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Abstract

To provide a method of testing the accuracy of the Hamiltonian Guiding Center
Approximation, the diffusion coefficients of cosmic rays propagating in a purely
turbulent magnetic field is investigated. The goal is to reproduce earlier results to
assure the diffusion simulations can be used to compare the Hamiltonian guiding
center theory to the direct solving of the Lorentz-equation. The turbulence is sim-
ulated as a hydrodynamic turbulence following the Kolmogorov power spectrum.
To simulate the cosmic ray propagation a step-size controlled Runge-Kutta algo-
rithm is implemented to solve the Lorentz-equation. The isotropy of the algorithm
generating the turbulent magnetic field is verified, and isotropy is proven given the
correct choice of probability distribution for the random phases. Furthermore, the
qualitative behavior of the diffusion coefficients is shown to be in accordance with
previous results in both the isotropic and anisotropic regimes. After transitioning
to the isotropic regime the factor d3/d1 is found to be constant at d3/d1 ∼ 10,
which shows a significant amount of anisotropic behavior. Comparing the am-
plitude of the average diffusion coefficients from the simulations with theoretical
coefficients show that they are within a factor of 1.21 and 2.33. The scaling of
the diffusion coefficient is found to follow the expected D(E) ∝ β when β = 1/3
and β = 2 for the diffusive and ballistic regimes respectively. The transition is
shown to begin at a slightly higher energy for the simulated diffusion than for the
theoretical diffusion.

Hamiltonian guiding center theory is applied to the propagation of cosmic rays
through different magnetic field models, including the uniform field, spiral fields
with constant and non-constant field strengths, and a uniform field in superposition
with a turbulent field. The aim is to test under which conditions the Hamiltonian
guiding center theory can replace the direct solution of the Lorentz-equation and
still provide equal results. Furthermore it is tested whether the guiding center
theory is able to increase the efficiency of these simulations.

It is shown that guiding center theory accurately reproduces the equivalent
trajectory to that of the direct solution of the Lorentz-equation, exempt of a drift
velocity caused by the curl of the magnetic field and an acceleration caused by the
gradient of the magnetic field strength. The exemption of these effects are shown to
be missing due to errors in the implementation. The presented results suggest that
the Hamiltonian guiding center theory, when implemented correctly, will be able
to accurately simulate the trajectories of cosmic rays through a Galactic magnetic
field. The simulations using the guiding center theory also suggest the theory will
be more efficient than directly solving the Lorentz-equation.

As the guiding center theory implementation was not completed within the
time frame of this project, it was not possible to implement it in the simulation of
diffusion of cosmic rays in the Galactic magnetic field.
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Sammendrag

For å konstruere en metode til å teste nøyaktigheten til den Hamiltonske føringssen-
terapproksimasjonen undersøkes diffusjonskoeffisientene av kosmiske str̊aler propa-
gert i et turbulent magnetisk felt. Målet er å reprodusere tidligere resultater for å
forsikre at diffusjonssimuleringene kan benyttes til å sammenligne den Hamiltons-
ke føringssenterapproksimasjonen opp mot det å løse Lorentz-ligningen direkte.
Turbulensen simuleres som en hydrodynamisk turbulens som følger Kolmogorov’s
energispektrum. For å simulere propagasjonen av kosmisk str̊aling ble en Runge-
Kutta-integrator implementert for å løse Lorentz-ligningen. Isotropien av algorit-
men som genererer det turbulente magnetfeltet verifiseres, og isotropien i feltet
bevises gitt at korrekt sannsynlighetsfordeling for de tilfeldige fasene velges. Vi-
dere vises den kvalitative atferden av diffsjonskoeffisientene å være i samsvar med
tidligere resultater. Etter overgangen til det isotropiske regime finnes faktoren
d3/d1 til å være tilnærmet konstant ved d3/d1 ∼ 10, som viser en signifikant aniso-
tropisk atferd. Sammenligning av de gjennomsnittlige diffusjonskoeffisientene fra
simuleringene opp mot de teoretiske verdiene viser at forskjellen er innen en faktor
mellom 1.21 og 2.33. Diffusjonskoeffisienten vises å følge D(E) ∝ β som forventet,
med β = 1/3 og β = 2 for the diffusive og det ballistiske regime respektivt. Videre
vises det at overgangen mellom de to regimene starter ved høyere energi for de
simulerte diffusjonskoeffisientene enn for de teoretiske koeffisientene.

Hamiltonsk føringssenterteori anvendes p̊a propageringen av kosmisk str̊aling
gjennom forskjellige magnetiske felt, inklusive det uniforme feltet, spiralfelt med
konstant og varierende feltstyrke, samt et uniformt felt i superposisjon med et
turbulent felt. Målet er å teste under hvilke forhold føringssenterteorien kan brukes
i stedet for å løse Lorentz-ligningen direkte, og fortsatt gi ekvivalente resultater.
Videre testes det om føringssenterteorien øker effektiviteten i disse simuleringene.

Det vises at føringssenterteorien reproduserer en tilsvarende bane til den pro-
dusert av den eksakte løsningen, med unntak av drifteffekter p̊aført av curlen til
magnetfeltet, samt en akselerasjonseffekt p̊aført av magnetfeltets gradient. Disse
manglende effektene vises å komme av en feil i programmeringen av teorien. Resul-
tatene peker mot at Hamiltonsk føringssenterteori, n̊ar den implementeres korrekt,
vil simulere banene til kosmisk str̊aling gjennom det Galaktiske magnetfeltet med
høy nøyaktighet. Simuleringene antyder ogs̊a at føringssenterteorien vil være mer
effektiv enn å løse Lorentz-ligningen direkte.

Siden implementasjonen av føringssenterteorien ikke ble ferdigstilt inne tids-
rammen av dette prosjektet, var det ikke mulig å implementere den i beregningene
av diffusjonen av kosmisk str̊aling i det galaktiske magnetiske feltet.
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CHAPTER 1

INTRODUCTION

Background

”In the Milky Way, the Galactic magnetic fields affect all phases of the
interstellar medium from the propagation of relativistic cosmic rays to the

collapse of cold dust clouds.” (Boulanger et al., 2018)

Throughout the Milky Way a magnetic field has been observed, roughly fol-
lowing the spiral structure of the galaxy. The first observations of a magnetic field
outside of Earth were done in 1908. These observations were done by direct mea-
surement of the Zeeman effect in the magnetic fields in sunspots. 42 years later it
was suggested that magnetic fields were required for the creation, as well as the
containment of Cosmic Rays (CR) within the Galaxy. The synchroton emission
theory was developed, leading to the suggestion that relativistic CRs should be
highly polarized. In 1954 the first observations of highly polarized optical radiation
were performed by observing the Crab Nebula. The results were later confirmed in
1957. A few years later, in 1962, the detection of Faraday rotation in extragalactic
CRs was confirmed by observing Centaurus A. It soon followed that the interstel-
lar medium in the Milky Way could also cause Faraday rotation. Development of
these methods for observing magnetic fields in the interstellar and extragalactic
media finally led to the collection of data on the structure of the Galactic magnetic
field in the Milky Way from 1968 and onward. (Beck, 2003; Beck and Wielebinski,
2013; Boulanger et al., 2018)

The magnetic field in the Milky Way can be considered as a superposition of a
large-scale field and small-scale field (Haverkorn, 2014), where the large-scale field
is a coherent component (also referred to as the regular component) which roughly
follows the spiral arms of the Galaxy. The strength of this coherent magnetic
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CHAPTER 1. INTRODUCTION

Figure 1.1: A picture of the spiral galaxy M-51 overlaid with the magnetic field vectors
(yellow) and contours of the radio emission. The picture was taken by the Hubble Space
Telescope. (Picture used with permission from MPIfR Bonn. Copyright: MPIfR Bonn
and NASA/ESA (Hubble Heritage Team). Graphics: Sterne und Weltraum.)

field has been derived from Faraday rotation measurements to ∼ 2 µG (Boulanger
et al., 2018). The small-scale structures are caused by a range of phenomena, e.g.
supernova explosions and shock wave remnants among others (Haverkorn, 2014).
These small-scale fields, also called turbulent fields, are approximated by a power
law given with a certain coherence length. Studies suggest coherence lengths of
∼ a few to 200 pc within the spiral arms of the Galaxy (Giacinti et al., 2012).
Even though these small-scale fields contribute a random turbulence, the Root
Mean Square (RMS) value of the turbulent field has been measured to ∼ 3 – 5 µG
in the spiral (Beck and Wielebinski, 2013). The total field strength in the solar
neighbourhood has been derived from synchrotron measurements, and has been
found to be ∼ 6 µG (Beck, 2003; Boulanger et al., 2018). At the galacto-centric
radius of 3 kpc the estimates of this value increases to ranges from ∼ 10 µG to
∼ 1 mG. Several estimates have been made for the magnetic field in the galactic
center within this range, including the ranges ∼ 6 – 22 µG and & 50 – 120 µG
(Haverkorn et al., 2015).

A vast range of phenomena on the galactic and extra-galactic scales observed
throughout the universe, has been observed through Galactic CR originating from

2



CHAPTER 1. INTRODUCTION

the event causing the phenomenon. To accurately identify the sources of the Galac-
tic CRs it is then important to understand how the Galactic magnetic field affects
the propagation and diffusion of the Galactic CRs. As the Galactic magnetic
field has a coherent part, the particles will gyrate about this coherent field with a
Larmor radius proportional to the coherent field strength. At the same time the
small-scale turbulent field will affect the propagation of the Galactic CRs. The
effects of the turbulent field on the Galactic CRs is large enough to cause diffusion
of the particles, which erases information about the sources from which they orig-
inated. A thorough understanding of how the particles diffuse due to the Galactic
magnetic field will thus improve the ability to accurately identify the source of
the Galactic CRs. Furthermore, the Galactic magnetic field produces Galactic
polarized synchroton emission. This synchroton emission acts as a foreground for
the cosmic microwave background polarization. Understanding the effects of the
Galactic magnetic field on the polarization of the cosmic microwave background
is thus of importance when studying the cosmic microwave background (Giacinti
et al., 2012; Haverkorn, 2014).

To examine the interaction between particles and the Galactic magnetic field,
different test-particle simulations have been used. By modelling the magnetic field
as a coherent part in superposition with a turbulent field, these interaction can be
simulated using well known numerical methods. In the case of the Galactic mag-
netic field it is usually assumed that there is no electric field, and so the simulations
are done using numerical methods to solve the Newton-Lorentz equations. When
solving these equations for a coherent field, the result is a helical trajectory about
a magnetic field line. Adding the turbulent field, the helical movement is then de-
pendent on the proportional strength between the coherent and the turbulent part.
The computational cost when simulating a particle in this magnetic field increases
with the relative strength of the turbulent field, and decreases when the energy
of the test particle is increased. In itself a single particle trajectory is seldom of
interest. Instead the diffusion of a multitude of particles, providing a statistical
view of the Galactic magnetic field properties is what is of interest (Giacalone
and Jokipii, 1994; Giacinti et al., 2012; Snodin et al., 2016). As such, the helical
movement of each particle is disregardable, and only the motion of the Guiding
Center (GC) is of actual interest. Simulating upwards of several hundred points,
generating the computationally costly magnetic field at each of these points, just
to get one period of helical motion then seems highly unnecessary. Implementing
a method that only looks at the guiding center, and manages to incorporate the
movement through both a coherent and turbulent field, would seemingly reduce
the computational cost of each trajectory drastically.

Standard Guiding Center Theory (GCT) was developed by Northrop (1963).
The theory faced several shortcomings, but it was not until GCT was combined

3



CHAPTER 1. INTRODUCTION

with numerical methods that these shortcomings became significant. Due to a lack
of energy conservation, when applied to numerical analysis, errors accumulated as
the simulations were run for longer periods of time. These shortcomings were even-
tually improved upon with the development of Hamiltonian GCT. Over the course
of the next two decades, different methods were attempted to develop a Hamil-
tonian teory for the motion of the GC. Wong (1982) accomplished to formulate
a canonical Hamiltonian GCT, but this theory required non-physical coordinates.
Simultaneously Boozer (1980) showed that the GC Equations of Motion (EoM)
could be derived from a Hamiltonian in curl-free magnetic fields. White et al.
(1982) later showed that the same equations could be derived even when the mag-
netic field is not curl-free. During the same period, in a series of papers, Littlejohn
derived his formulation of the GC phase-space Lagrangian through noncanonical
Hamiltonian mechanics. The results of Littlejohn (1983) give the GC EoM in
noncanonical coordinates, which are reviewed in Cary and Brizard (2009). The
review by Cary and Brizard (2009) will be followed closely in this report, and the
resulting EoM will be implemented numerically.

Intuitively it should save computational power to only simulate the motion of
the GC compared to simulating the exact particle movement through the magnetic
field. If the GCT proves to give the same statistical results as the exact solution of
the Lorentz-equation, hereby known as the ’exact solution’, while also significantly
improve the simulation efficiency, this would allow for more thorough simulations
of CRs in the complex Galactic magnetic field models.

Problem Formulation

In this report the following will be investigated:

1. The diffusion of Cosmic Rays through a purely TMF is to be simulated, using
the turbulent magnetic field model from Giacalone and Jokipii (1994). The
isotropy of the turbulent magnetic field is to be verified analytically, before
the theory is used to verify the accuracy of the diffusion simulations. The
final aim is to reproduce the results of Giacinti et al. (2012) and Giacinti et al.
(2018), in order to assert the diffusion simulation as a method to compare
the Hamiltonian GCT simulations to the exact simulations.

2. Hamiltonian GCT will be applied to the diffusion of Cosmic Rays in the
Galactic Magnetic Field. By numerically propagating cosmic rays through
different magnetic field models, the accuracy of the Hamiltonian GCT will
be tested and compared to simulations of the exact solution solving the
Lorentz-equation.

4



CHAPTER 1. INTRODUCTION

Objectives

This report aims to complete the objectives:

1. Implement a method to simulate cosmic ray propagation in a turbulent mag-
netic field, and verify the method by reproducing the results of Giacinti et al.
(2012) and Giacinti et al. (2018).

2. Implement Hamiltonian GCT to the simulation of Cosmic Ray propagation
in different magnetic field models, and verify that the new simulations re-
produce the behavior of the exact solution.

3. Test the accuracy of the Hamiltonian GCT by simulating a significant amount
of particles, using both the exact and guiding center methods, through a se-
ries of magnetic fields, and comparing the resulting trajectories.

4. Apply the Hamiltonian GCT to the diffusion of Cosmic Rays through a
turbulent field, and test under which conditions the GCT can provide sta-
tistically accurate results.

5. For the conditions in which the Hamiltonian GCT proves to be accurate,
test the efficiency of this method compared to the exact solution.

Structure of the Thesis

The thesis will be divided into two main parts, which are then linked together in
the conclusion.

Chapters 2 and 3 will present the diffusion of Cosmic Rays in a turbulent field,
using the exact solution. First Chapter 2 will present the needed theory, including
the theory of how CRs propagate in magnetic fields, which effects a curl and a
gradient in the magnetic field has on the trajectory of CRs, and how the diffusion
tensor is calculated. Thereafter the implementation, results, and discussion of the
results are presented in Chapter 3. This begins with a description of how trajectory
simulations were programmed, and how the diffusion coefficients were calculated.
After this the results are presented and discussed based on the expectations given
by the theory and previous results.

The second main part consists of Chapters 4 and 5. The theory of the Hamil-
tonian guiding genter approximation is presented in Chapter 4, focusing on the
derivation of the equations of motion. Following this, in Chapter 5, comes a de-
tailed explanation of how the equations of motion was implemented as a program.
Lastly, the results from the implementation of the GCT are presented and dis-
cussed on the basis of the theory and what is expected compared to the exact

5



CHAPTER 1. INTRODUCTION

solution. After the results are presented, there is a short section on known errors
in the program, and suggestion on how the program can be developed further.

Finally Chapter 6 summarizes the findings of the thesis and draws the final
conclusions.
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CHAPTER 2

COSMIC RAY DIFFUSION IN TURBULENT

MAGNETIC FIELDS

In this chapter the model of the turbulent magnetic field will be presented along
with the theory of how CRs will propagate through such a field. Along with this
the diffusion tensor and diffusion coefficients will be presented.

Turbulent Magnetic Fields

There are a number of ways to model turbulence in magnetic fields. One such
model for the turbulence is a Gaussian random field with zero mean and a RMS
value Brms. As shown by Harari et al. (2002), this can be described as a superpo-
sition of Fourier modes on the form

Bi(x) =

∫
d3k

(2π)3
Bi(k)ei(k·x+βi(k)), (2.1.1)

where the phases βi(k) are a random, and Bi(x) is the magnetic field component
in the êi-direction. The Fourier modes k are plane waves with a random direction.
Following Maxwells equation ∇ · B = 0, and inserting the magnetic field which is
on the form B(x) ∝ B(k)ζe−ik·x (Giacinti et al., 2012), the constraint

B(k) · k = 0 (2.1.2)

is found, where
B(k) = Bx(k)êx +By(k)êy +Bz(k)êz . (2.1.3)

For this field to be isotropic and homogeneous it has to satisfy

〈B(ki) ·B∗(kj)〉 = B2(k)δij (2.1.4)
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where |k| = k. By inserting Eq. (2.1.4) into the expectation of B(x), the RMS
value can be defined as

B2
rms ≡ 〈B(x) ·B∗(x)〉 =

∫
B2(k)dk . (2.1.5)

Another model that fully characterizes turbulent magnetic fields is to model them
as a power spetrum, following

E(L) ∝ Lγ (2.1.6)

where E(L) is the energy of an eddie current with scale size L. γ is called the
spectral index, and different models have different spectral indices. One model
that fits well with observations of our Galaxy is the Kolmogorov spectrum, where
γ = 5/3 (Giacinti et al., 2018). Since there is no electric field present in the
Galactic magnetic field,

E(k) ∝ B2(k) ∝ k−γ (2.1.7)

where it is used that k = 2π/L, with L being the wavelength of the Fourier modes
modelling the magnetohydrodynamic eddies. By demanding the Fourier modes to
be constrained by some values kmin < k < kmax and inserting Eq. (2.1.7) into
(2.1.5),

B2(k) = B2
rmsk

−γ (γ − 1)kγ−1min

1− (kmin/kmax)γ−1
(2.1.8)

gives the magnetic field strength for each mode k.

Correlation length

To understand how the turbulent magnetic field varies within the constraint Lmin <
L < Lmax, it is of interest to find the correlation length. Harari et al. (2002) defines
this as

LcB
2
rms ≡

∫ ∞
−∞

dL〈B(x(0)) ·B(x(L)) 〉 (2.2.1)

where Lc is the correlation length, B(x(0)) is the magnetic field at a random
starting point, and B(x(L)) is the field at a point displaced a distance L along
a fixed axis with respect to the starting point. Inserting the result of Eq. (2.1.1)
into (2.2.1) yieding

LcB
2
rms = π

∫ ∞
0

dk

k
B2(k), (2.2.2)

then using the result from (2.1.8) and inserting L = 2π/k, the coherence length is
found to be

Lc =
1

2
Lmax

γ − 1

γ

1− (Lmin/Lmax)
γ

1− (Lmin/Lmax)γ−1
. (2.2.3)
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For the Kolmogorov spectrum there are two interesting approximations to the
coherence length. For a narrow-band spectrum, where Lmin ∼ Lmax, the coherence
length is approximated as Lc ' Lmax/2. When the band is broad, i.e. Lmin �
Lmax, the coherence length is found to be approximately Lc ' Lmax/5.

Numerical approximation of the Turbulent Mag-

netic Field

When generating the turbulent magnetic field numerically, it is impossible to use
an infinite number of Fourier modes. Giacalone and Jokipii (1994) presents an
algorithm to approximate the theoretical turbulent magnetic field given in Eq.
(2.1.1). It has later been discovered the algorithm presented in the 1994 paper
had some mistakes regarding the rotation matrix, and the algorithm used here
follows Tautz (2012) and Andersen (2017). Notable changes from Giacalone and
Jokipii (1994) is that the initial wave-vector is changed to point along the z′-axis
instead of the x′-axis. The equation for the algorithm then becomes

B(r) =

nk∑
j=1

B(kj)ζje
i(kjz

′+βj), (2.3.1)

where nk is the number of Fourier modes, kj is the wave number and βj is a random
phase of mode j. B(kj) is the amplitude of the mode and will follow the chosen
Kolmogorov power spectrum, Eq. (2.1.7). The equation describes the superposi-
tion of the Fourier modes, each traveling in its own randomly chosen z′-direction.
Each wave is a plane wave polarized in the plane given by the polarization vector

ζj = cos(αj)êx′ ± i sin(αj)êy′ . (2.3.2)

The primed unit vectors then form an orthonormal basis, coupled to the unprimed
basis by x′y′

z′

 =

cos θ cosφ cos θ sinφ − sin θ
− sinφ cosφ 0

sin θ cosφ sin θ sinφ cos θ

xy
z

 . (2.3.3)

As each mode travels in a randomly chosen direction, θ and φ needs to be chosen
randomly. The same goes for the polarization vector, where a random choice for
the sign is also needed. Thus, for a single instance of the turbulent magnetic field,
5 random numbers are needed for each mode j. The constraints are:

0 ≤ θ(k) ≤ π,

0 ≤ φ(k) ≤ 2π,

0 ≤ α(k) ≤ 2π,

0 ≤ β(k) ≤ 2π,
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as well as the sign (s = ±) which needs to have a 50/50 probability of being either
+ or -. Discussion of the probability distribution is presented in section 2.5.

Furthermore, to assure the wavenumbers are weighted equally for all scale
sizes, the modes kj are distributed logarithmically between kmin and kmax. This is
equivalent of making the assumption that the eddy currents transfer their energy
into smaller scale size eddies with a constant scale ratio. Such an assumption is
common when modelling hydrodynamic turbulence (Ruelle, 2017).

Normalization of the Algorithm

To generate a magnetic field with the desired field strength Brms, the amplitude
of the modes B(k) needs to be normalized over the Kolmogorov power spectrum
given by Eq. (2.1.7). The normalization here follows the method of Giacalone
and Jokipii (1994), using B(k) directly instead of normalizing the field Ω(k). The
same method is also used by Andersen (2017), where it is shown that

B2
rms =

nk∑
j=1

B2(kj) (2.4.1)

by taking the mean square value of Eq. (2.3.1) and using the fact that

〈(ζjei(kjz
′+βj)) · (ζjei(kjz

′+βj))∗〉 = 1 (2.4.2)

and demanding 〈B2(r)〉 = B2
rms. As the scale size is constant after distributing

the kj-values evenly on a logarithmic scale, using the Kolmogorov spectrum from
Eq. (2.1.7), the amplitude can be written

B2(k)

B2(kmin)
=

(
k

kmin

)−γ
. (2.4.3)

Inserting into Eq. (2.4.1) and solving for B(kmin) gives

B(kmin) =
Brms∑nk

j=1

(
k

kmin

)−γ/2 (2.4.4)

which is the normalized value for B(kmin). This normalization requires the field to
be isotropic, which will be discussed in section 2.5.

The calculated turbulent magnetic field is complex, while it should be real.
To get the real turbulent magnetic field, the real part of the calculated field is
taken. However, this changes the RMS-value of the field. From the fact that
〈x · x∗〉 = 〈Re2(x)〉+ 〈Im2(x)〉 and Eq. (2.1.5),

B2
rms = 〈Re2(B)〉+ 〈Im2(B)〉 (2.4.5)
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is found. Taking the mean square of ζei(kz
′+β) it can be shown that 〈Re2(B)〉 =

〈Im2(B)〉, which in turn gives

〈Re2(B)〉 = 1
2
B2

rms. (2.4.6)

This leads to a change on the l.h.s. of Eq. (2.4.1) by a factor 1/2. Inserting this
into Eq. (2.4.4) gives the final, normalized factor

B(kmin) = Brms

 2∑nk

j=1

(
kj
kmin

)−γ


1/2

. (2.4.7)

Isotropy of the Turbulent Magnetic Field

Both Tautz (2012) and Andersen (2017) thoroughly discuss the isotropy of the
magnetic field generated by the algorithm in section 2.3. A brief recapitulation of
the discussion and conclusion is given here, to support the validity of the results
derived by using the algorithm. The rest of the section follows the method in
Andersen (2017).

First it is important to note that the proper isotropic field is given for a con-
tinuous integral over an infinite number of Fourier modes, meaning a numerical
approximation will need as many discrete modes as is feasible, to achieve approx-
imate isotropy. In the discussion of the isotropy it is assumed that nk is large
enough to make this assumption. Mathematically the expression for isotropy with
zero mean, is that the magnetic field satisfies

〈B(r)〉 = 0 (2.5.1)

and

〈|Bx(r)êx|2〉 = 〈|By(r)êy|2〉 = 〈|Bz(r)êz|2〉 =
1

3
B2

rms . (2.5.2)

For each mode kj, ζj is constant and complex and B(kj) is constant. For the total
field to have zero mean

〈ζjei(kjz
′+βj)〉 = 0 (2.5.3)

is needed. This holds if the magnetic field spans a distance much larger than the
largest magnetic eddies, i.e. ei(kjz

′+βj) completes several cycles. Thus Eq. (2.5.1)
is satisfied when kj|z′|max � 2π. From the fact that B is isotropic if all k’s are

isotropic, using k̂ = ẑ′ and k = kk̂, Eqs. (2.5.1) and (2.5.2) lead to

〈k〉 = 〈sin θ cosφ〉êx + 〈sin θ sinφ〉êy + 〈cos θ〉êz = 0 (2.5.4)
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Table 2.1: Probability distribution and parameter intervals for the random
variables in the algorithm for the turbulent magnetic field.

Parameter Interval Probability distribution
α 0 < α < 2π p(α) = 1/2π
β 0 < β < 2π p(β) = 1/2π
θ 0 < θ < π p(θ) = sin(θ)/2
φ 0 < φ < 2π p(φ) = 1/2π
± {+,−} p(+) = 0.5, p(−) = 0.5

and

〈sin2 θ cos2 φ〉 = 〈sin2 θ sin2 φ〉 = 〈cos2 θ〉 =
1

3
. (2.5.5)

It is clear from Eq. (2.5.5) that 〈sin2 θ〉 = 2/3. With the requirement that 0 <
θ(k) < π has a zero mean, the probability distribution has to be p(θ) = sin(θ)/2.
As 〈sin2 θ〉 = 2/3, from Eq. (2.5.5) it is then given that 〈cos2 φ〉 = 〈sin2 φ〉 = 1/2,
which makes the first two terms equal 1/3. This gives the probability distribution
of 0 < φ(k) < 2π as a uniform, flat distribution p(φ) = 1/2π.

With these restrictions, k is isotropic for all Fourier-modes, and Eq. (2.1.4)
holds. Now by inserting Eqs. (2.1.5) and (2.3.1) into (2.5.2), for each component

〈|Bl(r)êl|2〉 =

nk∑
j=1

B2(kj)〈
∣∣∣[ζjei(kjz′+βj)]

l

∣∣∣2〉 (2.5.6)

with
[
ζje

i(kjz
′+βj)

]
l

being the êl component of B̂. Eq. (2.5.6) shows that if the
mean square value of the êl component equals 1/3, Eqs. (2.5.1) and (2.5.2) are
satisfied and the field is isotropic.

The primed coordinate system is orthonormal, making ζ and ei(kjz
′+βj) inde-

pendent. This gives

〈
∣∣∣[ζjei(kjz′+βj)]

l

∣∣∣2〉 = 〈
∣∣[ζj]l∣∣2 · ∣∣∣ei(kjz′+βj)∣∣∣2〉 = 〈

∣∣[ζj]l∣∣2〉 (2.5.7)

where it is used that 〈
∣∣ei(kjz′+βj)∣∣2〉 = 1 when kjz

′ � 2π as previously assumed.
Setting Eq. (2.5.7) equal to 1/3, and using Eq. (2.3.2) together with the rotation
matrix in Eq. (2.3.3),

〈ζ2x〉 = 〈sin2 α cos2 θ cos2 φ+ sin2 α sin2 φ〉 =
1

3
, (2.5.8)

〈ζ2y 〉 = 〈sin2 α cos2 θ sin2 φ+ sin2 α cos2 φ〉 =
1

3
, (2.5.9)

〈ζ2z 〉 = 〈sin2 α sin2 θ〉 =
1

3
, (2.5.10)
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where ζ2l = |ζl|2. From Eqs. (2.5.4) and (2.5.5) together with the constraint
0 < α < 2π, it is found that 〈sin2 α〉 = 〈cos2 α〉 = 1/2. This gives a flat probability
distribution p(α) = 1/2π. The sign in ζ decides if the polarization is left- or right-
circular. To avoid left- or right-chirality in the field, the sign then has to have a
50:50 probability distribution. β is a phase shift of the Fourier mode with respect to
the origin and in order for the field to be random β has to be uniformly distributed
between 0 and 2π.

Table 2.1 summarizes the probability distributions that make the field isotropic.
This isotropy is found in Andersen (2017), while Tautz (2012) argues the field
generated is not isotropic, and concludes 〈ζ2l 〉 equals 3/8 for x and y, and 1/4 for z.
This can be achieved by choosing p(θ) = 1/2π. Thus, the argument made by Tautz
(2012) holds, but it is also possible to generate an isotropic turbulent magnetic
field using the same algorithm, by choosing the proper probability distributions as
shown.

Particle Movement in a Magnetic Field

A charged particle moving in a magnetic field is influenced by the force

FM = qv×B, (2.6.1)

assuming there’s no electric field (E = 0) and with q being the charge of the
particle. Using Newton’s second law the equation of motion of a charged particle
is given as

FM =
dp

dt
= qv×B. (2.6.2)

For high energy particles the relativistic momentum is given by

p = γlmv (2.6.3)

where γl is the Lorentz factor. As the change in momentum is proportional to
the cross product of the velocity and the magnetic field, the acceleration of the
particle will be perpendicular to magnetic field line.

Magnetic Field Gradient

For a charged particle moving in a magnetic field that has a gradient, the adiabatic
invariant is the integral

I =
1

2π

∮
Pt · dr, (2.7.1)
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integrated over a complete period of the motion perpendicular to b̂, where b̂ is the
magnetic field unit vector (Landau and Lifshitz, 1971, §21). Here Pt is projection of
the generalized momentum onto the plane that is perpendicular to b̂. Calculating
this integral, following section 21 in Landau and Lifshitz (1971), the adiabatic
invariant can be shown to be

I =
3cp2t
2qB

, (2.7.2)

giving ∆pt ∝ ∆
√
B, where pt is the momentum perpendicular to b̂. If the mass

is constant, this is equivalent of ∆v⊥ ∝ ∆
√
B. Furthermore, as the velocity

has to be constant and v2 = v2‖ + v2⊥, the parallel velocity changes proportional
to the perpendicular velocity. Due to this, any particle moving in the direction
of increased field strength will be decelerated in the parallel directions. When
v‖ becomes zero, the particle is reflected, and begins moving in the direction of
smaller field strength. This effect does not depent on the sign of the particles
charge.

Magnetic Field Curl

A particle propagating in a curled magnetic field will experience a drift velocity.
Following Landau and Lifshitz (1971) section §22, the effect of the curl is derived
by assuming the particle is originally moving in a circular orbit. This trajectory
can be written as r = R(t) + ζ(t) where R(t) is the position vector of the guiding
center and ζ(t) describes the rotational motion about the guiding center. R can be
considered to change slowly, while ζ is rapidly changing. Averaging the force, Eq.
(4.2.4), over one period of the motion about the guiding center, and expanding
B(r) in powers of q as B(r) = B(R) + (ζ · ∇)B(R), the averaging of the force
removes the first order terms. The second order terms contribute a force

Fcurl = qζ̇ × (ζ · ∇)B. (2.8.1)

Applying that for a circular orbit ζ = Ωζ × b̂ and |ζ| = v⊥/Ω, the force becomes

Fcurl = −mv
2
⊥

2B

(
b̂×∇

)
×B. (2.8.2)

Using that ∇ ·B(R) = ∇×B(R) = 0, the force can be written as

Fcurl =
mv2⊥
2ρ

n̂, (2.8.3)

where ρ is the curvature of the magnetic field line at the given point, and n̂ is
the unit vector pointing from the center of this curvature towards the point at
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which the curvature is calculated. Now, if the particle also has a parallel velocity,
Fcurl can be further simplified by changing to the instantaneous reference frame
rotating about the center of curvature. Using this frame of reference, with an
angular velocity v‖/ρ, the particle has no parallel velocity. However, there is now
a centrifugal force qmv2‖/ζ. The perpendicular force is then

F⊥ =
m

ρ

(
v2‖ +

v2⊥
2

)
n̂, (2.8.4)

which is equivalent of a constant electric field of strength F⊥/q. From this the
drift velocity

vd =
1

ρΩ

(
v2‖ +

v2⊥
2

)
n̂× b̂ (2.8.5)

is found. The sign of the drift velocity depends on the sign of the charge of the
propagated particle.

Larmor-radius

From Eq. (2.6.2) it can be seen that a particle moving in a uniform magnetic
field will portray a helical trajectory. The component of the velocity parallel
to the magnetic field, v‖, will not be affected by the magnetic force, whilst the
perpendicular component, v⊥, will change according to the force. Using the fact
that a = v2⊥/r for circular motion the radius of the trajectory can be calculated as

Rg =
γlmv⊥
|q|B

. (2.9.1)

The radius Rg is known by a few names, most commonly the gyro-radius or the
Larmor-radius. The absolute value of the charge is taken as the radius can’t be
negative. For high energy particles the relativistic energy is given by E = γlmc

2

where c is the speed of light in vacuum. A more practical way of writing the
Larmor-radius is

Rg =
β⊥
cq

E

B
(2.9.2)

where β⊥ = v⊥/c. For a purely turbulent magnetic field the local Larmor-radius
can be calculated using B = Brms, while in a magnetic field consisting of a coherent
and turbulent part in superposition, B = B0+Brms where B0 is the strength of the
coherent field. If Rg � Lc (the correlation length) the particle will experience the
field as approximately constant, leading to a helical motion about the magnetic
field lines. In the opposite case, Rg � Lc, the magnetic field would change too
rapidly for the particle to be heavily influenced. For a zero mean field this would
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lead to small deflections over scale lengths ∼ Lc, giving a trajectory consisting of
straight lines with small deflections.

Diffusion Tensor and Coefficients

CRs diffuse in the Galactic magnetic field depending on the energy of the ray
and the strength of the magnetic field. Outside of shock regions (acceleration
zones) such diffusion is commonly described by a diffusion coefficient D(E) =
D0(E/E0)

β. The coefficient is usually estimated for two regimes, one small-angle
scattering regime where D(E) ∝ E2, and one large-angle scattering regime where
D(E) ∝ E2−γ. Here γ is still the energy-spectrum coefficient, which is 5/3 for
the Kolmogorov spectrum, and β is equal to 2 and 1/3 for the two energy regimes
respectively. This and the rest of this section is cited from Giacinti et al. (2018)
unless otherwise specified.

Diffusion is measured in area covered per time unit, leading to a diffusion tensor
on the form

Dij = lim
t→∞

〈x(i)x(j)〉
2t

, (2.10.1)

as given in Subedi et al. (2017), equation (8). For a purely isotropic field the eigen-
values, also known as the diffusion coefficients, dx, dy and dz describes diffusion
in the respective directions. The eigenvalues are found by diagonalizing Dij and
taking the trace of the diagonalized tensor. To calculate the diffusion tensor from
a given set of trajectories, it is not enough to look at a single trajectory. Instead,
the average over a significant amount of particles has to be calculated. For the
magnetic field to be isotropic, the time spanned needs to be large enough so that
all particles travel multiple times the coherence length Lc. Using t∗ to denote a
time fulfilling this requirement,

Dij =
1

2Nt∗

N∑
a=1

x
(a)
i x

(a)
j (2.10.2)

gives the averaged diffusion tensor, with N being the number of particles and x
(a)
i

being the xi-component of particle a. The average diffusion coefficient is then
given as

D =
1

6Nt∗

N∑
a=1

x(a) · x(a). (2.10.3)

As one instance of a turbulent magnetic field could give extremal values for the
diffusion tensor, the calculated values should be averaged over several instances
of the turbulent magnetic field as D = 1

M

∑
M D(b) where M is the number of in-

stances used and D(b) is the average diffusion coefficient calculated by Eq. (2.10.3)
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for instance b of the turbulent magnetic field (Giacinti et al., 2012). It is also pos-
sible to derive the functional dependence of the diffusion coefficient for an isotropic
magnetic field. This functional is given as

D =
cL0

3

[(
Rg

L0

)2−γ

+

(
Rg

L0

)2
]
, (2.10.4)

where Rg(E) = L0 is the condition determining the transition from D(E) ∝ E2 to
D(E) ∝ E2−α (β = 2 → 1/3). The length L0 in general needs to be numerically
determined, but is expected to be L0 ∝ Lc, where Lc is the coherence length. A
good fit has been found to be L0 ' Lc/(2π).

Transition Time

The transition time describes when the diffusion reaches the isotropic limit, i.e.
when the particles transition from the anisotropic regime to the isotropic regime.
It can be approximated as

τ ∼ 4D

c2
. (2.11.1)
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CHAPTER 3

IMPLEMENTATION OF COSMIC RAY DIFFUSION

SIMULATION

In this chapter the various methods used to simulate the diffusion of CRs are
described, and the results of the simulations are presented. The code written for
this project was developed by the author of the report, using the Random Number
Generator (RNG) and different integrators from Press et al. (2007). C++ was used
in this project, and the code can be found at Github.com/odde92/master thesis.

Implementation

3.1.1 Generating the Turbulent Magnetic Field

Generating the magnetic field follows the numerical method described in section
2.3. Eq. (2.3.1) is implemented through several steps. The first step is to generate
the random numbers for the parameters in table 2.1, for the chosen amount of
modes. These phases are only chosen at the start of the program, and are constant
for each instance of the magnetic field. To generate the random numbers an RNG
from (Press et al., 2007, p. 342-343) was used. When a new instance of the
magnetic field is generated, all phases have to be randomly chosen anew. After
the phases have been initialized, the normalization of B(k) can be carried out, as
described in section 2.4. The sum in Eq. (2.4.7) is calculated first, before B(kmin)
is determined. When B(kmin) has been found, the amplitude of each mode B(kj)
can be calculated with Eq. (2.4.3).

After the normalization is performed, and the amplitude of the modes has been
found, Eq. (2.3.1) can be calculated. As the equation describes a vector, each
component Bx, By and Bz in the non-rotated system is calculated separately. As
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Figure 3.1: The x-, y- and z-components of two magnetic fields, generated with the
same set of random phases, over a length of 500 pc in the x-direction. The top figure
has Lmax = 10 pc while the lower figure has Lmax = 150 pc The difference in coherence
length is easily visible.

the field is complex, it is needed to keep track of both the real and imaginary values.
The exponent and amplitudes are not vectors and can be multiplied together as
complex scalars. ζ is the only vector in the equation, and is defined for the x′, y′-
plane. Projecting this onto the x, y and z-axis by using the rotation matrix in
Eq. (2.3.3), the polarization in the non-rotated system is found. At last, the total
magnetic field in each direction is found by summing up the product of the complex
scalars and ζ(x/y/z) for all modes. Since the actual turbulent magnetic field is real,
and the field calculated to this point is complex, the final step is to take the real
part of the calculated field. Taking the real part of the field is accounted for in
Eq. (2.4.7), and why this can be done is explained in section 2.4. Figure 3.1 shows
two example magnetic fields that were generated using the same random phases,
but different coherence lengths, plotted for a straight trajectory of 500 pc in the
x-direction.

3.1.2 Cosmic Ray Initialization

The initial condition of each simulated CR was set in two steps. The mass, charge
and energy of each particle was set before compilation of the program. The initial
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position was always chosen, in this chapter, as the center of the coordinate system,
i.e. x0 = {0, 0, 0}. This left only the CRs’ velocity to be decided. The velocities
had to be chosen in a random direction, uniformly distributed on a sphere in three-
dimensional Euclidean space. As such the same probability distribution was used
for the velocity, as was used for the random modes in section 2.5, listed in table
2.1. Implementing this, the velocities where chosen as

vx = v cos(Φ) sin(Θ),

vy = v sin(Φ) sin(Θ),

vz = v cos(Θ),

where the angles are randomly chosen and the speed v was calculated using
v = c

√
1− 1/γ2l . The Lorentz-factor was decided by the mass and energy of

the particle, and was found using γl = E/mc2, where both the mass and energy
were chosen at compile-time.

3.1.3 Calculating Cosmic Ray Trajectories

To calculate the CR trajectories a numerical integrator from Press et al. (2007)
was implemented. Equation (4.2.4) was used as the Ordinary Differential Equation
(ODE), on the form

d2x

dt2
=

q

γlm
v×B (3.1.1)

which calculates dx/dt step by step. Here x is the position vector of the particle.
As it is a vector equation, (3.1.1) gives three actual equations, each dependent
on the two others due to the cross term. The numerical methods tested were
all Runge-Kutta (RK)-methods, and the presented results were simulated using a
Bulirsch-Stoer RK-method.

Finding the position of the CRs through the trajectory was done using that

dx

dt
= v (3.1.2)

where v is the velocity caculated in Eq. (3.1.1).

3.1.4 Determining the Diffusion Tensor and Coefficients

The diffusion coefficient is calculated by Eq. (2.10.2). Since the matrix is symmet-
ric, it is enough to find the upper half, including the diagonal, of the matrix. The
sum in Eq. (2.10.2) was calculated by adding the value for each particle simulated
together in a vector. This was done at each desired point in time (in this report:
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Figure 3.2: A few sample trajectories generated by the RK4-method. All fields are
simulated using a proton with E = 1 · 1016eV, with all axes being in parsec. The
same instance of the magnetic field has been used. The first three plots have a regular
component of 1 µG. The second and third plots also have a turbulent field with Brms =
0.1µG and Lmax = 10 pc and 150 pc respectively. The last two trajectories have Brms =
1µG without a regular field and Lmax = 10 pc and 150 pc respectively.

1, 2, 3, ... , 10, 20, 30, ... , 100, 200, 300, ... , 10n years), for each instance of
the magnetic field. MPI was used to run one instance of the magnetic field on one
thread, for a total of 10 threads calculating and one thread used to add the results
from each instance together.

After completing the sum over the chosen amount of particles, the sum was
divided according to Eq. (2.10.2) and sent to the main thread. When all diffusion
tensors of the different magnetic field instances had been calculated, the diffusion
coefficients, or eigenvalues d

(b)
x , d

(b)
y , d

(b)
z , of all tensors were calculated, as well

as the average diffusion coefficient D(b) from Eq. (2.10.3). To find the average
diffusion coefficients over all instances, all diffusion coefficients were averaged as

di =
1

M

M∑
b=1

d
(b)
i . (3.1.3)

This was done for each point in time where the coefficients had been recorded.
The same method was used to find the average over all instances of the average
diffusion coefficient D.
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Table 3.1: List of parameters used in the simulations of proton diffusion in the
Galactic TMF.

Parameter Value Unit Description
m 938.2720813 MeV/c2 Proton mass

q 1 1.602 · 10−19C
Charge in # of

elementary charges
Brms 4.0 µG TMF RMS strength
M 10 # Number of MF instances
nk 100 # Number of modes
N1 1000 # Number of particles 1
N2 100 # Number of particles 2

Lmax, 1 150 pc Max scale size 1
Lmax, 2 10 pc Max scale size 2
Lmin 0.027 pc Min scale size
rtol1 1 · 10−5 m/s Relative error tolerance 1

atol1/2 rtol1/2 m/s Absolute error tolerance

With all diffusion coefficients dx, dy and dz, as well as all average diffusion
coefficientsD calculated, the values were plotted and the results could be compared
to previous results of the diffusion coefficients.

Results and Discussion

In this section the results of the simulations are presented. They are discussed in
relation to the theory presented in chapter 2 as well as results presented in Giacinti
et al. (2012) and Giacinti et al. (2018). In table 3.1 the different parameters used
in the simulations are listed.

One of the main objectives of this project was to simulate the diffusion of
protons in a turbulent magnetic field. How the diffusion behaves compared to the
theory and previous results is discussed in section 3.2.1 and 3.2.2. Furthermore,
the transition time and amplitude of the results are discussed in sections 3.2.3 and
3.2.4.

3.2.1 Behavior of the Diffusion Coefficients

Diffusion of protons in a turbulent magnetic field has been described in section
2.10. Combining this with the isotropic characteristics of the numerical algorithm
used to generate the turbulent magnetic field, it is expected that the diffusion
is isotropic only when the protons have travelled a distance |r| � Lc. If this is
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the case the diffusion is expected to be approximately equal in all directions, as
the protons experience the turbulent magnetic field as isotropic and homogeneous
under this condition. The diffusion being approximately equal in all directions
means the diffusion coefficients dx, dy and dz are approximately equal.

As long as |r| . a few Lc the protons experience the field as approximately
constant. For a randomly generated turbulence, this suggests that a proton start-
ing from the origin interacts with a magnetic field in a certain direction. The
diffusion under this condition is then expected to be biased in a random direction.
In terms of the diffusion coefficients, they are expected to diverge in this period.

In the middle of the two previous assumptions, i.e. where |r| ∼ a few Lc, the
divergence is expected to stop, and the diffusion coefficents should start converging.
However, they should not reach convergence before having travelled several Lc.

Figure 3.3 shows the calculated diffusion tensor for 1000 protons simulated
for 1 · 105 years, averaged over 10 instances of the turbulent magnetic field. The
overall impression is that the diffusion behaves as expected. In the beginning
of the simulation the protons propagate in the turbulent magnetic field under
the condition |r| . a few Lc. The theoretical expectation is met as the diffusion
coefficients diverge. It does, however, take some time before d1 and d2 diverge from
each other, and they follow the same trajectory until t ' 10 years. They continue
diverging until t ' 4 · 102 years. After this all three coefficients are increasing,
with d1 and d2 increasing rapidly compared to d3. Still, d3 increases steadily
through this entire period. When t ' 1 · 103 years, d3 starts decreasing. At this
point d2 has mostly flattened out, while d1 is still increasing. In total this is
the point where the diffusion coefficients begin converging. This indicates that
|r| > ∼a few Lc. From this point forward the coefficients continue converging
until t ' 9 · 104 years, where they flatten out. There is still a difference between
the three coefficients after they have stopped converging, with the average diffusion
coefficient D = 1.19 · 1029 cm2/s. The largest difference is between d1 and d3, and
is a factor d3/d1 ∼ 10. As the diffusion coefficients are of the scale ∼ 1 · 1028 cm2/s,
a factor difference of 10 is significant. Another way to look at it, is to say that the
protons diffuse 10 times more in the dz-direction than in the dx-direction. This
difference suggests the field is anisotropic even after 1 · 105 years, with the particles
travelling a distance |r| � Lc. From the theory in section 2.10 this anisotropy is
not expected.

Comparing the result in figure 3.3 to figure 1 in Giacinti et al. (2012) (see figure
C.1 in Appendix C), where the same values for Brms, Lmax, γ and E are used, the
behavior of the coefficients are similar. The graph in Giacinti et al. (2012) starts
at t = 1 · 102 years and ends at t = 1 · 105 years, and thus doesn’t show how the
coefficients behave in the earliest stages of the simulation. Within the period shown
in both graphs the behavior of the diffusion coefficients is practically identical,
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Figure 3.3: Eigenvalues of the diffusion tensor of a proton with E = 1 PeV and
Lmax = 15 pc. d1, d2 and d3 are the diffusion coefficients in the x-, y− and z-directions
respectively. The dotted line is the average diffusion coefficient calculated with Eq.
(2.10.3). The same layout is used for all diffusion tensor plots.

showing strong anisotropy in the earliest years, and converging to more isotropic
behavior towards the end. The same flattening of the coefficients happen close
to t = 1 · 105 years in both graphs, with neither graph reaching proper isotropic
condition of d1 = d2 = d3. In Giacinti et al. (2018) the factor d3/d1 ∼ 3.5. While
this factor is smaller than the factor d3/d1 ∼ 10 derived from figure 3.3, it still
shows a significant difference from the isotropic condition.

To further examine the behavior of the diffusion coefficients, simulations for
higher energies were conducted. The results for Lmax = 150 pc are shown in figure
3.4. The anisotropic behavior in the early times apparently drops off drastically
from E = 10 PeV to E = 100 PeV. Using Eq. (2.6.2) looking at dv

dt
∝ γ−1l ,

assuming the total velocity and Brms are constant, the change in momentum is
expected to decrease with a higher γl. Since higher energy is equivalent with a
higher γl, it is then expected that dv

dt
becomes smaller. As the particles simulated

all start with a velocity in a random direction it is to be expected that anisotropic
behavior is less apparent at higher energies. Giacinti et al. (2012) figure 3 (see
figure C.3 in Appendix C)includes E = 10 PeV as the highest energy. Comparing
this to the second panel in figure 3.4 the anisotropy is found to be smaller in
Giacinti et al. (2012) than what is found here. Deriving the factors d3/d1 and
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(a) E = 1 PeV (b) E = 10 PeV

(c) E = 100 PeV (d) E = 1000 PeV

Figure 3.4: Comparison of the diffusion tensor for different energies when Lmax =
150pc. The energies range from E = 1 PeV in the upper left panel to E = 1000 PeV in
the lower right panel.

comparing them, approximately the same relation is found as was found for E =
1 PeV.

While the anisotropic behavior of the diffusion coefficients compares excellently
to Giacinti et al. (2012), both finding d3/d1 ∼a few hundred, there is still a dis-
agreement with the theory regarding the isotropic limit. As stated in section 2.5
proper isotropy is only achieved using an infinite amount of Fourier modes. As the
numerical approximation has to use a discrete, finite set of modes, this will induce
an error compared to the theory. The more modes are used, the less error should
be induced in the approximation. Andersen (2017) finds that using nk = 500
modes should give a high degree of isotropy, while nk = 100 should provide a
sufficient degree of isotropy. A second, likely error source is the RK-solver. Each
step is calculated using a step-size control that measures the local truncation error,
demanding it to be within the limits rtol and atol. As the local truncation error is
calculated using the total velocity change, there could be errors in the components
of the velocities that are not identified. On the other hand, it could be argued that
the errors should cancel when calculating the total velocity from the components.
A counterargument to this again, is that the errors could cancel each other if for
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(a) E = 1 PeV, Lmax = 150 pc (b) E = 1 PeV, Lmax = 10 pc

(c) E = 10 PeV, Lmax = 150 pc (d) E = 10 PeV, Lmax = 10 pc

Figure 3.5: Comparison of the diffusion tensor when Lmax is changed from 150 to 10 pc
for E = 1 PeV and E = 10 PeV. The lower energy is plotted in the two upper figures,
while the higher energy is plotted in the two lower figures. Legend is the same as in
figure 3.3.

example vx is less than it should be and vy is larger than it should, assuming vz
to be correct.

The approximation of an isotropic turbulent magnetic field using Eq. (2.3.1)
and possible numerical errors in the implementation of the RK-solver then seem
like the major contributors to the anisotropy shown in the graphs of figure 3.4
at t = 1 · 105 years. Another source that is not to be written off is a simple
programming error in the code. This could be anything from a constant being
multiplied incorrectly to some undiscovered systematic mistake. One major error
was found in the code towards the end of the project, along with several minor
mistakes. This suggests there could be more mistakes in the program, but the
behavior of the diffusion tensor suggests they would likely be minor. One last
source of error to be mentioned is the possibility of numerical errors. As the
program handles numbers spanning from ∼ 1 · 10−17 m to ∼ 1 · 1030 cm2/s, there
could be overflow when converting from one unit to the other, or when multiplying
different factors together. Such overflows are expected to be handled by imposing
a constraint on the local truncation error, but it should still be considered as a
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possible source of error.
To further investigate the behavior of the diffusion coefficients, the simulations

were run with different values for Lmax and Lmin. For the two values considered for
Lmax, two cases were tested for Lmin. The first value tested was Lmin = 0.027 pc,
or Rg(E = 1 PeV)/10. The second value was Rg(E = 1 PeV)/105. Changing Lmin

was found to have no major effect on the diffusion tensor, and the final simulations
were done using a constant Lmin = Rg(E = 1 PeV)/10. This find is not surprising,
as the small scale size Fourier modes only contribute minor perturbations to the
turbulent magnetic field compared to the larger scale size modes. On the other
hand it was important to test the scenario for Lmax = 10 pc, as claiming this fulfills
the condition Lmax � Lmin would be dubious without testing.

In figure 3.5 the diffusion coefficients for E = 1 PeV and E = 10 PeV are
compared when Lmax is varied. For the lower energy the anisotropy is prominent
for both values of Lmax. However, the transition seems to happen earlier for
Lmax = 10 pc. The transition time will be further discussed in section 3.2.3. There
also seems to be a declining trend for the diffusion coefficients in this case, instead
of convergence. When the energy is increased, the prominence of the anisotropic
behavior rapidly declines for the lowest value of Lmax. However, it is still visible
and happens at the same time as for the lower energy. As previously discussed,
the magnitude of the anisotropy decreasing with higher energy is to be expected.
When the scale size is reduced, so is the coherence length. When the energy
is then increased, the number of coherence lengths travelled over a given period
is proportionally increased. This suggests that the anisotropic behavior should
indeed decrease more rapidly for smaller Lmax.

3.2.2 Filamentary Structure in the Intensity Plots

To visualize what the diffusion would look like, intensity plots were made by pro-
jecting the protons onto the xy-plane. These plots could then present how the
diffusion evolved for the given energies and coherence lengths.

Figure 3.6 shows the intensity plot from the same simulation used to produce
the graph in figure 3.3. The position of the protons are presented at t = 1000 years,
t = 2000 years and t = 7000 years. The filamentary structure is clearly shown in
the first two panels, while the third panel shows how the protons have transitioned
to an isotropic-like diffusion. The filamentary structures are expected while the
protons are in the anisotropic regime, as they are forced in a certain direction
until the effects of the turbulent magnetic field averages out. This is also in
agreement with Giacinti et al. (2012), who finds the same filamentary structures
in the anisotropic regime. Comparing the time where the proton positions were
recorded to the diffusion coefficients in figure 3.3, the two first panels are found
to be within the anisotropic regime, while the third panel is in the approximately
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Figure 3.6: Intensity plot of 1000 protons’ position projected onto the xy-plane. A
brighter color means more particles are projected onto that area. In this plot E =
1 PeV and Lmax = 150 pc. The positions are recorded, from left to right, at times
t = 1000 years, t = 2000 years and t = 7000 years, to show how the diffusion develops
over time. The x and y axes are in parsec, and are scaled with respect to the furthest
propagated particles in each direction.

isotropic regime.
To evaluate the findings from figure 3.4, the intensity plots for the same simu-

lations were generated and are presented in figure 3.7. For the two lower energies
the filamentary structures are clearly visible. When the energy is increased this
behavior is less prominent. Comparing this to what was found for the diffusion
coefficients, both results are in agreement with the theory and expectancy. The
same behavior with respect to energy is found in Giacinti et al. (2012) figure 2 (see
Figure C.2 in Appendix C), where intensity plots of protons with E = 0.1−10 PeV
projected onto the xy-plane after t = 500 years, t = 2000 years and t = 7000 years.
Comparing the behavior of the intensity plots, the filamentary structure is found
in both cases.

For the different energy levels in figure 3.7, the protons are found to have
travelled longer for higher energies. This is to be expected, as higher energy is
equivalent of higher momentum. One thing to note is that for all three energies
the particles seem to travel proportionally the same distance in the first two panels,
with respect to the third. As the time difference between the panels is constant,
this suggests the diffusion scales like D(E) ∝ Eβ as suggested in section 2.10, with
β = 1/3 or 2, depending on the diffusion regime.

Considering the results from figure 3.5, comparing the diffusion when chang-
ing Lmax from 150 pc to 10 pc, the anisotropic behavior is expected to be less
prominent. This comparison is shown in figure A.2, comparing the diffusion when
E = 1 PeV and E = 10 PeV. For Lmax = 10 pc it is hard to recognize any

29



CHAPTER 3. IMPLEMENTATION OF COSMIC RAY DIFFUSION SIMULATION

Figure 3.7: Comparison of the diffusion of protons in the xy-plane at different energies.
The proton positions are recorded at t = 400 years, t = 1000 years and t = 7000 years,
with time increasing for each row. The energy starts at E = 1 PeV in the first column,
ending with E = 1000 PeV in the rightmost column. Each column increases the energy
by a factor of 10. The x- and y-axes are in parsecs, and are scaled with respect to the
furthest propagated particles in each direction.

anisotropic behavior at all. There seem to be no apparent filamentary structures.
One probable explanation for this, when considering the result shown in figure
A.1, is that the transition time might already have passed after 500 years. The
protons seem to be transitioning to the isotropic regime already after t = 50 years.
Comparing this with the diffusion coefficients in figure 3.5, 300 years seem to be
enough for the lower scale size field to become isotropic.

3.2.3 Transition Time

In sections 3.2.1 and 3.2.2 the behavior of the diffusion protons is discussed, with-
out looking extensively at the time frame. From the intensity plots, Figures 3.6,
A.1 and A.2, it is shown that higher energy protons enter the isotropic regime
earlier than lower energy particles. The same was also shown in the case where
the scale size was decreased. This seems to suggest the transition time decreases
when the energy is increased or the scale size is decreased. As the average diffu-
sion coefficient increases with increased energy, it reads from Eq. (2.11.1) that the
transition time should increase.

From figure 3.4 the transition time can be seen as the point where diffusion
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coefficients begin converging. it is clear from the figure that the anisotropic di-
vergence of the coefficients arise later with higher energy. However, the point on
the graphs where the coefficients start converging doesn’t seem to change until the
highest energy simulated, E = 1000 PeV.

Seemingly, there is an inconsistency between the results regarding the transition
time. One possible reason for this, is that the diffusion time doesn’t actually scale
as given in Eq. (2.11.1). In the discussion of Giacinti et al. (2012) Figure 2 (figure
C.2 in Appendix C) the scaling is said to be t ∝ 1/D(E), while the transition time
is earlier in the same paper given as in Eq. (2.11.1). A scaling of t ∝ 1/D(E)
seems more consistent with the behavior shown in the intensity plots both here
and in Giacinti et al. (2012), while the behavior expected from equation 2.11.1 is
apparent in figure 3.4.

3.2.4 The Average Diffusion Coefficient

From Eq. (2.10.4) the expected average value of the diffusion coefficients can be
calculated. This value gives the expected value of the average diffusion coefficient
after the CRs have travelled a distance |r| � Lc and have entered the diffusive
regime.

Figure 3.8 shows the average diffusion coefficients found from the simulations,

Figure 3.8: Average Diffusion coefficients after the diffusion has entered the isotropic
regime, i.e. long after the transition time τ . The simulated energies are given by the
solid lines, with the values recorded at the markers.
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plotted against the theoretical values given by Eq. (2.10.4). The values for both the
theoretical and simulated diffusion coefficients, at the energies of the simulations,
are listed in Table 3.2. For both values of Lmax the behavior of the simulated values
is equivalent to that of the theoretical value. From the behavior seen throughout
section 3.2.1 this is expected. One notable difference is how the transformation
from β = 1/3 to β = 2 occurs. Compared to the theoretical transformation the
simulated transformation is slower, i.e. the transformation happens over a longer
energy-interval. For Lmax = 150 pc the transformation starts at approximately
E = 5 PeV and ends at approximately E = 40 PeV. The simulated value shows
little to no sign of having started transforming at E = 10 PeV. However, it seems
to have transformed when it reaches 100 PeV. The values after the transformations
are overall lower for the simulations, while they are higher before the transforma-
tion. The same applies for the Lmax = 10 pc case. The transformation also starts
at a slightly higher energy in this case, just as it did for Lmax = 150 pc.

As the behavior of the average diffusion coefficients is equal to that of the
theoretical diffusion coefficients, it seems unlikely that there are systematical er-
rors in the simulations. There could be some errors linked to units or constants,
although such errors should be independent of the energy and thus contribute a
constant error. A more logical explanation would be the numerical accuracy of the
simulation. As the turbulent magnetic field is based on a theory where an infinite
amount of wave-modes are needed to perfectly produce the turbulence, any finite
approximation of this would suffer in accuracy. For these simulation a sufficiently
high number of modes have been used, and as such the accuracy should be of a
high standard. However, this is just the accuracy of the presentation of the tur-
bulent magnetic field. A numerical error could also be present in the integrator,
which in fact is guaranteed to have a certain amount of error. Combining both
of these error-sources, it is then expected that there are numerical errors in the
results. Based on this it seems reasonable that the majority of the error seen in
Figure 3.8 can be accounted to numerical errors.

It could also be argued that the diffusion functional in Eq. (2.10.4) is inaccurate
to a certain degree, as it is based on the assumption of the Kolmogorov spectrum.
While this could mean that the diffusion functional includes some inaccuracy, the
algorithm implemented to calculate the turbulent magnetic field follow the same
spectrum. As such, any inaccuracies from the diffusion functional should be equal
in the implementation of the turbulent magnetic field.

From the values for the diffusion coefficients given in Table 3.2, the ratio of the
theoretical to measured diffusion coefficient can be calculated as f = Ds/Dt where
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Table 3.2: List of calculated values for the theoretical diffusion functional Dt given in
Eq. (2.10.4), together with the values Ds found from the simulations, long after the

transition time.

E[PeV] Lmax[pc] L0[pc] Rg[pc] Df [cm2/y] Dm[cm2/y]
1 10 0.32 0.27 1.54 · 1028 2.37 · 1028

10 10 0.32 2.73 7.93 · 1029 3.22 · 1029

100 10 0.32 27.25 7.18 · 1031 3.71 · 1031

1000 10 0.32 272.52 7.10 · 1033 5.87 · 1033

1 150 4.77 0.27 5.71 · 1028 1.03 · 1029

10 150 4.77 2.73 1.31 · 1029 2.96 · 1029

100 150 4.77 27.25 5.55 · 1030 2.37 · 1030

1000 150 4.77 272.52 4.80 · 1032 2.64 · 1032

Ds is the simulated value and Dt. Using Lmax = 150 pc this ratio is calculated to

f(E = 1 PeV) = 1.78,

f(E = 10 PeV) = 2.25,

f(E = 100 PeV) = 0.43,

f(E = 1000 PeV) = 0.55

To look at the relative difference, it is interesting to compare the inverse of the
two latter values to the two first values. This gives

f(E = 1 PeV) = 1.78,

f(E = 10 PeV) = 2.25,

f−1(E = 100 PeV) = 2.33,

f−1(E = 1000 PeV) = 1.82

which gives an indication that during the transformation the values differ slightly
more than they do before and after the transformation happens. However, in all
three regimes the values differ within reason of numerical errors.

Comparing the behavior and values to Figure 1 from Giacinti et al. (2018)
(Figure C.4 in Appendix C), both the values and behavior are in close agreement
with the expected values. The closest magnetic field value from Giacinti et al.
(2018) to the values used for this report, are the yellow points which uses B = 5 µG
and Lmax = 25 pc. Since the value used here is B = 4 µG and Lmax = 10 pc,
the transformation is expected to happen approximately at the same energies.
Comparing Figure C.4 to Figure 3.8, it is found that both transformations starts
at approximately E = 0.2 PeV and ends at approximately E = 4 PeV.

33



CHAPTER 3. IMPLEMENTATION OF COSMIC RAY DIFFUSION SIMULATION

While there are still some numerical errors in the simulation of the diffusion of
the CRs, the behavior and amplitudes of the diffusion coefficients are well within
acceptable ranges.
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CHAPTER 4

HAMILTONIAN GUIDING CENTER THEORY

Hamiltonian GCT derives the EoM of the guiding center using the Lagrangian and
Hamiltonian formalisms. Applied to charged particles in electromagnetic fields,
it will under certain assumptions describe the trajectories of the guiding center
through the particles helical movement about the magnetic field lines. This chapter
will closely follow Cary and Brizard (2009) Ch. II and II.

Lagrangian and Hamiltonian formalism

The Euler-Lagrange equations are given on their general form as

d

dt

(
∂L

∂q̇i

)
=
∂L

∂qi
(4.1.1)

where q are the generalized coordinates and q̇ are the time-derivatives. For a
charged particle in an electromagnetic field the Lagrangian is given, in Cartesian
coordinates, as

L =
m

2
|ẋ|2 + q ẋ ·A (x, t)− qΦ (x, t) (4.1.2)

(Cary and Brizard, 2009, ch. II-A). Here A is the vector potential and Φ the
electric field potential, giving the electromagnetic field as

E = −∇Φ− ∂A

∂t
, (4.1.3)

B = ∇×A (4.1.4)

(Griffiths, 2013, p. 416-417). Going forward the derivation of the GC EoM will
follow Cary and Brizard (2009), Ch. II and III, using SI-units instead of cgs-units.
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This leads to some factors of c being left out in the equations given in this paper,
compared to the equations in Cary and Brizard (2009).

The Lagrangian formalism is coordinate independent, meaning the action in-
tegral

A[x] =

∫
L (x, ẋ; t) dt (4.1.5)

can be calculated in any coordinate system. Allowed trajectories of the Lagrangian
satisfy the statement ∂A = 0, which can be stated without reference to any certain
coordinate system. To transform from the Lagrangian in Eq. (4.1.2) to the general
coordinates q, the substitutions

x → x (q, t) , (4.1.6)

ẋ =
∂x

∂t
+
∑

q̇i
∂x

∂qi
(4.1.7)

are applied. Now Eq. (4.1.1) can be expressed in the desired, convenient coor-
dinates of choice. Furthermore, the canonical momentum p can be defined as

pi =
∂L

∂q̇i
(q, ẋ, t) (4.1.8)

with pi being the individual components. Whenever Eq. (4.1.8) can be inverted to
find the velocities as functions of the canonical momenta, q̇i (q,p, t), Hamiltonian
formalism may be used. In this formalism points in phase space is determined by
q and p instead of q and q̇. The Hamiltonian is defined through the Legendre
transformation as

H (q,p, t) = p · q̇ (q,p, t)− L [q, q̇ (q,p, t) , t] (4.1.9)

and the EoM are Hamilton’s equations

q̇i =
∂H

∂pi
, (4.1.10)

ṗi = −∂H
∂qi

. (4.1.11)

In Cartesian coordinates, for a charged particle in an electromagnetic field, the
corresponding Hamiltonian is

H (x,p, t) =
1

2m
|p− qA (x, t)|2 + qΦ (x, t) (4.1.12)

with the canonical momenta from Eq. (4.1.8) pi = mẋi + qAi.
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Noncanonical Guiding-Center Lagrangian

In the Lagrangian formalism it is possible to make arbitrary coordinate transforma-
tions. A Lagrangian that gives the correct EoM when all phase-space coordinates
is varied, is called the phase-space Lagrangian L. It has the same value as the
Lagrangian L, and can be defined from Eq. (4.1.9) as

L (q,p, q̇, ṗ, t) ≡ p · q̇−H (q,p, t) . (4.2.1)

Inserting Eq. (4.1.12) into Eq. (4.2.1), the phase-space Lagrangian

L = p · ẋ− 1

2m
|p− qA (x, t)|2 − qΦ (x, t) (4.2.2)

for a particle moving in an electromagnetic field. Defining the particle velocity
v ≡ 1

m
(p− qA), the phase-space Lagrangian for the noncanonical variables (x,v)

L = (mv + qA) · ẋ−
(
qΦ +

m

2
|v|2
)

(4.2.3)

is found. Solving the Euler-Lagrange equation for L with respect to v gives the
identity v = ẋ. Solving Eq. (4.1.1) with respect to x yields

mv̇ = qE + qv×B, (4.2.4)

which is recognized as the Lorentz force on a charged particle.
To derive a Lagrangian for the GC a transformation to alternative phase-space

coordinates is sought, where the degree of freedom corresponding to the gyromo-
tion is absent in the EoM. The transformation is found assuming the gyroradius
is small, and the field is slowly varying. An ordering parameter ε is applied to the
Lagrangian in Eq. (4.2.3) such that q/m ≡ ε−1 = Ω/B. The ordered Lagrangian
then becomes

L (x,v, t) =
(
ε−1A (x, t) + v

)
· ẋ−

(
1

2
|v|2 + ε−1Φ (x, t)

)
. (4.2.5)

The ordering parameter is chosen such that in the limit when ε is small, the
electromagnetic field dominates, as the kinetic energy terms are of order 1 with
respect to ε. Evaluating the lowest order motion, the O (ε−1) terms are kept giving
the lowest-order Lagrangian L−1 ≡ A · ẋ−Φ. Solving the Euler-Lagrange equation
for L−1 gives

ẋ×B + E = 0 (4.2.6)

which determines that the perpendicular velocity is equal to the electric drift, i.e.
ẋ⊥ = vE. A transformation of the position variable on the form

x = X + ερ (4.2.7)
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is expected to work. Here x is the coordinate of the particle, X is the GC coordinate
and ρ is the gyroradius displacement. The displacement vector is defined as ρ ≡
ρ̃ + ρ̄ where ρ̃ is explicitly dependent on the gyrophase ζ and ρ̄ is gyrophase
independent. To apply the transformation in Eq. (4.2.7) to the Lagrangian, the
time derivative

ẋ = Ẋ + ρ̇ (4.2.8)

is needed. Here

ρ̇ = ζ̇
∂ρ̃

∂ζ
+ ε
(
v · ∇ρ̃+ ˙̄ρ

)
=

w

B
ζ̇ +O (ε) (4.2.9)

where w = v⊥ − vE is the perpendicular velocity in the local frame drifting with
E×B. Using Eq. (4.2.7) and Eq. (4.2.8) to expand the field quantities (A,Φ) to
the zeroth order, inserting it into Eq. (4.2.5) gives

L = ε−1
[
A ·
(
Ẋ + ρ̇

)
− Φ

]
+ ρ ·

[
∇ ·A ·

(
Ẋ + ρ̇

)
−∇Φ

]
+v ·

(
Ẋ + ρ̇

)
− |v|

2

2
+O (ε) . (4.2.10)

From this point (A,Φ) are evaluated at the GC position X, with the gradient also
taken with respect to X.

To remove the gyrophase-dependence of the Lagrangian in Eq. (4.2.10), the
second term ε−1A·ρ̇ needs to be pushed to a higher order. Excluding the exact time
derivative in the expansion and excluding terms of O (ε), Eq. (4.2.10) becomes

L = ε−1
(
A · Ẋ− Φ

)
+ρ·

(
E + Ẋ×B

)
+ρ·∇A·ρ̇+v ·

(
Ẋ + ρ̇

)
− |v|

2

2
. (4.2.11)

Using the exact derivative of the third term, still excluding terms of O (ε), the
Lagrangian is written as

L = ε−1
(
A · Ẋ− Φ

)
+ρ·

(
E + Ẋ×B

)
+

1

2
ρ×ρ̇·B+v·

(
Ẋ + ρ̇

)
−|v|

2

2
. (4.2.12)

The terms ρ ·
(
E + Ẋ×B

)
are representative of the electric dipole contribution

to the GC polarization and magnetization respectively. Furthermore, the latterly
derived term 1

2
ρ× ρ̇ ·B describes the intrinsic magnetic dipole contribution to the

GC magnetization. Introducing the transformation

ρ ≡ ρ̃+ ρ̄ = b̂× w

B
+

E⊥
B2

(4.2.13)
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where b̂ is the magnetic field unit vector, defining the GC velocity u ≡ v‖ +O (ε),

and using ρ̃·E = w·vE as well as ρ̄·E = |vE|2, the ordered phase-space Lagrangian
can be written as

L =
(
ε−1A + ub̂

)
· Ẋ +

(
|w|2

2B
+ vE ·

w

2B

)
ζ̇ −

(
ε−1Φ +

u2

2
+
|w|2

2
− |vE|

2

2

)
.

(4.2.14)
Finally, subtracting the total time derivative of the last O(1) gyrophase-dependent
term, vE · (w/2B) ζ̇, and omitting all terms of O (ε), the dimensionless GC La-
grangian

L =
(
ε−1A + ub̂

)
Ẋ + Jζ̇ −Hgc ≡ L (X, u, µ, ζ, t) (4.2.15)

is found. Here the gyroaction is defined as J ≡ w2/2B, and the GC Hamiltonian
is

Hgc (X, u, µ, ζ, t) = ε−1Φ + JΩ +
u2

2
− |vE|

2

2
. (4.2.16)

Guiding Center Equations of Motion

In summary of section 4 the essential new variables are the GC position X, the
GC velocity u and the gyrophase ζ. In Eq. (4.2.15) L is given as a function of µ,
where

µ ≡ m|w|2

2B
(4.3.1)

defines the lowest-order magnetic moment. It is linked to the gyroaction by J ≡
(m/q)µ. The Hamilton equations for J and ζ are

J̇ = −∂Hgc

∂ζ
≡ 0, (4.3.2)

ζ̇ =
∂Hgc

∂J
≡ Ω. (4.3.3)

This shows that the gyroaction is conserved by the GC EoM. While µ appears in
the EoM, it is only a dynamical parameter and not an actual variable. As only
the time derivative of ζ appears in the EoM, and because it is constant, it can be
ignored in the GC Lagrangian as it does not affect the EoM of the other variables.

Solving Eq. (4.1.1) with respect to u

0 =
∂L
∂u

= mb̂ · Ẋ− ∂Hgc

∂u
, (4.3.4)

which gives
u ≡ b̂ (X, t) · Ẋ. (4.3.5)
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Next solving Eq. (4.1.1) with respect to X and manipulating it in the same manner
as for Eq. (4.2.3) to find Eq. (4.2.4),

mu̇b̂ = qE− µ∇B +
m

2
∇|vE|2 −mu

∂b̂

∂t
+ Ẋ×

(
qB +mu∇× b̂

)
≡ q

(
E∗ + Ẋ×B∗

)
. (4.3.6)

Here the effective electromagnetic fields

E∗ ≡ −∇Φ∗ − ∂A∗

∂t
(4.3.7)

and
B∗ ≡ ∇×A∗ (4.3.8)

are defined in terms of the effective electromagnetic potentials

qΦ∗ ≡ qΦ + µB − m

2
|vE|2 (4.3.9)

and
A∗ ≡ A +

mu

q
b̂. (4.3.10)

To find the rate of change of u, the dot product of Eq. (4.3.6) with B∗ is taken,
yielding

u̇ = − B∗

mB∗‖
·
(
∇Hgc + q

∂A∗

∂t

)
≡ q

m

B∗

B∗‖
· E∗, (4.3.11)

where B∗‖ ≡ b̂ ·B∗ is the effective magnetic field in the direction parallel to B∗.

Finally the GC velocity is found by taking the vector product of Eq. (4.3.6)
with b̂ and using Eq. (4.3.5) to get

Ẋ =
B∗

mB∗‖

∂Hgc

∂u
+

b̂

mB∗‖
×
(
∇Hgc + q

∂A∗

∂t

)
= u

B∗

B∗‖
+ E∗× b̂

B∗‖
. (4.3.12)

Eqs. (4.3.11) and (4.3.12) constitutes the EoM for the GC, and are in principle the
only equations needed to find the trajectories of the GC. In addition, Eq. (4.3.3)
is needed if the particle position along the helix is wanted.
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CHAPTER 5

NUMERICAL IMPLEMENTATION OF THE GUIDING

CENTER THEORY

In the following chapter the implementation of the GC EoM in a numerical solver
is described, along with the results of the simulations performed using this imple-
mentation. The code for this project was written in C++. The integrator and
RNG were taken from Press et al. (2007). All other code, as well as the modifi-
cations to the integrator, was written by the author of this report. The complete
code can be found at Github.com/odde92/master thesis. It is worth noting that
all vector values, e.g. v, are programmed as arrays with 3 values, where the values
are stored component-wise as A = {Ax, Ay, Az}.

Implementation of the Guiding Center Equations

of Motion

5.1.1 Initialization

To make comparing the GC trajectory to the exact trajectory easy, the GC is
initialized using the same particle that would be used in the exact solution. In
this program the energy and type of particle, as well as the starting position,
is chosen before running the simulation. As such it is only the direction of the
particle’s velocity that is randomly generated at run-time. After initializing the
particle in the same manner as described in section 3.1.2, the magnetic field is
initialized and calculated at the particle’s starting position. Then, using

Ẋ = ẋ · b̂ (5.1.1)
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as the initial condition, the GC velocity is set.
Finding the GC starting position now becomes a 5-step process. First the

amplitude of the particle’s velocity perpendicular to b̂ is calculated. The initial

condition for the GC velocity is chosen as
∣∣∣Ẋ∣∣∣ = v‖, such that the perpendicular

velocity can be found by v⊥ =
√
v2 − v2‖. With v⊥ calculated, the Larmor radius

can be found using (2.9.2). The third step is to calculate

v⊥ = v − v‖. (5.1.2)

As v‖ is aligned with b̂, and v is initialized with the particle, v⊥ is known. Next,
the vector pointing from the particle’s position towards the center of the helix is
defined as a = v⊥ × b̂, and the normalized vector is â = a/a. The final step is to
take a step of length RL in the direction of â,

X = RL · â. (5.1.3)

5.1.2 Guiding Center Propagation

After completing the initialization of the GC, the integrator has to be initialized.
This only requires the initial-values calculated in section 5.1.1. After setting the
initial values, the integrator-object is created, taking the magnetic field, particle
and GC as members. When the integrator-object has been initialized, it is passed
to the integrator itself. The integrators from Press et al. (2007) enables easy
swapping of integrators, and the integration method used to generate the results
of this report is the Bulirsch-Stoer RK method. This is a step-size controlling
integration method, meaning it will decide on a proper time-step given an error-
tolerance threshold.

The RK methods use several substeps to perform one step in the integration.
At each of these substeps the integrator calls a function from the integrator-object
to calculate the derivative values. The derivates needed are the ones from Eqs.
(4.3.11) and (4.3.12). At each substep several calculations are needed to find the
derivative values used in the equation. First the magnetic field and b̂ at the substep
is calculated. After this ∂ib̂ is calculated for i ∈ (x, y, z), using a first-order forward
difference scheme. The step size of the differential is calculated using h = u ·∆t,
where ∆t is the time-step decided by the integrator. Now the effective fields E∗

and B∗ can be calculated.
The effective electric field E∗ is calculated assuming µ is a constant at each

point. Inserting this into Eq. (4.3.7), inserting Eq. (4.3.9) and using E = 0 =⇒
{vE = 0,Φ = 0},

E∗ = −µ
q
∇B (5.1.4)
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Table 5.1: List of variables, and their units, used in the simulation of the guiding
center trajectories in the Galactic magnetic field.

Parameter Unit Description
X pc In/output GC position
X m GC position during integration

Ẋ m s−1 GC velocity during integration

u m s−1 GC velocity in b̂-direction
m MeV/c2 CR mass
q e CR charge
B0 µG Coherent magnetic field strength
Brms µG turbulent magnetic field RMS strength
B∗ µG Effective magnetic field
E∗ V m−1 Effective electric field

gives the three equations for the effective electric field. From Eqs. (4.3.8) and
(4.3.10), the effective magnetic field

B∗ = B +
m

q
∇× ub̂ (5.1.5)

is found. To calculate the last term, the identity ∇× ub̂ = u
(
∇× b̂

)
+ (∇u)× b̂

is used to break the equation into parts that are possible to calculate. ∇× b̂ is
known as ∂ib̂ is already determined. Finding ∇u is done using Eq. (4.3.5) and the
fact that ∇Ẋ = 0, giving

∇u =
∑
i

(
Ẋ · ∂ib̂

)
î (5.1.6)

with i ∈ (x, y, z). With E∗, B∗ and b̂ determined, Eq. (4.3.12) can be implemented
after calculating E∗× b̂. The last EoM to solve is Eq. (4.3.11), which is dependent
on B∗ · E∗. Both fields are of course known, effectively solving the equation.

With all parts in the EoM determined, they are then implemented in the
integrator-object and passed to the integrator. The output is saved after each
step calculated by the integrator and written to a file at the end of the integra-
tion. This sets a limit for the number of steps possible to take, based on how much
memory is available. However, any trajectories with that many steps is most likely
using an error tolerance that is too low, or is being run for an exceedingly long
period of time.

43



CHAPTER 5. NUMERICAL IMPLEMENTATION OF THE GUIDING CENTER THEORY

5.1.3 Units

Keeping track of the correct units can be cumbersome. In the code for this project
the integration is done in SI-units. However, the input is taken in more convenient
units, and conversion coefficients are needed in the EoM. Table 5.1 lists the vari-
ables used, and what units they were given in the program. Due to the nature of
the equations, inserting the conversion coefficient is quite cumbersome compared
to the units in the exact solution. In table 5.2 the conversion units are listed. For
the GC velocity, Eq. (4.3.12), the magnetic field units cancel and the unit of the
first term is the unit of u, m s−1. In the second term E∗ has units V m−1, while B∗‖
has unit µG. To get this in m s−1 as for the first term, µG is converted to Tesla.

All equations where either m/q or q/m appears, the equation is multiplied with
the kg/C→ MeV/c2e conversion coefficient or its inverse. Whenever q appears by
itself the conversion coefficient for Coulomb to Elementary charge is used. Finally
meter to parsec is used on the initial position, and parsec to meter is used when
converting the output of the integrator to the final output of the program.

Table 5.2: Conversion coefficients between the input and integration parameters used
in the program.

Conversion coefficient Value Description
m→ pc 3.240 78 · 10−17 Meter to Parsec
pc→ m 3.085 68 · 1016 Parsec to Meter
µG→ T 1 · 1010 Microgauss to Tesla
C→ e 6.241 51 · 1018 Coulomb to Elementary Charge

kg/C→ MeV/c2e 1.165 80 · 10−11 Mass per Charge coefficient
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Results of Guiding Center Simulations

To test the implementation of the Hamiltonian GCT, different tests were run using
different magnetic fields. The first step in testing the Hamiltonian GCT was to
apply it to simulations of CRs in a uniform field with constant field strength. If
this succeeded, the theory could then be implemented in more complex fields, such
as a spiral field and a uniform field in superposition with a turbulence. Table 5.3
lists the static variables used during the simulations. These variables are used for
all Figures throughout this chapter unless it is otherwise stated in the Figure text.

Table 5.3: List of static parameters used in the simulation of the Guiding Center
trajectories in the Galactic magnetic field.

Parameter Value Unit Description
m 938.2720813 MeV/c2 Proton mass

q 1 1.602 · 10−19 C
Charge in # of

elementary charges
B0 10.0 µG Coherent magnetic field strength
Brms %B0 µG TMF RMS strength
Lmax 150 pc Max TMF scale size
N 100 - # of Fourier modes in TMF
t 5000 years Runtime of simulations

(x0, y0, z0) (100, 100, 0) pc Particle initial position
rtol 1 · 10−16 - Relative error tolerance
atol 1 · 10−16 - Absolute error tolerance

5.2.1 Uniform Field

The first test was to check that the implementation gave the expected result for
the uniform field. Eq. (5.1.4) immediately gives that E∗ = 0 for this field. From
Eqs. (5.1.6) and (5.1.5) the effective magnetic field becomes B∗ = B. Thus, the
EoM for the uniform, constant field strength magnetic field becomes

Ẋ = uB (5.2.1)

u̇ = 0. (5.2.2)

This is the equation for a straight line, which is as expected in this field configu-
ration. Implementing the equations in the field will not only test if the equations
hold in the trivial case, but it will simultaneously test that the initial condition
u0 = v‖,0 holds.
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In Figure 5.1 the resulting trajectories are seen. This shows that the initial
condition for u holds. It also shows that the calculation of the initial GC-position
works, given a particle with an initial position and velocity.

Figure 5.1: Comparison between the exact solution, plotted as a blue line, and the
GC solution, plotted as a red line, in a uniform field B = B0ẑ. For this simulation
E = 100 PeV was used for the CR.

From the view of the xy-plane it is seen that the GC stays centered throughout
the whole simulation. The position of the GC is also found to be well centered in
the helix. As the starting position of the particle is r0 = (100, 100, 0), it seems a
bit odd that the GC isn’t centered on 100 pc on either axis. This can be explained
by the fact that velocity of the particle is randomly chosen, uniformly on a sphere.
Thus, the GC initial position is skewed to fit the direction the CR travels initially.

5.2.2 Spiral Field with Constant Field Strength

Continuing with a field of constant field strength, the next step is to introduce a
curl. One way of doing this is to generate a magnetic field on the form

B = [sin(θ) cos(φ)− cos(θ) sin(φ)] x̂+ [sin(θ) sin(φ) + cos(θ) cos(φ)] ŷ (5.2.3)

where θ = 11.5° π
180

and φ = arctan(y/x). The value of θ is chosen such that the
spiral magnetic field roughly resembles the spirals of the Milky Way. However, the
proper representation of the Galactic magnetic field is also dependent on a factor
B(ρ, φ) which has been set to B(ρ, φ) = B0 for these simulations.
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In a spiral magnetic field the effects of the gradient leads to an acceleration
of the particle along the magnetic field lines. This means v‖ will increase in the

direction of b̂. For a particle initially travelling in the opposite direction of the
magnetic field line, this results in a retardation, and eventually a reflection of the
particle. Figure 5.2 shows the simulation of a proton with an initial velocity op-
posite to the magnetic field line. The exact solution shows an apparent gradient
effect affecting the trajectory. While there is no gradient in the field, as the mag-
netic field strength is constant, there is a divergence in the field. From Maxwell’s
equation it is given that ∇ · B = 0, meaning the applied spiral field is not a real
magnetic field. Having a divergence in the field is analogous to introducing mag-
netic monopoles. This would again lead to a magnetic potential field analogous
to the electric potential field. Since the particle is propagated through this field,
which now has a magnetic potential, it will experience the same effects as if it
was propagating in a magnetic field with a gradient, where it is accelerated in the
direction of b̂ (Shnir, 2006, Ch. 1).

Figure 5.2: Simulation of a CR with an initial parallel velocity in the opposite direction
of the magnetic field line. The exact solution is plotted in blue, while the GCT solution
is plotted in red. In this simulation the CR used was a proton with E = 100 PeV.

On the other hand, the GCT solution never decelerates, and continues inwards
along the magnetic field line at a constant speed. Checking the value of the GC
parallel velocity and its derivative, u̇ is found to be 0. As the assumption of µ
being constant is made, Eq. (5.1.4) immediately gives E∗ = 0 for all magnetic
fields with a constant field strength, which in turn determines that u̇ = 0. While
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E∗ is zero, B∗ is not. Eq. (5.1.5) also determines that B∗ 6= B, as ∂ib̂ is not zero
for ∂x and ∂y. The difference in propagated distance between the exact solution
and the GC solution is therefore attributed to the choice of a divergent magnetic
field.

Simulating the same CR with an initial parallel velocity in the same direction
as b̂ gives the result shown in Figure 5.3. The lack of an acceleration in the parallel
direction is still evident. At the same time the particle follows nicely through the
center of the helix made by the exact solution, as seen from the projection onto
the xy-plane. When projected onto the xz-plane the effects of the curl is clearly
seen. As expected from the drift velocity in Eq. (2.8.5) the particle drifts in the ẑ-
direction. In Figure 5.2 the GC drifts in the −ẑ-direction, which is expected when
the particle propagates in the opposite direction of the magnetic field. Figures 5.3
and A.4 show that the drift-velocity is constant for the GC, while it depends on
energy for the exact solution. Eq. (2.8.5) is not energy-dependent, however, and
as such the GCT equation seems to be in line with the theory. As the GCT makes
use of the fact that ∇ ·B = 0, and the applied spiral field is not divergence-free,
there could be an energy-dependent effect from the magnetic potential induced by
the magnetic field. This is possibly described by the analogous vE described in
section 4.2, which causes a drift in the ẑ-direction. As vE describes the E×B-drift
(Cary and Brizard, 2009, Ch. III), the analogous magnetic potential would give

Figure 5.3: Simulation of a CR with an initial parallel velocity in the direction of the
magnetic field line. The exact solution is plotted in blue, while the GCT solution is
plotted in red. In this simulation the CR used was a proton with E = 100 PeV.
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rise to a field inducing its own drift velocity. As such the difference between the
GC drift and exact solution drift in the discussed Figures could be attributed to
the choice of a divergent magnetic field.

To test the effect of different ratios of energy to magnetic field strengths, the
same simulation was done for ranges from E = 1 PeV to E = 1000 PeV. The
resulting trajectories for the two lowest energy CRs are shown in Figure A.4. Dif-
ferent initial velocities were also tested. All simulations gave equivalent results for
all simulations, with the Larmor radius and ẑ-drift changing between the simula-
tions. Two sample plots are given in Figure A.4, which were made using the same
initial conditions as for Figure 5.3. As v‖ is practically c for all the tested energies
it is expected that trajectories are of equivalent lengths for both the GC solution
and the exact solution. As seen, the plots show the trajectories being the same
length.

5.2.3 Spiral Field with a Non-Constant Field Strength

After testing the GCT for both a uniform field and a spiral field with constant field
strength, attempts were made to implement the GCT for a spiral field where the
field strength was not constant. A factor depending on the angle and displacement
of the CR was added to Eq. (5.2.3) as

B = B (ρ, φ) [sin(θ) cos(φ)− cos(θ) sin(φ)] x̂

+ B (ρ, φ) [sin(θ) sin(φ) + cos(θ) cos(φ)] ŷ. (5.2.4)

Inserting this into Eq. (5.1.4), the effective electric field would not be zero, as the
magnetic field strength changes with respect to the spatial coordinates. In the
implementation of the GCT the gradient effect should in theory be captured in
the calculation of the effective electric field. As such, since the calculations of the
effective electric field was found to return negligible values, this acceleration along
the magnetic field line is missing. Furthermore, applying this field in the program
led to the integrator being unable to calculate the trajectory. Immediately after
starting the integration, Eq. (4.3.11) was determined to return values u̇∆t � c,
shortly after reaching u̇ =∞.

One theory to explain this behavior was that the implemented equations are
not relativistic. As such these equations, when directly applied with disregards to
the relativistic limits, would allow for velocities greater than the speed of light. To
account for this, the energy of the simulated CRs were tested for energies where
γL ∼ 1. This required the simulation time to be reduced as well. After tuning the
simulations in the non-relativistic limit for the exact solution, the GCT simulations
were tested. The same behavior still applied, with u̇ → ∞ immediately. These
results could be interpreted as showing the GCT is not working when an effective
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electric field is introduced. However, a more likely explanation for this error is
that the programming has not been done correctly, and there is still an error in
the code used for the simulations. This error was shown to be confined to the part
calculating the effective electric field, as the tests using magnetic fields without a
gradient returned the expected result.

5.2.4 Uniform and Turbulent Fields in Superposition

Testing how the GCT performs when a turbulence is introduced was done by ap-
plying a turbulent magnetic field in superposition with the uniform field. From the
assumptions made while deriving the EoM for the GC in Chapter 4, it is expected
that the GCT achieves high accuracy when the turbulence is small compared to
the uniform field.

Sample Trajectories

While the uniform fields in sections 5.2.1 and 5.2.2 were unable to generate an
effective electric field, the turbulent magnetic field in general has ∇B 6= 0. Thus,
when a turbulence is applied, there should be an effective electric field accounting
for gradient effects. Figure 5.4 shows the trajectory of one particle in a field
with a turbulence Brms = 0.10B0. As with the spiral field with constant field
strength, the shape of the GC trajectory seems consistent with the trajectory of
the exact solution. However, the exact solution is accelerated in different directions
throughout the trajectory. Most notable is the acceleration in the z-direction
compared to the GC trajectory. This acceleration for the exact solution is due
to the gradient of the magnetic field induced by the turbulent part. As seen,
a relatively small gradient can induce a significant acceleration to the CR. The
expectancy of the simulation, when there is a gradient, is that the gradient effects
would be captured by the GCT. However, the effective electric field was found
to be negligible, with the largest values measured to E∗ ∼ 1 · 10−20 V m−1. From
Figure A.5 it is apparent that perturbation as small as 1 % of the uniform field
strength induces accelerations that are noticeable in the exact solution. Still, the
GCT does not manage to capture these small acceleration effects. The same effect
is apparent for all the tested ratios Brms/B0.

While the gradient effects that induce an acceleration is not apparent in the
GCT, the shapes of the trajectories seem to be consistent with the exact solution.
Figures 5.4 and A.5-A.8 show sample trajectories of CRs with E = 100 PeV,
in magnetic fields where the turbulence ranges from 1 % to 100 % of the uniform
magnetic field strength. Apart from missing drift-effects caused by the acceleration
of the particles, the GC trajectories overlap well with the exact solution. In the
case where the turbulence is 1 % of the uniform field strength there is almost no
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Figure 5.4: Simulation of a CR through a uniform magnetic field of strength B0 =
10 µG in superposition with a turbulent magnetic field with BRMS = 0.10 B0. The exact
solution is plotted as a blue line, while the GC is plotted as a red line.

drift in the x-direction, and the GC trajectory almost perfectly follows the center
of the helical movement of the exact solution. When the turbulence is increased,
more drift due to the gradient effects are induced. As such the GC trajectories do
not follow the center of the exact solution. They do, however, still follow the same
shaped path, which is clearly seen between −150 pc and −200 pc in the right panel
of Figure 5.4. In Figure A.6, where the turbulence is 25 % of the uniform field
strength, the GC lacks a lot of acceleration in the z-direction. However, the shape
of the trajectory still looks identical to the exact solution for the distance the GC
travels. The view of the xy-plane in the Figures for the two lowest percentages of
turbulence do not provide a lot of information. When the turbulence is increased
to 25 % it becomes more interesting, as there is now a significant amount of drift
away from the original position in the xy-plane. The GC trajectory matches well
with the exact solution, coarsely following the center of the helical movement.
When the turbulence is increased to 50 %, in Figure A.7, the similarities between
the trajectories become a bit more subtle in the xy-plane. Still, the projection onto
the xz-plane show a high agreement between the shapes of the two trajectories.
The majority of the GC trajectory follows alongside the exact trajectory, even when
the exact trajectory show only small amounts of helical movement e.g. between
−200 pc and −300 pc in the xz-plane. Following the trajectory in the xy-plane,
there is seemingly a significant disagreement between the trajectories. Especially
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in the lower-left corner of the Figure, the GC trajectory deviates from the exact
solution. This part of the trajectory in the left panel of Figure A.7 coincides with
the part in the right panel between −200 pc and −300 pc. If the GC trajectory
is carefully traced, it is found to follow coarsely the same pattern as the exact
solution.

Lastly, the turbulence is set to be equal the uniform field strength, i.e Brms =
B0, as shown in Figure A.8. In this case the CR is quickly reflected, and the
compared behavior between the GCT and the exact solution is in complete dis-
agreement. Some other simulations were done, with other instances of the magnetic
field, with the same results. At some point, not long after the beginning of the
simulation, the particle would be reflected in the exact solution, and there was no
way of comparing the trajectories any further.

The behavior of the sample trajectories, where the GC follows the same shape
as the exact solution, points toward the GCT being able to produce trajectories
that are in agreement with the exact solution, even when the gradient of the
field becomes relatively large. However, the insignificant effective electric field is
seemingly what hinders the GCT from being in proper agreement with the exact
solution.

Statistical Comparison

As the representation of one single trajectory is heavily dependent on the instance
of the magnetic field, these are not representative of the statistical value of the
GCT. What is of interest is how accurate the GC simulations are relative to the
exact solution, over a statistically significant amount of particles. Since the GC
simulations proved to lack the gradient effect from the magnetic field, the method
is expected to disagree with the exact solution when tested in magnetic fields with
a gradient.

To test the statistical accuracy of the GCT, 1000 CRs were simulated for each
ratio of Brms/B0 for energies in the range 1 PeV to 1000 PeV. To measure the
accuracy of the simulations the vector ∆r = rGCT − rexact was first calculated,
where the r-vectors are the endpoints of the trajectories simulated by the GCT
and exact solution respectively. For a perfect simulation using both methods,
the distance between the endpoints should be exactly 1 RL. Using |∆r|/RL as
the measurement, a perfect simulation would give |∆r|/RL = 1. Averaging this
measure over all 1000 CR trajectories then gives an idea of how accurate the GCT
simulations are.

Figure 5.5 shows the results for all energies and Brms/B0-values. The most
notable trend is that the accuracy of the GCT increases with energy. Looking at
Eq. (3.1.1), this can be explained by the acceleration being inversely proportional
to the energy of the CR. Due to the high energies the speed of the particles
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Figure 5.5: Average ∆r/RL for energies in the range 1–10 PeV, and Brms/B0 values
in the range 0.01–1.00. ∆r/RL is plotted as a function of the energy.

is approximately constant and equal to c. At the same time γl increases and
decreases with the same factor as the energy, i.e. γl (10 PeV) = 10γl (1 PeV).
This leads to the acceleration increasing for lower energies. When the acceleration
increases the turbulence will have a higher effect on the particle. This is explained
by the relation between the correlation length of the turbulent magnetic field and
the Larmor-radius of the CR. When the Larmor-radius is small compared to the
correlation length, the CRs interact with more of the small-scale eddies of the
turbulent magnetic field. Following this the local strength of the turbulence is
increased relative to the uniform field. While the RMS of the turbulent field stays
the same, the local variations become stronger and more apparent when the energy
of the CR is lower.

Taking into account the lack of a gradient effect in the GCT, the behavior seen
in Figure 5.5 is as expected with lower energies being less accurate overall. In
Table B.1 the values of the points in Figure 5.5 are listed. Along with the Figure
it can be concluded that the GCT is not accurate for energies below 1000 PeV
for any amount of turbulence ≥ 0.01B0. The smallest value of |∆r|/RL for these
energies is 2.60 for 1 % turbulence and a particle with E = 100 PeV. All other
values are > 10, with most values being in excess of 100.

Looking at E = 1000 PeV the simulations are seemingly more accurate. For
Brms = B0 the value of |∆r|/RL = 14.4, which is more accurate than for all
amounts of turbulence for the lower energies, with the exception of 1 % turbulence
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for E = 100 PeV. Lowering the percentage of turbulence to 10 %, the average
deviation from the exact solution is 1.57 RL, while at 1 % is is only 1.01 RL. The
GCT shows a high degree of accuracy for this energy, when the turbulence is low.
However, at this energy the CR is well within the ballistic regime. This leads to
the particle only interacting with the large scale eddies, mostly ignoring the effect
of the small scale eddies. As such the turbulence affects the CR less in the ballistic
regime. When the energy is at such a high level, and the RMS of the turbulence
is set to 1 %, the turbulence is in practice negligible. Thus, it makes almost no
difference if the turbulence is applied or not in the high-energy, low-Brms case.
At the same time it is important to note that increasing the turbulence with a
factor 10, it is no longer negligible for E = 1000 PeV. At even higher energies,
it would be expected that even higher percentages of Brms would be negligible.
Higher energies are seldom of interest, though, as CRs above 100 PeV will escape
from the Galactic to the extragalactic regime.

To further investigate the behavior seen in Figure 5.5, the amount of particles
with a distance |∆r| within different limits were counted. The results are shown in
Tables 5.4 and B.2–B.4. From Table 5.4 the behavior when E = 1000 PeV shown
in Figure 5.5 is recognizable. For the low percentage of turbulence, a significant
amount of particles are within 0.5 RL of the exact solution. Furthermore, the
majority of particles are found between 0.5 RL and 2.5 RL. In this case only 3
particles are found to deviate in excess of 10 RL from the exact solution. Again,
this is explained by the low effect of the turbulence on the particles at such high
energy. Most of the other Figures are approximately as expected with regards to
Figure 5.5, with the majority of particles deviating in excess of 10 RL compared
to exact solution. One interesting case is in Table B.2, when the energy of the

Table 5.4: The amount of particles where the distance between the end point in the
exact solution and the end point in the GC solution were within the given limits. The
limits are offsets from 1 RL, meaning a particle at ±0 RL would be perfectly simulated

relative to the exact solution. Each limit does not count the particles that were
counted in the previous limit. Particles were counted for each of the different ratios of
BRMS and B0. This table gives the values for simulations done for protons with energy

1000 PeV. Each of the 1000 particles were propagated in a different instance of the
magnetic field.

BRMS/B0 ±0.5 RL ±2.5 RL ±5.0 RL ±10.0 RL >10.0 RL

0.01 220 579 168 31 3
0.10 5 40 44 109 802
0.25 4 7 10 20 959
0.50 0 4 4 9 983
1.00 0 0 0 2 998
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particle is E = 1 PeV and the turbulence is Brms = 0.01B0. From Figure 5.5 the
expectation is that the majority of particles would deviate from the exact solution
by a factor of ∼ 100 RL. However, the particles are well spread between all the
counted intervals. One possible explanation of this, is that the turbulence is at
the threshold of being able to reflect particles. If a particle is reflected early on,
in the exact solution it will travel a great distance in the opposite direction of the
GC trajectory. However, if it is reflected late, or not at all, the GC trajectory
will be closer to the exact solution. The same theory could also explain why there
are more particles evenly spread over the intervals for the higher energies as well.
Increasing the turbulence to 0.10 RL immediately changes the distribution of the
particles to almost all particles being in excess of 10 RL from the exact solution.
If the particles are more often reflected and accelerated abruptly perpendicular to
ẑ, this will indeed make the GC deviate more from the exact solution.

5.2.5 Guiding-Center Simulation Efficiency

While the accuracy of the GCT is important in determining whether or not the
method is useful, it is equally important whether or not it increases simulation
efficiency. As the GCT is an approximation there is guaranteed to be some loss of
information compared to the exact solution. The redemption for this is to gain a
significant reduction in computation time.

For each of the particles simulated to create Figure 5.5, the runtime of both
the exact and GC simulations were recorded. Using T for the runtime of the GC
simulations and τ for the exact simulation, the proportional time spent on the
simulations were calculated as T/τ and is shown in Figure 5.6. This is analogous
to |∆r|/RL in Figure 5.5. One important difference between the two Figures is
that Figure 5.6 does not use a logarithmic scale for T/τ on the y-axis. It should
also be noted that results are not ordered in Figure 5.6 as they are in Figure 5.5,
but each simulation retains the same marker. Furthermore, the values of each
point in Figure 5.6 is given in Table 5.5.

The first trend to notice, is that the GC simulation is more efficient relative to
the exact solution for lower energies. The shape of the plot is similar to accuracies
plotted in Figure 5.5, and as such it seems that the less accurate the GC simulations
are, the more efficient they are. On the other hand the accuracy is always higher
for smaller Brms/B0, while the average runtime is less for both larger and smaller
Brms/B0.

For the smaller relative turbulence and higher energies the trajectory is prac-
tically just a helical movement along the ẑ-axis. As such the GC simulation only
needs a fraction of the amount of points the exact calculation does to finish the
trajectory. Due to the implementation of the GCT, it can simulate at most ap-
proximately 1/4 of the points of the exact solutions to be more efficient. In one
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Figure 5.6: Average T/τ for energies in the range 1–10 PeV, and Brms/B0 values in
the range 0.01–1.00. T/τ is plotted as a function of the energy.

step in the GC simulation, the turbulent field has to be calculated at least 4 times,
while the exact solution only needs to calculate the magnetic field once for every
step. The generation of the turbulence is by far the most time consuming part of
the algorithm, leading to the approximate factor of 1/4 points to reach the same
efficiency. Thus, in the uniform field and low-turbulence fields, where the trajecto-
ries are practically straight lines, the GC simulation can do with as little as ∼1/50
of the points needed for the exact solution. During tests in the uniform field, the
exact solution need just over 500 points, while the GC solution finished in 11-12
points. Introducing the smallest amount of turbulence, the exact solution needed
about 1200-1500 points, while the GC needed around 100-200. Following this it
seems reasonable that for high energies and small turbulences, the GC simulations
are faster than the exact solution.

For small turbulences and low energies, however, the trajectories are no longer
guaranteed to be close to the helical trajectories in the uniform field. Another
possible explanation can be found by looking at Eqs. (5.1.5) and (5.1.4). Due to
the low calculated values of E∗, the second part of Eq. (4.3.12) becomes negligible
when determining the accuracy in the integrator. This leads to B∗ dominating the
GC trajectory calculations. Since the magnetic field is modelled as a superposition
between the uniform and the turbulent field, the effective field can also be written
as

B∗ = B∗rms + B0, (5.2.5)

where B∗rms denotes the effective turbulent field and B0 is the uniform field. For
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Table 5.5: The values of the average runtime difference T/τ , averaged over 1000
simulated CRs. The first column gives the ratio of turbulence to uniform field strength,
while the other columns are the average T/τ values for the given energy. Here T is the

runtime of the GC simulation, while τ is the runtime of the exact solution.

BRMS/B0 E = 1 PeV E = 10 PeV E = 100 PeV E = 1000 PeV
0.01 29.10 17.02 10.70 9.71
0.10 24.93 14.48 10.28 8.29
0.25 21.16 12.92 8.88 8.28
0.50 19.56 12.38 8.43 7.43
1.00 26.25 16.25 11.65 9.36

the uniform field the effective field is equal to the real field, as there is no curl.
While the turbulent field has a RMS value, it can deviate in strength up to several
times the Brms. This also means it can be several times weaker than the RMS
value. As discussed in section 5.2.4 the turbulence becomes more prominent for
lower energies.

From this it can then be explained why the small turbulence, low energy-case
still has the highest efficiency. In this case the uniform field will still dominate
the total magnetic field, and as such the helical movement must still be intact.
Extending on this, the same must be true for all energies with a sufficiently large
RL compared to the scale size of the magnetohydrodynamic eddies modelling the
turbulent magnetic field.

Looking at the rest of the points in Figure 5.6, the behavior of the runtime
seems to roughly follow T ∝ (Brms/B0)

2. The simulations with Brms = 0.50B0 have
the lowest efficiency gain, while the simulations using Brms = B0 are closer to the
efficiency of the ones using Brms = 0.01B0. In the simulations using E = 100 PeV
the Brms = B0 case is actually more efficient than the Brms = 0.01B0 case. As the
turbulent magnetic field deviates from Brms within the same order of magnitude, it
becomes apparent that for the ratios of 10–50 %, the effective field is not dominated
by either the uniform or turbulent field. For the 100 % case the turbulent field is
able to dominate the uniform field.

Showing that the turbulent field is equal to or dominating the uniform field
does not really affect the first part of Eq. (4.3.12). The first part in this equation,
taking into account the Eq. (5.1.5), should still be correct with respect to the
exact solution, whether the uniform or turbulent field is dominating. However,
when the uniform field dominates, the effects from the gradient of the turbulent
field, seen in Eq. (5.1.4), is negligible. When the turbulent field then becomes
stronger relative to the uniform field, the gradient effect cannot be neglected. In
the calculations it has been shown that the effective electric field was neglected
for the GC simulations. For the cases where Brms is 10–50 % of B0, the gradient
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effects are not dominant. In this range it is mainly B∗ that controls the turbulent
motion of the CR trajectory. As such the gradient effect, while not negligible, is
still small enough to have less impact on the runtime of the calculations. When
the turbulent field completely dominates the uniform field, however, the gradient
effect is large enough to heavily impact the CR trajectory. At this point, since the
GC simulation neglects this effect, the GC simulation disregards a major factor of
the calculations, and following this the apparent efficiency increases. So while it
seems there is an efficiency gain for higher relative turbulence, this is likely to be
because the GCT fails to take into account the gradient effect.

While the GCT does not take into account the gradient effect of the field, it is
important to note that the implementation does do the actual calculations needed.
It only returns incorrect values. As such the gain in efficiency must not come from
missing calculations, but rather the integrator not taking the gradient effects into
account when calculating the error, and thus allowing for a larger error than the
exact solution would.

Even though the GCT seems to be more efficient for higher turbulence, the
explanation that the gradient effects is disregarded must be taken into account.
At the same time, for higher turbulence, the GCT is expected to be less accurate.
This also shown in Figure 5.5. Since the implementation of the GCT has not
worked properly, it is still inconclusive whether or not it will be more efficient
than the exact solution. Taking into account that the current GCT includes all
the necessary computations, Figure 5.6 may give an idea of what to expect when
it is properly implemented.

A last thing that has not been discussed, is the general efficiency over the
different energies. As seen from the plot, the relative efficiency is lower for higher
energies. This can be explained by a few different factors. First off, the particles
with higher energies perpetrate more ballistic characteristics. As such they are not
as heavily affected by the magnetic field, whether or not the turbulence dominates
the field. At lower energies the particles are more diffusive, and are heavily affected
by the magnetic field. When the particles are diffusive, the gradient effects become
more prominent. For the lower-turbulence case, where the trajectories are still
helical, the lower energy particles will also require higher accuracy in the exact
solution, while the GC simulation will manage with only a few points to track the
almost straight trajectory. As such the efficiency gain at lower energies will be
large both when the turbulence and the uniform field dominates.

5.2.6 Known Errors and Future Development

In late development the insignificant effective electric field was found to be caused
by an erroneous implementation of the units when calculating µ. After revealing
this error in the program, the calculation of µ was fixed. This in turn led to
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the integrator demanding a timestep on such a small scale that any meaningful
simulations were rendered impossible. The program was set to abort for timesteps
∆t < 1 · 10−4 s, and the attempts made to redeem this error were unsuccessful.

At the end of development of the program there were still several issues. For
different parameters and magnetic fields the performance of the GCT would vary
enourmously, depending on for example if there was a turbulence in a uniform
field, turbulence in a spiral field or simply a uniform or spiral field. However,
most of the errors seemed to be connected to incorrect units or numerical errors.
With the results seen from the GCT in this chapter, it gives an indication that
the theory will provide a statistically robust method, even for magnetic fields that
changes abruptly over the spatial coordinates. Fixing the error in how the units
are calculated should result in the expected effects from the curl and the gradient
of the field, to become apparent. When the behavior of the GCT is as expected,
the numerical errors leading to slow integrations can be rectified.

If the behavior of the GCT were to be fixed, optimization of the algorithm
could be performed. There are two obvious possible weak points in the program
as it stands. The first one is the choice of the integrator. As most tests done
for this report were done using non-turbulent fields, either by themselves or in
superposition with turbulent fields, the Bulirsch-Stoer integrator was chosen. This
is an integrator that has its strengths when the functions are smooth. As such
there are better choices for the integrator in fields that change abruptly, as the
turbulent fields do.

The second possible weak spot in the calculation are the derivatives used when
calculating the effective fields. First off, the magnetic field, including turbulence,
is calculated four times in the current program. In comparison, the exact solution
only generates the magnetic field once for every four times the GCT generates the
field.

Furthermore, the spatial derivatives of the magnetic field were calculated using
a first order forward differentiation scheme. The timestep used was generated
taking the time step of a full step for the integrator, multiplying it with the current
GC velocity. As such, both a more accurate and more effective method should be
possible to apply. The accuracy of the effective electric field will depend heavily
on the accuracy of these derivatives, so it will be imperative to properly develop
this part of the algorithm.
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CONCLUSION

The aim of this project was to apply Hamiltonian GCT to the propagation of CR
through the Galactic magnetic field, and test under which conditions this method
could be expected to produce statistically useful results. As such, the diffusion of
CR through a turbulent magnetic field was investigated, to both test the isotropy
of the method used to generate the turbulent field, as well as to prepare a method
that could compare the results of the Hamiltonian GCT to those of the exact
solution. After this the Hamiltonian GCT was applied to the propagation of CR.
However, the development of the program implementing the Hamiltonian GCT
faced several difficulties, and in the end there was not enough time to apply it to
the diffusion through the turbulent magnetic field. Presented here are then the
conclusion of the chapter on diffusion of CR through the turbulent magnetic field,
followed by the conclusion on the implementation of the Hamiltonian GCT.

Diffusion of Cosmic Rays in a Turbulent Magnetic Field

The aim of investigating the diffusion of CR in a turbulent magnetic field was
twofold. Giacalone and Jokipii (1994) present a method of generating a turbu-
lent magnetic field, which Tautz (2012) claims is not isotropic. As an isotropic
turbulent field is needed to properly simulate the diffusion of CR in the Galactic
magnetic field, this isotropy had to be investigated. Furthermore, if the generated
turbulent field was indeed isotropic, the diffusion of CRs would be a good method
to test how well the Hamiltonian Guiding Center compares to the simulations
using the exact solution of the Lorentz force.

The first step to find whether or not the turbulent magnetic field is isotropic,
was to analytically check the algorithm. In section 2.5 the calculations are shown.
The field is found to be analytically isotropic under the assumptions that the
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number of Fourier modes nk used is sufficiently large, and that the particles are
propagated a distance such that kj|z′|max � 2π. Furthermore, isotropy is only
achieved by choosing a proper set of probability distribution, which are given in
table 2.1.

From the simulations of particles propagating in different turbulent magnetic
fields, the diffusion coefficients were calculated and plotted as a function of time.
The coefficients were found to behave as expected when compared to the results
in Giacinti et al. (2012). For the turbulent magnetic field a Brms value of 4 µG
was used. With Lmax = 150 pc the anisotropic behavior of diverging diffusion
coefficients was found to start after a few years for E = 1 PeV, with the behavior
starting later for higher energies.

The behavior of the diffusion was shown to be anisotropic in the limit where
|r| . a few Lc. Intensity plots of the diffusion, shown in Figures 3.6–A.2, clearly
show the expected filamentary structures in this limit.

In the isotropic limit |r| � Lc the diffusion coefficients converged to a certain
degree. The factor d3/d1, used as a measure of anisotropy, was found to be ap-
proximately constant at d3/d1 ∼ 10 for all simulations. This is in agreement with
Giacinti et al. (2012) when E = 1 PeV. However, in Giacinti et al. (2012) d3/d1
seems to be inversely proportional to the energy. Possible errors were discussed,
with numerical errors seemingly being the major contributor to this anisotropic
behavior in the isotropic regime.

Comparing the calculated average diffusion coefficients to the expected value
given by the diffusion functional in Eq. (2.10.4), the behavior of the simulated
diffusion coefficients is found to be in agreement with that of the theoretical coeffi-
cients. However, the transition is found to happen at slightly higher energy levels
in the simulations, compared to what is calculated using the diffusion functional.
At the same time the amplitude of the diffusion coefficients is found to be in agree-
ment with the theoretical coefficients. The deviation between the theoretical and
simulated diffusion coefficients were found to be between a factor of 1.21 and 2.33.

In conclusion the expected behavior of the diffusion of CRs in a turbulent
magnetic field has been qualitatively shown. The diffusion behaves as expected
in the anisotropic regime, while in the isotropic regime there is a small factor
of anisotropy that is not expected. This factor of anisotropy in the isotropic
regime is most likely due to numerical inaccuracy in the simulations. Furthermore,
the magnitude of the diffusion coefficients is found to be in agreement with the
expected values. The results of Giacinti et al. (2012) and Giacinti et al. (2018)
have been sufficiently reproduced. The program has been shown to be of sufficient
quality to be used to test under which conditions the Hamiltonian GCT is accurate.
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Hamiltonian Guiding Center Theory

The Hamiltonian GCT was applied to cosmic ray propagation through the Galac-
tic magnetic field with partial success. Following the derivation of the theory
from Cary and Brizard (2009), the equations of motion were implemented using a
Runge-Kutta method provided by Press et al. (2007).

For the simple case of a uniform field the GCT was shown to simulated the
trajectory of the particle perfectly. When a curl was applied to the field, the
simulations proved to be able to simulate the expected trajectory, including the
drift effect induced by the curl of the field.

When attempting to simulate cosmic ray propagation through a spiral field
with a non-constant field strength, the simulations broke down, and the integrator
was unable to simulate the trajectory for the guiding center.

Applying the GCT to the propagation of CRs through a uniform field in su-
perposition with a turbulent field, the guiding center simulation followed the same
shape as the exact solution, but it lacked some of the drift and acceleration effects.
The drift effects were found to be missing due to an erroneous unit calculation,
but it was not possible within the timeframe of the project to correct this error.
The missing drift effect was also shown to be caused by a different error due to by
improper implementation of units.

The GCTwas shown to be inaccurate compared to the exact solution when
applied to 1000 particles propagated in different magnetic fields consisting of a
uniform part in superposition with a turbulent part. For higher energies the ac-
curacy increased, due to the trajectory approaching that of the trajectory in a
uniform field. The GCT was also shown to be less accurate the higher the RMS
value to the turbulent field was with respect to the uniform field strength.

Comparing the efficiency of the GCT to that of the exact solution, it was shown
to be more efficient, with the efficiency increasing for lower energies. Furthermore,
the efficiency was at the lowest when the RMS of the turbulence was 50 % of the
uniform field strength. The efficiency increase both for increasing and decreasing
values of BRMS. While the efficiency increased with lower energy for the GCT, the
accuracy decreased.

In conclusion the Hamiltonian GCT seems to behave in accordance with the
exact solution. If the errors in the implementations were to be fixed, it would be
expected that the accuracy increases drastically for all the tested configurations
of the magnetic field. At the same time it would be expected that efficiency of
the GCT stabilizes as the accuracy increases, while still maintaining a significant
efficiency gain compared to the exact solution.
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ACRONYMS

CR Cosmic Rays.

EoM Equations of Motion.

GC Guiding Center.

GCT Guiding Center Theory.

ODE Ordinary Differential Equation.

RK Runge-Kutta.

RMS Root Mean Square.

RNG Random Number Generator.

TMF Turbulent Magnetic Field.
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APPENDIX A

ADDITIONAL FIGURES

Figure A.1: Intensity plot of 1000 protons’ position projected onto the xy-plane. A
brighter color means more particles are projected onto that area. In this plot E = 1 PeV
and Lmax = 10 pc. The positions are recorded, from left to right, at times t = 8 years,
t = 10 years and t = 50 years, to show how the diffusion develops over time. The x and
y axes are in parsec, and are scaled with respect to the furthest propagated particles in
each direction.
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APPENDIX A. ADDITIONAL FIGURES

Figure A.2: Comparison of the intensity plots of the two lowest energies simulated. The
proton positions are recorded at t = 500 years, t = 1000 years and t = 7000 years, with
time increasing for each row. A brighter color indicates more particles were projected
onto that area of the xy-plane. The two left columns have energy E = 1 PeV, while
the two rightmost columns have E = 10 PeV. The first column for each energy has
Lmax = 150 pc, and the second has Lmax = 10 pc. The x- and y-axes are in parsecs, and
are scaled with respect to the furthest propagated particles in each direction.
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APPENDIX A. ADDITIONAL FIGURES

Figure A.3: Visual representation of the spiral field generated by Eq. (5.2.3). Arrows
are plotted every 50 pc in a 1000 pc× 1000 pc plane centered around (x, y) = (0, 0).
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APPENDIX A. ADDITIONAL FIGURES

Figure A.4: Simulation of two CRs with an initial parallel velocity in the direction of
the magnetic field line. The exact solution is plotted in blue, while the GCT solution
is plotted in red. In the upper simulation the CR used was a proton with E = 1 PeV,
while for the lower simulation a proton with E = 10 PeV was used.
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APPENDIX A. ADDITIONAL FIGURES

Figure A.5: Simulation of a CR through a uniform magnetic field of strength B0 =
10 µG in superposition with a turbulent magnetic field with Brms = 0.01 B0. The exact
solution is plotted as a blue line, while the GC is plotted as a red line.

Figure A.6: Simulation of a CR through a uniform magnetic field of strength B0 =
10 µG in superposition with a turbulent magnetic field with Brms = 0.25 B0. The exact
solution is plotted as a blue line, while the GC is plotted as a red line.

75



APPENDIX A. ADDITIONAL FIGURES

Figure A.7: Simulation of a CR through a uniform magnetic field of strength B0 =
10 µG in superposition with a turbulent magnetic field with BRMS = 0.50 B0. The exact
solution is plotted as a blue line, while the GC is plotted as a red line.

Figure A.8: Simulation of a CR through a uniform magnetic field of strength B0 =
10 µG in superposition with a turbulent magnetic field with Brms = 1.00 B0. The exact
solution is plotted as a blue line, while the GC is plotted as a red line.
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APPENDIX B

ADDITIONAL TABLES

Table B.1: The values of the calculated |∆r|/RL, averaged over 1000 simulated CRs.
The first column gives the ratio of turbulence to uniform field strength, while the other

columns are the average |∆r|/RL values for the given energy.

BRMS/B0 E = 1 PeV E = 10 PeV E = 100 PeV E = 1000 PeV
0.01 1.38 · 102 1.60 · 101 2.60 1.01
0.10 1.22 · 103 1.49 · 102 2.13 · 101 1.57
0.25 3.01 · 103 4.08 · 102 5.69 · 101 3.31
0.50 6.16 · 103 9.41 · 102 1.27 · 102 6.42
1.00 1.22 · 104 1.46 · 103 1.56 · 102 1.44 · 101

Table B.2: The amount of particles where the distance between the end point in the
exact solution and the end point in the GC solution were within the given limits. The
limits are offsets from 1 RL, meaning a particle at ±0 RL would be perfectly simulated
relative to the exact solution. Each limit does not count the particles that were counted

in the previous limit. Particles were counted for each of the different ratios of BRMS

and B0. This table gives the values for simulations done for protons with energy 1 PeV.
Each of the 1000 particles were propagated in a different instance of the magnetic field.

BRMS/B0 ±0.5 RL ±2.5 RL ±5.0 RL ±10.0 RL >10.0 RL

0.01 117 225 188 159 311
0.10 6 29 33 58 874
0.25 1 6 18 26 949
0.50 0 4 5 8 983
1.00 0 2 0 5 993
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Table B.3: The amount of particles where the distance between the end point in the
exact solution and the end point in the GC solution were within the given limits. The
limits are offsets from 1 RL, meaning a particle at ±0 RL would be perfectly simulated

relative to the exact solution. Each limit does not count the particles that were
counted in the previous limit. Particles were counted for each of the different ratios of
BRMS and B0. This table gives the values for simulations done for protons with energy

10 PeV. Each of the 1000 particles were propagated in a different instance of the
magnetic field.

BRMS/B0 ±0.5 RL ±2.5 RL ±5.0 RL ±10.0 RL >10.0 RL

0.01 117 217 152 163 351
0.10 6 16 16 44 918
0.25 1 1 11 16 971
0.50 0 1 1 8 991
1.00 0 0 0 2 998

Table B.4: The amount of particles where the distance between the end point in the
exact solution and the end point in the GC solution were within the given limits. The
limits are offsets from 1 RL, meaning a particle at ±0 RL would be perfectly simulated

relative to the exact solution. Each limit does not count the particles that were
counted in the previous limit. Particles were counted for each of the different ratios of
BRMS and B0. This table gives the values for simulations done for protons with energy

100 PeV. Each of the 1000 particles were propagated in a different instance of the
magnetic field.

BRMS/B0 ±0.5 RL ±2.5 RL ±5.0 RL ±10.0 RL >10.0 RL

0.01 107 222 142 178 351
0.10 2 16 15 35 932
0.25 0 1 0 6 993
0.50 0 0 0 0 1000
1.00 0 0 0 0 1000
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APPENDIX C

EXTERNAL FIGURES

A selection of figures from Giacinti et al. (2012) and Giacinti et al. (2018) are
appended here for easier comparison to the results presented in this report. The
original captions are added as part of the figures, with new captions below these.
It is the last captions that give the figure numbers for the placement in this report.

Figure C.1: Figure 1 from Giacinti et al. (2012)
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Figure C.2: Figure 2 from Giacinti et al. (2012)

Figure C.3: Figure 3 from Giacinti et al. (2012)
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Figure C.4: Figure 1 from Giacinti et al. (2018)
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