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Abstract

Cartilage is a connective tissue found in most joints in mammals. A main constituent
of cartilage is �brillar collagen which is present in the extracellular matrix. Determining
collagen structures in cartilage is essential for early diagnosis of joint disorders such as
osteochondrosis in both human medicine and the agriculture.

This thesis analyzes the possibility of determining collagen structures in cartilage by
a nonlinear optical microscopy method known as polarized second harmonic generation.
This is done by expanding a theoretical model of collagen �bril organization originally
developed by Rouede et al [1] in order to simulate collagen structures in cartilage. Col-
lagen structures were simulated witha priori known structural angles and compared to
experimental data, with the purpose of correlating the data sets and determining the sub-
resolution collagen structures of the samples.

Samples such as tendon, bone and cartilage were imaged. A main assumption is that
collagen �brils in cartilage are disordered, while �brils in tendon are almost completely or-
dered. The collagen structure in tendon was successfully determined based on simulations,
verifying the model.

However, polarized second harmonic microscopy proved unsuccessful at distinguish-
ing between experimental data from bone, tendon and cartilage. Cartilage simulations of
disordered �brils did not correspond to measured data, implying that on scale of the optical
point spread function of this experiment, collagen in cartilage is ordered.
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Sammendrag

Brusk er et bindevev som �nnes i de �este ledd i pattedyr. En av de viktigste bestanddelene
i brusk er kollagen og �nnes i den ekstracellulære matrisen. Bestemmelse av kollagen-
strukturer i brusk er viktig for tidlig diagnostisering av leddsykdommer som for eksempel
osteochondrose i b	ade medisin og innen landbruksnæringen.

Denne oppgaven analyserer muligheten for	a bestemme kollagenstrukturer i brusk
ved 	a bruke en ikke-lineær mikroskopimetode kjent som polarisert andre-harmonisk gen-
erasjon. Dette blir gjort ved	a utvide en teoretisk modell av kollagen�brilers strukturer
utviket av Rouede et al [1] for	a simulere brusk. Kollagenstrukturer ble simulert meda
priori kjente strukturelle vinkler og sammenlignet med eksperimentelle data for	a korrelere
disse, og dermed bestemme kollagenstrukturer i bruskprłver.

Brusk, sener og bein ble avbildet. Det ble antatt at kollagen�brilene i brusk er uordnet
og at �brilene i sener er nesten fullstendig ordnet. Simuleringer av sener var vellykket,
hvilket bekrefter simuleringsmodellen.

Polarisert andre-harmonisk generasjonsmikroskopi viste seg	a ikke kunne skille mel-
lom eksperimentelle data fra bein, sener eller brusk. Brusksimuleringer viste seg heller
ikke 	a korrespondere til m	alte data, hvilket indikerer at p	a niv	aet til den optiske punkt-
spredningsfunksjonen til mikroskopet brukt i denne oppgaven er kollagen�brilene i brusk
ordnet.
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Chapter 1
Introduction

1.1 Motivation
Collagen is the most common protein in humans, accounting for over 25% of the protein
mass [2]. Diseases like bone cancer, liver �brosis or cartilage degeneration are all caused
by changes in collagen �brillar organization.

Osteochondrosis is a common joint disorder that occurs in humans and animals such
as pigs and horses [3]. By detecting changes in collagen structures within cartilage, os-
teochondrosis can be detected at an early stage, bene�ting both human medicine and the
agricultural industry.

This can possibly be done using a nonlinear optical phenomena called second harmonic
microscopy (SHG). SHG is a nonlinear optical phenomena which is sensitive to the second
order electric susceptibility of collagen �brils [4]. Several models with various degrees of
sophistication have been developed in order to determine collagen organization based on
polarization dependent signals [5, 6, 7]. The latest model connecting the polarized SHG
variations to collagen structure on a nanometric scale was developed in 2018 by Rouede
et al [8] and has been shown to differentiate between various collagen tissues, including
healthy and �briotic rat livers. However, it has not been implemented and explored for
cartilage.

By utilizing polarized SHG microscopy as a novel tool for analyzing collagen struc-
tures in cartilage, diseases such as osteochondrosis be diagnozed much earlier than by
conventional methods.

1.2 Background

1.2.1 Collagen
Collagen is the most common protein found in the human body and currently 28 different
types have been discovered [9]. Collagen molecules consist of three polypeptide chains,
arranged in a triple helix structure called tropocollagen. Tropocollagen molecules form
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�brils through covalent cross-linking. These �brils can be arranged in different ways and
form bundles depending on the type of collagen. Two of the most common �brillar colla-
gen types are type I and type II collagen. Type II is mainly found along with proteoglycans
in the extracellular matrix (ECM) in cartilage. The ECM is a network of molecules provid-
ing structural support surrounding cells [10]. Both type I and type II collagen molecules
are periodically cross-striated �brils [11].

The main difference between collagen types is that the triple helices consist of different
peptide chains which leads to a difference in morphology on the �brillar level.

1.2.2 Collagen Type I and II
Type I collagen consists of molecules forming �brils with a diameter of 30-200nm [12].
These �brils possess properties such as stronger tensile strength than steel and can be
bundled on a micrometer scale length as is the case for tendon. It is also found in skin
and is in general characterized by straight aligned and periodically cross-striated �brils
[10, 11].

Collagen type I is a heterotrimer formed by two identical� 1(I)-chains and one� 2(I)-
chain. Similarly, collagen type II is a homotrimer formed by three identical� 1(II) chains.
In both cases, procollagen is then exposed to the enzyme procollagen peptidase, which re-
moves the terminal peptides of the procollagen molecules forming tropocollagen. Tropocol-
lagen molecules are then assembled into collagen �brils, which form bundles organized in
different ways depending on collagen type. For collagen type I, these �brils are straight
and aligned forming tissues like skin or tendon. For collagen type II, �brils tend to be
disordered as shown by scanning electron microscopy [13].

2



Illustration of collagen structure
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Figure 1.1: Illustraton of collagen structure. Three identical� 1(II) chains (polypeptide chains)
form tropocollagen for collagen type II. For collagen type I, two� 1(I) and one� 2(I) chain form
tropocollagen. In both cases, tropocollagen self-assemble into collagen �brils.

1.2.3 Collagen structure in cartilage
In cartilage, around 20% of the tissue surrounding the cells consist of collagen type II.
Since collagen type II is characterized by disordered �brils, cartilage is assumed to pos-
sess similar characteristics. The main assumption is that the subresolution polarization
dependent SHG signals can be utilized to separate between collagen type II and type I and
hence between cartilage and bone or tendon. The goal of this master thesis is the devel-
opment of an existing model of collagen structure made by Rouede et al [1] based ona
priori known structural information. It will be further developed in order to be used to
distinguish between collagen types I and II and by extension cartilage from bone.
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Chapter 2
Theory

2.1 Second harmonic generation
Second harmonic generation (SHG) is a nonlinear optical phenomena, often used for imag-
ing biological structures, where according to quantum theory, two photons with frequency
! are combined and a single photon with frequency2! is emitted as shown in �gure 2.1
[14]. It is a relatively weak effect, requiring high intensity lasers in order to detect a signal.

SHG requires non-centrosymmetric molecules, which means that the material cannot
possess points of inversion symmetry. SHG requires a material to be ordered for the photon
mixing to occur. The process is instantaneous and occurs as a consequence of the incoming
light inducing a second-order polarization in the medium.

The second order polarization from a classical wave theory perspective is given by

P (2)
i =

X

jk

� 0� (2)
ijk E j Ek (2.1)

In this equation,� 0 is the permittivity in vacuum.i , j andk are Cartesian coordinates.
� (2)

ijk is the second order susceptibility and describes the second-order polarization in a
material when subjected to an applied electric �eld.

5



Jablonski diagram of SHG

Figure 2.1: Jablonski diagram illustrating SHG. Two photons are converted and a single photon
with twice the energy is emitted due to second harmonic �uctuation of the dipole moment.

2.2 Symmetry
In general for three wave-mixing processes, there are 3x3x3 = 27 elements in the nonlinear
susceptibility tensor. For a three-wave process in general, two waves,! 1 and! 2 interact
to form a third wave,! 3 = ! 1 + ! 2.

The polarization can be expressed as

Pi (! 1 + ! 2) =
X

jk

� (2)
ijk (! 1; ! 2)E j (! 1)Ek (! 2) (2.2)

2.2.1 Degenerate case symmetry
The tensor reduces to 18 elements due the fact that for SHG,! 1 = ! 2 = ! is an inherent
property. Inserted into equation 2.2, it is evident that

� (2)
ijk (!; ! ) = � (2)

ikj (!; ! ) (2.3)

The nonlinear susceptibility tensor can be written as illustrated in equation 2.4 with 18
elements. This is due to the symmetry in equation 2.3 as 9 of the 27 elements are no
longer independent.

� (2) =

2

6666664

� (2)
11 � (2)

12 � (2)
13 � (2)

14 � (2)
15 � (2)

16

� (2)
21 � (2)

22 � (2)
23 � (2)

24 � (2)
25 � (2)

26

� (2)
31 � (2)

32 � (2)
33 � (2)

34 � (2)
35 � (2)

36

3

7777775
(2.4)

6



Here,x = 1 ; y = 2 ; z = 3 and contracted notation is used for the two last indices of� (2)
ijk :

xx = 1 ; yy = 2 ; zz = 3 ; zy = yz = 4 ; zx = xz = 5 andyx = xy = 6 .

2.2.2 Kleinman’s symmetry
Kleinman’s symmetry states that in a material, far away from any resonances and in the ab-
sence of strong dispersion, interchanged tensor components are independent of frequency;

� (2)
ijk (! 1; ! 2) �= � (2)

ijk (2.5)

This means that all frequency arguments can be interchanged between the susceptibil-
ity tensor elements, which leads to the following relations [15]

� (2)
ijk (! = ! 1 + ! 2) = � (2)

jki (! 1 = � ! + ! 2) = � (2)
kij (! 2 = ! � ! 2) =

� (2)
ikj (! = ! 2 + ! 1) = � (2)

jik (! 1 = ! 2 � ! ) = � (2)
kji (! 2 = � ! 2 + ! )

(2.6)

As shown in equation 2.5, the tensor elements are independent of frequency, hence the
indices can be permuted as in equation 2.6 without permuting the frequencies. This leads
to the following symmetries [16, 17].

� (2)
ijk = � (2)

ikj = � (2)
jki = � (2)

kij = � (2)
kji = � (2)

jik (2.7)

Hence the matrix is reduced to 10 independent elements and is given by

� (2) =

2

6666664

� (2)
11 � (2)

12 � (2)
13 � (2)

14 � (2)
31 � (2)

21

� (2)
21 � (2)

22 � (2)
23 � (2)

32 � (2)
14 � (2)

12

� (2)
31 � (2)

32 � (2)
33 � (2)

23 � (2)
13 � (2)

14

3

7777775
(2.8)

where bolded elements are dependent.

2.2.3 Cylindrical symmetry
The susceptibility tensor can be even further simpli�ed by assuming cylindrical symmetry
in the specimen. In general, rotating a coordinate system fromx0; y0; z0 to x; y; z, yields
the following susceptibility tensor;

� (2)
ijk =

X

i0j 0k0

cos� ii 0 cos� jj 0 cos� kk 0� (2)
i0j 0k0 (2.9)

If invariance under rotation in the xy-plane (i.e. cylindrical symmetry) is assumed, all
tensor elements in equation 2.8 vanish except for the following due to none of indices i,j,k
involving z. [17]:

7



� (2)
zzz = � (2)

33

� (2)
zxx = � (2)

zyy = � (2)
31

� (2)
xxz = � (2)

xzx = � (2)
yyz = � (2)

yzy = � (2)
15

� (2)
xyz = � (2)

xzy = � � (2)
yxz = � � (2)

yzx = � (2)
14

(2.10)

Which leads to the remaining susceptibility tensor being given by

� (2) =

2

6666664

0 0 0 � (2)
14 � (2)

31 0

0 0 0 � (2)
31 � (2)

14 0

� (2)
31 � (2)

31 � (2)
33 0 0 � (2)

14

3

7777775
(2.11)

2.2.4 Single-axis symmetry

There exists one �nal simpli�cation for the second order susceptibility tensor if the molecules
are structures as helices. If molecules are organized, each with somex0; y0; z0 relative to
the bulk axes of several moleculesx; y; z,

� (2)
ijk =

X

i0j 0k0

hcos� ii 0 cos� jj 0 cos� kk 0i � i0j 0k0 (2.12)

where� represents hyperpolarizability and is assumed to be a constant in thez0z0z0 axis
only, giving � i0j 0k0 = � . The brackets represent averaging over all molecules. In addition,
� zz0 is assumed to be a constant angle for all molecules and� is random for each molecule.
Using these assumptions, the four remaining tensor elements can then be calculated as
follows

� (2)
zzz = � (2)

33 = N cos� 3�

� (2)
zxx = � (2)

31 =
N
2

cos� 2�

� (2)
xxz = � (2)

15 = N cos� sin � 2hsin � 2i � =
N
2

cos� 2�

� (2)
xyz = � (2)

14 = N cos� sin � 2hcos� sin � i � = 0

(2.13)

whereN is the number of molecules. Since two of the elements clearly are not inde-
pendent, this leads to a remaining two independent second order susceptibility tensor ele-
ments.
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After considering all symmetries, the tensor in equation 2.4 simpli�es to

� ijk =

2

6666664

0 0 0 0 � 31 0

0 0 0 � 31 0 0

� 31 � 31 � 33 0 0 0

3

7777775
(2.14)

where the second order subscript has been neglected for simplicity. Thus, there are only
two independent second order susceptibility tensor elements for collagen.

2.2.5 Second harmonic generation intensity
The reduction of the second order susceptibility tensor into two independent elements,
results in a simpli�ed matrix equation for the second order polarization given by equation
2.1 and expanded below

2

6666664

P2!
x

P2!
y

P2!
z

3

7777775
= � 0

2

6666664

0 0 0 0 0 0

0 0 0 � 31 0 0

0 � 31 � 33 0 0 0

3

7777775

2

6666666666666666664

E 2
x

E 2
y

E 2
z

2Ey Ez

2Ex Ez

2Ex Ey

3

7777777777777777775

(2.15)

Which explicitly calculated leads to the following expressions for the polarization
components

P2!
x = 0

P2!
y = 2 � 0� (2)

15 E !
y E !

z

P2!
z = � 0[� (2)

31 (E !
y )2 + � (2)

33 (E !
z )2]

(2.16)

.
The SHG intensityI 2! / [(P2!

y )2 +( P2!
z )2] is calculated from equation 2.16 by using

E !
y / sin (� � 
 ) andE !

z / cos (� � 
 )where(� � 
 ) is the angle of polarization of the
incoming electrical �eld relative to the long axis of the cylinder (or z-axis of the molecule)
in the image plane. This leads to the following expression for SHG intensity

I 2! = c(� (2)
31 sin2 2(� � 
 ) + ( � (2)

31 sin2 (� � 
 ) + � (2)
33 cos2 (� � 
 ))2) (2.17)

9



2.3 Method of linear least squares
In order to extract information about collagen organization through P-SHG, a method of
curve-�tting equation 2.17 to the measured signal is required. There are several ways of
doing this, one being through Fourier transforms [18]. Another linear least squares method
for curve-�tting, proposed by Rouede et al [19], will be presented.

Equation 2.17 can be rewritten as

I th = A + B cos 2(
 � � ) + C cos (
 � � ) (2.18)

where

A = c(4 + 3a2 + 3b2 + 2ab)=8

B = c(4b2 � 4a2)=8

C = c(a2 + b2 � 2ab� 4)=16

by using the following trigonometric identities

a02 cosx + b02 sinx =
1
2

(a02 + b02 + ( a0 � b0) cos 2x)

cosx2 =
1
2

(1 + cos 2x)

sinx2 =
1
2

(1 � cos 2x)

wherea0; b0 andx are some arbitrary constants.a; bandc are constants given in equation
2.17. Notice thatI th represents a theoretical polarization dependent intensity curve.

Then by applying the following trigonometric addition formula

cos (
 � � ) = cos 
 cos� � sin 
 sin �

Equation 2.18 simpli�es to

I th = C1 + C2 cos 2� + C3 sin 2� + C4 cos 4� + C5 sin 4� (2.19)

where

C1 = A = c(4 + 3a3 + 3b2 + 2ab)=8

C2 = B cos 2
 = c(4b2 � 4a2)=8 cos 2


C3 = B sin 2
 = c(4b2 � 4a2)=8 sin 2


C4 = C cos 4
 = c(a2 + b2 � 2ab� 4)=8 cos 4


C5 = C sin 4
 = c(a2 + b2 � 2ab� 4)=8 sin 4


(2.20)

In order to solve equation 2.19, the equation can be written in matrix form as

I = AC (2.21)
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where

I th =

2

666666666666664

I th

...

I th
i

...

I th
N

3

777777777777775

A =

2

666666666666664

1 cos 2� 1 sin 2� 1 cos 4� 1 sin 4� 1

...
...

...
...

...

1 cos 2� i sin 2� i cos 4� i sin 4� i

...
...

...
...

...

1 cos 2� N sin 2� N cos 4� N sin 4� N

3

777777777777775

C =

2

666666666666664

C1

...

...

...

C5

3

777777777777775

(2.22)

with � i uniformly distributed between 0° and 180° with N number of increments.
The coef�cientsC1:::C5 can then be estimated by solving the following least linear

squares problem

Cestimate = arg min c

NX

i =1

��I exp (� i ) � I th (� i )
��2

= arg min c jI exp � AC j2 (2.23)

The solution can be written as

Cestimate = ( AT A) � 1AT I exp (2.24)

In order to solve for a and b, the solution to equation 2.24 is inserted into equation 2.20.
To simplify, two coef�cientsR1 andR2 can be de�ned as follows

R1 =

s
C2

2 + C2
3

C2
1

=

s
(4b2 � 4a2)2

4 + 3a2 + 3b2 + 2ab)2

R2 =

s
C2

4 + C2
5

C2
1

=

s
(a2 + b2 � 2ab� 4)2

4 + 3a2 + 3b2 + 2ab)2

(2.25)

By assuming that collagen possesses the special case ofa; b 2 [0; 2] and witha < b [18],
R1 andR2 simpli�es to

R1 =
4

��b2 � a2
��

4 + 3a2 + 3b2 + 2ab

R2 =
4 � (a � b)2

4 + 3a2 + 3b2 + 2ab

(2.26)

These expressions then lead to the following equations for factorsa andb

a =
p

2

s
1 + R2

1 � R2 � R1
�

r
1 � R2 + R1

1 � R2 � R1

b =
p

2

s
1 + R2

1 � R2 + R1
�

r
1 � R2 � R1

1 � R2 + R1

(2.27)
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Sincea andb corresponds to� 31=� 15 and � 33=� 15 respectively, this procedure can
be implemented and run for each pixel each with N polarization angles in order to obtain
� = � 33=� 31 for each pixel of an image.
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Chapter 3
Model

In this chapter, a theoretical model for describing collagen structure through a hierarchy
of levels is presented. Nonlinear susceptibilities are calculated based on these structures.
The purpose of the model is the correlation ofa priori calculated intensity SHG curves to
measured intensity curves from real samples and subsequently establishing how a collagen
sample is structured by comparison.

3.1 Theoretical model of collagen
The collagen �brillar structure can be considered to be hierarchical with four distinct struc-
tural levels [20]. The �rst level is characterized by polypeptide chains forming a helices,
see section 1.2.1. As can be seen in �gure 3.1, angles (� H ; � H ) represent the polar and
azimuthal helical angles for the helices. The second level in the hierarchical description
of the collagen structure consists of triple helices composed of single helix polypeptide
chains. Angles (� 3H ; � 3H ) represent analogous helical angles for the triple helix. The
third level consists of these triple helices coiling around their own axes forming super-
coiled �brils with angles (� SC ; � SC . The fourth level describes tilting of the �bril in the
microscope stage with angles� T ; � T ). These four levels constitute a hierarchical descrip-
tion of collagen �brillar organization.

3.1.1 Nonlinear susceptibility of collagen
Collagen is non-centrosymmetric and is modeled as being cylindrically symmetric on the
�brillar level [21]. Thus it full�lls the requirements presented in chapter 2 for generat-
ing second harmonic signals. In addition, the nonlinear susceptibility tensor of collagen
is simpli�ed to two elements due to the presence of Kleinman symmetry and the initial
assumption of cylindrical symmetry.

As the SHG signal is governed by the second order polarization of the collagen sam-
ple and thus the nonlinear susceptibility, a model for relating structural information to
susceptibility is required. Equation 3.1 is such a model developed by Rouede et al [1].

13
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Figure 3.1: Figure showing the coordinate transformation between the four different hierarchical
levels of the collagen model. a) Illustrates the transformation from the lowest level with coordinate
system (x0 ; y0 ; z0) to the helix-level with coordinates (x1 ; y1 ; z1) and angles (� H ,� H ). The hyperpo-
larizability vector� is aligned with thez0-axis. b) is a similar transformation to the triple-helix level
with coordinate system (x2 ; y2 ; z2) and triple helix angles (� 3H ,� 3H ). c) shows the transformation
to the supercoil level with coordinate system (x3 ; y3 ; z3) and angles (� SC ,� SC ). Finally, d) illus-
trates the transformation which represents the tilting of �brils in the coordinate system (x4 ; y4 ; z4)
with angles (� T ,� T ). e) shows the polarization angle� of the incident laser beam and the effective
orientation angle
 . (x; y4 = y; z) represent the coordinates of the microscope stage.

�
� 33

� 31 = � 15

�
= cos � T cos� SC cos� 3H cos� H

�
cos2 � T 3 sin2 � T

cos2 � T sin2 � T 1 � 3 cos2 � T sin2 � T

�

�
�

cos2 � SC 3 sin2 � SC
hcos2 � SC i sin2 � SC 1 � 3hcos2 � SC i sin2 � SC

� �
cos2 � 3H 3 sin2 � 3H

1
2 sin2 � 3H 1 � 3

2 sin2 � 3H

�

�
�

cos2 � H 3 sin2 � H
1
2 sin2 � H 1 � 3

2 sin2 � H

� �
�
0

�

(3.1)

Equation 3.1 is a matrix equation describing how the second order susceptibility tensor
elements are calculated.� H , � 3H , � SC and � T represent polar angles of respectively the
helix, triple helix, supercoil and tilt hierarchical levels.� SC and � T are the azimuthal
angles of the supercoil and tilt hierarchical levels. Each matrix represents a euler rotation
matrix to the higher hierarchical coordinate system, shown in �gure 3.1.
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3.1.2 Comparison with experimental values
A method of calculating the second order susceptibility of collagen �brils based on their
helical and �brillar angles has been presented. This can be used to calculate a parameter
� th (theoretical� without application of noise) as a function of structural angles for each
pixel of an image, providing a distribution of values.

3.1.3 Shot noise
In order to further develop the theoretical model, noise is considered. As the detected sig-
nal when imaging through SHG microscopy is weak, signi�cant shot noise can be present.
This can be minimized by increasing the signal strength when imaging, but can also be
modeled by a Poisson process.

Using equation 2.17, a theoretical intensity contribution can be calculated for each
pixel of an image as a function of the polarization angle of the incoming light. Poisson
shot noise can then be added for each intensity curve. Furthermore, by �tting the noise-
rendered intensity curves to equation 2.17, a new parameter� noise can be calculated for
each pixel, further improving correlation with experimental data.

15



16



Chapter 4
Methods

The following chapter consists of two parts, namely simulations and the experimental
setup. First, simulations for creating a catalogue of� th ;noise -distributions fora priori
known helical angles, coil and tilt angles is elaborated upon. Then, the experimental setup
and method used for acquiring analogous distributions,� exp , for collagen-rich samples is
presented. The main purpose is giving the reader an overview of how the simulations are
run and how experimental data was collected. All code used is given in the appendix.

4.1 Simulation

The simulation of the theoretical model for collagen organization is presented in the fol-
lowing section. Figure 4.1 illustrates a few pixels for four given simulations. As can be
seen in the top left, each pixel represents a �bril with a given tilt angle� T . Similarly, in
the top right, each pixel represents a �bril with a different tilt angle. The total angular
distribution is modelled either as normal distributions for various standard deviations or as
a uniform distribution. The bottom row represents undulating �brils with coil angle� SC
for either �xed coil angle on the bottom right and variable coil angle on the bottom right.

4.1.1 Generation of angles

Gaussian distributions for angles (� H , � 3H , � SC , � T , � T , � SC ) with speci�ed mean and
standard deviance values were generated in Matlab [22]. Each azimuthal angle,� T ; � SC ,
was allowed to be randomly distributed as they are of no consequence to the measured
signal. The helical angles� H; 3H were simulated as normal distributions with mean values
and standard deviations53° � 1° and 12° � 2° respectively for all simulations as found
by Rouede et al [1]. In addition, angles were also simulated as uniform distributions in an
attempt to simulate cartilage.

These angle distributions simulate the various collagen structures mentioned in chapter
1.2.1.
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Figure 4.1: Illustration of simulated pixels for four cases.(Top left) Simulation with ordered �brils
with tilt angle � T . (Top right) Disordered �brils. Each pixel is characterized by a �bril with a
different tilt angle. (Bottom left) Undulating �brils with a coil angle� SC as indicated.(Bottom
right) Each pixel represents a �bril with a different coil angle. In addition, these cases are combined
with disorder in both supercoil and tilt angles. Recreated and adapted from [8].
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4.1.2 Simulation of susceptibility tensor

The generated angles for each pixel were used as input for the matrix equation given in
equation 3.1 tensor elements,� 33; � 31 and values� th = � 33=� 31 were calculated for each
of the512� 512data points.

A simulation of� th with variation of the input tilt angle� T is shown in �gure 4.3a.

4.1.3 Application of shot noise

For real data acquisition there is shot noise present to some extent and it does affect the
mean value of� -distributions. In order to provide better �t simulated data to experimental
data, noise can be added.

For each generated array, the� th distribution was inserted into equation 2.17 and a
theoretical intensity contribution curve was generated for each pixel as a function of po-
larization angle. It was then rendered noisy by application of Poisson noise to each pixel’s
polarization-dependent curve. Figure 4.2 illustrates the application of shot noise to an
arbitrary pixel’s intensity curve.

Figure 4.2: Intensity curve as a function of polarization with curve-�tting is shown for an arbitrary
pixel for a given simulation. Simulation with and without added Poisson shot noise is illustrated.
Note that both curves have been normalized.

A Least linear squares method developed by Rouede et al [19] and derived in section
2.3 was utilized in order to calculate new� noise values by curve-�tting the noisy intensity

19



curves to equation 2.17.
Figure 4.3a illustrates simulations with and without noise applied. The histograms

are in agreement with calculated distributions found by Rouede et al [8]. The model’s
capabilities were investigated by simulating variations in both� T and� SC .

In summary, an array of noise-rendered� noise values have been created from an array
of theoretical� th simulated froma priori known angular distributions.
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(a) Distribution of � th

(b) Distribution of � noise

Figure 4.3: (a) Normalized histograms of� th with helix angle� H = 53 � 1°, triple helix angle
� 3H = 12 � 2° and tilt angles from0° to 30° with 10° increments.(b ) Parameters as in(a) with
noise.
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4.2 Instrumentation

4.2.1 Imaging system

Images were collected by a TCS SP8 confocal microscope produced by Leica and com-
bined with a Chameleon Vision-S Ti:Sapphire laser tuned to a wavelength of890 nm. A
HCX IRAPO L 25 x 0.95 WATER objective was used for all images. Re�ected SHG was
collected using a HyD-detector combined with a 435-455 bandpass �lter. Forward SHG
was also collected using a photon multiplier tube detector (PMT). The system is illustrated
in �gure 4.4. In addition the microscope was programmed to perform a tile scan using a
HC PL APO 10x 0.40 DRY objective in order to create overview pictures of samples.

4.2.2 Polarization system

The incident laser beam was polarized by using a system composed by a polarizer, a quar-
ter wave plate (AQWP10M-980 , Thorlabs) and a half wave plate (AHWP10M-980, Thor-
labs). These plates were then rotated to a pair of �xed angles for each of the 9 desired
polarization angles between0° and 160° with 20° increments. An image consisting of
512� 512 pixels with a resolution of910 nm� 910 nm was produced for each of the 9
polarization angles. The measurements were then calibrated post-imaging to account for
intensity variations caused by the polarization setup.

4.3 Samples

Two kinds of samples were examined in this thesis; tendon from a gallus domesticus
(chicken) and a knee joint from a sus scrofa (pig). The samples were obtained and prepared
in conjunction with previous research [23].

4.3.1 Gallus domesticus

The two chicken samples were obtained from the knee joint of a commercially available
chicken, and cut into two strips of about50µ m thick at angles 20� and 30� relative to their
long axes before being mounted on a coverslip with glycerol.

4.3.2 Sus scrofa

The pig samples originate from the right distal femur or knee joint of a pig. The right
distal femur was �xed in 4% phosphate-buffered formaldehyde for more than 48 hours. A
plug containing subchondral bone, cartilage and part of the tendon connected to the distal
femur was obtained using a trephine. The plug was then decalci�ed in 10% EDTA and cut
slices perpendicular to the articular surface. A vibratome was used to section one of the
pieces into three50µ m thick slices before they were mounted in glycerol on coverslips.
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Figure 4.4: Simpli�ed schematic drawing of LEICA SP8 with detectors and polarization setup. A
chameleon Vision-S Ti:Sapphire laser tuned to 890nm is polarized through a polarizer (model) and
then phase shifted through a quarter wave plate (QWP) and a half wave plate (HWP). The laser is
scanned across the sample using galvanic mirrors, through a dichroic mirror into a HCX IRAPO
L 25 x 0.95 WATER objective. SHG in the backwards direction is detected by a photon counting
(HyD) detector and SHG in the forward direction is detected by a photon multiplier tube (PMT)
detector.
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4.4 Imaging

4.4.1 Chicken tendon
Sections of both chicken samples were imaged for each polarization angle between 0° to
160° with 20° increments using a 25X WATER objective with a scanning speed of 100Hz.
The samples were all imaged on a relatively shallow depth of approximately10µ m and
signal was collected in the re�ected direction. The nine polarization-dependant images
were then overlaid forming an image with an intensity range of 0-2295. A threshold value
of 200 was chosen and any pixels below this value were removed from the data set. The
resulting intensity curves for each pixel were then used in order to calculate� exp and
main angle
 through the curve-�tting described in section 2.3, resulting in images with a
resolution of512� 512pixels over an area of465µ m � 465µ m.

4.4.2 Distal femur of pig
A similar process as in section 4.4.1 was applied on the pig knee joint sample. A main
difference is that the signal was also collected in the forward direction using the PMT-
detector and the threshold value was set to 200 when processing due to lower overall
signal from the cartilage sections.

Overview image

The microscope was programmed to section the distal femur sample into a grid consisting
of approximately 130 tiles, covering the entire sample through using the 10X AIR ob-
jective. All tiles were imaged and later combined into one overview picture of the distal
femur at5474� 5925pixels with a total image size of12:43 mm � 13:45 mm.
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Chapter 5
Results

In this chapter, both simulated and experimental results are presented.

5.1 Simulation of tilt and supercoil angle distributions
All simulations were performed with helical angles� H and � 3H modeled as Gaussian
distributions as described in section 4.1.1. These distributions combined with added noise
for each pixel leads to the distribution of� noise values for no variation in tilt or coil angles.

Simulations were run with variable tilt angles and the resulting parameter� noise is
shown in �gure 5.1. Figure 5.1a displays the resulting histograms from four simulations
with � T from 0° to 60°. Notice the shift towards higher values of the average of� noise for
higher tilt angles. These simulations represent straight �brils cut at indicated tilt angles, in
example tendon.

In addition four simulations were performed with� T normally distributed around a
mean axis at0° for varying standard deviance� as shown in �gure 5.1b. A simulation
was also conducted with a completely uniform distribution of all possible� T . The results
of the simulations are displayed as mean values and standard deviation of� noise . These
simulations, with varying degrees of disorder, should correspond to structures formed by
collagen type II such as in cartilage.

Similar simulations were run with variable supercoil angles� SC , as shown in �gure
5.2. They were performed in order to investigate whether or not any of the experimental
samples produce similar distributions.

In �gure 5.3, a simulation where both� T and � SC were modelled as normal distri-
butions with mean 0° for standard deviations from 0° to 60°. A simulation for uniform
distributions in tilt and coil angles was also conducted and is represented by the green
curve.
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(a)

(b)

Figure 5.1: (a) Histograms of� noise with helix angle� H = 53 � 1°, triple helix angle� 3H = 12 � 2°
and tilt angles from0° to 60° with 20° increments. (b ) Histograms of� noise with helix angle h
� H = 53 � 1°, triple helix angle� 3H = 12 � 2° and normally distributed tilt angles with mean
angle 0° and standard deviation� from 0° to 60° with 20° increments. In addition, the green curve
represents a completely uniform distribution with all tilt angles equally probable.
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(a)

(b)

Figure 5.2: (a) Histograms of� noise with helix angle� H = 53 � 1°, triple helix angle� 3H = 12 � 2°
and supercoil angles� SC from 0° to 60° with 20° increments.(b ) Normalized histograms of� noise

with helix angle h� H = 53 � 1°, triple helix angle� 3H = 12 � 2° and normally distributed supercoil
angles with mean 0° and standard deviation� from 0° to 60° with 20° increments. In addition, the
green curve represents a completely uniform distribution with all supercoil angles equally probable.
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Figure 5.3: Histograms of� noise with helix angle� H = 53 � 1° and triple helix angle� 3H =
12 � 2°. � T and� SC were modelled by normal distributions with mean 0° and standard deviations
as indicated. The green curve represents uniform distribution in tilt and supercoil angles.

5.2 Experimental results

5.2.1 Chicken tendon
In order to verify the performed simulations, chicken tendon cut at both 20° and 30° was
imaged. Additionally, since the cut angles and collagen structures of the tendon samples
are known, they were used for picking the amount of shot noise applied to simulations.

The resulting histograms for� exp for the chicken tendon samples cut at 20° and 30°
are displayed in �gure 5.4. In the �rst row, the calculated images of� exp are displayed.
The second row displays the resulting histogram for the tendon cut at 30° in addition to
simulations for tilt angles� T from 0°-30°. Equivalent histograms for the tendon cut at 20°
are displayed in the third row.

In �gure 5.5, additional images of the tendon cut at 20° are displayed with their cor-
responding histograms. Notice that the images created from the main orientation angle

appear to be fairly uniform.
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Figure 5.4: (First row) Displays calculated� exp distributions of the chicken samples cut at 30° and
20°. (Second row)Normalized histograms of the sample cut at 30° overlaying histograms created
by simulations with variable tilt angles.(Third row) Histograms of the sample cut at 20° overlaying
histograms created by the aforementioned simulations.
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Figure 5.5: Three different regions of interest (ROI) for the chicken tendon sample.(Left column)
Images depicting� for images A, and C.(Right column) Main angular orientation images
 for
images A,B and C.(Bottom) Histograms illustrating� -distributions for images A,B and C. Mean
and standard deviations are indicated.
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