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Abstract

In many research areas, it is common to model advection-diffusion problems
with Lagrangian particle methods. This is the same as solving a stochastic
differential equation, with drift and diffusion coefficients derived from the
advection-diffusion equation. But there is also a necessary condition for the
particle method to be equivalent to the Eulerian advection-diffusion equation,
is that it satisfies the well-mixed condition (Thomson, 1987), which says that
if particles are well mixed, they have to stay well mixed later on. This is just a
statement with respect to second law of thermodynamics, which is entropy. A
commonly used implementation of reflecting boundary conditions for particle
methods is analysed. We find that in some cases, this reflecting scheme will
give rise to oscillations in concentration close to the boundary, which we call
the boundary artifact.

We analyse the reflection scheme in the Lagrangian model, and compare
it to Neumann boundary conditions in the Eulerian model. We find that if
the diffusivity has a non-zero derivative at the boundary, this violates one of
the conditions for equivalence with the advection-diffusion equation, which
is that the drift coefficient in the SDE must be Lipschitz continuous. This
seems to be the origin of the boundary artifact. We analyse the artifact
further, and describe two different types of boundary artifact.

We suggest different approaches to dealing with the problem, and find
that the problem can in practice be handled by adjusting the diffusivity
close to the boundary. Support and motivation for such a change is found in
the concept of the ”unresolved basal layer” (Wilson & Flesch, 1993), which is
a pragmatic idea stating that closer than some distance from the boundary,
we simply cannot know the details of the turbulent motion.
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List of Symbols

Number Sets (Space domain Time domain)

D Space domain

T Time domain

E E ⊂ D. This set is designed in such way that to tell whether a particle
is near boundary or not. E stands for Edge.

B B := D/E This set is designed in such way that to tell whether a
particle is near boundary or not. B stands for Body.

Parameter

Np Number of particles launch in simulation

∆t Time step in simulation

Tend Simulation time, this is not wall-time

∆W Wiener process, ∆W ∼ N (0,∆t)

H The length of space in simulation

Hh The interested length from boundary. It is useful to zoom the bound-
ary artifact.

Nb Number of bins in between [0, Hh] to make a histogram

∆z Space step, use only in partial differential equation and numerical
derivative in Section 6.1.

ω Advection
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Other Symbols

FTCS Forward time central space. It is widely used numerical partial dif-
ferential scheme.

PDE Partial differential equation

SDE Stochastic differential equation

PDF Probability density function

PRS Perfect reflection scheme. This is a common reflection boundary con-
dition scheme for SDE to imitate the NBC in PDE (see Eq. (3.2)

NBC Neumann boundary condition. A common boundary condition scheme
to converse the quantity in the domain of interest (see Eq. (2.32)).

WMC Well-mixed condition (see Section 2.10)

UBL unresolved basal layer (see Wilson and Flesch (1993))
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Chapter 1

Introduction

1.1 Motivation

Particle tracking in fluids has been of interest in many different academic
areas. For example, the diffusion of plankton in the ocean, which is the base
of the largest food-web in the world, is crucial for most life forms in the
marine ecosystem. Moreover, plankton is also important for global oxygen
production, and the marine economy. Another example is that of sediment
transport (Singer, Atkinson, Manley, & McLaren, 2008). Some industrial
activity would impact the river/marine ecosystem. Some of the pollutants
have been discharged to the river and mixed within the sediments. Those
sediments may typically contain heavy metal, and organic compounds and
may cause some impairments including poor water quality, and loss of habi-
tat. For more applications please refer to Gräwe, Deleersnijder, Shah, and
Heemink (2012); van Sebille et al. (2018).

Marine transport modelling is mainly divided into two different numerical
approaches, that is the Eulerian model and Lagrangian model. The Eulerian
model focuses on how the local vector field, which is the flow direction,
changes with time, whereas the Lagrangian model focuses on how individual
particles move with the fluid. Mathematically speaking, an Eulerian model
is ~v(x, y, z, t) and, Lagrangian model is ~v(x(t), y(t), z(t)), where ~v is the flow
velocity, x, y, z are position coordinates, and t is time of the particle. In this
thesis, we will mainly focus on stochastic differential equations (SDEs), in the
Lagrangian model. In van Sebille et al. (2018), they show that Lagrangian
ocean analysis is a powerful way to analyse the output of ocean circulation
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models, and it is widely used in ocean modelling. For more detail please refer
to van Sebille et al. (2018); Yunus and Cimbala (2006, chapter 4).

In an Eulerian model, it is very common to use a finite difference method
or a finite volume method to calculate concentration of particles on a dis-
crete grid. But these methods do not exhibit the individual path of each
single particle. If some of these particles have different properties, it will
be difficult to implement in an Eulerian model since it does not focus on
individual particles but the field. In contrast, a Lagrangian model based on
stochastic differential equations can be easily implemented even if some of
these particles have different properties.

A necessary condition for Eulerian consistency is that, a particle track-
ing scheme has to satisfy a condition called the well-mixed condition. This
was introduced by Thomson (1987). In short, well-mixed condition is just a
statement with respect to entropy. If all the particles are already well mixed,
they should stay well mixed in pure diffusion environment, which means no
advection. It turns out, Eulerian models can satisfy the well mixed condition
without problem, but in a Lagrangian model, a common scheme used to im-
plement reflecting boundary conditions can lead to an artifact, where one or
more rapid oscillations occur in the concentration field close to the boundary.
This is hereafter referred to as the boundary artifact. Because of this bound-
ary artifact, Lagrangian models may fail to satisfy the well-mixed condition.
The purpose of this thesis is to find out the cause of the boundary artifact,
analyze it and give some suggestions to eliminate or reduce boundary artifact
in Lagrangian models.

1.2 Outline of this thesis

The thesis is divided in two parts, part one is to understand the boundary
artifact and part two is to give some suggested solutions.

In part one, in order to analyze the boundary artifact, we need some
theory. In Chapter 2, we introduce background knowledge of stochastic dif-
ferential equations (SDE) and derive two crucial coefficients of SDE from the
advection-diffusion equation based on physics. We will also introduce the
well-mixed condition and explain why a good particle tracking scheme has
to satisfy this. In Chapter 3, we will demonstrate the boundary artifact of
SDE schemes and explain why these schemes do not satisfy the well-mixed
condition. We will also give a comprehensive analysis of why this boundary
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artifact occurs by using the knowledge from Chapter 2. We will also show
that in order for the common reflecting boundary scheme in Lagrangian to
not cause boundary artifact, there is a special requirement of the diffusivity.
If one makes the right change to the diffusivity, the boundary artifact prob-
lem is gone. We will also discuss the legitimization of changing the diffusivity
near the boundary.

In part two, in Chapter 4, we will be looking for analytical solutions
to satisfy the well-mixed condition. In Chapter 5, we will be looking for
more practical solutions in real-life applications with minimum change of
diffusivity. Furthermore, we will make some suggestions for how to satisfy
the well-mixed condition. In Chapter 6, we will try to approach the problem
without changing the diffusivity, but we still try to use the knowledge that has
been obtained from Chapter 3. In Chapter 7, we will briefly summarize the
most important results of this thesis, and also discuss in what circumstances
the boundary artifact is insignificant.

For all simulation of this thesis, the configuration is specified. I hope
it should be very clear for the reader. But in case I have miss something.
The reader can always goes by to my GitHub site. My GitHub site is in the
Appendix Chapter D. In my code, all the configuration of simulation should
be very clear for the reader because I always specific my configuration just
before the simulation.
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Part I

Understanding the problem
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Chapter 2

Theory

In this chapter, we will guide the reader through from the partial differential
equation of diffusion processes to a stochastic differential equation of diffusion
processes.

Throughout this thesis, we consider a one-dimensional system, which rep-
resents vertical water column (z axis) in the ocean. Depth is positive down-
wards, and the water surface is located at z = 0.

2.1 Diffusion processes

As Newton’s second law is a fundamental building block for the classical
mechanic, one may start there to establish a differential equation. However,
using Newton’s second law to estimate diffusion of particle clouds in fluids is
not practical due to the interacting potential between each particle, which will
cause a gigantic calculation. Therefore, we may try to use another method
to approach the problem. Assuming we can obtain vertical diffusion profile
by measuring time average turbulence in the ocean, then, by fluid dynamics,
we can solve the advection-diffusion Eq. (2.1) numerically in the Eulerian
description.

∂tC = −∂z(ωC −K∂zC) (2.1)

where C, ω,K, z, t are concentration, advection, diffusivity, vertical position
and time correspondingly. Concentration is an intensive and macroscopic
physical quantity, and it is completely deterministic. However, diffusivity
is a statistical concept. If we consider the trajectory of a single particle,
there is some randomness in it. But each individual particle contributes to

12



the concentration. Here I would like to quote from a stochastic differential
equations book:

”If we allow for some randomness in some of the coefficients of a
differential equation we often obtain a more realistic mathemati-
cal model of the situation.” (Øksendal, 2003)

Therefore, We would like to establish a model that focuses on individual
particles with some random displacement. Gräwe (2011) presents a basic
idea that one can obtain a stochastic differential equation (SDE) from Partial
differential equation (PDE) Eq. (2.1) by using Fokker-Planck equation. What
is a Fokker-Planck equation? You may ask. In the next section, we will have
a brief introduction of the Fokker-Planck equation.

2.2 Fokker-Planck equation

When we approach a physical problem, often there are two treatments:
macroscopic treatment and microscopic treatment. The macroscopic treat-
ment is used when the fluctuation to our system is negligible, for example,
the gas pressure. The microscopic treatment is used when we want to look
at the subsystem of the total system, for example, the velocity of each in-
dividual gas particle. It is especially interesting when the total system is
built from many identical subsystems. For example, for a non-ideal gas in a
fixed volume, each gas molecule is our subsystem. However, as we have men-
tioned above, such physical systems usually contain a tremendous number
of molecules and calculating the forces between each another needs extreme
computing capacity and often is not practical. Besides, the exact initial
condition in microscopic treatment is hard to obtain or create.

It seems both of the treatments do not fit our problem, because we do not
want a macroscopic solution and calculating forces between each molecule is
completely hopeless task. What we need is something in between. It is
called stochastic treatment. In this treatment, our macroscopic variable, for
example position z(t), is no longer deterministic, instead, it depends on a

probability density function ρ, where
∫ b
a
ρ(z)dz means the probability to find

the variable z in the interval between a and b. Moreover, the expectation
value is defined in such a way: 〈z〉 :=

∫∞
−∞ zρ(z)dz. The PDE describing the

development of the concentration can be derived from microscopic treatment
with a large ensemble and rigorous mathematics derivation. Interestingly, it
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can also be derived from macroscopic treatment with heuristic arguments, for
example, equipartition theorem from statistical mechanics. Such an equation
describes the time evolution of probability density function and is called the
Fokker-Planck equation (Risken, 1996).

In our case, we will try to find the probability density function from
our macroscopic treatment, which is our PDE Eq. (2.1). Intuitively, the
concentration field should scale with the probability density function because
if we mark a particular particle and let it diffuse, there is a higher probability
of finding this particular particle in a high concentration region than in a
low concentration region. Therefore, if we normalize the concentration field
C(z, t) in such way:

ρ(z, t) :=
C(z, t)∫∞

−∞C(z, t)dz
, (2.2)

then ρ(z, t) is actually our probability density function. If we divide the
equation Eq. (2.1) with the constant

∫∞
−∞C(z, t)dz, it is actually a Fokker-

Planck equation because it describes how the probability density function
evolves in time. When the Fokker-Planck equation is known, one can try
to solve it by a stochastic differential equation, see Arnold (1974); Risken
(1996).

Before we go any further, we want to show an example of how an SDE
and a PDE can describe the same situation. The Fig. 2.1 shows the results
of two different models with constant diffusivity. The red line is the initial
condition, and the green line is the concentration field that is two hours later
calculated by the PDE given by Eq. (2.1). The blue area is an initial condition
of 2000000 particles, where the particle density is calculated by counting the
particles in 100 bins, and dividing by the total number of particles. The
purple area is using the same setting as blue area, but two hours later and
calculated by the SDE which will be introduced next section.

2.3 Stochastic differential equation (SDE)

According to Gräwe et al. (2012), a stochastic differential equation which is
equivalent to our Fokker-Planck Eq. (2.1) is

dZ(t) = (w + ∂zKz(z))dt+
√

2Kz(z)dW (t), (2.3)

where Z(t) is the position of a particle, w is advection, t is time started
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Figure 2.1: The red line is the initial condition and the green line is concen-
tration field that is two hours later calculated by PDE Eq. (2.1). The blue
area is an initial condition of 2000000 particles counted on 100 bins, and
the purple area is 2000000 particles two hours later, calculated by the Euler-
Maruyama numerical SDE scheme (Eq. (2.24)), which will be introduced
very soon.

from 0, Kz(z) diffusivity coefficient, and dW (t) is a Wiener noise increment
with the following properties:

• W (t) is a Wiener process.

• 〈W (t)〉 = 0 for all t.

• Std(W (t)−W (s)) =
√
|t− s|

The 〈·〉 is the expectation value operator. Std is the standard deviation.
If we define

dt := t− s, dW := W (t)−W (s),

the expectation value of dW 2 is

〈dW 2〉 = Var(dW ) + 〈dW 〉.

The second term on the right-hand side is zero by the Wiener processes
property, and the first term on the right is the variance, which is the square
of the standard deviation by definition. We obtain that

〈dW 2〉 = dt. (2.4)
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This tells us that the expectation value of the ”size” of dW is
√
dt. Mathe-

matically speaking, it is
√
〈dW 2〉 =

√
dt. Consequently,

√
2KzdW has order√

2Kzdt. The first term on the right-hand side of Eq. (2.3) is deterministic,
and it depends on the spatial derivative of diffusivity coefficient ∂zKz(z). The
second term on the right-hand side is stochastic, and it has order

√
2Kzdt

as mentioned above. Both terms depend on the diffusivity profile K(z). If
Kz(z) = 0 for all z , then it just leads us to an ordinary differential equation
(ODE). However, the ocean is a turbulent environment, therefore, it can not
be zero everywhere. We simplify Eq. (2.3) as

dZ(t) = a(z)dt+ b(z)dW (t), (2.5)

where a = w + ∂zKz(z), stands for the deterministic part and is called
the drift coefficient, and b =

√
2Kz(z) represents the stochastic part and is

called the diffusion coefficient. Eq. (2.5) is on differential form, we can also
obtain an integral form, which is addressed below.

Zt = Z0 +

∫ t

0

a(Zt̃)dt̃+

∫ t

0

b(Zt̃)dWt̃, (2.6)

where the t̃ is a dummy variable. The natural question is what the last term
on the right-hand side means and how we interpret it. It turns out there
is not a uniform definition for this term. Here we will introduce only two
different definitions in Section 2.5 which we will use later.

2.4 Derive drift and diffusion coefficient

After reading many articles of particle tracking, none of them try to derive
the drift coefficient a(z, t) and diffuse coefficient b(z, t) explicitly. Most of
them just refer to a comprehensive SDE book such as Arnold (1974), but I
could not find any derivation in this book that can lead us directly to the
derivation of coefficients a and b from Eq. (2.1). Therefore, let us derive them
once for all. It turns out it will become useful in Section 3.4.

We start with the book Kloeden and Platen (2013, p. 36). It states that
a Markov process with transition density function p(x, s; y, t) is defined in
such a way

P (x, s; [y0, y1], t) =

∫ y1

y0

p(x, s; y, t)dy (Markov process), (2.7)
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where P (x, s; [y0, y1], t) is the probability to find the particle between position
y0 and y1 at time t when the position is given x at time s. The transition
density function gives us the probability to find the particle between [y0, y1]
at time t when we have given the particle position x at time s, where t > s.
A Markov process with transition density p(x, s; y, t) is called a diffusion
process if the following three limits exist for all ε > 0, s > 0 and x ∈ R:

lim
t↓s

1

t− s

∫
|y−x|>ε

p(x, s; y, t)dy = 0 (2.8)

lim
t↓s

1

t− s

∫
|y−x|<ε

(y − x)p(x, s; y, t)dy =: a(x, s) (2.9)

lim
t↓s

1

t− s

∫
|y−x|<ε

(y − x)2p(x, s; y, t)dy =: b2(x, s), (2.10)

where the symbols t ↓ s means t → s; t > s. x is fixed in the integration,
the integration domain of Eq. (2.8) (|y−x| > ε) means for all y has distance
from x bigger than ε. Similar for the integration domain of Eq. (2.9) and
Eq. (2.10), but y has distance from x smaller than ε. The a(s, x) is called the
drift coefficient, and b(s, x) is called the diffusion coefficient. Following the
definition of expectation value 〈·〉, we can rewrite Eq. (2.9) and Eq. (2.10) as
follows:

a(s, x) = lim
t↓s

1

t− s
〈Z(t)− Z(s)|Z(s) = x〉 (2.11)

and

b2(s, x) = lim
t↓s

1

t− s
〈(Z(t)− Z(s))2|Z(s) = x〉. (2.12)

From Eq. (2.11), it is not hard to see that a(x, s) is the instantaneous
rate of mean change of the process. Similarly, from Eq. (2.12), b2(x, s) is the
instantaneous rate of squared fluctuation of the process at position x and
time s. To find the expressions of a(x, s) and b(x, s), we need the transition
probability function p(x, s; y, t).

As mentioned in chapter 2.2, we can reinterpret the Eq. (2.1) as a Fokker-
Planck equation by dividing a constant. This means that we substitute C in
Eq. (2.1) to ρ in Eq. (2.2); The constant is total number of particles of our
domain,

∫∞
−∞C(z, t)dz, which it will not change with time. Dividing Eq. (2.1)

by this constant and combining with Eq. (2.2) gives us the following:

∂

∂t
ρ = − ∂

∂z
(ωρ−K ∂

∂z
ρ) (2.13)
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where ρ is the probability density function to find the particles in our domain.
Let time s be our initial time and the function δ(x) be our initial condition.
The PDF at the time s is ρ(x, s) = δ(x). Solving the partial differential
Eq. (2.13) with initial condition gives us ρ(x, s; y, t) which is the transition
density function. Therefore, the ρ(x, s; y, t) is equivalent to p(x, s; y, t). How-
ever, solving Eq. (2.13) analytically is often very difficult, or even impossible,
but we need it to compute the coefficients a and b. It seems we have trouble
here. However, the book Kloeden and Platen (2013) states that :

”When the drift a and diffusion coefficient b of a diffusion pro-
cess are moderately smooth functions, then its transition den-
sity p(x, s; y, t) also satisfies partial differential equations, these
are the Kolmogorov forward equation and Kolmogorov backward
equation.” (Kloeden & Platen, 2013, p. 37)

In our case, we only need the Kolmogorov forward equation. That is

∂

∂t
p(x, s; y, t) +

∂

∂y
[a(y, t)p(x, s; y, t)]

− ∂2

∂y2
[b2(y, t)p(x, s; y, t)] = 0, fixed (x, s). (2.14)

The variable y in our case is z. We change y to z. Now, let us expand
Eq. (2.14) and Eq. (2.13). And then, we compare these two equations term
by term such as p, ∂

∂z
p and ∂2

∂z2
p. These two equations become the following:

∂

∂t
p+ (

∂a

∂z
− 1

2

∂2b2

∂z2
)p+ (a− ∂b2

∂z
)
∂

∂z
p− b2

2

∂2

∂z2
p = 0 (2.15)

and
∂p

∂t
+
∂ω

∂z
p+ (ω − ∂K

∂z
)
∂

∂z
p−K ∂2

∂z2
p = 0. (2.16)

Of course, Eq. (2.15) and Eq. (2.16) have to be equal at every position z and

time t. Therefore, each term of ∂i

∂zi
p for i ∈ {0, 1, 2} has to be equal in both

equations as well. Consequently, we obtain

∂a

∂z
− 1

2

∂2b2

∂z2
=
∂ω

∂z
(2.17a)

a− ∂b2

∂z
= ω − ∂K

∂z
(2.17b)

b2

2
= K (2.17c)
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The last equation gives us b2 = 2K. And then, we substitute b2 of K in
second equation. It gives us a = ω + ∂K

∂z
. Let’s check that the expressions of

a and b2 are indeed satisfying Eq. (2.17a).

∂ω

∂z
+

∂2

∂z2
K − 1

2

∂2

∂z2
(2K) =

∂ω

∂z

Congratulations! We finally have obtained the drift a and diffusion co-
efficient b, but we are not finished yet. Now, we have to link these two
coefficients to the SDE Eq. (2.3). To do this, we need the three assumptions
from Kloeden and Platen (2013, p. 128-129) about the coefficients a and
b. They are 1. Lipschitz condition, 2. Linear growth bound and 3. Initial
value. Here we will only introduce the Lipschitz condition, which will be
crucial later.

Lipschitz condition:

There exists a L > 0 such that:

|a(x, t)− a(y, t)| < L|x− y| (2.18)

and
|b(x, t)− b(y, t)| < L|x− y| (2.19)

for x, y ∈ R and t ∈ [t0, Tend].

We will not express linear growth and initial value here since they are not
crucial for this thesis, but the reader can refer to Kloeden and Platen (2013,
p. 128-129) for more details. In addition, we also need one more theorem,

”Assume that a and b are continuous and that the three assump-
tions hold, then the solution Z(t) of [Eq. (2.5)] for any initial
value is a diffusion process on t ∈ [t0, T ] with drift a and diffusion
b coefficient. ” (Kloeden & Platen, 2013, p. 142)

Here, t0 is the initial time and T is maximum time such that those three
assumptions hold. In our case, T is infinity, because our a and b do not
depend on time, since K does not depend on time. The proof of this theorem
is given in Kloeden and Platen (2013, p. 142). Finally, We have derived our
drift a and diffusion coefficient b.
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2.5 Stochastic integration

In this subsection we will present two different integrals that define the last
term of Eq. (2.6). For more detail, please refer to Evans (2010, chapter 6).

2.5.1 Itô integral

One common interpretation of the last term of Eq. (2.6) is called Itô integral.
This interpretation is equivalent to Riemann sum when we always evaluates
the integrand on the left-hand side of each sub-intervals [tq, tq+1]. This means
that we are always using the information we have right now. Based on this
property, Itô integrals are also frequently used in economics and finance.∫ T

0

b(Zt̃)dWt̃ := lim
|Pn|→0

n−1∑
q=0

b(Z(tq))(W (tq+1)−W (tq)) (2.20)

where P n := {0 = t0 < ... < tn = T} is just the partition of [0, T ] and n is
number of discrete time point of this partition. |P n| is the number of sub
interval.

2.5.2 Stratonovich integral

Another common interpretation of the last term of Eq. (2.6) is called the
Stratonovich integral. Stratonovich integral is essentially the Riemann sum
by evaluating the half of the left-hand side and half of the right-hand side
and sum them up.∫ T

0

b(Zt̃)◦dWt̃ := lim
|Pn|→0

n−1∑
q=0

b(Z(tq+1)) + b(Z(tq))

2
(W (tq+1)−W (tq)) (2.21)

where P n is defined just like for the Itô integral. The ◦ symbol helps us
to distinguish Itô integral and Stratonovich integral. However, there is a
problem. We do not have Z(tnq+1) before we have evaluated the integral.
Therefore, to obtain a reasonably estimated value, we use

b(Z(tq+1)) + b(Z(tq))

2
≈ b

(
Z(tq) +

1

2
a(Z) · (tq+1 − tq)

)
. (2.22)
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Recall that b(z) is a function of z. Here we use the · symbol to indicate that
the (tnq+1−tnq ) is not an input argument of a(Z), but it is just a multiplication.
At this point, you may wonder how we quantify the performance of numerical
schemes? This is done by the concept of convergence, like for ODEs, which
will be discussed in the next section.

2.6 Weak and Strong convergence

In the ordinary differential equation (ODE), a meaningful numerical approx-
imation should converge to the true solution as we are using a smaller and
smaller timestep. Different ODE schemes may converge to a true solution
in a different order. The same philosophy also applies to SDEs, but there
are two different types of convergence. The first one is called weak conver-
gence and the second one is called strong convergence. The two different
type of convergence arise due to the stochastic property of SDEs. A numer-
ical scheme is said to have a weak/strong convergence of γ if there exists a
constant Λ such that

|〈p(Zn)〉 − 〈p(Z(τ))〉| ≤ Λ δtγ : weak

〈|Zn − Z(τ)|〉 ≤ Λ δtγ : strong
(2.23)

for any fixed τ = nδt ∈ [0, T ] and δt sufficiently small (Gräwe, 2011). Zn rep-
resents the exact solution and Z(τ) represents the approximation generated
by the numerical scheme. The p(·) is an arbitrary function with polynomial
growth. This mean that p(·) is also a linear combination of the moments of
the distribution since the class of functions p(·) includes z, z2, z3, etc. Hence,
weak convergence implies that all the moments of the distribution converge.

All the moments are approximated with the desired accuracy. The mean-
ing of weak convergence is to measure the overall difference in the distribu-
tion, whereas the strong convergence is to measure the difference in individ-
ual trajectories, which means that for a given realisation of a Wiener process
(W (t)) and use it to solve the SDE (Eq. (2.3)). We will test these properties
with different numerical schemes in appendix B.

An interesting thing worth to mention is that if Zn and Z(τ) are entirely
deterministic, which means the probability density function (PDF) is a delta
function, the weak convergence and strong convergence will be equal to each
other. This makes sense because changing the PDF to delta function is just
changing the SDE to ODE. An informal proof is given in appendix C.
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2.7 Numerical schemes

Here we will introduce four numerical schemes for solving SDEs that we
will use. All the below numerical schemes involve ∆Wn. This is a random
variable with a normal distribution with 〈∆Wn〉 = 0 and Std(∆Wn) =

√
∆t.

• The Euler-Maruyama (E1)

The Euler-Maruyama scheme (Maruyama, 1955) is quite straightforward. We
just exchange the dt to ∆t and dw to ∆W in Eq. (2.5):

Zn+1 = Zn + a ∆t+ b ∆Wn. (2.24)

As we can see from Eq. (2.24), this is defined in the Itô sense. The Euler
scheme has order 1

2
in the sense of strong convergence. It also has order 1 in

weak convergence sense. We will show these two properties numerically in
appendix B.

• The Visser scheme (V1)

What does the Eq. (2.6) look like if it is defined in the Stratonovich sense?
This is the Visser scheme as shown below

Zn+1 = Zn + a ∆t+ b(Z̃) ∆Wn (2.25)

with Z̃ = Zn+ 1
2
a ∆t. The ∆Wn is defined just like for the Euler scheme. This

scheme was proposed by Visser (1997). It has the same weak convergence
order as E1. But the strong convergence, in Gräwe (2011) is not defined on
Stratonovich integral, therefore, it is not defined on the V1 scheme.

• The Milstein scheme (M1)

The Milstein scheme (Milshtein, 1975) obtains a higher accuracy by not treat-
ing b(Z) as constant. The idea is to use Taylor expansion to get higher order
terms for the integral, see e.g. Gräwe (2011).

Zn+1 = Zn + a ∆t+ b ∆Wn +
1

2
bb′ · (∆W 2

n −∆t). (2.26)
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The apostrophe sign (for example: b′) means spatial derivative operator
(i.e. ∂

∂z
b). We can also rewrite Eq. (2.26) in this way:

Zn+1 = Zn + ω∆t+ ∂zK
1

2
(∆W 2

n + ∆t) +
√

2K∆Wn. (2.27)

As we will see later, M1 scheme has both weak and strong convergence order
1.

• The Milstein second order scheme (M2)

This scheme is actually derived from another scheme called the 1.5 order
strong Taylor scheme, which has 1.5th order strong convergence and 2nd
order weak convergence, see Gräwe (2011). But if we are only interested
in simulating the particle concentration field, then we only need the weak
convergence approximation. The scheme becomes:

Zn+1 = Zn + a ∆t+ b ∆Wn +
1

2
bb′ · (∆W 2

n −∆t)

+
1

2

(
(ab)′ +

1

2
b′′b2

)
∆Wn∆t+

1

2
(aa′ +

1

2
a′′b2)∆t2 (2.28)

This scheme was also proposed by Milshtein (1979). This scheme does
not have a defined strong convergence.

2.8 Choice of ∆t

The reader may wonder what ∆t should we use. It usually depends on how
much error we tolerate. But for at least physically meaningful results, we
need

∆t << min

(
1

|∂zzK(z)|

)
for ∀z ∈ D, (2.29)

where ∂zzK(z) is the double derivative of diffusivity with respect to space,
D is the domain and | · | is the absolute value operator. This limit was
originally proposed by Visser (1997), and it is widely accepted. We can see
that if K(z) is linear or constant, Eq. (2.29) becomes ∆t << ∞. However,
when we have a boundary condition, Eq. (2.29) may not be the only criterion.
Some numerical boundary schemes may cause a upper bound of ∆t, which
we will see in Chapter 3.
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2.9 Choice of a SDE scheme

Which one scheme should we choose for particle tracking? The answer is,
as usual, it depends. In Section 2.6, we have mention that the strong con-
vergence is to measure the average difference in the individual trajectories
for a given Wiener process. Weak convergence is to measure the average
overall difference in the distribution for all different Wiener process, if we are
interested in simulating the trajectories of individual particles, then we has
to use a SDE scheme which have strong order. If we are only interested in
concentration distribution, then we can choose a SDE that has both strong
and weak convergence or just weak convergence. This that gives us some
freedom to choose the SDE scheme with desired order.

2.10 Well-mixed condition

Strong convergence and weak convergence are the performance indices of nu-
merical solutions of SDEs in general purpose. In special purpose of use, there
may be other criteria that need to be satisfied. In particle tracking, a good
SDE scheme has to satisfy four main criteria. Thomson (1987) formulated
these four criteria, and states that the first criterion is sufficient to ensure
that all other criteria are satisfied. Therefore, we will only address the first
one in the following.

Well-mixed condition

If the particles of a passive tracer are initially well-mixed, they will
remain well-mixed.

I personally found it difficult to understand the proof of this criterion in
the article because some mathematical notations and technical terms are not
elaborated. However, as Wilson and Flesch (1993) also stated, the well-mixed
condition (WMC) is just a statement with respect to entropy. Its satisfaction
by a model prohibits the spurious evolution of order from disorder. Of course,
the advection ω is equal to zero in this case.

Instead of proving the WMC, we demonstrate an diffusion process that
the WMC has to satisfied. Let us consider a general diffusivity K(z) which
is smooth, non-constant and K(z) > 0 for z ∈ [0, H]. We write down the
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diffusion equation in one dimension:

∂ρ

∂t
= − ∂

∂z
jz (2.30)

where

jz = −K∂ρ

∂z
(Fick′s Law) (2.31)

with boundary conditions

∂ρ

∂z

∣∣∣∣
z=0

=
∂ρ

∂z

∣∣∣∣
z=H

= 0 (Neumann boundary conditions). (2.32)

Let us start with ρ(z, 0) = sin (2πz) + 2 and apply a commonly used PDE
numerical scheme, called the Forward time central space (FTCS) scheme
to solve Eq. (2.30) with boundary condition Eq. (2.32) and a diffusivity
Eq. (3.1b). For the formulation of FTCS, refer to Sauer (2011). We use
model time Tend = 3600 s and we obtain the result and shown in Fig. 2.2a.
The red line is the initial concentration, and the blue line is the concentration
at t = 3600 s. We can easily see that the blue line behaves like a constant
over the domain. If we try another initial condition, like the red line in
Fig. 2.2b, we still get the same behavior as in Fig. 2.2a. In fact, for diffusion
problem with Eq. (2.30), Eq. (2.31) and Eq. (2.32), no matter what initial
concentration we use, we will always obtain a constant concentration when
t→∞.

Here we will not give a rigours mathematical proof, but Eq. (2.31) shows
the net flux is always from high concentration to low concentration since
K(z) > 0 for all position z. The process continues until the gradient of
the concentration is zero (∂ρ

∂z
= 0). In this case, ∂ρ

∂t
in Eq. (2.30) also goes

to zero. Therefore, we reach steady concentration (equilibrium) at t = ∞.
Of course, if the particles are initially (perfectly) well mixed, which mean
∂ρ
∂z

= 0, they should always stay well mixed. Remember that we derived
the drift a(z, t) and diffusion b(z, t) from this PDE in Section 2.4. The weak
convergence of any numerical SDE scheme should converge to the normalised
ρ. Consequently, the WMC should also hold for numerical SDE schemes.

2.11 Entropy demystified

This section is not essential but relevant to our topic. I still encourage the
reader take a look at this section because it is quite interesting and controver-
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(a) (b)

Figure 2.2: Using FTCS scheme to solve the Eq. (2.30) with two different
initial concentration (red line). The blue line is the concentration at t =
3600 s, and they look like constant comparing to the initial concentration.

sial. But the reader can skip this section if he/she/you want. Many people
have been taught form school that entropy (S) is disorder. However, there
are many questions remaining, such as how the unit joule per kelvin (J/K)
associate to disorder, or what ∆S = 1 J/K means. I spent my last Christmas
time with an excellent book called Entropy demystified (Ben-Naim, 2008). It
turns out it is helpful to my thesis. In this section, I will present the book
in a very short way; we first argue that the disorder is a highly subjective
concept by showing two figures. And then, we try to reformulate the entropy
and explain what entropy means. Next, we will see the relation between our
new reformulated entropy and the widely adapted definition S = Kb loge(W ),
where Kb is the Boltzmann constant and W is the number of micro-states.
Finally, we will discuss the second law of thermodynamics and why do we
care in this thesis.

Even though we do not have a precise definition of order/disorder, we still
use these terms a lot in our daily life. Most of the time, it does not cause
a disagreement, but sometimes it does. For example, my mother always
complains about how messy my room is, but I honestly think that my room
is very orderly. Everything is exactly where it should be. However, most
people, including me, my mother and the reader (you) will agree that the
upper image in Fig. 2.3 is very ordered, and the lower image is disordered.
These two images have the same number of dice. Each die has a probability
to be place in a given position and show a face. Mathematically speaking,
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these two images have equal probability to occur. But our intuition tells us
that the ordered image has much less probability than the disordered image
to occur. It is simply because the upper image means something to us, and
the lower image means nothing. Now, take a close look at the disordered
image. If we only focus on those dice with side number 1, you may discover
something interesting. Yes, it is the author’s name (Arieh). For a much
clearer look, refer to Fig. A.2. Suddenly, the lower figure means something
for us too. Is it still disordered for you? Maybe not. Perhaps we would never
know until we find out. At this stage, I hope the reader may agree that
order/disorder is highly subjective and unreliable for scientific purposes.

So, what is entropy? I am going to skip all the detail of Ben-Naim (2008)
and jump right in to the conclusion. Entropy is missing information.
More precisely, entropy could be and should be defined as the Number
of optimal binary questions we need to ask, to get the specific
configuration of the system. The reader may wonder what optimal binary
questions meas. This is a question that only accepts ”yes” or ”no” as an
answer, and both ”yes” or ”no” give us equal (or almost equal) amount of
information. For example, in Fig. 2.4, there is a coin sitting inside the 4× 4
boxes. Assuming we do not know position of coin and have to guess. There
is someone who will only answer ”yes” or ”no” to our guess or question. The
most straightforward way is to ask for every position. Is it in A1? Is it in
A2? ... Is it in B1?...Is it in D1?...Is it in D4? Of course, we could be very
lucky if our first question is ”Is it in C3?” But this happens by chance. The
expectation of number of questions we need to ask in this way to obtain the
specific position of the coin is 7.5. Now, how about we change the strategy
of asking questions. Now, we ask ”Is it in column 1 or 2?”, ”Is it in row A
or B?”, ”Is it in 3?”, ”Is it in D?”. In this way, we always need to ask 4
questions, no less no more. Unlike the previous strategy, this one gives us
always equal amount information. Number of question is no longer random
and is 4. 4 is less than 7.5, which is expectation of number of question in
previous strategy. Therefore, we call the second strategy as optimal binary
question. Now, we understand what optimal binary question meas. Let’s
see another example. We initiate N distinguishable ideal particles in the
left box in Fig. 2.5. There is a wall to prevent particles moving to the right
box. Here, we define what information means in this context. Information
of a particle is either ”left” or ”right”. At the beginning, we do not have
information loss because we initiate them in this way. Now, we remove the
wall. Particles will diffuse from left to right. Assume we can freeze a time
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Figure 2.3: Even if we do not have a precise definition of order/disorder, I
think the reader may still agree that upper image is very ordered, and the
lower image is disordered.
Permission granted by author and World Scientific. Source: Entropy demys-
tified second edition, Arieh Ben-Naim, Copyright @ 2016 by World Scientific
Publishing Co. Ptw. Ltd
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D

Figure 2.4: A 4×4 box, one of the square contains a coin. We can ask binary
questions to obtain the information of the position of the coin. We want to
find a strategy to ask the minimum number of questions.

Figure 2.5: Two boxes with a wall in between, we initiate all the distinguish-
able ideal gas particle in the left box. After we break the wall, we should
expect that some particles will diffuse into the right box. However, it is still
possible for all particles to remain inside the left box, but extremely unlikely.
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frame later on. How many optimal binary questions do we need to ask to
get the specific configuration of all particles? Well, for each particle, we need
only ask one question. Therefore, we need to ask N questions. We define
our entropy as the following:

S̃ = log2(WN),

where W is the number of states of a particle, and N is the number of
particles. Before we remove the wall, there is only one configuration, which
is all the particles in the left box. This means W = 1. We obtain

S̃ = log2(1N) = 0.

After the wall has be removed, W = 2 because there are left box and right
box to be our states. We obtain

S̃ = log2(2N) = N log2(2) = N.

This means that the change of entropy in our definition is N . Increasing
entropy means missing information and nothing more. Now, we connect our
definition of entropy to the general definition of entropy.

S̃ =
Kb loge(W

N)

Kb loge(2)
=

S

Kb loge(2)
.

The denominator is just a constant. This does not change any physics. S̃
is dimensionless but S is (J/K). The origin of the confusion, perhaps, comes
form what we call ”temperature”. In the history of physics, temperature was
not fully understood, until statistical mechanics showed that temperature is
proportional to the average kinetic energy of the substance. Therefore, we
need a constant to convert temperature to energy, which is Kb. We could
define our new temperature as T̃ = T ·Kb, then T̃ has unit (J). This makes
entropy dimensionless.

Ben-Naim (2008) also shows that the second law of thermodynamics is
actually not a law of physics in the conventional sense. Exception do occur
although this is extremely rare. Here, I have skipped a lot of detail. For
example, what happens to our definition of entropy if we have continues
states. However, this is out of our scope. For more detail, please refer to
Ben-Naim (2008).
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Why do we care about entropy in this thesis? Recall that the WMC is
just a statement with respect to entropy. Later on, we will define a WMC
test and assume extremely rare events will not occur. For example, all the
particles in Fig. 2.5 will not all go to one side of these two boxes. This is still
possible, but extremely rare.
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Chapter 3

Boundary artifact in numerical
SDE

In the Section 3.1, we define three diffusivity profiles that will be used later,
and explain the difference between thermal diffusion and turbulent diffusion.
In Section 3.2, we introduce a reflective scheme for SDE which is widely used
in many different research fields. In Section 3.3, we demonstrate the bound-
ary artifact caused by the reflective scheme from Section 3.2. In Section 3.4,
we first analyze what is wrong with the reflective scheme. Then, we reach
a key result from the analysis. In Section 3.5, we use the result from Sec-
tion 3.4 to make two quick suggestions to test E1 and verify our conclusion
from Section 3.4. In Section 3.7, we discuss whether the suggestions change
the physical reality.

3.1 Diffusivity profiles

There are usually two kind of diffusion process:

1. Thermal diffusion

The first one is called thermal diffusion, also known as molecular dif-
fusion. In this case the diffusivity depends on temperature (internal
energy). Let us do an experiment. We start with two glasses of water;
one is 95 ◦C and another one is 10 ◦C. If we drop an equal amount of
color ink into both glasses and observe how they diffuse in two differ-
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ent temperatures, we will find out that the ink in the high temperature
glass diffuses faster than the low temperature because hot water have
higher internal kinetic energy and it makes the color ink particle have
higher kinetic energy than cold water. In this case we will say the
diffusivity of hot water Kh is higher then the diffusivity of cold water.

2. Turbulent diffusion

The second one is called turbulent diffusion, also known as eddy diffu-
sion. In this case the diffusivity generally depends on Reynolds number
and others factors, but not temperature. Let us do a similar exper-
iment like the previous one. Assuming we have two glasses of water
with the same temperature, called glass A and glass B, and we drop
an equal amount of color ink in to both of the glasses. Now, we use a
spoon to stir glass A. This creates a turbulent environment in glass A.
We will find that ink in glass A diffuses faster then in glass B.

Which type of diffusion dominates in the ocean? The answer is turbulent
diffusion. As we have applied external force in our latest experiment, there
are also many sources to cause turbulent diffusion in the ocean. For ex-
ample, tidal force, wind, large-scale currents, human activities, sea creature
activities, etc. For more source of the diffusivity in the ocean, please refer to
Dabiri (2010); Munk and Wunsch (1998). The point is that thermal diffusion
becomes trivial on all scales from millimeters and up. Therefore, from now
on, we will only consider turbulent diffusion (eddy diffusion) in this thesis,
and we assume that the particle’s inertia is negligible such that the particle
diffusivity is the same as the fluid diffusivity.

Before we progress any further, we want to set up three different diffu-
sivity profiles which will be frequently used later. These are

Ka(z) = K1 +Gze−αz (3.1a)

Kb(z) = K2 +Gze−αz (3.1b)

Kc(z) = K3 +Gze−αz (3.1c)

where

K1 = 0 m2/s, K2 = 10−6 m2/s, K3 = 10−3 m2/s,

G = 6 · 10−3 m/s, α = 0.5 1/m and z ∈ [0, 10].
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Figure 3.1: The diffusivity of Kb.

The Fig. 3.1 shows the diffusivity Kb. Ka and Kc are a constant shift from
Kb. Beware that Eq. (3.1a) has Ka(0) = 0. In this case, a process described
by Eq. (3.1c) (Ka) is technically no longer a diffusion process because the
concentration at z = 0 will never be changed as followed by the PDE diffusion
Eq. (2.30). Although it may not classify as a diffusion problem, we will still
include this diffusivity. The reason is that many articles , such as Gräwe
et al. (2012); Notter and Sleicher (1971), use diffusivity that goes to zero at
the boundary. In this thesis, we will analyze in Section 3.4 the case where
diffusivity goes to zero at the boundary, as this will actually cause problems
in numerical SDE schemes.

3.2 The reflective scheme

Neumann boundary condition (NBC) is the most common reflecting scheme
for PDE scheme (Eq. (2.32)) since NBC means there is no diffusion flux.
We may wonder what is the corresponding reflective scheme for SDE. Gräwe
(2011) suggests a straightforward reflection scheme for SDE to imitate the
PDE. This is :

”When a particle crosses the boundary (due to a too large random
displacement), it is simply reflected back into the domain by the
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amount it penetrates into the boundary domain.” (Gräwe, 2011)

In our case, where the boundaries are located at z = 0 and z = H, the SDE
reflective boundary scheme suggested by Gräwe (2011) is

Zn+1 →


−Zn+1, if Zn+1 < 0

2H − Zn+1, if Zn+1 > H

Zn+1, Otherwise.

(3.2)

We name this reflective boundary scheme as the perfect reflection scheme
(abbrev. PRS) as in Wilson and Flesch (1993). Beware that with perfect
reflection scheme, we effectively change the probability density distribution of
dW of Eq. (2.5) near the boundary. We have not taken this into account when
we derived the drift coefficient a and diffusion coefficient b in Section 2.4. The
derivation of SDE (Eq. (2.5)) in Kloeden and Platen (2013) did not consider
the boundary effect either. As we will see in Section 3.3, this causes problems.

Note that the WMC still needs to be satisfied with perfect reflection
scheme. Hence, we define our SDE numerical problem set. With eddy dif-
fusivity, domain, numerical scheme, reflective boundary scheme and initial
condition will form a numerical problem set.

Z(t)



Eddy diffusivity

Domain

SDE scheme

Reflective boundary scheme

Initial condition, Z(0)

(3.3)

Moreover, we define our WMC test in the following. We denote the total
number of particles as Np and initialize Np particles with uniform distribution
over the domain. Afterward, we simulate them. For every time-step, we will
use a histogram to calculate the concentration at the current time frame.
Last, we add together all the concentrations from different time frames and
divide it by the number of time frames to obtain time-average concentrations,
and normalize the concentrations to 1 every where. As required by the WMC,
the time-average concentration should stay even over the domain if it is a
”good” particle tracking scheme.
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3.3 Boundary artifacts arise

We are wondering if our numerical SDE schemes with the PRS (Eq. (3.2))
can satisfy the WMC. Let’s run the WMC test. We denote length of our
domain as H, and Nb is number of bins in the concentration histogram. We
test the E1, V1, M1 and M2 schemes with H = 10 m, Np = 24000, Nb = 2000,
∆t = 10 s, Tend = ∆t · 3600 and both with Kb(z) and constant diffusivity
K = 0.003 m2/s.

The result is plotted in Fig. 3.2. We can see that we have a problem
near the top boundary for non-constant diffusivity Kb. For E1 and V1, the
concentration is around 30% lower than 1. M1 and M2 have almost zero
concentration and raise up very quickly to around 2 then go back to normal.
All of them obviously violate the WMC. But it is interesting that the constant
diffusivity profile does not exhibit the same problem. Moreover, the bottom
boundary does not show this problem either. Of course, it has to do with
our diffusivity profile. Keep in mind that the boundary artifact may be
very hard to notice as most practical researcher are more interested in the
time-evolution of the concentration field instead of the time-average of the
concentration field. For a closer look, we denote Hh as the internal length
for the histogram. Let Hh = 0.2 m and Nb = 200. This means that we are
only interested in the domain z ∈ [0, 0.2]. The result is plotted in Fig. 3.3.

The reader may think that we can reduce ∆t to minimize the problem.
This is true, indeed. Now we use the same set up as Fig. 3.2 but with
∆t = 0.1 s; Fig. 3.4 shows the result. We can see that the domain that is
affected by the artifact is much shorter, but the concentration deviation at
the boundary is still very visible. In practical usage, reducing ∆t by factor
10 will increase the wall-time at least 10 times more. The reader may think
that the boundary problem will completely go away if we use small enough
∆t. The answer is NO with the perfect reflection scheme. No matter what
numerical SDE scheme we used, the boundary artifact is still there. Because
there is something fundamentally wrong. In the next section, we will
analyze why.

3.4 Analysis of the boundary artifact

In this section, we will take a look what happens if we extend the domain
from [0, H] to [−H,H], and mirror the eddy diffusivity about the point at
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Figure 3.2: The time-average concentration of initially uniformly distributed
particles. Here we use Kb, H = 10 m, Np = 24000, Nb = 2000, ∆t = 10 s and
Tend = ∆t · 3600.

Figure 3.3: The time-average concentration of initially uniformly distributed
particles. Here we use Kb, H = 10 m, Np = 24000, Nb = 200, Hh = 0.2 m,
∆t = 10 s and Tend = ∆t · 3600.
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Figure 3.4: The time-average concentration of initially uniformly distributed
particles. The set-up are same as Fig. 3.3, but ∆t = 0.1 s and Hh = 0.01 m.

(a) Diffusivity-original (b) Diffusivity-mirrored

Figure 3.5

z = 0 (see Fig. 3.5a. We Fig. 3.5b) and simulate the concentration with
diffusivity Kb using both Eulerian PDE and Lagrangian SDE method, which
gives us critical information about our PRS.

For an SDE scheme with PRS to be a good particle tracking scheme, the
concentration fieldrge has to conveto the PDE concentration field. Therefore,
we need the PRS to faithfully imitate the Neumann boundary condition.
Instead of performing a weak convergence test, we will mirror the diffusivity
Kb in Eq. (3.1b) to see what will happen.
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3.4.1 Original- Mirrored domain in PDE

Here, we will use Kb, which is plotted in Fig. 3.7a, as our diffusivity in the
original domain (Non-mirrored domain), and the mirrored version of Kb,
which is plotted in Fig. 3.7b, as our diffusivity for mirrored domain. First we
focus on the Eulerian PDE model on original domain. FTCS is a commonly
used finite difference method to solve PDEs. We have used FTCS to solve
Eq. (2.13) with ω = 0 in Section 2.10. Here, we will only address the FTCS
scheme without deriving it. The reader can easily find it in the literature
(see e.g. Sauer (2011)).

∆ρn,m = ∆t
[(Kn+1 −Kn−1)

∆z

(ρn+1,m − ρn−1,m)

∆z

+Kn
(ρn+1,m − 2ρn,m + ρn−1,m)

∆z2

] (3.4a)

ρn,m+1 = ρn,m + ∆ρn,m, (3.4b)

where ρn,m := ρ(n ·∆z,m ·∆t), Kn := K(n ·∆z), ρ(z, t) is the concentration
at position z and time t, K(z) is the eddy diffusivity over position z ∈
D, N is the number of sub-intervals in D, D is the spatial closed domain,
∆z := maxD−minD

N
; M is the number of sub-intervals in T, T is the time

closed domain, ∆t := maxT−minT
M

, n ∈ [0, 1, ..., N ] and m ∈ [0, 1, ...,M ].
The Neumann boundary condition in this finite difference method may be
implemented by creating two pseudo points outside the boundaries. These
two points are defined as

ρ−1,m := ρ0,m and ρN+1,m := ρN−1,m. (3.5)

When we combine this equation with Eq. (3.4a) then the boundary points
for the original domain will be:

∆ρ0,m = ∆t
[(K1 −K−1)

∆z
· 0︸ ︷︷ ︸

=0

+K0
(2ρ1,m − 2ρ0,m)

∆z2

]
(3.6a)

∆ρN,m = ∆t
[(KN+1 −KN−1)

∆z
· 0︸ ︷︷ ︸

=0

+KN
(2ρN−1,m − 2ρN,m)

∆z2

]
.

(3.6b)

Even though the K−1 and KN+1 are not defined, it does not matter since
they will be multiplied with 0.
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Similarly, for the mirrored domain, the formula is the same as Eq. (3.4),
but we change the N to 2N − 1 and n ∈ [0, 1, ..., N ] to ñ ∈ [−N,−N +
1, ..., 0, ...N − 1, N ]. The Neumann boundary condition for the mirrored
domain will be

ρ−N−1,m := ρ−N,m and ρN+1,m := ρN−1,m, (3.7)

and the boundary points for the mirrored domain will be

∆ρ−N,m = ∆t
[(K−N+1 −K−N−1)

∆z
· 0︸ ︷︷ ︸

=0

+K−N
(2ρ−N+1,m − 2ρ0,m)

∆z2

]
(3.8a)

∆ρN,m = ∆t
[(KN+1 −KN−1)

∆z
· 0︸ ︷︷ ︸

=0

+KN
(2ρN+1,m − 2ρN,m)

∆z2

]
(3.8b)

Just like the original domain case, the K−N−1 and KN+1 are not defined, but
it still does not matter.

Now we simulate the PDE with FTCS Eq. (3.4a) in original and mirrored
domain. In the original domain, the initial condition is normal distribution
function with mean value 5 and variance equal to 0.001. N = 2000, D =
[0, 10], M = 2000 and T = [0, 1000]. This means ∆t = 0.5 s. In the mirrored
domain, we will mirror the initial condition from the original domain. Let
N = 4000 and D = [−10, 10]. The rest is same as original domain. The
results are plotted in Fig. 3.7c and Fig. 3.7d. We can see that the result
(blue line) is also mirrored. We should not be surprised because in the
mirrored domain, the calculation of ∆ρñ,m is just same as ∆ρ−ñ,m for every
m ∈ T. The calculation is symmetric for symmetric eddy diffusivity.

3.4.2 Original- Mirrored domain in SDE

Now we simulate these two diffusivities in SDE with PRS. Here, we will test
SDE with PRS using only the E1 scheme, and we evaluate drift coefficient
a and diffusion coefficient b analytically. We launch Np = 1440000 particles
in the original domain and launch all the particles at position z = 5 m to
imitate the initial condition in PDE. We use Nb = 400 bins for the histogram.
For the mirrored domain, we launch Np = 2 · 1440000 particles, half of them
at z = −5 m and half of them at z = 5 m. We use ∆t = 5 s and T = [0, 1000]
for both domains. The results are plotted in Fig. 3.7e and Fig. 3.7f. From
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Fig. 3.7f, we can see that the result (blue line) is also (statistically) mirrored
about position z = 0. From Fig. 3.7e, we can see that the PRS at original
domain below position z = 0 gives visually the same result as the lower half
of the domain in Fig. 3.7f, just like Fig. 3.7c and Fig. 3.7d. Beware that the
PRS does not apply at z = 0 m in mirrored domain in Fig. 3.7f. Therefore,
we conclude that with the PRS at z = 0 we get the same results
close to z = 0 as we do with the mirrored diffusivity. This also holds
for general diffusivity profiles, not just for Kb in the Eq. (3.1b). The area
under the blue line has been normalized. For the original domain, it is be
normalized to 1. For mirrored domain, it will be normalized to 2.

Even though the results from SDE are almost the same results from PDE,
we can still see the boundary artifact in SDE (Fig. 3.7e and Fig. 3.7f). It
is interesting that the boundary artifact is found even in the non-
boundary region at z = 0 m in the mirrored domain even though
the PRS does not play any role at z = 0 m. We realize that the problem
we have at z = 0 m in Fig. 3.7f looks almost identical that the problem we
counter at the boundary z = 0 m in the Fig. 3.7e. So what is happening?

3.4.3 The root of boundary artifact of PRS

We first look at the PDE case. In the mirrored domain, the diffusivity is
symmetric (K−ñ = Kñ). This causes ρ−ñ,m = ρñ,m for all m. Therefore,
at z = 0 m, we can have ρ−1,m = ρ1,m even though the Neumann boundary
condition is not applied at z = 0 m. Hence, what the Neumann boundary
condition actually does in the original domain is to mirror every thing about
the boundary at z = 0 m. At z = 0, the ∆ρ0,m is:

∆ρ0,m = ∆t
[(K1 −K−1)

∆z

(ρ1,m − ρ−1,m)

∆z

+Kn
(ρ1,m − 2ρ0,m + ρ−1,m)

∆z2

]
. (3.9)

We know that (K+1−K−1)
∆z

= 0, hence the reader may think that (K+1−K−1)
∆z

is
not important since it will multiply with ρ1,m−ρ−1,m = 0. But ρ1,m−ρ−1,m =
0 is actually due to the symmetric property Kñ − K−ñ = 0. Therefore,
(K+1−K−1)

∆z
= 0 is absolutely crucial for the mirrored domain behaving like

Neumann boundary condition at z = 0 m. This inspires us that in order
for PRS in SDE to behave like the Neumann boundary condition in PDE,

41



the derivative of K may have to be zero at the boundary. This is not a
mathematical proof, but an inspiration.

Now we look at SDE case, and we realize that ∂Kb
∂z

is not defined at
z = 0 m in the mirrored domain, see Fig. 3.7b. It does not satisfy the
Lipschitz condition (Eq. (2.18)) because

lim
x→0+,y→0−

|a(x, t)− a(y, t)| = 2
∂Kb

∂z
|z=0+ 6= 0

lim
x→0+,y→0−

L|x− y| = L · 0.

L has to be∞ for Eq. (2.18) to hold, and this is not a constant. This violates
the assumption that the drift coefficient a(x, t) and diffusion coefficient b(x, t)
have to satisfy for Eq. (2.5) to be a diffusion process (refer to Section 2.4).
With other words, SDE theory expects that there exists a smooth transition
from ∂Kb

∂z
|z=0+ to ∂Kb

∂z
|z=0− , but the derivative of Kb(z) is not continuous at

z = 0 m in the mirrored domain. This causes a problem in SDE scheme. The
reader may wonder why the problem does not appear in the PDE scheme.
Following Eq. (3.4a), it turns out it does not matter what K1−K−1

∆z
is since

ρñ = ρ−ñ, which makes ρ1−ρ−1

∆z
= 0. However, it does not mean that the

K1−K−1

∆z
does not have a numerical evaluation, and it is K1−K−1

∆z
= 0 in the

mirrored domain. So, it does have a value, and it is zero. In contrast,
the zero can not be sensed by the particles in SDE scheme, first it is not
defined, and second the position of a particle is almost surely never z = 0.
(analytically, numerically the probability is small but finite) At this stage,
we have already a lot information. Therefore, we made a mind-map to avoid
confusion. The mind-map is showed in Fig. 3.6.

Now we focus on z = 0+ region in both domains and analyze the drift
term (a∆t) and diffusion term (b∆W ) of E1 (Eq. (2.24)) in this case. The
sign of the drift coefficient a = dKb

dz
will specify the drift direction since it

will multiply to ∆t, and ∆t is always positive. Consequently, the drift term
will tend to move particles to higher diffusivity. In contrast, the diffusion
coefficient b =

√
2Kb is always positive, but the Wiener process ∆W have

50% chance to be positive and 50% chance to be negative since it is normally
distributed with mean 0. Therefore, the sign of the diffusion term will depend
on ∆W . Fig. 3.8a shows which term will dominate. When |dKb

dz
| �
√

2Kb,

the drift term will dominate with high probability; When |dKb
dz
| �
√

2Kb, the
diffusion term will dominate with high probability. We can see that it forms
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Figure 3.6: A mind map of numerical boundary artifact caused by PRS. The
bottom box is actually the conclusion in the Section 3.5.3, which it will come
later.
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(a) Diffusivity (b) Diffusivity-mirrored

(c) PDE (d) PDE-mirrored

(e) SDE (f) SDE-mirrored

Figure 3.7
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(a) Drift- vs diffuse term

Drift

z
0 δ-δ

Before

After

(b) Drift effect at z = 0

Figure 3.8: Fig. 3.8a shows for a reasonable small diffusivity, where the drift
term will dominate and where the diffusion term will dominate. Fig. 3.8b
shows that how the drift action takes place in both original and mirrored
domain.

a convection pattern to maintain well-mixed states in Fig. 3.8a. Fig. 3.8b
shows particles before the drift and after the drift. The circles with dashed
line are the particles expected by SDE theory when the Lipschitz condition
holds. Obviously, these particles do not exist. Furthermore, the diffusion
term can not compensate for this effect. Consequently, this forms lower
concentration near the top boundary than at other locations. This obviously
does not satisfy the WMC test. We show this in the next paragraph.

In Fig. 3.2, we have performed the WMC test for the original domain. Let
us now perform the WMC test for the mirrored domain for the E1 scheme.
It has the same configuration as in Fig. 3.7 but uniformly distributed in the
initial condition. The result is plotted in Fig. 3.9. As in Fig. 3.7, the origi-
nal domain and mirrored domain give visually identical results. Solving the
problem in the mirrored domain corresponds to solving the PRS boundary
condition in the original domain. The green circles indicate the transition
point between fluctuation and smooth concentration. Why does this transi-
tion exist for the E1 scheme? We will try to answer this question in the next
section.

3.5 E1 boundary artifact analysis

In this section, we only focus on the original domain, which is D = [0, 10].
The PRS will be applied when position of a particle becomes Z < 0 or Z > H.

45



Figure 3.9: WMC test for E1 in original and mirrored domain. It has the
configuration like Fig. 3.7 but uniformly distributed in the initial condition.
The green circles indicate a sudden drop of concentration.

We are interested in finding out what the maximum value of ∆W has to be
to displace a particle to Z ≤ 0 near the top boundary. In another word, this
is also the minimum value of ∆W to stay inside the domain (D = [0, 10]). To
be precise, we assume that particles near the top boundary will never cross
the bottom boundary in a single time-step, since this extreme value of ∆W
is very unlikely. The same argument applies to bottom boundary too. To do
this, the E1 scheme Eq. (2.24) becomes

Zn+1 ≤ 0 =⇒ Zn + a∆t+ b∆Wn ≤ 0

and we solve for ∆W

∆W ≤ −(z + a∆t)

b
=
−(z + dK

dz
∆t)√

2K(z)
. (3.10)

We define the right hand side of this equation as

f(z,∆t) :=
−(z + a∆t)

b
=
−(z + dK

dz
∆t)√

2K(z)
(3.11)

where K is a general diffusivity. We call f(z,∆t) the “Top boundary qual-
ity function”. As we will show you later, f(z,∆t) will indicate how well
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PRS performs at the top boundary to satisfy the WMC. Before we plot this
function, we would like to plot the probability density for where a particle
crosses from and where a particle lands if the particle crosses over the top
boundary. However, it is difficult to calculate such quantities. But we can
approach it by performing statistical sampling in all time-steps of simula-
tion. Using the same configuration as Fig. 3.2, but this time, we focus on
the concentration between 0 and 0.7 m (Hh = 0.7 m). I remind the reader
that we use ∆t = 0 s. The results are plotted in Fig. 3.10. The red line is for
constant K = 0.001 m2/s; The blue line is for K = Kb(z). Let’s first study
the constant diffusivity K = 0.001 m2/s.

3.5.1 Boundary artifact of constant diffusivity of E1
scheme

In the constant diffusivity (red line) in Fig. 3.10, the PRS does not cause
any boundary artifact, the PDF of crossing and landing are identical if we
ignore the random fluctuations (note different scaling in x-axis). This means
that given a particle has crossed the top boundary, the probability where
the particle came from has same probability where the particle will land
to. Therefore, for large enough number of particles, the concentration will
remain well-mixed. On the other hand, f(z, 10) in this case is

∆W ≤ f(z, 10) = − z√
2 · 0.001

.

since dK
dz

= 0. Here f(0, 10) = 0. Remember that ∆W is normally distributed
with mean 0 and variance ∆t, in this case is 10 s. For a particle sitting in
z = 0+, it has 50% probability of crossing the top boundary. For a particle
sitting in z = 0.1 m, the f(0.1, 10) = −1.29, and it has 34% probability
of crossing the top boundary. The closer the particle to the boundary, the
higher chance to cross the boundary for constant eddy diffusivity.

3.5.2 Boundary artifact of non-constant diffusivity of
E1 scheme

In the eddy diffusivity, we use Kb(z) in Fig. 3.10 (blue line). The green line is

where the df(z,10)
dz

= 0. From the concentration shown in Fig. 3.10 (blue line,
left most panel), we see that the PRS causes a boundary artifact. The PDF
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for crossing (second graph) is almost the same as in the constant diffusivity
case, but deviates strongly when it gets close to the top boundary. We
can see that the probability is actually dropping to zero when it is getting
close to top boundary. This happens because the drift term dKb

dz
∆t drifts

the particles to downwards, and the diffusion coefficient
√

2K is too small
near the boundary. It makes df(z,10)

dz
(Eq. (3.11)) very small. For example

f(0, 10) = −41, and it is rare for ∆W ∼ N (0, 10) to be lower than -41.
The fifth figure shows the derivative of f(z, 10). Here we can see that at
z = 0.05959 (the green line), this position corresponds to the maximum of
f(z, 10) in fourth figure. It is f(0.05050, 10) = −4.4. This is unlike for the
constant diffusivity, where f(z, 10) increases to zero at the boundary. We can
also see that everything seems to go wrong above the green line. This means
the region where df(z,10)

dz
> 0. The green line in the first figure of Fig. 3.10

corresponds a sudden concentration drop for the non-constant diffusivity.
The green line in the second figure of Fig. 3.10 indicates where the strong
deviation between the red line and the blue line begins. This is somehow an
indication that df(z,10)

dz
should have a maximum of zero near the top boundary

for PRS. Beware that this is not a mathematical proof, but an inspiration.

3.5.3 Condition for PRS satisfy WMC

Now, we connect everything that we have learned. Remember that the
anomaly of the mirrored domain has the same problem as in the origi-
nal domain with PRS. The Lipschitz condition from SDE theory expects
that we should have smooth transitions of a(z, t) and b(z, t) in the mirrored
boundary. Obviously, we do not satisfy this condition as can be seen from
Fig. 3.7b. However, if we can alter the diffusivity around z = 0, smoothen it
so that dKb

dz
= 0 (of course, this may change the actual physical problem), the

anomaly of the mirrored domain should go away. This means that only the
diffusion term will dominate around z = 0. We come back to original domain
with PRS. We smoothen the diffusivity to get dKb

dz
|z=0 = 0. This also means

that only the diffusion term should dominate. We can rewrite f(z,∆t) in the
following way

f(z,∆t) = − z√
2K
−

dK
dz

∆t
√

2K
. (3.12)

Recall that f(z,∆t) tells us the minimum value ∆W can take, if the particle
is to remain inside the domain. Any ∆W < f(z,∆t) will cross the top
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boundary, and any ∆W > f(z,∆t) will stay inside the domain (extreme
value of ∆W is assumed impossible ). If the diffusion term is the dominating
term of this process, a particle, which is sitting at the boundary z = 0,
should have 50% chance to cross the boundary because ∆W ≤ f(0,∆t) = 0
has 50% chance. This requires the second term of Eq. (3.12) to approach zero
near the boundary. But the PDF of ∆W depends also on ∆t as well as this
therm. We do not want an extra criterion for ∆t in addition to Eq. (2.29) in
Section 2.8. Therefore, we require

−
dK
dz√

2K(z)
→ 0 when z → 0. (3.13)

In other words,, |dK
dz
| � |

√
2K(z)| when z → 0. We can archive Eq. (3.13)

by altering dK
dz

to zero near the top boundary, or approach it by using a
diffusivity with a higher value of near the boundary. First we test for higher
diffusivity, then we test the smoothened diffusivity.

3.5.4 Stronger diffusivity Kc

Here we use a stronger diffusivity, Kc(z), from Eq. (3.1c) and run the same
WMC test. The result is shown in Fig. 3.11. The boundary artifact seems
much less significant than in Fig. 3.10, but still there. The right term of

Eq. (3.12) is −
dK
dz√

2K(z)
= −0.134 for z = 0. For a particle on the position

z = 0, the probability for ∆W ≤ −0.134 is 48.94%. This is still not close
enough to 50%. Therefore, the boundary artifact is still visible there. If we
add the Kc to a bigger constant, for example 0.1 m2/s, the boundary artifact
will not be visible in this Hh. But it is still there, just hard to notice. We are
not going to plot this here. This explains why the boundary artifact at the
bottom boundary does not seems very obvious compared to the top boundary
in Fig. 3.9, because near the bottom boundary, the drift coefficient a = d

dz
K

is smaller than at the top boundary, and the diffusion coefficient b =
√

2K is
bigger than at the top boundary. We can define a ”bottom boundary quality
function” as fH(z,∆t) and see how these two factors make

fH(H,∆t)

close to zero. The fH(z,∆t) is defined in the similar way as f ;

fH(z,∆t) := −H − z√
2K
−

dK
dz

∆t
√

2K
.
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Figure 3.10: Analysis of E1 for Kb(z) and K = 0.001 near the top boundary.
The first figure (left most) is the concentration of particles. The second
figure is the probability density function that given a particle jumps over
top boundary, what is the position it jumps from. The third figure is the
probability density function that given a particle jumps over top boundary,
what is the position it lands on. The fourth figure shows f(z, 10) of Eq. (3.11)

and the fifth figure shows df(z,10)
dz

. The green line is the position z where
d
dz
f(z, δt = 10) = 0.
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Figure 3.11: Same configuration as Fig. 3.10, but using Kc instead. This
time, there is not green line in this figure since the d

dz
f(z,∆t = 10) = 0 has

not solution in the domain [0, 10].

The Fig. 3.12 shows the PDF of normal distribution for ∆t = 10 and ∆t = 1.

3.5.5 Using smoothened diffusivity Kb

Here we try to smoothen Kb near the top boundary such that d
dz
Kb = 0. This

will help us to satisfy the Lipschitz assumption in SDE theory. Therefore,
we expect the boundary artifact caused PRS to completely go away. To do
this, we define

K̃b := Kb +
G

C
(1− tanhCz) (3.14)

as the smoothened diffusivity of Kb, where the G is the same constant as
our diffusivity profile in Eq. (3.1b), and C is a truncation factor to indicate
how fast K̃b turn to Kb. The Fig. 3.13 shows the difference between K̃b

and Kb near the top boundary for C = 10 m−1, the rest of the domain is
(almost) identical. We run the same test as Fig. 3.10, but we can no longer
use ∆t = 10 s due to the criterion in Section 2.8 because for C = 10 m−1, the
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Figure 3.12: Probability density function of normal distribution N (0,∆t)
with ∆t = 10 and ∆t = 1.

term G
C

(1− tanhCz) dominates in

min

(
1

d2

dz2
K̃b

)
∀z ∈ D.

In this case we have

min

(
1

d2

dz2
K̃b

)
= 24.

Therefore, we choose ∆t = 10 s. We run for same configuration as in Fig. 3.10,
except ∆t. The result is shown in Fig. 3.14. We can see that the boundary

artifact is no longer visible now. f(z,∆t) = −
dK̃b
dz√

2K̃b(z)
= 0 for z = 0. This

means that a particle has 50% chance to cross the boundary when it is at
position z = 0. This can not be achieved by using the same ∆t = 0.1 in Kb

in Eq. (3.1b), and this is shown in Fig. 3.16. The red line concentration used
smoothened diffusivity (K̃b), and the blue line concentration used diffusivity
(Kb). We have used 20000 particles (Np = 20000), focused on ([0, 0.01])
with 100 bins, Tend = 8604 s and ∆t = 0.1 s. The boundary artifact is very
obvious in non-modified diffusivity in all four different schemes even using
∆t = 0.1 s.
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Figure 3.13: These figures show how the diffusivity has been modified such
that d

dz
K = 0 at the boundary (See Eq. (3.14))
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Figure 3.14: Same configuration as Fig. 3.10, but using smoothened diffusiv-
ity in Fig. 3.13, ∆t = 0.1 and Nb = 0.7 m in stead.

At this stage, we are able to understand what PRS is actually doing in
the particle tracking scheme. In a diffusion dominated process, the PRS in
the original domain gives the same behaviour as at z = 0 in the mirrored
domain without PRS, with the same probability. Figure 3.15 illustrates the
idea. For the red particle to move from 1 to 3, has the same probability as
the gray particle moving from 4 to 5. This effectively mirrors the red particle
at 1 in the original domain to 4 in the mirrored domain. If it is correct,
the smoothened diffusivity should not only solve the boundary artifact in E1
but also in V1, M1 and M2 since the problem was the Lipschitz condition
not being satisfied, and smoothen the diffusivity at boundaries will satisfy
it. Fig. 3.16 shows the result. All these four schemes do not exhibit the
boundary artifact, and they satisfy WMC as we have expected.

3.6 Two different boundary artifacts

From Fig. 3.10, which used diffusivity Kb, and Fig. 3.11, which used diffusiv-
ity Kc, the green line does not exist in Fig. 3.11 because d

dz
f(z,∆t = 10) = 0

does not have a solution in our domain. Even though Fig. 3.11 still exhibits
boundary artifact, it is much less significant than in Fig. 3.10. Looking at
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Figure 3.15: In a diffusion dominated process, the PRS in the original domain
gives the same behavior as in the mirrored domain without PRS with the
same probability.

Figure 3.16: These four figures shows how the smoothened diffusivity per-
forms with four different schemes.
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the PDF for crossing in Fig. 3.11, there is no strong deviation between Kc

and constant diffusivity. In contrast, looking at the PDF for crossing in
Fig. 3.10, there is a strong deviation between Kb and constant diffusivity.
Particles actually have less chance to cross the top boundary when they are
very close to top boundary. This happens above the green line, which indi-
cates d

dz
f(z,∆t = 10) > 0. Perhaps, the green line, which is the derivative of

top boundary quality function, can be our indicator to classify two different
boundary artifacts in E1 scheme with PRS. Here we classify them in the
following way:

Boundary artifact type A

Particles have less chance to cross the boundary when they are getting
close to the boundary.

Boundary artifact type B

Particles do not have less chance to cross the boundary when they are
getting close to the boundary.

For the top boundary, boundary artifact A happens when d
dz
f(z,∆t =

10) > 0. Recall the physical meaning of top boundary quality function
(f(z,∆t)) is the minimum of ∆W needed to cross the top boundary at a
given position z. Any ∆W below f(z,∆t) will cross the top boundary. If
d
dz
f(z,∆t) > 0 and f(z,∆t) < 0 at near top boundary region, f(z,∆t) is

more and more negative when z → 0. Recall that ∆W is a Wiener process,
which is stochastic. Therefore, boundary artifact A occur. We know that
type B has less significant boundary effect than type A, and the different
between Kb and Kc is only a constant. Therefore, we are looking for the
constant where transition from type A to type B occurs at position z. Here,
we rewrite f in the following way:

f(z,∆t) = −(z + a∆t)

b
.

The d
dz
f(z,∆t) is

d

dz
f(z,∆t) = −b− zb

′

b2
− a′b− ab′

b2
∆t,
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Figure 3.17

where a′ and b′ mean ∂
∂z
a and ∂

∂z
b. Based on the definition of a := d

dz
K(z)

and b :=
√

2K(z), we found b′ = −a
b
. For d

dz
f(z,∆t) = 0, we obtain

b2 =
a(z + a∆t)

a′∆t+ 1
.

We know that b2 = 2K and let K = C + g(z). In our diffusivity, g(z) =
6 · 10−3ze−

z
2 m2/s. Therefore, we obtain

C =
a(z + a∆t)

2(a′∆t+ 1)
− g(z).

Now, we have the formula for the transition constant C. We want the transi-
tion to happen at z = 0. In our case, C = 0.000 19 m2/s. We can see that C
lays between K3 and K2 (Eq. (3.1)). Let us run the the same WMC analysis
as before for this constant. Fig. 3.17 shows the result. If we look at the PDF
for crossing, we can see that the derivative of the blue line, indicated by a
yellow circle, is close to zero at the boundary. The boundary artifact is still
there, but only type B, not type A. When f(z = 0,∆t) = 0, the boundary
artifact will go away as we have discussed previously. Here, we may notice
the importance of f . A similar function can be define at the bottom bound-
ary or on another scheme. For example, for the M1 scheme f will become
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an implicit function due to the ∆W in the drift coefficient. Here, we skip
V1, M1 and M2 scheme analysis since we have enough information to give a
suggested solution.

3.7 Legitimization of changing diffusivity

near boundary

Can we change the eddy diffusivity near boundary without changing the
physical reality? The logical answer is NO, obviously. But in practice, it
depends how we obtain the eddy diffusivity profile, and how well we know
the statistics at the boundary. Following Wilson and Flesch (1993), in at-
mospheric theory, normally the statistics of diffusion near the ground is un-
known. They call it ”unresolved basal layer” (UBL). Therefore, one is free
to design the statistics of eddy diffusion near the boundary. Here, we are
not sure we can use UBL as a reason to change the diffusivity at the top
boundary, even though the height of sea surface is usually fluctuating. It is
difficult to obtain exact height and eddy diffusivity. We may argue that the
measurement of eddy diffusivity is usually macroscopic and time-average. A
slight change, we guess, should not alter the physical reality too much, espe-
cially when we treat the non-stationary surface as a stationary hard wall. In
ocean turbulence environment, the height of sea surface can not be station-
ary. However, the PRS has been used for many years and in many research
fields due to its simplicity. More practical information of measurements is
given in the Chapter 5. Finally, if we can assume that we have the right to
design the top boundary diffusivity, the problem is solved here. However,
we are still not sure if it is legitimate to do this, even though Wilson and
Flesch (1993) indicate it is normal in atmospheric theory. For the rest of the
thesis, we will try solve the boundary issue from three different perspectives.
First is a mathematical solution, which is trying to find SDE theory that can
have PRS embedded. Second is the engineering solution, where we assume
the diffusivity is coming from measurements, and approach the problem by
using cubic-spline interpolation with ”clamped” boundary condition. Third
is the numerical solutions, where we will try approach the problem without
changing the diffusivity near boundary.
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3.8 Summary

We give a summary to this chapter because this chapter is crucial to our later
work. We have shown that the Lipschitz condition does not be satisfied in the
mirrored domain and where it cause numerical artifact . We have also shown
that the original domain with PRS has identical result in mirrored domain. If
we change the diffusivity about the mirror position in the mirrored domain
such that the Lipschitz condition has be satisfied, then numerical particle
goes away in mirrored domain, and the PRS will no longer cause boundary
artifact in original domain with this changed diffusivity. Therefore, for PRS
satisfy the WMC, we need the drift coefficient a equal to zero and diffusion
coefficient b can not be zero at the boundary.
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Part II

Suggested solutions
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Chapter 4

Mathematical approach

In this chapter, we will look for any reflection scheme to satisfy the WMC
without any restrictions. We first argue that if we assign a particle to the
domain [0, H] with uniform distribution U [0, H], the probability for the po-
sition of the particle should stay uniform distribution U [0, H]. Then, Wilson
and Flesch (1993) use this idea to show there does not exist such a reflection
scheme.

4.1 Existence and uniqueness

In the Chapter 3, we did not introduce any rigorous way to decide whether
the PRS with an SDE scheme satisfies the WMC, except looking at the
histogram and make decision. This is generally good enough. However,
there are many ways to perform a rigorous and scientific measurement to
detect whether WMC has be satisfied. For example, we define σ is such way,

σ2 =

Nb∑
i=1

(Ci − 1)2,

where Ci is the concentration of our i sub-interval in the histogram, Nb is
number of sub-interval of interesting of domain, as usual, σ2 will be our
indicator parameter how the concentration deviate from 1. We can define
a threshold σ2

t such that if σ2 < σ2
t , WMC is satisfied. If σ2 > σ2

t , WMC
is no satisfied. The downside of the method is troublesome to define σ2

t . A
graphical result is much better, as we have done so long. Even though this is
usually good enough, we still introduce a even more rigorous way to do this.
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Let us consider that we launch a large enough number of particles with
uniform distribution U [0, H] over the domain [0, H] and normalize the his-
togram. We should obtain a uniform distribution U [0, H] if the number of
particles we launched N → ∞. This is same as, we launch a single particle
with U [0, H]. The two cases are the same. Since the two cases are the same,
we focus on one single particle. The position of the particle is denoted Z(t)
and it is subject to SDE schemes. Obviously, Z(t) is random variable. Let
us denote ρ(z, t) as the probability density function of Z(t). Here, ρ(z, 0) is
U [0, H]. For the WMC has to be satisfied, the ρ(z, t) has to equal U [0, H] for
all t. Therefore, it also has to hold for one small time increment ∆t. Wilson
and Flesch (1993) utilize this idea, combined with the Chapman-Kolmogorov
equation, to test the PRS and other reflection schemes. In their article, they
consider an SDE for the velocity instead of position. But this is very similar
to our case. Because for small ∆t, the change of velocity (denoted ∆V ) can
be considered as linear respect to t. Therefore, a displacement (∆Z) is just

∆Z =

∫
∆t

V dt ≈ ∆V
∆t

2
+ V∆t.

This means that for a given ∆V and V , we can always convert it to ∆Z.
Therefore, their results also apply to our case. The reader may think there
exists a reflection scheme that in theory, can satisfy WMC for general eddy
diffusivity K. Wilson and Flesch (1993) had the same idea. The answer they
obtained is surprising. They state:

”We have proven that perfect reflection is in restricted circum-
stances rigorous, but that where it fails, no alternative and rig-
orous reflection scheme exists. This is not to say there are not
schemes that are better than perfect reflection, and that for suit-
ably limited time steps might be acceptable in practice.” (Wilson
& Flesch, 1993)

The “restricted circumstances” in the quotation is a similar situation to what
we have discussed in Chapter 3, which is d

dz
K = 0 at boundaries. On onther

words, the Lipschitz condition is satisfied. Surprisingly, according to Wilson
and Flesch (1993), there does not exist a mathematically rigorous reflection
scheme for general eddy diffusivity. Therefore, we can give up to find an
analytically reflection scheme for general K. But, perhaps, does this mean
that a correct diffusivity should have d

dz
K = 0 at boundaries in hard-wall
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condition? This remains a puzzle for me. Beware that all we have done in
Chapter 3 is just saying that in order to make sure PRS with SDE performs
like Neumann boundary condition with PDE, the derivative of diffusivity at
boundaries has to be zero ( d

dz
K = 0). This does not mean a correct diffusivity

has d
dz
K = 0 at boundaries. I hope someone can investigate it further.
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Chapter 5

Engineering solution

In Section 3.7, we have argued that the height of the sea surface is fluctuating.
This means that this boundary does not have an exact height in turbulent
environments. It may first appear to be surprising that many researchers
treat the sea surface as hard wall. Obviously, a fluctuating sea surface is
not a hard wall, But it is still commonly used. The first reason is that the
hard wall model is simple and still gives accurate enough result. The second
reason is that even if the height of the sea surface fluctuate, the expectation
value of the height is still stable in the time domain of interest. However, this
is much beyond our scope. Eddy diffusivity can sometimes be derived from
turbulence theory, or it can be measured. Let us discuss measurements. In
practice, we can not measure diffusivity directly because the diffusivity is a
statistical concept. Here, we take constant diffusivity as an example. In this
case, the drift term is zero, but the diffusion is not zero and the direction
is random. This means a constant diffusivity does not have a direction. In
measurements, we can only measure the velocities of the fluid flow. In this
case, diffusivity can be obtained by serial of measurements of the velocity field
at a stationary point. We repeat it with many points in vertical water column.
Afterwards, we can calculate the diffusivity by transport theory. Therefore,
we obtain discrete value of K. A typical ocean velocimeter apparatus can
be, for example, Vectrino from Nortek 1. In practice, we can not measure the
velocity exactly on sea surface. Usually, we measure the velocity a little bit
under the sea surface where the apparatus is submerged in the ocean during
the fluctuating height of the sea surface.

1https://www.nortekgroup.com/products/vectrino
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5.1 Smoothened diffusivity method

We will here consider the smoothened diffusivity. This method is already
presented in Section 3.5.5. For the sake of completeness, we will briefly
present it again, since it is apparently a good solution.

We expect the boundary artifact caused by PRS will completely go away if
d
dz
K = 0 at the boundary. To do this, we define the K̃b := Kb+

G
C

(1−tanhCz)
as the smoothened diffusivity of Kb, where the G is the same constant as our
diffusivity profile in Eq. (3.1b), and C is the truncation factor to indicate
how fast K̃b turns to Kb. Fig. 3.13 shows the difference between K̃b and
Kb near the top boundary for C = 10, the rest of the domain is (almost)
identical. We run the same test as Fig. 3.10,but with a shorter time step
∆t = 0.1 s (see discussion in Section 3.5.5). The result is shown in Fig. 3.14.
We can see that the boundary artifact is no longer visible now. f(z,∆t) =

−
dK̃b
dz√

2K̃b(z)
= 0 for z = 0. This means that the particle has 50% chance to

cross the boundary when it is at position z = 0. This can not be achieved by
using the same ∆t = 0.1 in Kb in Eq. (3.1b), and this is shown in Fig. 3.16.
The red line concentration used smoothened diffusivity (K̃b), and the blue
line concentration used diffusivity (Kb). We have used 20000 particles (Np =
20000), focused on ([0, 0.01]) with 100 bins, Tend = 8604 s and ∆t = 0.1 s.
The boundary artifact is very obvious in non-modified diffusivity in all four
different schemes even using ∆t = 0.1 s.

The drawback of this method is that the diffusivity near the top boundary
is completely altered, as we can see in Fig. 3.13. Even though we have
mentioned that the ”Unresolved basal layer” gives us some freedom to alter
the diffusivity near the boundary, someone may still not want to change (or
change too much) the diffusivity profile around the boundary as we did in
the smoothened diffusivity. Therefore, in the next section, we will try to keep
the diffusivity mostly unchanged around the top boundary (at least keep the
K at the boundary), while we can alter the derivative of the K(z).

5.2 Cubic spline interpolation method

In this section, we assume the we have obtained the diffusivity from mea-
surements. The diffusivity that we have obtained is given at discrete points.
Let’s denote it Kn, where n ∈ [0, 1, 2, ..., N ] is the index of the discrete posi-
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tion, and N +1 is the total number of discrete points. With discrete data for
K, there is no problem for the Eulerian PDE method since it is essentially
finite difference method. But in the Lagrangian SDE method, the position
of a particle in the next time frame depends on a random process ∆W . This
means that to calculate the position of next time frame, we need the K
and dK

dz
continuously since particles can have any position between 0 and

H. Therefore, we need to interpolate our discrete data, Kn. We require the
interpolation to have the following properties.

• The interpolation scheme should avoid oscillation between data points
because the the SDE schemes depend on dK

dz
.

• Easy to decide the derivative of the start point and end point (bound-
aries points). In another words, we can easily decide dK

dz
at the bound-

ary points.

Here, the cubic spline interpolation with clamped boundary condi-
tion satisfies our needs. The Python package called Scipy, has a class for
cubic spline interpolation. Here, we will utilize it. For the formulation of
clamped cubic spline, please refer to Sauer (2011, chapter 3.4). Following
the analysis we have given in Section 3.4, the clamped condition should elim-
inate the boundary artifact. The clamped condition means that derivative
of the start point and end point is zero. Analogically, we clamp something
on the end of the table, then it is parallel to the table.

Let us test the idea. Of cause, first, we discretize the diffusivity Kb

with 100 points. We obtain Kn,b, where b indicates the we are using Kb.
We perform the clamped cubic spline on the data set Kn,b. It produces a
function of z. We denote it Kcs(z), where cs indicates it comes from cubic
spline. Fig. 5.1a shows the difference between Kb and Kcs and the derivatives
of Kb and Kcs near the boundary condition. However, remember that the
size of ∆t depends on the second derivative of K(z). If we do not remove
any data, the derivative of dKcs

dz
will change dramatically between the first

two points which is K0,b and K1,b. Therefore, we try to remove some points
around the boundary but keep the boundary point. Let us try to remove
n ∈ [1, 2, 3, 4, 5], then we hold n ∈ [0, 6, 7, ...99]. This means that we still
keep the starting point. The plot is shown in Fig. 5.1b. Looking at the red
line compared to the dashed blue line, we hope the reader may agree that
we have not changed too much of the diffusivity. Beware that we deleted
the five data points near the boundary only because we want to avoid using
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(a) Cubic spline with no removed points (b) Cubis spline with 5 removed points

Figure 5.1

very small ∆t. The reader can keep all the data points if using very small ∆t
is not a problem. For example, using a super computer. Before we run the
simulation based on cubic spline interpolated diffusivity, we will only focus
on domain z ∈ D = [0, 2] because d

dz
Kb = 0 at z = 2. This means that there

should not be any boundary effect around the boundary at z = 2 m.
This time we use H = 2 m, ∆t = 0.05 s, Np = 20000, Hh = 0.01 m,

Nb = 1000 and Tend = 10 800 s. K(z) and dK
dz

in the E1 scheme we use is
from cubic spline interpolation. The result is plotted into Fig. 5.2a. The blue
line is using the cubic spline interpolation of the diffusivity as in Fig. 5.1b.
The red line is using the unchanged diffusivity Kb as in Fig. 5.1b. The results
shown by the blue line are better than the red line as we expected. However,
the reader may want to point out that there are some fluctuations for the
blue line near the boundary in Fig. 5.2a. This is caused by low drift term and
low diffusion term. It takes much longer time to diminish the fluctuations
than for the unchanged Kb. So, there is not anything wrong with cubic
spline interpolation, we just have to use much bigger Tend to diminish the
fluctuation. To verify this, we actually do not have to run very long Tend, all
we need is to just repeatedly simulate a few diffusion processes under the same
conditions with cubic spline interpolation. We use the same configuration as
previously, but Tend = 3600 s. We simulate it 10 times. Fig. 5.2b shows the
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(a) Cubic spline interpolation diffusivity
vs Normal diffusivity

(b) A cubic spline simulation under the
same configuration as Fig. 5.2a, but sim-
ulate 10 times and using Tend = 3600 s
and Kc

Figure 5.2

result. We can see that they fluctuate around concentration 1. This means
if we simulate it long enough, the fluctuations will go away. Since we claim
the fluctuation is due to both drift and diffusion coefficients being small at
the boundary comparing to maximum in the water domain. This should
imply that if we use a stronger diffusivity with cubic spline, the fluctuation
should goes away. Let us perform the same test as in Fig. 5.2b but using Kc

(Eq. (3.1c)) with cubic spline applied. Remember that Kc = Kb+0.001 m2/s.
The result shows in Fig. 5.3a. Obviously, the fluctuation goes a way. There
is still a problem, how do we know that there is not oscillation in the cubic
spline model? Fig. 5.1b may not have good enough resolution of z axis to
show the oscillation. To show the cubic spline does not have oscillation, we
distribute 20000000 particles with uniform random distribution and use these
large amount random position to plot out the cubic spline diffusivity. If there
is any oscillation, there is very good chance that we will observe some some
discontinuous poits. Fig. 5.3b shows the result. The figure suggests that
there is not oscillation in diffusivity generated by Cubic spline.

This does not just work on the E1 scheme but also on V1, M1 and M2.
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(a) A cubic spline simulation under the
same configuration as Fig. 5.2a, but sim-
ulate 10 times and using Tend = 3600 s
and Kc

(b) 20000000 particles uniformly ran-
dom distributed in water domain and
use these large amount random posi-
tions to plot the cubic spline diffusivity
with Kb. Figure seems very smooth, not
jumping points.

Figure 5.3
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The plot is in appendix Fig. A.1. We can see that the cubic spline interpo-
lation method performs very well in the others three schemes as well. We
believe cubic spline interpolation method should also perform well in other
SDE schemes with PRS, since the root of the problem is the violation of the
Lipschitz condition for the drift coefficient a(z). When the Lipschitz con-
dition at boundary is satisfied, there should not be any reason for PRS to
cause boundary artifacts.

The reader may wonder how the cubic spline approach performs if K =
Kc, i.e. for a diffusivity with a larger constant term. The answer is ”not worth
it”. Surely, there will be a boundary artifact around the boundary if we just
use the non-modified diffusivity, but since the denominator in Eq. (3.12)
|
√

2Kc(0)| is much bigger than |dKc
dz
|z=0, the f(z,∆t) in Eq. (3.12) is close to

zero for the diffusivity given by Kc. This means that the boundary artifact
will be extremely small. This can probably be ignored for most applied
research areas. If we use cubic spline in this case, We have to use much
smaller ∆t. It is usually not worth to do so.
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Chapter 6

Numerical solution

In this section, we will not change the diffusivity, but instead look for another
numerical ways to minimize the boundary artifact. However, none of the
methods below work better than those presented in Chapter 5.

6.1 Numerical derivative method

In this method, we still utilise what we have learnt from Chapter 3. We use
a numerical derivative to define the drift coefficient a(z) instead of analytical
as before. The drift term a in the E1 scheme becomes the following:

a(z, dz) =
K(z + dz)−K(z − dz)

2 · dz
(6.1)

If K(z) needs to be evaluated outside the domain, we simply just mirror
it. This may sound counter-intuitive. How may a numerical derivative be a
better choice than a analytical derivative. But in this way, we have a(0, dz) =
0 which satisfies the condition by conducting a WMC test as before. Let
us try to find out how this approach performs in the E1 scheme. We use
H = 2 m, ∆t = 0.5 s, Np = 20000, Hh = 0.05 s, Nb = 1000, dz = 0.0012 m
and Tend = 86 400 s . The result is plotted in Fig. 6.1a for K = Kb. It does
not work perfectly, but it reduces the boundary artifact effect somewhat.
The reason it does not work perfectly is obvious in Fig. 6.1b. It indicate
that we should use ∆t extremely small because there exists a point where
the double derivative of K(z) is very huge. Not just that, to pick a suitable
dz can be challenging. A suitable dz depends on ∆t and K(z). Generally,
this is not a good way to tackle the boundary artifact problem.
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(a) Numerical derivative method with
dz = 0.0012

(b) Diffusivity profile of Kb and numer-
ical dKb

dz

Figure 6.1

6.2 Naive time adaptive method

We can minimize the boundary artifact by reducing the time step. However,
this will use a lot of computational force. But how about we only reduce
the time-step for the particles near the boundary. For any particle in any
position, given a reasonable small ∆t, due to normal distribution, there will
be a limited interval that we are 99.999% sure that a given particle can move
to. Therefore, we separate our water column in two parts. We name the
region near the boundary condition as ”EDGE”, and the region not near the
boundary condition as ”BODY”. Assuming we have water column depth
2 meter, let’s denote the EDGE interval as E := [0, 0.2] ∪ [1.8, 2] and the
BODY interval is denoted as B := (0.2, 1.8). We define ∆tBODY as the time
increment for particle position inside the BODY set, which means Z ∈ B,
and define ∆tEDGE as the time increment for particle position inside the
EDGE set, which means Z ∈ E. Let n be an integer and n ∈ N. Letting
the ∆tEDGE = ∆tBODY

n
we can have smaller or equal time increment at the

EDGE than BODY.
The pseudo code for this scheme is the following:
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Algorithm 1: This snippet of code shows the idea of how we perform
a single time step

Result: Perform a single time step
if Z ∈ B then

/* Update the Z with ∆tBODY */

Z = Z+ Numerical scheme(Z,∆tBODY );

else
/* Update the Z n times with ∆tEDGE */

for Looping n times do
Z = Z+ Numerical scheme(Z,∆tEDGE);

end

end

Let us test it with E1, we use H = 2 m, ∆t = 1 s, Np = 80000, Hh = 0.5,
Tend = 14 400 s, Nb = 600, E = [0, 0.2], B = (0.2, 2], n = 10 and K = Kb(z).
The result is plotted in Fig. 6.2a. The blue line is ordinary E1; the red line is
E1 with naive time adaptive method, and E1 with constant diffusivity using
naive time adaptive is the purple line. The naive time adaptive method
seems to help little bit, but it creates its own problem. We have a lower
concentration than 1 at z = 0.2 m, and a higher concentration than 1 in
most of the E region. At the boundary we have concentration lower than
1. But this method works perfectly for constant K. Intuitively, this should
also work for non-constant diffusivity. Because, let us say n = 2, we have
random variables X ∼ N(0, σ2

x), Y ∼ N(0, σ2
y). The distribution of X + Y

is N(0, σ2
x + σ2

y). In our case, we have σ2
x = σ2

y = ∆t/2. However, this is
not the case for the non-constant diffusivity profiles. The drift and diffusion
coefficients depend on the previous position. In a constant diffusivity profile,
it is just a constant. Therefore, this method did not work well for the non-
constant diffusivity. But it works in constant K. However, it is trivial.

What happens if we only use the drift and diffusion coefficients at the
starting point to evaluate all the sub time-step in Edge. This means:
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(a) Naive time adaptive method (b) Naive time adaptive method, Fixed
evaluation for drift term and diffuse
term.

Figure 6.2

Algorithm 2: This snippet of code shows the idea of how we perform
a single time step

Result: Perform a single time step
if Z ∈ B then

/* Update the Z with ∆tBODY */

Z = Z+ Numerical scheme(Z,∆tBODY );

else
/* Save the starting position in EDGE */

Zc = Z /* Update the Z n times with ∆tEDGE. Only use

Zc in the numerical scheme. */

for Looping n times do
Z = Z+ Numerical scheme(Zc,∆tEDGE);

end

end

Using same configuration as previous. The result is plotted as a red line
in Fig. 6.2b. The weird behavior at z = 0.2 m is gone. This confirms our idea,
but the boundary artifact is actually getting worse. However, the reason is
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Figure 6.3: Result of bias wiener method. Whenever a particle crosses the
boundaries, we re-pick the ∆W until it does not cross the boundaries.

still not known to us.

6.3 Bias Wiener method

Reader may wonder that what happens if we do not use PRS. Instead, when-
ever a particle cross the boundaries, we re-pick the ∆W until it does not cross
the boundaries. We do a WMC test, using the configuration Np = 4000,
Nb = 500, Tend = 7200, dt = 1, D = [0, 2] and Hh = 2 on E1, V1, M1, and
M2. The result is plotted in Fig. 6.3. The red line is the constant diffusivity
K = 0.001, and blue line is K = Kb. It obviously fails WMC for all four
schemes. But what is interesting is that all four schemes behave the same
near the bottom boundary z = 2. That is, where the drift coefficient a = 0.
This actually make sense since all four schemes are are very close to each
other when a = 0. In contrast, the behavior of these four schemes are all
different near top boundary. We obtained very different behaviors on top
and bottom boundary. Therefore, we conclude that this method does not
satisfy WMC in general.
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6.4 Adaptive methods

Before I have found out that the problem of boundary artifact was essentially
caused by the Lipschitz condition no being satisfied. I thought there was
just ordinary numerical error. A higher order should minimize the boundary
artifact. Therefore, I have tried a time adaptive strong order Runge-Kutta 1.0
and 1.5 from Rackauckas and Nie (2017). The Runge-kutta 1.0 is embedded
in Runge-Kutta 1.5, therefore we do not have to calculate one more Runge-
kutta 1.0 if we have calculated Runge-kutta 1.5. If the error between Runge-
kutta 1.0 and Runge-Kutta 1.5 is too big, use smaller ∆t instead. The
technical problem is that by rejecting an outcome, we have also rejected a
random Brownian motion. The solution is to store the Browian motion that
we have rejected and construct a Brownian bridge. Here, we do not go in
to detail of what Brownain bridge is. The reader can refer to Kloeden and
Platen (2013); Rackauckas and Nie (2017).

I have tried the RSwM algorithm 1 from Rackauckas and Nie (2017), and
received almost identical result as E1 scheme, but the boundary artifact is
even worse. Of course, it turns out the boundary artifact is not a simply
numerical error, but caused by violation of Lipschitz condition. The code is
written to run on super computer. For more details, see readme.md on my
GitHub.
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Figure 6.4: Time adaptive Runge-Kutta 1.5 vs E1 scheme. Using maximum
of ∆t = 0.2 s for Time adaptive Runge-Kutta 1.5 and store the Brownian
motion to be used in E1 scheme.
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Chapter 7

Conclusion

In this thesis, we have analyzed a numerical a artifact of stochastic differ-
ential equations in one-dimensional model of diffusion in the water column,
with reflecting boundary at the surface. The numerical artifact occurs near
the boundary, therefore we call it the boundary artifact. In many research
areas, using stochastic differential equation in a Lagrangian model for parti-
cle tracking is very common. A good particle tracking scheme should ensure
that a passive tracer stays well mixed when it is originally well mixed. We
call this the well-mixed condition (Thomson, 1987). However, most of the
SDE particle tracking schemes do not satisfy this condition near reflecting
boundaries, and this has been ignored in many research areas. Sometimes,
this can lead us to the wrong conclusion.

The perfect reflection scheme (PRS) is a commonly used scheme in many
research areas to imitate Neumann boundary condition in Eulerian PDE
models. We compared the results obtained with Neumann boundary condi-
tions to the results from an expanded domain, mirrored about the boundary,
and with the addition of an image source. Comparing the results in the orig-
inal domain, to the results in half of the mirrored domain, we find that they
are identical even though the Neumann boundary condition was not applied
at the mirroring point.

There is no visible numerical artifact in either the original or the mirrored
domain in the Eulerian PDE model. In the SDE case with perfect reflection
scheme, we have shown that we got the same result as for the PDE (which
it should be, based on the argument of weak convergence), except that there
is a boundary in the artifact in original domain, and at the same position,
the same shape of numerical artifact occurs in mirrored domain.
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This is very interesting; an identical numerical artifact occurs in both
boundary and non-boundary region. Therefore, we think that there may
be something else than just the PRS that causes the problem, but rather
something fundamental when one is using SDEs. This turns out to be the
Lipschitz condition not being satisfied in the mirrored domain at the mirror-
ing point, and what the PRS does is effectively mirroring the original domain
just like the way the Neumann boundary condition does. The Lipschitz con-
dition was one of the conditions in the derivation of an SDE that is equivalent
with the advection-diffusion equation (see Section 2.4).

For the Lipschitz condition to be satisfied when using the PRS, the deriva-
tive of diffusivity ( d

dz
K) at the boundary should be zero. This is a problem

for the SDE. For the PDE, the numerical derivative of diffusivity at the
boundary is already zero.

In Section 3.5, we analyze the boundary artifact for the Euler-Maruyama
scheme. We defined f(z,∆t), which gives the minimum value ∆W can take,
if the particle is to remain inside the domain. Any ∆W < f(z,∆t) will
cross the top boundary, and any ∆W > f(z,∆t) will stay inside the domain
(extreme values of ∆W are assumed impossible such that a particle close
to the top boundary will not cross the bottom boundary). We have used
f(z,∆t) to show that in order for the perfect reflection scheme to perfectly
imitate the Neumann scheme, f(z,∆t) in Eq. (3.13) should go to zero when
there is a boundary at z = 0 in order to satisfy the Lipschitz condition in
SDE theory, as well as the WMC.

We have also used ∂
∂z
f(z,∆t)|z=0 to help us distinguish two different types

of boundary artifact. We call these Type A, which is defined as “Particles
have less chance to cross the boundary when they are getting close to the
boundary”, and Type B, which is “Particles do not have less chance to cross
the boundary when they are getting close to the boundary” see Section 3.6.
Type A is more severe, and leads to larger errors than Type B. Depending
on the application, Type B may give an acceptable error.

Personally, I think Type A is not acceptable for most applications. In fact,
this is a dangerous boundary artifact, because most researchers simulate only
the time evolution of concentration, not the time-average concentration. In
this case, the researcher can always be misled to think that the change in
concentration near the boundary happens by chance, not the tendency. In
this case, the researcher may not realize that the boundary artifact occurs in
the simulation. The user should always perform a WMC test and decide by
his/her own. However, the boundary artifact will completely go away when
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the Lipschitz condition is satisfied.
We has investigated the problem with three different diffusivity profiles,

which differed only in an added constant (see Eq. (3.1)). We did not provide
a solution for diffusivity equal to zero at the boundaries (Ka(z)). As this
is no longer a diffusion problem, it is not guaranteed to satisfy well-mixed
the condition. We gave a few different suggested solutions to the bound-
ary artifact problem for low diffusivity at the boundaries. Of course, these
can also be used for high diffusivity boundaries. However, as the boundary
quality function points out (f(z,∆t) in Eq. (3.13)), if the diffusion term is
dominating, the boundary artifact that is caused by PRS can be negligible
for most applications.

In practical situations, the velocity statistics near the boundary is un-
known. Wilson and Flesch (1993) called this ”Unresolved basal layer”. This
can give us some freedom to design our own diffusivity near the boundaries.
If one obtains diffusivity from analytical expressions, and it has low diffusiv-
ity at the boundary , and one is not willing to change the diffusivity profile
too much, then Cubic spline interpolation with clamped condition may be a
good choice.

The smoothened-diffusivity method (Section 3.5.5 and Section 5.1) will
always satisfy the WMC with sufficiently small ∆t, but includes changing
diffusivity. We have discussed the legitimization of changing the diffusivity
near boundary. Wilson and Flesch (1993) argue that the we simply cannot
know the details of the turbulent motion near boundaries, As mentioned, this
gives us some freedom near the boundaries. Furthermore, Most researchers
often treat the fluctuating sea surface as a hard-wall. This is already changing
part of the physical reality. Therefore, smoothing the diffusivity very close
to the boundary should not alter too much of the result.

We mostly used a diffusivity profile where the drift term dominates over
the diffusion term near the boundary (Kb, Eq. (3.1b)) to perform the WMC
tests in this thesis. In general practical ocean applications the diffusivity will
often be much bigger. For example, Kc (Eq. (3.1c)) is from Visser (1997) and
it is almost 1000 times stronger than Kb. We choose to use low diffusivity
because we want to highlight the boundary artifact. For higher diffusivity,
smoothing the diffusivity near the boundary has very small impact on the
results. Therefore, we conclude that smoothened diffusivity method is a
generally good method to satisfy WMC for most applications.
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Gräwe, U. (2011). Implementation of high-order particle-tracking schemes

in a water column model. Ocean Modelling , 36 (1-2), 80–89.
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Appendix A

Figures

A.1 Cubic spline for E1, V1, M1 and M2

A.2 Figure from ”Entropy demystified”
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(a) E1 (b) V1

(c) M1 (d) M2

Figure A.1: Cubic spline interpolation method on 4 different SDE scheme
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Figure A.2: Permission granted by author and World Scientific. Source:
Entropy demystified second edition, Arieh Ben-Naim, Copyright @ 2016 by
World Scientific Publishing Co. Ptw. Ltd
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Appendix B

Weak and Strong convergence

B.1 Strong convergence

We only have the strong convergence that is defined in the Itô sense, not in the
Stratonovich sense. Therefore, Visser scheme and Milstein 2nd-order scheme
is not defined in this case since the former is defined in the Stratonovich
sense and the later is to ignore some term from 1.5 order Taylor scheme.
Therefore, we will test strong convergence of E1 and M1 schemes.

To illustrate this effect, we use a diffusivity profile with a smooth transi-
tion between two constants. The idea is to show that how fast a numerical
scheme converges to a true solution with difference ∆t under the same Wiener
process. Therefore, we first define minimal time-step and end-time, denoted
∆tmin and Tend, and we use this minimal time-step to simulate Tend/∆tmin
of ∆W ∼ N(0,∆tmin). Now we obtain sequence of ∆W , denoted (∆W )n,
and our Wiener process will become Wi = W (ti) =

∑i
n=0 ∆Wn. Using this

Wi we can simulate Lagrangian model with 6 different timesteps under the
same Wiener process. They are ∆t = ∆tmin, ∆t = 2 ·∆tmin, ∆t = 4 ·∆tmin,
∆t = 8 · ∆tmin, ∆t = 16 · ∆tmin and ∆t = 32 · ∆tmin. Of cause, we do not
have the exact solution. Therefore, we will treat the densest time interval,
which ∆tmin, as an exact solution and find the distance difference between
our ”exact” solution and the current time interval of the scheme. Figure B.1a
is an example between the densest time interval (∆tmin) and ∆t = 32 ·∆tmin
under the same realized Wiener process.

To get a statistical average, we repeat the process with different Wiener
process. Because we have to repeat in many wiener processes, it is better
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(a) Euler schemes with two different ∆t
under a same realized Wiener process.
Tend = 10000 s

(b) Diffusivity profile.

Figure B.1: Two figures to illustrate the idea of strong convergence.

that we reduce the Tend and N .

B.1.1 Testing environment and parameters set-up:

The depth of container is H = 25 m. The diffusivity profile is the following:

K(z) = K0 − (K1 −K0)

(
1− 1

1 + e−
m−z
η

)
(B.1)

where K0 = 5·10−3 m2

s
, K1 = 10−3 m2

s
, m = H

2
m and η = 1 m. The diffusivity

profile, which describes the turbulence, is plotted in figure B.1b
We have also k ∈ {1, 2, 4, 8, 16, 32}, where ∆t = k · ∆tmin, Tend = 100 s

and N = 100. We run 2000 different Wiener process for each k and find the
average error between this timestep and the ”exact” solution at Tend.

B.1.2 Result

The result is shown in figure B.2. The blue line scales as ∆t
1
2 . The red line

scales as ∆t1. We can see that the E1 have strong convergence around order
∆t

1
2 and M1 have order ∆t1. Figure B.2 tell us not just M1 converge faster

than E1 in the strong sense, it also tells us that M1 have more accuracy in
the strong sense.
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Figure B.2: Strong convergence of Euler-Maruyama and Milstein 1st order
schemes for 2000 difference Wiener process. The blue line scales as ∆t

1
2 . The

red line scales as ∆t1.

B.2 Weak convergence

In weak convergence, we will study how fast and how well the numerical
scheme converges to the distribution of the true solution. In another word,
if we have infinite many particles, the true solution is the probability density
function from the Fokker-Planck equation. However, we still do not have
the true solution with a finite particle. This time we will use the Eulerian
model as a true solution, and the numerical integration on this model will
be Crank-Nicolson scheme to solve the diffusion equation. This is because
the concentration of the true solution of SDE with infinite particles should
converge to Eulerian model. The precision of Eulerian model is very impor-
tant. It must be more accurate to the Lagrangian model. At least one order
more accurate. Otherwise the error of Eulerian model will dominate the weak
convergence. Crank-Nicolson may be a good choice since it is second order
scheme of time.

Figure B.3 is an example of concentration in the Lagrangian model has
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been calculated by Milstein 2nd-order scheme. We can see that the La-
grangian model follows almost the same shape of the true solution. This
encourages us that the SDE can converge to Eulerian. However, we need to
calculate |〈p(Zn)〉 − 〈p(Z(τ))〉| which from equation (2.23). In this test, we
choose

P (x) = xn,

where n = 1 in our case. This means that the first moment of the SDE is
calculated as the sum of all particles positions and divide by the number of
particles. The first moment of the Eulerian model is∫ H

0

C(z)zndz,

where n = 1. A numerical scheme can efficiently compute this. As the name
supposed, weak convergence converges weakly in number of particles. The
more the particles is used, the more accurate the result will be. Therefore, we
need many particles to perform the simulation. Here we use 20000000 parti-
cles for all four different SDE schemes. The problem turns to computational
power that we have. Because we are already using huge number of particles.
If we still use small ∆t, it will take a very long time to compute. Using
bigger ∆t may be our alternative option. But does our schemes still accurate
enough or stable? One may wonder. Visser (1997) proposed a restriction on
the ∆t for the integration:

∆t << min

(
1

|∂zzK(z)|

)
for ∀z ∈ D (B.2)

where ∂zzK(z) is the double derivative of diffusivity respect to space, D
is the domain and || is the absolute value operator. This restriction is widely
accepted. From the Eq. (B.2), we can always use bigger ∆t as long as our
diffusivity changes weak enough. Therefore, all we have to do is just using a
diffusivity that changes weakly respect to space. In this way, we make our
restriction much bigger than our ∆t, instead of using a smaller ∆t. We can,
therefore, use large ∆t to compare the weak convergence between all four
different schemes when number of particle is large enough.

B.2.1 Testing environment and parameters set-up:

The diffusivity profile is exactly the same as strong convergence case ex-
cept K0 = 1 · 10−4 m2

s
and K1 = 1 · 10−6 m2

s
. It gives us the right-hand
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Figure B.3: Weak convergence of Eulerian and Milstein 2nd-order schemes.
For Milstein 2nd-order schemes, we use for 2000000 particles, ∆t = 1 s and
Tend = 12 · 3600 s, and number of bins is 1000.

side of the Eq.(B.2) equals to 104973 s. This means that we can have
∆t ∈ {3600, 4320, 4800, 5400, 7200, 8640, 10800, 14400, 21600}. Furthermore,
we use for 20000000 particles and the Tend = 12 · 3600 s and number of bins
is 1000.

B.2.2 Result

The result is plotted in figure B.4. We can see that the E1, V1 and M1
schemes scale well with ∆t. M2 scales well with ∆t2 with a large time step.
However, for a smaller time step, it shows that the 20000000 particles are
not enough to exhibit the weak divergence property. Furthermore M1 have
slightly higher error than E1 and V1.
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Figure B.4: Weak convergence: The blue line, red line and purple line scales
as ∆t1. The green line scales as ∆t2
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Appendix C

Proof of section 2.6

Proof. Let Zn ∼ N(µ = Zδ,n, σ = 0) and Z(τ) ∼ N(µ = Zδ(τ), σ = 0). This
mean that Zn and Z(τ) have PDF like delta function with peak Zδ,n and
Zδ(τ) respectfully.

For weak convergence and P (x) = x, we have

|〈p(Zn)〉 − 〈p(Z(τ))〉| = |〈Zn〉 − 〈Z(τ)〉|,

recall that

〈Zn〉 =

∫ ∞
−∞

Znδ(Zn − Zδ,n)dZn = Zδ,n,

and

〈Z(τ)〉 =

∫ ∞
−∞

Z(τ)δ(Z(τ)− Zδ(τ))dZ(τ) = Zδ(τ).

we obtain
|〈Zn〉 − 〈Z(τ)〉| = |Zδ,n − Zδ(τ)| : weak.

For strong convergence, we have

〈|Zn − Z(τ)|〉 = 〈
√

(Zn − Z(τ))2 〉

and it is equal

〈
√

(Zn − Z(τ))2 〉 =

∫ ∞
−∞

∫ ∞
−∞

√
(Zn − Z(τ))2δ(Zn − Zδ,n)

· δ(Z(τ)− Zδ(τ))dZndZ(τ)
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=
√

(Zδ,n − Zδ(τ))2 = |(Zδ,n − Zδ(τ)| : strong

This show that the weak convergence and strong convergence is same
when the SDE with delta function as PDF. It essentially transform the SDE
to ODE.
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Appendix D

Code

This thesis is already almost hundred pages, to avoid this thesis too many
pages. I uploaded all code to the Github. Most figure has its own Jupyter
file. All the Jupyter involve WMC test has been parallelized. The reader can
specific number of threads to be used in the simulation. The default value
is four. I suggestion user to use number of process unit in the CPU. All
the configuration of simulation should be very clear for the reader because
I always specific my configuration before simulation. The code can also run
on Windows, Linux, iOS platform. If reader want to have a look. Here
is the link: https://github.com/Mauhing/MasterThesis.git. For more
information, see the readme file in Github.
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