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I

Abstract

Titanium-aluminium alloys in the range up to 50% aluminium have been stud-

ied with Monte Carlo simulations using a cluster expansion model based on

density functional theory calculations. The calculator used is the open-source

code GPAW, with the Perdew-Burke-Ernzerhof exchange-correlation energy

functional. Several calculations of physical properties of pure titanium are per-

formed to evaluate and validate the execution of the density functional theory

calculations. The energies for a set of structures of varying titanium-aluminium

composition on a hexagonal close-packed lattice were calculated and used to

develop a cluster expansion model for the alloy. The clusters and effective

cluster interactions of this model are briefly interpreted before used to perform

Monte Carlo simulations on larger structures with the Metropolis-Hastings al-

gorithm. Simulations are performed in both the canonical and the semi-grand

canonical ensemble. The enthalpy of formation for the alloy is calculated up

to 50% aluminium, and a Ti3Al crystal structure phase is identified.



II

Sammendrag

Titan-aluminium legeringer opp til 50% aluminium har blitt studert ved hjelp

av Monte Carlo-simuleringer som bruker en klynge-ekspansjonsmodell basert p̊a

utregninger gjort med tetthetsfunksjonalteori. Kalkulatoren som er brukt, er

opensource-koden GPAW sammen med Perdew-Burke-Ernzerhof funksjonalet.

Flere utregninger for rent titans fysiske egenskaper har blitt gjort for å evaluere

og validere utførelsen av tetthetsfunksjonalteoriutregningene. Energiene til et

sett med strukturer med varierende sammensetning av titan og aluminium

i heksagonalt tettpakket gitterstruktur ble regnet ut og brukt til å lage en

klynge-ekspansjonsmodell for legeringen. Klyngene og de effektive klyngeinter-

aksjonene i denne modellen er kjapt diskutert før de er brukt til å kjøre Monte

Carlo-simuleringer p̊a større strukturer med Metropolis-Hastings algoritmen.

Simuleringene er gjort i b̊ade det kanoniske og det semi-store kanoniske ensem-

blet. Formeringsentalpien for legeringen er utregnet opp til 50% aluminium,

og en fase med Ti3Al-krystallstruktur ble funnet.
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Chapter 1
Introduction

Metals are some of our most important materials as the combination of strength

and moldability have made them contribute to many of the greatest techno-

logical endeavours of our species. From tools in the bronze age to spacecraft

traversing the solar system, the art of refining metals and enhancing their prop-

erties has been of tremendous importance to the development of our society.

In the everlasting search for stronger and more durable materials, alloys of

different metals provide a vast array of possible combinations to investigate.

The way combining different metals change the properties is easy to observe

on a macroscopic level, but understanding the microscopic structural changes

and their implications requires advanced scientific methods. As experimental

methods can be expensive, computer simulations are becoming increasingly

useful for studying materials as computing methods are evolving and computer

resources are increasing.

Titanium is a metal of high interest as its pure form already is a high

strength and low weight material. By alloying with other metals, it can become

even stronger. Titanium is actually one of the more abundant elements in the

Earth’s crust at ninth place [1], but it is rarely found in high concentrations

and never in its pure form, resulting in high processing costs. Nonetheless, the

expensive metal and its alloys have found their uses in a wide range of products,

1



2 CHAPTER 1. INTRODUCTION

typically in industries of a high technological standard. Examples include jet

engine parts in the aerospace industry and various components used in medical

procedures. Titanium has, undoubtedly, found its way into common knowledge

as a sort of wonder material.

In this thesis, aluminium will be investigated as an alloying element for

titanium. The properties of the titanium-aluminium alloy will be investigated

on an atomic scale through the use of computer simulations. Initially, the

method used will be density functional theory (DFT), an approach to finding

the electronic structure by expressing it as an electron density. Emphasis will

be put on verifying that the results from the simulations are in agreement with

experimental results, and pure titanium will be the subject for these tests. From

DFT calculations of alloy structures, a cluster expansion (CE) model will be

developed, which can then be used to execute Monte Carlo (MC) simulations

for the alloy. The focus will be on the titanium-rich side of the phase diagram

shown in figure 1.1. The alloy simulations will be performed with the hexagonal

close-packed (hcp) lattice as this is the structure of pure titanium (αTi) at low

temperatures. Pure aluminium has a face-centered cubic structure, an since

the MC simulations used in this thesis are not able to treat multiple crystal

structures at the same time, the simulations are kept below 50% aluminium.

In addition, the body-centered cubic (bcc) structure will be used in a few

calculations to compare results with calculations for hcp. It is of interest to see

if the crystalline phases Ti3Al and TiAl in the phase diagram can be replicated

by computer simulations.

Starting with chapter 2, some concepts related to crystal structures will

be explained, a field within solid state physics. This is followed by a brief

presentation of the canonical and grand canonical ensemble from statistical

mechanics in chapter 3. Density functional theory and exchange-correlation

functionals are introduced in chapter 4, while the CE method and Monte Carlo

simulations are introduced in chapter 5. Then, the computational methods are

presented in chapter 6 before the results of multiple computer simulations of

both pure titanium and the titanium-aluminium alloy are presented in chapter

7.



3

Figure 1.1: The phase diagram for the titanium-aluminium alloy
[2].
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Chapter 2
Crystal Structure

2.1 Lattice

A crystal structure can be described as an infinite repetition of a basis group

of atoms [3]. The group is repeated on a lattice defined by three translation

vectors. Moving any arbitrary integer number of vectors results in the lattice

appearing the same in every direction.

r′ = r + u1a1 + u2a2 + u3a3 (2.1)

where ai are the lattice vectors and ui are arbitrary integers. This describes

how a position r′ on a lattice is not unique, but equivalent to all other positions

r given a translation on the lattice. If one point in space is defined as origo, all

integer translations from this point constitute the lattice sites of the crystal.

All sites are the reference point for a basis, which is identical at every site. In

the simplest case, the basis is just a single atom, but it can be any number of

different atoms at different positions

rj = xja1 + yja2 + zja3 (2.2)

5
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with 0 ≤ xj , yj , zj < 1, meaning that the j’th atom is placed somewhere less

than one translation vector away.

2.2 Body-Centered Cubic Structure

The bcc structure consists of a cube with one sphere in every corner and one

in the centre, visualised in figure 2.1a. The translation vectors are

a1 =
(a

2
,
a

2
,−a

2

)
a2 =

(a
2
,−a

2
,
a

2

)
a3 =

(
− a

2
,
a

2
,
a

2

)
. (2.3)

This structure has a packing fraction of 0.68, meaning that closely packed

spheres take up this fraction of the total volume.

2.3 Hexagonal Close-Packed Structure

The hcp structure is shown in figure 2.1b and is obtained by arranging spheres

on a two-dimensional hexagonal lattice and stacking several of these on top of

each other, called AB stacking. The layers are placed relative to each other

so that every sphere has three equally distanced neighbours in the next layer.

The translation vectors are

a1 =
(a

2
,

√
3a

2
, 0
)
a2 =

(a
2
,−
√

3a

2
, 0
)
a3 =

(
0, 0, c

)
, (2.4)

with two lattice constants a and c. It has a two-atom basis with the second

atom in position r = 1
3a1 + 2

3a2 + 1
2a3. In an ideal hcp structure, the ratio

between the lattice constants is fixed to c = 2
√
6

3 a. It then has a packing

fraction of 0.74, the highest obtainable for hard spheres.
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x

y

z

a1

a2a3

(a) Body-centered cubic

a1

a2

a3

x y

z

(b) Hexagonal close-packed

Figure 2.1: Schematic visualisation of the two structures with
lattice vectors. The basis atoms are represented by white spheres.

2.4 Reciprocal Lattice

The lattice of a crystal structure is an intuitive representation of the physical

placements of atoms, but to study aspects linked closely to the periodicity of

the structure, Fourier analysis provides more insight. A Fourier transform of

the lattice is called the Reciprocal Lattice[3]. Like the real-space lattice, the

reciprocal lattice is described by a set of vectors

G = v1b1 + v2b2 + v3b3 (2.5)

where vi is an integer. This set of vectors has to fulfil the condition

n(r) =
∑
G

nG exp (iG · r) (2.6)

for any translation T = u1a1 + u2a2 + u3a3 on the lattice. Here, nG is

a set of Fourier coefficients and n(r) is a physical property of the crystal, for

example the electron density. The set of vectors G can be found from the
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lattice vectors:

b1 = 2π
a2 × a3

a1 · a2 × a3
b2 = 2π

a3 × a1

a1 · a2 × a3
b3 = 2π

a1 × a2

a1 · a2 × a3
. (2.7)

In the real space, vectors on the lattice describe positions and the unit

of a vector is length. In the reciprocal space, vectors have the unit 1/length

and describe waves with a certain direction and wave number. Since electrons

quantum mechanically are waves within the crystal structure, vectors in the

reciprocal space is a powerful tool for studying their behaviour. Bloch’s theorem

states that a solution to the Schrödinger equation in a periodic potential must

be

ψ(r) = u(r) exp(ik · r) (2.8)

with u(r) being a potential with the same period as the crystal structure

and k is a wave vector. This means that k-vectors in the reciprocal space are

very useful for describing electrons in crystal structures.

An essential concept in reciprocal space is the Brillouin zone. It can be

defined as a volume around a reciprocal lattice point where no part of the

volume is closer to any other lattice point. Since a translation G results in

the lattice looking the same in all directions, the behaviour of electrons can be

described by looking at just one Brillouin zone.

2.5 Metals

The electrons in an atom’s outermost shell are called valence electrons and are

one of the causes for interaction between atoms. For certain atoms, lower energy

is obtained by freely sharing the valence electrons within a bulk of atoms. This

is called metal bonding and is better described as positive ions floating in a sea

of electrons. No neighbouring ions are directly bound to each other, more just

restricted by the electric field caused by the sea of electrons and neighbouring

ions. As a consequence, the energy required for rearrangement of the structure



2.5. METALS 9

is low compared to other types of solids. This leads to a higher chance of

relaxing to the ground state, rendering metals a solid likely to form crystals.

2.5.1 Cohesive Energy

The cohesive energy is the difference in energy between a single atom in free

space and the same atom in a crystal structure [4]. It is thereby a measure of

how well the atoms ”cling together” in a given structure. It can be defined as

Ec = Es −
Eb
N

(2.9)

with Es being the energy of a single atom in free space and Eb is the total

energy of a bulk of N atoms. If Ec is positive, the energy per atom is lowered

by being ordered in a crystal, meaning that this structure is preferable.

2.5.2 Vacancy Formation Energy

Another way of measuring how well atoms in a metal are bound together is the

vacancy formation energy. An atom is removed from the fully occupied lattice,

resulting in a slightly different ordering of the neighbouring atoms. The new

structure is not ideal for the electrons in the area, and the energy per atom is

increased. The vacancy formation energy [5] can be described by

Evf = Ev −
N − 1

N
Eb (2.10)

where Ev is the total energy of the bulk of atoms with a vacancy.

2.5.3 Enthalpy of Formation for Alloys

Due to the nature of the metallic bonding and its sea of electrons, different

elements may very well coexist within the same structure, called an alloy. The

structure of an alloy is not necessarily ordered, but at the right concentrations

of components and thermal processing, it can form crystals. Regardless of

structure, the mixing of different elements will change the enthalpy of the
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system. Enthalpy is defined as

H = U + pV (2.11)

where U is the internal energy, p is the pressure and V is the volume.

The enthalpy of formation is the change in enthalpy from the pure, separated

elements to the mixed alloy, expressed as

Hformation =
∑

Halloy −
∑

Hstart. (2.12)

Consider a binary alloy in the special case where the pressure p = 0. The

enthalpy is then the same as the internal energy and in this case the enthalpy

of formation is

Hformation = Ealloy − CaEa − CbEb (2.13)

where Ealloy is the average internal energy per atom in the alloy and Ea and

Eb is the internal energy per atom for the pure crystal of element a and b.

The atomic concentration C is expressed as a fraction so that Ca + Cb = 1.

Enthalpy of formation as a function of concentration is an intuitive insight into

the nature of the alloy. Positive values mean that the different elements have

a lower total energy by staying separated, and no alloy will form. Negative

values represent situations where it is energetically beneficial for the elements

to mix, with the minimum enthalpy of formation representing the most stable

alloy.

2.6 Fermi Level

As electrons are fermions, they obey the Pauli exclusion principle [3, p. 56]

stating that two fermions may not occupy the same quantum state. In an

N-electron system in the ground state, the energy of the topmost filled level

is called the Fermi energy. At absolute zero temperature, all possible energy

states below this energy are occupied. If the temperature is increased, electrons
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can move to higher states, leaving some lower states vacant. The Fermi-Dirac

distribution gives the probability that an energy state ε is occupied as

f(ε) =
1

exp[(ε− µ)/kBT ] + 1
(2.14)

where T is the temperature and µ is the Fermi level. At the state where

ε = µ, the probability of occupancy is 1
2 , and this defines the Fermi level. It

is also apparent that at zero Kelvin the probability is 1 for finding occupied

states below the Fermi level and 0 above.

2.7 Electronic Band Structure

The behaviour of electrons in a solid can be studied by looking at the electronic

band structure. Energy is plotted against the wave vector k to show the allowed

energies in the structure. The energy band below the Fermi level in the diagram

is called the valence band, and the band over is called the conduction band. A

material’s ability to conduct electricity is determined by the ability for electrons

to move from the valence band to the conduction band. The electrons are then

free to move between the ion cores and conduct electricity. A vacancy in the

valence band will also contribute to the conductivity as the ”hole” can jump

between ions. In a metal, there will be a continuous line across the Fermi

level, allowing electrons to move from the valence band to the conduction band

without the supply of external energy. The lack of a continuous line from lower

to higher energy is called a band gap.

As mentioned earlier, it is sufficient to plot only one Brillouin zone as the

plotted lines originating in the adjacent zones carry on into that zone for the

higher energies. Also, since k is a vector in reciprocal space, it is common to

plot the energy along a path of high-symmetry axes in the Brillouin zone.
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Chapter 3
Statistical Mechanics

In this chapter, a few concepts from the field of statistical mechanics are briefly

introduced, based on reference [6].

3.1 Canonical Ensemble

Consider a system consisting of a collection of particles described by a Hamilto-

nian H. The system is allowed to exchange energy with the surroundings, but

the number of particles and the volume they occupy is constant. The canonical

ensemble is the collection of all possible states of this system. The temperature

T is then a property of the system which is allowed to vary and determines

the probability of occupying a specific state of the canonical ensemble. The

probability is

P (Ei) =
e−βEi

Z
(3.1)

where Ei is the energy of state i and β is defined as 1/kBT , employing the

Boltzmann constant kB . Z is the partition function defined as

Z =
∑
i

e−βEi (3.2)

13
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which is a fundamental quantity in statistical mechanics. An important

observation is that a lower temperature makes the lower energy states more

probable while letting T −→ ∞ results in all energy states having an equal

probability of being occupied.

3.2 Grand Canonical Ensemble

In addition to allowing the exchange of energy with the surroundings, the grand

canonical ensemble allows the exchange of particles. By introducing a chemical

potential µ, the probability of state occupancy is

P (Ei,N ) =
e−β(Ei,N−µN)

Θ
(3.3)

with the particle number N and the grand canonical partition function

Θ =
∑
i,N

= e−β(Ei,N−µN). (3.4)

With the grand canonical ensemble allowing the system to change its compo-

sition of particles, a wider range of applications is opened up for this formalism,

for example, the adsorption of particles into a material.



Chapter 4
Density Functional Theory

DFT is a computational method for modelling the electronic structure of many-

body systems. Instead considering every electron as a particle, it utilises the

electron density in the calculations. Quantum mechanical effects are added by

applying a functional, a function of a function, to the electron density. In this

section, the theory behind it will be explained further.

4.1 The Schrödinger Equation

By solving the many-body Schrödinger equation,

Ĥψ =

[
− h̄

2m

N∑
i=1

∇2
i +

N∑
i=1

V (ri) +

N∑
i=1

∑
j<i

U(ri, rj)

]
ψ = Eψ, (4.1)

an exact solution to a system can be found. It links the many-body wave func-

tion ψ to the energy E with the Hamiltonian Ĥ. Here, m is mass and h̄ is the

reduced Planck constant. V (ri) is the electron-nucleus attraction energy and

U(ri, rj) is the electron-electron repulsion energy. As the equation considers all

particles and the interactions between each and everyone, calculations become

very complex for larger systems.

15
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4.2 The Hartree-Fock Method

By making some approximations, the complexity can be greatly reduced. The

Hartree-Fock method [7][8] approximates a wave function for a system by ap-

proaching the electron-electron interactions differently. A system of electrons

can be described by

ψ(x1,x2 · · ·xN ) = ψ(x1)ψ(x2) · · ·ψ(xN ), (4.2)

making each electron’s wave independent of the other. A problem with this

approximation is that it violates the Pauli exclusion principle because it does

not satisfy the anti-symmetry principle. For two electrons this can be solved

with a wave function like this:

ψ(x1,x2) =
1√
2

[
ψ1(x1)ψ2(x2)− ψ1(x2)ψ2(x1)

]
. (4.3)

This can be generalised by using a determinant to account for systems of arbi-

trary size with

ψ =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(x1) ψ2(x1) · · · ψN (x1)

ψ1(x2) ψ2(x2) · · · ψN (x2)
...

...
. . .

...

ψ1(xN ) ψ2(xN ) · · · ψN (xN )

∣∣∣∣∣∣∣∣∣∣∣∣
(4.4)

called the Slater determinant. The variational theorem states that the energy

calculated by the Hamiltonian is always an upper bound to the true energy of

the system. This implies that by minimising the energy, the true solution is

approached. Without further elaboration the Hartree-Fock equations can be

used to find the solution and this method can be viewed as a predecessor to

density functional theory.
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4.3 The Hohenberg-Kohn Theorems

Hohenberg and Kohn formulated DFT as an exact theory of many-body sys-

tems. If the Hamiltonian can be written on the form

Ĥ = − h̄2

2me

∑
i

∇2
i +

∑
i

Vext(ri) +
1

2

∑
i 6=j

e2

|ri − rj |
(4.5)

the following theorems apply [9]:

1. For any system of interacting particles in an external potential Vext(r),

the potential Vext(r) is determined uniquely, except for a constant, by

the ground state particle density n0(r).

2. A universal functional for the energy E[n] in terms of the density n(r)

can be defined, valid for any external potential Vext(r). For any partic-

ular Vext(r), the exact ground state energy of the system is the global

minimum value of this functional, and the density n(r) that minimises

the functional is the exact ground state density n0(r).

A consequence of this is that all properties of the system are entirely deter-

mined by the ground state density n0(r) and the functional E[n] is sufficient to

determine the energy and density of the ground state.

4.4 Constrained Search Formulation

Levy and Lieb defined a way to search for the ground state by minimising the

energy in two steps [9]. First, the energy is minimised among wave functions

with the same density n(r). The total energy of a wave function can be written

as

E = 〈ψ|T̂ |ψ〉+ 〈ψ|V̂int|ψ〉+

∫
d3rVext(r)n(r) (4.6)

where T̂ is the kinetic energy and Vint is the electron interactions. It can

be minimised for a specific electron density with

ELL[n] = FLL[n] +

∫
d3rVext(r)n(r) + EII (4.7)
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where EII is the interaction energy of the nuclei and

FLL[n] = min
ψ→n(r)

〈ψ|T̂ + V̂int|ψ〉 . (4.8)

ELL[n] is then a function of the electron density and the second step is then

to minimise this function to arrive at the ground state.

4.5 Exchange-Correlation functional

Kohn and Sham proposed an approach where it is assumed that the ground

state density of a many-body system, with all its interactions, is equal to that of

a chosen non-interacting system [9]. This leads to the opportunity of incorpo-

rating all the difficult many-body terms into an exchange-correlation functional

of the density. The remaining terms describe a non-interacting system which

can be solved exactly. This functional is not known, but there are several

approximate functionals that work very well in given situations.

4.5.1 Local Density Approximation

By assuming a slowly varying electron density, LDA approximates the exchange-

correlation functional without the use of any gradients. The method can be

generalised with

ELDAxc [n] =

∫
d3rn(r)εxc(n(r)). (4.9)

where εxc is an approximation of the exchange-correlation energy of a homoge-

neous electron gas at the given density.

4.5.2 Generalised-Gradient Approximation

As suggested by the name, GGAs incorporate the gradient of the electron den-

sity as well. By calculating the exchange-correlation functional from both the

electron density and its gradient, the computation time increases, but so does

the accuracy of the results. Similarly to LDA, the method can be generalised
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as

EGGAxc [n] =

∫
d3rn(r)εxc(n(r),∇n(r)). (4.10)
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Chapter 5
Mathematical Methods

In this chapter, the two main mathematical methods used in this thesis work

are presented.

5.1 Cluster expansion

The following is a theoretical description of the cluster expansion (CE) method.

Its application to binary alloys will be elaborated in section 6.

Consider a structure consisting of N lattice sites where each site has one

of two possible values. The structure can then have any configuration in the

space of a vector

σ = {σ1, σ2, ..., σN} (5.1)

with the discrete variable σi = ±1. The scalar product of two functions f(σ)

and g(σ) is defined as

〈f, g〉 =
1

2

∑
σ=±1

f(σ)g(σ). (5.2)

A complete orthonormal basis in the one-dimensional space spanned by the

21
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dicrete σ is given by the two polynomials

ϕ0(σ) = 1 (5.3a)

ϕ1(σ) = σ (5.3b)

of order 0 and 1 respectively. An orthonormal basis in the space spanned by

vector σ is then given as characteristic functions made by all possible products

of the polynomials given in Eq. 5.3:

Φα(σα) =
∏
i∈σ

ϕ1(σi). (5.4)

The scalar product of two functions f(σγ) and g(σγ) in the configurational

space of cluster γ can be expressed as

〈f, g〉 =
1

2nγ

∑
σ1=±1

· · ·
∑

σn=±1
f(σγ)g(σγ) (5.5)

where nγ is the number of sites in cluster γ. Consequently, the orthogonality

of the characteristic functions is expressed as

〈Φα,Φβ〉 =
1

2nγ

∑
σ1=±1

· · ·
∑

σn=±1
Φα(σα)Φβ(σβ) = δα,β (5.6)

with α and β being subclusters of γ. From the characteristic functions, any

property q that is a function of the configuration σ can be expanded as

q(σ) =
∑
α

V αΦα (5.7)

where V is the effective cluster interaction (ECI) given by

V α = 〈Φα, q〉. (5.8)
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5.2 Monte Carlo

Monte Carlo (MC) is a method that has a wide range of applicability and

implementations. It is, in essence, a form of numerical integration in which

finite summations are used to estimate definite integrals [10]. It is often used

on problems where it is possible to calculate an exact answer, but such an

answer is too computationally expensive to obtain. Typically, these problems

involve a system where the space spanned by all possible states of the system

is practically infinite. In the MC method, a much smaller portion of this space

is explored by letting random numbers choose which states are computed. If

applied correctly, high accuracy can be obtained despite the limited space of

states being investigated. The uncertainty created by the probabilistic element

of the method is handled by the law of large numbers. A simple example of a

Monte Carlo simulation is to calculate π with a random number generator. This

can be done by defining a square with an inscribed circle. The random number

generator then produces coordinates within the square. By Pythagoras’ law, it

can be determined whether the coordinate lies inside or outside the circle. By

simulating many coordinates, π can be estimated from the ratio between the

coordinates inside and outside. The more coordinates are simulated, the more

accurate the result becomes.
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Chapter 6
Computational Methods

6.1 ASE

Atomic Simulation Environment [11] is a software package written in Python

used for setting up atomic simulations. The simplicity of the Python language

makes it a powerful tool for easy high-level management of complicated simu-

lation software. In ASE, the objects of interest can be set up by, for example,

placing atoms at different positions in space. The desired simulations can then

be carried out by importing and calling other software packages. It includes its

own database type, which is convenient for working with atom structures.

6.2 DFT calculations with GPAW

GPAW is a software package for doing DFT calculations, operated through the

ASE interface. Calculations can be executed with different ways of describing

wave functions, for example, on a real-space grid or atom-centered functions

for orbitals. In this project, the mode for describing wave functions is set to

plane waves. GPAW is based on the projector-augmented wave (PAW) method

[12]. The wave function for a material is fairly smooth in the bonding region,

but oscillates rapidly close to the nucleus. The required resolution to describe
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the wave function accurately near the nucleus is not efficient use of computer

resources in the bonding region. The strategy of the PAW method is to divide

the wave function into two parts, one part as a partial wave expansion inside

a nucleus-centered sphere and an envelope function outside the spheres.

There are two main parameters to consider when optimising the compu-

tational accuracy and execution time. The cutoff energy Ecut = G2
cut/2 de-

termines the maximum size of the reciprocal lattice vectors. The number of

k-points determines the sampling of the Brillouin zone. As a rule of thumb,

a higher number of k-points is needed for smaller systems as the reciprocal

space needed to describe them accurately is inversely proportional to the real

space size. Analogously, the Dirac delta function requires an infinite amount of

frequencies to be expressed in Fourier space. There are also different exchange-

correlation functionals to choose from. Here, the Perdew-Burke-Ernzerhof

(PBE) functional is used which is a GGA.

6.3 Cluster Expansion with CLEASE

To do cluster expansion, the package CLEASE is used [13]. It is an addition to

the ASE software with the aim of making CE easy to implement on DFT data.

Optimised structures along with their total energies is the input which produces

a set of clusters along with their corresponding effective cluster interactions.

Now, the number of clusters is theoretically infinite, but by choosing only a few

of the most important ones the required accuracy is achieved. Having fewer

ECIs results in a lower computational cost for the MC simulations later on. In

CLEASE, this is achieved by the method of compressive sensing [14] based on

the l1 norm, a case of the lp norm

||x||p =

(∑
i

|xi|p
)1/p

(6.1)

with p = 1 and where x is a vector. This case of the norm is called the

Manhattan distance, whereas the l2 norm is the Euclidean distance. By writing
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Eq. 5.7 on matrix form

q = ΦV (6.2)

the problem of finding the ECIs can be solved with linear regression based

on the l1 norm. Here, q is a vector where the ith element corresponds to

the physical quantity of configuration σi. The matrix Φ consists of all the

characteristic functions and V is a vector containing the ECIs.

One way of determining the ECIs in V is by the ordinary least squares

method. This is done by minimising the residual sum of squared errors (RSS)

RSS = ||ΦV − q||22 (6.3)

which has the unique solution V̂ calculated by

V̂ = arg min
V

||ΦV − q||22 = (ΦTΦ)−1ΦTq. (6.4)

This method has the drawback that it needs more configurations in the

training set than the number of clusters being considered, limiting the pos-

sible number of sites in the clusters. It is also prone to overfitting, meaning

that the ECIs are tuned to accurately predict the physical property q for the

configurations in the training set, at the cost of losing predictive power for

configurations outside the set. To counter these drawbacks, the regularisation

term l1 mentioned earlier is added to eq. 6.4 which becomes

V̂ = arg min
V

||ΦV − q||22 + λ||V ||1 (6.5)

with λ being a regularisation parameter that controls the weight given to the

regularisation term. Using l2 as a regularisation term would result in a unique

analytical solution, but l1 is used despite not giving a unique solution. This

is because the l1 term promotes sparsity, meaning that several ECIs are set to

zero, effectively choosing a subset of ECIs which prove to be the most relevant.

As mentioned, this influences the computational cost of MC simulations later

on.
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To evaluate the predictive power of the cluster expansion produced, the

leave-one-out cross validation score is used (LOOCV). It is defined as

LOOCV =

(
1

N

N∑
i=1

(q̂i − qi)2
)1/2

(6.6)

where N is the number of configurations in the training set, qi is a before-

hand calculated physical quantity of a configuration i in the set. q̂i is the same

physical quantity, but predicted by CE using N − 1 configurations, leaving out

configuration i. This ensures that a prediction for a configuration is not directly

influenced by the configuration it is predicting. In addition to evaluation of the

predictive power, LOOCV allows for comparison between different setups for a

cluster expansion.

In this thesis, the physical quantity of interest is the energy. With a set

of ECIs and their corresponding clusters, the energy calculation for a specific

configuration can be done with orders of magnitude less computational cost

than with DFT. For calculation of the energy of a configuration eq. 5.7 becomes

E(σ) =
∑
α

VαΦα (6.7)

where all symmetrically equivalent clusters are classified as the same cluster,

and this set of equivalent clusters is represented by α. More explicitly, it can

be written as

E(σ) = J0 +
∑
α

mαJαΦα (6.8)

where J0 is the ECI of a cluster of size zero, effectively being a constant. mα

is the number of times the symmetrically equivalent clusters α occur and Jα

is the ECI per occurrence. Simply put, energy calculations using CE is to

count the number of times a specific cluster occurs, multiply it by an energy

corresponding to that cluster and add it to the total energy.
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6.4 Monte Carlo Simulations with CEMC

Having obtained a CE model of clusters and ECIs, Monte Carlo simulations

can be performed in the canonical ensemble. For this, the package CEMC

[15] is used, which performs Markov Chain Monte Carlo simulations with the

Metropolis-Hastings algorithm [13][16]. The method requires numerous calcu-

lations of the total energy of a bulk of atoms, and the speed of the calculations

with the CE model is what makes Monte Carlo simulations viable. The method

for the canonical ensemble can be described as follows: The energy of a starting

structure is calculated. Then, two atoms of different types are swapped and

the energy of the new structure is calculated. The new configuration is kept

with an acceptance probability

P = min

[
1, exp

(
−(Enew − Eold)

kBT

)]
(6.9)

or else reverted to the previous. This constitutes one Monte Carlo step. Af-

ter a sufficient amount of steps, the structure is in equilibrium at the given

temperature.

For these simulations in the canonical ensemble, the composition of atoms

is constant. To do simulations in the grand canonical ensemble, a slightly

different approach is used to allow for changes to the composition. Instead of

swapping two different atoms, the type of a single atom is swapped, and the

new configuration is either kept or reverted to the previous one with the same

probability P . The chemical potential µ is simulated by subtraction µ from

the ECI of the one-body cluster. This allows for a changing composition, but

the number of atoms is still constant. These simulations are therefore said to

be in the semi-grand canonical ensemble.
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Chapter 7
Results and Discussion

First, several calculations on both hcp and bcc structures of pure titanium

are performed to evaluate and validate the execution of the DFT calculations.

Then, a CE model is developed for hcp titanium-aluminium and further used

in Monte Carlo simulations.

7.1 Convergence Tests

Before doing calculations on physical attributes, it is important to find out what

values the GPAW parameters should have for the simulations to get accurate

results. For this, a convergence test was done for the cutoff energy and the

number of k-points. By calculating the energy for increasing values of these

two parameters on a bcc titanium structure, the convergence of the energy can

be visualised. This is shown for cutoff energy in figure 7.1 and k-points in figure

7.2. Based on these results, the standard parameters for the simulations done

with 64 atoms were set to k = 4 and Ecut = 600 eV. It should be mentioned

that for most calculations, the absolute value of the energy per atom is of less

interest as DFT calculations tend to systematically over- or underestimate the

energy depending on what parameters and exchange-correlation functionals are

used. It is the energy relative to other simulations with similar parameters that

give the most meaningful results. Figure 7.2 is also demonstrating how smaller
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Figure 7.1: Convergence of energy per atom as the cutoff energy
is increased. These calculations are done with 10 k-points in each
dimension.

systems are more sensitive to the Brillouin zone sampling as mentioned in 6.2.

The same convergence test was carried out for hcp titanium and yielded similar

results.

7.2 Lattice Constants

A fundamental physical property of titanium is the lattice constant. As ti-

tanium can have two different structures, the lattice constants for both are

calculated. Two different methods are exhibited. The method chosen for bcc is

to calculate the total energy of 64 atoms in a given structure at different lattice

constants. The number that gives the lowest total energy is then the lattice

constant for the material according to the DFT simulations. The results from

the bcc calculations are shown in figure 7.3. In this case, each data point takes

about 1-2 hours to compute on one node with 20 processors, to give a sense

of the time-scale of these simulations. By using polynomial interpolation, the

lowest energy is found to occur at a = 3.26 Å.

For hcp titanium, the method used is to optimise the structure by relaxing
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Figure 7.2: Convergence of the energy per atom with an increas-
ing number of k-points. On the x-axis, the number of k-points
represents one dimension. The total number of k-points is there-
fore N3 and Ecut = 600 eV. The 64-atom simulation converges
very quickly, while the single atom is unstable at lower values of
k-points. They converge to the same energy.

Figure 7.3: Simulating 64 titanium atoms in bcc structure for
different lattice constants. The lowest energy is the lattice con-
stant according to these simulations.
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it. After using GPAW to calculate the force on every atom and the stress in the

structure, an ASE algorithm is used to move the atoms towards what is likely

to be a lower energy state. This relaxing process is reiterated until maximum

force and stress are below a set limit1. The lattice constants of the optimised

structure are listed in 7.1.

Table 7.1: The calculated lattice constants for hcp titanium
compared to the correct value [3, p. 20].

Lattice constant Experimental Calculated

a 2.95 Å 2.938 Å

c 4.68 Å 4.648 Å

Both values are slightly below the experimental value, but the listed values

are for room temperature and the calculations are done at absolute zero. The

experimental values should therefore be viewed as an upper bound, due to

thermal expansion. The ratio between the lattice constants is 1.582 compared

to 1.633 for the ideal ratio for hcp, meaning that the AB stacking layers are

closer together in the optimised structure. The experimental value for the ratio

is 1.587 [titianium], meaning that the shape of the hcp structure is accurately

calculated by DFT. The lowest energy per atom for bcc in figure 7.3 is −6.53 eV

while for the hcp calculations it is −6.65 eV per atom. This indicates that hcp

is the preferred configuration of titanium atoms at absolute zero temperature,

which is in accordance with experimental results [17]. Only at temperatures

above 1150 K does bcc become the preferred structure of pure titanium.

7.3 Electronic Band Structure

The band structure of both bcc and hcp titanium was calculated with GPAW.

The results are shown in figure 7.4 and 7.5, along with the density of states.

1The algorithm used is LBFGS and the relaxation limits are set to 0.025 eVÅ
−1

for force

and 0.003 eVÅ
−3

for stress.
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Figure 7.4: Band structure for bcc titanium. As expected for a
metal, the bands cross over the Fermi level.

There are no band gaps at the Fermi level, as is expected with a metal. The

band structures are close to identical to results found in another study [18].

7.4 Cohesive Energy

To find the cohesive energy, two energy calculations are needed. One for an

atom in free space and one for an atom in a crystal structure. The GPAW

mode is set to plane wave which requires a unit cell with periodic boundary

conditions, meaning that to simulate an atom in free space, the unit cell would

have to be of infinite size. Fortunately, interatomic forces reduce dramatically

as distance increases, so the unit cell only has to be sufficiently large for an

atom to experience free space. By increasing the lattice constant, the energy

can be found by seeing what it converges to. Figure 7.6 shows this for a bcc

structure, though the energy in interest is independent of the structure in this

case. The energy converges towards −1.51 eV, which is used as the energy of

a titanium atom in free space in further calculations.

For an atom in an hcp crystal, a bulk of 64 atoms is relaxed with periodic

boundary conditions and the energy is calculated. The cohesive energy is then

calculated with equation 2.9 and is found to be 5.14 eV. This is 6% greater
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Figure 7.5: Bandstructure for hcp titanium. It has more bands
close to the fermi level than its bcc counterpart.

Figure 7.6: Energy of a single titanium atom. As the size of
the unit cell increases, the energy quickly converges towards the
energy of an atom in free space.
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Figure 7.7: The 63 atom structure used for finding the vacancy
formation energy. The yellow arrow shows the location of the
vacancy.

than the experimentally found value of 4.85 eV [3, p. 50]. As mentioned, DFT’s

strength lies not in accurate predictions of real-world energies, but rather in

the comparison between calculations performed with the same parameters. In

this regard, a 6% overestimation can be viewed as an acceptable result.

7.5 Vacancy Formation Energy

To calculate the vacancy formation energy, a simulation of a crystal with a

missing atom has to be carried out. To accomplish this, a bulk of 64 atoms

in hcp configuration is again set up, but then one atom is removed, shown

in figure 7.7. Because of the periodic boundary conditions, this means that

the crystal simulated will be one with periodic vacancies. There are only three

atoms between the vacancies, and this should be considered as a source of error.

The bulk is optimised in the same way as for the lattice constant calculations.

The optimisation ensures that the structure resembles what an actual vacancy

would look like, instead of just being an artificial hole on the lattice. The

optimised structure with 63 atoms has a total energy of -416.6 eV while the

value for its optimised 64 atom counterpart is -425,4 eV. By equation 2.10,

this gives a vacancy formation energy of 2.21 eV. Results for other studies are

around 2.13-2.14 eV [19][20].

This concludes the benchmark testing of the DFT calculations and what
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follows is the study of the titanium-aluminium alloy.

7.6 Optimising Structures for Cluster Expan-

sion

To construct a CE model for the titanium-aluminium alloy, several energy

calculations with DFT are needed. The process is started by setting up hcp

titanium structures of size 3× 3× 2 unit cells (36 atoms) and changing atoms

at random sites into aluminium. This way, random configurations of titanium-

aluminium are constructed with a varying composition set to 0 - 50% alu-

minium, as this will be the range of interest in this thesis. The structures are

then optimised like during the lattice constant and vacancy formation calcula-

tion until the maximum force and stress of the structure are below 0.025 eVÅ
−1

and 0.003 eVÅ
−3

respectively. All structures are relaxed to the same limits so

that they are comparable to each other. Relaxing the structures effectively re-

duces the pressure to zero, meaning that the equation for enthalpy of formation

(2.13) is valid. Using high-performance computing resources2, 64 structures

were successfully optimised, hereafter referred to as the training set.

7.7 Cluster Expansion

The optimised structures are used as the training set for a cluster expansion,

which is evaluated in figure 7.8. The circles represent energies for a specific

configuration as calculated by DFT and predicted by the CE. Ideally, they are

located at the line, meaning that the CE predictions are accurate. The red

circles are predictions with the leave-one-out method, while the blue circles’

training sets include the structure being predicted. The figure shows that the

accuracy, in general, is satisfactory, with some predictions being slightly off.

The LOOCV score of 7.5 MeV/atom is similar to scores achieved in relatable

studies [21][22].

2The resource used is the computer named ”Stallo” at The Arctic University of Norway
located in Tromsø.
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Figure 7.8: An evaluation of the CE predictions compared to
the DFT calculations for all structures in the training set.

The cluster expansion is further evaluated in figure 7.9, showing the en-

thalpy of formation3 from the DFT calculations of every structure together

with the CE predictions. The important observations in this figure are at what

concentrations there is a point on the black line, as this is likely to be a pre-

ferred crystal structure. Ideally, all CE predictions would be at the DFT value,

but as the average energy per atom in the alloy ranges from -3.8 eV and -6.6

eV, most predictions are within 1% of the DFT value. As mentioned in section

6.3, a perfect fit is possible, but at the cost of a much more computationally

expensive CE model and possible overfitting.

The effective cluster interactions are shown in figure 7.10. The clusters are

named cX1 X2nn X3 after how many atoms they consist of, maximum near-

est neighbour distance in the cluster and an identification number to separate

clusters sharing the two first classifications. The zero and one atom clusters

dominate, but are not of much interest as they do not dictate what crystal

3The numerical values on the y-axis is not comparable to later results since calculation of
the enthalpy of formation arbitrarily includes the highest energy of the structures at 50% as
a reference point.
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Figure 7.9: The DFT energies for the structures alongside the
CE predictions plotted as enthalpy of formation. The points on
the black line indicate favourable structures at that concentration.

structures might form. Figure 7.11 shows the ECIs without the two first values

so that the remaining values are distinguishable. The two-body, nearest neigh-

bour cluster has a positive value. This means that the configuration σ (5.1) of

two atoms of the same element gives a positive contribution to the total energy,

while two different atoms next to each other will reduce it. From this, it can

be understood that titanium and aluminium are prone to form an alloy, as any

mixture where atoms of the two elements neighbour each other will lower the

total energy.

A selection of the most influential clusters is shown in figure 7.12. The

clusters of higher body count are harder to interpret, but dictate what type of

crystal structure is the most energetically beneficial. In this CE the configura-

tion variable σi is 1 for aluminium and -1 for titanium. As an example, the three

body structure of figure 7.12 is considered. With its positive ECI, three alu-

minium atoms in this configuration would give a positive energy contribution,

while three titanium atoms would be energetically favourable. Furthermore,

two aluminium and one titanium would have a negative contribution, while
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Figure 7.10: The effective cluster interactions for each cluster
in the model. Evidently, the zero and one atom cluster dominate.

Figure 7.11: ECIs without the zero and one atom cluster.



42 CHAPTER 7. RESULTS AND DISCUSSION

Figure 7.12: A selection of the most influential clusters.

two titanium and one aluminium would contribute positively.

7.8 Monte Carlo Simulations

With the obtained cluster expansion model, Monte Carlo simulations are exe-

cuted in both the canonical and the semi-grand canonical ensemble.

7.8.1 Canonical Ensemble

Two thousand atoms are set up in a structure of 10×10×10 hpc unit cells and

cooled down in the canonical ensemble for varying concentrations of aluminium.

The enthalpy of formation for titanium-aluminium up to 50% aluminium is

shown in figure 7.13.

As deduced from the ECIs, titanium and aluminium lower their total energy

if mixed. This is visible here as the energy steadily goes down as concentration

moves towards 50%, even at higher temperatures. The phase diagram in figure

1.1 puts the highest temperature for the melting point at about 2000 K, so no

energy fluctuations as a cause of configuration is expected above this temper-

ature, since the atoms of a liquid are allowed to move freely. Therefore, the

higher temperatures produce a smooth line. When lowering the temperature,

the differences among the concentrations emerge. At 25% aluminium, there

apparently exists a discontinuity in the slope. By investigating the structure

for the lowest temperature at this concentration, shown in figure 7.14a, the

crystal structure Ti3Al [23] is identified. Concentrations in the vicinity of 25%
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Figure 7.13: Enthalpy of formation for titanium-aluminium for
a range of energies.

also produce this crystal structure, but then with domains of either pure tita-

nium or aluminium depending on whether the concentration is lower or higher

than 25%. This suggests that Ti3Al is a preferable configuration for the alloy.

The cooled down structure at 50% aluminium is shown in figure 7.14b. This

bulk does not have a perfectly ordered structure, though AB stacking is seen

in domains. When looking up the TiAl crystal [24], it is found to be in a bcc

configuration, rather than hcp. The phase diagram in figure 1.1 shows that the

TiAl phase starts at about 49% aluminium. As the CE model is trained on hcp

structures, predictions for composition above 49% aluminium is like forcing the

structure to stay hcp when it could lower its energy further by rearranging to

bcc. This is likely to be the reason why the structure in 7.14b is not perfectly

ordered.
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(a) Ti3Al crystal at 25% Al. (b) 50% concentration of aluminium.

Figure 7.14: Visualisation of the bulk at 25% and 50% concen-
tration at 100 K from the calculations shown in figure 7.13.

7.9 Grand Canonical Ensemble

Similarly to in the canonical ensemble, a bulk of 2000 atoms is cooled down.

Here, the concentration of aluminium is allowed to change, while the chemical

potential is kept constant. Figure 7.15 shows this process for a range of chemical

potentials from 0.94 to 1.16 eV/atom. The figure shows stable phases at 0%,

25% and 50%. All simulations that end up at 25% are in the same crystal

structure as shown in figure 7.14a.
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Figure 7.15: Cooling down structures at different, constant
chemical potentials.
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Chapter 8
Conclusion

The titanium-aluminium alloy in hcp configuration has been studied. Initially,

DFT calculations were performed for verification of their validity. Input param-

eters for the GPAW calculator that produced convergent results were found,

and several physical properties were computed for pure titanium. Lattice con-

stants, electronic band structures, cohesive energy and vacancy formation en-

ergy were all in agreement with results from other sources. DFT was used to

calculate the energies of a set of structures with varying composition of tita-

nium and aluminium. This training set was then used to develop a CE model,

which had an acceptable LOOCV score of 7.5 MeV/atom. With this CE model,

Monte Carlo simulations were done for a bulk of 2000 atoms in both the canon-

ical and the semi-grand canonical ensemble. The Ti3Al crystal was identified

as a preferable structure at concentrations around 25%. Closer to 50%, the

validity of the CE model becomes questionable, and a stable TiAl structure on

a hcp lattice was not found.

It is seen that density functional theory can give results that accurately

describe reality, given the right parameters. Furthermore, Monte Carlo simu-

lations based on a cluster expansion of DFT calculations is proven to give valid

representations of alloy structures under the right circumstances.
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Chapter 9
Future Work

As a continuation of the Monte Carlo simulations, nucleation phase bound-

aries for the Ti3Al structure could be calculated, both from the pure titanium

side and the TiAl side. Another interesting topic of study is titanium grade

5, which in addition to aluminium contains vanadium, and is a well known

titanium alloy. The vanadium acts as a bcc-stabiliser that together with the

hcp-stabilising aluminium creates an alloy with domains of both structures.
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