FE) tool. A framework of estimating the pile 

damping as a function of soil variables would be timesaving and applicable for practicing 

engineers, thus saving costs.  

Using a pile slice model in Plaxis 3D (Plaxis, 2017), the damping at soil-pile interaction 

level (pile damping) is calculated by integrating the potential energy, ES0, and the 

dissipated energy ED over the soil at various displacement levels for eight different soil 

profiles. The pile damping is compared to the soil damping at element level for the 

respective soil profile to investigate what scaling factor would match pile- and soil 

damping the best.  

To avoid misunderstandings, the damping within this section is referred to as d, and the 

diameter as D, unlike the theory presented in section 2.6. 

 

5.2 Assumption 

Zhang and Andersen (2017) demonstrated that it is possible to scale the soil-pile 

interaction (p-y) from the stress-strain response of the soil with simple scaling 

coefficients. It its postulated that a similar scaling law also exists for the soil damping. By 

establishing the fact that the soil damping, dsoil, at a specific point correspond to an 

equivalent pile damping, dpile, the pile-soil displacement (y/D) can be scaled from the 

shear strain at the same damping ratio. The concept is visualized in Figure 5.1. 

5 Pile damping 
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Figure 5.1: Damping scaling concept. 

y is the pile displacement, D is the pile diameter, ξ is the scaling factor and γ is the shear 

strain for the soil. The concept is verified through FEA below.  

 

5.3 Finite Element Model 

5.3.1 Geometry and meshing 

The focus of the testing is the connection between pile and soil damping. Thus, for 

simplicity the analysis is performed by modeling a representative horizontal slice of a pile 

(Figure 5.2), embedded into the ground. The model is 1 meter thick, with geometry as 

presented in Figure 5.3. 

 

 

Figure 5.2: Representative horizontal slice of a pile embedded into the ground. 
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Figure 5.3: Geometry of the PLAXIS model. D is the pile diameter. 

 

Figure 5.4: Localized flow around mechanism at failure. 

Due to symmetry only half of the pile is modelled. The pile is modelled as a rigid body, 

with the force applied laterally in the center of the pile. All model boundaries are 

normally fixed, giving plane strain conditions. The pile interface is modeled as a rough 

interface, where separation is not allowed.  

Due to computational efforts, the mesh within a cylindrical radius of 2.5D from pile 

center is meshed with a finer mesh. The mesh has been evaluated against the theoretical 

solutions of limiting bearing pressure of a circular cylinder, failing under plain strain flow 

around mechanism. Randolph and Houlsby (1984) showed that a fully rough interfaced 

pile has a theoretical bearing pressure of 11.94Su. The Plaxis model calculates a limiting 

bearing pressure of 12.47Su, which leads to a 4.4% numerical overshoot due to 

discretization error. The model will be used for analyses at load steps prior to fully soil 

mobilization, thus the meshing is assumed to perform adequately.  
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5.3.2 Soil model 

The parametric analysis has basis in varying the stiffness variables OCR and IP, while the 

pre-consolidation stress, number of loading cycles and loading frequency are kept 

constant. The following soil profiles are considered in the parametric analysis: 

σ0’ [kPa]: 100 

OCR: 1, 40 

Ip [%]: 10, 20, 40, 60 

N: 10 

f [Hz]: 0.1 

By using the model parameters presented by Darendeli (2001) for clays, the soil 

damping and normalized stiffness reduction (G/G0) as a function of the shear strain is 

calculated. The calculated soil damping, and normalized stiffness reduction for the 

investigated soil profiles are presented below. Figure 5.5. and Figure 5.6. presents the 

normalized stiffness reduction and the soil damping, respectively, for soil profiles with an 

over consolidation ratio of 1. For the soil profiles with an over consolidation ratio of 40, 

the normalized stiffness reduction and the soil damping are presented in Figure 5.7 and 

Figure 5.8, respectively. 

 

 

Figure 5.5: Normalized stiffness reduction curves with an OCR of 1. 
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Figure 5.6: Estimated damping ratio. OCR = 1. 

 

 

Figure 5.7: Normalized stiffness reduction curves with an OCR of 40. 
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Figure 5.8: Estimated damping ratio. OCR = 40. 

Following the empirical correlation presented by Andersen (2015) in the third McCelland 

lecture, an estimation for initial stiffness, G0, is estimated by: 

𝐺0
𝜎𝑟𝑒𝑓′

= (30 +
75

𝐼𝑝
100

+ 0.03

) ∗ 𝑂𝐶𝑅0.5 

𝜎𝑟𝑒𝑓
′ = 𝑝𝑎 ∗ (

𝜎0′

𝑝𝑎
)

0.9

 

where pa is the atmospheric pressure equal to 100 kPa. The stress-strain response for 

the soil profile is found through the simple connection: 

𝜏(𝛾) = 𝐺(𝛾)𝛾 

The soil is modeled using the NGI-ADP soil model (Grimstad et al., 2012). The shear 

strength and failure plastic strains are used as curve fitting parameters to match the 

stress-strain response calculated by the Darendeli model. An example comparison of the 

stress-strain response between the Darendeli model, and the NGI-ADP soil model for the 

soft clay profile with high plasticity (OCR of 1, IP of 60%) are presented in Figure 5.9. 

For this example, a shear strength of 20 kPa, and a plastic failure strain of 1.2% are 

found to give a good match. The G0 is estimated using the above mentioned correlation, 

which results in a G0/Su ratio of 760 for this example case. As it is close to impossible to 

get an exact match between the different stress-strain profiles, the test is moderately 

limited, but as this exercise is conducted to investigate a hypothesis it is assumed that 

the limitation will not affect the result noteworthy.  
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Figure 5.9: Stress-strain comparison between the Darendeli model and the NGI-ADP soil 
model. 

5.3.3 Pile damping 

The pile damping is calculated by finding the hysteric damping of the soil. The radiation 

damping is neglected, as the investigated frequency is below 1 Hz for all soil profiles 

(Carswell et al., 2015). The energy loss is found by calculating the potential energy and 

the dissipated energy. These are found by dividing the soil modeled in Plaxis 3D into 

small soil elements. The potential energy for each soil element, ES0,i, is found by 

calculating the local energy density (stresses multiplied by strains) and multiplying it with 

the volume of the soil element, Vel,i: 

𝐸𝑆0,𝑖 = 𝑉𝑒𝑙,𝑖 (∑
1

2
𝜎𝑘𝑘𝜖𝑘𝑘 +∑

1

2
𝜏𝑘𝑗𝛾𝑘𝑗) 

The dissipated energy for one specific soil element, ED,i, is found by rewriting the 

equation for the equivalent damping ratio: 

𝑑 =
1

4𝜋

𝐸𝐷
𝐸𝑆0

⇒ 𝐸𝐷,𝑖 = 𝑑𝑖4𝜋𝐸𝑆0,𝑖 

where di is the local soil damping for at the considered soil element, found by the 

Darendeli damping curve, at the maximum shear strain of the soil element.  

After finding the potential- and dissipated energy for each soil element, the total 

foundation damping is found by summing up all energy contributions: 

𝑑𝑝𝑖𝑙𝑒 =
1

4𝜋

∑ 𝐸𝐷,𝑖
𝑛
𝑖=1

∑ 𝐸𝑆0,𝑖
𝑛
𝑖=1

 

In total eight soil profiles are analyzed. Each soil profile is tested at multiple deformation 

states, giving multiple data points for the damping comparison. 
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5.4 Results 

As a re-confirmation, the p-y response of the pile in the FE-model is compared to p-y 

curves estimated by the Zhang and Andersen (2017) framework. As presented below 

(Figure 5.10), the FE-model and the model by Zhang and Andersen (2017) provides a 

good match for all soil profiles, reconfirming the generality of the framework. 

 

Figure 5.10: p-y response predicted by the FE-model along the p-y curves constructed 

from the stress-strain curves by Zhang and Andersen (2017). 
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By comparing the soil- and the pile damping for the different stiffness profiles, the 

corresponding scaling factors at different deformation stages are calculated. As presented 

in Figure 5.11 and Figure 5.12, the scaling factors varies between 3 and 3.75, and does 

not seem to be affected by the stiffness profiles. For practical purposes a constant value 

of 3.3 is suggested and tested.   

 

Figure 5.11: Back-calculated scaling factor for four different soil profiles with OCR=1 at 
different displacement levels. Note that the x-axis is log-scaled. 

 

Figure 5.12: Back-calculated scaling factor for four different soil profiles with OCR=40 at 
different displacement levels. Note that the x-axis is log-scaled. 
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In general, the proposed scaling factor of 3.3 performs very well. The scaled soil damping 

gives a good match to the pile damping, estimated by the finite element analyses. The 

results of all damping calculations are presented in Figures 5.13-20. Figure 5.13 and 

Figure 5.20 shows the calculation results of the two limit cases, respectively a normally 

consolidated clay profile with a low plasticity index (OCR=1, IP = 10%) and an over-

consolidated clay profile with a high plasticity index (OCR=40, IP = 40%). As the figures 

show, small deviations are experienced in the damping ranges 2.5% to 6% where the 

scaled soil damping underpredict the pile damping, and above 11% where the pile 

damping is overpredicted.  

The estimated pile damping (Darendeli scaled) from the soil damping (Darendeli) and the 

FE-calculated pile damping (Plaxis) are compared. A good match between the FE-

calculated damping and scaled pile damping is demonstrated. Note that the soil damping 

(blue line) is plotted against the shear strain, while the pile damping (grey line), and the 

Plaxis points are plotted against the normalized displacement, y/D. All calculation results 

are presented in the following. 

 

 

Figure 5.13: Estimated pile damping by scaling the soil damping. OCR=1, IP=10%. 
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Figure 5.14: Estimated pile damping by scaling the soil damping. OCR=1, IP=20%. 

 

 

Figure 5.15: Estimated pile damping by scaling the soil damping. OCR=1, IP=40%. 
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Figure 5.16: Estimated pile damping by scaling the soil damping. OCR=1, IP=60%. 

 

 

Figure 5.17: Estimated pile damping by scaling the soil damping. OCR=40, IP=10%. 
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Figure 5.18: Estimated pile damping by scaling the soil damping. OCR=40, IP=20%. 

 

 

Figure 5.19: Estimated pile damping by scaling the soil damping. OCR=40, IP=40%. 
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Figure 5.20: Estimated pile damping by scaling the soil damping. OCR=40, IP=60%. 

 

5.5 Conclusions 

The following conclusions can be made based on the results presented above:  

• The FEA re-confirm the scaling relationship between the stress-strain behavior of 

the soil at element level and soil-pile interaction p-y response.  

• The hypothesis that it is possible to link the soil damping at element level to the 

pile damping at soil-pile interaction level is verified.  

• A scaling factor of 3.3 is found to give a good estimation of the pile damping by 

scaling the damping response of the soil.  

The proposed scaling factor of 3.3 is based on a study of relatively small parametric 

range. The effect of other variables such as the number of cycles, loading frequency and 

the pre-consolidation stress are not accounted for by the study conducted herein. These 

aspects need to be further investigated for a complete validation of the scaling factor.  

By the framework presented in section 2.6.5., one may discuss the impact of each of the 

variables that are yet to be tested. The pre-consolidation stress has a direct impact on 

the estimated reference strain, 𝛾𝑟. The reference strain is included in the calculation of 

the stiffness reduction curve, by moving the curve relative to the strain-axis. As seen 

through these analyses, the scaling factor does not vary appreciably relative to the 

stiffness reduction curve used for calculation. The stiffness reduction is independent of 

the loading frequency. It mostly affects the soil damping at small-strain area. What 

impact the variation of frequency remains unknown. The stiffness reduction curve is 

independent of the number of loading cycles. An increase in the number of loading cycles 

lead to a damping ratio reduction at the higher strain-values. As previously discussed, 

the estimated pile damping overpredict the actual pile damping at higher strains. 

Consequently, it can be conceived that the scaling factor may even be more precise for a 

higher number of cycles.  
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6.1 Conclusions 

Several conclusions can be drawn based on the work carried out in this study: 

1. A robust, efficient tool has been developed to calibrate soil reaction curves based 

on finite element analyses. The tool shows promising prospect for application in 

monopile design. 

2. The performance of a proposed framework for analyzing monopile response in 

normally consolidated to lightly over-consolidated soft clays and layered soil 

profiles is examined. It is found that the proposed framework generally captures 

the monopile response well, particularly for L/D ratios equal or greater than 7. For 

piles with smaller L/D ratios, the framework generally predicts responses that fall 

on the softer side compared to FEA. Calibration exercise using the developed 

optimization tool demonstrates that much improved predictions can be achieved 

by using calibrated soil springs. The modifiers are found to be quite stable with 

depth. The p-modifier is found to be close to unity (meaning no adjustment) while 

the y-modifier is found to be less than 1.  

3. A link between the soil damping at element level and at the soil-pile interaction 

level is confirmed, and for the parametric range tested, a scaling factor of 3.3 is 

revealed.  

 

6.2 Recommendations for further work 

There are several aspects that can be considered for future research: 

1. The effect of soil anisotropy is yet to be investigated. 

2. Further testing of the layering effect. In the analyses performed in this work, the 

only pile that had a noticeably effect of the layering was the pile embedded 60% 

into the stiffer soil layer. Further analyses with shallower embedment in the 

stronger layer could be useful. 

3. Investigate the pile response in layered soil profiles consisting of a combination of 

sand and clay. 

4. Further test the damping scaling model for wider parametric ranges. The effect of 

number of cycles, loading frequency and pre-consolidation stress are yet to be 

investigated.  

  

6 Conclusions and recommendation for 

further work 
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Appendix A  

Pile response by finite element analyses compared with multi-

spring model  



 

Appendix A.1. Soil profile 1  

A.1.1. L/D = 3. 𝛾𝑓
𝑝
 = 0.02 

 

Figure A.1: Comparison of pile response – Soil profile 1, L/D=3, 𝛾𝑓
𝑝
=0.02. The legend wrongfully says “py-calculated”. The pile responses 

are calculated using the aforementioned multi-spring beam-column model.  



 

A.1.2. L/D = 3. 𝛾𝑓
𝑝
 = 0.10 

 

Figure A.2: Comparison of pile response – Soil profile 1, L/D=3, 𝛾𝑓
𝑝
=0.10. The legend wrongfully says “py-calculated”. The pile responses 

are calculated using the aforementioned multi-spring beam-column model.  



 

A.1.3. L/D = 5. 𝛾𝑓
𝑝
 = 0.02 

 

Figure A.3: Comparison of pile response – Soil profile 1, L/D=5, 𝛾𝑓
𝑝
=0.02. The legend wrongfully says “py-calculated”. The pile responses 

are calculated using the aforementioned multi-spring beam-column model.  



 

A.1.4. L/D = 5. 𝛾𝑓
𝑝
 = 0.10 

 

Figure A.4: Comparison of pile response – Soil profile 1, L/D=5, 𝛾𝑓
𝑝
=0.10. The legend wrongfully says “py-calculated”. The pile responses 

are calculated using the aforementioned multi-spring beam-column model. 

  



 

A.1.5. L/D = 7. 𝛾𝑓
𝑝
 = 0.02 

 

Figure A.5: Comparison of pile response – Soil profile 1, L/D=7, 𝛾𝑓
𝑝
=0.02. The legend wrongfully says “py-calculated”. The pile responses 

are calculated using the aforementioned multi-spring beam-column model. 

  



 

A.1.6. L/D = 7. 𝛾𝑓
𝑝
 = 0.10 

 

Figure A.6: Comparison of pile response – Soil profile 1, L/D=7, 𝛾𝑓
𝑝
=0.10. The legend wrongfully says “py-calculated”. The pile responses 

are calculated using the aforementioned multi-spring beam-column model.  



 

A.1.7. L/D = 10. 𝛾𝑓
𝑝
 = 0.02 

 

Figure A.7: Comparison of pile response – Soil profile 1, L/D=10, 𝛾𝑓
𝑝
=0.02. The legend wrongfully says “py-calculated”. The pile responses 

are calculated using the aforementioned multi-spring beam-column model.  



 

A.1.8. L/D = 10. 𝛾𝑓
𝑝
 = 0.10 

 

Figure A.8: Comparison of pile response – Soil profile 1, L/D=10, 𝛾𝑓
𝑝
=0.10. The legend wrongfully says “py-calculated”. The pile responses 

are calculated using the aforementioned multi-spring beam-column model.  



 

Appendix A.2. Soil profile 2 

A.2.1. L/D = 3. 𝛾𝑓
𝑝
 = 0.02 

 

Figure A.9: Comparison of pile response – Soil profile 2, L/D=3, 𝛾𝑓
𝑝
=0.02. The legend wrongfully says “py-calculated”. The pile responses 

are calculated using the aforementioned multi-spring beam-column model. 



 

A.2.2. L/D = 3. 𝛾𝑓
𝑝
 = 0.10 

 

Figure A.10: Comparison of pile response – Soil profile 2, L/D=3, 𝛾𝑓
𝑝
=0.10. The legend wrongfully says “py-calculated”. The pile responses 

are calculated using the aforementioned multi-spring beam-column model.  



 

A.2.3. L/D = 5. 𝛾𝑓
𝑝
 = 0.02 

 

Figure A.11: Comparison of pile response – Soil profile 2, L/D=5, 𝛾𝑓
𝑝
=0.02. The legend wrongfully says “py-calculated”. The pile responses 

are calculated using the aforementioned multi-spring beam-column model. 

  



 

A.2.4. L/D = 5. 𝛾𝑓
𝑝
 = 0.10 

 

Figure A.12: Comparison of pile response – Soil profile 2, L/D=5, 𝛾𝑓
𝑝
=0.10. The legend wrongfully says “py-calculated”. The pile responses 

are calculated using the aforementioned multi-spring beam-column model.  



 

A.2.5. L/D = 7. 𝛾𝑓
𝑝
 = 0.02 

 

Figure A.13: Comparison of pile response – Soil profile 2, L/D=7, 𝛾𝑓
𝑝
=0.02. The legend wrongfully says “py-calculated”. The pile responses 

are calculated using the aforementioned multi-spring beam-column model.  



 

A.2.6. L/D = 7. 𝛾𝑓
𝑝
 = 0.10 

 

Figure A.14: Comparison of pile response – Soil profile 2, L/D=7, 𝛾𝑓
𝑝
=0.10. The legend wrongfully says “py-calculated”. The pile responses 

are calculated using the aforementioned multi-spring beam-column model.  



 

A.2.7. L/D = 10. 𝛾𝑓
𝑝
 = 0.02 

 

Figure A.15: Comparison of pile response – Soil profile 2, L/D=10, 𝛾𝑓
𝑝
=0.02. The legend wrongfully says “py-calculated”. The pile 

responses are calculated using the aforementioned multi-spring beam-column model.  



 

A.2.8. L/D = 10. 𝛾𝑓
𝑝
 = 0.10 

 

Figure A.16: Comparison of pile response – Soil profile 2, L/D=10, 𝛾𝑓
𝑝
=0.10. The legend wrongfully says “py-calculated”. The pile 

responses are calculated using the aforementioned multi-spring beam-column model.  



 

Appendix A.3. Soil profile 3 

A.3.1. L/D = 3. 𝛾𝑓
𝑝
 = 0.02 

 
Figure A.17: Comparison of pile response – Soil profile 3, L/D=3, 𝛾𝑓

𝑝
=0.02. The legend wrongfully says “py-calculated”. The pile responses 

are calculated using the aforementioned multi-spring beam-column model.   



 

A.3.2. L/D = 3. 𝛾𝑓
𝑝
 = 0.10 

 
Figure A.18: Comparison of pile response – Soil profile 3, L/D=3, 𝛾𝑓

𝑝
=0.10. The legend wrongfully says “py-calculated”. The pile responses 

are calculated using the aforementioned multi-spring beam-column model.  



 

A.3.3. L/D = 5. 𝛾𝑓
𝑝
 = 0.02 

 
Figure A.19: Comparison of pile response – Soil profile 3, L/D=5, 𝛾𝑓

𝑝
=0.02. The legend wrongfully says “py-calculated”. The pile responses 

are calculated using the aforementioned multi-spring beam-column model.  



 

A.3.4. L/D = 5. 𝛾𝑓
𝑝
 = 0.10 

 
Figure A.20: Comparison of pile response – Soil profile 3, L/D=5, 𝛾𝑓

𝑝
=0.10. The legend wrongfully says “py-calculated”. The pile responses 

are calculated using the aforementioned multi-spring beam-column model.  



 

A.3.5. L/D = 7. 𝛾𝑓
𝑝
 = 0.02 

 
Figure A.21: Comparison of pile response – Soil profile 3, L/D=7, 𝛾𝑓

𝑝
=0.02. The legend wrongfully says “py-calculated”. The pile responses 

are calculated using the aforementioned multi-spring beam-column model.  



 

A.3.6. L/D = 7. 𝛾𝑓
𝑝
 = 0.10 

 
Figure A.22: Comparison of pile response – Soil profile 3, L/D=7, 𝛾𝑓

𝑝
=0.10. The legend wrongfully says “py-calculated”. The pile responses 

are calculated using the aforementioned multi-spring beam-column model.  



 

A.3.7. L/D = 10. 𝛾𝑓
𝑝
 = 0.02 

 
Figure A.23: Comparison of pile response – Soil profile 3, L/D=10, 𝛾𝑓

𝑝
=0.02. The legend wrongfully says “py-calculated”. The pile 

responses are calculated using the aforementioned multi-spring beam-column model.  



 

A.3.8. L/D = 10. 𝛾𝑓
𝑝
 = 0.10 

 
Figure A.24: Comparison of pile response – Soil profile 3, L/D=10, 𝛾𝑓

𝑝
=0.10. The legend wrongfully says “py-calculated”. The pile 

responses are calculated using the aforementioned multi-spring beam-column model.  



 

Appendix A.4. Soil profile 4 

A.4.1. L/D = 3. 𝛾𝑓
𝑝
 = 0.02 

 
Figure A.25: Comparison of pile response – Soil profile 4, L/D=3, 𝛾𝑓

𝑝
=0.02. The legend wrongfully says “py-calculated”. The pile responses 

are calculated using the aforementioned multi-spring beam-column model.  



 

A.4.2. L/D = 3. 𝛾𝑓
𝑝
 = 0.10 

 
Figure A.26: Comparison of pile response – Soil profile 4, L/D=3, 𝛾𝑓

𝑝
=0.10. The legend wrongfully says “py-calculated”. The pile responses 

are calculated using the aforementioned multi-spring beam-column model.  



 

A.4.3. L/D = 5. 𝛾𝑓
𝑝
 = 0.02 

 
Figure A.27: Comparison of pile response – Soil profile 4, L/D=5, 𝛾𝑓

𝑝
=0.02. The legend wrongfully says “py-calculated”. The pile responses 

are calculated using the aforementioned multi-spring beam-column model.  



 

A.4.4. L/D = 5. 𝛾𝑓
𝑝
 = 0.10 

 
Figure A.28: Comparison of pile response – Soil profile 4, L/D=5, 𝛾𝑓

𝑝
=0.10. The legend wrongfully says “py-calculated”. The pile responses 

are calculated using the aforementioned multi-spring beam-column model.  



 

A.4.5. L/D = 7. 𝛾𝑓
𝑝
 = 0.02 

 
Figure A.29: Comparison of pile response – Soil profile 4, L/D=7, 𝛾𝑓

𝑝
=0.02. The legend wrongfully says “py-calculated”. The pile responses 

are calculated using the aforementioned multi-spring beam-column model.  



 

A.4.6. L/D = 7. 𝛾𝑓
𝑝
 = 0.10 

 
Figure A.30: Comparison of pile response – Soil profile 4, L/D=7, 𝛾𝑓

𝑝
=0.10. The legend wrongfully says “py-calculated”. The pile responses 

are calculated using the aforementioned multi-spring beam-column model.  



 

A.4.7. L/D = 10. 𝛾𝑓
𝑝
 = 0.02 

 
Figure A.31: Comparison of pile response – Soil profile 4, L/D=10, 𝛾𝑓

𝑝
=0.02. The legend wrongfully says “py-calculated”. The pile 

responses are calculated using the aforementioned multi-spring beam-column model.  



 

A.4.8. L/D = 10. 𝛾𝑓
𝑝
 = 0.10 

 
Figure A.32: Comparison of pile response – Soil profile 4, L/D=10, 𝛾𝑓

𝑝
=0.10. The legend wrongfully says “py-calculated”. The pile 

responses are calculated using the aforementioned multi-spring beam-column model.  



 

Appendix A.5. Soil profile 5 

A.5.1. L/D = 3. 𝛾𝑓
𝑝
 = 0.02 

 
Figure A.33: Comparison of pile response – Soil profile 5, L/D=3, 𝛾𝑓

𝑝
=0.02. The legend wrongfully says “py-calculated”. The pile responses 

are calculated using the aforementioned multi-spring beam-column model.  



 

A.5.2. L/D = 3. 𝛾𝑓
𝑝
 = 0.10 

 
Figure A.34: Comparison of pile response – Soil profile 5, L/D=3, 𝛾𝑓

𝑝
=0.10. The legend wrongfully says “py-calculated”. The pile responses 

are calculated using the aforementioned multi-spring beam-column model.  



 

A.5.3. L/D = 5. 𝛾𝑓
𝑝
 = 0.02 

 
Figure A.35: Comparison of pile response – Soil profile 5, L/D=5, 𝛾𝑓

𝑝
=0.02. The legend wrongfully says “py-calculated”. The pile responses 

are calculated using the aforementioned multi-spring beam-column model.  



 

A.5.4. L/D = 5. 𝛾𝑓
𝑝
 = 0.10 

 
Figure A.36: Comparison of pile response – Soil profile 5, L/D=5, 𝛾𝑓

𝑝
=0.10. The legend wrongfully says “py-calculated”. The pile responses 

are calculated using the aforementioned multi-spring beam-column model.  



 

A.5.5. L/D = 7. 𝛾𝑓
𝑝
 = 0.02 

 
Figure A.37: Comparison of pile response – Soil profile 5, L/D=7, 𝛾𝑓

𝑝
=0.02. The legend wrongfully says “py-calculated”. The pile responses 

are calculated using the aforementioned multi-spring beam-column model.  



 

A.5.6. L/D = 7. 𝛾𝑓
𝑝
 = 0.10 

 
Figure A.38: Comparison of pile response – Soil profile 5, L/D=7, 𝛾𝑓

𝑝
=0.10. The legend wrongfully says “py-calculated”. The pile responses 

are calculated using the aforementioned multi-spring beam-column model.  



 

A.5.7. L/D = 10. 𝛾𝑓
𝑝
 = 0.02 

 
Figure A.39: Comparison of pile response – Soil profile 5, L/D=10, 𝛾𝑓

𝑝
=0.02. The legend wrongfully says “py-calculated”. The pile 

responses are calculated using the aforementioned multi-spring beam-column model.  



 

A.5.8. L/D = 10. 𝛾𝑓
𝑝
 = 0.10 

 
Figure A.40: Comparison of pile response – Soil profile 5, L/D=10, 𝛾𝑓

𝑝
=0.10. The legend wrongfully says “py-calculated”. The pile 

responses are calculated using the aforementioned multi-spring beam-column model.  



 

Appendix B  

Pile response analyses using the optimization tool  



 

 

Appendix B.1. Soil profile 1 

B.1.1. L/D = 3. 𝛾𝑓
𝑝
 = 0.02 

 

Figure B.1: Optimized pile response – Soil profile 1, L/D=3, 𝛾𝑓
𝑝
=0.02.   



 

Table B.1: Normalized error reduction, soil profile 1, 𝛾𝑓
𝑝
 = 0.02, L/D = 3. 

Pile load [kN]  Error reduction [%] 

215 Displacement 77.98 

Rotation 74.97 

Combined 76.47 

486 Displacement 84.04 

Rotation 83.62 

Combined 83.88 

639 Displacement 89.03 

Rotation 93.07 

Combined 91.28 

777 Displacement 79.99 

Rotation 92.17 

Combined 86.61 

905 Displacement 42.67 

Rotation 51.93 

Combined 47.66 

  



 

B.1.2. L/D = 3. 𝛾𝑓
𝑝
 = 0.10 

 

Figure B.2: Optimized pile response – Soil profile 1, L/D=3, 𝛾𝑓
𝑝
=0.10. 

  



 

Table B.2: Normalized error reduction, soil profile 1, 𝛾𝑓
𝑝
 = 0.10, L/D = 3. 

Pile load [kN]  Error reduction [%] 

68 Displacement 47.67 

Rotation 49.77 

Combined 48.38 

232 Displacement 73.67 

Rotation 72.20 

Combined 72.93 

538 Displacement 73.28 

Rotation 72.60 

Combined 72.93 

737 Displacement 81.46 

Rotation 88.30 

Combined 85.28 

900 Displacement 25.95 

Rotation 43.38 

Combined 35.34 

  



 

B.1.3. L/D = 5. 𝛾𝑓
𝑝
 = 0.02 

 

Figure B.3: Optimized pile response – Soil profile 1, L/D=5, 𝛾𝑓
𝑝
=0.02.  



 

Table B.3: Normalized error reduction, soil profile 1, 𝛾𝑓
𝑝
 = 0.02, L/D = 5. 

Pile load [kN]  Error reduction [%] 

486 Displacement 88.38 

Rotation 88.19 

Combined 89.19 

1098 Displacement 88.11 

Rotation 84.81 

Combined 86.89 

1648 Displacement 88.45 

Rotation 85.40 

Combined 87.22 

2473 Displacement 91.90 

Rotation 91.76 

Combined 92.15 

3711 Displacement 60.37 

Rotation 69.08 

Combined 64.84 

  



 

B.1.4. L/D = 5. 𝛾𝑓
𝑝
 = 0.10 

 

Figure B.4: Optimized pile response – Soil profile 1, L/D=5, 𝛾𝑓
𝑝
=0.10.  



 

Table B.4: Normalized error reduction, soil profile 1, 𝛾𝑓
𝑝
 = 0.10, L/D = 5. 

Pile load [kN]  Error reduction [%] 

486 Displacement 62.91 

Rotation 75.47 

Combined 68.72 

1098 Displacement 85.46 

Rotation 82.10 

Combined 83.92 

1648 Displacement 77.82 

Rotation 75.70 

Combined 76.82 

2473 Displacement 82.27 

Rotation 80.60 

Combined 81.46 

3711 Displacement 67.02 

Rotation 75.48 

Combined 71.61 

  



 

Appendix B.2. Soil profile 2 

B.2.1. L/D = 3. 𝛾𝑓
𝑝
 = 0.02 

 

Figure B.5: Optimized pile response – Soil profile 2, L/D=3, 𝛾𝑓
𝑝
=0.02.  



 

Table B.5: Normalized error reduction, soil profile 2, 𝛾𝑓
𝑝
 = 0.02, L/D = 3. 

Pile load [kN]  Error reduction [%] 

215 Displacement 84.39 

Rotation 83.67 

Combined 84.26 

486 Displacement 80.10 

Rotation 77.58 

Combined 78.92 

823 Displacement 78.75 

Rotation 77.73 

Combined 78.31 

1476 Displacement 85.89 

Rotation 94.41 

Combined 90.53 

1940 Displacement -0.72 

Rotation -6.43 

Combined -3.81 

  



 

B.2.2. L/D = 3. 𝛾𝑓
𝑝
 = 0.10 

 

Figure B.6: Optimized pile response – Soil profile 2, L/D=3, 𝛾𝑓
𝑝
=0.10.  



 

Table B.6: Normalized error reduction, soil profile 2, 𝛾𝑓
𝑝
=0.10, L/D=3. 

Pile load [kN]  Error reduction [%] 

486 Displacement 76.63 

Rotation 83.16 

Combined 80.25 

823 Displacement 71.62 

Rotation 75.15 

Combined 73.53 

1107 Displacement 75.58 

Rotation 79.38 

Combined 77.69 

1417 Displacement 77.15 

Rotation 91.90 

Combined 85.21 

1909 Displacement -50.46 

Rotation -117.00 

Combined -79.07 

  



 

B.2.3. L/D = 5. 𝛾𝑓
𝑝
 = 0.02 

 

Figure B.7: Optimized pile response – Soil profile 2, L/D=5, 𝛾𝑓
𝑝
=0.02.  



 

Table B.7: Normalized error reduction, soil profile 2, 𝛾𝑓
𝑝
=0.02, L/D=5. 

Pile load [kN]  Error reduction [%] 

486 Displacement 82.15 

Rotation 90.80 

Combined 87.93 

1098 Displacement 86.85 

Rotation 90.80 

Combined 89.94 

2473 Displacement 88.77 

Rotation 88.49 

Combined 89.26 

3711 Displacement 89.39 

Rotation 90.92 

Combined 90.68 

5569 Displacement 81.83 

Rotation 92.66 

Combined 87.43 

  



 

B.2.4. L/D = 5. 𝛾𝑓
𝑝
 = 0.10 

 

Figure B.8: Optimized pile response – Soil profile 2, L/D=5, 𝛾𝑓
𝑝
=0.10.  



 

Table B.8: Normalized error reduction, soil profile 2, 𝛾𝑓
𝑝
=0.10, L/D=5. 

Pile load [kN]  Error reduction [%] 

486 Displacement 56.69 

Rotation 72.71 

Combined 64.51 

1098 Displacement 80.18 

Rotation 83.04 

Combined 81.29 

2473 Displacement 79.58 

Rotation 76.39 

Combined 78.08 

3711 Displacement 78.38 

Rotation 76.04 

Combined 77.24 

5569 Displacement 88.45 

Rotation 92.05 

Combined 90.52 

  



 

Appendix B.3. Soil profile 3 

B.3.1. L/D = 3. 𝛾𝑓
𝑝
 = 0.02 

 

Figure B.9: Optimized pile response – Soil profile 3, L/D=3, 𝛾𝑓
𝑝
=0.02.  



 

Table B.9: Normalized error reduction, soil profile 3, 𝛾𝑓
𝑝
=0.02, L/D=3. 

Pile load [kN]  Error reduction [%] 

486 Displacement 71.68 

Rotation 70.03 

Combined 70.94 

823 Displacement 81.27 

Rotation 79.77 

Combined 80.57 

1089 Displacement 93.74 

Rotation 98.39 

Combined 96.30 

1338 Displacement 4.38 

Rotation 20.90 

Combined 13.64 

  



 

B.3.2. L/D = 3. 𝛾𝑓
𝑝
 = 0.10 

 

Figure B.10: Optimized pile response – Soil profile 3, L/D=3, 𝛾𝑓
𝑝
=0.10.  



 

Table B.10: Normalized error reduction, soil profile 3, 𝛾𝑓
𝑝
=0.10, L/D=3. 

Pile load [kN]  Error reduction [%] 

122 Displacement 66.78 

Rotation 63.84 

Combined 64.64 

274 Displacement 79.61 

Rotation 78.23 

Combined 79.00 

696 Displacement 69.28 

Rotation 67.80 

Combined 68.51 

858 Displacement 78.18 

Rotation 76.71 

Combined 77.41 

  



 

B.3.3. L/D = 5. 𝛾𝑓
𝑝
 = 0.02 

 

Figure B.11: Optimized pile response – Soil profile 3, L/D=5, 𝛾𝑓
𝑝
=0.02.  



 

Table B.11: Normalized error reduction, soil profile 3, 𝛾𝑓
𝑝
=0.02, L/D=5. 

Pile load [kN]  Error reduction [%] 

486 Displacement 82.24 

Rotation 80.97 

Combined 82.58 

1098 Displacement 81.49 

Rotation 78.61 

Combined 80.74 

2473 Displacement 80.23 

Rotation 77.21 

Combined 79.05 

3711 Displacement 85.21 

Rotation 84.16 

Combined 85.00 

5569 Displacement 24.33 

Rotation 38.63 

Combined 31.33 

  



 

B.3.4. L/D = 5. 𝛾𝑓
𝑝
 = 0.10 

 

Figure B.12: Optimized pile response – Soil profile 3, L/D=5, 𝛾𝑓
𝑝
=0.10.  



 

Table B.12: Normalized error reduction, soil profile 3, 𝛾𝑓
𝑝
=0.10, L/D=5. 

Pile load [kN]  Error reduction [%] 

486 Displacement 80.66 

Rotation 80.15 

Combined 79.86 

1098 Displacement 89.28 

Rotation 84.24 

Combined 87.12 

2473 Displacement 70.78 

Rotation 69.02 

Combined 69.99 

3711 Displacement 76.73 

Rotation 75.77 

Combined 76.30 

5525 Displacement 31.93 

Rotation 38.60 

Combined 35.15 

  



 

Appendix B.4. Soil profile 4 

B.4.1. L/D = 3. 𝛾𝑓
𝑝
 = 0.02 

 

Figure B.13: Optimized pile response – Soil profile 4, L/D=3, 𝛾𝑓
𝑝
=0.02.  



 

Table B.13: Normalized error reduction, soil profile 4, 𝛾𝑓
𝑝
=0.02, L/D=3. 

Pile load [kN]  Error reduction [%] 

486 Displacement 70.56 

Rotation 69.64 

Combined 70.36 

823 Displacement 77.27 

Rotation 76.53 

Combined 77.12 

1244 Displacement 90.69 

Rotation 89.46 

Combined 90.26 

1893 Displacement -38.68 

Rotation -10.45 

Combined -23.30 

  



 

B.4.2. L/D = 3. 𝛾𝑓
𝑝
 = 0.10 

 

Figure B.14: Optimized pile response – Soil profile 4, L/D=3, 𝛾𝑓
𝑝
=0.10.  



 

Table B.14: Normalized error reduction, soil profile 4, 𝛾𝑓
𝑝
=0.10, L/D=3. 

Pile load [kN]  Error reduction [%] 

122 Displacement 84.45 

Rotation 69.29 

Combined 77.02 

369 Displacement 73.50 

Rotation 70.71 

Combined 72.23 

1018 Displacement 73.65 

Rotation 69.57 

Combined 71.51 

1727 Displacement -1.48 

Rotation 44.13 

Combined 24.40 

  



 

B.4.3. L/D = 5. 𝛾𝑓
𝑝
 = 0.02 

 

Figure B.15: Optimized pile response – Soil profile 4, L/D=5, 𝛾𝑓
𝑝
=0.02.  



 

Table B.15: Normalized error reduction, soil profile 4, 𝛾𝑓
𝑝
=0.02, L/D=5. 

Pile load [kN]  Error reduction [%] 

486 Displacement 84.09 

Rotation 87.55 

Combined 89.28 

1098 Displacement 82.24 

Rotation 86.21 

Combined 87.27 

2473 Displacement 80.06 

Rotation 80.10 

Combined 81.66 

3711 Displacement 77.16 

Rotation 75.51 

Combined 77.19 

8354 Displacement 73.97 

Rotation 85.79 

Combined 81.43 

  



 

B.4.4. L/D = 5. 𝛾𝑓
𝑝
 = 0.10 

 

Figure B.16: Optimized pile response – Soil profile 4, L/D=5, 𝛾𝑓
𝑝
=0.10.  



 

Table B.16: Normalized error reduction, soil profile 4, 𝛾𝑓
𝑝
=0.10, L/D=5. 

Pile load [kN]  Error reduction [%] 

486 Displacement 82.65 

Rotation 83.91 

Combined 85.14 

1098 Displacement 74.75 

Rotation 71.38 

Combined 72.18 

2473 Displacement 76.71 

Rotation 72.33 

Combined 75.02 

3711 Displacement 70.23 

Rotation 67.02 

Combined 68.88 

8354 Displacement 65.26 

Rotation 93.07 

Combined 79.77 

  



 

Appendix C  

Stiffness spring modifiers  



 

Appendix C.1. Normally consolidated clay 

Table C.1.1. NC-Clay. L/D=3. 

𝛾𝑓
𝑝
 Soil profile 1 Soil profile 2 

2 % 

  

10 % 

  



 

Table C.1.2. NC-Clay. L/D=5. 

𝛾𝑓
𝑝
 Soil profile 1 Soil profile 2 

2 % 

  

10 % 

  



 

Table C.2.1. Layered soil profile. L/D=3. 

𝛾𝑓
𝑝
 Soil profile 3 Soil profile 4 

2 % 

  

10 % 

  



 

Table C.2.2. Layered soil profile. L/D=5. 

𝛾𝑓
𝑝
 Soil profile 3 Soil profile 4 

2 % 

  

10 % 

  



 

 


