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ABSTRACT

This thesis explores the possibilities for combining the recently proposed multimesh finite
element method with gradient based shape optimisation. The incentive is to reduce the
computational cost related to deformations of the computational domain, that is associated

with the standard finite element method. The problem that is studied is the Stokes-drag problem,
where the optimisation of energy dissipation into heat, with regards to the optimal placement of
objects in a multi-body system, is considered. In the problem formulation, the Stokes equations
are used as the constraining partial differential equations.

Multimesh FEM relies on multiple independent meshes that can be associated with separate
parts in a multi-body system. This way the method avoids the computational cost of re-meshing.
As such, the scheme is particularly well suited to handle the kind of problems that is studied in
this thesis. However, in order to combine this scheme with gradient based shape optimisation it
is necessary to develop a gradient representation that is compatible with the partitioning of the
domain.

The novel contribution in this work is the analytical derivation of a gradient representation
for the Stokes-drag problem, with basis in the multimesh scheme. The shape derivative of
the drag functional is derived using the adjoint approach and corollaries from the Hadamard
theorem. In the derivation all constraint equations are considered on their strong form. The
computational domain is considered in a multi-domain setting where the interface conditions,
from the multimesh FEM formulation of the Stokes equations, are introduced on their strong
form. The resulting Hadamard formulation of the shape derivative is found to be equivalent to
the expression found from a single-domain analysis. Numerical experiments conducted in this
work, have verified the accuracy of the gradient in several different scenarios. In particular, the
gradient is demonstrated to have acceptable precision around extrema points which is further
improved by refining the mesh.

Using layout optimisation of a tidal turbine farm as a benchmark, the performance of the
combined multimesh shape optimisation scheme is demonstrated to replicate results from the
literature. The time consumption associated with gradient evaluations and mesh update is found
to be negligible compared to other operations such as assembly of and solving the linear system.
Several possible applications of the developed scheme are proposed and suggestions for future
work are made.
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SAMMENDRAG

Denne oppgåva utforsker moglegheitene av å kombinere den nyleg føreslått "multimesh
finite element method" med gradientbasert formoptimering. Insentivet til dette er å
redusere berekningskostnaden relatert til deformasjonar av berekningsdomenet, som

typisk er assosiert med standardformuleringa av "The finite element method". Problemet som
er studert er "The Stokes-drag problem", der funksjonen som beskriv friksjon i ei væske er
optimert med tanke på den relative posisjonering av lekamar i eit mangepartikkel system.
I problemformulasjonen er eit sett av partielle differensialligninger kjent som "The Stokes
equations", brukt for å beskrive hastigheita til den omliggande væska.

"Multimesh FEM" er ei metode som nyttar seg av mange uavhengige maskeringar av berekn-
ingsdomenet. Desse maskeringane kan då bli assosiert med ulike komponentar i mangepartikkel
systemet og på denne måten kan metoden unngå berekningskostnaden relatert til endring i
geometrien av berekningsdomenet. I kraft av dette er "multimesh FEM"-metoden spesielt godt
eigna til å løyse den type optimeringsproblem som er studert i denne oppgåva. For å kunne
kombinere denne metoden med gradientbasert formoptimering er det nødvendig å finne ein
gradient representasjon som er kompatibel med ei oppdeling av berekningsdomenet.

Det nye bidraget i denne oppgåva er den analytiske utrekning av ein gradient representasjon
for "The Stokes-drag problem", som er kompatibel med "multimesh" formuleringa. Den deriverte
av energi dissipasjons funksjonen er utrekna ved hjelp av «The adjoint approach» og ved å nytte
Hadamard teoremet. I utrekninga er den sterke forma av alle partielle differensial ligningar brukt.
Berekningsdomenet er oppdelt i mange deldomene og kontinuitetbetingelsa for hastigheit og
trykk er innført over grensene mellom dei ulike domena. Hadamard formuleringa for eit oppdelt
berekningsdomene er funnen å være lik Hadamard formuleringa frå eit enkelt berekningsdomene.
Numeriske eksperiment i denne oppgåva har verifisert presisjonen til gradienten i mange ulike
situasjonar. Det er vist at gradienten har akseptabel presisjon rundt ekstremalpunkt.

Ved å bruke eit system med turbinar i ein tidevannstrøm som testproblem, har metoden
vist seg å reprodusere resultat frå litteraturen. Det er funne ut at tidsbruken assosiert med
gradientevalueringa og oppdatering av domene-maskeringane, er neglisjerbar samanlikna med
tida det tek å løyse det lineære systemet assosiert med "The stokes equations". Mange ulike
applikasjonar for den nye metoden er føreslått.
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INTRODUCTION

This chapter gives an introduction to the work conducted in this thesis. The first part is

a discussion that aims to motivate for the particular topics that are studied and to clarify

the current status of those fields that form the foundation of this work. This discussion is

followed by Section 1.2 which defines the scope of the thesis, formally defined in three objectives.

Section 1.3 clarifies the contribution of the current work and lists several areas of application

where this study can be of relevance. The chapter concludes with a short section on the structure

of the text to help the reader manoeuvre through the thesis.

1.1 Background

The relevant fields for this thesis are simulation and optimisation and the coupling of the two.

Simulation in the context of physical modelling and scientific/industrial computing, is a computer

based approach to replicate the behaviour of a given system by approximating a mathematical

model that describe the system. Optimisation in this context, and mathematical optimisation in

particular, is a field at the intersection between applied mathematics and computer science. In

optimisation problems the goal is typically to optimise for some quantity constrained by some

criteria, while simultaneously keeping the computational cost low. A common scenario, that is

the relevant context in this thesis, involves maximising or minimising an objective function by

exploring possible input values from a restricted domain.

The coupling of simulation and optimisation is an economically cost efficient way to explore

the properties of physical systems and is extensively used in both industry and academia. Where

physical experiments often require extensive infrastructure to be conducted, a computer based

road map is often preferable as a first approach. As well as being important in their own right,

1



CHAPTER 1. INTRODUCTION

results from simulation and numerical optimisation experiments can often be used as guide-lines

and benchmarks for implementations in the physical lab.

Of particular interest for this work are physical systems described by partial differential

equations (PDEs). In this thesis, simulation using the finite element method (FEM) will be

used to obtain the approximate solution of a PDE. The advantage of combining simulation with

optimisation algorithms has lead to an increasing field of research and the evolution of several

different techniques to handle a great variety of problems [47]. One such family of problems

are related to shape optimisation [35, 46], in which the goal is to optimise the geometry of

a system with regards to some objective function and where the system is subject to some

physical constraints. There is a multitude of applications for shape optimisation ranging from

aerodynamic design and general optimisation in fluid mechanics [34, 45], to structure mechanics

and combinations of these. Examples are optimal design of aeroplanes with regards to drag

minimisation [27] and optimal positioning of objects such as current carrying multi-cables

[10, 19] or tidal turbines in a tidal turbine farm [15]. In Fig. 1.1 (c), the optimal configuration

of a system with 256 tidal turbines is shown outside Stroma Island. The images in Fig. 1.1 are

adapted from [15], where a coupled simulation optimisation experiment was conducted.

(a) 

(b) 

(c) 

Figure 1.1: Illustration of an optimisation problem involving 256 tidal turbines in a tidal turbine
farm. (a) shows a satelite image of a nearshore area. (b) shows the configuration of the tidal
turbines after termination of the gradient-based optimisation algorithm, the white dots represents
the individual turbines. (c) shows a zoom of the final configuration. The adjoint approach was
used in the gradient evaluations. Image courtesy [15].

There are several kinds of optimisation algorithms. Common methods to name a few are;

2



1.1. BACKGROUND

iterative methods, where the iterates are proven to converge, and heuristics, which provide

approximate solutions but where the iterates do not necessarily converge. Shape optimisation

problems are typically solved using iterative methods. A commonly used iterative method is the

gradient descent approach. For gradient-based optimisation strategies an important aspect is the

development of efficient methods for calculating the sensitivity, i.e the derivative of the objective

function with respect to the PDE constraint. An important step in this regard is the calculation

of sensitivities using the adjoint approach as described in [20] and advocated in [4, 36, 41]. The

main advantage with this approach, as opposed to methods where the sensitivities are calculated

directly, is that the adjoint system is independent of the number of design parameters needed to

describe the system. Therefore, the computational cost of evaluating the gradient will primarily

be determined by the cost of solving the adjoint system which is roughly equivalent to the cost

of solving the related PDE. The configuration of the tidal turbine farm shown in Fig. 1.1, was

optimised using the adjoint approach to evaluate the gradient. The adjoint approach can be

performed in two different ways, the "continuous approach" and the "discrete approach", which

in general does not commute. In [4] it was shown that the two methods converge, under certain

conditions, with decreasing mesh size. The "continuous approach" relies on a "differentiation-

then-discretization" scheme. In [41] the "continuous approach", with the Hadamard formulation

of the shape derivative, was advocated. From the Hadamard theorem [46] it follows that for

sufficiently smooth boundaries the shape gradient is only non-zero at the boundary of the domain.

The Hadamard formulation gives an analytical expression for the shape derivative which can be

quickly evaluated once the PDE and corresponding adjoint equations are solved for. Therefore the

gradient evaluations are very cost effective and independent of the number of design parameters.

The disadvantage with the "continuous approach", compared to the "discrete approach", is that the

gradient is discretely inconsistent. This issue occurs because information of the mesh structure

in the perturbed domain is not included in the differentiation. In the "discrete approach", the

system is first discretised and then differentiated, leading to sensitivities that are dependent on

the mesh structure. This procedure ensures that the resulting sensitivity is discretely consistent

as promoted in [36], but has the drawback that the mesh sensitivities are unsuitable to calculate

for complex systems. As commented by [4], the "discrete approach" seem to be more reliable in

obtaining the exact result, but as also commented, there seem to be some controversy as to which

method is best to use. A more thorough comparison of these approaches can be found in [16].

When the geometry is changed during a shape optimisation procedure it is necessary to

update the mesh to the new geometry in each iteration. Re-meshing and mesh deformation are

often used for this purpose but at a high computational cost that slows down the optimisation

algorithm. The multimesh finite element method (MMFEM) [24] has recently been proposed as

an alternative way to deal with changing geometries. The MMFEM method is a discretisation

scheme with multiple independent meshes. Fig. 1.2 illustrates the principle with abstract objects

in a flow. In the figure, an independent mesh is associated with each object while a background

3



CHAPTER 1. INTRODUCTION

mesh is used to represent the computational domain of the flow. Fig. 1.3 (b) offers a more concrete

example in a 3D setting. Here an independent mesh is used to represent a house in an air

flow, while the background mesh is again used to represent the flow. The image is adapted

from [48]. The analysis of the MMFEM scheme is presented in [23], where convergence and

stability of the method is proven. The multimesh finite element method is closely related to the

cutFEM method first proposed in [17, 18]. The novelty with the MMFEM method is the use of

non-interacting overlapping meshes to cut the elements of the underlying mesh. The method is

also a generalisation that allows for multiple simultaneously overlapping meshes. In the MMFEM

framework, naturally separate parts can be meshed independently. The individual meshes can

then be moved and deformed separately, which greatly reduces the computational cost when only

parts of the computational domain is subject to a changing geometry. To ensure continuity of

the state variables across the interfaces, a weak enforcement scheme is used. This scheme is

based on the work of Nitsche [37] and is therefore appropriately called Nitsche’s method. This

method was first adapted to enforce interface conditions on cut elements in [17, 18]. In [32] this

approach was applied to the Stokes problem in a multimesh setting, proving that the method is

stable, consistent and optimally convergent. The numerical implementation of this particular

work can be found in [33].

Figure 1.2: Illustration of the multimesh scheme. Abstract objects in a flow represented by
independent meshes. Image courtesy [24].

In [10], the MMFEM method was used in combination with shape optimisation for several

state equations and the computational cost saving of this method, compared to traditional

re-meshing, was demonstrated. The work compared both the "continuous" and the "discrete

approach" and found that the discrete method was infeasible for the multimesh formulation. For

this reason the "continuous approach" with the Hadamard formulation was suggested as the

method of choice, for shape optimisation in combination with multimesh FEM.

The Navier–Stokes equations are extremely important as they describe the physics of many

phenomena of scientific and engineering interest. The equations are widely used to model fluids

and gasses and as such they are important for many engineering purposes including aircraft

and car design and optimisation of wind and tidal turbines [3, 21, 55]. The Stokes equations, see

Definition 1.1, are a linearization of the Navier-Stokes equations and is best used to describe

4



1.1. BACKGROUND

(a) (b)

Figure 1.3: Optimisation of the position of houses in air flow with respect to wind reduction
and view aspects. (a) illustrates how the house positions are subject to among other things the
geometrical constraints of the landscape. (b) illustrates how the multimesh scheme is used to
represent houses and air flow with independent meshes. Image curtesy [48].

slow flow of incompressible fluids. In this regard they are relevant for many important fields that

involves fluids with high viscosity. Examples are the viscous environment of microorganisms

[28, 54], plate tectonics [13] and micro sensors for biomedical purposes, with blood flow and

respiratory monitoring [44]. The Stokes equations have also been used to simulate the flow of

air, in an optimisation problem involving the optimal placement of buildings [48]. Fig. 1.3 (a) is

adapted from [48] and illustrates the setup with multiple houses spread over a landscape. The

right image, Fig. 1.3 (b) illustrates how the Stokes flow and the houses are represented by the

multimesh scheme.

The Stokes equations are besides a popular starting point as a test problem for the design of

FEM based algorithms. One reason for this is that the Stokes equations have many similarities

with the Navier-Stokes equations and therefore works as a natural first step in the development

of algorithms for the more complex Navier-Stokes system. In particular, several papers have been

dedicated to the development of a stable MMFEM formulation for the Stokes equations [22, 32]

and work is currently ongoing to develop a similar formulation for the Navier-Stokes equations.

Definition 1.1. The Stokes problem. Let Ω ∈ R2 be the domain of interest with a piece-

wise smooth boundary ∂Ω = ∂ΩD
⋃
∂ΩN where ∂ΩD and ∂ΩN are the Dirichlet and Neumann

boundaries respectively. Let u :Ω−→R2 correspond to the velocity of the fluid and let the pressure

be given by p :Ω−→R. The Stokes equations are then given as,

−µ∇2u+∇p = f on Ω,(1.1)

∇·u= 0 on Ω,(1.2)

∇u ·n− pn= gN on ∂ΩN ,(1.3)

u= gD on ∂ΩD .(1.4)

where n is the unit normal on ∂Ω, f is a source term and both gD and gN are vector valued

functions specific for a given problem. The constant µ is the dynamic viscosity of the fluid.
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CHAPTER 1. INTRODUCTION

For shape optimisation and optimisation in general, a crucial step is to decide which criteria,

or objective function, to optimise for. One such criteria which is commonly used is the drag,

or energy dissipation into heat. For aeroplanes and cars the goal is typically to minimize this

parameter, while for wind turbines and tidal turbines it could be to maximise the drag. For an

incompressible fluid like the Stokes flow, the energy dissipation can be modelled with the drag

functional J as defined in Lemma 1.1.

Lemma 1.1. (Drag in an incompressible fluid).

For an incompressible fluid, the dissipation of energy into heat can be expressed as,

(1.5) J(u,Ω)=µ

∫
Ω

2∑
i, j=1

(∂ui

∂x j

)2
dx

where u is a velocity field satisfying the state equation chosen for the problem. In this case the

Stokes equations from Definition 1.1 will take this role. The constant µ is the dynamic viscosity

from Eq. (1.1).

Proof: The proof can be found in [41] and follows from taking the time derivative of the

expression for kinetic energy in the fluid and utilise the Navier-Stokes equations along with the

incompressibility assumption that the density does not change with time.

1.2 Overview and Scope

This work is based on two pillars. The first pillar concerns simulation of Stokes flow using the

finite element method with particular focus on the multimesh finite element scheme. The second

pillar concerns shape optimisation with focus on gradient based optimisation and the Hadamard

formulation of the shape derivative. The optimisation problem that will be studied is defined in

Definition 1.2 and will be referred to as "The Stokes-drag problem". The analysis in this thesis

will be restricted to two dimensions, but the experimental setup along with the overall theory

developed in this work can easily be generalised to three dimensions.

The central concern in this work is to investigate how the two pillars can be merged to form

a combined multimesh-based shape optimisation scheme for the Stokes-drag problem. In this

context, it is the goal to derive a gradient representation in a multimesh setting. The incentive is

that to combine the multimesh setup with gradient-based shape optimisation, it is first necessary

to find a representation of the gradient that is consistent with multiple independent meshes.

Definition 1.2. The Stokes-drag problem. Let J(u,Ω) be the objective function defined in

Lemma 1.1 and let g(u,Ω)= 0 be the abstract form of the Stokes equations from Definition 1.1.

The optimisation problem that will be studied in this work is then,

max
u,Ω

J(u,Ω) on Ω(1.6)

subject to g(u, p,Ω)= 0 on Ω(1.7)

6



1.2. OVERVIEW AND SCOPE

where Ω⊂R2 is the computational domain over which the problem is defined.

The main advantage with the multimesh scheme is the computational cost saving with

regards re-meshing. It must therefore be demanded of the gradient representation to also be

computationally cheap so as to not diminish the advantage with the multimesh setup. In this

context, the findings from [10] will be used as a starting point. In [10], the Hadamard represen-

tation of the gradient was suggested as the method of choice when doing shape optimisation

with the multimesh scheme. This work will therefore use the "continuous approach" and the

Hadamard theorem [46] to derive the gradient. In particular, it will be a concern to investigate

how the interface conditions, emerging as a consequence of the multimesh scheme, should be

treated when deriving the Hadamard form.

Numerical experiments are used to investigate the proficiency of the Hadamard represen-

tation in combination with the multimesh scheme. In this context several relevant aspects are

considered including; computational cost savings for the combined scheme, proficiency of the

gradient at critical points and convergence properties of the separate parts. As a benchmark

model for the combined optimisation scheme a system of tidal turbines is used. This allows for

a comparison of the optimal configurations found here, with similar work from the literature

[15, 19]. To get a better overview of the work, the scope is formally summarised in three main

objectives. A schematic of how these objectives are related is given in Fig. 1.4 at the end of this

chapter.

Objective 1: The first objective in this work is dedicated to the implementation of a

multimesh finite element solver for the Stokes problem in Definition 1.1. As a part of

this, it is the goal to verify the correctness of the implementation and demonstrate the

performance of the method. In particular, the goal is to test the performance of the method

in terms of mesh update with increasing mesh complexity and compared the results to

similar tests in the literature.

Objective 2: The second objective in this work has been to derive the Hadamard formula-

tion of the shape derivative, for the Stokes-drag problem, in the context of a multi-domain

partitioning. The intention is to perform the derivation using the "continuous approach"

and treat all constraint equations on their strong form to see if this reproduces the result

from a single-domain analysis. To the best of the writers knowledge this derivation has not

been performed before in the context of the multimesh formulation and must be considered

as the novel contribution in this work. The derivation of this formulation is made in Section

5.4. In the extension of this, it is the goal to verify the correctness of the formulation by

numerical experiments. In particular, to see to what extent the simplifications made in the

derivation will affect the precision of the gradient.
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CHAPTER 1. INTRODUCTION

Objective 3: The last objective has been to experimentally investigate the performance

of the combined multimesh-based shape optimisation scheme by building on the models

developed for Objective 1 and Objective 2. The incentive is to see how the combined

scheme perform in practise and to explore its suitability as a framework for solving shape

optimisation problems. The performance will be tested by optimising the positions of

turbines in a tidal turbine farm and benchmark the results to similar experiments from

the literature.

1.3 Contribution

The shape optimisation part of this work, with the derivation of the Hademard formulation of

the shape derivative, has a foundation in the work performed in [41, 43] where several results

from the literature, regarding the Hademard formulation, are listed and proven. In [43] the

Hadamard form for several objective functions are derived with the Navier-Stokes equations

as state constraints. While in [41], the Hadamard form of the Stokes-drag problem is derived

and shown to be independent of the adjoint state. This is a known results from the literature

and is also derived in [35]. What distinguish the derivation performed in the present work from

the works listed above, is the derivation of the Hadamard form with basis in a multi-domain

partitioning of the computational domain.

To solve the Stokes problem, see Definition 1.1, the multimesh variational form is derived and

implemented. This form is taken from [22, 32] where the variational form of the Stokes problem

with two meshes, a background mesh and an overlapping sub-mesh, is used. The current thesis

generalises this variational form to multiple non interacting sub-meshes.

The use of multiple sub-meshes for the Stokes problem has already been done in [10]. In [10]

an optimisation algorithm with basis in the Hadamard and multimesh formulations was tested

for the Stokes problem. What distinguish the work done in the current thesis from [10], is the

actual derivation of the Hadamard formulation in a multimesh setting. In addition, this thesis

focus on testing the shape derivative for the Stokes problem in terms of displacement of the object

positions, while [10] tested this in terms of rotation and deformation of the object domain.

1.3.1 Relevance and applications

The results from studying the three objectives above will be of importance with regards to both

simulation involving Stokes flow, and optimisation in viscous environments where the energy

dissipation is a relevant parameter to optimise for. Even though the analysis in this work focus

on tidal turbines, the tidal turbine setup can easily be generalised to more abstract objects in

Stokes flow. Therefore, the findings in this thesis will be important to a wide range of optimisation

problems. Possible applications are:
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• Optimise the flow of micro-sensors in blood flow by minimising the drag.

• Minimise drag on clusters of buildings. Fig. 1.3 illustrates a typical scenario.

• Minimise drag with regards to lubrication of machine components.

It is important to be aware that the explicit results derived for the Stokes-drag problem

does not directly generalise to other state equations and objective functionals. However, by

investigating how to best combine shape optimisation with the multimesh scheme, this work

forms a foundation for future work utilising this combined scheme. Of particular relevance is

the extension of this scheme to the Navier-Stokes equations. In this context this work can be

of relevance for a wider range of applications, whose typical flow conditions are well described

by the Navier-Stokes equations and where optimisation of the drag is crucial. Examples of such

areas of application are:

• Optimisation of swarm behaviour, drone swarms etc.

• Optimisation of wind-turbine/tidal-turbine farms. Fig. 1.1 illustrates a typical scenario.

• Optimisation of the aerodynamic shape of aeroplanes, cars and similar.

1.4 Thesis structure

This thesis is divided into three main parts. The structure is illustrated in Fig. 1.4 which also

highlights the main objectives. The green boxes represents objective 1, the blue boxes represents

objective 2 and the red box corresponds to the final objective where the results from objective 1

and 2 are merged to test the combined scheme.

Part I is dedicated to simulation theory with focus on the multimesh finite element method.

The relevant finite element terminology is presented in Chapter 2. Similarly, Chapter 3 introduces

the necessary concept of the MMFEM scheme. Chapter 3 concludes with a derivation and

motivation of the multimesh weak form of the Stokes equations.

The second part, Part II, is concerned with optimisation theory and in particular with gradient

based shape optimisation which is the main concern for this work. Chapter 4 starts with a short

introduction to the general principles of gradient based optimisation. Chapter 5 then gives an

analytical derivation of the Hadamard form of the shape derivative in a multi-domain setting.

The last part, Part III, is dedicated to implementation and numerical experiments. Chap-

ter 6 formulates the combined multimesh shape optimisation problem that will be studied in

the numerical analysis. Chapter 7 explains how a multimesh finite element solver has been

implemented in python and follow up with convergence tests to check the proficiency of the

implementation. Chapter 8 gives a similar overview of the implemented optimisation algorithm

and again tests the implementation using a simple benchmark model and convergence tests.
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Objective 1: Multimesh FEM.
Starting point: Stokes problem
from Def. 1.1.

Objective 2: Shape optimisation.
Starting point: Stokes-drag problem
from Definition 1.2.

Introduce a multi-domain 
partitioning to get the multi-
domain Stokes problem. 
Def. 3.9

Discretisation. Introduce the 
multimesh variational form.

Objective 3: Combined scheme
Test proficiency of the Hadamard form
combined with the multimesh scheme.

Derive the Hadamard form 
of the shape derivative.

Implementation and 
convergence tests.

Implementation of a gradient 
descent algorithm. 
Convergence tests.

PART I: Simulation theory

PART II: Optimisation theory

PART III: Numerical Results

Figure 1.4: Schematic of how the thesis is structured. The thesis is divided in three main parts
concerned with each of the three main objectives in the work. The green boxes corresponds to
Objective 1, the blue boxes corresponds to Objective 2 and the red box corresponds to the final
objective, Objective 3.

Chapter 9 contains the actual numerical experiments. Here the multimesh scheme is tested and

compared to previous work. In addition, several tests are conducted to check how the expression

for the shape gradient from Chapter 5 perform in combination with the multimesh scheme. The

chapter concludes by optimising the positions of several tidal turbine systems of increasing

complexity.

Some comments on notation: To avoid confusion it is necessary with some short comments

on the notation used in this work. This section aims to explain the most essential parts. In

addition, Appendix A.1 will define the remaining conventions.

Boldface letters v will be used to highlight vectors in Euclidean space R2. The components of

the vectors will be denoted as vi for i = 1,2. Similarly, matrices will be expressed with bold capital

letters A and their corresponding elements as A i j. The exception is the Jacobian matrix. For a

vector function z the Jacobian will be denoted Dz, without boldface. The notation [[z]]= z0 − zi

and 〈〈z〉〉 = (z0 + zi)/2 will be extensively used in the text. Here z0 and zi are vector functions on

either side of an artificial interface in the computational domain Ω⊂R. The notation [[·]] is the

jump in z across the interface while 〈〈·〉〉 is the average. The dotproduct between these expressions

will be written as [[z]]〈〈z〉〉 := [[z]] · 〈〈z〉〉 etc., Where " · " is suppressed to simplify the notation.
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Simulation Theory
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2
THE FINITE ELEMENT METHOD

This chapter will briefly present the finite element method (FEM). In this regard the Stokes

problem from Definition 1.1 will be used as a working example. For a more thorough

introduction to the basic principles of the finite element method the reader is referred to

Appendix C which again is based on a more comprehensive discussion in [6].

2.1 Overview

The finite element method is an approximation scheme designed to approximate the solution to

boundary value problems. Starting with the strong form of the Stokes problem from Definition

1.1, the finite element method can be formulated in the following steps,

Step 1. State the problem in its weak form.

Step 2. Introduce a finite dimensional function space so that the problem can be solved as a

linear system.

Step 3. Choose a basis. In the finite element method, piece-wise continuous basis func-

tions defined over finite elements (a mesh) are used. The mesh introduces a spatial

discretisation.

Step 4. Solve the linear system.

In the third step in this recipe it is necessary to chose an explicit basis. When using the finite ele-

ment method, the strategy is to chose piece-wise continuous basis functions and a corresponding

mesh structure. The motivation for this choice is that it greatly reduces the computational cost of

solving the problem. A more thorough explanation to these concepts will be covered shortly.
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CHAPTER 2. THE FINITE ELEMENT METHOD

2.2 Step 1. The weak formulation of the Stokes problem

The first concept to introduce, is the weak formulation of the problem. This will be done using

the Stokes problem from Definition 1.1 as a working example. The weak formulation has the

advantage that it puts weaker continuity constraints on the solution. Therefore, where a solution

to the strong form must be up to two times continuously differentiable, the solution (u, p) to the

weak form only needs the first order derivatives to be continuously integrable. In this regard the

solution (u, p) is sought from an infinite dimensional Sobolov space such that (u, p) ∈V ⊗Q where

V = [H 1(Ω) : u = gD on ΓD],

Q = [H 0(Ω)].
(2.1)

See Appendix B.1.1 for a definition of these Sobolov spaces.

The strong form of the Stokes problem consists of the momentum equation, Eq. (1.1), and

the continuity equation, Eq (1.2). The strong form of the momentum equation is converted to

its weak form by taking the inner product between the residual em = −∇2u+∇p− f , and the

vector function v ∈ V and then integrate all second order derivatives by parts. Similarly the

continuity equation is converted by taking the inner product between the residual ec =∇·u and

the scalar fuction q ∈Q. The residuals are then demanded to be orthogonal to the function spaces

V and Q such that the inner products are zero for all v ∈ V and q ∈ Q. The vector functions

(u, p) are typically referred to as the trial functions and the vector functions (v, q), that takes the

innerproduct with the residuals, are referred to as the test functions.

For the Galerkin method that is employed here, the test and trial functions are chosen

over the same function spaces. The motivation for this procedure is given in Appendix C.3. The

short version of the motivation is related to the step covered in Section 2.3. When seeking the

approximate solution from the finite dimensional spaces Vh ⊂V and Qh ⊂Q, the orthogonality

condition ensures that the best minimiser of the residual errors em, ec is chosen. This minimiser

is at the same time the best approximation to the solution (u, p) ∈ V ⊗Q from the subspace

Vh ⊗Qh. More details are found in Section C.3 in the appendix.

Therefore, let (u, p) ∈V ⊗Q where V and Q are as defined above. Taking the inner product

then gives for the momentum equation,

(2.2) −
∫
Ω

(∇2u) ·vdx+
∫
Ω

(∇p) ·vdx =
∫
Ω

f ·vdx ∀v ∈V

and for the continuity equation,

(2.3)
∫
Ω
∇·uq = 0 ∀q ∈Q.

To remove the second order derivative on the trial function u, the Laplacian term in Eq. (2.2)

is integrated by parts. The term involving ∇p is also integrated by parts, as this allows the

Neumann boundary condition to be included. The result is,

(2.4)
∫
Ω
∇u :∇vdx−

∫
∂Ω

∇u ·v ·ndS+
∫
∂Ω

pv ·ndS−
∫
Ω

p∇·vdx =
∫
Ω

f ·vdx.
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The Neumann boundary condition can then be introduced in a natural way by substituting

∇u ·n with Eq. (1.3). The boundary integrals over the Dirichlet boundaries are removed since

the Dirichlet conditions will be applied directly on the matrix element of the final linear system.

Combining Eq. (2.4) with Eq. (2.3) gives,

(2.5)
∫
Ω
∇u :∇vdx−

∫
Ω

q∇·u−
∫
Ω

p∇·vdx =
∫
Ω

f ·vdx+
∮
∂ΩN

gN ·vdS.

Here q has been substituted for by −q, a choice that will be motivated at the end of this

discussion. With these equations at hand, the problem of solving the Stokes equations can be

stated in the weak form in the following way. Find (u, p) ∈V ⊗Q such that,

(2.6) A(u, p,v, q)= L(v) ∀ (v, q) in V ⊗Q.

where,

(2.7) L(v)=
∫
Ω

f ·vdx+
∮
∂ΩN

gN ·vdS,

and

(2.8) A(u, p,v, q)= an(u,v)+aq(u, q)+ap(p,v),

with,

(2.9) an(u,v)=
∫
Ω
∇u :∇vdx,

(2.10) aq(u, q)=−
∫
Ω

q∇·udx , ap(v, p)=−
∫
Ω

p∇·vdx.

In Eq. (2.10) it is now easy to see that the choice q = −q made earlier, has made aq(u, q) and

ap(v, p) symmetric with respect to exchange of u and v. This property is important for the

symmetry of the stiffness matrix, see Example 2.1, and is therefore of relevance for the efficiency

in solving the linear system.

2.3 Step 2. Finite dimensional function spaces

The solution to the weak form resides in an infinite dimensional Sobolov space V ⊗Q such that

u ∈ V and p ∈Q. Where V and Q are as defined in Eq. (2.1). To numerically solve this system,

the idea is to reduce the problem to a finite dimensional function space such that the system can

be solved as a set of algebraic equations. Following this strategy a finite N dimensional subspace

is chosen such that, Vh ⊗Qh ⊂V ⊗Q. The subscript h is used to indicate the finite dimensional

nature of the space. The approximate solution (uh, ph) defined over the finite space can then

be expanded in its basis functions and the problem is reduced to determining the expansion

coefficients {c j}N
j=1. Example 2.1 gives an idea of how the problem can be converted to a linear

system by considering a simple 1D case scenario,
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Example 2.1. Illustrative example, 1D Poisson eq. Linear system of the weak form.

The weak form of the 1D Poisson equation corresponds to the 1D version of the bilinear form

an(u,v) in Eq. (2.9) along with the 1D version of the linear form L(v) in Eq. (2.7). With gN = 0 and

by seeking the solution uh from the N dimensional function space Vh, the weak form is given as:

Find uh ∈Vh such that,

(2.11)
∫ 1

0

duh

dx
dvh

dx
dx =

∫ 1

0
f (x)vhdx ∀vh ∈Vh.

By expanding uh ∈V in the basis functions {φi(x)}N
i=1 of V and with v =φi(x) one gets,

N∑
j=1

c j

∫ 1

0

dφ j(x)
dx

dφi(x)
dx

dx =
∫ 1

0
f (x)φidx,

where c j are the expansion coefficients. This can be stated as a linear system,

Ac = b,

where A is a N ×N matrix with the matrix elements,

A i j =
∫ 1

0

dφ j(x)
dx

dφi(x)
dx

dx,

and b is a N dimensional vector with the elements,

bi =
∫ 1

0
f (x)φi(x)dx.

The problem of solving the weak form stated in Eq. (2.11) is therefore equivalent to solving a linear

system. To obtain the approximate solution uh it is therefore enough to solve for the coefficients

{c j}N
j=1 in c. The matrix A is typically referred to as the stiffness matrix. In order to do obtain

this matrix and the vector b, an explicit choice of basis functions is necessary. When this choice is

made, the Dirichlet boundary conditions can be directly applied by setting the diagonal matrix

elements Ak,k = 1 and the vector elements bk = gD for all k such that xk ∈ΓD . This procedure will

make certain that uh = gD on the Dirichlet boundary.

2.4 Step 3. The finite element structure

Finite elements: For this work, Lagrange basis functions lk
j (xi) are adapted. These functions

are polynomials defined with respect to a set of N discrete points {xi}N
i=1, xi ∈Ω and have the

property that,

(2.12) lk
j (xi)=

1 if j = i

0 if j 6= i

where k indicates the polynomial degree. By introducing a partitioning of the computational

domain Ω into a set of M elements {ek,i}M
i=1, it is possible to introduce piecewise continuous
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Lagrange functions lk
j,h(xi) which are nonzero only within one element. It is exactly in this

step that the notion of finite elements is introduced. The particular choice of finite elements

corresponds a discretisation of the computational domain and the union of all elements resulting

from the partitioning will then constitute the mesh Kk,h =
N⋃

i=1
ek,i. This partitioning of the

computational domain is the finite element structure that the finite element method has taken

its name from. The advantage with this choice is that it greatly reduces the computational cost

of solving the linear system. This follows because with piecewise basis functions the stiffness

matrix becomes a sparse matrix with most of the entries zero. This feature can be understood

from how the stiffness matrix A from Example 2.1 depends on the basis functions.

Endowed with Lagrange basis functions the elements ek,i are called Lagrange elements and

will be denoted Pk. For this work the two dimensional Lagrange elements P1 and P2 will be

used. These elements are illustrated in Fig. 2.1 where P1 indicates that first order Lagrange

polynomials are associated with the element. Similarly, P2 indicates that second order Lagrange

polynomials are associated with the element. For the explicit definition of these basis functions

the reader is referred to [6].

P1 P2

jj+1

j+2

j+1j j+2

j+3

j+4

j+5

Figure 2.1: Illustration of Lagrange elements for 2D. The figure shows the first and second order
Lagrange elements P1 and P2. The nodes are illustrated by pink circles and the node numbers
are denoted by j.

Finite element function spaces: By choosing the finite element structure as described above,

the approximate solution (uh, ph) can be sought from the finite dimensional space V h⊗Qh where,

V h = [H 1
h (Ω, P2) : u = gD on ∂ΩD]

Qh = [H 0
h (Ω, P1)].

(2.13)

Here it is defined that the Dirichlet boundary conditions gD is contained in the functions space.

These boundary conditions will eventually be set directly on the matrix elements in the resulting

linear system. The subscript h will now be taken to refer to the discretisation of the space,

typically the average mesh size.
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The mixed function space V h ⊗Qh is defined over the mixed P2,P1 element which is known

as the Taylor-Hood element. This is a standard, stable element pair for the Stokes equations.

In general the Taylor-Hood elements (Pk+1,Pk) for k ≥ 1 are stable but the (P2,P1) element is

computationally cheaper than elements with higher order polynomials and is therefore chosen

for this work.

The weak form, defined over finite element function spaces: By seeking the solution to

the weak form from the finite dimensional function spaces defined in Eq. (2.13), the weak form

can be restated in the discrete case as: Find (uh, ph) ∈Vh ⊗Qh such that,

(2.14) A(uh, ph,vh, qh)= L(vh) ∀ (vh, qh) in Vh ⊗Qh

where A(uh, ph,vh, qh) and L(vh) are as defined in Eq. (2.7) through Eq. (2.10) with (u, p,v, q)

substituted for by (uh, ph,vh, qh). As motivated by Example 2.1, this form can be converted to a

linear system with (uh, ph) and (vh, qh) expanded in their respective basis functions. The Stokes

problem from Definition 1.1 has therefore been reduced to a problem of solving a linear system.

The subscript h on (uh, ph) will for the remainder of the work be dropped except for situations

where it is necessary to introduce for clarity.
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3
THE MULTIMESH FINITE ELEMENT

METHOD

The multimesh finite element method (MMFEM) is a relatively new framework for solving

partial differential equations and is one of the main pillars in this work. The method

is tightly related to the finite element method, but allows solving PDEs on multiple

independent meshes instead of a single mesh. This chapter aims to develop the necessary

notation and concepts required to discuss the key aspects with the method. The chapter concludes

by presenting the weak formulation of the Stokes problem from Definition 1.1, in a multimesh

framework. The derivation presented here should be compared to the derivation in the finite

element setting performed in Chapter 2. The discussion relies on several related works, in

particular [23, 24, 32, 33], which again are related to the works on the similar cutFEM scheme

in [17, 18]. The common denominator in these works is Nitsches method [37], which originally

was a method designed to weakly enforce Dirichlet boundary conditions but for the multimesh

scheme is adapted to handle the intersection of independent meshes. This chapter will explain

how this method is applied on the multimesh formulation of the Stokes problem.

3.1 Fundamental idea

The fundamental idea behind the multimesh formulation is to partition the computational domain

Ω into a background domain Ω0 and M completely independent sub-domains Ωi, i = 1,2, . . . , M,

each with an associated mesh K i. This functionality can be advantageous in situations where

the computational domain consists of naturally separate regions, see Definition 3.1, that move
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and deform independently of each other. Of particular relevance are situations where only a

small subset of the computational domain is subject to change. In this context it can be natural

to associate each of these regions with an independent sub-mesh and thereby reduce the volume

that needs to be re-meshed. It is clear that this approach will be less computationally expensive

than re-meshing the entire computational domain. A typical application for this scheme is for

instance solid objects in a flow.

Definition 3.1. Naturally separate regions. Naturally separate regions are subsets of the

computational domain Ω that move, deform or otherwise change independently of each other and

are therefore natural to associate with independent meshes.

Remark 3.1. Assumptions in this discussion. For simplicity, the discussion here will be

restricted to R2 with M sub-domains, but the MMFEM scheme can easily be generalised to three

dimensions. Furthermore, the sub-domains are not allowed to intersect each other or the boundary

of the computational domain. The only intersection that will be allowed is that between the sub-

domains and the background which will be partially overlapping eachother. In a more general

formulation, also the sub-domains may overlap each other, see [24], but this is not in the scope of

this work.

3.2 Domain partition

This section will describe how the computational domain Ω⊂R2 is partitioned in the multimesh

scheme. The concepts and notation presented here will be important for the derivation of the

multimesh formulation of the Stokes problem in Section 3.4.

3.2.1 Initial partitioning and handling of the intersection

When setting up the multimesh formulation of the weak form for a particular problem, the

first step is to identify the naturally separate regions, see Definition 3.1, that are convenient

to associate with independent sub-domains and sub-meshes. Under the assumption that these

sub-domains cannot intersect, the division is simple and each sub-domain can be denoted Ω j

such that Ω j ∩Ωi =; when i 6= j and i, j > 0. The corresponding sub-meshes are denoted K j,h

where h indicates the mesh size.

For the background domain it is necessary with a bit more care since the background domain

is overlapped by the sub-domains. To deal with this, the notion of a pre-background domain Ω̃0

and corresponding pre-background mesh K̃0,h is introduced in Definition 3.2. The situation is

illustrated in Fig. 3.1 where the blue area corresponds to the pre-background domain Ω̃0, which

is taken to cover entire computational domain. When introducing the sub-domains Ω j j > 0, these

domains completely overlap the pre-background domain such that Ω̃0 ∩Ω j =Ω j. The reason for

this setup is discussed next.
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Definition 3.2. Pre-background domain and mesh. The pre-background domain is denoted

Ω̃0 and corresponds to the entire computational domain Ω, such that Ω̃0 = Ω. Likewise, the

pre-background mesh is denoted K̃0,h and covers the entire pre-background domain Ω̃.

Ω0

~

Ωj

Ωj+1
Ω0

~

Ωj

Ωj+1

Figure 3.1: Illustration of the partitioning of the computational domain. The pre-background
domain Ω̃0 corresponds to the blue area. The j-th and j+1-th sub-domains are represented by
the pink circle and square. In general the sub-domains can have any shape.

Each of the separate sub-meshes K j,h have the normal finite element structure as defined in

Section 2.4. However, the overlap of the sub-meshes and the pre-background mesh gives rise to

three different classes of finite element cells in K̃0,h. These are; cut, covered, and uncut elements

as defined in Definition 3.3, 3.4 and 3.5 respectively. The situation is illustrated in Fig. 3.2.

With this classification of the cells and with the pre-background mesh defined over the entire

computational domain, the sub-domains can be moved and deformed without introducing the

need to re-mesh the background. Instead, it is sufficient to update the cells contained in K̃0,h to

be either cut, uncut or covered. The integration domains can then be defined with respect to the

classification of the cells rather than the actual mesh K̃0,h. The main idea is to set the covered

cells inactive and not include them in the computation, while giving special treatment to the

partially covered cells to handle the intersection of the domains. Section 3.2.2 will give more

details on how the integration domains are defined with respect to the cut, uncut and covered cells.

In Section 3.3 a method is presented that utilises this feature to efficiently represent changing

holes in the computational domain.

Definition 3.3. Cut elements. The cut elements ecut
0 j is the set of all elements e ∈ K̃0,h which

are partially covered by the j-th sub-mesh K j,h. The set of all cut elements in K̃0,h is defined as

ecut
0 = {ecut

0 j }M
j=1, where M is the number of sub-meshes.

Definition 3.4. Covered elements. The covered elements ecov
0 j is the set of all elements e ∈ K̃0,h

which are completely covered by the j-th sub-mesh K j,h. The set of all covered elements in K̃0,h

is defined as ecov
0 = {ecov

0 j }M
j=1, where M is the number of sub-meshes.

Definition 3.5. Uncut elements. The uncut elements euncut
0 of the pre-background mesh, is the

set of all elements e ∈ K̃0,h which are not intersected by any sub-mesh K j,h. Likewise, the uncut
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elements euncut
j of the j-th sub-mesh, is the set of all elements e ∈K j,h that are not intersected

by any other sub-mesh K i,h for i 6= j.

cut

uncut

covered

~

Kj,h

K0,h

Figure 3.2: Illustration of pre-meshes with cut, uncut and covered cells. In the figure the blue
cells are uncut elements. The green cells are cut elements and the grey cells are covered elements.
The pre-background mesh is denoted K̃0,h and contains all the cut, uncut and covered cells. The
j-th sub-mesh is represented by the pink wireframe and is denoted K j,h. It contains only uncut
cells.

Note that with the sub-domains Ω j not allowed to intersect each other, both ecov
i j =; ∀i, j > 0

and ecut
i j =; ∀i, j > 0. The definitions of cut and covered elements are therefore only relevant for

the background mesh. For this reason the sub-index 0 is used to label these elements.

3.2.2 Defining the integration domains

In the standard finite element formulation, the integration is performed over the computational

domain Ω. With the partition of the domain in the multimesh scheme, follows three particular

integration regions that are needed to handle the intersection between the overlapping domains.

These are the overlap domains, the cut domains and the visible domains, as defined in Definition

3.6, 3.7 and 3.8. An overview of the situation is given in Fig. 3.3.

The integration over the cut domain {C j}M
j=1 from Definition 3.7 and the overlap domain

{O j}M
j=1 from Definition 3.6, is necessary to handle the intersection between the sub-meshes and

the background mesh. What is special with the overlap domain is that it contains cells from

both the background domain and the covering sub-domains. Therefore, when integrating over

this domain, contributions from both u0, p0 and u j, p j, j = 1, . . . , M will be counted. Here u0, p0

are the trial functions associated with the background domain and u j, p j are the trial functions

associated with the j-th sub-domain Ω j. The last integration domains to be defined are the

visible domains Ω j, see Definition 3.8. These are disjoint sets and the union of all gives the
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Visible domain  = +

Overlap domain = 

Cut domain      = +

Figure 3.3: Illustration of the integration domains used in the multimesh scheme. The pink
striped ellipse corresponds to the sub-domain that covers the background. The union of the blue
and green regions corresponds to the visible integration domain. The overlap domain is the black
and green striped region while the cut region is the union of the green region and the overlap
domain. The grey region corresponds to the covered cells in the pre-background domain K̃0,h.
Note that the overlap domain is defined for both the sub-domain and the background domain.

computational domain Ω=
M⋃
j=0
Ω j. The integration over all visible domains therefore corresponds

to the integration over the entire computational domain.

What is clear from the definition of these three classes of integration domains, is that they

dependent on the classification of the cells contained in the pre-background mesh K̃0,h. The

advantage with this formulation is that a sub-domain Ω j can be moved without having to

re-mesh the pre-background mesh K̃0,h. When moving the j-th sub-domain it is sufficient to

update the sets ecov
0 j , ecut

0 j and euncov
0 and this automatically changes the integration domains.

The computational expenses in this scheme is therefore reduced to the time it takes to move the

j-th sub-mesh and to the time it takes to calculate the new sets of cut, uncut and covered cells

and prepare the multimesh for integration. A more comprehensible discussion on this is given in

[24]. In particular the functionality; Collision detection of cells, Intersection construction and

Quadrature rule construction are relevant.

Definition 3.6. Overlap (integration) domains. The j-th overlap mesh is defined as,

O j,h = ecut
0 j ∩K j,h.

The j-th overlap domain is denoted O j and corresponds to the region covered by the overlap mesh

O j,h. This region is indicated by he black and green striped cells in Fig. 3.3.

Definition 3.7. Cut (integration) domains. The j-th cut mesh C j,h, equals the set of cut

elements ecut
0 j from Definition 3.3. This means that,

C j,h = ecut
0 j
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The j-th cut domain is denoted C j and corresponds to the region covered by C j,h. This region is

indicated by the green cells and the black/green striped cells in Fig. 3.3.

Definition 3.8. Visible (integration) domains. The j-th visible integration domain is denoted

Ω j for j = 0, . . . , M and corresponds to the part of the domain that is not covered by another

domain. All the sub-domains Ω j for j = 1,2, . . . , M are visible. The visible integration domain of

the background is defined as,

Ω0 = Ω̃0\
M⋃

i=1
Ωi.

The visible domain of the background is illustrated by the blue and green regions in Fig. 3.3.

3.3 Mesh with hole method

In many situations it can be necessary to have holes in the computational domain Ω, over which

the test and trial functions of the problem should not be defined. One such situation is where a

solid object is introduced as an obstacle in a fluid flow. The multimesh method is very well suited

to represent this type of objects when it is necessary to move or deform the objects during for

instance an optimisation procedure.

A practical way to utilise the sub-domain structure was presented in [10]. The method involves

making a sub-domain Ω j formed as a doughnut. In other words a domain with a hole in the

middle. The hole is also present in the associated sub-mesh K j,h(Ω j). In the mesh with hole

method, the cut ecut
0 j and uncut euncut

0 elements in the pre-background mesh K̃0,h that are inside

or adjacent to the hole, are converted to covered elements ecov
0 j and thereby made inactive. The

situation is illustrated in Fig. 3.4 before converting the relevant cells to covered. The same setup

is illustrated in Fig. 3.5 after the conversion.

As seen from the figure, there are two boundaries associated with the hole. Depending on the

boundary condition chosen on the inner boundary, the hole can be made to represent an object,

an outflow region etc. The boundary Γ j of Ω j is partitioned in the following way,

(3.1) Γ j =Γ+/−
j ∪Γw

j ,

where Γ+/−
j is the interface between the sub-domain Ω j and the visible background domain Ω0

and Γw
j is the inner boundary of Ω j. In this work the inner boundary will be used to represent

the physical boundary of an object. The specific boundary conditions of the object can then be

applied to the inner boundary, whereas Γ+/−
j and the sub-domain itself, offers the overlap O j and

interface necessary to perform the gluing of the sub-mesh K j,h to the background mesh. This

procedure will be covered in Section 3.4.

With this representation of the object. The object can easily be moved without changing the

background mesh. The integration domains can then be updated as explained in Section 3.2.2,

with limited computational effort.
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cut

uncut

covered

Figure 3.4: Figure showing the initial setup for the
hole in domain method. The situation depicts the mesh
before turning the mesh inside the hole to inactive.
The union of the blue, green and grey mesh constitutes
the pre-background mesh K̃0,h. The doughnut shaped
pink wireframe on top of the background mesh, is the
sub-mesh K j,h. In the background mesh the blue cells
are uncut elements, the green cells are cut elements
and the grey cells are covered elements.

Γj

Γj
+/-

w

Figure 3.5: Figure showing the mul-
timesh after the cut and uncut el-
ements, adjacent to the hole, are
changed to covered and thereby made
inactive. See also Fig. 3.4. The phys-
ical boundary of the object, repre-
sented by the hole, is marked with
the green inner circle. This boundary
will be refereed to as Γw

j for the j-th
sub-mesh. The interface between the
sub-mesh and the background mesh
is marked with a yellow circle and de-
noted Γ+/−

j .

3.4 Multimesh formulation of the Stokes problem

This section will derive the multimesh formulation of the Stokes problem. As a starting point

for this derivation it is necessary to reformulate the Stokes problem from Definition 1.1 to a

multi-domain setting. The multi-domain formulation is given in Definition 3.9 below.

Definition 3.9. Multi-domain Stokes-problem. The multi-domain Stokes-problem corre-

sponds to the strong form of the Stokes-problem, Definition 1.1, with the partitioning of the

computational domain as described in Section 3.2. Let {Ω j}M
j=0 be the visible domains that

partition the computational domain Ω ⊂ R2, as defined in Definition 3.8. The multi-domain

Stokes-problem is then given as,

−µ∇2u j +∇p j = f on Ω j j = 0,1,2, . . . , M,(3.2)

∇·u j = 0 on Ω j j = 0,1,2, . . . , M,(3.3)

u j = 0 on Γ j,D j = 0,1,2, . . . , M,(3.4)

∇u j ·n j − p jn j = gN on Γ j,N j = 0,1,2, . . . , M.(3.5)

with the additional interface conditions,

(3.6) [[u]]= u j −u0 = 0 on Γ+/−
j j = 1,2, . . . , M,

25



CHAPTER 3. THE MULTIMESH FINITE ELEMENT METHOD

(3.7) [[Dnu− p]]= (Dnu j −Dnu0)− (p j − p0)= 0 on Γ+/−
j . j = 1,2, . . . , M,

The interface conditions are added to ensure continuity and proper behaviour of u, p and ∇u,

across the interface Γ+/−
j . Here Γ j,D and Γ j,N are respectively the Dirichlet and Neumann bound-

aries. For the j-th interface Γ+/−
j , the unit normal n j is chosen as the outwards pointing unit

normal relative to the j-th sub-domain Ω j. It follows therefore that the unit normal at Γ+/−
j with

respect to Ω0 is −n j. The notation [[z]] = z j − z0 is denoting the jump across the j-th interface

Γ+/−
j and Dnu = ∂u

∂n is the normal component of the Jacobian.

3.4.1 Multimesh function spaces

To convert the multi-domain Stokes-problem from Definition 3.9 to its weak form, it is first

necessary to introduce the structure of the finite element spaces in a multimesh setting. The

finite element spaces V h and Qh from Eq. (2.13) are still applicable but the function spaces must

now be partitioned in accordance with the partitioning of the computational domain from Section

3.2. In this regard, one must pay particular care to define the function spaces associated with the

background. The reason for this is that the computational domain of the background must be

extended into the overlap region from Definition 3.6 in order to handle continuity of the gradient

∇u across the interface. Therefore, these function spaces must be defined over both the visible

domain Ω0, and the set of overlap domains {O j}M
j=1. For a compact definition of the function spaces

the notion of an active domain Ωa, j is introduced such that, Ωa,0 =Ω0
M⋃
j=1

O j for the background

and simply Ωa, j =Ω j j = 1, . . . , M for the sub-domains. The function spaces for the j-th domain

are then given as,

(3.8) V h, j = [H 1
h (Ωa, j,P2) : u = gD on ∂ΩD] and Qh, j = [H 0

h (Ωa, j,P1)]

where Pk = 1,2 are Lagrange elements of respectively first and second order polynomials. For a

definition of the Sobolov space H s
h see Appendix B.1. The test and trial functions defined over

these spaces are in general independent from each other and will have to be glued together when

solving the problem. The mixed function space defined over the entire multimesh is then defined

as,

Wmm
h =V mm

h ⊗Qmm
h(3.9)

where,

V mm
h =

M⊗
j=0

V h, j and Qmm
h =

M⊗
j=0

Qh, j(3.10)

and where the mm index is added to stress the multimesh foundation.
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3.4.2 The multimesh formation of the weak form

With the dynamic viscosity µ set to 1 for simplicity, the weak form of the multi-domain Stokes-

problem from Definition 3.9 can be stated as follows: Find (u, p) ∈V mm
h ⊗Qmm

h such that,

(3.11) Amm(u, p,v, q)= Lmm(v) ∀ (v, q) ∈V mm
h ⊗Qmm

h

where

Amm(u, p,v, q)= an(u,v)+aq,n(u, q)+aq,N (u, q)+ap,n(v, p)+ap,N (v, p)

+aIP,n(u,v)+aIP,N (u,v)+aO (u,v)+dh(u, p,v, q)
(3.12)

and

(3.13) Lmm(v)= lh(v)+ lh,s(v)

with,

an(u,v)=
M∑

i=0

∫
Ωi

∇ui :∇vidx,

aq,n(u, q)=
M∑

i=0

∫
Ωi

−qi∇·uidx,

ap,n(v, p)=
M∑

i=0

∫
Ωi

−pi∇·vidx,

lh(v)=
M∑

i=0

∫
Ωi

f ·vidx+
∫
ΓN

gN ·vidS,



Standard weak form

on multiple domains
(3.14)

aIP,n(u,v)=−
M∑

i=1

∫
Γ+/−

i

(
[[v]]〈〈∇u ·n〉〉+ [[u]]〈〈∇v ·n〉〉)dS,

aIP,N (u,v)=
M∑

i=1

β0

〈h〉
∫
Γ+/−

i

[[u]][[v]]dS,

aq,N (u, q)=
M∑

i=1

∫
Γ+/−

i

[[n ·u]]〈〈q〉〉dS,

ap,N (v, p)=
M∑

i=1

∫
Γ+/−

i

[[n ·v]]〈〈p〉〉dS.



Nitsche stabilisation

terms
(3.15)

aO (u,v)=
M∑

i=1

∫
Oi

[[∇u]][[∇v]]dx,

dh(u, p,v, q)=
M∑

i=1
h2

∫
Ci

(
∆ui −∇pi

)(
∆vi +∇qi

)
dx,

lh,s(v, q)=
M∑

i=1
h2

∫
Ci

f · (∆vi +∇qi
)
dx.


Additional

Stabilisation terms
(3.16)
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Here the parameter β0 > 0 is the Nitsche parameter which must be sufficiently large to enforce

continuity in u across the interface Γ+/− [22]. It is important to note that the subscripts i on the

test and trial functions stress their belonging to the i-th sub-domain Ωi for i = 1, . . . , M and to

the background domain for i = 0. These subscripts must therefore not be confused with vector

components. The notation [[zi]]= zi − z0 is used to denote the jump in the function z across the

interface Γ+/−
i and the notation 〈〈zi〉〉 = (zi+ z0)/2 corresponds to the average of the function across

the interface. Similarly 〈h〉 is simply the average mesh size. The formulation stated here is taken

from [22] where stability is shown for the simple case of one mesh intersecting the background

mesh. The formulation with the additional stabilisation terms in Eq. (3.16) was first introduced

in [32], also here the formulation was shown to be stable and convergent. The motivation for

these terms will be given in the section below along with the motivation for the Nitsche stability

terms in Eq. (3.15).

As for the standard terms in (3.14), it is clear that the terms are the same as those for the

standard weak form presented in Eq. (2.7) through Eq. (2.10). The only difference is that the

integration over Ω is now partitioned into integration over the overlap domains {O j}M
j=1, the cut

domains {C j}M
j=1 and the visible domains {Ω j}M

j=0. See Definition 3.6, 3.7 and 3.8 for a definition of

these integration domains.

3.4.3 Nitsche stabilisation terms

The Nitsche stabilisation terms defined in Eq. (3.15) are motivated by Nitsche’s method, first

presented in [37]. Enforcement of the interface condition [[ui]] = 0 is done using the Interior

penalty term aIP,N (u,v). This term offer a weak enforcement of the interface condition in Eq.

(3.6) in the sense that the condition is applied as a penalty term and not directly introduced in

the integral terms.

The enforcement of the interface condition [[Dnu− pn]] = 0, from Eq. (3.7), is done with

the terms aIP,n,ap,N and aq,N . To see how this is done it is necessary to step back to the

boundary term in Eq. (2.4) where the Neuman condition was included in the normal finite

element derivation. With a multimesh formulation it is clear that the integral over ∂Ω must be

split into an integral over ΓN , ΓD and an integral over the interface terms
M⋃

i=1
Γ+/−

i . The integral

over ΓD is dropped since the Dirichlet conditions will be directly applied on the final system

matrix. The integral over ∂Ω contains one part with the pressure p and one part with the gradient

∇u ·n. Looking at the gradient integral first gives,

−
∫
∂Ω

∇u ·v ·ndS =−
∫
ΓN

∇u ·v ·ndS−
M∑

i=1

∫
Γ+/−

i

(∇ui ·vi ·ni +∇u0 ·v0 ·n0
)
dS.(3.17)

The first term is related to the standard Neuman condition and is of less interest. What is

interesting is the last integral in this equation. Here u0 comes from the fact that Γ+/−
i is a shared

interface between Ω0 and Ωi where both u0 and ui are defined. Making use of the jump notation
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[[z]]= zi − z0 and with n0 =−ni one gets,

−
M∑

i=1

∫
Γ+/−

i

(∇ui ·vi ·ni +∇u0 ·v0 ·n0
)
dS =−

M∑
i=0

∫
Γ+/−

i

[[∇u ·vn]]dS

=−
M∑

i=0

∫
Γ+/−

i

(
[[∇u ·n]]〈〈v〉〉+ [[v]]〈〈∇u ·n〉〉)dS.

(3.18)

Here the identity [[xy]]= 〈〈x〉〉[[y]]+〈〈y〉〉[[x]] has been used in the last step, see Identity A.6. The

pressure term is treated in a similar manner. The integration over ∂Ω in the pressure term in Eq.

(2.4) is changed to an integral over ΓN , ΓD and an integral over the interface terms
M⋃

i=1
Γ+/−

i . The

integral over ΓD is again dropped and one gets,∫
∂Ω

pv ·ndS =
∫
ΓN

pv ·ndS+
M∑

i=1

∫
Γ+/−

i

(
pivi ·ni + p0v0 ·n0

)
dS.(3.19)

The first term here will combine with the ΓN integral in Eq. (3.17) and cancel due to the

Neumann boundary condition. Looking at the last term in Eq. (3.19) and again introducing the

jump notation and identity A.6 gives,

M∑
i=1

∫
Γ+/−

i

(
pivi ·ni + p0v0 ·n0

)
dS =

M∑
i=1

∫
Γ+/−

i

[[pv ·n]]dS

=
M∑

i=1

∫
Γ+/−

i

(〈〈p〉〉[[n ·v]]+〈〈v〉〉[[np]]
)
dS.

(3.20)

In the last term the surface normal n is associated with the jump in p for reasons that soon will

be seen. Combining the last terms in Eq. (3.18) and Eq. (3.20) gives,

−
∫
∂Ω

∇u ·v ·ndS+
∫
∂Ω

pv ·ndS =

−
M∑

i=0

∫
Γ+/−

i

(
[[∇u ·n− pn]]〈〈v〉〉+ [[v]]〈〈∇u ·n〉〉−〈〈p〉〉[[n ·v]]

)
dS

=−
M∑

i=0

∫
Γ+/−

i

(
[[v]]〈〈∇u ·n〉〉−〈〈p〉〉[[n ·v]]

)
dS

(3.21)

The motivation for these transformations can now readily be seen since the interface condition

[[Dnu− pn]] = 0 can be introduced into Eq.(3.21) by setting the first term to zero. To maintain

symmetry the terms [[u]]〈〈∇v ·n〉〉 and 〈〈q〉〉[[n ·u]] are added. This can be done since [[u]]= 0 on

the interface. The result is therefore,

−
∫
∂Ω

∇u ·v ·ndS+
∫
∂Ω

pv ·ndS =−
M∑

i=0

∫
Γ+/−

i

(
[[v]]〈〈∇u ·n〉〉+ [[u]]〈〈∇v ·n〉〉)dS

+
M∑

i=0

∫
Γ+/−

i

〈〈p〉〉[[n ·v]]dS+
M∑

i=0

∫
Γ+/−

i

〈〈q〉〉[[n ·u]]dS = aIP,n(u,v)+ap,N (v, p)+aq,N (u, q)

(3.22)

where the terms from (3.15) can be identified. This concludes the derivation and all the Nitsche

stabilisation terms are therefore accounted for.
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3.4.4 Additional stabilisation terms

In order to ensure stabilisation of the gradient jump [[∇u]] across the interface Γ+/−
i a penalty

term integrating over the overlap region Oi is added,

(3.23) aO (u,v)=
M∑

i=1

∫
Oi

[[∇u]][[∇v]]dx.

From the definition of Oi in Definition 3.6 it follows that the integration runs over the background

mesh and the covering sub-mesh. These double contributions helps to obtain stability of the

gradients across the interfaces Γi, see [32] for a more thorough discussion. The two last terms in

Eq. (3.16), namely dh(u, p,v, q) and lh,s(v, q), are stabilisation terms defined over the cut domain,

see Definition 3.7. A more thorough discussion on these terms are given in [32].

30



Part II

Optimization Theory

31





C
H

A
P

T
E

R

4
GRADIENT BASED OPTIMISATION

The optimisation scheme employed in this work will be rooted on the principles of line

search methods where the search direction will be estimated using a gradient descent

scheme. This chapter will give a short introduction to the relevant aspects of gradient

based line search. For a more thorough discussion the reader is referred to [38].

4.1 A typical optimisation problem and the reduced functional

The discussion in this chapter will use the Stokes-drag problem from Definition 1.2 as a work-

ing example. A typical strategy when solving optimisation problems of this form is to seek a

parameterisation that allows the reduced functional to be introduced. In this context, let m be

a vector containing all the design parameters that parameterise the computational domain Ω.

The constraint equation g(u, p,Ω)= 0, from Definition 1.2, implicitly maps any choice of Ω(m)

to a unique solution (u, p). It therefore follows that the state variable u can be expressed as

an implicit function of the design parameters such that u := u(m). Substituting for this in the

objective functional J(u,Ω) gives the reduced functional J(u(m), m). The reduced optimisation

problem can then be stated as in Definition 4.1.

Definition 4.1. The reduced optimisation problem. The reduced form of the Stokes-drag

problem in Definition 1.2 is given as,

min
m

J(u(m), m)

subject to bl ≤ m≤ bu

C(m)= 0,
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where m is the design parameters that parameterise the computational domain Ω. Here bu and

bl are the upper and lower bounds on the design parameters and C(u) defines possible additional

restrictions.

4.2 Line search methods

This section will cover the basic principles of gradient based line search methods.

4.2.1 Fundamental principle

With the reduced problem from Definition 4.1 as a starting point, the fundamental principles of

line search methods can be explained. The essential procedure in each iteration of the algorithm,

is to choose a search direction p along with a step length εk. The step length will then decide how

far in this direction the design parameters m should be updated. The algorithm can be stated as

follows: For each iteration k update m according to,

(4.1) mk+1 = mk +εk pk(m),

where mk is the design parameters at iteration number k.

There are several ways to choose the search direction. The particular way in which this

is done will have impact on the the convergence and efficiency of the algorithm. For gradient

descent methods the common property is that the search direction should be a descent direction,

in other words pk =−Bk∇Jk, where Jk is the objective function evaluated at iteration k and B is

a positive definite and symmetric matrix. With B = I the identity matrix, the search direction is

the steepest descent, but in general this is not necessarily the best choice.

4.2.2 Convergence of gradient-based line search methods

It can be shown that, under certain conditions on the choice of step length εk, a line-search

is globally convergent towards a stationary point as long as the angle θk between the search

direction pk and the gradient ∇Jk obeys Eq. (4.2) for some positive constant δ [38]. In other

words, that θk is bounded away from 90o. What this means is that it is generally not necessary to

choose the steepest-descent direction, as any direction that is a descent direction will do.

(4.2) cosθk ≥ δ≥ 0

This convergence property of line search methods is important the be aware of when the

performance of the gradient is evaluated in Chapter 9. In particular it gives the lead to investigate

how the gradient expression perform around extrama points with regards to sign change. These

are the places where it is most crucial with a precise gradient evaluation, since the convergence

property implies that it is not necessary to know the exact gradient as long as the descent

direction is known at all times.
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4.3 Backtracking-Armijo line search

Relevant for this work will be a backtracking-Armijo line search scheme and this section aims to

give a very brief cover of this.

4.3.1 Armijo condition

In order to decide on a step length εk, that will give an acceptable progress of the algorithm, a

sufficient decrease condition can be imposed using the Armijo condition stated in Eq. (4.3),

(4.3) J(mk +εk pk)≤ J(mk)+δεk∇JT pk(mk).

Here J is the objective function and δ ∈ (0, 1
2 ) is some constant. This condition guarantees that

only step lengths εk that results in a decrease of the objective function J are chosen. The problem

with this condition, is that it does not provide any lower bounds on εk. In principle therefore,

the step length can be chosen arbitrarily small which makes for a very inefficient algorithm.

However, by choosing the εk in a cleaver way, using a backtracking scheme, this problem can be

solved. This point is covered next.

4.3.2 Backtracking

In an Armijo-backtracking scheme the step length is chosen from a decreasing sequence of values,

typically εk =αk with α ∈ (1
2 ,1), and the trail point mk +εk pk must satisfy the Armijo condition

Eq. (4.3) in order to be accepted. This approach chooses the first step length εk that satisfies

a sufficient decrease in the objective function J and therefore guarantee reduction in J. At

the same time this scheme prevents εk from being to small which would otherwise give a slow

convergence.

The Ipopt algorithm [51] used for this work is based on this scheme but with several additional

functionalities. For more details on the implementation of the algorithm see [52]. A simple

introduction to the general Armijo-backtracking scheme can be found in [38].
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5
SHAPE OPTIMISATION

The goal of this chapter is to derive the shape derivative of the Stokes-drag problem, see

Definition 1.2, with basis in a multi-domain setting corresponding to the multimesh

formulation from Chapter 3. This derivation will correspond to the analytical aspects of

Objective 2, as stated in the introduction. To the best of the authors knowledge this is the first

time this derivation has been done for this particular problem in a multi-domain setting. To get

a better understanding of the optimisation strategy used for this work this chapter will start

with an overview in Section 5.1. The necessary concepts of shape calculus and general shape

optimisation are then presented in Section 5.2. The main concepts are the Hadamard formulation

and the adjoint approach. The Hadamard form of the shape derivative is a known concept from

literature see for instance [46]. Section 5.2.3 explains how the adjoint approach can be combined

with the Hadamard formulation to derive the shape derivative for a general optimisation problem.

Section 5.3 derives the shape derivative for the Stokes-drag problem in single-domain setting.

Section 5.4 then extends this to the multi-domain case.

5.1 The continuous approach to the shape derivative

The shape optimisation strategy that is adapted for this work is the so called "continuous

approach" which corresponds to a "differentiate-then-discretise" scheme. The problem that is

studied in this work is the Stokes-drag problem from Definition 1.2. Figure 5.1 illustrates how

the "continuous approach" will be applied to this problem.

The idea in this scheme is to derive the shape derivative of the objective functional before

introducing the finite element structure, i.e. the discretisation, but after the computational

domain has been partitioned according to a multi domain scheme. The derivation will therefore
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start with the strong form of the constraint equations, but replace the constraint equation from

the initial problem definition with the multi-domain Stokes-problem from Definition 3.9. Note

that these equations are still on the strong form, but are now compatible with a multi-domain

formulation. The adjoint approach and corollaries from the Hadamard theorem [46] will then be

used to attain an analytical expression for the shape derivative, where the final expression will

be on Hadamard form. The discretisation necessary to solve the system with multimesh finite

element software, is then introduced after this derivation is done.

The introduction of a multi-domain partitioning before deriving the shape derivative is the

novel step in this work. This step introduce additional interface conditions that must be taken

into consideration when taking the shape derivative. In the spirit of the "continuous approach"

these interface constraints will be considered in their strong form during the derivation. It is of

interest to see if the additional interface conditions will change the final expression for the shape

derivative when the strong form of the constraints are assumed.

Shape optimisation 
problem. Stokes-drag 
problem, Def. 1.2
      (Strong form)Partition domain in 

multiple-domains
(No discretisation)

Constraint Eq. 
Multi-domain stokes-
problem, Def. 3.9

Adjoint approach,
Hadamard form

Prop. 5.2, Shape derivative.
Lemma 5.6, Adjoint Eq. 

Discretization, Introduce
Multi-mesh FEM scheme

Gradient based shape 
optimisation coupled with
multimesh FEM.

(Strong form)

(Strong form)

(Weak form)

The novel step, performed 
in this work

Adjoint approach,
Hadamard form

Standard procedure in the
continuous approach

Figure 5.1: Illustration of the "continuous approach" for deriving the shape derivative for the
multi-domain Stokes-drag problem. The first step is to introduce the multi-domain structure by
partitioning the computational domain. When doing this, the initial constraint equations from
the Stokes-problem in Definition 1.1 are replaced by the multi-domain Stokes problem from
Definition 3.9, this is the novel step introduced in this work. Note that for the derivation of the
shape derivative in this work, it is the strong form of the constraint equations that is used. In
this regard, when introducing the multi-domain structure, the new interface conditions will also
be assumed in their strong form. After partitioning the domain, the standard "differentiate-then-
discretise" scheme is applied. By appyling shape calculus and the adjoint approach the Hadamard
form of the shape derivative is obtained. The discretisation is then introduced by applying a
mutli-mesh structure over the multi-domain. The final system can be solved using finite element
software that supports the multimesh scheme.
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A note should also be made on the assumptions made when using the strong form of the

interface conditions and the consequences of this choice. From a physical point of view the

introduction of an artificial interface Γ+/− should not affect the physics of the problem. The

objective function of interest, denoted J, measures the energy dissipation into heat and is as such

a physical quantity. From this perspective, the final analytical expression for the shape derivative

of J should be the same in the single-domain and multi-domain cases when the strong form of the

interface conditions are assumed. A comparison of the shape derivative from a single-domain and

a multi-domain treatment, will therefore be made to see if this statement can be confirmed. A

limitation with this approach is that some of the interface conditions are only weakly enforced in

the variational formulation of the problem, see the discussion in Section 3.4.3. As a consequence,

by assuming strong enforcement in the derivation, the final expression does not account for

these weakly enforced terms which would otherwise result in correction terms to the standard

expression. Nevertheless, it is assumed that the weak enforcement is sufficient to make these

correction terms insignificant from a performance perspective. The numerical analysis performed

in Chapter 9 will shed light on this particular issue.

5.2 Introduction to shape calculus and shape optimisation

This section will introduce the concepts of shape calculus, the Hadamard form and the adjoint

approach, in a general setting. As a starting point for this formal discussion, a general PDE

constrained shape optimisation problem is defined in Definition 5.2. This problem is similar

to the Stokes-drag problem from Definition 1.2, but to simplify the discussion only one state

variable z will be used as opposed to the state variables (u, p) from the Stokes-drag problem.

This discussion will be concerned with a general class of objective functions, known as shape

functionals, as defined in Definition 5.1. The objective function will be denoted H to highlight the

generality. Note that the drag functional J from Lemma 1.1 is also a shape functional.

Definition 5.1. Shape functional. A shape functional is a function H(Ω) such that H(Ω) :

Ω−→R. Where Ω is some domain such that Ω⊂Rn. This work will consider shape functionals H

and G on the form,

H(Ω)=
∫
Ω

h(x)dx and G(Ω)=
∫
Γ

g(x)dS,

for the two dimensional case n = 2. Here h and g are respectively volume and surface objective

functionals such that h :Ω−→R and g :Γ−→R.

Definition 5.2. A general PDE constrained shape optimisation problem. Let the objective

function H(z,Ω) be a shape functional as in Definition 5.1 and let z :Ω−→R2 be the solution to a

partial differential equation (PDE) defined by g(z,Ω)= 0. A shape optimisation problem in this
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context can then be stated as,

min
z,Ω

H(z,Ω) on Ω,

subject to g(z,Ω)= 0 on Ω.

For a simplified notation the boundary conditions will be included in the constraint function

g(z,Ω).

A common way to approach optimisation problems, is to utilise the gradient of the objective

function. This is a so called gradient based optimisation scheme as introduced in Chapter 4. In

order to apply this kind of strategy to the shape optimisation problem from Definition 5.2, it is

necessary to derive an expression for the shape derivative. This means to find the derivative of

the objective functional H with respect to a change in the domain Ω, when z is subject to the

constraints imposed by g. The next sections will introduce the necessary concepts to calculate

this derivative.

5.2.1 Definition of the shape derivative

To obtain a definition of the derivative with respect to the shape of Ω, it is convenient to consider

the change in Ω as a perturbation Tε(x) such that,

(5.1) Ω(ε)= {x(ε)= Tε(x) |∀x ∈Ω}

where Ω(ε) is the perturbed domain and Tε the perturbation defined as,

(5.2) Tε(x)= x+εs(x), x ∈Ω.

The perturbation is characterised by the deformation parameter ε≥ 0 and the displacement vector

field s(x). Figure 5.2 illustrates how a domain Ω is moved and deformed under a perturbation

Tε(x) as defined in Eq. (5.1)-(5.2).

Ωε
Ω Ω

R2 R2

Tε(x) Ω: Ωε

s(x)

x+εs(x)

x

Figure 5.2: Illustration of a domain deformation under a perturbation Tε(x) :Ω−→Ωε. In this
particular case the perturbation vector field s(x) depends on x ∈Ω in such a way that the domain
is both deformed and the center of gravity is moved.
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With this definition of the change in Ω, the volume and surface objective functionals h

and g from Definition 5.1 should be written with an explicit dependency on the deformation

parameter ε, to indicate their dependency on the current shape Ω(ε) of the domain. This means

that hε :Ω(ε)−→R where hε(x) := h(x,ε). The functional h(x,ε) can for instance be the solution zε
of a PDE, with zε := z(x,ε). The functional will then depend on its evaluation point x along with

the shape of the domain Ω(ε) over which the PDE is defined. To capture the dependency on ε in

detail, the notion of the "material derivative" and the "local derivative" is typically introduced.

The definitions of these derivatives are adapted from [42] and restated in Definition 5.3 and

Definition 5.4 respectively.

Definition 5.3. Material derivative. Let h(x(ε),ε) be a shape sensitive functional evaluated

in the perturbed domain Ω(ε) and let h(x,0) be the same functional evaluated in the unperturbed

domain Ω. The material derivative in direction s can be defined as the total derivative,

ḣ(x)[s] := d
dε

∣∣∣
ε=0

h(x(ε),ε)= lim
ε−→0

z(x+εs(x),ε)− z(x,0)
ε

, x ∈Ω
where s is the perturbation field as defined in Eq. (5.2).

Definition 5.4. Local shape derivative. Let h(x,ε) be a shape sensitive functional evaluated

in the perturbed domain Ω(ε) and let h(x,0) be the same functional evaluated in the unperturbed

domain Ω. The local shape derivative in direction s can be defined as the partial derivative,

h′[s] := ∂

∂ε

∣∣∣
ε=0

h(ε, x)= lim
ε−→0

z(x,ε)− z(x,0)
ε

, x ∈Ω

Note that in this definition, the x dependency in h′[s](x) is suppressed to simplify the notation.

The material derivative should be thought of as the total derivative since it considers both

the shift in the evaluation point x(ε) and the explicit dependency on the domain geometry as

parameterised by ε. The local shape derivative keeps the evaluation point x fixed and only

evaluates the direct dependency on the deformation. The relation between the two derivatives is

given by the chain rule as,

ḣ(x)[s]= d
dε

∣∣∣
ε=0

h(x,ε)=∇h(x,0)
d
dε

∣∣∣
ε=0

x(ε)+ ∂

∂ε

∣∣∣
ε=0

h(x(0),ε)= (∇h, s)+h′[s].(5.3)

Here it was used that s= d
dε

∣∣∣
ε=0

x(ε). For simplicity the notation h(x) := h(x,0) will from now on

be adapted for all functions. By following the strategy used in [41] the shape derivative of an

objective function H(z,Ω) can be defined as follows:

Definition 5.5. Shape derivative (Adapted from [41] ) Let Ω⊂R2 be measurable and let s be

a vector field defined over Ω. Let Ω(ε) be the perturbed domain as defined in Eq. (5.1). Then a

shape sensitive function H(Ω(ε)) is shape differentiable at Ω if the derivative,

dH(Ω)[s] := d
dε

∣∣∣
ε=0

H(Ω(ε))= lim
ε−→0

H(Ω(ε))−H(Ω)
ε

,

exists for perturbations in all directions s and the mapping s−→ dH(Ω)[s] is linear and continu-

ous. dH(Ω)[s] will be referred to as the shape derivative of H(Ω) along s.
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5.2.2 Hadamard formulation of the shape derivative

For a shape functional H(Ω) as defined in Definition 5.1 and which is differentiable in the

sense of Definition 5.5, it is possible to express the shape derivative dH(Ω)[s] as an analytical

expression that is known as the Hadamard formulation of the shape derivative. This follows from

the Hadamard theorem which can be found with a proof in [46]. This is also true for a surface

objective G(Ω) as Defined in Definition 5.1, but this discussion will first focus on the volume

objective H. To prevent the discussion from becoming too technical the Hadamard theorem will

not be restated here. Sufficient for this work will be Corollary 5.1,

Corollary 5.1. (Hadamard form)(Corollary of the Hadamard theorem [46]) Let H(Ω) :Ω−→R

be shape differentiable as in Definition 5.5. Under the assumption that Ω has a piece-wise smooth

boundary Γ, it follows from the Hadamard theorem [46] that the shape derivative dH(Ω)[s] can

be expressed as,

dH(Ω)[s]=
∫
Γ

(s,n)k̃(x)dS.

Here s(x) :Ω−→R is the displacement vector field in Eq. (5.2), n is the surface normal on Γ and k̃

is a scalar function, called the shape gradient, that must be differentiable on the boundary Γ.

Proof : Follows from the Hadamard theoreme and that k̃ is an integratable function on Γ. See

[46], page. 59−60.

The function k̃ known as the shape gradient, must be derived for each particular functional H.

The essence in the Hadamard form from Corollary 5.1 is that the shape derivative only depends

on the normal component of the perturbation field s, multiplied by a boundary objective scalar

function k̃. The independence from the interior nodes in the mesh, that was discussed in Section

1.1 can now readily be seen. Since k̃ is only evaluated at the boundary it does not depend on the

interior nodes in the mesh. Since the shape derivative is a boundary integral, it follows therefore

that also dH(Ω)[s] is independent of these nodes. The advantages and disadvantages with this

property was discussed in Section 1.1.

The "continuous" strategy for solving shape optimisation problems is to derive an analytical

expression for k̃ for the particular objective function H of interest. A gradient based optimisation

will then be performed by discretising k̃ and the state equations using a finite element scheme.

In this work, this will be the multimesh formulation from Chapter 3.

The relevant shape derivatives for different domain sensitive functionals are listed bellow.

These results are adapted from [9] and [43] and the reader is referred there for the proofs.

Lemma 5.1. (Shape derivative of a volume objective function).

Let Ω have a piece-wise smooth boundary Γ and let Ω(ε) be the perturbed domain as defined in Eq.

(5.1). For a shape functional H on the form,

(5.4) H(Ω(ε))=
∫
Ω(ε)

h(z(ε),ε)dx,
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where h is a general volume objective function h :Ω−→R and ε is the deformation paramter from

Eq. (5.2), the shape derivative is given by,

dH(Ω)[s]=
∫
Γ
(s,n)h(z)dS+

∫
Ω

h′[s]dx.

Here Γ is the part of the surface of Ω that is changing under the perturbation field s and h′[s] is

the local shape derivative as defined in Definition 5.4.

Proof: The result follows by taking the shape derivative from Definition 5.5 of the shape

functional H. The integral over the perturbed domain Ω(ε) is then brought back to its initial

domain Ω by a change of variable. The integral and the derivative can then swap and the material

derivative from Definition 5.3 can be taken of the volume objective function h(z(ε),ε). The local

shape derivative h′[s] is introduced by the explicit dependency on the deformation parameter ε

and the relation between the material derivative and the local shape derivative given in Eq. (5.3).

For a complete proof the reader is referred to [9].

Remark 5.1. (The shape gradient in Lemma 5.1). The shape gradient k̃ for a shape functional

on the form defined in Lemma 5.1 is given as,

k̃ = h(z).

This follows by comparing Lemma 5.1 with Corollary 5.1. To get the expression for the shape

derivative dH(Ω)[s] on Hadamard form, it is therefore necessary to eliminate the "local shape

derivative term". This will be the purpose of the adjoint approach that is presented in the next

section.

The Hadamard form can also be derived for surface objective functionals. The relevant

forms are given below. Note that for these forms the shape gradient k̃ will attain more complex

expressions.

Lemma 5.2. (Shape derivative of a surface objective function).

Let Ω have a piece-wise smooth boundary Γ and let Ω(ε) be the perturbed domain as defined in Eq.

(5.1). For a general surface objective shape functional G defined as,

(5.5) G(Ω(ε))=
∫
Γ(ε)

g(z(ε),ε)dS,

where g is a surface objective function g : Γ −→ R with ∂g
∂n existing and ε is the deformation

parameter defined in Eq. (5.2), the shape derivative is given by,

(5.6) dG(Ω)[s]=
∫
Γ
(s,n)

[∂g(z)
∂n

+κg(z)
]
dS+

∫
Γ

g′[s]dS.

Here Γ is the part of the surface of Ω that is changing under the partubation field s and κ= divΓn
is the divergence of the normal in tangential direction (also known as curvature). g′[s] in the last
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term is the "local shape derivative" from Definition 5.4.

Proof: The result follows from a similar procedure as described in Lemma 5.1. For a complete

proof the reader is referred to [9].

Lemma 5.3. (Shape derivative of a surface objective function depending on the nor-
mal)(Extension of Lemma 3.24 in [43]).

Let Ω have a piece-wise smooth boundary Γ and let Ω(ε) be the perturbed domain as defined in Eq.

(5.1). For a surface objective shape function G defined as,

(5.7) G(Ω(ε))=
∫
Γ(ε)

(g(z(ε),ε)),n(ε))dS,

where g is a vector valued function such that ∂g
∂n exists and where ε is the deformation parameter

as defined in Eq. (5.2), the shape derivative is given by,

(5.8) dG(Ω)[s]=
∫
Γ
(s,n)

[∂g(z)
∂n

n+divΓg(z)
]
dS+

∫
Γ
(g′[s],n)dx.

Here divΓ is the tangential divergence as defined in Definition A.5 in the appendix and g′[s] is the

local shape derivative from Definition 5.4.

Proof: Extension of Lemma 3.24 in [43]. Follows from the proof of Lemma 3.24 in [43] which

relies on the same principles that were described in Lemma 5.1. The extension in this result is the

"local shape derivative term" which follows by using Lemma 5.2 (In this thesis) Instead of Lemma

3.15 (In [43].

Remark 5.2. (The shape gradients in Lemma 5.2 and Lemma 5.3 ). The shape gradient k̃

for a shape functional on the form defined in Lemma 5.2 is given as,

k̃ =
[∂g(z)
∂n

+κg(z)
]
.

This follows by comparing Lemma 5.2 with Corollary 5.1. Likewise, the shape gradient k̃ for a

shape functional on the form defined in Lemma 5.3 is given as,

k̃ =
[∂g(z)
∂n

n+divΓg(z)
]
,

which follows by comparing Lemma 5.3 with Corollary 5.1.

Similarly as for the volume objective function H, it follows from Remark 5.2 that to get the

expressions for the shape derivative dG(Ω)[s] from Lemma 5.2 and Lemma 5.3 on Hadamard

form, it is necessary to eliminate the "local shape derivative terms". This will be the purpose of

the adjoint approach that is explained in the next section. Corollary 5.2 summarises the results

from this section by giving a general expression for the shape derivative of the class of shape

functionals that will be considered in this thesis.
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Corollary 5.2. (General form: Shape derivative of PDE constrained shape functionals)

Let Υ be either Ω or Γ. Furthermore let H be a shape functional on the form stated in Lemma 5.1

and Lemma 5.2 such that,

H(z(ε),Ω(ε))=
∫
Υ(ε)

h(z(ε),ε)dΥ

for h :Υ−→R where z is subject to a PDE. The expression for the Shape derivative is then,

dH(Ω)[s]=
∫
Γ
(s,n)k̃(h)dS︸ ︷︷ ︸

Hadamard form

+
∫
Υ

h′[s]dx︸ ︷︷ ︸
Local shape deriv. term

,

where s is the perturbation field and n is the surface normal on Γ.

For a shape functional on the form defined in Lemma 5.3, where h is replaced by the innerprod-

uct (h(z,ε),n(ε)), a similar relation holds with the only difference that the "local shape derivative

term" should be replaced by
∫
Γ(h′[s],n)dS.

In the expression, k̃ is the Shape gradient specific for the functional that is considered and the

local shape derivative is as defined in Definition 5.4.

Proof: The proof is straight forward and follows by considering the shape derivatives in

Lemmas 5.1- 5.3 along with Remarks 5.1-5.2.

5.2.3 Adjoint approach

The adjoint approach is a well known method for computing the derivatives of objective functions,

where the objective is subject to a set of constraint equations. A general presentation of the

method can be found in [20]. In this section, the method will be explained in the context of the

shape optimisation problem from Definition 5.2, for the specific class of shape functionals stated

in Corollary 5.2. This is the relevant context for this work. Note that also boundary conditions can

be added to the constraint part in Definition 5.2, but this is dropped for brevity of the discussion.

Here the Lagrange based view of the adjoint approach is adapted. The first step in this regard is

to form the Lagrangian,

(5.9) L (z,Ω,λ)= H(z,Ω)+G(z,Ω,λ)=
∫
Ω

h(z)dx+
∫
Ω

λ · g(z,Ω)dx

where λ(Ω) is the Lagrange multiplier. Here G(z,Ω,λ) is introduced for convenience as,

(5.10) G(z,Ω,λ)=
∫
Ω

λ · g(z,Ω)dx

To relate the objective function and the Lagrangian the following lemma must be considered.

Lemma 5.4. Let z := z(Ω) be the solution of the constraint equation, in a general optimisation

problem as defined in Definition 5.2. Making this substitution for z in Eq. 5.9 gives the reduced

functional and the relation between the objective function and the Lagrangian,

(5.11) H(Ω)= H(z(Ω),Ω)=L (z(Ω),Ω,λ) for arbitrary λ
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Proof: Since z(Ω) is the solution to the constraint equation g(z,Ω) from Definition 5.2, it follows

that g(z(Ω),Ω)= 0 by construction. Since the lagrange multiplier λ therefore is multiplied by zero,

it follows that the above relation holds for any λ.

The shape derivative of the objective function H can be found by relating H to the Lagrangian

using Lemma 5.4 and then taking the shape derivative of the Lagrangian. From Corollary 5.2 it

then follows that the shape derivative of H(Ω) becomes,

dH(Ω)[s]= dL (z(Ω),Ω,λ)[s]

=
∫
Γ
(s,n)k̃dS︸ ︷︷ ︸

Hadamard terms

+
∫
Ω

∂h
∂z

z′[s]dx+
∫
Ω
λ · ∂g

∂z
z′[s]dx+

∫
Ω

g ·λ′[s]dx︸ ︷︷ ︸
Local shape derivative terms

.(5.12)

For the "local shape derivative terms" in Eq. (5.12), the chain rule is used since h = h(z(x)) and

g = g(z(x)). The essence of the adjoint method is to avoid calculating the local shape derivatives

z′[s] and λ′[s]. Since g(z(Ω),Ω)= 0 by construction, the term involving λ′[s] is eliminated. The

adjoint method now utilises that Eq. (5.11) holds for any λ. The set of multipliers can therefore

be chosen freely. With the particular choice λ such that,

(5.13)
∫
Ω

(∂h
∂z

z′[s]+
∫
Ω
λ · ∂g

∂z
z′[s]

)
dx = 0 ∀z′[s] ( Adjoint Eq.),

all terms involving local shape derivatives are eliminated. Eq. (5.13) defines the adjoint equation.

The remaining term in Eq. (5.12) is,

(5.14) dH(Ω)[s]=
∫
Γ
(s,n)k̃dS.

Therefore, the shape derivative dH(Ω)[s] has successfully been converted to its Hadamard form

as defined in Corollary 5.1. For a specific problem, with an objective function on the form defined

in Corollary 5.2, the Lemmas 5.1-5.3 can be used to identify the shape gradient k̃.

5.3 Shape derivative of the single-domain Stokes-drag problem

The Stokes-drag problem was stated in Definition 1.2. Before deriving the shape derivative of

the Stokes-drag problem in a multi-domain setting, the shape derivative is first derived for a

single-domain. Several results from this single-domain analysis can be used for the derivation of

the full, multi-domain Stokes-drag problem in Section 5.4. The drag functional is restated here to

make the discussion as compact as possible,

(5.15) J(u,Ω)=
∫
Ω

j(u)dx =
∫
Ω
µ

2∑
i, j=1

(∂ui

∂x j

)2
dx =

∫
Ω
µ∇u :∇udx,

where j(u) is introduced for convenience and u is the velocity field in the single-domain Stokes-

problem. The notation in the last term in equation (5.15) will be adapted when it is convenient

with a more compact expression.
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Ω

Γ Γ
0

if
1

w

Γ0
w

Γ0
w

Γ0
of

Figure 5.3: Illustration of the single-domain setup used in this derivation. The background
domain Ω has three classes of boundaries an inflow boundary Γi f

0 , an outflow boundary Γi f
0 and

two types of wall boundaries Γw
0 and Γw

1 . The wall boundary Γw
1 corresponds to the boundary of

a solid object in the domain that is represented by a hole in the computational domain. This
object is indicated by the white hole. When taking the shape derivative, the white hole and the
corresponding boundary is the only part of the domain Ω that is assumed to be perturbed.

The problem setup that will be used in this derivation is shown in Fig. 5.3. The shape

derivative will be derived with respect to a perturbation of the white hole and the corresponding

boundary Γw
1 . The rest of the computational domain will be assumed fixed. The white hole is

imagined to be a solid object in the Stokes flow and the Dirichlet boundary condition is therefore

set to u = 0 on the boundary of this region. The other boundaries corresponds to a wall boundary

Γw
0 , an inflow region Γi f

0 and an outflow region Γof
0 .

5.3.1 Forming the Lagrangian of the problem

Let g be a vector containing all the constraints of the problem from Definition 1.1 and let λ

be a vector containing the corresponding Lagrange multipliers. The Lagrangian with the drag

functional J(u,Ω) and the constraints g can then be formed as,

(5.16) L (u, p,Ω,λ)= J(u,Ω)+G(u,Ω)=
∫
Ω

j(u,Ω)dx+
∫
Ω
λ · g(u, p,Ω)dx

where G(u,Ω)= ∫
Ωλ · g(u, p,Ω). The constraints contained in g are,

gs =−µ∇2u+∇p = 0 on Ω,(5.17)

gc =∇·u = 0 on Ω,(5.18)

gi f = u− ci f = 0 on Γi f
0 ,(5.19)

gof =µ
∂u
∂n

− pn= 0 on Γof
0 ,(5.20)

gw0 = u = 0 on Γw
0(5.21)

gw1 = u = 0 on Γw
1 .(5.22)
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Inserting the explicit expressions for the constraints g and the objective function J into Eq. (5.16)

yields,

(5.23)

L (u, p,Ω,λ)=
∫
Ω
µ

∑
i j

(∂ui

∂x j

)2
dx︸ ︷︷ ︸

I

+
∫
Ω
λs ·

(
−µ∇2u+∇p

)
dx︸ ︷︷ ︸

II

+
∫
Ω
λc∇·u−dx︸ ︷︷ ︸

III

+
∫
Γ

i f
0

λi f ·
(
u− ci f

)
dS︸ ︷︷ ︸

IV

+
∫
Γ

of
0

λof ·
(∂u
∂n

− pn
)
dS︸ ︷︷ ︸

V

+
∫
Γw

0

λw0 ·udS︸ ︷︷ ︸
VI

+
∫
Γw

1

λw1 ·udS︸ ︷︷ ︸
VII

For simplification, the limits are dropped on all sums and the indices i, j are implicitly assumed

to sum over all dimensions i, j = 1,2. Let u := u(Ω) be the solution to the Stokes problem from

Definition 1.1. The objective function can then be related to the Lagrangian by Lemma 5.4 such

that, J(Ω) =L (u(Ω), p,Ω,λ). Taking the shape derivative of the Lagrangian in Eq. (5.23) and

using Corollary 5.2 then gives,

dJ(Ω)[s]= dL (Ω)[s]=
∫
Γ
(s,n)k̃dS︸ ︷︷ ︸

Hadamard terms

+
∫

j′[s]dx+
∫
λ · g′[s]d+

∫
λ′[s] · gdS︸ ︷︷ ︸

Local shape derivative terms

(5.24)

Before stating the explicit form of the "Hadamard terms" in Eq. (5.24) the following simplifica-

tion is made. It is assumed that the perturbation is only applied to the part of the boundary defined

by Γpert =Γw
1 . To implement this choice, s is chosen in such a way that

[
(s(x)= 0 : ∀x ∉Γpert

]
. With

this assumption of the perturbation field the terms involving Γi f
0 , Γof

0 and ΓW
0 are eliminated

from the "Hadamard terms". Lemma 5.1 is used to identify the shape gradient k̃ in the terms (I),

(II) and (III). This gives the terms (Sd), (S), (T) and (C) in Eq. (5.25). Lemma 5.2 does the same

for (VII) which gives the (W) term in Eq. (5.25). The result is,

(5.25)

∫
Γ
(s,n)k̃dS︸ ︷︷ ︸

Hadamard terms

=
∫
Γw

1

(s,n)µ
(
∇u :∇u

)
dS

︸ ︷︷ ︸
(Sd)

+
∫
Γw

1

(s,n)
(−µλs ·∇2u

)
dS

︸ ︷︷ ︸
S

+
∫
Γw

1

(s,n)λs ·∇pdS︸ ︷︷ ︸
T

+
∫
Γw

1

(s,n)λc(∇·u)
dS︸ ︷︷ ︸

C

+
∫
Γw

1

(s,n)
[
∂

∂n
(
λw1 ·u)+κλw1 ·u

]
dS︸ ︷︷ ︸

W
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The "local shape derivative terms" in Eq. (5.24) are also written out on their explicit form. In

order to facilitate for integration by parts and to easier derive the adjoint equation, the vector

expressions are written on index notation. Using the chain rule as explained in Section 5.2.3 then

gives,

(5.26)

∫
Ω

j′[s]dx+
∫
Ω
λ · g′[s]dx+

∫
Ω
λ′[s] · gdx︸ ︷︷ ︸

Local shape derivative terms

=
∫
Ω

2µ
∑
i j

∂ui

∂x j

∂

∂x j

(
u′

i[s]
)
dx

︸ ︷︷ ︸
I

+
∫
Ω

[
−µ∑

i j
λs

i
∂2

∂x2
j

(
u′

i[s]
)

︸ ︷︷ ︸
II(a)

+∑
i
λs

i
∂

∂xi

(
p′[s]

)]
dx︸ ︷︷ ︸

II(b)

+
∫
Ω

λc ∑
i

∂

∂xi

(
u′

i[s]
)
dx

︸ ︷︷ ︸
III

+
∫
Γ

i f
0

∑
i
λ

i f
i u′

i[s]dS

︸ ︷︷ ︸
IV

+
∫
Γ

of
0

∑
i j

[
λ

of
i µ

∂

x j

(
u−′

i [s]
)
n j −λof

i ni p′[s]
]
dS

︸ ︷︷ ︸
V

+
∫
Γw

0

∑
i
λw0

i u′
i[s]dS

︸ ︷︷ ︸
VI

+
∫
Γw

1

∑
i
λw1

i u′
i[s]dS

︸ ︷︷ ︸
VII

+
∫
Ω

λ′[s] · gdx

where the terms are labeled with the corresponding labels from Eq. (5.23). The terms involving

λ′[s] will from now on be skipped since these terms will only reproduce the constraints equations

listed in Eq. (5.17)-(5.22).

5.3.2 Removing the local derivative terms: Adjoint equation on
single-domain

Following the strategy of the adjoint approach, see Section 5.2.3, the terms involving u′[s] and

p′[s] or derivatives of these are removed by choosing λ in such a way that each of the linearly

independent terms disappears. This process can be summarised in three steps,

1. Integrate by parts the terms involving
∫
Ω, these are marked (I) to (III)

2. Gather all linearly dependent terms, meaning all terms with the same integration domain

and local derivative

3. For each of the domains choose the set of multipliers λ in such a way that the "local shape

derivative terms" disappear.

Performing the first step, all volume objective integrals in Eq. (5.26) are integrated by parts to

remove the derivatives on u′[s] and p′[s] in the volume terms. Defining ∂Ω=Γof
0

⋃
Γ

i f
0

⋃
Γw

0
⋃
Γw

1
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one has,

I =
∫
∂Ω

2µ
∑
i j

n j
∂ui

∂x j
u′

i[s]dS−
∫
Ω

2µ
∑
i j

∂2ui

∂2x j
u′

i[s]dx,

II(a) =
∫
∂Ω

−µ∑
i j
λs

i
∂

∂x j

(
u′

i[s]n j

)
dS+

∫
∂Ω

∑
i j
µn j

∂λs
i

∂x j

(
u′

i[s]
)
dS

−
∫
Ω
µ

∑
i j

∂2λs
i

∂x2
j

(
u′

i[s]
)
dx

,

II(b) =
∫
∂Ω

∑
i
λs

i ni

(
p′[s]

)
dS−

∫
Ω

∑
i

∂λs
i

∂x j

(
p′[s]

)
dx,

III =
∫
∂Ω

∑
i
λc

(
u′

i[s]
)
n−

i dS−
∫
Ω

∑
i

∂λc

∂xi

(
u′

i[s]
)
dx.

(5.27)

The next step is to sort all terms that are linearly dependent in Eq. (5.26) and (5.27) into separate

groups and set each of these groups to zero. This gives for the volume integrals,∫
Ω

∑
i

[
−2µ

∑
j

∂2ui

∂x2
j
−µ∑

j

∂2λs
i

∂x2
j
− ∂λc

∂xi

(
u′

i[s]
)]

dx = 0,

∫
Ω

∑
i

∂λs
i

∂xi

(
p′[s]

)
dx = 0.

(5.28)

The terms in Eq. (5.28) will result in the volume part of the adjoint equation. Conducting the same

procedure for the boundary integrals will give the corresponding adjoint boundary conditions.

For terms involving integration over Γw
1 one has,∫

Γw
1

∑
i

[(
λw+

i +2µ
∑

j
n j
∂u+

i

∂x j
+∑

j
µn j

∂λs+
i

∂x j
+λc+ni

)(
u+′

i [s]
)]

dS = 0,

∫
Γw

1

−µ∑
i j
λs+

i
∂

∂x j

(
u+′

i [s]
)
n jdS = 0,

∫
Γw

1

∑
i
λs+

i ni

(
p+′[s]

)
dS = 0.

(5.29)

Similar equations are obtained for Γof
0 , Γi f

0 and Γw
0 with,∫

Γ
of
0

∑
i

[(∑
j
µn j

∂λs−
i

∂x j
+2µ

∑
j

n j
∂u−

i

∂x j
+λcni

)(
u−′[s]

)]
dS = 0,

∫
Γ

of
0

−µ∑
i j

(
λs−

i −λof
i

) ∂

∂x j

(
u−′

i [s]
)
n jdS = 0,

∫
Γ

of
0

∑
i

(
λs−

i ni −λof
i ni

)(
p−′[s]

)
dS = 0,

(5.30)
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∫
Γw

0

∑
i

[(
λw0

i +∑
j
µn j

∂λs−
i

∂x j
+2µ

∑
j

n j
∂u−

i

∂x j
+λcni

)(
u−′[s]

)]
dS = 0,

∫
Γw

0

−µ∑
i j
λs−

i
∂

∂x j

(
u−′

i [s]
)
n jdS = 0,

∫
Γw

0

∑
i
λs−

i ni

(
p−′[s]

)
dS = 0.

(5.31)

The terms involving Γi f
0 will be the same as those for Γw

0 in Eq. (5.31). The multipliers λ are

now chosen in such a way that Eq. (5.28)-(5.31) are satisfied. The resulting relations that the

multipliers must satisfy on the boundary are,

Γw
1 :


λw1

i +2µ
∂ui

∂n
+µ∂λ

s
i

∂n
+λcni = 0

λs
i = 0

λs
i ni = 0

(5.32)

Γ
of
0 :

µ
∂λs

i

∂n
+λcni =−2µ

∂ui

∂n
λ

of
i −λs

i = 0

 , Γ
i f
0 :


λ

i f
i +µ∂λ

s
i

∂n
+λcni +2µ

∂ui

∂n
= 0

λs
i = 0

λs
i ni = 0

 .(5.33)

Γw
0 :


λw0

i +µ∂λ
s
i

∂n
+λcni +2µ

∂ui

∂n
= 0

λs
i = 0

λs
i ni = 0

(5.34)

These relations must hold for each vector component, i.e for i = 1,2. By combining these relations

and simplifying, the adjoint equation for the single-domain setup, can be summarised in the

following Lemma:

Lemma 5.5. (Adjoint equation for the single-domain setup).

The adjoint equation resulting from the Lagrangian formed in Eq. (5.16) is,

−µ∇2λs −∇λc = 2µ∇2u

∇·λs = 0

 on Ω

with the boundary conditions,

λs = 0 on Γw
1 , λs = 0 on Γi f

0 , λs = 0 on Γw
0

and

µ
∂λs

∂n
+λcn=−2µ

∂u
∂n

on Γof
0 .

Proof: The derivation is given above.
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In addition to the adjoint variables λs and λc one has the Lagrange multipliers λi f ,λof ,λw0

and λw1. However, due to the way the perturbation field s was chosen, only λw1 will contribute to

the remaining analysis. This multiplier can be related to the adjoint variables from Eq. (5.32) as,

Γw
1 :

{
λw1 =−2µ

∂u
∂n

−µ∂λ
s

∂n
−λcn

]
(5.35)

The similarities between the adjoint equation in Lemma 5.5 and the forward problem from

Definition 1.1 can readily be seen. The difference is a sign change and the additional source terms

2µ∇2u and −2µ∂u
∂n on the volume equation and the outflow boundary respectively. These source

terms comes from the local shape derivative of the drag functional.

In a general shape optimisation problem it is necessary to numerically solve for the adjoint

variables. For this particular system however, it is possible to attain an analytical solution by

simple inspection.

Corollary 5.3. Solution to the adjoint equation on a single-domain
The solution to the single-domain adjoint equation from Lemma 5.5 is

(λs,λc)= (0,−2p)

where (λs,λc) are the adjoint variables and p is the solution to the Stokes-problem from Definition

1.1.

Proof: This follows from direct substitution and utilising the relation between u and p given

by the Stokes equation. For Ω one then has,

−∇(−2p)= 2µ∇2u

∇·0= 0

 on Ω

which is satisfied due to the gs constraint from Eq. (5.17). The constraints on Γi f
0 ,Γw0

0 ,Γw1
1 are

obviously satisfied. For Γof
0 one has ∂λs

∂n = 0 since λs = 0 everywhere and therefore,

(−2p)n=−2µ
∂u
∂n

on Γof
0 ,

which is satisfied by the gof constraint from Eq. (5.20).

Corollary 5.3 has been verified experimentally and the result is presented in Section 9.1.1.
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5.3.3 Hadamard terms single-domain

With the adjoint equation from Lemma 5.5, several simplifications can be made to the "Hadamard

terms" in Eq. (5.25). First the W term is simplified. Using Relation (A.4) on has,

(W)=
∫
Γw

1

(s,n)
[
∂

∂n
(
λw1 ·u)+κλw1 ·u

]
dS

=
∫
Γw

1

(s,n)
[
∂λw1

∂n
·u+ ∂u

∂n
·λw1 +κλw1 ·u

]
dS =

∫
Γw

1

(s,n)
[
∂u
∂n

·λw1
]
dS

(5.36)

The last step in Eq. (5.36), used that the velocity constraint is u = 0 on Γw
1 . From Corollary 5.3

one has that λs = 0. Since this is true in the entire domain Ω it follows that also ∂λs

∂n = 0. This

means that the terms labeled S and T in Eq. (5.25) are eliminated. With this simplification along

with the modification of W from Eq. (5.36), the "Hadamard terms" can be written as,

(5.37)

∫
Γ
(s,n)k̃dS︸ ︷︷ ︸

Hadamard terms

=
∫
Γw

1

(s,n)µ
(
∇u :∇u

)
dS

︸ ︷︷ ︸
Shape deriv. J, (Sd)

+
∫
Γw

1

(s,n)λc(∇·u)
dS︸ ︷︷ ︸

C

+
∫
Γw

1

(s,n)
[
∂u
∂n

·
(
−2µ

∂u
∂n

−µ∂λ
s

∂n
−λcn

)]
dS︸ ︷︷ ︸

W

where λw1 has been substituted for by its relation to the adjoint variables from Eq. (5.35). The

following consideration is now made. Since u must satisfy the boundary condition u = 0 on Γw
1 it

follows that the tangential derivative is zero, ∂u
∂τ

= 0. From Definition A.4 and by using Identity

A.7, the double dot product of the gradient can be simplified to:

∇u :∇u = ∂u
∂n

nT :
∂u
∂n

nT = ∂u
∂n

· ∂u
∂n

(5.38)

The same simplification can be made to the divergence of u. This follows from Definition A.5 such

that ∇·u = divΓu+ ∂u
∂n ·n= ∂u

∂n ·n. Using these relations Eq. (5.37) reduces to,

(5.39)

∫
Γ
(s,n)k̃dS︸ ︷︷ ︸

Hadamard terms

=µ

∫
Γw

1

(s,n)
∂u
∂n

· ∂u
∂n

dS

︸ ︷︷ ︸
Shape deriv. J, (Sd)

−2µ
∫
Γw

1

(s,n)
∂u
∂n

· ∂u
∂n

dS

︸ ︷︷ ︸
from W

+
∫
Γw

1

(s,n)λc(∇·u︸ ︷︷ ︸
C

− ∂u
∂n

·n)
︸ ︷︷ ︸
From W

dS−
∫
Γw

1

(s,n)
[
∂u
∂n

·
(
−µ∂λ

s

∂n

)]
dS︸ ︷︷ ︸

from W

=−µ
∫
Γw

1

(s,n)
∂u
∂n

· ∂u
∂n

dS.

The "Hadamard terms" have now been simplified as much as possible. In addition, the "local shape

derivative terms" were eliminated by choosing the Lagrange multipliers to satisfy the adjoint
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equation from Lemma 5.5 and the remaining conditions in Eq. (5.32)-(5.34). This result therefore

concludes the derivation of the shape derivative. The result is summarised in Proposition 5.1.

Proposition 5.1. (Hadamard form of the shape derivative of the Stokes-drag problem).

Let the objective functional J(u,Ω) be the drag functional as stated in Lemma 1.1. Let the objective

function be constrained by the Stokes-equations from Definition 1.1 of which u(Ω) is a solution.

Under a perturbation of the domain Ω on the form defined in Eq. (5.1)-(5.2) the shape derivative

of J is given as,

dJ(Ω)[s]=−
∫
Γw

1

(s,n)µ
(∂u
∂n

,
∂u
∂n

)
dS,

where s is the perturbation vector field defined over Ω, such that [s(x)= 0 :∀x ∉Γw
1 ] and Γw

1 is the

perturbed boundary.

Proof: The derivation is given in Section 5.3 with Eq. (5.16) through Eq. (5.39).

5.4 Shape derivative of the multi-domain Stokes-drag problem

In this section the Hadamard form and the adjoint approach are used to derive the shape deriva-

tive of the drag functional J(u,Ω) from Lemma 1.1 in a multi-domain setting. This derivation

corresponds to Objective 2 in this work as stated in Section 1.2. The derivation will be performed

with the multi-domain Stokes-problem from Definition 3.9 as constraint equations. The drag

functional was restated in Eq. (5.15) for the single-domain analysis. The notation defined there

will also be adapted for this multi-domain analysis.

The multi-domain setting that is adapted for this derivation was presented in Chapter 3.

In particular the "domain with hole" scheme [10] presented in Section 3.3 will be used. In this

setting the computational domain Ω is partitioned, such that Ω = Ω0
M⋃
j=1
Ω j where Ω0 is the

background domain and M is the number of sub-domains Ω j. These domains corresponds to the

visible domains from Definition 3.8. The sub-domains are not allowed to intersect and therefore

the derivation can be reduced to consider the partition Ω =Ω0
⋃
Ω1. The generalisation to M

domains will then be made at the end of the derivation. Fig. 5.4 illustrates the setup where the

background domain Ω0 is colored blue and the sub-domain Ω1 is colored pink. This figure should

be compared to Fig. 5.3 for the single-domain derivation. The only difference from the single-

domain analysis is the partitioning of the domain and the introduction of an interface between the

sub-domain Ω1 and the background domain Ω0 denoted Γ+/−. Henceforth all variables associated

with the sub-domain will be denoted with a superscript (+) and all variables associated with the

background will be denoted with a superscript (−).
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Ω0

Ω1

Γ
+/-

Γ Γ0
if

1

w

Γ0
w

Γ0
of

Γ0
w

Figure 5.4: Schematic of the problem formulation. The setup only uses two domains. The back-
ground domain Ω0 is represented by the blue region while the pink region corresponds to the
sub-domain Ω1. The background domain has four types of boundaries where Γi f

0 and Γof
0 are the

inflow and outflow boundaries and Γw
0 corresponds to a wall. The last boundary is the interface

Γ+/− which is shared with the sub-domain Ω1. The sub-domain Ω1 also has an inner boundary
Γw

1 . The perturbation of the domain will be restricted to the sub-domain Ω1 and the white hole.
This figure should be compared to Fig. 5.3 from the single-domain analysis. The only difference is
the interface Γ+/− and the partitioning of the domain.

With this geometry and partition of the domain, the constraint equations can be explicitly

stated in the following way. On the interface Γ+/− one has,

gd = [[u]]= u−−u+ = 0 on Γ+/−,(5.40)

gn = [[
µDnu− pn

]]=µ(Dnu+−Dnu−)− (p+n− p−n)= 0 on Γ+/−,(5.41)

where [[z]] denotes the jump in z across the interface. In fact gn can also be written gn =[[
Dnu

]]− [[
pn

]]
which will be frequently used in the text. It is also important to remember the

definition Dnu = (∇uT )T ·n= ∂u
∂n where D is the Jacobian and Dn is the normal component of the

Jacobian. For the background domain one has,

gs− =−µ∇2u−+∇p− = 0 on Ω0,(5.42)

gc− =∇·u− = 0 on Ω0,(5.43)

gi f = u−− ci f = 0 on Γi f
0 ,(5.44)

gof =µ
∂u−

∂n
− pn= 0 on Γof

0 ,(5.45)

gw− = u− = 0 on Γw
0 .(5.46)
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For the sub-domain one has a similar set of constraints, namely,

gs+ =−µ∇2u++∇p+ = 0 on Ω1,(5.47)

gc+ =∇·u+ = 0 on Ω1,(5.48)

gw+ = u+ = 0 on Γw
1 .(5.49)

5.4.1 Forming the Lagrangian of the multi-domain problem

Let g be a vector containing all the constraints of the problem listed in Eq. (5.40)-(5.49) and let λ

be a vector containing the corresponding Lagrange multipliers. The Lagrangian with the drag

functional J(u,Ω) and the constraints contained in g can then be formed as,

(5.50) L (u, p,Ω,λ)= J(u,Ω)+G(u,Ω,λ)=
∫
Ω

j(u,Ω)dx+
∫
Ω
λ · g(u, p,Ω)dx

where G(u,Ω,λ)= ∫
Ωλ · g(u, p,Ω). By the argument of Lemma 5.4 the objective function J(Ω,u)

can be related to the Lagrangian such that,

(5.51) J(Ω)= J(Ω,u(Ω))=L (u(Ω), p,Ω,λ) for arbitrary λ,

where u := u(Ω) is the solution to the boundary value problem defined by the constraint equations

in g. Following the same procedure as before, the constraints in Eq. (5.40)-(5.49) are inserted into

Eq. (5.50). As before the limits will be dropped on all sums so that the indices i, j are implicitly

assumed to sum over all dimensions i, j = 1,2. Expanding Eq. (5.50) yields,

(5.52)

L (u, p,Ω,λ)=
∫
Ω0

µ
∑
i j

(∂u−
i

∂x j

)2
dx︸ ︷︷ ︸

I−

+
∫
Ω1

µ
∑
i j

(∂u+
i

∂x j

)2
dx︸ ︷︷ ︸

I+

+
∫
Ω0

λs− ·
(
−µ∇2u−+∇p−

)
dx︸ ︷︷ ︸

II−

+
∫
Ω0

λc−∇·u−dx︸ ︷︷ ︸
III−

+
∫
Ω1

λs+ ·
(
−µ∇2u++∇p+

)
dx︸ ︷︷ ︸

II+

+
∫
Ω1

λc+∇·u+dx︸ ︷︷ ︸
III+

+
∫
Γ

i f
0

λi f ·
(
u−− ci f

)
dS︸ ︷︷ ︸

IV

+
∫
Γ

of
0

λof ·
(∂u−

∂n
− p−n−

)
dS︸ ︷︷ ︸

V

+
∫
Γw

0

λw− ·u−dS︸ ︷︷ ︸
VI

+
∫
Γw

1

λw+ ·u+dS︸ ︷︷ ︸
VII

+
∫
Γ+/−

λd · [[u]]dS︸ ︷︷ ︸
VIII

+
∫
Γ+/−

µλn · [[Dnu]]dS︸ ︷︷ ︸
IX

−
∫
Γ+/−

λn ·n[[p]]dS︸ ︷︷ ︸
X

The Lagrangian uses the same multipliers as in the single-domains analysis, in addition to λd

and λn to enforce the interface conditions. Taking the shape derivative of the Lagrangian in Eq.
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(5.52) and using Corollary 5.2 then gives as before,

dJ(Ω)[s]= dL(Ω)[s]=
∫
Γ
(s,n)k̃dS︸ ︷︷ ︸

Hadamard terms

+
∫

j′[s]dx+
∫
λ · g′[s]d+

∫
λ′[s] · gdS︸ ︷︷ ︸

Local shape derivative terms

(5.53)

Before stating the explicit form of Eq. (5.53) the following simplification is made. It is assumed

that the perturbation is only applied to the top mesh, that is the part of the boundary defined by

Γpert =Γw
1

⋃
Γ+/−. To implement this choice, s is chosen in such a way that

[
(s(x)= 0 : ∀x ∉Γpert

]
.

With this assumption of the perturbation field the terms involving Γi f
0 , Γof

0 and ΓW
0 are eliminated

from the "Hadamard terms". In order to easier utilise the results from the single-domain analysis

in Section 5.3, the "Hadamard terms" are split in two parts, A1 and A2 such that,

(5.54)
∫
Γ
(s,n)k̃dS︸ ︷︷ ︸

Hadamard terms

= A1+ A2.

The A1 part corresponds to terms that have the same structure as those found in the single-

domain analysis. Note that some of the A1 terms also contain integration over the interface Γ+/−.

The A2 terms corresponds to the interface conditions from Eq. (5.40)-(5.41) and are the only

terms that are conceptually new. Lemma 5.1 is now used to identify the shape gradient k̃ in the

terms labeled (I), (II) and (III) in Eq. (5.52), both for (+) and (−). This gives the (Sd), (S), (T) and

(C) terms in (5.55). Likewise, Lemma 5.2 and the (VII) term in Eq. (5.52) gives the last term in

Eq. (5.55), namely (W1). From this procedure the following expression is obtained for A1,

(5.55)

A1=
∫
Γ+/−

(s,n−)µ
(
∇u− :∇u−

)
dS

︸ ︷︷ ︸
(Sd0)

+
∫

Γw
1

⋃
Γ+/−

(s,n+)µ
(
∇u+ :∇u+

)
dS

︸ ︷︷ ︸
(Sd1), (Sd2)

+
∫
Γ+/−

(s,n−)
(−µλs− ·∇2u−)

dS

︸ ︷︷ ︸
S0

+
∫
Γ+/−

(s,n−)λs− ·∇p−dS

︸ ︷︷ ︸
T0

+
∫

Γw+⋃
Γ+/−

(s,n+)
(−µλs+ ·∇2u+)

dS

︸ ︷︷ ︸
S1 and S2

+
∫

Γw+⋃
Γ+/−

(s,n+)λs+ ·∇p+dS

︸ ︷︷ ︸
T1 and T2

+
∫
Γ+/−

(s,n−)λc−(∇·u−)
dS

︸ ︷︷ ︸
C0

+
∫

Γw+⋃
Γ+/−

(s,n+)λc+(∇·u+)
dS

︸ ︷︷ ︸
C1 and C2

+
∫
Γw

1

(s,n+)
[

∂

∂n+
(
λw+ ·u+)+κλw+ ·u+

]
dS

︸ ︷︷ ︸
W1

.

A similar treatment is performed for the A2 terms. From Lemma 5.2 the shape gradient k̃ can be

identified for the (VIII) term. This gives the (U1) term in Eq. (5.56). Similarly, Lemma 5.3 is used
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for the (IX) and (X) terms to give (U2) and (P1) in Eq. (5.56). The expression for A2 becomes,

(5.56)

A2=
∫
Γ+/−

(s,n+)
[

∂

∂n+
(
λd · [[u]]

)+κλd · [[u]]
]
dS

︸ ︷︷ ︸
U1

−
∫
Γ+/−

(s,n+)
[ ∂

∂n
(
λn[[p]]

)
n+divΓ

(
λn[[p]]

)]
dS

︸ ︷︷ ︸
P1

+
∫
Γ+/−

(s,n+)
[

∂

∂n+
(
λn · [[Du]]

)
n++divΓ

(
λn · [[Du]]

)]
dS

︸ ︷︷ ︸
U2

.

In the interface terms in A2 the convention for the surface normal n is chosen as n+. For the

terms in A1 the convention is n− on all terms derived from Ω0 and n+ for terms derived from Ω1.

The "local shape derivative terms" in Eq. (5.53) are also split into two groups such that,

(5.57)
∫
Ω

j′[s]dx+
∫
Ω
λ · g′[s]dx =

(∫
Ω

j′[s]dx+
∫
Ω
λ · g′[s]dx

)
B1

+
(∫
Ω
λ · g′[s]dx

)
B2

= B1+B2.

The first group labeled B1 corresponds to the single-domain local shape derivatives. The only

difference is that the integration over the domain is now split into integration over the background

domain Ω0 and the sub-domain Ω1. These terms will lead to the same adjoint system as stated

in Lemma 5.5, with the difference that the adjoint equations are split into a system for the

background and a similar system for the sub-domain. The second group is labeled B2 and

corresponds to the interface conditions on Γ+/−. These terms will result in the interface conditions

for the adjoint equation. To facilitate for integration by parts the vector expressions are also here

written on index notation. Using the chain rule, as explained in Section 5.2.3, gives the following

expressions,

(5.58)

B1=
∫
Ω0

2µ
∑
i j

∂u−
i

∂x j

∂

∂x j

(
u−′

i [s]
)
dx

︸ ︷︷ ︸
I−

+
∫
Ω1

2µ
∑
i j

∂u+
i

∂x j

∂

∂x j

(
u+′

i [s]
)
dx

︸ ︷︷ ︸
I+

+
∫
Ω0

[
−µ∑

i j
λs−

i
∂2

∂x2
j

(
u−′

i [s]
)

︸ ︷︷ ︸
II−(a)

+∑
i
λs−

i
∂

∂xi

(
p−′[s]

)]
dx︸ ︷︷ ︸

II−(b)

+
∫
Ω0

λc−∑
i

∂

∂xi

(
u−′

i [s]
)
dx

︸ ︷︷ ︸
III−

+
∫
Ω1

[
−µ∑

i j
λs+

i
∂2

∂x2
j

(
u+′

i [s]
)

︸ ︷︷ ︸
II+(a)

+∑
i
λs+

i
∂

∂xi

(
p+′[s]

)]
dx︸ ︷︷ ︸

II+(b)

+
∫
Ω1

λc+∑
i

∂

∂xi

(
u+′

i [s]
)
dx

︸ ︷︷ ︸
III+

+
∫
Γ

i f
0

∑
i
λ

i f
i u−′

i [s]dS

︸ ︷︷ ︸
IV

+
∫
Γ

of
0

∑
i j

[
λ

of
i µ

∂

x j

(
u−′

i [s]
)
n j −λof

i ni p−′[s]
]
dS

︸ ︷︷ ︸
V

+
∫
Γw

0

∑
i
λw

i u−′
i [s]dS

︸ ︷︷ ︸
VI

+
∫
Γw

1

∑
i
λw+

i u+′
i [s]dS

︸ ︷︷ ︸
VII

+
∫
Ω

λ′[s] · gdx
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and

(5.59)

B2=
∫
Γ+/−

∑
i
λd

i

(
u+′

i [s]−u−′
i [s]

)
dS

︸ ︷︷ ︸
VIII

+
∫
Γ+/−

µ
∑
i j
λn

i

[ ∂

∂x j

(
u+′

i [s]n j

)
− ∂

∂x j

(
u−′

i [s]
)
n j

]
dS

︸ ︷︷ ︸
IX

−
∫
Γ+/−

∑
i
λn

i ni

(
p+′[s]− p−′[s]

)
dS

︸ ︷︷ ︸
X

where the terms are labeled with the corresponding labels from Eq. (5.52). The terms involving

λ′[s] are again skipped since these terms will only reproduce the constraints listed in Eq. (5.40)-

(5.49).

5.4.2 Removing the local shape derivative terms: Adjoint equation for the
multi-domain setup

To remove the "local shape derivative terms" and derive the adjoint equations, it is sufficient

to consider the terms that involve integration over the interfaces Γ+/− since the contribution

from the domain integrals and the boundaries Γw
1 ,Γi f

0 ,Γof
0 and Γw

0 were already derived for the

single-domain case. In this regard one must be careful since the domain integrals will give

contributions also on the interfaces. To get these contributions, all volume objective integrals in

Eq. (5.58) are integrated by parts to remove the derivatives on u′[s] and p′[s]. Starting with the

Ω0 integrals and defining ∂Ω0 =Γof
0

⋃
Γ

i f
0

⋃
Γw

0
⋃
Γ+/− one has,

I− =
∫
∂Ω0

2µ
∑
i j

n−
j
∂u−

i

∂x j
u−′

i [s]dS−
∫
Ω0

2µ
∑
i j

∂2u−
i

∂2x j
u−′

i [s]dx,

II−(a) =
∫
∂Ω0

−µ∑
i j
λs−

i
∂

∂x j

(
u−′

i [s]n−
j

)
dS+

∫
∂Ω0

∑
i j
µn−

j
∂λs−

i

∂x j

(
u−′

i [s]
)
dS−

∫
Ω0

µ
∑
i j

∂2λs−
i

∂x2
j

(
u−′

i [s]
)
dx,

II−(b) =
∫
∂Ω0

∑
i
λs−

i n−
i

(
p−′[s]

)
dS−

∫
Ω0

∑
i

∂λs−
i

∂x j

(
p−′[s]

)
dx,

III− =
∫
∂Ω0

∑
i
λc−

(
u−′

i [s]
)
n−

i dS−
∫
Ω0

∑
i

∂λc−

∂xi

(
u−′

i [s]
)
dx.

(5.60)

Doing the same for terms involving integration with respect to the turbine domain Ω1 gives the

same equations with (−) replaced with (+). The only difference is that the integration now runs
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over Γw
1 and Γ+/−. The resulting equations are listed bellow,

I+ =
∫

Γw
1

⋃
Γ+/−

2µ
∑
i j

n+
j
∂u+

i

∂x j
u+′

i [s]dS−
∫
Ω1

2µ
∑
i j

∂2u+
i

∂2x j
u+′

i [s]dx,

II+(a) =
∫

Γw
1

⋃
Γ+/−

−µ∑
i j
λs+

i
∂

∂x j

(
u+′

i [s]
)
n+

j dS+
∫
Γ+/−

∑
i j
µn+

j
∂λs+

i

∂x j

(
u+′

i [s]
)
dS−

∫
Ω1

µ
∑
i j

∂2λs+
i

∂x2
j

(
u+′

i [s]
)
dx,

II+(b) =
∫

Γw
1

⋃
Γ+/−

∑
i
λs+

i n+
i

(
p+′[s]

)
dS−

∫
Ω1

∑
i

∂λs+
i

∂x j

(
p+′[s]

)
dx,

III+ =
∫

Γw
1

⋃
Γ+/−

∑
i
λc+

(
u+′

i [s]
)
n+

i dS−
∫
Ω1

∑
i

∂λc+

∂xi

(
u+′

i [s]
)
dx.

(5.61)

The next step is to group all linearly dependent terms with integration over the interface Γ+/−.

Considering the terms in Eq. (5.60) and (5.61) along with Eq. (5.59) one gets,∫
Γ+/−

∑
i

[(
−λd

i +
∑

j
µ(−n j)

∂λs−
i

∂x j
+2µ

∑
j

(−n j)
∂u−

i

∂x j
+λc(−ni)

)(
u−′[s]

)]
dS = 0,

∫
Γ+/−

[
−µ∑

i j
λs−

i
∂

∂x j

(
u−′

i [s]
)
(−n j)+µ

∑
i j
λn

i

(
− ∂

∂x j

(
u−′[s]

)
n j

)]
dS = 0,

∫
Γ+/−

[(∑
i
λs−

i (−ni)+λn
i ni

)(
p−′[s]

)]
dS = 0,

(5.62)

and ∫
Γ+/−

∑
i

[(
λd

i +
∑

j
µn j

∂λs+
i

∂x j
+2µ

∑
j

n j
∂u+

i

∂x j
+λcni

)(
u+′[s]

)]
dS = 0,

∫
Γ+/−

[
−µ∑

i j
λs+

i
∂

∂x j

(
u+′

i [s]
)
n j +µ

∑
i j
λn

i
∂

∂x j

(
u+′[s]

)
n j

]
dS = 0,

∫
Γ+/−

[(∑
i
λs+

i ni −λn
i ni

)(
p+′[s]

)]
dS = 0.

(5.63)

The resulting relations that the multipliers must satisfy at the interface are listed below,

Γ+/− :



−λd
i −µ

∂λs−
i

∂n
−2µ

∂u−
i

∂n
−λc−ni = 0

λd
i +µ

∂λs+
i

∂n
+2µ

∂u+
i

∂n
+λc+ni = 0

−λs−
i +λn

i = 0

λs+
i −λn

i = 0


.(5.64)
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These relations must hold for each vector component, i.e for i = 1,2. By simplifying these relations

the interface constraints on the adjoint variables λs+, λs−, λc+ and λc− are obtained. In fact, by

adding the two equations containing λd one gets that
[[

∂λs

∂n +λcn
]]

=−2µ
[[

∂u
∂n

]]
on Γ+/−. This

has the same structure as the interface condition on Dnu and p with an additional source term.

From the adjoint equations in Lemma 5.5 the boundary conditions on Γof
0 ,Γi f

0 and Γw
0 can readily

be adapted. Similarly for the boundary condition on Γw
1 . The adjoint equations on Ω from Lemma

5.5 are now split in two systems, one system for the adjoint variables λs−, λc− defined over Ω0

and a similar system for λs+, λc+ defined over Ω1. From these considerations the adjoint equation

for the multi-domain setup is summarised in Lemma 5.6,

Lemma 5.6. (Adjoint equation for the multi-domain setup).

The adjoint equation resulting from the Lagrangian formed in Eq. (5.50) is,

−µ∇2λs−−∇λc− = 2µ∇2u−

∇·λs− = 0

 : Ω0

−µ∇2λs+−∇λc+ = 2µ∇2u+

∇·λs+ = 0

 : Ω1

with the interface conditions,

λs+−λs− = 0[[∂λs

∂n
+λcn

]]
=−2µ

[[∂u
∂n

]]
 on Γ+/−

and boundary conditions,

λs+ = 0 on Γw
1 , λs− = 0 on Γi f

0 , λs− = 0 on Γw
0

and

µ
∂λs−

∂n
+λc−n=−2µ

∂u−

∂n
on Γof

0 .

Proof: The derivation is given above.

The remaining multipliers needed to simplify the "Hadamard terms" can be related to the

adjoint variables by the following expressions,

Γw
1 :

{
λw+

i =−2µ
∂u+

i

∂n
−µ∂λ

s+
i

∂n
−λc+ni

]
Γ+/− :



λd
i =−µ∂λ

s+

∂n
−2µ

∂u+
i

∂n
−λc−ni

λd
i =−µ∂λ

s−

∂n
−2µ

∂u−
i

∂n
−λc+ni

λn
i =λs−

i

λn
i =λs+

i


(5.65)

61



CHAPTER 5. SHAPE OPTIMISATION

The multi-domain adjoint equation in Lemma 5.6 should be compared to the single-domain

adjoint equation in Lemma 5.5. The only difference between these equations is that the volume

part is split in two in accordance with the domain partitioning. The multi-domain adjoint equation

should also be compared to the corresponding forward problem in Definition 3.9. Of particular

interest are the interface conditions, by inspection they obey the same jump conditions as the

forward problem with the exception of a sign change and the introduction of a source term. The

source term −2µ
[[

∂u
∂n

]]
on the interface condition comes from the local shape derivative of the

drag functional just like the additional source terms on the volume equations.

Corollary 5.4. Solution to the multi-domain adjoint equation
The solution to the multi-domain adjoint equation from Lemma 5.6 is

(λs−,λc−)= (0,−2p−) on Ω0

(λs+,λc+)= (0,−2p+) on Ω1

where (λs−,λc−) and (λs+,λc+) are the adjoint variables on Ω0 and Ω1 respectively.

Proof: This follows from direct substitution and utilising the relation between u and p given

by the Stokes equation. For the equations defined over Ω0, Ω1 and the boundary conditions

Γ
i f
0 ,Γw0

0 ,Γw1
1 and Γof

0 the result can be adapted from the proof in Corollary 5.3. What remains to

prove is therefore that the solution also satisfies the interface condtions on Γ+/−. By substitution

one has,

λs+−λs− = 0

[[0+ (−2p)n]]=−2µ
[[∂u
∂n

]]
 on Γ+/−

Here it is also substituted for ∂λs−
∂n = 0 and ∂λs+

∂n = 0 which follows from the solution λs+ = 0

and λs− = 0 everywhere. Clearly the last equality holds as a direct consequence of the interface

condition in Eq. (5.41). To see this remember that Dnu = ∂u
∂n .

5.4.3 Hadamard terms multi-domain

With the adjoint equations from Lemma 5.6 several simplifications can be made to the "Hadamard

terms" in Eq. (5.55) and (5.56). The first step in this regard will be to simplify the interface terms

U1, U2, P1 in equation (5.56) using relations that are derived in Appendix A.2. For the U1 term

the Identity (A.4) along with the jump condition [[u]]= 0 on the interface Γ+/− is used to obtain,

(U1)=
∫
Γ+/−

(s,n+)
[

∂

∂n+
(
λd · [[u]]

)+κλd · [[u]]dS
]

=
∫
Γ+/−

(s,n+)
[
∂λd

∂n+ · [[u]]+
( ∂

∂n+ [[u]]
)
·λd +κλd · [[u]]

]
dS =

∫
Γ+/−

(s,n+)
[(∂u+

∂n+ − ∂u−

∂n+
)
·λd

]
dS.

(5.66)
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In the last step in Eq. (5.66) the term involving the normal derivative of the jump is written out

more explicitly as ∂u+
∂n − ∂u−

∂n . For the P1 term a similar result is obtained. Using the product rule

and Definition A.5 from the appendix to write out divΓ, then P1 can be expanded to give,

(P1)=−
∫
Γ+/−

(s,n+)
[ ∂

∂n
(
λn[[p]]

)
n+divΓ

(
λn[[p]]

)]
dS

=
∫
Γ+/−

(s,n+)
[∂λn

∂n
n[[p]]

)+ ( ∂

∂n
[[p]]

)
n ·λn +div

(
λn[[p]]

)−nT∇(
λn p

)
n

]
dS

=−
∫
Γ+/−

(s,n+)
[∂λn

∂n
n[[p]]

)+ ( ∂

∂n
[[p]]

)
n ·λn + [[p]]∇·λn +λn ·∇[[p]]−nT Dλnn[[p]]−

(
nT D[[p]]

)
n ·λn

]
dS

=−
∫
Γ+/−

(s,n+)
[
[[p]]∇·λn +λn ·∇[[p]]

]
dS.

(5.67)

In the last step the definition of the normal derivative, Definition A.2 in the appendix, is used on

the two last terms which makes them cancel the two first terms. For U2 one has,

(5.68) (U2)=
∫
Γ+/−

(s,n)µ
[
∂

∂n

(
λn · [[Du]]

)
n+divΓ

(
λn · [[Du]]

)]
dS.

Using Lemma A.1 from the appendix, Eq. (5.68) can be simplified to,

(U2)=
∫
Γ+/−

(s,n)µ
[
∂

∂n

(
λn · [[Du

]])
n+divΓ

(
λn · [[Du

]])]
dS =

∫
Γ+/−

(s,n)µ
[
∇λn :∇[[u]]+∇2[[u]] ·λn

]
dS.

(5.69)

A final simplification is identified by merging the (P1) and (U2) terms. The terms of interest

are those containing derivative of λn. Since λn =λs+ = 0 on Γ+/−, as follows from Eq. (5.65) and

Corollary 5.4, it is clear that the derivative of λn can have no tangential component on Γ+/−.

It follows that ∇·λn = ∂λ
∂n n and ∇λn = ∂λn

∂n . Similarly, [[u]]= 0 gives [[∇u]]= [[
∂u
∂n

]]
. Using these

relations one gets,

(U2)+ (P1)=
∫
Γ+/−

(s,n+)
[
µ∇λn :∇[[u]]+µ∇2[[u]] ·λn − [[p]]∇·λn +λn ·∇[[p]]

]
dS

=
∫
Γ+/−

(s,n+)
[∂λn

∂n
·
([[

µ
∂u
∂n

]]
− [[p]]n

)
+µ∇2[[u]] ·λn +λn ·∇[[p]]

]
dS

=
∫
Γ+/−

(s,n+)
∂λn

∂n
·
(
[[µDnu− pn]]

)
dS = 0.

(5.70)

In the second to last step it is used that Dnu = ∂u
∂n and that λn = λs+ = 0 on Γ+/−. From the

interface condition in Eq. (5.41) it then follows that the expression is zero.
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Putting pieces back together: From Corollary 5.4 it follows that the terms in Eq. (5.55) that

contain λs+ or λs− are eliminated since the solution to the adjoint equation is λs+ = λs− = 0.

This corresponds to the terms labeled (S0−S2) and (T0−T2). The remaining terms that involve

integration over Γw
1 are identical to the set of terms that were used to derive the result in

Proposition 5.1. The only exception is that now u is replaced by u+ and the boundary Γw
1 is the

boundary of Ω1 not Ω. These terms, namely (sd1), (C1) and (W1) , can therefore be replaced by

the result from Proposition 5.1. The terms involving (U2) and (P2), from Eq. (5.56), were shown

to cancel in Eq. (5.70). The remaining terms in Eq. (5.56) are now added to the remaining terms

in (5.55) to form the final expression for the shape derivative. The multiplier λd is substituted

for by its relation to the adjoint variables in Eq. (5.65). Similarly λc+ and λc− are substituted for

by −2p+ and −2p− as it follows from Corollary 5.4. The remaining terms are therefore,

(5.71)∫
Γ
(s,n)k̃dS︸ ︷︷ ︸

Hadamard terms

=−µ
∫
Γw

1

(s,n+)
(∂u+

∂n
,
∂u+

∂n

)
dS

︸ ︷︷ ︸
From (sd1), (C1) and (W1)

+
∫
Γ+/−

(s,n−)µ
(
∇u− :∇u−

)
dS

︸ ︷︷ ︸
(Sd0)

+
∫
Γ+/−

(s,n+)µ
(
∇u+ :∇u+

)
dS

︸ ︷︷ ︸
(sd2)

+
∫
Γ+/−

(s,n−)λc−(∇·u−)
dS

︸ ︷︷ ︸
C0

+
∫
Γ+/−

(s,n+)λc+(∇·u+)
dS

︸ ︷︷ ︸
C2

+
∫
Γ+/−

(s,n+)
[
−2µ

∂u+

∂n
· ∂u+

∂n
− ∂u+

∂n
·nλc++2µ

∂u−

∂n
· ∂u−

∂n
+ ∂u−

∂n
·nλc−

]
dS

︸ ︷︷ ︸
U1

Rearranging these terms and making the substitution n+ = n and n− =−n gives the expression,

∫
Γ
(s,n)k̃dS︸ ︷︷ ︸

Hadamard terms

=−µ
∫
Γw

1

(s,n+)
(∂u+

∂n
,
∂u+

∂n

)
dS

︸ ︷︷ ︸
From (sd1), (C1) and (W1)

+
∫
Γ+/−

(s,n)µ[[∇u :∇u]]dS

︸ ︷︷ ︸
from (sd0) and (sd2)

−2
∫
Γ+/−

(s,n)
[
p+∇·u+︸ ︷︷ ︸

C2

− p−∇·u−
]

︸ ︷︷ ︸
C0

dS+2
∫
Γ+/−

(s,n)
[
p+ ∂u+

∂n
·n︸ ︷︷ ︸

from U1

− p− ∂u−

∂n
·n

]
︸ ︷︷ ︸

from U1

dS

−2µ
∫
Γ+/−

(s,n)
[[∂u
∂n

· ∂u
∂n

]]
dS

︸ ︷︷ ︸
from U1

(5.72)

It is possible to get this equation on a more compact form by utilising the identities derived in

Appendix A.2. Using the definition of the tangential divergence, see Definition A.5, the (C0), (C2)

and (U1) terms combine to one term. This follows from the substitution ∇·u+− ∂u+
∂n ·n= divΓu+
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and ∇·u−− ∂u−
∂n ·n= divΓu− such that,

2
∫
Γ+/−

(s,n)
[
p+ ∂u+

∂n
·n︸ ︷︷ ︸

from U1

− p+∇·u+︸ ︷︷ ︸
C2

+ p−∇·u−︸ ︷︷ ︸
C0

− p− ∂u−

∂n
·n︸ ︷︷ ︸

from U1

]
dS =−2

∫
Γ+/−

(s,n)[[pdivΓu]]dS

=−2
∫
Γ+/−

(s,n)
(
[[p]]〈〈divΓu〉〉+ [[divΓu]]〈〈p〉〉)dS =−2

∫
Γ+/−

(s,n)([[p]]〈〈divΓu〉〉dS

(5.73)

In the second to last step the Identity A.6 was used to expand the jump term. In the last step it

was used that the jump in the tangential divergence of u is zero as follows from [[u]] = 0. The

remaining part of (U1) can be combined with the (sd2) and (sd0) terms. To do this it is first

necessary to rewrite the jump term [[∇u :∇u]]. From Lemma A.2 it follows that, the jump term

can be written as [[∇u :∇u]]= [[
∂u
∂n · ∂u

∂n
]]+ [[

∂u
∂τ

· ∂u
∂τ

]]
. With this expression and using Identity A.6

the (U1), (sd0) and (sd2) terms combine to give,∫
Γ+/−

(s,n)µ
([[∂u

∂n
· ∂u
∂n

]]
+ [[∂u

∂τ
· ∂u
∂τ

]])
︸ ︷︷ ︸

from (sd0) and (sd2)

dS−2µ
∫
Γ+/−

(s,n)
[[∂u
∂n

· ∂u
∂n

]]
dS︸ ︷︷ ︸

from U1

=µ

∫
Γ+/−

(s,n)
([[∂u

∂τ
· ∂u
∂τ

]]
−

[[∂u
∂n

· ∂u
∂n

]])
dS

=µ

∫
Γ+/−

(s,n)
(
2
[[∂u
∂τ

]]〈〈∂u
∂τ

〉〉
−2

[[∂u
∂n

]]〈〈∂u
∂n

〉〉)
dS

=−2µ
∫
Γ+/−

(s,n)
[[∂u
∂n

]]〈〈∂u
∂n

〉〉
dS

(5.74)

In the last step it is used that the jump
[[
∂u
∂τ

]] = 0 which follows from the interface condition

[[u]] = 0. It is now possible to combine the expressions in (5.73) and (5.74) by utilising the

relation between the pressure and the normal derivative offered by the interface constraint

[[µDnu− pn]]= 0. With Dnu = ∂u
∂n from Definition A.2, the normal derivative can be substituted

for by pn. This gives,

−2µ
∫
Γ+/−

(s,n)[[pn]]·
〈〈∂u
∂n

〉〉
dS−2

∫
Γ+/−

(s,n)[[p]]〈〈divΓu〉〉dS =−2
∫
Γ+/−

(s,n)[[p]]〈〈∇ ·u〉〉dS.(5.75)

In the last step the definition of the tangential divergence with ∇·u = divΓu+n· ∂u
∂n , see Definition

A.5 in the appendix, has been used to combine the two terms in Eq. (5.75). In the strong

enforcement of the problem the divergence term in Eq. (5.75) is zero. This follows from the

argument that the volume divergence ∇·u is pointwise zero in both Ω0 and Ω1 as defined by the

divergence constraints in Eq. (5.43) and (5.48). Since the interface Γ+/− is part of both domains

and since the continuity of the velocity is assumed across the interface, i.e [[u]]= 0, the divergence

must also be zero on the points contained in the boundary. From this result it is therefore possible
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to eliminate the four last integrals in Eq. (5.72) and one gets,∫
Γ
(s,n)k̃dS︸ ︷︷ ︸

Hadamard terms

=−µ
∫
Γw

1

(s,n+)
(∂u+

∂n
,
∂u+

∂n

)
dS,

︸ ︷︷ ︸
From (sd1), (C1) and (W1)

(5.76)

which concludes the simplification of the "Hadamard terms".

Remark 5.3. Units check: As a final check on the result, the units of the final interface terms

in Eq. (5.75) are compared with the final expression in Eq. (5.76). Let [z]un denote the units

of a function z. From the interface condition
[[
µDnu− pn

]] = 0 from Eq. (5.41) it is clear that

[p]un = [
∂u
∂nµ

]
un. It then follows that [p]un[∇·u]un = [

µ∂u
∂n

∂u
∂n

]
un which is the same units as for the

standard term in Eq. (5.76). This holds since [∇·u]un = [
∂u
∂n

]
un.

5.4.4 Concluding the derivation

To summarise this discussion, the initial equation in this derivation, namely Eq. (5.53), is restated

here,

dJ(Ω)[s]= dL(Ω)[s]=
∫
Γ
(s,n)k̃dS︸ ︷︷ ︸

Hadamard terms

+
∫

j′[s]dx+
∫
λ · g′[s]d+

∫
λ′[s] · gdS︸ ︷︷ ︸

Local shape derivative terms

.
(5.77)

In this derivation the adjoint approach has been used to eliminate the "local shape derivative

terms" and the adjoint equations in Lemma 5.6 emerged as a consequence. The Lemmas 5.1-5.3

were used to obtain explicit expressions for the "Hadamard terms". Finally, the adjoint equations

along with the strong form of the interface conditions were used to simplify the expressions which

led to the result in Eq. (5.76).

It is now straight forward to generalise the remaining expression to a system of M sub-

domains. The result is stated in Proposition 5.2, where the inner product is denoted as (·, ·) for

compactness.

Proposition 5.2. (Hadamard form of the shape derivative of the multi-domain Stokes-
drag problem).

Let the objective functional J(u,Ω) be the drag functional as stated in Lemma 1.1. Let the objective

function be constrained by the multi-domain Stokes-problem from Definition 3.9 where the domain

Ω is partitioned according to Definition 3.8, such that Ω =
M⋃
j=0
Ω j. Under a perturbation of the

sub-domains {Ω j}M
j=1 on the form defined in (5.1)-(5.2), the shape derivative of J is given as,

dJ(Ω)[s]=−µ
∫
Γw

(s,n)
(∂u+

∂n
,
∂u+

∂n

)
dS,

where s is the perturbation vector field defined over Ω, such that [s(x) = 0 : ∀x ∉ Γpert]. Here

Γpert = Γ+/−⋃
Γw, with Γw =

M⋃
j=1
Γw

j and Γ+/− =
M⋃
j=1
Γ+/−

j . This is the union of all boundaries of

perturbed sub-domains Ω j.
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Proof: The derivation is given in Section 5.4 with Eq. (5.15) through (5.76). In the derivation,

Lemmas 5.1-5.3 are used to get the explicit expressions for the "Hadamard terms". The adjoint

equation from Lemma 5.6 along with the Lagrange multipliers in Eq. (5.65) are used to eliminate

the "local shape derivative terms" and to simplify the "Hadamard terms". The generalisation to M

sub-domains {Ω j}M
j=1 follows from the assumption that the domains are non-intersecting. Under

this assumption a similar derivation can be made for each of the M sub-domains independently

and with the same result. By the linearity of the integral operator and by defining Γw =
M⋃
j=1
Γw

j as

the integration domain the generalisation holds.

Remark 5.4. Comments on the result and limitations with the final expression: This

remark follows up on the discussion made in Section 1.1. The final expression for the shape

derivative of the multi-domain Stokes-drag problem is presented in Proposition 5.2. This result

is derived from the strong formulation of the problem, as defined in Definition 3.9, before any

discretisation scheme is introduced. This starting point has enabled the use of corollaries from

the Hadamard theorem and the final result is independent of the mesh structure in the domain.

If the system were solved in its strong form the expression in Proposition 5.2 would be the

correct expression. However, since the numerical implementation relies on a discretisation scheme,

additional mesh related correction terms will arise as shown in [4]. By deriving the result from the

strong form, these correction terms are lost which means that the result is not discretely consistent.

In addition to this limitation, the derivation has also assumed strong enforcement of the

interface constraints on u, Dnu and p, such that [[u]]= 0 and [[Dnu− pn]]= 0 is assumed to hold.

However, in the weak form of the problem these interface conditions are only enforced weakly as

discussed in Section 3.4.3. Therefore, one should expect several correction terms to the expression in

Proposition 5.2. As long as the jump in [[u]] and the Neumann condition [[Dnu−pn]] is sufficiently

small, by the means of the weak enforcement, these correction terms should be very small and

not effect the result in any significant way. This is the conjecture that this derivation relies on.

The numerical analysis performed in Chapter 9 aims to shed some light on how this choice effects

the precision in the gradient evaluations. For future work it would also be interesting with a full

implementation of all the correction terms to better see the order of magnitude in the error.

Remark 5.5. Independence from the adjoint variables: By using the adjoint approach, the

Hadamard formulation of the shape derivative takes for the Stokes-drag problem in Definition 1.2,

a particularly favourable form which does not depend on the adjoint variables. This result is a

consequence of the self adjoint nature of the Stokes problem, giving the analytical solution from

Corollary 5.4, which has allowed for several simplifications.

Due to this result, gradient evaluations are expected to be very inexpensive in terms of time

consumption since they only require the evaluation of a boundary integral. The benefit of using the

adjoint approach and the Hadamard representation in the context of the Stokes-drag problem will

be further investigated with focus on this issue in Chapter 9.
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Remark 5.6. Physical interpretation of the result: As commented in the overview section

in this chapter, the introduction of the interface Γ+/−, when the strong interface conditions are

assumed, should be purely artificial and not give any change to the physics. In this regard one

should expect to see the same shape derivative in Proposition 5.2 as that derived for the single-

domain case in Proposition 5.1. This derivation has shown that this is indeed the case for the

strong form defined in Definition 3.9. Therefore, this result gives evidence to the consistency between

the mathematical formulation and the physics of the problem.

It is also of interest to see, that this result can be obtained without directly enforcing continuity

in the normal derivative ∂u
∂u and the pressure p. Indeed, the derivation has shown that the weaker

Neumann constraint [[Dnu− pn]]= 0 is sufficient.
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6
TEST PROBLEM FOR THE NUMERICAL

ANALYSIS

The intention of this chapter is to formulate a test setup that can be used to verify

the correctness and analyse the performance of the multimesh variational form of the

Stokes problem from Chapter 3 along with the Hadamard formulation of the shape

derivative derived in Proposition 5.2. The test setup is imagined to be tidal turbines in Stokes

flow. Section 6.1 motivates this choice while Section 6.2 defines the geometrical setup. Section 6.3

then concludes the chapter by stating an optimisation problem that is based on the combined

multimesh shape-optimisation scheme developed in the previous chapters.

6.1 Motivation for the test setup

The test setup that will be used as a working example for the remainder of the work is tidal

turbines in Stokes flow. The model developed here will be restricted to two dimensions, but this

setup along with the overall theory developed in this work can easily be generalised to three

dimensions. It is clear that this is not the most realistic model from a physical point of view, since

Stokes flow does not describe the typical environment of tidal turbines. However, as a simple test

setup to check the correctness and analyse the performance of the theory developed in Chapter 3

and Chapter 5, this model is considered sufficient. The model that is developed is designed to bear

resemblance to tidal turbine setups employed in previous work [15, 25]. This way a benchmark

can be made to test the optimisation scheme developed in this thesis. It is important to note

that the results obtained for the tidal turbine setup can easily be extended to a wider range of
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optimisation problems. Section 1.3.1 gives examples of several other relevant problems.

6.2 Geometrical setup

This section will develop the tidal turbine setup that is used for the remainder of this work.

Section 6.2.1 explains how the multimesh formalism is used to represent the turbines. Section

6.2.2 then defines the design parameters of the problem. Section 6.2.3 concludes by defining the

computational domain and the constraints on the design parameters.

6.2.1 Representing the turbines using the multimesh formalism

To represent the turbines, the mesh with a hole method derived in Section 3.3 will be utilized.

This method requires a set of sub-domains {Ω j}M
j=1 to be defined over the computational domain

Ω, with a hole that represents the shape of the turbine. For M turbines one needs a set of M

independent sub-domains Ω j. On the inner boundary Γw
j of the j-th turbine, the no-slip boundary

condition u j = 0 is defined to represent the solid surface of the turbine. The situation is illustrated

in Fig. 6.1. With this representation, the turbines can be moved without having to re-mesh the

background mesh as explained in Section 3.3.

Ω0

Ωj

y

x

(cxj, cyj)

xj

yj

θj

Ωj+1

Γ0
if Γ0

of

Γ0
w

Γ0
w

Γj+1
+/-

Γj+1
w

Ωj

ain
j

in
jb

out
jb

aout
j

Figure 6.1: Illustration of the geometrical setup of a turbine system. The background domain Ω0
is colored blue and the physical part of the turbines are the grey ellipses. The background domain
has an inflow Γ

i f
0 , an outflow Γ

of
0 and two wall Γw

0 -boundaries. In addition, the background share
an interface boundary Γ+/−

j with each of the M sub-domains. The pink regions corresponds to the
sub-domains Ω j used to represent the turbines. The pink regions works as overlaps between the
background and the turbine boundaries Γw

j . This region is used to stabilise velocity and pressure
over the interfaces Γ+/−

j . The parameterisation of the turbines is illustrated for the j-th turbine
with the center position (cx, j, cy, j) and the angular orientation θ j. The coordinate system (x j, yj)
is the frame of reference of the j-th turbine.
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The shape of the turbines will be that of an ellipse, with outer semi-axes (aout
j , bout

j ) and inner

semi-axes (ain
j , bin

j ). This is illustrated in Fig. 6.1. This shape has the advantage of a simple

implementation and that it can be thought to represent the cross section of a turbine blade.

6.2.2 Design parameters

The test setup will be used to optimise the positions of the turbines and not the shape itself.

To uniquely describe a turbine it is therefore sufficient to parameterize the center position and

the rotational orientation. The design parameters for the j-th turbine are indicated in Fig. 6.1

which shows the center positions (cx, j, cy, j) along with the angular orientation θ j. The angle θ j is

measured relative to the x-axis as shown in Fig. 6.1. With M turbines the design parameters will

be stored in the vectors,

m=
[
cx,1, cy,1, . . . , cx,M , cy,M

]
,

mθ =
[
θ1, θ2, . . . , θM

]
.

(6.1)

Since only the positions of the turbines will be optimised for, the angular orientations θ j will be

specified for each system configuration and then kept fixed during the optimisation.

6.2.3 Computational domain and constraints on the design parameters

The computational domain used for this work will be defined as a 2D unit square Ω= [0,1]2. The

boundary ∂Ω will be divided into an inflow region Γi f
0 , an outflow region Γof

0 and a wall region

Γw
0 . These boundaries are indicated on Fig. 6.1. The regions are formally defined as follows,

Γ
i f
0 = {(x, y) : x = 0 and 0≤ y≤ 1}

Γ
of
0 = {(x, y) : x = 1 and 0≤ y≤ 1}

Γw
0 = {(x, y) : 0≤ x ≤ 1 and y= 0∨1}

(6.2)

In order to avoid the turbines to move out of the domain during the optimisation algorithm, the

allowed domain of movement is restricted to Ωr = [0.2,0.8]2. To enforce these constraints the

turbine center positions c j = (cx, j, cy, j) are restricted by the constraint equations,

(6.3) xl ≤ c j ≤ xu for j = 1,2, . . . , M

Where xl = (0.2, 0.2) and xu = (0.8, 0.8). The margin between the boundaries ∂Ω and ∂Ωr is

chosen so that the turbines can have any angular orientation θ j.

The numerical values chosen for the dimensions of the turbines are,

(aout
j , bout

j )= (0.8, 0.55)

(ain
j , bin

j )= (0.6,0.35),
(6.4)
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unless otherwise stated in the text. Similarly, the boundary conditions that are used are,

(6.5)

gN = 0 on Γof
0

u = 0 on Γw
0

u = 5sinπy ∨ u = 5y2 sinπy on Γi f
0

u = 0 on Γw
1

unless otherwise stated. Two different inflow profiles will be used. The symmetric sinπy and

the skewed y2 sinπy. Both profiles are chosen such that u = 0 at the intersection with Γw
0 . The

skewed inflow profile is the one that will be used for the actual optimisation problem. The other

is chosen for its symmetry properties, to check the behaviour of the gradient around the maxima

in y that is present at y= 0.5 due to the symmetry of the computational domain.

In order to prevent the turbines to overlap, which is considered nonphysical, a constraint on

the minimum distance rmin
i j between two turbine centers ci and c j for i 6= j is defined as,

(6.6) g(ci, c j)=
(
rmin

i j
)2 −∥∥c j − ci

∥∥2 ≤ 0 ∀ i, j : 1≤ i ≤ j ≤ M

The minimum allowed distance between the turbines will be rmin
i j =max(aout

i , bout
i )+max(aout

j , bout
j )

where aout and bout are the outer semi-axis in the ellipses of turbine i and j.

6.3 The optimisation problem

With the geometrical setup and parameterization in place, one can finally define the Stokes-drag

optimisation problem from Definition 1.2 in a multimesh setting. This formulation corresponds to

the discretization step which is the final step in the "continuous approach to the shape derivative"

presented in Fig. 5.1.

The turbines, i.e the sub-domains Ω j, are parameterized using the set of design parameters

m. With Ω j(m) for j = 1,2, . . . , M it follows that u(Ω)= u(m). It is therefore convenient to express

the drag J as a function of m, which gives the reduced optimisation problem,

min
m

(−J(m))(6.7)

subject to F(u, p,v, q)= 0 ∀ (v, q) ∈V mm
h ⊕Qmm

h(6.8)

xl ≤ m≤ xu(6.9)

g(m)≤ 0.(6.10)

Here xl and xu are the upper and lower constraints on the turbine centers given in Section

6.2.3 and g(m) is the constraint defined in Eq. (6.6) that prevents the turbines to intersect. The

state equation F(u, p,v, q)= 0 corresponds to the residual Amm(u, p,v, q)−Lmm(v)= 0 from the

multimesh variational formulation of the Stokes problem stated in Section 3.4. The two test

functions u and p are the velocity and the pressure in the Stokes flow and the corresponding

trail functions are v and q. Finally, V mm
h ⊕Qmm

h is the mixed multimesh function space as defined

in Section 3.4.1.
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7
IMPLEMENTATION AND VERIFICATION

OF THE MULTIMESH STOKES SOLVER

To solve the optimisation problem defined in Section 6.3, it is first necessary to implement

a solver for the multimesh variational form of the Stokes problem from Section 3.4. The

Multimesh finite element solver (MMFEM solver) for the Stokes equations has been

implemented using the FEniCS framework. Section 7.1 gives a short introduction to the FEniCS

project and explains how it has been utilised in this work. In Section 7.2 a benchmark problem is

made in order to verify the convergence of the implemented solver.

7.1 Software and implementation in Python

7.1.1 The FEniCS project

The FEniCS project [2, 30] is a collaboration between several research institutes and universities

with the goal of developing tools for scientific computing. The project consist of several software

libraries that are made to operate together. Of special interest for this work is the DOLFIN

library [29, 31] which employs a framework for easily generating PDE solvers using the finite

element method. The FEniCS version 2018.1.0, that is used in this work, includes framework for

solving PDEs using the multimesh formulation described in Chapter 3. For mesh generation the

mshr library [2] in the FEniCS project is used. This is a C++ library with a Python interface that

provide an easy to use mesh generator for meshes of intermediate complexity.
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7.1.2 Implementation

The code developed in this work can be found in the GitHub repository [40]. The Dolfin library

offers a problem solving environment and framework in which one can state variational problems

for PDEs in a notation very close to the mathematical formulation. To do this, Dolfin uses the

Unified form language (UFL) [1] which offers easy to use notation for expressing integrals, inner

products and other mathematical operations needed to specify a finite element variational form.

To get a better understanding of how this works, some selected pieces of the multimesh solver,

implemented for this work, are discussed. In Listing 7.1 the MMFEM function spaces for the

test and trial functions u and v are defined. The code extract corresponds to the implementation

of the function spaces defined in Section 3.4.1. As can be seen, the code is quite similar to the

mathematical formulation.

1 import do l f in *
2

3 # Define vector spaces for tes t and t r i a l functions . Specify element type
4 # and polynomial degree .
5 multimesh = final_turbSystem . get_multimesh ( )
6 P2_ele = VectorElement ( " Lagrange " , multimesh . u f l _ c e l l ( ) , 2)
7 P1_ele = FiniteElement ( " Lagrange " , multimesh . u f l _ c e l l ( ) , 1)
8

9 MizedElement_taylorHood = MixedElement ( [ P2_ele , P1_ele ] )
10 W = MultiMeshFunctionSpace ( multimesh , MizedElement_taylorHood )
11

12 V = MultiMeshSubSpace (W, 0)
13 Q = MultiMeshSubSpace (W, 1)
14

15 # Define t r i a l and tes t functions
16 (u , p ) = TrialFunctions (W)
17 ( v , q ) = TestFunctions (W)

Listing 7.1: Code extract that shows the implementation of the Sobolov spaces for the test

and trial functions. The extract illustrates how Dolfin is used to implement the mathematical

definitions in a notation similar to the mathematical formulation. The Taylor-Hood element

P2,P1, with the Lagrange basis functions can easily be specified and the test and trial functions

can be defined over the resulting multimesh function spaces as seen in the last line.

With the test and trial functions defined over the chosen function spaces, the multimesh

variational form from Section 3.4 can be implemented. As an example the implementation of

the standard bi-linear form an(u,v) in Eq. (3.14) is presented in Listing 7.2. Here it can be seen

that to represent the integral it is sufficient to specify the measure. There are several built in

measures like the volume integration measure dX used here. For a more specific integration,

like integration over the physical boundary of the turbines, it is possible to make user defined

measures.
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1 def a_n ( se l f , u , v ) :
2 return inner ( grad (u) , grad ( v ) ) *dX

Listing 7.2: Implementation bi-linear form an(u,v) from Eq. 3.14. The implementation illustrates

how the UFL language can be used to define the mathematical expressions in a variational form.

From the variational form the linear system can be assembled. The Dolfin framework also

offers functionality for applying the Dirichlet boundary conditions directly on to the system

matrix. To solve the resulting linear system the standard linear solver "MUMPS" has been

used. This is a direct solver for sparse linear equations on the form Ax = b, i.e systems where

the stiffness matrix A has a large amount of zeros. This solver is offered through the Dolfin

framework and is sufficient for the purpose of this work. For an idea on how the stiffness matrix

relates to the variational form the reader is referred to Example 2.1.

7.2 Verification of the multimesh Stokes solver

This section presents the benchmark problem used to test the convergence of the multimesh

Stokes solver. The convergence of the solution is then checked in standard error norms.

7.2.1 Benchmark model

To check the convergence of the solution a simple setup with a known analytical solution is

made. For this purpose the geometrical setup defined in Section 6.2 is used with only one elliptic

sub-domain, labeled Ω1. For simplicity, the hole in domain method from Section 3.3 is not used in

the benchmark. The inner semi-axes ain and bin from Section 6.2 are therefore removed. For the

the boundary conditions the simple choice of u = 0 and p = 0 over the entire boundary ∂Ω is used.

With the source term f in Eq. 1.1 given as,

(7.1) f = 2π

[
sin(2πx2)(cos2πx1 −2π2 cos(2πx1)+π2)

sin(2πx1)(cos(2πx2)+2π2 cos(2πx2)−π2)

]

and the boundary conditions as stated above, an exact solution is,

(7.2) u(x1, x2)= 2πsin(πx1)cos(πx2)

[
cos(πx2)sin(πx1)

−cos(πx1)sin(πx2)

]
,

(7.3) p = sin(2πx1)sin(2πx2).

This will be the setup that is used for the convergence tests in the next section.
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7.2.2 Convergence of the solution

The convergence rates of the solution (uh, ph) to the implemented multimesh variational form

of the Stokes problem from Section 3.4.2 is measured in the ‖ · ‖L2 and ‖ · ‖H1
0

norms. These

norms where defined in Definition B.2 and Definition B.5 in the appendix. Let Eh represent

the respective norms, the relation between the mesh size h and Eh is then expected to obey the

relation,

(7.4) ln(Eh)= C+ r ln(h)

where r is the convergence rate in the respective norm and C is some constant of proportionality.

The convergence rate r is related to the polynomial degree of the basis functions used to represent

the finite element functions (uh, ph). With (uh, ph) ∈ Vh ⊗Qh as defined in Section 3.4.1, the

expected convergence rate is r = 2 for ‖u−uh‖H1
0

and ‖p− ph‖L2 while it is r = 3 for ‖u−uh‖L2 .

This follows from the Taylor-Hood element chosen for the function space with the (P2,P1) pair.

Figure 7.1: The figure shows the convergence
rate of the velocity u in the ‖ · ‖Ł2 norm.
With P2 elements it is expected that this
rate should be r = 3. The blue squares cor-
responds to the logarithm of the error norm
as a function the logarithm of the mesh size h.
The purple line corresponds to the regression
curve that gives a convergence rate estimate
of r = 3.01.

Figure 7.2: The figure shows the convergence
rates for u and p in the error norms ‖·‖H1

0
and

‖·‖L2 . The blue squares corresponds to the log-
arithm of the error norm ‖ ·‖H1

0
as a function

of the logarithm of the mesh size h. The pur-
ple triangles is likewise the logarithm of the
error norm ‖ · ‖L2 . The purple and the green
lines corresponds to the regression curves.

A linear regression of the logarithm of ‖u−uh‖L2 plotted against the logarithm of the mesh

size h, is presented in Fig. 7.1. From the linear regression the convergence rate r from Eq. (7.4)

is found to be r = 3.01 as expected. Similar curve fits where made for ‖u−uh‖H1
0

and ‖p− ph‖L2
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‖u−uh‖H1
0

‖u−uh‖L2 ‖p− ph‖L2

r 2.01 3.01 2.21

Table 7.1: Convergence rate obtained
from linear regression of the log-log
plot of the error norms, ‖u−uh‖H1

0
,

‖u−uh‖L2 and ‖p− ph‖L2 , against the
mesh size h.

h ‖u−uh‖H1
0

‖p− ph‖L2

3.3e-2 1.7e-2 1.5e-3
8.0e-3 1.1e-3 6.1e-5
3.7e-3 1.7e-4 1.0e-5

Table 7.2: Table showing the residual errors
in u and p in the ‖ ·‖H1

0
and ‖ ·‖L2 norms as

a function of the cell size h.

which gave convergence rates close to the expected value of r = 2. These plots are shown in Fig.

7.2. The convergence rates found from the linear regressions are summarised in Table 7.1.

The residual errors in velocity and pressure, measured in the ‖ · ‖H1
0

and ‖ · ‖L2 norms res-

pectively, are presented in Table 7.2 for some selected mesh sizes h. The error decreases with

finer meshes at the correct rates. From this analysis it is demonstrated that the implemented

multimesh solver for the Stokes problem has optimal order convergence.
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8
IMPLEMENTATION AND VERIFICATION

OF THE OPTIMISATION ALGORITHM

In order to test the performance of the shape derivative derived in Proposition 5.2, a

gradient based optimisation algorithm has been implemented in python. For this purpose

the software package Ipopt has been used. Section 8.1 will begin the chapter with an

introduction to the Ipopt software and the optimisation algorithm. The chapter is concluded by

Section 8.2 which explains how the gradient from Proposition 5.2 is parameterised.

8.1 Software and verification of the optimisation algorithm

This section will give a short introduction to the Ipopt software and explain the most crucial

parts of the optimisation algorithm that is implemented in this package. In Section 8.1.3, a

simple benchmark problem, that is not involving the shape derivative, is designed to test the

performance of the combined multimesh Ipopt optimisation algorithm.

8.1.1 Interior point line search filter method (Ipopt)

Ipopt is a software package for large scale nonlinear optimisation. The software is open source

and extensive documentation is available. In [52] a thorough description of the algorithm is

presented while a more light-weight introduction is provided by [49]. Examples of previous work

that utilise this algorithm can be found on [7]. More mathematical details on the algorithm can

be found in several papers including [39, 50, 51].
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The Ipopt software implements an interior point line search filter method that seeks to

minimise the objective function, the details of the implementation can be found in [52]. It is

important to note that the algorithm only seeks to find a local minimizer and the solution will

therefore rely on the initial conditions. The python module pyipopt [53], developed by Eric Xu,

has been used to get access to the Ipopt package through python. This functionality is available

through the DOLFIN-adjoint project [11] and in particular the optimisation framework [14].

The Ipopt package is designed to solve optimisation problems similar to the problem defined in

Section 6.3. It is therefore natural to utilise this software when implementing an optimisation

algorithm for the turbine configuration.

8.1.2 The Ipopt algorithm

The Ipopt algorithm is based on an Armijo-backtracking scheme similar to that described in

Chapter 4 and relies on a gradient descent method to chose appropriate search directions. A more

detailed description of this particular implementation can be found in [52]. Around this simple

core there are several additional features with the algorithm that handles domain and parameter

constraints and helps increase the efficiency of the algorithm. The most important aspects will be

presented below.

Interior point (Barrier): To enforce domain constraints similar to those defined on the design

parameters m in Eq. 6.9, the Ipopt solver uses an Interior point (or barrier) method. The idea is

to introduce a barrier term to the objective function J similar to,

(8.1) B(m)= J(m)− ∑
m∈m

[
µl ln(mc − xl)−µu ln(xu −mc)

]
,

and then minimise the function B instead. Here µ represent the strength of the barrier. If any

of the design parameters m gets close too its domain bounds xl , xu the barrier term blows up.

Minimizers on the boundary of the allowed domain can therefore not be reached using this

algorithm and thereof the name "Interior point". The parameter µ = [µl , µu] determines the

strength of the barrier. The method will start with a large value for this parameter and then

reduce it in sequences when certain conditions are met. See [39] for more details. In general the

solution of the barrier problem should converge to the standard problem when µ−→ 0, see [49].

It is important to be aware of this feature with the algorithm as it can, for an intermediate set of

iterations, increase the objective function in the minimization process.

Filter method: The no-overlap condition on the turbines was defined in Eq. (6.10). The strategy

for handling this constraint problem is to use a Filter method. This concept was first introduced

by [12] and its implementation into the Ipopt software can be found in [51, 52]. The main idea in

this method is to convert the problem into a dual-objective optimisation problem where both the

objective function and the constraint violation are minimized. In addition the method contains
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a filter Fk that contains information about the objective function and constraint violations at

previous iterations. A trail point mk in the line-search is therefore accepted if it sufficiently

decrease either the constraint violation or the objective function while it is not sorted out as

prohibited by the filter.

Restoration phase If the backtracking line-search cannot find an acceptable step size εk, i.e

εk ≤ εmin, then the algorithm enters the feasibility restoration phase.This can typically happen if

the constraint condition prevents steps that will be optimal for the objective function or if the

linear system is ill-conditioned. In this phase the objective function is ignored and the algorithm

tries to minimise the constraint violation according to some scheme, see [52] for more details.

Similar to the barrier term, this phase could intermediately increase the objective function and is

therefore important to be aware of.

8.1.3 Verification of the combined multimesh Ipopt algorithm

In order to confirm that the optimisation algorithm combined with the multimesh scheme is

working correctly, a simple test is performed of the convergence. The test will also serve as a

reference for the remaining work. The idea is to introduce a dummy function f with a known

optimal solution. The dummy is defined as,

(8.2) f (m)=
M∑

i=1
(mi −Pi)2

where {mi}M
i=1 is the design parameters of the turbine system defined in Section 6.2.2 and the set

of variables {Pi}M
i=1 gives the configuration of the system that minimises f . The gradient with

respect to the turbine possitions is an array ∇ f (cy, cy)= [∇ f i
]

with the i-th component given as,

(8.3) ∇ f (cy, cy)i = 2(mi −Pi).

The results from the preliminary convergence test is presented in Table 8.1 were all turbines

can be seen to have reached their optimal position. The algorithm terminated after 12 iterations

and reduced the objective function from f = 4725.7 to f = 2.3e−6. A similar test was done

where the optimal positions {Pi}M
i=1 were chosen such as to not be feasible without violating the

constraints. The initial configuration for this test is shown in Fig. 8.1. The optimal (infeasible)

positions are then chosen as summarised in Table 8.2. The objective positions of Turbine 1 (red)

and Turbine 2 (yellow) were deliberately chosen to the same point. This allows to test how the

algorithm handles the non-intersection constraint stated in Eq. (6.6). The optimal position of

Turbine 3 (orange) was chosen outside of the allowed domain, which allows to test how the

algorithm handles the boundary constraint stated in Eq. (6.3). The algorithm terminated after 17

iterations with the default tolerance of the Ipopt solver. The objective function was reduced from

f = 4725.7 to f = 0.039 and all the constraint conditions defined in Section 6.3 were respected.
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The resulting configuration is shown in Fig. 8.2. From the figure and Table 8.2 it is clear that the

turbines have all reached relatively close to their optimal positions, given the current constraints.

Table 8.1: Table summarising the results from a preliminary convergence test for the optimisation
algorithm using a dummy function. In this test the optimal positions were chosen so as to not
violate any constraints.

Turb. 1 Turb. 2 Turb. 3
Final pos. (0.7002, 0.7001) (0.3004, 0.2999) (0.2986, 0.6994)
Opt. pos. ( 0.7, 0.7) (0.3, 0.3) (0.3, 0.7)

Final angl. 60.0 25.0 90.0
Opt. angl. 60.0 25.0 90.0

Table 8.2: Table summarising the results from a convergence test for the optimisation algorithm
using a dummy function. The optimal positions shown in the third row were chosen such that the
turbines could not reach the positions without violating the non-overlap condition.

Turb. 1 Turb. 2 Turb. 3
Init. pos. (0.2, 0.2) (0.5,0.5) (0.75, 0.2)
Final pos. (0.59, 0.60) (0.41, 0.39) (0.23, 0.79)
Opt. pos.

(infeasible)
(0.5, 0.5) (0.5, 0.5) (0.23, 0.82)

Init. angl. 30 10 30
Final angl. 60.0 25.0 90.0
Opt. angl. 60.0 25.0 90.0

A graphical representation of the progress during the optimisation is shown in Fig. 8.3. The

figure shows the function value ‖ f ‖ plotted against the number of function evaluations. The blue

circles corresponds to each time f is evaluated. The purple crosses corresponds to the function

value at a new optimisation iteration. In the new iteration the gradient is again evaluated and

a new line search direction decided. The spikes in the blue curve in Fig. 8.3, is typical for the

Ipopt solver and can be related to the barrier parameter or the restoration phase, as discussed in

Section 8.1.2.
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Turb. 1

Turb. 3

Turb. 2

Figure 8.1: Initial configuration of turbine
system. The three turbines are colored red,
orange and yellow to distinguish them from
each other.

Turb. 1

Turb. 3

Turb. 2

Figure 8.2: Final configuration of turbine sys-
tem. The optimal configuration were here cho-
sen such that both the red and the yellow
turbine had the same optimal position. The fi-
nal configuration shows how the optimisation
algorithm solved this issue.

Figure 8.3: Progress plot for the objective function f . The first 2 iterations are omitted to resolve
the final progress. The number of function evaluations are shown with a dotted blue line. The
x-marks on the purple line corresponds to the function value at a new optimisation iteration. The
spikes in the blue curve is typical for the Ipopt algorithm and follows from the restoration phase
or an increase in the barrier parameter as discussed in Section 8.1.2

.
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8.2 Implementation

This section will describe how the Hadamard form of the shape derivative from Proposition

5.2 is implemented. To implement a gradient representation that can be combined with the

optimisation algorithm it is necessary to define a parameterisation for the perturbation field s
from Eq. (5.2). In R2 and with movement restricted to translation of the turbines, it is sufficient

to parameterise the perturbation with an x and y component. With this parameterisation the

gradient for translational movement can be calculated. Section 8.2.1 explains how this has been

done.

8.2.1 Calculating the gradient for translational movement

The parameterisation of the turbine domains Ω j from Section 6.2.2 makes translation of the

domain easy to implement. By parameterising the perturbation field with,

s(x)x, j = (1,0)∀ x ∈Ω j.(8.4)

s(x)y, j = (0,1) ∀x ∈Ω j.(8.5)

s(x) j = (0,0) otherwise,(8.6)

one can ensure movement only of the turbine of interest. Note that x= (x, y). In the two dimen-

sional domain the gradient ∇J(Ω) can then be represented as,

(8.7) ∇J j =
[
dJ(Ω)[sx, j] dJ(Ω)[sy, j]

]
,

for perturbation of the j-th sub-domain (turbine). Here dJ(Ω)[s] corresponds to the Hadamard

formulation of the shape derivative from Proposition 5.2. In the expression for the shape derivative

in Proposition 5.2, the dynamic viscosity µ is set to µ= 1 to be consistent with the choice made

for the multimesh variational form of the Stokes problem in Section 3.4.2.
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9
NUMERICAL RESULTS FOR SHAPE

OPTIMISATION ON MULTIPLE MESHES

This chapter is dedicated to the numerical analysis of the multimesh formulation from

Chapter 3, the Hadamard formulation of the shape derivative from Chapter 5 and to

the combined multimesh shape-optimisation scheme from Objective 3. These analyses

corresponds to the numerical aspects of Objective 1,2 and 3 stated in the introduction. The

chapter is divided in two parts. The first part, Section 9.1, presents preliminary tests for the

shape derivative. The second part, Section 9.2, is then dedicated to the performance of the

multimesh and the combined multimesh shape optimisation scheme.

9.1 Verification of the shape derivative

This section will present preliminary tests to verify the proficiency of the shape derivative from

Proposition 5.2. The section starts with convergence tests performed on the single-domain adjoint

solution from Corollary 5.3. It then concludes with a section considering the general behaviour of

the shape derivative in several test scenarios.

9.1.1 Convergence tests for the adjoint equation

To check the analytical solution (λs,λc) = (0,−2p) found for the adjoint equations in Lemmas

5.5 and 5.6, a numerical implementation has been made. This implementation is for the single-

domain case, using a unit square domainΩ= [0,1]2 and the inflow profile 5sinπy. The boundaries

and boundary conditions are otherwise as given in Section 6.2. The results from this test are
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Table 9.1: Table showing the residual error
between the adjoint variables (λs,λc) and
the analytical solution (λs,λc)= (0,−2p) for
increasing number of cells. The convergence
rate is shown in the far right columns. For
λs, a prediction for the convergence rate
was not possible as the residual was already
close to zero for very few cells, the error
only oscillated around ∼ 10−12 for increas-
ing mesh refinement as can be seen in the
table. The expected convergence rate in λc

of r = 2 is reached to an acceptable degree.

Cells ‖λs‖H1 ‖λc − (−2p)‖L2 rλc

10,000 2.6e-13 4.3e-4 1.88
40,000 1.5e-12 1.1e-4 1.89
90,000 2.7e-12 4.9e-5 1.90
160,000 9.5e-12 2.9e-5 1.90
250,000 2.4e-12 1.9e-5 1.90
360,000 4.9e-12 1.5e-5 1.89

Figure 9.1: Convergence test for the single-
domain adjoint equation from Lemma 5.5. An
estimate for the convergence rate r is obtained
by linear regression of the logarithm of ‖λc −
(−2p)‖L2 plotted against the logarithm of the
mesh size h.

summarised in Table 9.1. An estimate for the convergence rate in ‖λc − (−2p)‖L2 was obtained by

linear regression of the logarithm of the error norm and the logarithm of the mesh size h. Fig 9.1

shows how this was done. The convergence rate was estimated to be rλc = 1.89 which is acceptably

close to the expected convergence rate of r = 2.0. A similar estimate for the convergence rate in

the adjoint variable λs was not possible since the residual error ‖λs‖H1 was already very close

to zero as seen from the second column in Table 9.1. As can be seen, the error only oscillates

around ∼ 10−12 when increasing the number of cells. For λc on the other hand, the residual

error ‖λc − (−2p)‖L2 is decreasing with increasing mesh refinement. Based on these results the

analytical solution of the single-domain adjoint equation found in Corollary 5.3 is confirmed.

For the multi-domain case, the analytical solution was also found to be (λs,λc) = (0,−2p).

Since it is not obvious how to implement a multimesh formulation of the adjoint equations from

Lemma 5.6, the analytical solution found in Corollary 5.4 will be trusted without a numerical

verification. It is therefore left to future work to develop a multimesh formulation for the multi-

domain adjoint equations. For future treatment of this problem, it should be made particular

care to handle the additional source terms that distinguish the adjoint equations in Lemma 5.6

from the forward problem in Definition 3.9.
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9.1. VERIFICATION OF THE SHAPE DERIVATIVE

9.1.2 Verification of the shape derivative

In order to investigate the correctness of the shape derivative from Proposition 5.2, a set of Taylor

tests have been conducted for increasing mesh refinement. In addition, particular care has been

made to verify the gradient around two local extrema, when refining the mesh. The motivation

for this was given in Section 4.2.2, where it was argued why it is important that the estimated

gradient correctly predicts the descent direction. In this context it is essential that it has a sign

change at the extrema points.

Taylor convergence tests: A simple Taylor expansion of the objective function, gives J(z)=
J(z0)+ε1 · ∇J(z0)+C‖ε1‖r where ε1 = z− z0 is the displacement and where ∇J is calculated

according to Eq. (8.7). With a correct gradient, the convergence rate is expected to be r = 2. In

order to verify this, two Taylor tests have been performed with the displacement directions ε1

and ε2. Here ε1 corresponds to displacement along the y-axis from the start position (0.5,0.5)

while ε2 corresponds to displacement along the x-axis with initial position (0.5,0.7). The setup

consists of 1 turbine with angular orientation 30o. The inflow profile is chosen as 5sinπy and the

inflow boundary and the general geometry of the domain is otherwise as defined in Section 6.2.

For the first Taylor test, with displacement along ε1, a linear regression is performed between

the log of the first order residual lnR(ε1) = ln‖J(z)− J(z0)+ ε1 · ∇J(z0)‖ and the log of the

displacement length ln‖ε1‖. The regression is shown in Fig. 9.2 where it can bee seen that the

expected convergence rate of r = 2 is reached by refining the mesh. The convergence rates are

summarised in the second column in Table 9.2.

Table 9.2: The table shows the estimated convergence rate, in the first order Taylor expansion, as
a function of number of cells in the total mesh. When the mesh is refined the expected convergence
rate of r = 2 is reached. The Taylor tests were performed in two different directions ε1 and ε2.
The convergence rates found in the two directions are denoted r1 and r2 respectively.

Cells r1 r2 〈h〉
129,600 2.44 1.25 0.006
176,400 2.16 1.6 0.005
230,400 1.99 1.8 0.004

To visualise how the convergence rate depends on the displacement ε1, the convergence rate

r(ε1)= (
lnR(ε1)− lnC

)
/ ln‖ε1‖ is plotted against the displacement ε1. The result is shown in Fig.

9.3. Here the constant C is obtained from the linear regression that was discussed above. It is

interesting to note that for very small displacements the convergence rate diverges from the

expected value. The author state that this behaviour is due to the discrete inconsistency of the

shape derivative on Hadamard form, as discussed previously. Another explanation can be that

the step length of 0.005 is close to the average cell size 〈h〉 of the two coarser meshes, see the last

column in Table 9.2. This could introduce a numerical error for the smallest displacements.
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Figure 9.2: To obtain an estimate for the
convergence rate from the first order Taylor
test a linear regression is made between
the logarithm of the first order Residual
lnR(ε1)= ln‖J(z)− J(z0)+ε1 ·∇J(z0)‖ and
the logarithm of the displacement ln‖ε1‖.
The procedure is performed for increasing
mesh refinement.

Figure 9.3: The convergence rate r in a
first order Taylor expansion of the objective,
J(z)= J(z0)+ε1 ·∇J(z0)+C‖ε1‖r, is inves-
tigated. Here z0 corresponds to the point
where the gradient is evaluated. The dis-
placement from this point is then given by
ε1 = z−z0 and measured in units of average
mesh size h. The gradient ∇J is calculated
according to Eq. (8.7).

Figure 9.4: An estimate of the convergence
rate is obtained in the same way as in Fig.
9.2 but for a different displacement direc-
tion ε2.

Figure 9.5: A Taylor test similar to that de-
scribed in Fig. 9.3 is performed in a differ-
ent displacement direction ε2. The displace-
ment direction is measured in units of aver-
age mesh size h.
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9.1. VERIFICATION OF THE SHAPE DERIVATIVE

A similar Taylor test was performed in a different direction ε2 and the results are presented

in Fig. 9.4 and Fig. 9.5. The convergence rates from this test are summarised in the third column

in Table 9.2. Also here the expected convergence rate of r = 2 is reached when refining the mesh.

Shape derivative at extrema when refining the mesh: To check the precision in sign

change for the calculated gradient, the local maximas in two different test setups were considered.

Both test setups used 1 turbine with angular orientation 90o along with the geometrical setup

defined in Section 6.2. The only difference between the setups was the inflow profiles.

Table 9.3: Table showing how the gradient evaluated at the maxima y∗ is improving when refining
the mesh. The correct gradient should be 0 at the extrema point. The gradient is measured as the
decrease in J per units of average mesh size h. The third column gives the gradient relative to
the objective function J. The value of J is given in the fourth column. The scan was performed in
the y direction with a step length of α. This step length is given relative to the average mesh size
in the fifth column.

Num. Cells bg. (∇J)(y∗) (∇J/J)(y∗) (J)(y∗) α/h h
129,600 -7.2e-3 h−1 -2.3e-5 h−1 306.2 0.91 0.0055
160,000 1.1e-2 h−1 3.9e-5 h−1 306.2 1.0 0.005
211,600 1.5e-2 h−1 4.8e-5 h−1 306.2 1.16 0.0043
230.400 -2.3e-4 h−1 -7.5e-7 h−1 306.2 1.19 0.0042
250,000 -4.5e-5 h−1 -1.4e-7 h−1 306.2 1.25 0.004

For the first setup, the symmetric inflow profile 5sinπy from Eq. (6.5) was used. In addition,

the mesh was made symmetric over the computational domain. A local maxima was then located

at y∗ = 0.5 by sampling roughly one time for every cell for the scan along the y-direction. The

setup is illustrated in Fig. 9.7, where the initial position and scan direction is indicated. By

keeping the x-coordinate fixed and scanning J(y− y∗) and ∇J(y− y∗) over roughly y= y∗±16 cells,

the drag function and corresponding gradient values were mapped out. To see how the gradient

depends on refining the mesh a series of meshes, with mesh sizes ranging from 129,600−250,000

cells, were considered. The results are presented in Table 9.3. It is clear that there is a gain in

precision from refining the mesh. The step length in these scans were α = 0.005 and the step

length relative to the cell sizes α/h are summarised in the second to last column in Table 9.3.

For the system with 230,400 cells the drag profile is shown in Fig. 9.6. In the figure the

horizontal axis corresponds to displacement from maxima y∗ in units of average cell size h. The

gradient is illustrated by the five near-tangential lines on the graph of J. Ideally these lines

should be tangential to the graph but for the two lines further away from y∗ = 0 one can visually

see a small offset. At the maxima y∗ the gradient is expected to be 0, but from the sampling it is

found to be ∇J(y∗)=−4.5e-5 h−1 which is slightly off. This value must be seen in relation to the

function value. The normalised gradient is ∇J(y∗)/J(y∗)=−1.4e-7 h−1, which is acceptably close

to zero. For coarser meshes, < 160,000 cells, the gradient was observed to be more unpredictable.
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Figure 9.6: Figure illustrating the gradient
sampled at different points along the objec-
tive function J. The gradient evaluated at
a point y gives the decrease in J per unit
cell displaced from this point. The displace-
ment y− y∗ from the maxima is measured
in average mesh size h. Of particular inter-
est is the gradient at the maxima y∗, which
corresponds to the point y− y∗ = 0 on the
horizontal axis. Ideally the gradient should
be zero at this point.
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Figure 9.7: Figure illustrating how the tur-
bine is moved along the y-axis to map out
the maxima at y∗ in the objective function
J.

It still performed well around the maxima, but in some cases could be up to 30o off from tangential

to the graph of J.

An error source in these types of tests is the finite step length α= 0.005. If the exact maximum

is missed due to the resolution of the scans then it could lead to a gradient with an offset from

zero at the assumed maxima. The motivation for choosing a symmetric setup can now readily be

seen. With a symmetric geometry of the domain and background mesh along with a symmetric

inflow profile 5sinπy, the maxima can be expected to be located at y∗ = 0.5. This corresponds

to the middle of the domain along the vertical axis. This edge is indicated on Fig. 9.7 by the

dotted black line. This must be so, since if the maxima is to either side of the middle, then it will

interfere with the symmetry of the setup. With this arrangement it was therefore made certain

that the point y= 0.5 was sampled and this should reduce the error related to the finite step sizes.

It must be pointed out that since the turbine mesh was not exactly symmetrical then the exact

maxima could still be slightly off from y= 0.5.

To test the performance for a wider set of situations, a similar experiment was conducted for a

stronger and more unison inflow profile. In addition, a different scan direction with displacement
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Table 9.4: Table showing how the gradient evaluated at the maxima x∗ is improving when refining
the mesh. The correct gradient should be 0 at the extrema point. The gradient is measured as the
decrease in J per units of average mesh size h. The third column gives the gradient relative to
the objective function J. The value of J is given in the fourth column. The scan was performed
along the x-axis with a step length of α. This step length is given relative to the average mesh
size in the fifth column.

Num. Cells bg. (∇J)(x∗) (∇J/J)(x∗) (J)(x∗) α/h h
129,600 -0.22 h−1 -4.3e-5 h−1 5,107 0.91 0.0055
160,000 -0.28 h−1 -5.4e-5 h−1 5,152 1.0 0.005
211,600 -0.13 h−1 -2.4e-5 h−1 5,213 1.16 0.0043
230.400 -0.02 h−1 -3.8e-6 h−1 5,231 1.19 0.0042
250,000 +0.07 h−1 +1.3e-5 h−1 5,248 1.25 0.004

Figure 9.8: Figure illustrating the gradient
sampled at different points along the objec-
tive function J. The gradient evaluated at
point a x gives the decrease in J per unit
cell displaced from this point. The displace-
ment x− x∗ from the maxima is measured
in average mesh size h. Of particular inter-
est is the gradient at the maxima x∗, which
corresponds to the point x− x∗ = 0 on the
horizontal axis. Ideally the gradient should
be zero at this point.

1.7e+1

0.0

y-
ax

is

x-axis

M
ag

n
it
u
d
e 

fl
u
id

 v
el

oc
it
y

x*

Figure 9.9: Figure illustrating how the tur-
bine is moved along the x-axis to map out
the maxima at x∗ in the objective function
J.
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along the x-axis instead of the y-axis was used. With this setup a maxima along the x-axis

was mapped out around (x∗, y∗)= (0.63, 0.5) by sampling roughly one time for every cell when

scanning along the x-direction. The step length α relative to the mesh size h is given in the fifth

column in Table 9.4. The situation is illustrated in Fig. 9.9 and the result from the scan with

230,400 cells in the background is shown in Fig. 9.8. The behaviour of the gradient is similar

to that found in Fig. 9.6 for the y-scan, but with slightly larger offsets from 0 at the extrema

point x∗. This scan did not benefit from symmetry properties like the scan along the y-axis. It

is therefore possible that the larger offset are due to the finite step length α which could have

prevented the exact maxima to be sampled. In general, the sampled gradients are also here not

exactly tangential, as seen from Fig. 9.8, but they have the right sign and the precision in the

sign change is also here, acceptable. The mesh dependence of ∇J, for the scan along the x-axis is

presented in Table 9.4. Also here it is clear that the precision of the gradient is improving when

refining the mesh.

9.2 Performance of the multimesh shape optimisation scheme

This section will begin by evaluating the time consumption related to geometry changes when

using the multimesh scheme. This analysis is presented in Section 9.2.1. The next section,

Section 9.2.2, will then look at the time consumption related to gradient evaluations. Section

9.2.3 then concludes the discussion by considering a benchmark consisting of tidal turbines in

Stokes flow. With this benchmark the goal is to test the performance of the combined multimesh

shape-optimisation scheme with a realistic optimisation problem.

9.2.1 Performance of the multimesh formulation in terms of mesh update

Along with the implementation and convergence tests performed in Chapter 7, this section

will cover the numerical analysis aspects of Objective 1. As previously mentioned, one of main

motivations for the multimesh formulation is to reduce the computational cost related to re-

meshing changing geometries. The multimesh formalism achieves this by reducing the size of

the domain that needs to be re-meshed. Previous work [10] has compared the performance of the

multimesh FEM formulation against the traditional FEM method, where a physical system of 3

multi-cables was optimised. The intention here has been to compare mesh-update/mesh-build

times to assembly/solve times and to compare the model developed here with the results presented

in [10]. Since the state equation used here is different from that in [10], it is not expected to see

the same performance for operations involving the linear system. However, the mesh update and

mesh build are only related to the multimesh formulation and these operations can therefore be

compared.

Five numerical experiments have been performed for 2, 4, 6, 8 and 10 turbines, where the

average times of relevant operations were timed. The system configuration from Section 6.2.3
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Table 9.5: Table summarising the computational times related to domain deformation in the
multimesh scheme. The time was measured for an increasing number of turbines. The "mesh
update" and "mesh build" times are specific for the multimesh formulation. "Mesh update"
corresponds to the time to move the mesh coordinates of the perturbed sub-mesh to their new
position at iteration k + 1. "Mesh build" measures the time to calculate the cut, uncut and
covered cells and prepare the multimesh for integration. The assembly time measures the time
to assemble the linear system and the time to solve this system is given by the "Solve time". The
average time of an optimisation iteration is given in the last column.

# Turbines Cells Assembly Solve Mesh build Mesh update Opt. iter.
2 20,156 2,933 ms 1,322 ms 47 ms 0.76 ms 8,933 ms
4 21,264 5,310 ms 1,341 ms 85 ms 1.51 ms 13,460 ms
6 22,380 7,702 ms 1,430 ms 128 ms 2.26 ms 20,845 ms
8 23,492 11,319 ms 1,510 ms 183 ms 3.06 ms 28,782 ms

10 24,602 12,892 ms 1,626 ms 216 ms 3.73 ms 36,897 ms

Figure 9.10: Comparison of the average time consumption of different operations related to a
changing geometry. An explanation to the operations was given in Table 9.5.

was used in all runs with the symmetric inflow profile 5sinπy from Eq. (6.5) and the angular

orientation θ j = 30 for all turbines. Similar to [10] the linear systems were solved using direct

LU decomposition. The timing results are presented in Table 9.5. An explanation to the different

operations listed in the table is in order. The "Assembly time" corresponds to the time to assemble

the linear system and the time to solve this system is denoted "Solve time". The "Mesh build"

corresponds to the time it takes to calculate the cut, uncut and covered cells and prepare the
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multimesh for integration, see [24] for a more comprehensive discussion on this. In essence this

means the time to "glue" the background mesh to the sub-meshes. The "Mesh update" is simply

the time to move the mesh coordinates of the perturbed sub-meshes to their new position at

iteration k+1. The combined time of these two operations corresponds to the re-mesh time of

traditional FEM. The average time of an optimisation iteration is shown in the last column in

Table 9.5. It should be noted that the number of cells, listed in the second column, are slightly

increasing with the number of turbines since the mesh density in the turbines is slightly higher

than for the background.

From Table 9.5 it can be seen that the mesh build and mesh update times are significantly

lower than the assembly and solve times. This demonstrates the potential of the multimesh

method, as the operations related to re-meshing are among the most computationally demanding

in traditional FEM schemes. In [10] a system of 3 sub-meshes and 22,775 cells were used and

the average times found for mesh update and mesh build were 0.94 ms and 222 ms respectively.

These times are very close to those found in this thesis. In [10] it was shown that the combined

time for mesh update and mesh build was ∼ 46 times faster than for the corresponding re-mesh

operations in traditional FEM. A confirmation of these low times in this thesis therefore gives

further evidence for the proficiency of the multimesh FEM method, in terms of cost saving with

regards to re-meshing.

It is of interest to see how the times for the different operations, depends on the complexity

of the mesh. In this regard the number of turbines M, that are moved in each iteration, will

correspond to the mesh complexity. A linear dependence is found for all operations as shown

in Fig. 9.10. The slopes for mesh build and mesh update are significantly lower than that of

assembly with respectively a = 0.4 ms/M and a = 21 ms/M versus a = 1296 ms/M. It follows

that both mesh build and mesh update becomes more and more negligible as the complexity of

the mesh is increased, which confirms the proficiency of the multimesh method in terms of cost

savings related to re-meshing. On the other hand, for the multimesh scheme, several stabilisation

terms were introduced to ensure the "gluing" of the upper sub-meshes to the background domain,

see Section 3.4.2. When the number of sub-meshes increases, these interface terms will make

the size of the linear system increase faster than for traditional FEM and thereby increase the

assembly and solve times. For future work, a comparison to traditional FEM could therefore be

conducted with focus on this particular issue.

9.2.2 Time consumption of gradient evaluations

For the Stokes-drag problem from Definition 1.2, the Hadamard formulation takes a particularly

favorable form when using the adjoint approach in the derivation. As commented in Remark 5.5

this is due to the self adjoint nature of the Stokes-drag problem, which makes the expression

from Proposition 5.2 independent of the adjoint variables. Due to this property it is not necessary

to solve the adjoint system for each gradient evaluation. The time consumption related to solving
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the adjoint equation is comparable to the assembly/solve times for the forward equation. The

independence from the adjoint variables therefore offers a large computational saving compared to

systems that are not self adjoint. What is more, the current gradient representation is extremely

fast compared to for instance a finite difference approach where it is necessary to assemble and

solve the linear system N +1 times for a system parameterised by N design parameters. The

gradient evaluations using the expression derived in Proposition 5.2 are therefore expected to be

very computationally cheap compared to alternative approaches that does not utilise the adjoint

approach.

To investigate the time consumption related to gradient evaluations, two test setups with

2 and 10 turbines were considered. For the tests, the domain setup was chosen as described in

Section 6.2 with the inflow profile 5sinπy. The results are presented in the left graph in Fig. 9.11

and for comparison the combined assembly/solve times are presented in the right graph in the

figure. The assembly/solve operations were defined in Section 9.2.1.

Figure 9.11: In the left graph the average time consumption of gradient evaluations is plotted
against the numbers of cells in the turbine mesh. For comparison the average time required to
assemble and solve the linear system is plotted in the right graph. The regression curves are
shown with black dotted lines.

It is evident from Fig. 9.11 that the time spent on gradient evaluations becomes negligible

when the mesh is refined. For the system with 10 turbines, the combined assembly/solve time

is found to increase ∼ 58 times faster when refining the mesh than the time spent on gradient

evaluations. Based on these findings it is clear that the Hadamard formulation offers very time

efficient gradient evaluations when doing shape optimisation involving the Stokes-drag problem.

It must be noted that this result is limited to this particular case, where the final expression is

independent of the adjoint variables. For systems that are not self adjoint, this must be expected

to not hold true.
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9.2.3 Benchmark for the combined multimesh optimisation scheme

The performance of the merged optimisation and multimesh scheme has been tested by optimising

the positions of 2,4,6,8,10,12,14 turbines in Stokes flow. The setup for this test is chosen as

described in Section 6.2.3 with the inflow profile y2 sinπy from Eq. (6.5). Note that the allowed

region for the turbines is restricted according to Eq. (6.3), in order to prevent out of domain

movement. The restriction also helps to create a more realistic model with a tidal turbine farm in

a much larger ocean. The domain restriction on the center positions of the turbines is illustrated

by the white dotted square in Fig. 9.14. In the experiment, each turbine had 75,000 cells. For

the background domain a setup with 230,400 cells and an average mesh size of h = 0.0041 was

chosen. The stopping criterion for termination was that the relative change in functional value

should be less than 5e-4 over 10 consecutive optimisation iterations as stated in Eq 9.1,

(9.1)
‖Jk − Jk− j‖

‖Jk‖
< 5e-4 for j = 1, . . . ,10,

where k is the iteration number. In order to maximise the drag functional J in a minimisation

scheme the negative (−J) of the functional was considered.

Table 9.6: Table summarising the results from the optimisation runs for systems of 2−14 turbines.
The second column shows the initial functional value. The final value, reached after termination
of the optimisation algorithm, is shown in the third column. The number of function evaluations
is shown in the fourth column. In the fifth column the number of optimisation iterations is
presented, while the last column summarises the time spent before termination, measured in
hours.

# Turbines (−J) initial (−J) final Num. func eval. Num. iter. Time
2 -20.5 -134.6 38 23 0.5 hour
4 -24.1 -231.1 75 53 1.31 hour
6 -41.6 -318.4 70 44 1.57 hour
8 -56.3 -384.4 133 66 3.56 hour

10 -146.3 -454.3 47 34 1.42 hour
12 -146.8 -532.4 133 49 4.69 hour
14 -190.5 -582.4 37 35 1.52 hour

Progression plots: The progression plots for the 7 turbine systems are shown in Fig. 9.12

where (−J) is plotted against the number of optimisation iterations. The results are summarised

in Table 9.6. where also the number of function evaluations and total optimisation-time are

presented. The larger amount of function evaluations compared to the optimisation iterations are

due to the linesearch algorithm, which relies on several backtracking steps before an acceptable

step length is chosen. From Fig. 9.12 it is apparent that the optimisation algorithm makes fast

progress in the first 20−30 iterations before flatting out. In fact, forcing the algorithm to stop

after only 20 iterations gave very similar results for the final geometry. This behaviour was
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the motivation for the stopping criteria in Eq. (9.1). The algorithm successfully terminated by

the standard tolerances, see [8], for systems up to 6 turbines. After this it was found that the

algorithm had problems to terminate reliably and rather made incremental updates of the turbine

positions without much gain. It is possible that this behaviour is due to an incorrect gradient

close to the optimum. With an inaccurate gradient the algorithm may have problems finding an

acceptable step length and therefore several backtracking steps are needed. The stopping criteria

was therefore necessary for the larger turbine systems and was used also for the smaller systems

for consistency.

Figure 9.12: Figure showing progression plots for the optimisation of the drag functional (−J),
for systems of 2−14 turbines. The decrease in the objective function is measured against the
number of optimisation iterations Ni. The objective function is sampled at the beginning of a
new iteration.

Optimal configuration of the tidal turbine systems: The final geometries for the turbine

systems of 8,10 and 14 turbines are shown in Fig. 9.14, 9.16 and 9.18 respectively. For comparison

the initial configurations are shown in Fig. 9.13, 9.15 and 9.17. It is interesting to observe the

barrier-zone structure that is building up as the number of turbines increase. The system of

10 turbines in Fig. 9.16 shows an upstream barrier aligned with the inflow profile and a wall

of turbines at the outflow region. Between the two barriers an open blue region for free flow is

present. The same barrier-zone structure was observed in [25] where a "turbine density field"

was used to optimise the positions. Similar results were also reported in a related paper [15],
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Figure 9.13: Figure showing the initial con-
figuration of a system of 8 turbines. The
dark-blue uniform ellipses with a white dot
in the middle, corresponds to the turbines.
The inflow region is the left side of the figure
and the outflow region is the right side. The
inflow profile that is used is the y2 sinπy
function from Eq. (6.5). The upper and lower
edges of the figure are wall boundaries with
a zero velocity conditions.
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Figure 9.14: Final configuration of the tur-
bine system with 8 turbines. See also Fig.
9.13 for the initial configuration. The tur-
bines have arranged around the inflow re-
gion on the left side. It is evident that the
turbines orient towards the inflow profile
which is y2 sinπy as defined in Eq. (6.5).
The white dotted square illustrates the re-
stricted area for the turbines.

Figure 9.15: Figure showing the initial con-
figuration of a system of 10 turbines. The
dark-blue uniform ellipses with a white dot
in the middle, corresponds to the turbines.
The inflow region is the left side of the figure
and the outflow region is the right side. The
inflow profile that is used is the y2 sinπy
function from Eq. (6.5). The upper and lower
edges of the figure are wall boundaries with
a zero velocity condition.
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Figure 9.16: Final configuration of the tur-
bine system with 10 turbines. See also Fig.
9.15 for the initial configuration. The tur-
bines have arranged around the inflow re-
gion on the left side and with a barrier down
stream on the right side to block the remain-
ing flow.
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Figure 9.17: Figure showing the initial con-
figuration of a system of 14 turbines. The
dark-blue uniform ellipses with a white dot
in the middle, corresponds to the turbines.
The inflow region is on the left side of the
figure and the outflow region is at the right
side. The inflow profile that is used is the
y2 sinπy function from Eq. (6.5). The upper
and lower edges of the figure are wall bound-
aries with a zero velocity condition.
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Figure 9.18: Final configuration of the tur-
bine system with 14 turbines. See also Fig.
9.17 for the initial configuration. The tur-
bines have also here oriented towards the
inflow region on the left side. A separate
downstream barrier, like that observed for
10 turbines, is not observed.

which relied on gradient-based optimisation and the adjoint approach. The system of 12 turbines

demonstrated a similar structure as that for 10 turbines with one turbine added to each of

the two barriers. For the system of 14 turbines, in Fig. 9.18, the upstream and downstream

barriers combine to one since the available space starts to become limited. For ≤ 8 turbines the

downstream barrier was not present, as shown in Fig. 9.14 for 8 turbines. It is believed that

this is because the inflow barrier was still building up and that this barrier is prioritised before

the downstream barrier at the outflow. These observations shows that the optimisation scheme

employed here, successfully reproduce results from the literature which gives testimony to the

proficiency of the combined shape optimisation multimesh scheme.

Dependence on design parameters: A goal when designing optimisation algorithms is

to obtain independence from the number of design parameters with regards to the number

of optimisation iterations needed to solve for an optimal configuration. In this context it is

interesting to compare the number of iterations for each of the 7 turbine systems listed in Table

9.6. In Fig. 9.19 the number of iterations and function evaluations are plotted as a function of the

number of turbines in the system. There is no clear indication of an increase in iterations with

increasing number of parameters. In fact, the trend seem to be that the number of iterations

and function evaluations are fluctuating around some mean. The medians when comparing the

7 series in Table 9.6 are 44 iterations for the optimisation iterations and 70 iterations for the
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function evaluations. The two notable exceptions from this behaviour are the systems of 8 and 12

turbines which required significantly more function evaluations to terminate.

Figure 9.19: Figure showing how the performance of the optimisation algorithm depends on the
number of design parameters. The green line with star markers shows the number of optimisation
iterations and the purple line with square markers shows the number of function evaluations.

The most probable cause for this behaviour is an inaccurate gradient which, as mentioned

earlier, could result in more backtracking steps. One reason that this effect is particularly promi-

nent for the systems of 8 and 12 turbines, can be that an inaccurate gradient is combined with an

unfortunate optimal configuration close to violating some domain or intersection constraints.

Based on these observations, it seems that the performance of the algorithm is fairly indepen-

dent of the number of design parameters. At the same time the termination criteria is found to

be rather sensitive to other effects, such as inaccuracies in the gradient evaluations.
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CONCLUSION AND OUTLINE FOR

FUTURE WORK

This chapter will give a summary of the work conducted in this thesis and highlight the

main results. The chapter concludes by pointing out yet unanswered questions and by

giving a formal outline for future work.

10.1 Summary and conclusion

The central concern of this work has been to investigate the proficiency of the multimesh scheme

and the Hadamard form, for use in shape optimisation. In this context the Hadamard form of

the shape derivative has been derived in a multimesh setting. To test the resulting analytical

expression of the shape derivative in combination with the multimesh formalism, a numerical

model with layout optimisation of tidal turbines has been employed.

The Hadamard formulation of the shape derivative has been derived for the drag functional

subject to the multi-domain Stokes problem from Definition 3.9. The derivation relied on estab-

lished methodology utilising the "continuous approach", with corollaries from the Hadamard

Theorem [46], along with the adjoint method [20]. The novelty in the derivation performed here,

has been the derivation of the Hadamard representation of the shape derivative when also taking

into account the interface conditions from the multi-domain partitioning. The strong form of the

interface conditions has been used. The final expression from this treatment, Proposition 5.2, was

found to be equivalent to that of a single-domain analysis. This result shows that by enforcing the

the strong interface conditions from Definition 3.9, then the introduction of an interface between

the independent meshes does not affect the physical situation, or at least not the physics that
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are contained in the drag functional. This observation gives evidence that the interface is purely

artificial. The conclusion that can be drawn from this is therefore that the multi-domain Stokes

problem from Definition 3.9 is up to this point consistent with the physics it aims to describe.

Using a tidal turbine layout problem as a test scenario, the correctness of the shape derivative

derived in Proposition 5.2 has been tested. Taylor tests in multiple directions have been conducted

and shown to give the expected convergence rate when the mesh is sufficiently refined. The

gradient has been found to have an offset from the tangential direction and refining the mesh

was shown to give improvements but not completely remove the offset. More importantly, the

gradient has been shown to be close to the expected value of 0 at extrema points, with values

around 10−5 −10−7h−1 relative to the objective function for mesh sizes h ≤ 0.0042. The precision

was found to be improved by refining the mesh. These findings, along with the results presented

in the previous paragraph, answer the second objective made in the introduction.

In the simulation part of the work, the multimesh finite element method has been used to

solve the Stokes problem in a multimesh setting. The implementation was based on the multimesh

variational form presented in [22]. Using a benchmark model, with a known analytical solution,

the implementation has been shown to give optimal convergence. The performance of the method

was demonstrated in terms of translation of turbines in a tidal turbine farm. The average time

consumption of several operations related to the mesh update were sampled. These operations

can be divided into two categories, mesh update due to the changing geometry and solving the

linear system. This work has shown that in the multimesh scheme, when the number of turbines

M is increased, the operations related to mesh update becomes negligible compared to the time

required to assemble and solve the linear system. With ∼ 22,000 cells in the mesh, the linear

increase was found to be 21.4 ms/M for the mesh related operations. At the same time the linear

increase for assembly and solve was 1334 ms/M. The average times of the mesh related operations

were found to be in the same order of magnitude as those found in a related survey [10]. These

findings correspond to the first objective of this work, as stated in the introduction.

To conclude the analysis, several optimisation runs were conducted with turbine systems

consisting of 2−14 turbines. The optimisation problem was to maximise the energy dissipation into

heat with respect to the relative positions of the turbines in Stokes flow. The final configurations

were compared to related work [15, 25] and was found to show similar behavior. In particular,

the turbines were found to arrange in barrier-zones at the inflow and outflow regions. The inflow

barrier was found to orient towards the region with the strongest inflow, while the outflow barrier

served the purpose of blocking as much as possible of the remaining flow. The barrier zones were

therefore reasonable from a physical point of view.

With basis in the results presented above, it is clear that the discrete inconsistency of

the Hadamard formulation and the error introduced by assuming strongly enforced interface

conditions, gives a limited impact on the performance of the gradient. Therefore, the combination

of the multimesh scheme and the Hadamard representation of the shape derivative offers a
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reliable framework for shape optimisation. As such, the cost efficiency demonstrated for the

multimesh scheme and for the Hadamard formulation in general, makes the combined framework

attractive when solving problems where only a subset of the computational domain require re-

meshing. These results answers the third and final objective stated in the introduction.

10.2 Outline for future work

The combination of shape optimisation with the multimesh finite element method, is a relatively

new idea which has shown promising results. Future work should aim to investigate this combined

scheme further. In the following is a brief summary of several interesting aspects that could be

studied;

• Apply the developed multimesh shape optimisation scheme to relevant applications like

those listed in Section 1.3.1.

• Develop and implement a multimesh variational form of the adjoint equations from Lemma

5.6.

• Develop a multimesh formulation of the Navier-Stokes equations.

• Derive the Hadamard formulation of the shape derivative for the drag functional con-

strained by the Navier-Stokes equations.

• As mentioned in Remark 5.4, several correction terms where eliminated from the final

expression of the shape derivative in Proposition 5.2 by the assumption of strong interface

conditions. Since the interface conditions are only weakly enforced in the actual variational

form, future work should investigate if the inclusion of these terms will help remedy the

termination problems mentioned in Section 9.2.3.
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NOTATION AND DERIVATION OF

NECESSARY VECTOR IDENTITIES

A.1 Notation

Some linear algebra notation will be used and it is therefore necessary to define the conventions

used. In particular this will be necessary for the derivations in appendix A.2. For this thesis,

all vectors v ∈ R2 will be represented as a column vector and the transpose of a vector will be

represented as a row vector. Namely,

(A.1) v=
[

v1

v2

]
vT =

[
v1 v2

]
For the inner product of two vectors u,v ∈R2 the following conventions will be used,

(A.2) v ·u = vT u = (v,u)

Similarly, the outer product is defined as,

(A.3) vuT

A.1.1 Differential operators

For the gradient ∇ and Jacobian D one have,

∇=
[
∂1

∂2

]
, ∇vT =

[
∂1

∂2

][
v1 v2

]
(A.4)
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and

Dv= (∇vT )T(A.5)

The transpose notation on the vector v in ∇vT will be dropped to simplify the notation. The

Hessian is the jacobian of the gradient and will be denoted D2 f where,

(A.6) D2v= D∇v=∇T∇v

For a vector function v :R2 −→R2 the Hessian will be a third rank tensor and can be seen as a

vector of two elements, where the elements are Hessians of the elements of v namely,

(A.7) D2v=
[
D2v1 D2v2

]
.

A.1.2 Index notation

When natural, index notation will be used. In this context, summation over repeated indices will

be implied if a summation sign is not present. This means,

(A.8)
2∑

i=1
viui = viui

In index notation the gradient will be represented as

(A.9) ∇v=
n∑

i, j=1

∂ui

∂x j

A.2 Vector identities and necessary definitions

A.2.1 Definitions

All Definitions stated in this section are adapted from [41].

Definition A.1. Two dimensional vector function: Let Ω ⊂ R2 be a sub-domain in two

dimensions. A two dimensional vector function is a mapping such that u :Ω−→R2. For this work

it will be assumed that the vector functions are all differentiable.

Definition A.2. Normal derivative: Let Ω ⊂ R2 and let u : Ω −→ R2 be a two dimensional

vector function defined over the domain Ω. Let n : Γ−→ R2 be the unit normal of this domain,

where Γ is the boundary. Under the assumption that u is defined in a neighbourhood of Ω such

that the normal derivative exists, the normal derivative of u can be expressed as,

∂u
∂n

= Du ·n= Dnu.
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where D is the Jacobian matrix from Eq. (A.5).

Definition A.3. Tangential derivative: Let Ω⊂R2 and let u :Ω−→R2 be a two dimensional

vector function defined over the domain Ω. Let τ :Γ−→R2 be the unit tangent of the boundary Γ.

The tangential derivative of u can then be defined as,

∂u
∂τ

= Du ·τ= Dτu.

Definition A.4. Gradient expanded in an orthonormal basis: Let Ω⊂ R2 be a domain in

two dimensions with boundary Γ. Let the set {n,τ} form an orthonormal basis in R2. The gradient

∇u of a vector function u :Ω−→R2 can then be expressed in the basis as,

∇u = ∂u
∂n

nT + ∂u
∂τ

τT

Here ∂u
∂n and ∂u

∂τ
are the normal and tangential derivatives as defined in definition A.2 and A.3.

Definition A.5. Tangential divergence: Let Ω ⊂ R2 be the domain over which the vector

function u :Ω−→R2 is defined. The tangential divergence of u can then be defined as,

divΓ(u)= div(u)−nT (Du)n=∇·u−n · ∂u
∂n

.

A.2.2 Identities

It is also necessary to derive the following vector identities,

Identity A.1. For a vector a and a second order tensor B. The following identity holds,

(A.10) ∇(aTBT )= (Da)TBT +aT (DB)T

Proof:

∇(Ba)T =∇(aTBT )=
[
∂1

∂2

]([
B11 B12

B21 B22

][
a1

a2

])T

=
[
∂1

∂2

][
B11a1 +B12a2 B21a1 +B22a2

]
=

[
∂1

∂2

]([
B11a1 B21a1

]
+

[
B12a2 B22a2

])

=
([
∂1a1

∂2a1

][
B11 B21

]
+a1

[
∂1

∂2

][
B11 B21

])
+

([
∂1a2

∂2a2

][
B12 B22

]
+a2

[
∂1

∂2

][
B12 B22

])

=
[
∂1a1 ∂1a2

∂2a1 ∂2a2

][
B11 B21

B12 B22

]
+

[
a1 a2

][[
∂1B11 ∂1B21

∂2B11 ∂2B21

] [
∂1B12 ∂1B22

∂2B12 ∂2B22

]]T

=∇aTBT +aT∇BT = (Da)TBT +aT (DB)T .
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Identity A.2. For a vector a and a second order tensor B. The following identity holds,

D(aTBT )= BDa+DB ·a

Proof: Follows from A.1 and D(aTBT )= (∇(aTBT )
)T

Identity A.3. For two vectors a and b the following identity holds,

div
(
aT Db

)=∇a :∇b+div(∇b) ·a

Here the double-dot-product : is taken to mean summation over all indices such that A : B = A i jBi j,

for second order tensors A and B.

Proof:

div(aT Db)= div
([

a1

a2

][
∂1b1 ∂2b1

∂1b2 ∂2b2

])
= div

([
a1∂1b1 +a2∂1b2 a1∂2b1 +a2∂2b2

])
= ∂1

(
a1∂1b1 +a2∂1b2

)
+∂2

(
a1∂2b2 +a2∂2b2

)
= (∂1a1)(∂1b1)+a1∂

2
1b1 + (∂1a2)(∂1b2)+a2∂

2
1b2 + (∂2a1)(∂2b1)+a1∂

2
2b1 + (∂2a2)(∂2b2)+a2∂

2
2b2

= (∂ib j)(∂ib j)+ai∂
2
j bi =∇a :∇b+div(∇b)

Identity A.4. For two vectors a and b the following relation holds,

∇(a ·b)=∇a ·b+∇b ·a

Proof:
∇(a ·b)= ∂k(aibi)= (∂kai)bi + (∂kbi)ai =∇a ·b+∇b ·a

Identity A.5. For two vectors a and b the following relation holds,

nT∇a(∇b)T n= nT∇b(∇a)T n

Proof:

nT∇a(∇b)T n=
[
n1 n2

][
∂1a1 ∂1a2

∂2a1 ∂2a2

][
∂1b1 ∂2b1

∂1b2 ∂2b2

][
n1

n2

]

=
[
n1∂1a1 +n2∂2a1 n1∂1a2 +n2∂2a2

]
︸ ︷︷ ︸

xT

[
n1∂1b1 +n2∂2b1

n1∂1b2 +n2∂2b2

]
︸ ︷︷ ︸

y

Similarly,

nT∇b(∇a)T n=
[
n1∂1b1 +n2∂2b1 n1∂1b2 +n2∂2b2

]
︸ ︷︷ ︸

yT

[
n1∂1a1 +n2∂2a1

n1∂1a2 +n2∂2a2

]
︸ ︷︷ ︸

x

The dot product forms an inner product on the euclidean space and is therefore commutative,

xT y= yT x, it therefore follows that the above relation holds.
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Identity A.6. Let a,b ∈R2 be 2 dimensional vectors. With the notation [[z]]= z− z0 and 〈〈z〉〉 =
(z+ z0)/2 the following identity holds,

[[ab]]= [[a]]〈〈b〉〉+〈〈b〉〉[[a]]

Proof: By expanding the expressions one gets,

[[b]]〈〈a〉〉+〈〈b〉〉[[a]]= 1
2

(
ab+a0b−b0a−b0a0 +ba+b0a−ba0 −b0a0

)
= ab−a0b0 = [[ab]]

Identity A.7. Let C ∈R2 be a two dimensional matrix generated by taking the outer product of

two vectors a ∈R2 and b ∈R2 such that C = abT . Let b be a unit vector such that ‖b‖ = b2
1+b2

2 = 1,

where bi are the components of b. The double dot product of C with itself then gives,

C : C = ba ·a= aT a

Proof: By the definition of the double dot product it follows that,

C : C = abT : abT =
2∑

i j=1
(ab)2

i j

= (b2
1 +b2

2)a2
1 + (b2

1 +b2
2)a2

2 = a2
1 +a2

2 = a ·a= aT a

Identity A.8. Let A ∈R2 be a two dimensional matrix generated by taking the outer product of

two vectors a ∈ R2 and b ∈ R2 such that A = abT . Likewise let C ∈ R2 be a matrix generated by

taking the outer product of the vectors c ∈R2 and d ∈R2 such that C = cdT . Furthermore, let the

set {b,d} be an orthonormal basis for R2 such that b ·d = b1d1 +b2d2 = 0, where bi,di for i = 1,2

are the components of the basis vectors. The double dot product of A with C then gives,

A : C = 0

Proof: By the definition of the double dot product it follows that,

A : C = abT : cdT =
2∑

i j=1
(ab)i j(cd)i j

= a1c1(b1d1 +b2d2)+a2c2(b1d1 +b2d2)= 0
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Lemma A.1. Let u,λn ∈ Ω ⊂ R2 be two vector functions. Let n be the surface normal on the

boundary Γ of Ω. The following relation then holds:[
∂

∂n

(
λn · [[Du

]])
n+divΓ

(
λn · [[Du

]])]=
[
∇λn :∇[[u]]+∇2[[u]] ·λn

]
Proof: To simplify the notation the definition Dud := [[

Du
]]

is introduced. The first part of

this expression can be written out using identity A.1. In this identity, since Dx = (∇xT)T it will be

natural to define (B)T = (∇uT )T = Du and similarly aT = (
λn)T . From now on transpose on λ will

be implicit if multiplied from the left of a matrix. The expression then becomes,

(A.11)
∂

∂n

(
λn ·Dud

)
= nT∇

(
λn ·Dud

)
n= nT(

Dλn)T(
Dud)

n+nTλn(
D∇ud)T n

Using the definition of divΓ from Eq. (A.5) along with identity A.2 in the appendix, also the second

term can be written out more explicitly. Again, let aT = (
λn)T and BT = Du the resulting equation

is,

divΓ
(
λn ·Dud)= div

(
λn ·Dud)−nT D

(
λn ·Dud)

n

=∇λn :∇ud +div
(∇ud) ·λn −nT(∇ud)(

Dλn)
n−nT(

D∇ud)
λnn

(A.12)

In the last line, Identity A.3 is used to expand div
(
λn·Dud)

and the term involving nT D
(
λn·Dud)

n
is expanded using identity A.2. Setting all this together by combining equation (A.11) and (A.12)

gives,

∂

∂n

(
λn ·Dud

)
+divΓ

(
λn ·Dud)= nT(

Dλn)T(
Dud)

n+nTλn(
D∇ud)T n

+∇λn :∇ud +div
(∇ud) ·λn −nT(∇ud)(

Dλn)
n−nT(

D∇ud)
λnn.

It is now possible to make several simplifications. The terms involving nT(
Dλn)T(

Dud)
n and

nT(∇ud)(
Dλn)

n cancel which follows from identity A.5. There are also two terms containing

(D∇ud) = D2ud. This expression corresponds to the Hessian of ud. Due to the symmetry of the

Hessian the two terms cancel and one is left with.[
∂

∂n

(
λn · [[Du

]])
n+divΓ

(
λn · [[Du

]])]=
[
∇λn :∇ud +div

(∇ud) ·λn
]

=
[
∇λn :∇[[u]]+∇2[[u]] ·λn

]
which concludes the proof. In the last step it is used that div∇=∇2 and ud is changed back to [[u]].

Remember that ud was only introduced for convenience to simplify the notation in the derivation.

Lemma A.2. Let u ∈Ω⊂R2 be a vector function. Let the surface normal n and the surface tangent

τ form an orthonormal basis in R2. The following relation then holds;

[[∇u :∇u]]= [[∂u
∂n

· ∂u
∂n

]]+ [[∂u
∂τ

· ∂u
∂τ

]]
.
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Proof: The first step is to rewrite the jump term to [[∇u :∇u]]=∇u+ :∇u+−∇u− :∇u−. With

the surface normal n and the surface tangent τ forming an orthonormal basis the gradient can be

expanded according to Definition A.4. This gives for the double dot products,

∇u :∇u =
(∂u
∂n

nT + ∂u
∂τ

τT
)

:
(∂u
∂n

nT + ∂u
∂τ

τT
)

= ∂u
∂n

nT :
∂u
∂n

nT +2
∂u
∂n

nT :
∂u
∂τ

τT + ∂u
∂τ

τT :
∂u
∂τ

τT

= ∂u
∂n

· ∂u
∂n

+ ∂u
∂τ

· ∂u
∂τ

In the last step, Identity A.8 with b = n, d = τ, a = ∂u
∂n and c = ∂u

∂τ
is used to remove the cross

terms. Similarly, Identity A.7 was used to reduce the double dot product of the remaining terms to

simple dot products. This result follows by setting a = ∂u
∂n , b = n in Identity A.7 and likewise for the

tangential derivative. The jump terms can therefore be written as [[∇u :∇u]]= [[
∂u
∂n · ∂u

∂n
]]+[[

∂u
∂τ

· ∂u
∂τ

]]
which concludes the proof.
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FUNCTIONAL ANALYSIS

The main purpose of this chapter is to define the functional analysis background that is necessary

for a discussion on the finite element method. In particular the definition of a Sobolov space is

presented. A more thorough discussion on Sobolov spaces can be found in [5]. It is here assumed

that basic concepts of functional analysis like vector spaces, inner products and norms are known.

A thorough definition of these concepts can be found in [26].

B.1 Function spaces

Definition B.1. Hilbert space: A Hilbert space is a complete inner product space with a norm

associated with the inner product. For more details see [26].

Definition B.2. L2 norm: For a vector valued function h(x) defined over a domain Ω⊂Rd such

that h :Ω−→Rn. The L2 norm is defined as,

(B.1) ‖h‖L2 =
√√√√∫
Ω

‖h‖2
Rn dx

where ‖·‖Rn is the standard Euclidean norm on Rn. Note that an inner product ‖h‖2
L2 can be

associated with the Lp norm.

Definition B.3. L2(Ω,Rn) space: For a vector valued function h(x) defined over a domainΩ⊂Rd

such that h :Ω−→Rn. The L2(Ω,Rn) space is defined as,

(B.2) L2(Ω,Rn)= {
h ∈Rn : ‖h‖L2 <∞}

.

Note that the L2(Ω,Rn) space is a Hilbert space, since the Lp norm forms an inner product.
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APPENDIX B. FUNCTIONAL ANALYSIS

B.1.1 Sobolov spaces

Sobolov spaces are generalisations of Lp spaces in the sense that the derivatives are added to the

standard Lp norm. For this work it is sufficient to consider the special case of p = 2 for which

the Sobolov space is a Hilbert space and will be denoted Hs. In this case the Hs norm and the

Sobolov space H s(Ω,Rn) are defined below.

Definition B.4. Sobolov norm ‖·‖Hs : For a vector valued function h(x) defined over a domain

Ω⊂Rd such that h :Ω−→Rn. The Hs norm is defined as,

‖h‖Hs =
√√√√∫
Ω

∑
k≤s

∥∥∥∥( ∂
∂x

)k
h

∥∥∥∥2

Rn

)

Definition B.5. Sobolov semi-norm ‖ ·‖Hs
0

: For a vector valued function h(x) defined over a

domain Ω⊂Rd such that h :Ω−→Rn. The Hs
0 norm is defined as,

‖h‖Hs
0
=

√√√√∫
Ω

∑
k=s

∥∥∥∥( ∂
∂x

)k
h

∥∥∥∥2

Rn

)

Definition B.6. Sobolov space H s(Ω,Rn): For a vector valued function h(x) defined over a

domain Ω⊂Rd such that h :Ω−→Rn. The Sobolov space H s(Ω,Rn) is defined as,

H s(Ω,Rn)= {
h ∈Rn : ‖h‖Hs ≤∞}

The relevant Sobolov space for this work is given bellow.

Definition B.7. Sobolov space H 1(Ω,Rn) : See def. B.6 and def. B.4 with s = 1.

Definition B.8. Sobolov space H 0(Ω,Rn) : See def. B.6 and def. B.4 with s = 0. This corre-

sponds to the L2(Ω,Rn) space in definition B.3.

B.2 General concepts

The notion of orthogonality from euclidean space can be extended to vector spaces in terms of the

inner product.

Definition B.9. Orthogonality: Let u,v ∈ X , where X is an inner product space. Then they

are orthogonal if,

(B.3) (u,v)= 0
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MOTIVATION BEHIND THE WEAK

FORMULATION

This chapter will give a motivation for forming the weak formulation of a boundary value problem.

As a working example the 1D Poisson problem is used.

Du(x)=−∇2u = f (x) on Ω(C.1)

u(x)= gD on ∂ΩD(C.2)

∇u(x)= gN on ∂ΩN .(C.3)

Here u(x) is a vector valued function over some domain Ω ⊂ R and D is a linear differential

operator. The source terms is given as f (x). The boundary conditions are given in Eq. (C.2) and

(C.3), as Dirichlet and Neuman conditions respectively. This formulation of the boundary value

problem will be referred to as the strong form.

C.1 Weak formulation

The recipe to transform a boundary value problem as stated in Eq. (C.1) to its weak form is

simple. Multiplying the governing equation with a test function v ∈ V and integrate by parts

gives,

(C.4)
∫ 1

0

du
dx

dv
dx

dx−
[

du
dx

v
]1

0
=

∫ 1

0
f (x)vdx ∀v ∈V .
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APPENDIX C. MOTIVATION BEHIND THE WEAK FORMULATION

The space V = [H 1
0 : v= gD on ∂ΩD] is a Sobolov space as defined in Definition B.6. The boundary

term in Eq. (C.4) is substituted for by the Neuman condition (C.3) on Neuman boundaries ∂ΩN

and included in the right hand side of the equation. The enforcement of the Dirichlet condition

will be actively set when solving the system. The weak form of the boundary value problem is

then stated as. Find u ∈V such that,

(C.5) a(u,v)= L(v) ∀v ∈V

Here the bilinear form a(u,v) is defined as,

(C.6) a(u,v)=
∫ 1

0

du
dx

dv
dx

dx

and L(v) is a linear form defined as,

(C.7) L(v)=
∫ 1

0
f (x)vdx− gN .

Note that the term involving gN is 0 on ∂ΩD .

C.2 Discretisation

The solution u to the original boundary value problem stated in Eg. (C.1) lives in a infinite

dimensional space of functions that satisfy C2(Ω) continuity. The weak form seeks an approximate

solution u in the sense that u no longer need to be two times differentiable. In fact it is sufficient

that u ∈H 1 a Sobolev space, see Definition B.6. The finite element method aims to convert the

weak formulation into a set of algebraic equations. In order to do this it is necessary to restrict

the solution space to a finite N dimensional space Vh = [H 1
h,gD

: g = gD on ∂ΩD] where H 1
h ⊂H 1.

Here h indicates the "discretization" of the space.

With this definition of the solution space, it is practical to expand the trail function uh ∈Vh

in a set of basis functions {φ(x)i}N
i=1 such that,

(C.8) uh(x)=
N∑

j=1
c jφ j(x).

The problem is therefore reduced to finding the N coefficients {ci}N
i=1 corresponding to the degrees

of freedom in the approximation space (trail space) Vh.

C.3 Galerkin’s method

There are several ways to define the test and trail functin and it is not necessry that they are

defined over the same space. However, the Galerkins method offer a particular advantageous

choice and this will be discussed in this section. Let ue ∈ V be the exact solution of the strong

form of the boundary value problem defined at the beginning of this chapter. Where V =H is a
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in-finte dimensional Hilber space. Let uh ∈Vh ∈V be the approximate solution to this problem.

As explained in section C.2 uh can be expanded in the basis of Vh with the coefficients {c j}N
i=1.

The goal is now to determine the coefficients in such a way that uh gives a good aproximation

to ue. A natural way is to chose {c j}N
i=1 such that it minimises the error ue − uh. However,

since ue is known only through Eq. (C.1) the best one can do is to minimise the residual error

eR =D(uh)− f (x).

The strategy in the Galerkin’s method is to find {c j}N
i=1 and thereby uh such that eR ⊥ Vh

which in the standard inner product 〈k(x),h(x)〉 = ∫
Ω k(x)h(x)dx, results in the problem statement:

Find u ∈Vh such that,

(C.9)
∫
Ω

(Du(x)− f (x))vhdx = 0 ∀ vh ∈Vh

The motivation for this can be understood by a simple geometrical argument. The shortest

distance, in the norm ‖h(x)‖ = √〈h(x),h(x)〉 , between the space Vh and the error eR is the

distance measured from eR and perpendicularly down on Vh. Integrating Eq. (C.9) by parts now

result in the weak formulation of the boundary value problem. This concludes the motivation for

the weak form.

C.4 Galerkin orthogonality

The interesting result emerging from the galerkins aproach is the concept of Galerkin orthogo-

nality. Let u be the exact solution of the weak form and let uh be the approximate solution. Then

they satisfy,

a(u,v)= L(v) ∀ v ∈V(C.10)

a(uh,vh)= L(vh) ∀ vh ∈Vh ⊂V ,(C.11)

where V is an infinite dimensional Sobolov space an Vh is a finite dimensional subspace. The

concept of Galerking orthogonality can then be stated as follows,

Lemma C.1. (Galerkin orthogonality).

The following statement holds. When the bilinear form a(u,v). satisfies the properties of an inner

product, then the error e = u−uh is orthogonal to the space Vh in the inner-product defined by the

bilinear form.

Proof: Since uh is the solution of the weak form (C.11) then,

(C.12) a(e,vh)= a(u,vh)−a(uh,vh)= L(vh)−L(vh)= 0

Lemma C.2. (Minimised error in Energy norm).

Let ‖v‖E = √
a(v,v) be the norm induced by the bilinear form a(v,v), where a(uh,vh) satisfy

Galerkins orthogonality. Then

‖u−uh‖E ≤ ‖u−vh‖E ∀vh ∈Vh(C.13)
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APPENDIX C. MOTIVATION BEHIND THE WEAK FORMULATION

Proof: Follows from galerkins orthogonality and the Cauchy-schwartz inequality.

What this result means is that Galerkins method not only chooses the best minimizer of eR

as mentioned in section C.3. It also chooses the best approximation to u in the space Vh when the

error is measured in the energy norm ‖·‖E.
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