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i

Successful engineering is all about

understanding how things break or fail.

- Henry Petroski
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Preface

This work has been conducted at EDR&Medeso AS and the Waterpower Labora-
tory, Department of Energy and Process Engineering at the Norwegian University
of Science and Technology. The thesis is presented as a collection of scientific
papers written during the period 2016-2019. The work is part of the HiFrancis
research project, funded by The Research Council of Norway.
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Abstract

Renewable energy sources are becoming an integral part of the global energy mix.
As hydropower can be used to stabilize the new energy market, this calls for
increased demands from Francis turbines. Accurate calculation of the dynamic
loads, as well as estimation of the deflection and stresses in the turbine materials,
is essential for safe and reliable operation of modern turbines.

The primary objective of this work has been to investigate the phenomenon of
resonance in Francis turbines. A procedure for numerically simulating this is
presented, a three-step procedure consisting of calculating a fluid pressure, a damp-
ing ratio, and finally performing a coupled structural-acoustic simulation. The
pressure in the runner channel is shown to be the sum of the viscous and acoustic
pressure contributions, and this corresponds well with experiments.

Included in structural- acoustic simulations is the effect of added mass. This effect
will lower the natural frequency of the turbine runner from the frequency of free-
vibration in a vacuum. Added mass is crucial to include, as one of the critical
points in a design process is to ensure that the load frequency is not equal to the
natural frequency of the runner.

Obtaining accurate viscous load from CFD was shown to be straightforward. Both
full turbine models and reduced geometry models predicted pressure fluctuations
within a couple of percent of experimental results. The damping ratio can be
obtained by a modal work approach, a one-way CFD simulation using the mode
shape and frequency of the structure as input. On a simplified blade cascade this
was shown to be a very successful procedure, and easy to apply to turbine-like
structures as well. Another interesting finding was a nearly linear relationship
between the damping and a reduced velocity parameter. This relation could be
used as a rough estimate for damping if CFD analysis is not performed.
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As the computational expense of performing accurate fluid and mechanical sim-
ulations are high, several model order reduction procedures have been tested.
Depending on the physical domain, and solver method, different methods are used.
In fluid simulations, it is seen that the most efficient way of reducing simulation
time is to solve in the frequency domain. These methods are under development;
however, there exist similar strategies today that can be used to reduce the geomet-
rical domain as well.

In the structural domain, the goal is to reduce the coefficient matrices in the gov-
erning second order equations. This is done in two different ways, using a modal
decomposition method, and Krylov vectors as vector space. The modal decompo-
sition method provides a way of solving a quasi-two-way coupled fluid-structure
simulation. Here an interesting added stiffness effect was observed when the
flow across a hydrofoil was increased. The Krylov vector approach was shown
to provide almost identical results as solving the full structural model.

Keywords: Francis turbine, Computational Fluid Dynamics, Vibration analysis,
Rotor-Stator Interaction, Fluid-Structure Interaction, Model Order Reduction
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Chapter I

Introduction

Rapid and widespread industrialization has caused global energy consumption to
rise steadily during the last decades. At the time of writing, this global energy mix
is heavily dependent on fossil fuels, with market shares in the range of ≈ 80%
[1]. Due to the recent focus on climate changes, this ratio is rapidly changing, and
some estimates predict that renewables will be the largest energy source already
by the year 2040 [2]. Most of the renewable energy sources, solar and wind,
in particular, are intermittent energy sources. This means that the energy is not
continuously available, as local variations in weather occur. This is usually not an
issue in hydropower, due to the option of storing water in reservoirs. Hydropower
is, therefore, a possible stabilizer in a future energy mix, consumed when the
intermittent sources are unavailable.

Hydropower is one of the oldest renewable energy sources we have. The first
documented use of water wheels dates back to the 4th century BC in India [3].
Throughout modern history, water wheels have primarily been used for agricultural
purposes, and from the 19th century in the production of electricity. Amazingly,
James B. Francis, the inventor of the Francis turbine, obtained a hydraulic effi-
ciency of 90% all the way back in 1848 [4]. The efficiency has gradually improved
over the years, with the introduction of numerical tools and modern production
methods driving the innovation today.

In the future energy system, the following trends might be a reality;

• To stabilize the energy market, hydropower could be operated less at design
conditions, and have more frequency load changes and start/stop cycles.

• To optimize hydraulic efficiency, turbine blades are made thinner, by the
help of modern production methods.
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The two are a potentially dangerous combination, as off-design operation using
thin blades increases the demand of the turbine design, especially from a structural
point of view [5]. A turbine with optimized hydraulic performance may not display
optimal structural integrity.

1.1 Motivation
In recent decades, several High Head Francis turbines (HHF) have experienced
failures, with blade cracks as one of the main culprits [6]. Data from a major
turbine manufacturer in Norway indicates that this is not a new problem [7], it is,
however, worrying that it keeps on happening with all the modern tools available
today. From field measurements, it is also known in the industry that the primary
fluctuating pressure component in an HHF originates in a phenomenon called
Rotor-Stator Interaction (RSI), formally defined later [8].

To investigate this problem, the HiFrancis research project was started, under
which this thesis is a part [9]. The HiFrancis research project, funded by the Nor-
wegian Research Council, is a collaborative project in the Norwegian hydropower
industry, where the goal is to understand the physics behind the RSI and resonance
effects better and to validate the numerical methods available today.

1.2 Objectives
The overall objective is to understand the underlying physics behind resonance in
turbine runners and to be able to simulate the phenomenon accurately. This goal
can be broken down into the following objectives;

• Accurate calculation of the fluid loads in the runner

• Accurate calculation of the hydrodynamic damping

Accurate prediction of the fluid loads is, of course, necessary to obtain a proper
estimation of the material stresses. In addition, the hydrodynamic damping is a
critical input to any structural simulation. These two objectives and the coupling
between are the main focus of the research. Additionally, as the project has an
industrial interest, an effort will be put into reducing simulation time wherever
possible, ideally without compromising much on the accuracy.

To achieve the above objectives, the following specific activities are performed.



1.2. Objectives 5

• The Francis-99 model runner at the Waterpower Laboratory in Trondheim
has several pressure sensors both in the volute, distributor and draft tube,
as well as onboard the runner. The pressure values, and importantly, the
amplitude of the fluctuating pressure, will be used throughout the thesis as
validation data for different numerical procedures.

• It is important to understand the physics behind the hydrodynamic damping
phenomenon to perform accurate structural simulations. The hydrofoil test
rig at the Waterpower Laboratory in Trondheim has been used to investigate
this. Data from experiments will be used to validate the numerical methods
used and to understand the different phenomena observed.

• Different methods for model order reduction will be used to speed up simu-
lations.

Limitations. It should be stated explicitly that the overall goal is to obtain ac-
ceptable accuracy in an industrial time-frame, rather than perfect results if this
implies excessive computational cost. Conceptually, in figure 1.1, t1 will be pre-
ferred to t2 if the accuracy is of the same order.

Figure 1.1: Time versus accuracy

This implies certain limitations concerning the simulations performed. Specific-
ally, the turbulence models are limited to RANS models, and incompressible flow
is assumed in all fluid simulations. Another limitation in this work is that the
damping simulations, and preceding experiments, have been done on simplified
geometries, not a turbine runner.
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1.3 Outline
This thesis is presented as a collection of scientific papers. The main research
material in this thesis is therefore found in the papers in Part II. The material is,
however, presented and intended to be read as one connected work, where all the
papers support the overall goal of the research. The thesis will have the following
outline;

Chapter 2 will present basic theory and governing equations for the different topics
covered. This section is not intended to be a comprehensive review of all theory,
rather an introduction of the different themes. More information on the research
methodology can be found in the attached papers.

Chapter 3 will present the key findings in the papers, link the different papers to-
gether, and present a proposed workflow for simulating the resonance phenomenon.

Chapter 4 will present a general discussion, and bring forward some interesting
topics for future work.

Chapter 5 will present conclusions from the work.

Part II contains the scientific papers. The papers are divided into selected papers
and additional papers. The selected papers cover the key components of the
thesis, whereas the additional papers are various in-depth numerical analyses into
the different topics covered, as well as experimental work. Figure 1.2 shows an
overview of the papers in this thesis; details will be presented in chapter 3. The
arrows indicate how the papers from different topics are linked together.

The suggested approach for the reader is not to read all the papers without context,
instead use the summary and discussion chapters as an introduction to the results,
and read the papers that catch the readers interest for further information.
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Figure 1.2: Overview of papers in thesis, and the different themes covered
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Chapter II

Theory

� This chapter presents the basic theory and equations needed to follow the
discussion.

2.1 The Francis turbine
A hydraulic turbine is a machine designed to convert kinetic and/or potential en-
ergy in water flow into rotational mechanical energy. Many different turbine types
exist today, the main types being Francis, Kaplan, and Pelton turbines, their usage
is dependent on the flow rate and the available water head at the individual site.
In this thesis, only Francis turbines will be considered. The Francis turbine is the
most used turbine type in the world, operating in a large range of water heads [10].
The high head Francis turbine (H>300m) is of special interest, as several turbines
of that type have had failures lately. Figure 2.1 shows a typical Francis turbine,
with its key components [11]. The spiral casing, stay vanes and guide vanes direct
high-pressure water into the turbine runner. The runner extracts energy from the
water, onto the rotating shaft connected to a generator. Several types of pressure
pulsations can be found in a Francis turbine, ranging from draft tube swirl to
vortex shedding oscillations [12]. In High Head Francis turbines, however, it
has been found that the dominating pressure component originates in Rotor-Stator
Interaction (RSI) [8].

Rotor Stator Interaction. RSI is a phenomenon occurring in most rotating ma-
chinery. Every time a rotating component (runner blade) passes a stationary com-
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Figure 2.1: A typical Francis turbine and its main components [11]

ponent (guide vane), a pressure pulse is created due to the acceleration of the
surrounding fluid. As this phenomenon has been shown to be dominating in High
Head Francis turbines, RSI will be the sole focus of this thesis. Depending on the
runner speed frunner, the number of guide vanes Zgv, and the number of runner
blades Zr, one can calculate the dominating load frequencies fRSI as well as the
spatial distribution of the load, referred to as the Nodal Diameter, ND [13, 14].

fRSI = n · frunner · Zgv, n = 1, 2, ..., (2.1)

ND = mZr ± nZgv, m, n = 1, 2, ..., (2.2)

n,m are integers denoting the higher harmonics, but usually, only the first couple
are relevant as the high-frequency modes are damped out.

The Francis-99 turbine. At the Norwegian University of Science and Techno-
logy (NTNU), a model turbine geometry and experimental data have been made
available to the public. The turbine, named the Francis-99 turbine, has been the
focus of extensive experimental and numerical research, e.g., in the Francis-99
workshops for numerical engineers [15, 16].
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The Francis-99 runner is a high head Francis turbine with a specific speed of 0.27
and consists of 15 main and 15 splitter blades. The model has on-board pressure
probes that can measure the pressure fluctuations inside the runner. Figure 2.2
shows the placement of the pressure probes along one runner channel. The exper-
imental results from these probes are the basis for the validation of the numerical
methods used in this work.

Figure 2.2: Onboard pressure probes in the Francis-99 runner [17]

Additionally, in order to study the phenomenon of damping, several hydrofoils
have been tested in the Waterpower Laboratory at NTNU. Figure 2.3 shows the
design of one of the foils, henceforth referred to as the Francis-99 hydrofoil.
The results from these experiments have been used as validation in the numerical
simulation of damping. Damping is a crucial parameter in structural simulations,
and understanding this mechanism can help to prevent structural failure.

Figure 2.3: The Francis-99 hydrofoil used for damping experiments [18]
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2.2 Structural failure
As mentioned in the previous sections, several types of pressure loads can be found
in a turbine, potentially causing material failure. Structural failure can broadly
speaking be divided into failures due to static loads and dynamic loads [19]. A
static load exceeding the yield strength of the material will cause failure; however,
this phenomenon is rare in turbines and will not be discussed. The second failure
mode, dynamic loading, and fatigue is highly relevant.

Fatigue. Fatigue is material failure due to repeated, cyclic loads [20]. The stress
levels in the material are usually low, as opposed to plastic deformation under high
stresses.

The integrated fluctuating pressure in the runner will create corresponding cyclic
stresses in the material (see figure 2.4 left). An S-N curve can be used to estimate
how many cycles a material can withstand at a specific stress level [20], see figure
2.4 right.

Figure 2.4: Using an S-N curve to estimate lifetime of a component

If a structure is subjected to several different stress conditions, the accumulated
damage can be estimated by e.g., the Miner-Palmgren rule, eq. 2.3 [21],

k∑

i=1

ni
Ni

= C (2.3)

where ni is the number of stress cycles at load i, and Ni is the number of stress
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cycles to failure at load i. When C = 1 one assumes that the material is at the
end of its lifetime, although there are significant uncertainties related to the S-N
curves used to extract the above parameters. Actual fatigue calculation is not in
the scope of this work, the focus is instead on the correct calculation of the loads
in the runner, and prediction of the resonance phenomenon.

Resonance. To correctly calculate the loads in the runner, the phenomenon of
resonance has to be considered. Resonance is probably one of the most well-
known phenomena in structural mechanics. It occurs when two conditions are ful-
filled; the frequency of a structural load is equal or in the vicinity of the structural
natural frequency, and the spatial distribution of the load matches the structural
eigenmode [19]. In such cases, even small forces can cause catastrophic structural
failures. Even though resonance is a well-known issue, avoiding it may not be
straightforward. It is dependent on the correct calculation of the loads as well as the
natural frequencies and eigenmodes of the structure. In a turbine, a phenomenon
called added mass complicates this calculation.

Added mass. When a submerged object is accelerating, the surrounding fluid has
to be displaced. Fluid forces will, in such cases, oppose the motion of the object,
and the resulting effect can be modelled as if the object mass is larger. This is
referred to as the added mass effect [22]. The reason why the added mass effect is
important is that the natural frequency of an object is inversely proportional to the
square root of its mass. Therefore, objects submerged in water will have a lower
natural frequency than when tested in air, which can complicate the resonance
calculations.

Summarizing the phenomena described above, the fluid pressure in the runner,
combined with the runner vibrational characteristics (eigenmodes and eigenfre-
quencies) will determine whether resonance is likely and determine the stresses
and strains in the material. Indications of resonance were found experimentally in
the Francis-99 runner, in the second harmonic of the RSI pressure. This makes the
model ideal for validation of numerical procedures.

2.3 Governing equations
The preceding sections present some fundamental phenomena in fluid and struc-
tural mechanics. Fluid loads, structural eigenfrequencies, added mass effects, and
more are all critical inputs for calculating the actual structural response. The fol-
lowing sections present the governing equations in the various physical domains.
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Fluid Mechanics. The governing equations of fluid flow are the well-known
Navier-Stokes equations, in this case, limited to the iso-thermal, incompressible
case. The continuity and momentum equations can be written as follows [22];

∂vj
∂xj

= 0 (2.4)

∂vi
∂t

+ vj
∂vi
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2vi
∂xj∂xj

(2.5)

where vi denotes the velocity components, p the pressure, ρ the density and ν the
kinematic viscosity of the fluid. Body forces are omitted, and Einstein notation is
used.

In many engineering applications, the flow may exhibit chaotic or random fluctu-
ations on top of the bulk motion of the fluid. This phenomenon is called Turbulence
and is one of the oldest unsolved problems in physics [23]. In this work, turbulence
has not been studied in detail; a brief overview follows. A dimensionless quantity
called the Reynolds number can be used to classify a flow as either laminar or
turbulent [22];

Re =
vL

ν
(2.6)

where v is the flow velocity, L a characteristic length and ν the kinematic viscosity.
Depending on the type of flow, different limits can be defined; in this thesis, the
flow is assumed to be turbulent. The reason why turbulent flow appears random is
that the flow is very sensitive to changes in initial and boundary conditions [24].
The practical way of dealing with turbulence is to use the Reynolds Averaged
Navier-Stokes (RANS) equations. Let the flow at a given time be decomposed
into a mean component and a fluctuating component,

vi = v + v′ (2.7)

where overbar notation denotes the mean, and prime notation denotes fluctuation.
If eq. 2.7 is inserted into the Navier-Stokes equations, and averaged, we get the
RANS equations:
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∂vj
∂xj

= 0 (2.8)

∂vi
∂t

+ vj
∂vi
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2vi
∂xj∂xj

− ∂

∂xi
v′iv
′
j (2.9)

where the difference from equation 2.5 is the last term in the momentum equations,
the Reynold Stresses. In the RANS equations, there are more unknowns than
equations, and therefore, the Reynolds stresses have to be modelled. Different
models frequently used in engineering problems include the k − ε and the k − ω
model as well as the SST model [25, 26, 27], all with strengths and weaknesses in
different areas of the flow. The industry standard SST model is used throughout
this work. Further details regarding turbulence are beyond the scope of this thesis;
more information can be found in the book by Pope [24].

Structural Mechanics. On the structural side, this thesis primarily covers vi-
bration and harmonic motion. The governing equation for such phenomena is as
follows [19]:

Mü+ Cu̇+Ku = F (2.10)

where M,C,K,F is the mass, damping, stiffness and force coefficient matrices.
In the case of harmonic motion, u = uoe

st, with s being a complex number, eq
2.10 can be re-written to:

(s2M + sC +K)u0 = F0e
iφ (2.11)

where u0 and F0 are in general complex, and φ is a potential phase shift between
the load and the deflection. Assume zero external forces, and s can be solved for:

s = −ωnξ ± iωn
√

1− ξ2 (2.12)

where ω2
n = K/M is the natural angular frequency and ξ = C/(2Mωn) is the

damping ratio. For undamped vibration, ξ = 0, the response is pure harmonic
motion:
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u = u0e
iωnt (2.13)

and for damped vibration, 0 < ξ < 1, the response becomes [28]:

u = u0e
−ωnξt±iωnt

√
1−ξ2 (2.14)

The latter is harmonic motion enveloped by a decaying exponential function, see
figure 2.5 for the different vibration types. Overdamped vibration, ξ > 1, will not
be considered.

Figure 2.5: Damped and undamped vibration

For modal analysis, the unforced, undamped version of eq. 2.10 is used:

Ku0 = ω2
nMu0 (2.15)

Which can be linked to the standard eigenvalue problem,

Aw = λw (2.16)

where λ are the eigenvalues and w the eigenvectors of the system. The square
matrix A represents the system characteristics, in this case the mass and stiffness
matrices. In structural mechanics, it is customary to refer to eigen/natural fre-
quencies ωn, rather than eigenvalues. The relation is simple, λ = ω2

n, as can be
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seen from equation 2.15. The physical interpretation of an eigenvector is the mode
shape of a structure. A mode shape Φ is the spatial distribution of the deformation
during harmonic motion, see figure 2.6 for the first bending mode of the Francis-
99 hydrofoil. Note that the mode shapes from a modal analysis are of arbitrary
length. This implies that a mode shape may look non-physical, but this is purely
a mathematical artifact from the definition of eigenvalues and eigenvectors. One
important property with mode shapes is that they are all linearly independent [28].

Figure 2.6: First mode shape of Francis-99 hydrofoil. Deformation is exaggerated
compared to true deformation in experiments. Taken from paper 5

Damping. The damping matrix in equation 2.10 is hard to determine a priori.
A typical way of thinking of damping is the fact that it is an energy dissipative
process. If one were to calculate the work over one vibrational period of the motion
of equation 2.10, W =

∫
Fdx, assuming harmonic motion and where x is the

vibrational distance, only the damping term would provide a non-zero result [29].
This fact, coupled with the definition of the damping ratio, ξ = C/(2Mωn) will
provide an estimate for the damping, given that the work, W , on the structure can
be calculated, and the maximum deflection, u0, is known:

ξ =
W

2πMω2u20
(2.17)

This procedure, a modal work or flutter approach, will be used to obtain an estimate
of the damping ratio numerically.

Another way of assessing the damping is to use the general representation of
damped oscillating motion:
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u = u0e
−ωξtcos(ωt) (2.18)

and extract the damping from the decaying exponential function, see also figure
2.5.

Acoustics. In fluids where the interesting variable is not the advective, bulk
motion of the fluid, but the propagation of waves, acoustic theory can be used.
The wave equation models how information spreads through a medium [30]:

∇2p′ − 1

c2
d2p′

dt2
+∇ · [4µ

3
∇(∇ · v′)] = 0 (2.19)

where p′, v′ is a pressure and velocity fluctuation respectively, c is the speed of
sound, and µ is the dynamic viscosity. The above equation can be written in matrix
form and coupled with the standard second order structural equation, eq 2.10, to
the Eulerian displacement formulation below [31]:

(
−ω2

[
Ms 0
Mfs Ma

]
+ iω

[
Cs 0
0 Ca

]
+

[
Ks Kfs

0 Ka

]){
u
p

}
=

{
Fs
Fa

}
(2.20)

The Eulerian displacement equation solves for the acoustic pressure propagation
in the acoustic domain, the structural deformation, and the interaction between the
domains, i.e., the added mass effect.

2.4 Numerical simulations
The governing equations presented in the previous section cannot be solved ana-
lytically for anything other than trivial problems. In most real-life cases, the
equations have to be discretized in time and space and be solved using either direct
or iterative solver methods, depending on the problem. See figure 2.7 for a typical
spatial discretization (mesh) in a structural analysis. There exists a vast amount of
literature on the numerical implementation of the above equations, most of which
are beyond the scope of this thesis. Some principles will be presented briefly.

Computational Fluid Dynamics. Computational Fluid Dynamics (CFD) is be-
coming the third pillar of fluid mechanical research, alongside analytical approaches
and experimental work. In CFD, the governing equations of fluid flow are solved
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numerically by discretizing in time and space and solved usually with an iterative
approach. Interested readers will find a great introduction to CFD in the book by
Ferziger and Peric [32].

The commercial CFD software ANSYS R© CFX R© is used throughout this thesis.
A hybrid finite-element/finite-volume approach is used to discretize the Navier-
Stokes equations 2.5. Control volumes are created around the mesh vertices,
providing the conservation properties of the Finite Volume Method. The use of
Finite-Element shape functions approximates the variation within each volume.

CFX uses a fully coupled pressure-velocity solver strategy. This means that the
usual pressure correction procedure is not used, and the momentum equations are
solved with the pressure equation in the same matrix. This procedure is com-
putationally more expensive per iteration, but will usually converge fast, as only
the non-linearities need to converge. The specific implementation in CFX is an
industry secret and not available to the author.

Figure 2.7: Example of mesh in a structural analysis. Taken from paper 1

Finite Element Method. Finite Element Method (FEM) is the equivalent to
CFD in the structural domain. The famous FEM book by Zienkiewicz is highly
recommended for interested readers [28].

The commercial FEM software ANSYS R© Mechanical R© is used throughout this
thesis. A FEM method usually creates a set of algebraic equations by discretizing
the domain and expressing the governing equations using an energy minimization
technique. The global set of equations from the FEM procedure can be solved with
either a direct solver or an iterative solver.
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2.5 Fluid - Structure Interaction
Fluid-Structure Interaction (FSI) is a quite broad term, including everything from
simple fluid pressure load on structures, to bio-medical simulations of organs. To
separate the different procedures, the following grouping is proposed, see [33] for
more:

• One-way coupling: Using two solvers, e.g., a CFD code and a FEM code,
one domain is solved first, then information is passed to the second domain
and solved. There is no feedback to the first system. See figure 2.8 a).

• Two-way coupling: Using two solvers, e.g., a CFD code and a FEM code,
one domain is solved first, then information is passed to the second domain
and solved. There is feedback to the second system, and usually, an iterative
loop to converge the information transfer. See figure 2.8 b).

• Fully coupled: The domains are modelled using a common set of equations,
and equal discretization. The equations are solved simultaneously. See
figure 2.8 c).

Figure 2.8: Different FSI coupling strategies

In commercial software, the first procedure is widely used, e.g., to map pressure
loads onto a structure. The second procedure is rarely used due to excessive
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computational demands. The third is primarily used for non-viscous flow, i.e.,
acoustic-structural simulations. All methods will be investigated in this thesis.

2.6 Model Order Reduction
Model Order Reduction (MOR) in this thesis will be defined as a method of
reducing the complexity of a simulation. Metamodels, surrogate modeling, and
other methods based on input/output relations are not covered. The methods used
are different based on what physical domain it is applied to, see a brief introduction
below.

Fourier Series. A Fourier series is one of the most common ways of expressing
a periodic signal [34]. The idea is that a repeating signal can be decomposed into
a weighted sum of harmonic (sinusoidal) functions:

f(t) = A0 +

∞∑

n=1

Ancos(nωt) +Bnsin(nωt) (2.21)

where the coefficients A0, An, Bn are defined as follows,

A0 =
1

T

∫ t+T

t
f(t)dt (2.22)

An =
2

T

∫ t+T

t
f(t)cos(nωt)dt (2.23)

Bn =
2

T

∫ t+T

t
f(t)sin(nωt)dt (2.24)

In rotationally symmetric geometries like a turbine runner, this becomes a great
tool for reducing the computational domain. Let us assume that the pressure field
in a domain is periodic in time, p(r, ρ, z, t) = p(r, ρ, z, t + T ) and in space,
p(r, ρ, z, t) = p(r, ρ + ∆ρ, z, t). If only a section of the runner is modeled, the
periodic boundaries could then be expressed using Fourier series. Alternatively,
in a more sophisticated manner, the conservation variables in eq. 2.5 can be re-
written as a Fourier series to remove the time dependency. The set of equations
can then be solved in the frequency domain; a method referred to as Harmonic
Balance Method [35, 36].
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Modal Decomposition. In a modal decomposition, the structural motion is as-
sumed to be a linear combination of its mode shapes [28]:

u(t) =
N∑

n

qn(t)Φn (2.25)

where u is the deflection, q is the modal amplitude, and Φ is the mode shape
obtained from a modal analysis. Visually, using a fixed beam, it can be illustrated
as in figure 2.9.

Figure 2.9: The concept of using a mode decomposition to express structural
deformation. For illustration only, mode shapes are not real.

By inserting eq. 2.25 in eq. 2.10 and pre-multiplying with the mode shapes, the
equation can be re-written as:

miq̈ + ciq̇ + kiq = fi (2.26)

where mi = ΦT
i MΦi and so on. The orthogonality of the modes ensures that

ΦT
i MΦj = 0 for i 6= j, and makes eq. 2.26 a set of linearly independent equa-

tions. The underlying assumptions include linear behaviour and that the Rayleigh
damping model is used [37]:

C = αM + βK (2.27)

where α, β are the Rayleigh damping coefficients. Usually, only the low-frequency
modes are included in the above approach. Using the Rayleigh damping model, it



2.6. Model Order Reduction 23

is easy to show this. The damping ratio can be written as:

ξ =
C

2Mωn
=

1

2ωn
(α+ ω2

nβ) (2.28)

where we see that the high-frequency modes are damped out.

Krylov Subspaces. While modal decomposition is an intuitive, physical basis
for model order reduction, Krylov subspaces are more abstract. The principle is
the same; you want to reduce the size of a coefficient matrix by the use of some
basis, see figure 2.10;

Figure 2.10: Reducing the size of a structural coefficient matrix

or mathematically,

wTMw = Mred (2.29)

where w is some vector. In a modal decomposition, these vectors are the eigen-
vectors of the system (recall mi = ΦT

i MΦi), here Krylov vectors are used. A
Krylov vector is an intelligently created vector that satisfies moment matching
conditions of the transfer function of the system. Put simply, if the transfer function
of a system were to be expressed using a series expansion (think Taylor or Fourier
series), then a Krylov subspace of order m matches the first m terms in the series
expansion. The mathematics is outside of the scope of this thesis; interested
readers can find more in, e.g., [38, 39].

The resulting reduced coefficient matrices are full, as opposed to the diagonal
matrices from the modal decomposition. The matrices are however very small,
and the final system, eq. 2.30, can be solved using a direct solver with negligible
computational effort.
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Mredü+ Credu̇+Kredu = Fred (2.30)

An advantage of using Krylov vectors as a way of reducing the structural system
is that arbitrary damping, gyroscopic effects, and more could be included, effects
that destroy the symmetry in the original system. This is not allowed using the
modal decomposition method.
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Chapter III

Summary of papers

� This chapter summarizes the results from the different papers and shows
how the papers are connected. A workflow for assessing the resonance risk
is presented.

This thesis is paper-based, meaning it consists of a series of scientific papers. The
author has been involved in research into a variety of topics, and this chapter will
serve as a summary of the findings in the research, as well as a guide for how
the papers are interconnected. The presented research can be divided into three
main topics, CFD, Damping and Model Order Reduction. All of these topics have
been researched to better understand the key aspects of an Acoustic Harmonic
Simulation, where potential resonance issues in high head Francis turbines can be
quantified. Please refer to figure 1.2 to get an overview of the different papers in
this thesis and how they interact. As well as being divided into different topics,
the papers in figure 1.2 are also divided into selected and additional papers. This
is to concretize which papers are critical to the main goal of the thesis, resonance
issues in turbine runner channels, and which are supporting papers. The additional
papers cover in-depth studies into the different topics covered, touches upon new
solver methods in CFD, implements conceptual optimization schemes, presents
experimental work, and more.

As discussed in chapter 1, the main objective of the research has been to investigate
the issue of resonance in high head Francis turbines. Figure 3.1 shows a proposed
workflow for assessing this phenomenon.
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Modal analysisCFD analysis

Is there a risk of resonance? 

if yes

Damping analysis

Harmonic analysis

Figure 3.1: Workflow for identification of resonance

In any engineering problem regarding resonance, one has to first get an overview of
the fluctuating load and the vibrational characteristics of the structure. In this case,
this is done using a CFD analysis and a modal analysis, respectively. The load
characteristics can also be calculated analytically by eq. 2.1-2.2. As mentioned in
the theory chapter, resonance occurs if the load shape and frequency matches the
mode shape and natural frequency. Figure 3.2 shows the conceptual idea, where
only load F1 can excite motion in the structure, even if the frequency of F2 matches
its eigenfrequency.

Figure 3.2: Conceptual resonance conditions. Taken from paper 1
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To answer the question "Is there a risk of resonance", the load has to be compared
with the results from the modal analysis. Rarely will both the frequency and
the spatial distribution of the load perfectly match the vibration of the structure.
Engineering experience and judgment will therefore be applied and assess whether
the dynamic effects are critical for the operation of the turbine. To quantify the
dynamic effects, the next step is a harmonic analysis where the fluctuating load is
applied to the structure, and the proper structural response is calculated.

In Paper 1, the resonance phenomenon in runner channels was simulated using a
coupled structural-acoustic simulation. A viscous pressure from an incompress-
ible CFD analysis was loaded on the structure as a load, and acoustic elements
modelled both the added mass effect and the acoustic pressure propagation in the
domain. A harmonic analysis is performed in the frequency domain, meaning no
time-stepping procedure. This implies that the load from the CFD analysis had
to be expressed as a Fourier Series, which represents a periodic signal as a sum
of trigonometric functions, see section 2.6. This representation is frequency based
and is loaded onto the structure. The total numerical pressure in the runner channel
is therefore the sum of the viscous pressure load and the resulting acoustic pressure
from the harmonic analysis. Figure 3.3 shows a comparison with experiments of
the second pressure harmonic through the Francis-99 runner.
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Figure 3.3: Numerical and experimental pressure in the runner channels. Viscous and
acoustic pressure combined. Taken from paper 1
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Figure 3.4 shows a decomposition of the second pressure harmonic into viscous
and acoustic contribution. The viscous pressure is linearly decreasing through
the runner channels, while the acoustic pressure is seen to increase in some of the
pressure probes. Viscous and acoustic pressure of the same order may indicate res-
onance conditions, as far away from resonance, the contribution from the acoustic
pressure would be close to zero. The viscous component from CFD is seen to
almost perfectly match the experimental results, while there are some differences
in the acoustic pressure, especially at the outlet. Paper 1 is discussing the reason
for the discrepancy, and identified the most critical inputs to the simulation; 1)
a viscous pressure from a CFD analysis, and 2) the damping ratio. The specific
geometry of the Francis-99 runner was also a source of uncertainty. The acoustic
pressure amplitudes were found to be linearly dependent on the viscous pressure,
and non-linearly dependent on the damping ratio. To investigate these parameters
in more detail, we refer to the other papers in the thesis, starting with the CFD
analysis.
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Figure 3.4: Pressure decomposition in the runner channels. Comparison with
experiments . Taken from paper 1

Computational Fluid Dynamics. A CFD analysis is the basis for turbine design.
Hydraulic efficiency, torque, power, and more are standard outputs from simu-
lations. In terms of fatigue, the oscillating pressure values are also of interest.
However, for turbines close to resonance conditions, a CFD analysis alone will
underpredict the pressure fluctuations. Figure 3.5 is taken from Paper 2, where
the experimental pressure fluctuation inside the runner channels was compared
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with numerical models. Both full turbine and passage models were tested, with
a passage model being a simulation where only a few of the runner passages are
simulated to speed up simulation time. This method is using a Fourier Series rep-
resentation on the periodic boundaries to allow for variations in the circumferential
direction.

Figure 3.5 is very telling. Firstly we see how well the first harmonic of the pressure
is predicted, both in full turbine simulations (360 simulation), and passage models
(FG Fourier Inlet). Secondly, we see how bad the second harmonic is predicted.
Later, in paper 1, we learned that the "missing" pressure component in the second
harmonic is the acoustic contribution of the surrounding water. Figure 3.5 is
therefore an indication of resonance in the runner channels, and illustrates the
background of the whole project; an incompressible CFD analysis alone will fail
to predict correct pressure load. The fact that the first pressure harmonic is so well
predicted, however, validates the CFD simulations to the point that we trust the
viscous pressure to be correct. This assumption was later validated, see e.g., figure
3.4 where the viscous pressure corresponds well with the experimental data even
at the second pressure harmonic, the harmony where a resonance phenomenon is
observed.
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Figure 3.5: Frequency spectrum of pressure from incompressible CFD. Taken from
paper 2

From the base case CFD analysis, the CFD work split in two directions. In the
first direction, Paper 6 and Paper 7 aims to prove that simple CFD analyses
are sufficient for optimization of turbine design. The argument is that global
parameters like head and torque are relatively easy to predict compared to local
phenomena like the shedding of vortices. Paper 6 creates a foundation by valid-
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ating the rapid generation of Hill-Diagrams. In this paper, steady CFD analyses
were performed to extract the hydraulic efficiency at different operating points.
The simulations were compared with experimental results from the Waterpower
Laboratory, in terms of a relative error between the simulated hydraulic efficiency
and the experimental one, see figure 3.6. There is an overall good match with the
experimental results, even though the simulations performed were simplified, with
each simulation performed in just minutes.

Figure 3.6: Error in hydraulic efficiency at different operating conditions. Taken from
paper 6

In paper 7, a design code is coupled to the simulation framework from paper 6 to
form an automated optimization loop. The framework ensured automatic turbine
design, meshing, and simulation, as well as several different optimization choices.
By treating the blade leading edge geometry as a variable, it was shown that it was
possible to use this procedure to increase the hydraulic efficiency of the turbine,
especially at off-design conditions. See figure 3.7, where the numbers 24 and
5 denotes the design number in the optimization loop. Further research in this
direction, the design of variable speed turbines, is ongoing in the research project
HydroFlex [40].
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Figure 3.7: Change in Hill diagram after optimizing blade leading edge. Taken from
paper 7

The second direction from the initial CFD analysis is Paper 8 and Paper 9. These
papers investigate different ways of speeding up simulations and shows, among
other things a linear speedup with mesh size, when components like volute and
draft-tube are omitted. It also touches upon new solver methods like the Harmonic
Balance method, a frequency based solver for periodic flow. This method is briefly
explained in section 2.6, and will no doubt be valuable in the future as it provides
a dramatic speedup compared to solving in time. As of today, the method is on a
development level.

Damping estimation. Going back to the overall objectives, now that the CFD
part is assumed to be of reasonable accuracy, we focus on the damping. The
reason why the damping is so important is that it is the only term in equation 2.10
that dissipates energy. The deflection amplitude and acoustic pressure amplitudes
are also very much dependent on the damping ratio. In fact, with no damping,
the response at resonance tends to infinity, a clearly unphysical case. Figure
3.8 shows the acoustic pressure amplitude through the Francis-99 runner using
damping ratios in the range ξ = [1%−5%]. The sensitivity with respect to damping
is large. Looking in detail, we see that for low damping, the contribution from the
acoustic pressure can be at least ten times larger than the viscous pressure. This
highlights the need for an accurate prediction of the damping ratio.
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Figure 3.8: Damping sensitivity on pressure amplitudes. Taken from paper 1

Many of the papers in this thesis consider the extraction of the hydrodynamic
damping, both numerically and experimentally. In Paper 3, a one-way coupled
flutter approach was used numerically. The hydrofoil test geometry was used, see
section 2.1, as it was easier to perform a controlled experiment of the damping
in this test rig. The numerical method used is called the modal work method,
where the hydrofoil is moving with a pre-determined mode-shape and frequency,
affecting the surrounding water. In such simulations, the water does not affect the
hydrofoil other than exerting a fluid pressure. The damping can then be extracted
as the normalized work from the water on the blade, see eq. 2.17. This method was
shown to give very good results compared with experiments, see figure 3.9. Note
a change in the damping characteristics before and after the lock-in region. From
a design point of view, it is interesting that the damping is linearly increasing with
the flow velocity, as high damping improves the structural integrity. High flow
velocities, however, increases viscous losses. In the end, it will always be a trade-
off between hydraulic efficiency and structural integrity. Paper 10 is a mirror of
paper 3, explained from the experimental side.

In Paper 11, the experiments were repeated, now with three blades in a cascade.
This opened up a series of new possibilities, especially with regards to different
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Figure 3.9: Experimental and numerical damping on the Francis-99 hydrofoil. Taken
from paper 3

combinations of phases between the blades. Among the most interesting discov-
eries was the fact that only in- and out of phase motion was possible in the blades
(0◦ or ±180◦). This indicated a strongly coupled system and prevented testing of
other phase angles between the blades, something we see in a turbine. Secondly,
a reduced velocity, v∗∗ = v/fn was proposed, where fn is the natural frequency
of the blade, and it was seen that if the damping was plotted against this variable,
different hydrofoils, experiments, and simulations, all aligned about a common
trend, see figure 3.10.

Some of the interesting takeaways from the research on damping:

• One-way coupled numerical simulations are validated and should be used to
obtain the damping ratio.

• Only real mode shapes are possible to obtain in the current blade cascade; a
rotationally symmetric geometry should be tested to get other phase angles
between the blades.

• The relationship between damping and flow velocity may be generalized
using the natural frequency of the mode shape.

Especially the last finding is interesting as the relation is close to ξ/v∗∗ ≈ 1, see
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Figure 3.10: Damping versus reduced velocity. Taken from paper 11

figure 3.10. In a design process, this could be a reasonable rule of thumb for the
damping, although a proper CFD analysis is always recommended. Note that in
paper 11, and figure 3.10, the damping is denoted by ζ, not ξ.

Model Order Reduction. The last group of papers focuses on Model Order
Reduction techniques. Numerical simulations, in particular, CFD and harmonic
analysis with acoustic elements are computationally expensive. A CFD analysis
is CPU intensive, with simulations lasting days, weeks or more, while harmonic
analyses often being memory intensive. Paper 4 presents a model order reduction
method based on Krylov subspaces. The method is implemented for acoustic-
structural analysis, similar to what was performed in paper 1, but on the hydrofoil
geometry. In essence, the method reduces the structural coefficient matrices to
full matrices of negligible size and solves them directly. A dramatic speedup
of O(1 − 2) was observed without loss in accuracy, see figure 3.11. In fact, it
was observed that the reduction process demanded a computational expense in the
same order as a modal analysis. When the model is reduced, however, a harmonic
sweep can be performed in seconds, revealing a lot more information than a modal
analysis alone. In particular, the acoustic pressure discussed in paper 1 can be
obtained over a broad frequency range, rather than at resonance conditions only.

In paper 3,10 and 11, it was shown experimentally that the damping characteristics
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Figure 3.11: Harmonic sweep of Francis-99 hydrofoil using ANSYS and Krylov Model
Order Reduction technique. Taken from paper 4

change as the flow velocity passes the lock-in region, see e.g., figure 3.9. The
reason for this was not fully understood. A similar trend was observed for the
eigenfrequency of the foil, i.e., a stiffening effect as the flow velocity increased.
In paper 5 a quasi-two-way coupled simulation was implemented. This method
reduces the structural system using a modal decomposition procedure and solves
the structural response inside the fluid solver, contrary to the previously tested one-
way approach in paper 3. The final method had a computational expense similar
to CFD alone while resolving a lot more of the physics.

The procedure was used on the hydrofoil geometry, and interestingly both the
change in damping the change in eigenfrequency was observed. See figure 3.12
for numerical results of the "added stiffness" effect, where the gray area indicates
the lock-in region. This effect was also observed in the experiments but is not
possible to show in a one-way configuration. One of the advantages of the two
way approach is the fact that the different forcing terms can be tracked during
the simulation. This was used to try to explain the different phenomena. There
were indications that the increase in damping was caused by a change in the phase
between the deformation of the foil and the external pressure force on the foil. The
change in eigenfrequency might be explained by a change in the ratio of restoring
and inertial forces, ω2

n = K/M , when crossing the lock-in region.

To summarize the presented workflow for simulating resonance loads;
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Figure 3.12: Two-way simulation of added stiffness effect of flowing water. Taken from
paper 5

• Perform modal analysis to obtain mode shapes and eigenfrequencies of the
runner. A similar setup as the one used in paper 1 can be used. Use the
Tanaka formulae, eq. 2.1 and 2.2 to evaluate if any of the eigenfrequencies
are within critical distance from a loading frequency. If so, continue with
further analysis, or consider a redesign.

• Perform a CFD analysis and extract static pressure and the dominating fluc-
tuating pressure components. The methods described in paper 2, 8, and 9 are
validated. In the near future, this will most likely be done using a frequency
based solver, O(1− 2) more efficient than today’s time-stepping methods.

• Obtain damping estimate. The modal work method used in paper 3 is vali-
dated. The findings from paper 11 can also be used, i.e., ξ/v∗ ≈ 1, if a
flutter analysis is too time-consuming.

• Perform a harmonic acoustic-structural analysis with acoustic elements as in
paper 1. If acoustic pressure is to be extracted at more than resonance con-
ditions, e.g., to evaluate the sensitivity with respect to the distance between
the load and natural-frequency, consider using the Krylov MOR procedure
from paper 4 to speed up the calculations.
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Chapter IV

Discussion and Further Work

� This chapter presents a general discussion and possible further work.

Risk of resonance. It was previously mentioned that the requirements for per-
fect resonance are rarely satisfied. Usually, the loading and natural frequencies
are not equal. How significant should the separation be for the operation to be
considered safe? A Dynamic Amplification Factor (DAF) is often used to quantify
the dynamic effects in a system. It can be defined as the response of the dynamic
load divided by the same load applied statically [19]. Figure 4.1 shows the DAF
of the Francis-99 hydrofoil using a fluid load.

The figure shows that in the worst case, the response due to dynamic effects can
be ≈ 75 times higher than static loads. The DAF is very damping dependent, see
e.g., figure 3.8, however, the figure can be used to assess the risk or rather, the
effect of resonance. We see that 20% separation from the natural frequency results
in a dynamic magnification of ≈ 2 − 3. Using a rule of being outside of ±20%
from the natural frequency might therefore be tempting; however, care should be
taken. An important effect that should be considered is that numerical simulations
tend to overestimate the natural frequency of a structure, meaning that the problem
is not symmetric [41]. Using a rule of thumb of, e.g., ±20% could therefore be
dangerous. Additionally, in complex structures, several eigenmodes might be close
to each other in terms of natural frequencies, something that might complicate the
numerical calculations.
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Figure 4.1: Dynamic Amplification Factor on Francis-99 hydrofoil. Taken from paper 4

Compressible CFD. Based on the summary of papers chapter, a valid question
can be; why not perform compressible CFD simulations? If the missing com-
ponent in an incompressible CFD simulation is the acoustic component, could
the problem be solved by implementing compressibility? Studies differ in their
conclusions. Trivedi [17] performed compressible simulation on the same Francis-
99 geometry, and did see slight changes in the pressure amplitudes, however not
close to the size of the acoustic component seen in figure 3.4. Yan et al. [42]
did show that the addition of compressibility significantly increased the pressure
amplitudes, although on a pump-turbine geometry. Additionally, the speed of
sound had to be scaled down from prototype to model size. The reason for this
may be the differences in time scales. A typical speed of sound in water can be set
at c = 1000m/s, and a typical flow velocity v = 40m/s. Define an acoustic and
viscous Courant number [32];

Cac = c
∆t

∆x
(4.1)

Cv = v
∆t

∆x
(4.2)

and it becomes evident that the required timestep in a compressible simulation has
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to be very small compared to an incompressible simulation if a low Courant num-
ber is to be satisfied. A similar argument can be made if we create an "acoustic"
frequency, f = c/L, which is high for small lengths. In essence, the problem
becomes numerically stiff. Resolving the fastest transients in such simulations
(typically the speed of sound) is rarely done, and if it is, at an enormous compu-
tational expense. Additionally, even if a compressible simulation was run with a
satisfactory temporal resolution, and the pressure was captured, a CFD would not
reveal the structural stresses and deformations. Structural simulations would have
to be performed in either case and thus, obtaining the full pressure field with CFD
alone becomes of academic interest more than a practical design procedure.

Time Consumption. It is a known problem in the industry that there has to be
a compromise between result accuracy and simulation time. In the present work,
perfect accuracy has not been the goal, rather acceptable results as fast as possible.
To investigate ways of reducing simulation time, several different time-saving
measures have been implemented in the different papers. Table 4.1 summarizes
the speedup factors of the methods.

Table 4.1: Time savings

Method Domain Paper Speedup factor

Mesh reduction All 8 Linear
Krylov subspace Structure 4 x10-100
Fourier Transformation Fluid 2 ≈ 5
Harmonic Balance Fluid 9 ≈ 25
Modal Decomposition Structure 5 ∞∗
*Two-way simulation as fast as CFD only

We see that particularly the Krylov subspace method for the structural domain
and the Harmonic Balance method for the fluid domain are very promising. A
speedup factor alone, however, is not enough to characterize the actual gain from
using a particular method. The absolute time-consumption has to be considered.
From experience, we know that a transient CFD analysis is by far the most time-
consuming analysis in this thesis. In broad terms, a modal analysis is performed
in minutes, a harmonic analysis in hours, and a CFD analysis in days. The most
significant gain is therefore obtained in the fluid domain.



40 4. Discussion and Further Work

Further work. The presented work illuminates several interesting topics that
could be investigated further.

• Model Order Reduction. In paper 5, a modal decomposition method was
used to reduce the structural domain such that structural deformation could
be solved inside a commercial CFD solver. This quasi two-way coupling
was very successful and provided insight into complex phenomena like in-
creasing damping and eigenfrequency across the lock-in region. In paper 4,
another model order reduction method was used, based on Krylov vectors.

An exciting way forward would be to combine the two approaches. Instead
of using a modal decomposition method (with its limitations), one could
reduce the structural domain using Krylov vectors. This would open up
for arbitrary damping, gyroscopic effects, and other limitations related to
the symmetry of the original structural system. The drawback is that the
reduced system is not diagonal. A direct solver, e.g., Fortran based, would
have to be included to invert the full matrices from the reduced system.

Implementing the possibility of complex forces and deflections in the dis-
cretization of the structural domain is another possible improvement. Es-
pecially in terms of turbines and other rotationally symmetric geometries,
would this add a layer of complexity compared to the scheme used here.

• Damping. In terms of damping, all experiments and simulations in this
thesis have been performed on a hydrofoil, with real mode shapes. Re-
doing the experiments on a rotationally symmetric geometry with complex
mode shapes would be closer to what is seen in a turbine. The numerical
calculation of the damping should not be more complicated than using a real
mode; however, a validation of the method would be valuable. Additionally,
the opportunity of choosing the inter-blade phase angle would highlight if
any combination of guide vanes and runner blades is unfavorable in terms
of low damping values.

• Frequency based solutions. Modal and harmonic structural analyses are
solved in the frequency domain. As the frequency-based Harmonic Balance
CFD method continues to evolve, we could end up with a complete work-
flow without solving any time-stepping simulations. This would simplify
the information mapping between the domains as all conservation variables
would be expressed as Fourier coefficients. The simulation time would also
decrease dramatically, as a transient CFD analysis is by far the most time-
consuming part of the outlined workflow.
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Chapter V

Conclusion

Modern high head turbines push the limits of structural integrity in order to max-
imize hydraulic efficiency. During the last decades, many Francis turbines have
had severe issues and downtime, and a resonance phenomenon is assumed to be
the reason for many of these failures. The research project HiFrancis was started
to investigate this phenomenon and this thesis presents some of the results from
the numerical work. It turns out that in order to capture both the added mass
effects of the surrounding water, as well as the possible resonance issues, a coupled
acoustic-structural simulation has to be performed. This thesis presents a proposed
workflow for solving acoustic-structural simulations, as well as how to obtain the
critical parameters like the viscous load and the damping ratio.

Conventional incompressible CFD is unable to capture acoustic phenomena. Even
if compressible effects were accounted for, such a procedure would be too com-
putationally expensive for typical industrial use. Additionally, if the end goal is
structural deformation and stresses, then a structural analysis would have to be
performed in any case. On the CFD side, it is therefore recommended to perform a
conventional simulation to obtain the viscous pressure component. It is shown that
this can be obtained with high accuracy, even by using different simplified models.
The viscous pressure will act as a load in an acoustic-structural simulation, where
the acoustic component of the pressure is calculated. The total pressure in the
turbine will be the sum of the two components.

Structural deformation decreases as the damping increases. High damping is there-
fore positive from a fatigue point of view. The relation, however, is highly non-
linear, and obtaining a proper damping estimate is essential if the deformation/stress
calculations are to be trusted. From experiments, it was observed that the relation
flow velocity/damping behaved differently before and after the lock-in region.
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Using a one-way FSI coupling, this damping was obtained numerically with good
accuracy. Interestingly, if the damping ratio is plotted against a reduced velocity
parameter, many different hydrofoil geometries show the same behavior. This
might indicate that it is possible to obtain a general rule of thumb regarding damp-
ing, using only the flow velocity and the eigenfrequency of the foil.

Additionally, procedures for speeding up simulations are presented with good
results. On the CFD side, the Fourier series based Harmonic Balance method
is the most promising, providing speedups of one to two orders of magnitude. It is
currently on the development level, but will likely be commonplace in a few years.

On the structural side, the Krylov subspace method showed excellent results, while
also providing speedups of one to two orders of magnitude. This procedure creates
tiny, full matrices of chosen order that represents the original system in a remark-
ably good way. The drawback of using this representation is that with it being
a purely mathematical construction, it is somewhat decoupled from the original
physical system.

A modal decomposition method was shown as a way of performing quasi two-
way FSI simulations. Instead of using two software, the structural deformation
was solved inside the fluid solver. This procedure managed to replicate the exper-
imental result of positive proportionality between the flow velocity and damping
and eigenfrequency. Especially the jump in eigenfrequency is interesting, and it
was proposed that it originates in the fact that the ratio of restoring and inertial
forces changes as the flow velocity crosses the lock-in region.
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Abstract. A resonance phenomenon is observed experimentally in the runner channels of the
Francis-99 model turbine runner. An incompressible CFD simulation is unable to simulate this.
Two different coupled physics schemes are therefore presented to investigate if such effects can
be replicated through simulations. The first procedure is a fully coupled acoustic-structural
simulation, where the surrounding fluid is modelled using acoustic theory. This includes added
mass effects and pressure propagation, but not advective and viscous effects. The second
procedure is a quasi two-way coupled Fluid-Structure approach based on modal decomposition
of the structural domain. In this procedure, the incompressible Navier-Stokes equations are
solved along with the structural deformation.

The fully coupled acoustic-structural approach does successfully exhibit a magnification of
the pressure through the runner channels, indicating a resonance effect. The exact values of the
acoustic pressure amplitudes are highly sensitive to the damping, the blade connection to the
shroud close to the trailing edge, and more.

The second procedure manages to simulate the structural deformation with the correct nodal
diameters excited by the Rotor Stator Interaction, all inside the fluid solver. The pressure
amplitudes however, does not exhibit the desired resonance effect, likely due to the assumption
of incompressible fluid.

1. Introduction
Fluid-Structure Interaction (FSI) is a phenomenon that occurs in many physical fields. In
general, all phenomena where there is a mutual interaction between a fluid and a structure can
be classified as FSI problems, but it usually catches the public interest when catastrophic failures
happen. The most famous incident is the Tacoma bridge collapse [1], but it is also seen in many
fatal turbine failures in the hydro power industry [2]. The rise of the use of numerical tools have
given engineers a better chance of discovering such design flaws early in the process. The tools
are not perfect however, and continuous testing, development and validation with experiments
are needed to ensure optimal results.

The Francis-99 workshops is a series of three workshops that aims to provide a meeting place
for numerical engineers, and provide experimental data for validation of different numerical tools
[3]. The open-geometry Francis-99 turbine at the Waterpower Laboratory at NTNU is the basis
for discussion, and the different workshops focus on different topics, see i.e. a review of the
first workshop regarding CFD [4]. The third workshop discusses FSI, with two test cases made
available for the public.
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One of the test cases available for the third workshop of the Francis99 research project deals
resonance in runner channels. Figure 1 and 2 is taken from [3, 5] and shows the following;

The Francis-99 model runner have been operated in the laboratory at different rotational
speeds. As the number of guide vanes and runner blades are constant, this will result in different
excitation frequencies in the runner, created by Rotor Stator Interaction (RSI). The turbine has
four pressure probes PTR1-4, sequentially placed along the channel, see [5] for more. Figure 1
shows PE = p′/gH, the pressure fluctuation normalized as a percentage of the specific energy in
the machine, of the first pressure harmonic. Firstly, we observe that there seems to be a close
to constant pressure amplitude for the different rotational speeds, and secondly, the pressure
decreases through the channel. This is how we would expect a viscous fluid system to behave.
Viscous dissipation dampens the pressure amplitudes through the channel [6]. However, if we
turn our attention to figure 2, which shows the amplitude of the second pressure harmonic, we see
something completely different. Firstly, there is a peak in the pressures around f ≈ 280Hz, and
secondly, at the peak, the pressure is no longer decreasing through the channel. At f ≈ 280Hz,
it is seen that PTR2 and PTR3 have higher pressure amplitudes than PTR1 and PTR4. This
may indicate a coupled physics system. The structure is excited by the pressure forces at a
frequency close to its natural frequency, and a magnification of the pressure occurs.

Figure 1. Pressure amplitudes at RSI frequency [3]

In general, for transient, incompressible CFD analysis, the trend showed in figure 1 , i.e. a
dampening of the pressure amplitudes through the runner, is observed for both the first and the
second pressure harmonic. This is shown earlier in the Francis-99 workshops, and also in the
HiFrancis research project [7, 8]. Interestingly, the cited references predict the first harmonic of
the pressure field very well, but underestimates the second harmonic. This is another indication
that there is no resonance at the first pressure harmonic, but there is one at the second. This
illustrates the shortcomings of only performing a CFD analysis, and in this article we wish to
expand on this and simulate coupled physics, namely include the structural deformation in the
simulations. In short, this article wishes to simulate the effect shown in figure 2 by the use of
coupled fluid-structure simulations.
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Figure 2. Pressure amplitudes at 2·dRSI frequency [3]

2. Theory and methods
Let us define some key terms regarding Fluid-Structure Interaction (FSI). A step-wise coupled
simulation denotes a simulation where information passes from one of the physical domains to
the other. The information can go one way, known as a one-way coupled simulation, or it can
go both ways, a two-way coupled simulation. An example of a one-way coupled simulation is
to perform a steady CFD analysis of a turbine runner, and map the pressure field onto a static
structural analysis. If the structural deformation is sent back to the CFD solver to update
the fluid domain, it becomes a two-way coupled simulation. See [9] for a thorough comparison
between one- and two-way coupled simulations.

A third variant, a fully coupled/ monolithic simulation denotes a simulation where the two
physical domains are solved for simultaneously, using a single system of equations, common
mesh and discretization schemes. This is rarely done in commercial software for viscous flow,
however is common practice for structural analysis when the surrounding fluid asserts an added
mass effect. It is therefore important to keep in mind that a two-way coupled simulation is not
a fully coupled simulation. The principle is completely different, as is the usage and availability.

This article will present both a fully coupled simulation and a two-way coupled simulation
on the Francis-99 turbine. The following sections will go into more detail on the different
approaches, starting with the acoustic-structural simulations.

2.1. Acoustic-Structural simulations
When submerged in water, the dynamic properties and response of a structure is altered by the
surrounding heavy fluid. To account for the added mass effects of the fluid, a coupled acoustic-
structural simulation can be performed. In ANSYS, this is done by modelling the surrounding
fluid using the wave equation [10]. The fluid is primarily defined by its density and speed of
sound, such that added mass from the forces on shared surfaces, and pressure propagation in
the fluid domain, is considered.

The wave equation can be written on a form similar to the second order structural equation
and combined to a coupled set of equations. The equation solved for in coupled acoustic-
structural equations is referred to as the Eulerian displacement-pressure formulation [10, 11, 12]:

(
−ω2

[
Ms 0
Mfs Ma

]
+ iω

[
Cs 0
0 Ca

]
+

[
Ks Kfs

0 Ka

]){
u
p

}
=

{
Fs

Fa

}
(1)

53



Francis 99: Fluid structure interactions in Francis turbines

IOP Conf. Series: Journal of Physics: Conf. Series 1296 (2019) 012005

IOP Publishing

doi:10.1088/1742-6596/1296/1/012005

4

Where M,C,K,F are the mass, damping, stiffness and force matrix respectively. u is
the structural displacement, p is the acoustic pressure, and ω is the natural frequency. The
subscripts s, a, fs denote structure, acoustic, and fluid-structure respectively. The cross-
multiplication matrices (Mfs,Kfs) are obtained by enforcing boundary conditions on the fluid-
structure interface. This ensures that information will cross the domain interfaces in a consistent
way. The derivation of eq. 1 can be found in Appendix A.

Nodal Diameters. We want to find evidence of resonance in the runner by performing a coupled
acoustic-structural simulation. First a modal analysis can be performed. Given that the
dominant load frequencies, fRSI , in the system are known,

fRSI = n · frunner · Zgv, n = 1, 2, ..., (2)

a modal analysis will reveal if there are any eigenfrequencies in this range. Zgv denotes the
number of guide vanes. Matching loading frequency and eigenfrequency is a necessary but not
sufficient condition to cause resonance. Additionally, the spatial distribution of the load has
to match the spatial distribution of the eigenmode. This is illustrated in figure 3, where a
eigenmode of a string is shown along with two forces. Even if the frequency of load F2 is equal
to the eigenfrequency of the string, the mode will not be exited as the load is placed at a node.
Force F1 however, will excite the given eigenmode, and resonance will occur if the load- and
eigenfrequency matches.

Figure 3. Conceptual resonance conditions

For a disc-like structure like a turbine, this generalizes to the concept of Nodal Diameters
(ND). The ND of the symmetric, rotating pressure pattern created by RSI is determined by the
number of stationary and rotating components [13, 14];

ND = mZr ± nZgv, m, n = 1, 2, ..., (3)

Where m,n are integers, and Zr, Zgv is the number of runner and guide vanes respectively.
Resonance can occur if the loading frequency matches a runner eigenfrequency with a
corresponding mode characterized by the same nodal diameter.

For the Francis-99 runner, we have at design; Zr = 30, Zgv = 28, frunner = 333[rpm]. By
using this in eq. 2 and 3, we can sum up the expected critical behavior as follows; The turbine
can be excited at ND2 at fRSI1 = 155Hz, at ND4 at fRSI2 = 310Hz, for n = m = [1, 2].
Higher harmonics are also possible, although the lowest modes are most likely to be excited. As
discussed earlier, in the laboratory, the runner was operated in a range of rotational speeds to
increase the chance of finding resonance conditions.

A preliminary modal analysis was performed on the Francis-99 turbine. No ND2 modes
were found with eigenfrequencies in the range f = [100 − 180][Hz] , however an ND4 mode
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was found with in the range f = [200 − 360][Hz]. This corresponds well with figures 1 and 2.
However, as stated in the problem text, the goal of the present work is not to find the exact
eigenfrequency, but to find the resonance phenomenon. This means that the applied load in the
coming simulations will correspond to the eigenfrequency found in the simulations, rather than
matching the one seen in figure 2. The following section will outline the procedure of performing
a harmonic analysis of the turbine excited by an ND4 pressure field.

2.1.1. Numerical Procedure. The simulations are performed using ANSYS Mechanical
Enterprise Release 19.2. The numerical model is created as perfectly symmetric assembly of 15
sectors. Figure 4 shows the structural parts, with material assignment of copper alloys JM7 and
JM3 [15] to the hub/shroud and blades respectively. Instrumentation, holes and more present
in the Francis-99 model turbine are omitted. Bolts and bolt holes are not modelled, instead
the blades are attached to the hub and shroud by bonded contact, defined on the surfaces that
will be press-fit by the bolts, as seen in red in Figure 5. As discussed in the workshop test case
description [3], there is some uncertainty with regards to the fixation of the blades to the shroud
towards the trailing edge. The edge in question, marked with blue in Figure 5, is kept free to
move relative to the shroud. The acoustic domain is shown in Figure 6. Water with default
ANSYS values for density and speed of sound is used as fluid.

Figure 4. Runner geometry with material assignment. One of 15 identical sectors displayed

For the runner, the element size is limited to 14 mm, with refinement of 4.5 mm assigned to
the blades. The total number of nodes is 2 · 106. Table 1 lists the estimated discretization error
for selected outputs using the Grid Convergence Index (GCI) [16]. fn denotes the eigenfrequency,
and PT1-4 denotes the pressure amplitudes in the four probes of figure 1. All errors are well
below 1%, and the mesh is assumed to produce a converged solution.

The analyses are run as full harmonic analyses using the distributed sparse direct solver. The
runner is fixed in space at the hub, replacing the connection to the shaft. Reflective boundaries
are specified at all acoustic boundaries. Interaction occurs at the interface between the structural
and acoustic domain through shared nodes.

Damping is represented as beta damping, from the concept of proportional or Raleigh
damping [17];

β =
2ξ

ω
(4)

where β is the frequency dependent, stiffness proportional damping coefficient, and ξ is the
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Figure 5. Runner blade. Contact to hub and shroud highlighted

Figure 6. Acoustic and structural elements. One of 15 identical sectors displayed

Table 1. Discretization error

Indicator GCI error

fn 0.7 %
PT1 0.0 %
PT2 0.5 %
PT3 0.1 %
PT4 0.1 %

damping ratio. In Agnalt et. al [5], the damping in this experiment was estimated using least
squares fitting to be in the range ξ = [2.5%− 5.1%].

The load applied in the structural-acoustic simulation is taken from an incompressible CFD
simulation, [8]. The load is imported as Fourier coefficients Ai, Bi, with i being 2 for the second
pressure harmonic. The Fourier coefficients are applied as a surface load at the runner channel
surfaces. This way, the load does not constrain the acoustic pressure degree of freedom in the
acoustic domain, instead acts as a load on the structural domain.

The structural response is highly nonlinear with respect to the damping ratio ξ as well as
the difference in loading frequency and eigenfrequency, especially close to resonance conditions.
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To evaluate the sensitivity of these parameters, simulations are set up with damping values
ξ = [1, 3, 5]% and the load frequency is specified to be within ±7.5% of the eigenfrequency found
in the modal analysis. A simulation run at numerical resonance with 3% damping is selected as
the reference case.

2.2. Two-way coupled simulation
The traditional way of performing a two-way simulation is to set up both a fluid and a structure
simulation separately, and during the execution process pass information from one domain to the
other. The usual information flow is as follows; the fluid domain passes on the pressure forces on
the fluid-structure interfaces, and the structural domain passes back the structural deformation.
The mesh used in the fluid simulation will then deform accordingly and the calculation will
continue. Usually this is done in an implicit manner for each time-step, meaning that there is
an iterative procedure until a certain convergence criterion is met.

In the procedure chosen in this paper, a quasi two-way approach is used. This procedure
applies a modal decomposition to the structural domain, expresses the structural deformation
as a set of linearly independent equations, and solves the system inside the iterative fluid solver.
This means that there is only need for one solver, in this case ANSYS CFX, a significant
speedup. See figure 7 for a simplified flowchart. If the structural domain is discretized using a
Crank-Nicolson scheme, the modal deformation and velocity can be described as follows;

Figure 7. Flow chart describing a) Two-way procedure, b) Quasi two-way procedure

qi,k+1 =
qi,k(1 + ωξ∆t− 1

4ω
2∆t2) + ∆tvi,k + 1

4∆t2(fi,k+1 + fi,k)

1 + ωξ∆t+ 1
4ω

2∆t2
(5)

vi,k+1 = 2
qi,k+1 − qi,k

∆t
− vi,k (6)

where qi,k, vi,k denotes the modal amplitude and velocity of mode i at timestep k. The
derivation of the above expressions and the theory behind can be found in [18].

2.2.1. Numerical procedure. The runner mesh was created in ANSYS TurboGrid, as one section
consisting of one main and one splitter blade. The final mesh consisted of 15 of this section,
to eliminate any error linked to unsymmetrical mesh. Figure 8 shows the mesh on the hub,
around the main and splitter blades. The same mesh was used in reference [19], and indicates
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that the GCI discretization error is < 0.5% for global parameters. On the inlet of the runner
the total pressure profile from a simulation with spiral casing, guide vanes and full draft tube
was prescribed, taken from [8].

Figure 8. CFD mesh at hub, detailing blade outlet

A modal analysis of the runner will result in a complex mode shape. A complex mode
contains a real and complex component, but is easiest understood as a mode where all parts of
the structure does not reach its maximum deflection at the same time. A generic representation,
A(x, y)sin(ωt) is therefore insufficient to describe the whole structure, and a second sinusoid
is needed. Due to the real nature of equation 5-6, this mode could not be directly imported
into the current setup. Instead, a local (real) blade mode was imported to each blade, and
set to be free to move independently of each other. Any complex mode shapes would then be
created by the pressure field induced by the RSI effects. This is a simplification, but it works
for demonstration purposes.

3. Results and Discussion
3.1. Acoustic-Structural simulations
This section will present the results from the acoustic-structural simulations. Figure 9 shows
the total simulated pressure compared with the experimental results provided by the workshop
committee. The pressure from the numerical simulations is the sum of the convective pressure
from an uncoupled CFD analysis [8] and the acoustic pressure from the reference case using 3%
damping at resonance.

There is a very good match with the experiments, especially in the beginning of the channel,
where the values are close to identical. The shape of the pressure distribution through
the channel also corresponds well, although the pressure amplitude at the outlet, PT4, is
underestimated. Reasons for this will be discussed. Figure 10 shows the convective and acoustic
components of the pressure for both the numerical and experimental results. The experimental
results are taken from the workshop website [3], as well as reconstructed from [5].

Figure 9 shows an overall good agreement between the numerical simulations and the
experiments. In figure 10 however, we see that virtually all of the error is in the acoustic
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Figure 9. Numerical and experimental pressure amplitudes

part of the pressure, as the convective part is very well predicted. Of several possible reasons,
two assumptions have been identified as significant and will be presented below.

Damping. Figure 11 shows the experimental results combined with an uncertainty band
indicating the sensitivity to damping. An immediate observation is the strong dependence on
the damping, and also the non-linearity of the relation. Increasing the damping from 1%− 3%
significantly reduces the response, while increasing from 3%−5% is not as severe. As mentioned,
the damping used here is based on Agnalt et. al [5], who estimated the damping to be in the
range ξ = [2.5%−5.1%]. If such an estimate is unavailable, a flutter analysis should be performed
to obtain a reasonable damping estimate. This has been done previously with good results by
i.e [20]. The effect of the load not being equal to the eigenfrequency was also tested. Going
by figure 2 and its reference [5] it is estimated that the experiment was performed within a
couple of percent from the eigenfrequency. In this range, the effect of different damping ratios
is dominating, although a combined effect is seen. I.e. with low damping, the response is more
sensitive to how close the load is to the resonance peak. Conversely, high damping makes the
resonance peak flatter.

Effect of blade fixation. The bolted geometry of the Francis-99 model turbine makes the
numerical simulations especially complex. Replacing the bolts by contacts, as performed in this
paper, is an assumption. Additionally, there is some uncertainty with regards to the fixation of
the blades to the shroud towards the trailing edge.

To investigate the impact of the connection between blades and shroud, a simulation was
performed with a bonded contact at the edge marked blue in figure 5, fully fixating the blade
to the shroud.

Figure 12 shows the results from simulations with different fixation of the edge in question. As
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Figure 10. Numerical and experimental pressure decomposed into convective and acoustic
components

expected, the second setup results in a stiffer turbine and higher eigenfrequency. Note however,
that both harmonic simulations are performed at numerical resonance. The two simulations give
different deformation patterns and also different pressure distribution in the runner channels.
This leads our case to an increase in the pressure amplitudes in the probes. The two cases
presented here are the extreme variations, it is likely that the true trailing edge connection is
somewhere in between what is shown in figure 12.

By combining the effects seen in figure 11 and 12 it would be possible to be well within
the experimental uncertainty in all pressure probes. This has not been done, but it illustrates
the importance of investigating and documenting the sensitivity to the key parameters in the
simulations, especially if no experimental results are available for validation.
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Figure 11. Sensitivity of pressure amplitudes to damping
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Figure 12. Acoustic pressure with different fixation of the blade to shroud close to the trailing
edge
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3.2. Two-way coupled simulation
Figure 13 shows the normalized structural deformation resulting from the RSI pressure field.
Nodal diameter 2 is observed. A visual inspection of the time-series of the blade deformation,
or a Fourier transform of the same signal, reveals that also the ND=4 is present. This is a nice
validation of the Tanaka formula, eq. 3, which predicted ND2 and ND4 for the given combination
of guide and runner vanes.

Figure 13. Normalized blade deflection from Two-way simulation, seen from the outlet.
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Figure 14. Pressure time series from CFD (static) and Two-way simulation
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Figure 14 shows the pressure signal in one pressure probe for two simulations; one with
stationary blades, in the other, the blades are allowed to deflect, as shown in figure 13. There
is close to no difference in the pressure values.

Taking one step back, we can define the goal from the two-way simulations by the following
questions;

• Does the pressure field from the RSI excite the expected Nodal Diameters?

• Does the vibration of the blades change the pressure pulsations in the channels compared
to rigid blades?

Figure 13 clearly shows that the first is true. The second question is whether it is a coupling
between the structural deflection and the pressure, i.e. if this procedure can be used to capture
the resonance phenomena. Figure 14 shows that this is not the case. There is no difference in
the pressure through the channel. The magnitude of the deflection is in the same order as the
coupled acoustic-structural simulations in section 3.1, indicating that too small deflections is
not the cause for the lack of pressure amplification.

The current setup for the FSI - MOR have some clear limitations. The lack of a complex
description of the structural decomposition means that only real deformations can be simulated.
This was partially circumvented in this paper, but introduces a general uncertainty. Also, the
structural model with fixed trailing edge had to be used as the CFD mesh cannot handle relative
motion between hub/shroud and blade at the joint. This meant that the imported structural
eigenfrequency (or stiffness) was artificially high. Two options are available to mitigate this;
firstly, the eigenfrequency can be modified, at the risk of losing the consistency between modal
amplitude and stiffness. Another option is to change the rotational speed of the runner along
with the head and flow to ensure hydraulically identical conditions. The question then is the
predictive value of the simulation as the load frequency is knowingly to high.

The biggest limitation however, in the current setup, is believed to be the lack of
compressibility. As was seen in figure 10, the contribution of the acoustic pressure is significant
and necessary to predict the true pressure in the channel. Acoustic pressure is impossible to
simulate in an incompressible simulation with no speed of sound. The medium (water) is unable
to transmit pressure waves described by eqs. A.8.

4. Conclusions
Two different fluid-structural coupling procedures are presented in order to capture the resonance
effect in a Francis turbine runner channel. The acoustic-structural coupling is successful in
replicating the experimental results to a good degree. Complex bolting and connections in the
Francis-99 model turbine creates uncertainties in the numerical simulations, in particular the
fixation of the blade close to the trailing edge. Additionally, the amplitude at resonance is very
dependent on the damping. If a damping estimate is not available from experiments, a flutter
analysis should be performed to obtain a proper input.

The two-way simulation using a reduced order structural model did not produce the resonance
phenomena. The reason for this is believed to be the lack of compressibility, which means that
the acoustic pressure is not captured. This indicates that the use of the procedure should be
limited to cases where the assumption of incompressibility is valid.
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Appendix A. Derivation of the Eulerian displacement-pressure formulation
In the following section, the basic equations for solving acoustic problems will be presented.
Most of the derivation can be found in [6], and ANSYS specific implementation can be found in
[10]. Starting with the continuity equation;

dρ

dt
= −∇ · (ρv) +Q (A.1)

Where ρ is the density, v is the velocity vector, and Q is a mass source. The Navier-Stokes
equation can be written as follows;

ρ[
dv

dt
+ v · ∇v] = −∇p+∇ · τ + ρb (A.2)

Where τ is the shear tensor. For simplicity, we assume no body forces b, no mass sourceQ, and
no mean velocity from this point on. Also assume small pertubations such that a linearization
is possible;

p = p0 + p′

ρ = ρ0 + ρ′

vi = 0 + v′i

(A.3)

Where the subscript 0 denotes constant values, and the prime denotes the fluctuating part,
small relative to the respective constants. Inserting the above into the continuity and Navier-
Stokes equation respectively;

dρ′

dt
= −∇ · (ρv′) (A.4)

and,

ρ0
dv′

dt
= −∇p′ +∇ · τ (A.5)

For newtonian fluids, the stress tensor can be written as a sum of a ”shear” part and a
compressibility part,

τ = µ(∇v + (∇v)T ) + λ(∇ · v)I (A.6)

Where µ is the dynamic viscosity, and λ is the ”second” or volume viscosity, given as λ = −2
3µ

by the Stokes approximation [6]. The above is usually a very convenient split, as only the first
term is applicable in incompressible simulations (where ∇ · v = 0). Substituting the above into
the Navier-Stokes, noting that the flow is irrotational, gives the following [10];

ρ0
dv′

dt
= −∇p′ +

4µ

3
∇(∇ · v′) (A.7)

To obtain the wave equation, subtract the space derivative of the Navier-Stokes equation
from the time derivative of the continuity equation:

∇2p′ − 1

c2

d2p′

dt2
+∇ · [4µ

3
∇(∇ · v′)] = 0 (A.8)
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Where we have used the isentropic definition of the speed of sound, c [6];

c2 ' p′

ρ′
(A.9)

The known Galerkin method is used to formalize the finite element formulation. Eq. A.8
is mulitiplied by a testing function w, and integrated over the domain. This procedure is well
explained in a number of FEA text books, i.e. [21], and ANSYS’ own documentation [10], and
yields the following after some manipulation;

˚

Ω

1

ρ0c2
w
d2p′

dt2
dV +

˚

Ω
∇w ·( 4µ

3ρ2c2
∇dp
dt

)dV +

˚

Ω
∇w ·( 1

ρ0
∇p′)dV +

‹

Γ
wn· d

2v′

dt2
= 0 (A.10)

The above representation is rewritten to matrix form using element shape functions;

p = NT pe

u = N ′Tue
(A.11)

where N,N ′ are the shape functions for the pressure and displacements respectively. pe, ue
is the nodal pressure and displacements. Insert the shape function representation into equation
A.10, and rewrite on matrix form;

Map̈e + Caṗe +Kape + ρ0R
T üe = 0 (A.12)

where the acoustic matrices are defined as follows [10];

Ma = ρ0

¨

Ω

1

ρ0c2
NNTdV, Ca = ρ0

¨

Ω

4µ

3ρ2
0c

2
∇NT∇NdV

Ka = ρ0

¨

Ω

1

ρ0
∇NT∇NdV, RT =

‹

Γ
Nn(N ′)Tds

(A.13)

Note that the acoustic wave equation written on a matrix form, eq. A.12 is similar to the
known second order structural equation;

Mü+ Cu̇+Ku = F (A.14)

The two equations, A.12 and A.14 can now be combined, rewritten on a harmonic form
by assuming that all unknowns behave harmonically, to the Eulerian displacement-pressure
formulation [10, 11, 12]:

(
−ω2

[
Ms 0
Mfs Ma

]
+ iω

[
Cs 0
0 Ca

]
+

[
Ks Kfs

0 Ka

]){
u
p

}
=

{
Fs

Fa

}
(A.15)

The matrices (Mfs,Kfs) can be shown to be (ρ0R
T ,−R) respectively [10].
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Introduction  

 

The recent trend of a more open power marked have led to an increased need for flexible power production. At the 

same time, many countries, especially in Europe, have committed to reduce the portion on energy from fossil fuel, 

and focus more on renewables. Most renewables, namely solar and wind power, are intermittent power sources, that 

is highly dependent on the weather conditions at a given time. This is not the case for hydropower, due to the 

possibility of storing water in dams. Therefore, hydropower has become a buffer, a battery that can help stabilizing 

the open power marked.  

 

This marked trend has also led to a more irregular operation of hydro turbines. Turbines are designed to operate at a 

certain configuration, and deviation from this increases the stresses inside the turbine runner. Turbine manufactures 

usually design for, and guarantee, 30 years of normal operation, however, several brand new high head turbines have 

experienced cracks at the outlet in the last decades [1], [2]. The reason is thought to be the complex pressure field 

created by the rotor-stator interaction (RSI) between the runner and guide vanes. Given the precision of modern 

production methods, this could indicate that there is a lack of knowledge in the design process of high head turbines.  

This article will compare different approaches to numerical modelling with comprehensive experimental results. The 

numerical models will range from full 360 degree models with all components, to different passage models. As some 

of these methods are intended to be used in a design process, the computational time is a critical aspect. The 

accuracy of the different methods with respect to time will be investigated. The scope of this article is limited to the 

RSI pressure field, draft tube phenomena etc. will not be covered.  

 

 

1 Theory and methods 

 

High head Francis (HHF) turbine runners break down because of fatigue. Fatigue is material failure due to repeated 

sub-critical loading. A simple way of estimating the fatigue lifetime is using the Miner-Palmgren rule[3]; 

  

∑
𝑠𝑖

𝑆𝑖

𝑘

𝑖=1

= 𝐶   (1) 

 

where 𝑠𝑖 is the number of cycles at load i, and 𝑆𝑖 is the number of cycles to failure at load i. Eq (1) sums the 

contribution from different loadings, and when the sum is equal to unity, the material is assumed to be destroyed. 

The need for accurate calculation of the loading is obvious; a Francis turbine may experience millions of load cycles 

during a day, and a small error in the assumed load would dramatically change the expected lifetime. Another critical 

factor for Francis turbines is the different operating points. Off-design operation and start/stop of the turbine is 

known to produce large stresses. A complete lifetime analysis will therefore need accurate load prediction at several 

operating points. In this article, the scope is limited to obtaining accurate loadings at the best operating point, and to 

investigate if this is obtainable using reduced geometric modelling.  
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1.1 Rotor Stator Interaction 

 

In high head Francis turbines, Rotor-Stator Interaction(RSI) is the largest source of pressure pulsations [4]. RSI is an 

unavoidable phenomenon present in all rotating machinery. Every time a rotating component passes a stationary 

component, a pressure pulse is created, which can propagate through the runner. The pressure field is a function of 

the number of stationary and rotational components, usually described as a sinusoidal signal, interested readers can 

find more in [5]–[7]. The most important frequency observed in the runner is the guide vane passing frequency, 𝜔 =
𝑣𝑍𝑔𝑣, with 𝑣 being the runner speed and 𝑍𝑔𝑣 is the number of guide vanes. As this is a non-linear system, and the 

excitation will have a complex shape, harmonics of the guide vane frequency are expected to be present in the flow 

field. The goal is to compare the RSI pressure signal in the turbine with experimental results from the Norwegian 

University of Science and Technology.  

 

 

1.2 Experimental measurements 

 

Experiments have been performed on the Francis99 model turbine at the Waterpower Laboratory at the Norwegian 

University of Science and Technology (NTNU). The runner consists of 15 main blades, and 15 splitter blades, and 

there are 28 guide vanes. The model turbine has been the focus point of extensive research, among others, the 

research project Francis99 [8], which is focusing purely on numerically replicating detailed experimental results 

from the model, and the HiFrancis project [9], which this work is a part of. The experimental procedure followed the 

guidelines set in IEC 60193 [10], further information about the experiments can be found in two Master’s thesis from 

NTNU [11], [12]. Figure 1 shows the location of the onboard pressure probes in the runner that will be used for 

validation in this article.  

 

 
Fig. 1: On-board Pressure Transducers, from[11] 

 

1.3 Numerical Reference 

 

The main goal of this article is to investigate the effects of using passage modelling to reduce computational time. As 

a numerical reference, simulations have been performed on a complete turbine, that is, complete volute with spiral 

casing and stay/guide vanes, complete runner with leakage flow, and complete draft tube[13]. Let this simulation be 

denoted as the 360 simulation. The numerical domain is shown in figure 2, along with the reduced geometrical 

model. The simulations were performed using ANSYS CFX, the 𝑆𝑆𝑇 turbulence model and incompressible flow. 

Further information can be found in table 1 .   
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Table 1 – Simulation settings full 360 simulation 

Parameters Description 

Software 

Analysis type 

ANSYS CFX 

Transient 

Components 

Grid  

Full volute, complete runner, draft tube 

Volute: 10 M (Tet), Runner: 10 M (Hex), Draft: 22 M (Tet) 

Interfaces Transient Rotor Stator (sliding mesh) 

Fluid properties 

Boundary Conditions 

 

Turbulence model 

Time step 

Incompressible water, constant properties 

Inlet: Mass flow, Outlet: 0 Pa average static pressure  

No-slip walls 

SST  

64 per blade passing 

 

The runner mesh was created using ANSYS Turbogrid. The mesh consists of 15 passages, rotationally symmetric 

with node-matching periodic interfaces. The complete volute and draft tube mesh was created separately using 

ANSYS Meshing. The total number of elements in the converged mesh was 42 M. The Grid Convergence Index 

(GCI) [14] was used to verify the mesh quality. An example GCI procedure can be found in [15], only the results will 

be presented here. Table 2 presents the GCI error for the parameters head and torque, and shows that the spatial 

discretization error on the converged mesh is small. The converged mesh had an average y+ of 2.8 in the runner. The 

exact same runner mesh will be used in the reduced models.  

 

Table 2 – Grid convergence index 

Parameter GCI error 

Head 

Torque 

0.22% 

0.04% 

 

 
Fig. 2: Complete(left) and reduced(right) numerical domain 

 

 

1.4 Reduced Computational Models 

 

Many different strategies exist if the goal is to reduce the simulation time. Certain domains may be left out of the 

simulation, e.g. spiral casing or draft tube, or simplifications in mathematical models, e.g. turbulence. In this article, 

the focus will be on reducing the geometrical domain, specifically by using the rotational symmetry of the turbine. A 

general turbine consists of 𝑃 geometrically identical runner blades, and 𝑄 guide vanes. A passage model will use 𝑝 

runner blades and 𝑞 guide vanes as a reduced geometrical model. Figure 3 shows an example passage model, with 

𝑝 = 𝑞 = 2,  from a runner with 𝑃 = 19 and 𝑄 = 24. This example is chosen to highlight certain problems arising in 
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passage modelling, mainly how to deal with the rotationally periodic interfaces and the pitch change (unequal 

angular span).  

 

 
Fig. 3: Example passage, two guide vanes and two runner blades 

 

 

Conventional periodic interfaces require the assumption that fluxes on one interface equals that of the other. This is 

not the case in a hydro turbine if 𝑃 ≠ 𝑄. What we see however, is phase-shifted periodic boundaries. This means that 

one periodic interface will equal the other at an earlier or later instance in time. This will have to be addressed by the 

method used. Pitch change, or unequal angular span of the runner and guide vane passages, also occur when 𝑃 ≠ 𝑄. 

In figure 3, the pitch is  
19

24
= 0.79. If the pitch is different from unity, some modification will be performed on the 

information crossing the frame change interface (stationary/rotational). The following sections will describe briefly 

the methods used in this article, and how they deal with the mentioned challenges.  

 

In all passage models used, the inlet boundary conditions were total pressure and velocity directions taken from a 

steady simulation. The settings were otherwise as for the 360 degree simulation. The velocity components imposed 

on the inlet in order to replicate the effect of the guide/stay vanes, was the same as the guide vane/stay vane outlet 

angle. This approximation is true even if an extended inlet section is included to allow for development of the 

pressure and velocity field upstream of the blade.  

 

1.4.1 Profile Transformation  

 

The profile transformation method (PT) is the simplest passage model in CFX. The PT method scales the flow from 

the stator domain, to match the size of the runner domain. Mass and momentum is conserved over the interface. In 

effect, this method mimics 𝑃 = 𝑄 and does therefore use conventional periodicity in the runner. There is no formal 

pitch limit for this method, but the error grows as the pitch change increases[16]. Recommended values are in the 

range [0.98 − 1.02].  In the experimental turbine, almost half the turbine would need to be modelled (
11

12
∗

30

28
=

1.018) to meet this criterion. This will not be satisfied in this article, as the full turbine is already simulated. Instead, 

the PT model will use 4 guide vanes and 2 main + 2 splitter blades. This setup, with pitch ≈ 0.93, will investigate the 

effects of violating the recommended pitch ratio, as well as serving as a reference case for the more advanced 

passage models. 

 

1.4.2 Fourier Transformation Method 

 

The rest of the techniques used in this article are based on a Fourier series decomposition. A brief overview of the 

theory will follow. Starting with a periodic function 𝑥(𝑡). This function can be represented as a sum of trigonometric 

functions, known as a Fourier series. 

 

𝑥(𝑡) = 𝑎0 + ∑[𝑎𝑛

𝑁

𝑛=1

cos(𝑛𝜔𝑡) + 𝑏𝑛 sin(𝑛𝜔𝑡)] (2) 
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Where N is the truncation order and 𝜔 is the fundamental frequency. The Fourier Transformation method (FT) 

assumes a periodic flow field, and uses a Fourier series decomposition in space and time to express the field 

variables, 𝑥(𝑡), at the interfaces. The Fourier decomposition in time accounts for the phase-shifted boundaries. The 

method requires that two guide vanes and two runner passages are modelled, let the periodic interfaces be denoted as 

𝑃1, 𝑃2, and the midplane 𝑃𝑠𝑎𝑚𝑝. The data at each timestep is sampled at the sampling plane 𝑃𝑠𝑎𝑚𝑝, and the following 

phase-shifted periodic boundary conditions are easily derived. 

 
𝑥𝑃1

(𝑡) = 𝑥𝑃𝑠𝑎𝑚𝑝 (𝑡 − Δ𝑡) (3) 

 
𝑥𝑃2

(𝑡) = 𝑥𝑃𝑠𝑎𝑚𝑝 (𝑡 + Δ𝑡) (4) 

 

Where Δ𝑡 is the phase shift from 𝑃𝑠𝑎𝑚𝑝 to the periodic boundary. The time/space Fourier decomposition accounts for 

information crossing the rotor/stator interface. There are no known limitations in pitch change when using the FT 

method, as the Fourier series is an analytical function that can be applied directly at the interface. Another advantage 

is that the storage need is greatly reduced, as only the Fourier coefficients 𝑎𝑛 , 𝑏𝑛 is retained, and no transient result 

files are needed. In this case, the FT method reduces the number of grid elements by a factor of 17. 

 

1.4.3 Frozen Gust 

 

A variant of the Fourier Transformation method is to only simulate the runner passage. This method is called the 

Frozen Gust (FG) method. The periodic boundaries are still handled with a phase shift as explained above, however 

there is no pitch change as only the runner is simulated. Less than 2 M grid elements are used in the FG simulation, a 

reduction with a factor of 21. 

 

As only the runner domain is simulated, the inlet boundaries are close to the runner blade. The boundary conditions 

are total pressure profile and velocity directions taken from a steady simulation, whereas in reality, these parameters 

are likely to oscillate. The original boundary condition is therefore suspected to be inaccurate. Manual Fourier 

coefficient sampling was implemented in the 360 simulation in order to extract the true periodic nature at the RSI 

interface. The profile was then reconstructed at the inlet of the Frozen Gust simulation as a periodic inlet boundary 

condition. Let this method be denoted as FG Fourier Inlet. Using this approach, the time consumption cannot be 

compared directly, as a 360 simulation is performed prior to the simulation. However, if this approach is applicable, 

and if one assumes that an approximation using only one harmonic is sufficient, then a simple sinusoidal expression 

like below could also be used to express the inlet condition.   

 

𝛾 = 1 + Δ𝛾 ∗  sin (ϕ)  (5) 

 

Where 𝛾 is the boundary parameter,  Δ𝛾 describes the oscillation amplitude in percent of the mean value, and 𝜙(𝑥, 𝑦)  

sets the fixed spatial distribution (if the boundary is defined in the rotating frame of reference, 𝜙 will be expanded to 

include a temporal term). An initial guess was taken to be Δγ ≈ 9 % (twice the steady pressure variation) and 𝜙 is 

given as 28 ⋅ tan−1(𝑥/𝑦)  . In the above expression, the values apply to the whole interface, and the accuracy of 

mapping the Fourier coefficients of all nodes is lost. The above expression can however, be implemented without 

performing a preceding simulation. Let this method be denoted as FG Sine Inlet. Both approaches described above 

was implemented to assess the sensitivity of the inlet boundary condition for the Frozen Gust configuration. 

 

 

2 Results 

 
Figure 4 shows the spectral content of the experimental results, and the Frozen Gust methods with different inlet 

boundary conditions at pressure probe PT10. Please refer to figure 1 for probe locations. 
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Fig. 4: Frozen Gust with different inlet conditions 

 

As the Fourier inlet performed best, this approach will be implemented from now on. Figure 5 shows the spectral 

content of pressure probe PT10, PT12, PT13 and PT14, for the experiment, the 360 simulation and the Frozen Gust 

simulation. The FFT from the 360 simulations results in a wider frequency band than the experiments, as the time 

series was significantly shorter. The FFT algorithm (based on pwelch in Matlab) was shown to give amplitudes 

independent of the length of the time series, a comparison is therefore trusted. The Frozen Gust amplitudes are 

reconstructed from the Fourier coefficients obtained in the simulations, and is therefore illustrated as dots. The PT 

simulation results is only included at PT10 as the results clearly are wrong. The results from the FT simulation 

diverged, and were deemed too uncertain to be included in this article.  

 

Fig. 5: Spectral comparison at PT10, PT12, PT13 and PT14 

 

 

The blade passing frequency is very well predicted in all pressure probes. We also observe a dampening of the 

pressure through the channel, from PT10 to PT14. The second harmonic is consistently underpredicted by 50% or 

more.  

 
 

 

74



2.1 Computational Effort 

 

Simulations on reduced geometrical domains are performed to reduce the computational effort. This section will 

compare the computational effort in the different methods. The different simulations have been performed on 

different number of cores, different number of runner revolutions, and in some cases different time steps. Table 3 

shows the time consumption normalized with respect to abovementioned parameters, with the 360 degree simulation 

as reference (assuming linear scaling).  
Table 3 – Simulation time per period 

Method Relative speedup  

Full 360 

FT1 

1 

3.7 

FG 

PT 

5.5 

8.3 
1Diverging results, included for comparison 

 

Interestingly, the speedup of the passage methods is less than the reduction in computational domain should indicate 

(recall section 1.4.2). This is due to the extra computational effort needed to use these methods. The speedup is still 

significant, especially when considering the number of periods needed to get a periodic solution, where especially 

the FG method excels. The PT method is the fastest, but should not be used with large pitch change.   

 

3 Discussion 

 
The Profile Transformation method scales the size of the stator domain, and thus, the frequencies observed in the 

runner is wrong, see PT10 in figure 5. The error is known in advance, it is scaled by the pitch change. Moreover, we 

see an underestimation of the pressure amplitudes, and most importantly, the phase is wrong due to the conventional 

periodic boundaries. All runner channels experience the same exact flow field in this approximation, and any attempt 

in mapping the pressure to a structural simulation will give wrong results. This method should not be used for 

anything other than global flow parameters, as long as the pitch is outside of the recommended range.  

 

The FT simulation showed promising signs, however a small, growing mass imbalance in the runner caused the 

simulation to diverge. This was observed after 5-10 full runner revolutions. Care should therefore be taken when 

using this method; observe the imbalances, and perform enough revolutions. The method was discarded in this work.  
 

The Frozen Gust simulation converged to a periodic solution after only 5-10 blade passings. As Fourier coefficient 

sampling is built in to this method, there is no need to extract long time series and perform FFT’s. Using a steady 

profile however, is too strict and causes an overestimation of the first harmonic pressure amplitude. From figure 4 we 

see that mapping the Fourier coefficients on the inlet works extremely well in reducing the amplitude of the first 

harmonic. In a design process, this method may not be applicable as the Fourier coefficients at the inlet is not 

obtainable from a steady simulation. However, it shows the accuracy of the Frozen Gust technique with proper 

boundary conditions.  

 

The pragmatic method of applying a sinusoidal wave on the inlet did also reduce the first harmonic amplitude as 

wanted. The parameter in eq. (5) must be chosen in advance, and choosing a value larger than the variation in the 

steady profile is advisable, however the higher the Δ𝛾, the higher the pressure amplitudes. A sensitivity study on Δ𝛾 

have not been performed. Note also the second harmonic in the FG Sine Inlet case; it is close to zero. This is because 

only one harmonic is prescribed at the boundary. This have to be taken into account if this method is to be used. 

 

From the above, we conclude that the first harmonic is satisfactory predicted through the runner. However, observe 

the experimental second harmonic in figure 5. It is almost constant from PT10 to PT14, something the simulations do 

not show at all. In fact, in PT14, the simulated amplitude of the second harmonic is only 13% of the experimental 

case. If this trend continues to the edge of the blade, and blades are designed too thin because of it, then this might be 

one of the reasons the blades experiences cracks at the outlet. Compressible flow simulations on the same geometry 

show the same problem[17]. Future work on simulation of the RSI phenomena should focus on the higher harmonics 

as it seems that the current state of the art simulations does not capture this behaviour satisfactory. One possible 

solution may be to use a fully periodic, harmonic balance solution technique similar to Hall et.al [18] to better 

resolve the nonlinearities in the system.  
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4 Conclusions 
 

Full 360 degree simulations with all components predict the blade passing frequency very well. The amplitude is 

overestimated in the order of 5% or less. The second harmonic is underestimated by more than 50%, with the error 

increasing downstream of the RSI interface. Third, and higher harmonics are barely seen, this is in accordance with 

experimental results. The default Frozen Gust simulations overestimate the main frequency amplitude in the order of 

45%. Introducing a periodic inlet boundary condition in the Frozen Gust simulation softens the main frequency 

oscillations to a near perfect match with the experimental results. A pragmatic, a priori method is proposed with 

promising results. In terms of RSI effects, the Frozen Gust is performing similarly to the full 360 simulations, and 

introduces a speedup of a factor of 5 or more. The Profile Transformation method does not compare with the other 

methods, and should only be used for global parameters. The second harmonic is underpredicted dramatically in all 

simulations and should be investigated further.        
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Abstract. The periodic loads from Rotor-Stator interaction is believed to be the main fatigue 

contributor in High Head Francis turbines. The calculation of the structural response, and thus 

fatigue, is heavily reliant on the proper hydrodynamic damping characteristics of the water - 

structure system. The relationship between the water velocity and the hydrodynamic damping is 

also of great interest. To investigate this, the hydrodynamic damping characteristics of a 

submerged hydrofoil is simulated in ANSYS CFX. A one-way coupling is implemented, where 

the blade is forced to vibrate with the first bending mode at the natural frequency, while the 

hydrodynamic work is calculated over a vibrational period. The velocity of the flow over the 

hydrofoil is varied in the range v = 2.5 - 45 m/s. Two distinct damping regimes are observed 

depending on whether the vortex shedding frequency is below or above the lock-in region. The 

hydrodynamic damping is approximately constant before, and linearly increasing after this 

region. Experimental data from the Norwegian University of Science and Technology is 

available for validation, and shows the same trends. The sensitivity with respect to maximum 

vibrational amplitude is tested, and shows that the hydrodynamic damping is independent of the 

amplitude as long as the deflections are small. 

 

1.  Introduction 

Several high head Francis turbines have had failures in the last decades [1, 2]. The reason is thought to 

be complex fluid-structure interaction in the runner, a resonance issue originating in the pressure field 

created from the interaction between the stationary and rotating components, known as Rotor-Stator 

Interaction (RSI) [3]. When designing a turbine, it is desired that the natural frequencies of the structure 

is far away from the known RSI frequencies. However, the presence of water, a relatively heavy fluid, 

severely changes structural response under loading. This complicates the calculations of the structural 

properties. The added mass effects tend to reduce the natural frequencies of the structure, as well as 

dampening the amplitude of the excitation [4]. In some rare situations, the different vibration modes 

may even change order [5]. Many have tried to obtain a rule of thumb with regards to the reduction of 

the natural frequencies, however this has not been found, and may not even be possible [4, 5, 6]. When 

solving for the frequency response in a submerged Francis turbine, a coupled acoustic-structural 

simulation is therefore necessary. A crucial input to such simulations is the hydrodynamic damping. As 

additional complexity, the water in a turbine is not stationary, in a high head Francis turbine, the relative 

79



29th IAHR Symposium on Hydraulic Machinery and Systems

IOP Conf. Series: Earth and Environmental Science 240 (2019) 062002

IOP Publishing

doi:10.1088/1755-1315/240/6/062002

2

 

 

 

 

 

 

velocity between blade and water may reach v > 40 m/s. The effect of the moving water on the damping 

is therefore of great interest, and has been studied experimentally earlier [7, 8, 9]. The general trend is 

that the hydrodynamic damping is increasing as the flow velocity increase. A general recommendation 

as to the slope is however not obtainable. The maximal flow velocity in the abovementioned experiments 

was v ≈ 20 m/s. As far as numerical approximations, Monette et al. [10] provided a mathematical 

description of the hydrodynamic damping phenomena, and Liaghat et al. [11] performed a two-way 

fluid-structure coupled simulation on the same geometry. Similar experiments at the Norwegian 

University of Science and Technology have lately reached v ≈ 30 m/s over the hydrofoil, and also 

investigated the effects of the lock in region on the damping [12]. This article will try to replicate these 

experiments numerically, i.e. obtain the hydrodynamic damping coefficient in a system where water is 

flowing over a vibrating hydrofoil at different velocities. A one-way coupling of the fluid and structure 

will be performed to reduce the computational cost. The effects of the lock-in region on the damping 

will also be investigated.   

 

1.1.  Dynamic systems 

Second order oscillating systems have the following form;  

 

𝑀�̈� + 𝐶�̇� + 𝐾𝑢 = 𝐹 (1) 

 

Where M, C, K is the mass, damping and stiffness matrices respectively, u denotes the structural 

deflection, and F is the loading. Dot notation denotes a one-time differentiation with respect to time, 

meaning �̇� represents velocity and �̈� represents acceleration. The structural deflection is assumed to be 

periodic with amplitude 𝑢 =  𝑢𝑜 and frequency ω; 𝑢 =  𝑢𝑜𝑠𝑖𝑛(𝜔𝑡). A crucial input to the above 

equation is the damping. There exist several different types of damping, in the normal damping model 

there is viscous, frequency-dependent damping, but there is also material, frequency-independent 

damping [13]. In water, the viscous damping has been found to dominate the material damping [14]. 

The scope of this paper is therefore limited to obtaining the viscous damping ratio.  

 

2.  Methods 

2.1.  Hydrodynamic damping 

In order to obtain the viscous damping ratio, we need to derive an expression for the damping effects of 

the water surrounding a structure. The damping ratio, ξ, of a second order system described by equation 

(1) is by definition [13]: 

 

𝜉 = 𝐶(2𝑀𝜔)−1 (2) 

 

However, obtaining the mass and the damping coefficients is not as easy as in a classical mass – 

spring - damper system. We need to develop other parameters which can replace the unknowns in 

equation (2). In the following we show that the hydrodynamic work extracted from a CFD analysis help 

us doing this.  

Assuming linear behaviour, the structural deformation, u, can be decomposed into a superposition of 

the different structural modes, 𝛷𝑖 , where a mode is the oscillating shape of a system vibrating at its 

natural frequency [13].  

 

𝑢 = ∑ Φ𝑖𝑞𝑖

𝑘

𝑖

(3) 
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Where 𝑞𝑖 is a scaling factor. The second order oscillating structural system, equation (1), can be 

rewritten using the above definition (using only one mode); 

 

Φ𝑇𝑀Φ�̈�  + Φ𝑇𝐶Φ�̇� +  Φ𝑇𝐾Φ𝑞 = Φ𝑇𝐹 (4) 

 

Let the coefficients still be denoted M, C, K, F for simplicity. The coefficient of �̈� is usually 

normalized such that 𝛷𝑇𝑀𝛷 = 1  [15]. The second order system can now be written as; 

 

�̈� + 𝐶�̇� + 𝐾𝑞 = 𝐹 (5) 

 

Damping extracts energy from the blade. We are therefore interested in the work, 𝑊 = ∫ 𝐹 𝑑𝑥, over 

a period. The scaling factor will be periodic, 𝑞 =  𝑞𝑜𝑠𝑖𝑛(𝜔𝑡), as it follows the structural deflection, per 

equation (3). Integrating the left-hand side of equation (5) shows that only the first order term, ∫ 𝐶�̇�𝑑𝑞, 

yields a non-zero result over a vibrational period. The work is therefore as follows; 

 

𝑊 = ∫ 𝐶�̇�𝑑𝑞 = ∫ 𝐶�̇�2𝑑𝑡 = 𝐶 ∫ [𝑞0𝜔 cos(𝜔𝑡)]2𝑑𝑡 = 𝐶𝜋𝜔𝑞0
2

2𝜋/𝜔

0

𝑇

0

(6) 

 

Additionally, the hydrodynamic work, the work from the structure to the fluid, can be defined as: 

 

𝑊 = − ∫ ∫ 𝑝 ⋅ �̇�𝑛𝑑𝐴𝑑𝑡
𝐴

𝑇

0

(7) 

 

Where T is one period, p is the fluid pressure, and �̇�𝑛 is the velocity of the surface of the structure in 

the normal direction. Combining equations (2) and (6) finally leads to the definition of the hydrodynamic 

damping ratio; 

 

𝜉 =
𝑊

2𝜋𝑀𝜔2𝑞0
2

(8) 

 

Where W is the hydrodynamic work, equation (7), M = 1 [kgm2] is the modal mass, ω is the angular 

velocity [rad/s], and 𝑞0 the scaling factor [-]. The hydrodynamic work is obtained from a CFD 

simulation, the other parameters are obtained from a modal analysis. 

2.1.1.  Flutter. Hydrodynamic flutter denotes the possibility of negative damping, an instable vibrational 

system. If certain requirements are met, the fluid flow could transfer energy to the hydrofoil, rather than 

absorb energy. The system vibration would in that case be self - magnifying, and violent failure could 

occur. Starting with equation (7). The work per cycle from the fluid to the blade is as follows follows: 

𝑊 = ∫ ∫ 𝑝 ⋅ �̇�𝑛𝑑𝐴𝑑𝑡
𝐴

𝑇

0

(9) 

 

For simplicity we rewrite 𝑝∫ 𝑑𝐴 =  𝐹 to obtain 

 

𝑊 = ∫ �̇�𝑛𝐹𝑑𝑡
𝑇

0

(10) 
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Assuming harmonic motion of the blade, 𝑢 =  𝑢0𝑠𝑖𝑛(𝜔𝑡) and thus, blade velocity �̇� =
 𝜔𝑢0𝑐𝑜𝑠(𝜔𝑡). Let the force follow a similar harmonic motion, oscillating prior to the displacement with 

a phase angle ∆𝜙, 𝐹 =  𝐹0𝑠𝑖𝑛(𝜔𝑡 +  ∆𝜙). Solving the above integral for one period: 

 

𝑊 = 𝜔𝑢0𝐹0 ∫ cos(𝜔𝑡) sin(𝜔𝑡 + Δ𝜙)𝑑𝑡 = 𝜔𝑢0𝐹0sin (Δ𝜙)
2𝜋/𝜔

0

(11) 

 

We see that the work is purely controlled by the phase difference ∆𝜙. A positive phase angle indicates 

that the structure is absorbing energy, an unstable system. Conversely, a negative phase angle will 

dampen the vibration. A way of visualizing this is the following; if the blade velocity and force is plotted 

together (recall the integrand in equation (10)), the areas with equal sign of the two functions will 

contribute to instability. This is shown in figure 1, where the forcing function lags the vibration by ∆φ 

= −0.5. Both the force and blade velocity are scaled to unity amplitude. As the negative area is largest, 

there is a net energy loss in the blade, and the vibration is damped. Damping is expected in all the 

simulation in this article, however a difference in phase angle may provide insight into the damping 

phenomena. 

 

 

Figure 1. Illustration of phase shift between load and response. 

 

2.2.  Experimental setup 

The Waterpower Laboratory at The Norwegian University of Science and Technology (NTNU) have 

performed experiments on both an unsymmetrical hydrofoil (to resemble a Francis turbine blade), and 

a symmetric hydrofoil. The experimental setup and results from the unsymmetrical test can be found in 

[12]. The same setup is used for the symmetric hydrofoil tested in this article, some details will be 

included here.  

A symmetric aluminium hydrofoil was excited by electric muscles (Piezoelectric Macrofiber 

composite actuators from PI Cermaic) to vibrate in a harmonic motion. The hydrofoil was mounted in a 

stiff 150 mm x 150 mm steel test section, as a part of a longer experimental ⌀ 300 mm pipe system. 

Several Plexi glass windows were inserted to provide visual access to the blade. Strain gauges and Laser 

Doppler Vibrometry was used to measure the trailing edge motion. The frequency response was obtained 

for several different flow velocities and used to calculate the damping characteristics of the system. 
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Interested readers can find more details in reference [12]. Figure 2 shows a cross-section of the test 

section, including the placement of the Piezo patches on the aluminum blade. Some global blade 

dimensions are also included. 

 

 

Figure 2. Test section and blade geometry. 

 

2.3.  Numerical setup 

The work presented in this article tries to replicate the damping characteristics of the symmetric 

hydrofoil tested at NTNU. Table 1 lists a summary of the most important simulation settings used in 

this article. The 3 - dimensional numerical domain replicating the experimental rig is shown in figure 3. 

To ensure that the flow was fully developed before entering the measurement section, the inlet of the 

domain was extended such that a common entrance length criterion, > 10𝐷ℎ [16], was satisfied by a 

large margin. Fully developed flow was verified by testing the inlet turbulence intensity from 0 − 10%, 

with no difference in the levels at the blade. Similarly, the domain was extended downstream to avoid 

outlet conditions affecting the simulations, and to avoid backflow at the outlet, as the test section is 

diverging after the blade. 

 

 

Table 1. Numerical setup. 

Software 

Turbulence model  

Timestep 

Mesh 

Deflection amplitude 

Vibrational frequency 

Boundary conditions 

Flow velocity 

ANSYS CFX 

𝑘 − 𝜔 𝑆𝑆𝑇 

7.75e-6 [s] (256 timesteps per period) 

5 ⋅ 106 elements, all Hexahedral 

[2.5, 0.31, 0.05] [mm] 

504.37 [Hz] 

Pressure inlet, mass flow outlet 

2.5 m/s – 45 m/s 
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Figure 3. Numerical flow domain. 

A one-way coupling was used to obtain the damping. In this case, this means that the structural mode 

and corresponding natural frequency is calculated in advance. The CFD simulation is then performed 

with a pre-determined vibrating blade. Constant deflection amplitude is not possible in the experiments, 

but under the assumption that the damping is primarily dependent on the flow velocity, then it is a 

reasonable simplification in the numerics. ANSYS CFX was used in the simulations. A specified mass 

flow was prescribed at the outlet, a zero relative pressure condition at the inlet. The usual no slip 

condition was prescribed at all walls, and mesh motion forced on the blade surface. A modal analysis 

was performed in ANSYS Mechanical using the same geometry, with acoustic elements to account for 

the added mass and stiffness of the water. The first bending mode of the blade corresponds to bending 

of the trailing edge, and small deflection elsewhere. In a Francis turbine, this is the blade bending mode 

of interest. This mode shape and corresponding natural frequency was extracted and applied to the blade 

in CFX. In the simulations, the maximal deflection amplitude was prescribed in advance. The amplitude 

ranged from 1% to 0.02% of the cord length, i.e 2.5 mm - 0.05 mm as the chord length was 250 mm. A 

wide range of flow velocities was used, v = [2.5 m/s - 45 m/s] to identify any trends. The hydrodynamic 

damping was calculated by combining and discretizing equations (7) - (8), meaning that a normalized 

work was calculated for each timestep and summed over a full vibrational period, see equation (12). 

Every vibrational period was divided into 256 timesteps. To minimize the effect of the transient start-

up on the damping, equation 12 was applied on a periodic solution. 

 

𝜉 = ∑
− ∫ 𝑝 ⋅ �̇�𝑛𝑑𝐴

𝐴

2𝜋𝑀𝜔2𝑞0
2 Δ𝑡

256

𝑘=1

(12) 

 

The mesh consists of hex elements only, created in ANSYS ICEM CFD. The total number of elements 

was about 5 million, where the damping was found to be independent of element number. Figure 4 

shows the mesh in the midplane around the blade, and the same mesh was used in all simulations. The 

Courant number (𝐶 =  𝑢𝑙𝑜𝑐𝑎𝑙∆𝑡∆𝑥−1 ) and the 𝑦+ values did therefore change as the free stream 

velocity was changed, however simulations at v = 30 m/s showed satisfactory values (𝐶𝑟𝑚𝑠  =
 0.31, 𝑦𝑚𝑎𝑥

+  =  2.3). At the trailing edge, where separation occurs, the 𝑦+ value was well below 1, and 

verifies the use of the k − ω SST turbulence model [17]. In the mentioned Courant number, 𝑢𝑙𝑜𝑐𝑎𝑙 

denotes the local flow velocity, ∆t the timestep, and ∆x the mesh size. In an explicit solver, this number 

should be < 1, however this is not necessary in the implicit CFX solver [18]. 
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Figure 4. Cross - sectional view of mesh around blade. 

3.  Results 

Figure 5 shows the damping ratio with respect to the flow velocity at three different, fixed amplitudes, 

[𝐴1, 𝐴2, 𝐴3] = [2.5, 0.31, 0.05] [mm]. The amplitudes are far apart, 𝐴1/𝐴2 = 8 and 𝐴2/𝐴3 = 6.2, however 

an almost identical behaviour is seen in the simulations using 𝐴2 and 𝐴3. This may indicate that there 

exists a range of deflections where the hydrodynamic damping factor is independent of the deflection 

amplitude. 

 

 

Figure 5. Effect of pre – determined deflection amplitude. 

 

The dependency on the flow velocity however, is not constant or even linear in the whole range. There 

seems to exist two regions of linear behavior, with different slope. This is supported by experimental 

results, shown in figure 6. The experimental results are plotted along with an error bar of two standard 

deviations, and for flow velocities above v = 10 m/s, there is a great match between the experiments and 

simulations. The large uncertainty at v = 28 m/s in the experiments is due to the onset of cavitation at 

higher flow velocities. In the experiments, the threshold of v ≈ 6 m/s, marked the lock-in region. Lock-

in is the phenomena when the shedding frequency in the flow locks with the natural frequency of the 

structure over a range of flow velocities, instead of linearly increasing as is reported by i.e. Brekke [19]. 

A narrow band included in figure 6 for visualization of this region. 
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Figure 6. Numerical and experimental damping characteristics. 

4.  Discussion 

Figure 5 indicates that there exists an amplitude range where the damping is independent of the 

deflection. Moreover, if this range includes the value 0.31 mm, which compared to the blade size is 

probably unrealistically high, then it can be assumed that the damping is deflection - independent in the 

whole normal operation range of the turbine. The damping is therefore only a function of the flow 

velocity, a massive simplification of the system. Similar experiences are seen in the gas turbine industry, 

however at larger deflections [20]. This result is also supporting the initial assumption of doing a one-

way coupled fluid - structure simulation. The second interesting finding is the different damping regions 

found in figure 6. It is clear that the damping characteristics before and after the lock-in region is 

different. It should be noted that the simulated and experimental data may not be compared directly, as 

the deflection amplitude is fixed in the simulations. This is not possible in the experiments. If, however, 

the assumption of amplitude-independent damping is true, then a comparison could be performed 

without introducing much error. The phase difference between forcing and vibration, as reviewed in 

section 2.1.1, is extracted to investigate the damping behaviour more thoroughly by equation (9). Figure 

7 (a) shows the phase difference as a function of the flow velocity. The phase difference is obtained by 

scaling the force on the blade (lift) to unity amplitude and comparing it with the forced vibration 

(sinusoidal function). The phase is then the spatial difference between the intersection with the x-axis, 

see small figure in figure 7 (a) or section 2.1.1. 

 

 

Figure 7. (a) Phase shift, lift whole blade, (b) Phase shift, lift trailing edge only. 
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We see a change in behaviour before and after the lock-in region here as well, however not as clear 

as in figure 6. Note that the phase difference is negative for all flow velocities. This indicates that the 

blade is damped, regardless of flow. An assumption in the derivation of equation (9), is that the velocity 

of the blade and the pressure on the blade is independent of the location on the hydrofoil. This 

assumption may not be valid for the mode shape we are studying in this article. To illustrate this, the 

phase difference using only the lift at the trailing edge (TE in small figure 7 (b)) is extracted and plotted 

in figure 7 (b). We see that the trailing edge part of the hydrofoil contributes to an unsteady (positive 

∆𝜙) hydrofoil vibration, although the trend across lock-in is inconclusive. 

Looking more closely at the two regions with different damping behaviour. The integrand in the work 

integral, (𝑝 ⋅ �̇�𝑛), is composed of two parts. The normal velocity of the blade surface is equal in all 

simulations, and the pressure is therefore the dimensioning quantity in the integral. The forcing at the 

trailing edge of the blade is primarily the shedding of vortices. Bergan et al. [12] includes an analytical 

derivation of the phase shift in the shedding frequency across lock - in, and explains how this may 

increase the damping at high flow velocities. As was seen in figure 7 (b) the forcing at the trailing edge 

only was unstable, which actually contradicts this theory. Figure 7 (b) does not indicate that the shedding 

will dampen the vibration, rather the opposite. However, the assumptions used in deriving equation (9) 

may be too uncertain to draw any conclusions. Additionally, other factors may dominate the trailing 

edge shedding, i.e. the development of the pressure field when both the frequency and amplitude is pre-

determined in the simulations. A time-consuming two-way coupled simulation may provide further 

insight. The reason why the damping characteristics changes across the lock-in region is not yet found. 

One of the objectives of this numerical and experimental work is to obtain the damping at prototype 

flow velocities. In a Francis turbine, the relative velocity of the water may easily exceed v > 40 m/s. 

Due to the location of the test rig and the capacity of the pump, the fluid velocity in the experiments was 

limited to v ≈ 28 m/s before cavitation occurred. A simulation was therefore run at v = 45 m/s, seen in 

figure 6. We clearly see that the linear trend after the lock-in region is valid even for higher flow 

velocities. It is therefore reasonable to assume that one can extrapolate the experimental data to higher 

flow rates. 

 

5.  Conclusion 

This article shows that a numerical estimation of the hydrodynamic damping of a vibrating hydrofoil is 

possible. The correspondence with experimental results are very good, especially above the lock-in 

region. Below this region, the trend is similar, however the absolute values differ somewhat. Two 

damping regimes are identified; roughly constant before and linearly increasing after the lock-in region. 

The complete explanation of this phenomena is not known. The hydrodynamic damping is fairly low,   

ξ < 0.1, even for flow velocities realistic to Francis turbines. A one way-coupled simulation was 

performed, and the vibration amplitude is therefore chosen in advance. This assumption is supported by 

the result that the damping characteristics are independent of the deflection amplitude, as long as the 

deflections are small. For larger deflection, a two-way coupling is probably needed. 

 

6.  Further Work 

The overall goal of the research project is to understand the failure phenomenon in Francis turbines. A 

key difference from the present geometry and a turbine is the number of blades. In a full turbine, a phase 

difference in the vibration of two neighboring blades may facilitate negative damping. Therefore, the 

next iteration of the current study will include several blades to investigate this effect, and increase the 

similarity to an actual turbine. 
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As part of an ongoing study into hydropower runner failure, a submerged, vibrating blade is investigated both 

experimentally and numerically. The numerical simulations performed are fully coupled acoustic-structural 
simulations in ANSYS Mechanical. In order to speed up the simulations, a model order reduction technique based 
on Krylov subspaces is implemented. This paper presents a comparison between the full ANSYS harmonic 
response and the reduced order model, and shows excellent agreement. The speedup factor obtained by using the 
reduced order model is shown to be between one and two orders of magnitude. The number of dimensions in the 
reduced subspace needed for accurate results is investigated, and confirms what is found in other studies on 
similar model order reduction applications. In addition, experimental results are available for validation, and 
show good match when not too far from the resonance peak. 

 
Key words: model order reduction, FSI, vibration, harmonic response. 

 
1. Introduction 
 
 The quality and precision in the manufacturing industry have improved massively during the last 
couple of decades, due to automation and CNC machining. Even still, there have been several failures in new 
high head Francis turbines lately [1, 2]. This suggests that there is a problem in the design process. The 
dominating periodic load on the runner is known to be the forces due to the pressure field created by the flow 
passing the stationary components interacting with the pressure field following the rotating runner (known as 
Rotor-Stator Interaction (RSI)) [3]. When engineering a turbine, the RSI frequency is known in advance, and 
the design aims to have natural frequencies of components and assembly far away from the RSI frequencies 
to avoid any resonance issues. The runner however, is submerged in water, which is known to change its 
structural behavior [4]. The surrounding fluid complicates the structural calculations, as the added mass of 
water will lower the natural frequencies of the structure, and dampen the amplitude of the deflections. 
Furthermore, moving water will affect the structure differently from water standing still. It is also observed 
that the presence of water can change the order of the structural modes [5]. An acoustic-structural simulation 
will account for the presence of the surrounding fluid. Before such simulations were available, the industry 
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used empirical estimates to approximate the reduction of the natural frequency. Today however, studies 
show that it is not possible to obtain an all-purpose rule [4-6]. To conclude, if the goal is to investigate 
dynamic response of a turbine by performing a harmonic sweep of a Francis turbine with surrounding water, 
a coupled acoustic-structural simulation is needed. 
 The calculation of the coupled acoustic-structural harmonic response of a submerged structure is 
computationally expensive [7] and not applicable for all industries. This article will implement a Krylov-
subspace based model order reduction method for rapid calculation of harmonic analyses, based on the 
methodology presented by Rudnyi [8]. The structure in question is a submerged vibrating hydrofoil, a 
geometry studied in a research project investigating Francis runner failures at the Norwegian University of 
Science and Technology [9]. Experimental data on the same geometry is available for validation. This data is 
publicly available from the Francis99 project website [10]. 
 

 
 

Fig.1. Dynamic amplification factor on generic blade. 
 
2. Theory and methods 
 
 All structures have several natural frequencies and corresponding vibrational modes. If a structure is 
loaded at a frequency close to its natural frequency, the structural response A will be magnified compared 
with the static load magnitude A0. This is referred to as resonance and could in the worst case cause violent 
structural failure [11]. Figure 1 shows an example of the first mode Dynamic Amplification Factor,  
DAF = A/A0, on a generic blade. The DAF is defined as deformation normalized by the steady response of 
the applied harmonic load. Equivalently, normalized with the response as the frequency goes to zero, f → 0 
[11]. 
 From a design point of view, this graph is very interesting. In a design process, you will always try to 
avoid the natural frequencies and resonance. What Fig.1 shows is how the structure responds, not only at 
resonance, but at off-resonance conditions. The exact shape of the response graph is dependent of many 
factors; the damping; closeness to next natural frequency, etc., however let us use this figure to illustrate a 
design issue; If one assumes a linear material, and linear force-deflection relationship, then the amplification 
factor can be directly translated into a multiplication factor for the applied load. In the above figure we can 
see that even loading as far away as 25% from the natural frequency will be multiplied by a factor of 2, 
whereas loading at the natural frequency will be multiplied with about 75. The danger is the following; there 
will always be an uncertainty in the calculation of the natural frequency of your component. Especially 
submerged structures can be difficult to perfectly predict, and the response away from the natural frequency 
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then becomes even more important. Let us assume that you design to be 15% from resonance, but the error in 
natural frequency is in the order of 10%. The multiplication factor during operation will then be anywhere 
between 2 and 10. Clearly this is not acceptable for subsequent operation of the investigated component. 
 This underlines the need for the construction of harmonic response and amplification factor plots, the 
computational cost of removing all uncertainty in the calculation of the natural frequency is extreme, and 
maybe impossible. It is therefore desirable to obtain the dynamic response early in a design process, to 
identify risks, find sufficient safety margins, and perform design changes accordingly. To obtain this you 
need to solve a set of time-consuming harmonic equations. The simulation time will in this case be reduced 
by the use of Krylov subspaces. Model order reduction based on Krylov subspaces started in the electrical 
community [12, 13], and later in other industries with good results [14, 15]. 
 The following sections will describe the governing equations of coupled structural-acoustic 
problems, as well as some of the theory behind a Krylov subspace model order reduction technique. 
 
2.1. Second order, dynamic structural systems 
 
 Much of the theory in the following sections is adapted from [16], please refer here for more 
information. Most dynamic systems are second order. A general second order system can be modeled as 
follows 
 
  ( )  ( )  ( )  ( )Mx t Cx t Kx t Fy t     (2.1) 
 

where Nx R   is the state variable (typically displacement), and Ny R  is the force vector. The matrices 

, ,  NxNM C K R are the usual mass, damping and stiffness matrices respectively, and N is the degrees of 
freedom. F controls the distribution of the input force. In the case of a harmonic excitation and response we 
have 
 

   ( )  i tFy t F e  , (2.2) 

 

   ( )    i i t i t
maxx t x e e x e     (2.3) 

 
where ω denotes the angular frequency, and φ a potential phase shift. By using Eqs (2.2) and (2.3) and 
removing the time dependency, Eq.(2.1) can be rewritten as 
 

      { }  { }2M i C K x F       . (2.4) 

 
 Equation (2.4) is the equation solved when performing a harmonic analysis, and the one 
implemented in most commercial codes, including ANSYS Mechanical, used in this paper. However, if 
solved as is, the effects of added mass of the surrounding fluid is not accounted for. The structural natural 
frequencies will be wrong, and useless in a design phase. Therefore, we have to expand this equation to 
include the acoustic domain. 
 
2.2. Coupled acoustic-structural systems 
 
 Acoustics denotes the science of mechanical waves in fluids and structures. In terms of the fluid, no 
advection terms are modelled, only the pressure propagation is resolved. The pure harmonic motion of the 
sound pressure inside a fluid domain can be modelled by the Helmholtz equation (time-independent wave 
equation) [17] 
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      2 2p k p 0    (2.5) 
 
where p is the acoustic pressure,   /k c  is the wave number, and c is the speed of sound in the fluid. A 
structure submerged in water will change characteristics due to the density of water. Especially 
eigenfrequencies and harmonic response are significantly altered by a surrounding heavy fluid. The above 
Eq.(2.5) can therefore be rewritten for harmonic motions as done in the previous section, and combined with 
the structural response, Eq.(2.4), to obtain a coupled acoustic-structural system, referred to as the Eulerian 
displacement-pressure formulation [16, 18] 
 

   
s fss s s2

fs a a aa

K KM 0 C 0 Fu
i

M M 0 C Fp0 K

        
                     

 (2.6) 

 
where u is the structural displacement, and p is the acoustic pressure. The subscripts: s, a, fs denotes 
structure, acoustic, and fluid-structure respectively. The cross-multiplication matrices (Mfs, Kfs) are obtained 
by enforcing boundary conditions on the fluid-structure interface. This way information will cross the 
domain interfaces in a consistent way. This second order coupled formulation allows for accurate harmonic 
analysis of submerged structures. A major drawback is the increased computational expense of solving the 
above acoustic/structural system. 
 
2.3. Model order reduction 
 
 In engineering problems, the number of degrees of freedom could be extremely large. When 
considering acoustic elements as well, the coefficient matrices become unsymmetric (see Eq.(2.6)) [19, 20]. 
The added complexity from the acoustic-structural coupling makes the above system in many cases too 
expensive to solve, especially if a large frequency range is to be covered with satisfactory resolution [21]. 

The reasoning behind the Model Order Reduction (MOR) is to find a lower dimensional subspace  NxqV R  

such that 
 

   u
x Vz

p

 
    

 
 (2.7) 

 

where qz R  and q N . The symbol   denotes a small error introduced by utilizing the reduced model. If 
one assumes that the subspace V is available, Eq.(2.6) can be rewritten as 
 

      { }  { }2
r r r rM i C K z F        (2.8) 

 
where the subscript r denotes a reduced quantity, and the reduced matrices are defined as follows 
 

      ;T
rM V MV         ;T

rC V CV        ;T
rK V KV        T

rF V FV . (2.9) 
 

 The matrices in Eq.(2.8) are reduced to order qxqR , an enormous improvement from the original 

system in Eq.(2.6), where the coefficients were NxNR . For a subspace of order q=30 or similar, the new 
system is solved in seconds. 
 The problem is to obtain the subspace V. In this article, V is chosen to be a Krylov subspace, created 
using the Arnoldi algorithm. This subspace satisfies the moment-matching property to resemble the original 
system, see [22]. The details of the model reduction procedure will not be explained here, interested readers 
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can find more in [8, 16, 23, 24]. In the process of creating the reduced model, the number of dimensions, q, 
must be chosen. In general, the larger the q, the higher the accuracy, but at a computational cost. 
 
2.3.1. Application of model order reduction 
 
 The application of the model order reduction process outlined in the previous sections is shown in 
Fig.2. The commercial software ANSYS Mechanical is used to set up the system, define loads, constraints 
and more, and to create the coefficient matrices used in the reduction process. Then the reduction process is 
performed with the main parameter being the number of dimensions of the reduced system. Finally, the 
reduced system is solved. 
 
2.4. Experimental setup 
 
 This study is a part of a larger research project at the Norwegian University of Science and 
Technology (NTNU), where the goal is to understand why 
 

 
 

Fig.2. The process of performing the model order reduction. 
 
high head Francis runners experience cracks [9]. Experiments have been performed on both an 
unsymmetrical hydrofoil (to resemble a Francis turbine runner blade), and a symmetric hydrofoil. The goal 
of these experiments is to study the damping characteristics of the fluid-structure system, and importantly, 
the relationship between the flow velocity and the damping. The experimental setup and results from the 
unsymmetrical hydrofoil can be found in [25], as well as on the Francis99 project homepage [10]. The same 
setup is used for the symmetric hydrofoil which will be studied here. 
 In short, an aluminum hydrofoil is excited by electric muscles (Piezoelectric Macrofiber composite 
actuators from PI Ceramic) to vibrate in a harmonic motion. Laser Doppler Vibrometry and strain gauges is 
used to measure the vibrating trailing edge motion. The frequency response is obtained for several different 
flow velocities, and used to calculate the damping characteristics of the system. The hydrodynamic damping 
ratio, ξ, obtained at v = [2.5, 10, 20][m/s] in the experiments, is used in all the simulations presented here. 
 
2.5. Numerical setup 
 
 The goal of this article is to present a model order reduction method. Experimental data is in this 
case strictly not needed, as a comparison with the assumed correct ANSYS solution would determine the 
accuracy of the MOR approximation and the speedup of the method. However, it is chosen to use the same 
geometry as in the aforementioned experiments as well as some of the 
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Fig.3. Numerical geometry. 
 
results from the damping measurements, so that the current study is relevant to the overall project. The 
numerical domain is therefore as shown in Fig.3, and Tab.1 lists a summary of the most important simulation 
settings used in this article. 
 The simulations performed in ANSYS Mechanical will henceforth be referred to as the “full” 
solution. A constant load is used in all the simulations. This load was obtained from a CFD simulation on the 
same geometry, where the blade was vibrating at its natural frequency [27]. The fluid load (pressure) is 
imported to the blade in the harmonic analysis. A harmonic sweep is then performed in the range 300-750 
Hz, divided into 100 equally spaced frequencies. The damping from the experiments, ξ, is used, from which 
the numerical damping is defined as β = 2ξ/ωn, [11] with ωn being the natural frequency of the structure. 
There are two things to note about this procedure. First, the pressure load is extracted from a blade vibrating 
at a  
 

Table 1. Numerical settings. 
 

Parameter Value 

Software ANSYS Mechanical 

Analysis type Full Damped, MOR 

Damping β = [4.43e−6,8.16e−6,2.17e−5]* 

Frequency range 300-750 Hz 

Number of frequencies 100 

Mesh 500.000 nodes ** 

Acoustic domain Water: c = 1482 m/s, ρ = 998kg/m3 

Dimensions in MOR q=[10, 30, 50, 100] 
 

* Corresponding to flow velocity of 2.5,10 and 20m/s respectively [25] 
** Discretization error estimated to be 0.2% using GCI method [26] 
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given mode shape. The corresponding load distribution and magnitude is therefore “locked” to the given 
mode. If one wants to investigate a range of frequencies where more than one bending mode is excited, more 
load distributions should be included. Second, note that the damping ratio is also valid for the first bending 
mode only. The same argument as above can be used for the damping, if more modes are to be investigated. 
The assumptions made in this paper are a simplification, but should be valid as the focus is on one mode at 
the time. 
 In addition to the full simulation, reduced simulations were performed. The simulation was set up as 
above, and the model reduction was performed on the equation system extracted from ANSYS, such that a 
direct comparison of the reduced versus the full solution is possible. In the reduced models, the number of 
dimensions were set to q=[10, 30, 50, 100], to investigate both the accuracy of the reduced model, as well as 
the computational cost. Many papers report the use of q=30, however this is from different industries, and 
chosen somewhat arbitrary, and may not be applicable here [8]. 
 

 
 

Fig.4. Comparison of the different number of dimensions in the reduced model. 
 
3. Results 
 
 This first section will investigate the effect of changing the number of dimensions of the reduced 
order model, recall Eq.(2.8). The objective is to evaluate how many dimensions are needed to fully capture 
the behavior of the original system. The test case of v=2.5m/s and corresponding damping is used. Figure 4 
compares the different reduced models, with q=[10, 30, 50, 100]. The amplitude and frequency is normalized 
with the simulation using q=100 as it is assumed to be the most accurate. As the models perform very 
similarly, three boxes are marked in Fig.4, to be further investigated in Fig.5. 
 Figure 5 shows a zoomed view of the boxes marked in Fig.4. From Figs 5a, b it can be seen that only 
q=10 dimensions show some discrepancy compared to the rest of the simulations. In Fig.5c it is seen that the 
accuracy drops for q=30 and q=50 as well. Based on Fig.5 it is concluded that 30 dimensions are sufficient 
in terms of accuracy for this case. Therefore, all reduced order models will from this point on use q=30, as 
was reported in the literature to be sufficient. 
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Fig.5. Detailed view of the effect of changing the number of dimensions in the MOR. 
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Fig.6. Comparison between full ANSYS solution and reduced order model. 
 
3.1. Verification 
 
 In the following section, the MOR results using q=30 will be compared with the full ANSYS 
solution. Figure 6 shows a comparison using the damping corresponding to a flow velocity of v=20m/s (β = 
2.17e−5). There is an excellent match in the complete range. Similar results are seen for the other flow 
velocities. 
 In addition to accuracy with respect to the full solution, the obtained speedup is the second crucial 
metric used to evaluate the MOR method. The speedup factor is calculated as follows; 100 evenly spaced 
frequencies were simulated with the full ANSYS solution. The MOR was performed on the same problem, 
and the total simulation time was compared. The results are shown in Tab.2. The speedup is case-dependent, 
mesh-dependent, etc., however Tab.2 will give a qualitative indication of the gain in simulation time. 
 It is clear that both the accuracy and simulation time are excellent. If we return to the dynamic 
amplification factor in Fig.1, creating such a plot is now possible in a reasonable time frame due to the 
speedup documented here. 
 

Table 2. Speedup factor. 
 

Method Speedup*

Full ANSYS solution 1 

MOR 10 dimensions 56 

MOR 30 dimensions 40 

MOR 50 dimensions 31 

MOR 100 dimensions 18 
* Per 100 frequencies 

 
3.2. Validation 
 

 This section will compare the numerical frequency response with the experimental one. Figure 7 
shows the scaled harmonic response of the vibrating blade obtained in experiments and in the simulations for 
flow velocities v=20m/s. 
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Fig.7. Comparison between experimental results and MOR solution. 
 

 It is observed that the overall match close to the response peak is very good, and that the accuracy 
decreases when moving further away from it. 
 

4. Discussion 
 
 As in other studies, a reduced system of order 30 was deemed sufficient. This may be by chance, in 
the literature this number was chosen more or less arbitrarily [8], however it does indicate that a fairly low 
number of vectors/dimensions is needed to properly describe the original system. One thing that we can 
observe is that the method used for reducing the original system will be most accurate around a pre-
determined point, i.e. the mid-point of the domain (think Taylor expansion about a point). In essence, the 
accuracy of the approximation will decrease in the ends of the investigated domain, this is seen in, i.e., 
Fig.5c, where q=30, 50 starts to deviate from the solution of q=100. This may imply that fewer dimensions 
are needed if the interesting frequencies are known in advance, and conversely, more dimensions are needed 
if a large sweep is to be performed with no prior knowledge of the location of the natural frequencies. 
 Observe that in the numerics, only one bending mode is excited in the frequency sweep (bottom right 
corner of Fig.7 indicates new mode in the experiments). This is due to the fact that the load distribution imported 
from CFD is linked to the first bending mode only. For resonance to occur, both the frequency and the spatial load 
distribution have to match with the mode in question. This is only satisfied for the first bending mode in this case. 
If a more generic load was applied, specifically one where the spatial distribution does not limit which bending 
modes are possible to obtain, a larger frequency range and more modes could be investigated. 
 Another factor is the damping from the experiments. The damping factor is strictly only valid at the 
natural frequency, not when moving away from the resonance peak. This may explain why the accuracy 
decreases when moving away from the peak in Fig.7. Yet another factor is the point at which the amplitude 
is measured in the simulations and the experiments. It is unlikely that exactly the same location is tracked, 
and this will therefore possibly introduce an uncertainty. 
 
5. Conclusion 
 

 Solving complex engineering problems involving submerged structures require a coupled acoustic-
structural simulation. This is computationally expensive, but this article shows that the simulation time can 
be reduced by an order of magnitude of one to two, without reducing the accuracy. A Krylov subspace 
method is used in the model order reduction process. Using this method can allow the designers to obtain 
dynamic amplification plots early in a design process, and can give valuable information regarding product 
design. The results are also compared with ongoing experiments, and show overall good results. 
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Nomenclature 
 

 A  amplitude of deflection 
 0A    amplitude at static load 

    proportional/ Rayleigh damping 

 c  speed of sound 
 DAF  Dynamic Amplification Factor 
 f  frequency  
 k  wave number 
 MOR  Model Order Reduction 
 M,C,K,F  mass, damping, stiffness and force matrices 
 N  degrees of freedom in original system 
 p  pressure 
 q  degrees of freedom in reduced system 
 RSI  Rotor Stator Interaction 
 , ,s a fs   as subscripts; structure, acoustic, fluid-structure 

 V  Krylov subspace 
 v   flow velocity 
 , ,x x x    deflection, velocity and acceleration 

 y  force vector 
    error 
    damping ratio 

    density 

    phase shift between load and response 

    angular frequency 
 n   natural frequency 
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Abstract. The Francis-99 hydrofoil is simulated using a quasi two-way Fluid-Structure
Interaction procedure. The structural domain is reduced by the use of modal decomposition,
and solved for inside the commercial fluid solver ANSYS CFX. Both the first order Backward
Euler and second order Crank-Nicolson time discretization scheme is used in the structural
equations, with significantly different results. Several coupled fluid- structure phenomena is
observed that would be unobtainable in a normal one-way approach. The most interesting
is an ”added stiffness” effect, where the eigenfrequency of the foil increases when the flow
velocity is increased. This trend corresponds well with available experimental results. The
same phenomenon is observed in the hydrodynamic damping on the foil. Self-induced vibration
due to vortex shedding is also simulated with good results.

The implemented two-way approach allows the different forcing terms to be tracked
individually, due to the discretization of the second order structural system. This provides
insight into the underlying physics behind the different FSI phenomena seen, and helps us
explain why the damping and eigenfrequency characteristics change as the flow velocity passes
the lock-in region.

1. Introduction
In the last couple of decades, numerical simulation and Computational Fluid Dynamics (CFD)
have become one of the pillars in fluid mechanical research, alongside experiments and analytical
work. The tools are in constant development and are in need of validation and testing. In the
hydropower industry, the turbine designs are usually confidential, which makes it difficult for
academic institutions to do research on state-of-the-art geometries. The Francis-99 workshops
aims to provide an open source geometry and experimental data for validation of numerical
tools and methods [1]. The model turbine is located at the Norwegian University of Science and
Technology. The third Francis-99 workshop deals with Fluid-Structure Interaction (FSI). Two
test cases are available to the public, one case on resonance in turbine runner channels, and one
case on a more fundamental issue, hydrodynamic damping and eigenfrequencies of submerged
hydrofoils. This paper will focus on the Francis-99 hydrofoil.

As part of the validation data presented for the Francis-99 Hydrofoil, two interesting figures
are included and shown below, credit to Bergan et al [1, 2]. Figure 1a shows the hydrodynamic
damping as a function of flow velocity. There is a distinctly different trend before and after the
lock-in region. Lock-in can be defined as the frequency range where the shedding frequency of a
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(a) Damping (b) Eigenfrequencies

Figure 1: Validation data provided by [2]

body coincide and ”locks” with the natural frequency of the object in question [3]. The damping
is approximately constant before, and linearly increasing, after lock-in. This experiment has been
repeated with a different hydrofoil, but with the same outcome [4], and this was numerically
replicated with good results [5]. This numerical work however was utilizing a one-way coupling,
and although the damping was predicted, why the damping is different before and after lock-in
was not answered in the cited works. Performing a two-way simulation may give insight into
this.

The second figure, 1b, shows the natural frequency of the foil. There is a similar shifting
phenomenon before and after lock-in in this case, although a linearly increasing trend after
lock-in is not seen. The increase in eigenfrequency is not big, but definitely significant. Another
reason why this is interesting is the fact that in a simple oscillating system, an increase in
damping would correspond to a decrease in the eigenfrequency, not an increase. From classical
structural oscillating theory we have that the damped eigenfrequency, fd, is related to the natural
frequency, fn, in the following way; fd = fn

√
1− ξ2, where ξ is the damping ratio [6]. Note also

that the reduction in eigenfrequency should be very small, using the largest measured damping
value in figure 1a, ξ ≈ 0.04 will provide a frequency reduction of less than 1 ‰. From figure 1b
we see a frequency increase of 30 times that. Therefore, it seems like there is an inconsistency
between the the two figures and the classical theory. Or rather, that the above description of
the eigenfrequency, fd = fn

√
1− ξ2 is insufficient when the surrounding water is non-stationary.

The two figures, and more importantly, the physical explanation to this behaviour, is the goal
of this article. In order to obtain an understanding as general as possible, the focus will be on
trends rather than obtaining the exact values.

This will be obtained by using a two-way FSI procedure. The structural problem will be
reduced using a modal decomposition approach, and solved inside the fluid solver. This will
provide a significant speedup compared with a traditional two-way approach, as well as a
simplification of the setup.

2. Theory
The goal is to use a model order reduction scheme to reduce the structural motion such that
it can be solved for inside a fluid solver. The model order reduction scheme is based on modal
decomposition, and the fluid solver used is ANSYS CFX. The following sections will explain the
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procedure. The two-way coupling will then be used to simulate the added mass and stiffness
effects of flowing water over the Francis-99 hydrofoil.

2.1. Reduced structural model
The system we want to reduce is the usual, second order oscillating structural system [6],

Mü+ Cu̇+Ku = F (1)

Where M,C,K,F is the mass, damping, stiffness and force coefficient matrix respectively. u
denotes the deflection, and the over-dot notation indicates differentiation in time. To reduce the
above equation, the principle of modal decomposition is used. For such a technique one needs
the structural eigenmodes and eigenfrequencies, and thus, a modal analysis has to be performed
on the system. The modal analysis, which is an eigenvalue problem, can be described as follows
[7];

(−ω2M +K)Φ = 0 (2)

As in all eigenproblems, the result will be the eigenvalues (ω2) and the eigenvectors Φi.
The scaling or length of the eigenvectors is arbitrary, however the direction is unique, and all
eigenvectors are mutually orthogonal [7]. This property is used to create a modal basis Φ, a
reduced vector-space, for the system. Using the modal basis, the structural deflection can be
described as follows;

un×1 = Φn×mqm×1 (3)

The sizes of the matices/vectors are included. The superscript n denotes the degrees of
freedom in the original system, and m the number of modes in the modal basis. The variable
q is referred to as a modal amplitude, the scaling factor that multiplied with the mode shape
results in the actual, physical deflection. If the above expression is inserted in eq 1, and then
pre-multiplied with the modal basis, you get the following [8]:

ΦTMΦq̈ + ΦTCΦq̇ + ΦTKΦq = ΦTF (4)

Where the new, reduced coefficient matrices are of the following order, [ΦT ]n×mMn×nΦn×m =
Mm×m
red . This illustrates the model order reduction as m << n.
An advantage of using the eigenmodes to create a modal basis is that due to the orthogonality

of the modes, the reduced system will be diagonal, consisting of a set of linearly independent,
1-dimensional equations. This will simplify calculations, and also let us express the structural
deformation as a superposition of the different structural modes, Φi. Note that in eq. 2, the
eigenmodes were calculated without damping. To preserve the diagonal system we assume
Rayleigh/ proportional damping [6].

Let the coefficients in equation 4 still be denoted M,C,K and F for simplicity. The coefficient
of q̈ is usually normalized such that ΦTMΦ = 1 [9]. The second order system can now be written
as;

Mq̈ + Cq̇ +Kq = F (5)

Let the damping ratio ξ be defined as ξ = C/(2Mω) and the natural frequency ω =
√
K/M ,

and we can derive the following [6] (recall that the matrices are diagonal);

q̈i + 2ωξq̇i + ω2qi = fi (6)
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Note that the new second order harmonic system is now decoupled from the physical meaning
of equation 1. Equation 6 solves for the modal displacement, using the modal force. The actual
structural deformation is recovered by equation 7.

u =

m∑

i

Φiqi (7)

The big advantage of the above representation, is that the solution to the structural motion
is now reduced to solving a set of independent 1-dimensional equations for the modal amplitude,
instead of solving for the deflection in the complete solution space.

2.2. Numerical discretization in CFX
The above section reduced the structural motion to equation 6 and 7. Further modification
is needed for this to be solvable inside the commercial fluid solver ANSYS CFX. Specifically,
a time discretization method is needed, the first order backward Euler and the second order
Crank-Nicolson method will be presented here.

In both the discretization methods, the original second order system is split into two, first
order systems, one for the displacement, and one for the velocity, illustrated below using the
implicit, backward Euler scheme [10];

qi,k+1 − qi,k
∆t

= vi,k+1

vi,k+1 − vi,k
∆t

= −2ωξvi,k+1 − ω2qi,k+1 + fi,k+1

(8)

where the subscript i = 1, 2, ...,m denotes the mode, and the subscript k = 1 → ∞ denotes
the discretization in time. The forward Euler scheme is identical, except all (k+1) subscripts on
the right-hand side is replaced with (k) only.

The Crank-Nicolson time discretization scheme is a linear combination of the forward and
backward Euler method [10];

qi,k+1 − qi,k
∆t

= 0.5(vi,k+1 + vi,k)

vi,k+1 − vi,k
∆t

= 0.5(−2ωξvi,k+1 − ω2qi,k+1 + fi,k+1 − 2ωξvi,k − ω2qi,k + fi,k)
(9)

The expression for velocity can be inserted in the expression for the acceleration, then
rearranged to isolate the unknowns qi,k+1, vi,k+1 on the left hand side, to obtain the final
Crank-Nicolson scheme:

qi,k+1 =
qi,k(1 + ωξ∆t− 1

4ω
2∆t2) + ∆tvi,k + 1

4∆t2(fi,k+1 + fi,k)

1 + ωξ∆t+ 1
4ω

2∆t2

vi,k+1 = 2
qi,k+1 − qi,k

∆t
− vi,k

(10)

The same procedure is done for the backward Euler scheme for a similar result. The final
expression for qi,k+1 consists only of known quantities, namely the eigenfrequency of that mode,
the (structural) damping, the time step size, and the modal force calculated by the fluid solver
at that time step. The old value of the modal amplitude, velocity and force needed to calculate
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the expression is stored using a Fortran script, and called upon during calculation. The modal
force has not been properly defined yet. From equation 5 to 6 the force matrix is divided by
the diagonal mass matrix to obtain fi = F/M [ N

kg·m2 ]. The forcing is decoupled into the force

projection onto the different modes and is implemented as

fi =
1

M

∫

A
p · ΦidA (11)

where p is the fluid pressure. The above (eq. 10-11) can be implemented in CFX using
the CEL expression language. The performance of the different discretization schemes will be
presented in the results section.

2.3. Reduced velocity
In order to compare results across hydrofoil geometries, experiments, and simulations, it is
desirable to use a different variable than the flow velocity. Bergan et al. [11] presents a
reduced velocity, v∗ = v/fn, defined as the flow velocity divided by the eigenfrequency of the
vibrating hydrofoil. In a way, this describes how much water that passes the foil during one
vibrational period. It was found that if the damping was expressed with respect to v∗, then
many different foils showed near identical behaviour, namely a change in damping characteristics
around v∗ ≈ 0.02. This is also seen in figure 1a, as v∗ ≈ 11.5/625 = 0.018. The reduced velocity
is similar to the inverse of the famous Strouhal number, St = fL/v, used to link the shedding
frequency of vortices in the wake of an object to the flow velocity [12, 13], but without the
characteristic length.

The simulations in this paper is 2D to speed up the process. As a consequence, the surface
area of the foil changes compared with the 3D case. This will in turn reduce the surface force
on the foil (see eq. 11), which affects the eigenfrequency. The result is as follows; in a 2D
simulation, the added mass effect is smaller than in 3D, and the loaded eigenfrequency will
therefore be closer to that of the foil vibrating in vacuum. By presenting the result using the
reduced velocity v∗ from above, the 2D simplification should not affect the results, as the flow
velocity is normalized with the eigenfrequency.

3. Method
The focus have been the Francis-99 hydrofoil, more information about the hydrofoil can be found
in the paper by Bergan et al, or the workshop website [1, 2]. For reference, the first bending mode
(trailing edge motion) of the hydrofoil is shown in figure 2, with exaggerated deformation for
illustration. Three test cases have been performed, a comparison of the discretization schemes, a
simulation of self-induced vibration, and an attempt to replicate the damping and eigenfrequency
behaviour across the lock-in region.

3.1. Discretization schemes
The first task is to assess the different discretization schemes. In this test case, a cantilever
beam has been used for simplicity. The setup is as follows; the beam has been given an initial
deflection (≈ 3% of the total length), then released. The structural damping has been set to
zero, ξ = 0, and importantly, the fluid force (fi in equation 6) have been hardcoded to be zero.
This results in a system of equations for the structural deformation that purely consists of the
structural mass and stiffness term. Theoretically, this system, given an initial deflection, should
result in the following solution: u = A · cos(ωt). That is, a perfect sinusoid with constant
amplitude and frequency.

This test case is natural to use as it will reveal if any of the discretization schemes exhibit
any unwanted numerical damping. The simulations were performed using 100 timesteps per
oscillatory period.
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Figure 2: First bending mode of Francis-99 hydrofoil

3.2. Self-induced vibration
The coupled physics phenomenon of self-induced vibration will be simulated next. Fluid
flow across an object will, at certain Reynolds numbers, induce an oscillatory pressure and
velocity field. This field creates vortices trailing the body, and the body itself will experience
periodic forces perpendicular to the flow direction [14]. If these periodic forces are close to the
eigenfrequency of the structure, resonance can occur in the worst case. The structural vibration
can also magnify the shedding of vortices and can therefore have a self-magnifying effect.

A phenomenon called ”lock-in” is also something that can be observed during vortex shedding.
In general, the frequency at which the vortices are shedded is linearly dependent on the flow
velocity [3, 15]. If the flow velocity however, is such that the shedding frequency is close to
the eigenfrequency of the structure, then the shedding frequency will ”lock” to the structural
frequency rather than increase linearly. For reference, Particle Image Velocimetry and CFD
simulations have been used on this geometry in a previous study [16]. The simulations in that
study was pure CFD, meaning no structural motion.

The hydrofoil was subjected to flow velocities in the range v∗ = [0.12− 0.25]m, and the SST
turbulence model was used in all simulations.

3.3. Damped Vibration
The final task is to assess the added damping and stiffness effects of the flowing water. This is
done by the use of damped vibration. The solution to a system of damped vibration without
external forces is in the most general form the following [6];

x(t) = A · e−ξωt · cos(ωdt+ φ) (12)

In essence, this is a sinusoid enveloped by an exponential decay. The sinusoid contains the
oscillating part of the solution, i.e. the eigenfrequency, and the exponential decay contains the
damping part of the solution. This representation is used when the results are analyzed.

The analysis was set up as follows; the hydrofoils was given an initial deflection, and the
structural damping was set to ξ = 0. Any damping of the foil will therefore originate in
hydrodynamic forces. All simulations were performed with approximately 150 timesteps per
oscillatory period, and was allowed to oscillate for at least 20 periods. This ensures that the
error in estimating the damping and the submerged, loaded eigenfrequency was minimized.
The error in the damping was estimated to be ≈ 1.5% (using a 95% confidence interval of the
exponential fit), and the error in the eigenfrequency, ≈ 0.6[Hz].
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4. Results and discussion
4.1. Discretization schemes
Figure 3 shows the normalized structural deformation of the beam using Euler and Crank-
Nicolson discretization scheme. Recall that in the test of discretization schemes, the structural
damping and the fluid damping is set to zero to highlight any unwanted numerical damping.
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Figure 3: Comparison of the different discretization schemes

Clearly the performance of the Crank-Nicolson scheme is superior, with no numerical damping
under the given conditions. The numerical damping in the Euler scheme is estimated using
exponential decay to be ≈ 3%. This is not a large number, it is no larger than what is
expected from the surrounding fluid flow [2, 17], however the effect on the displacement over
time is significant. It is larger than can be accepted for subsequent simulations. The number
of timesteps per period, 100, is considered sufficient and in the order of what would be used
in a normal simulation. Based on the above it is therefore concluded that the Crank-Nicolson
scheme should be used, especially as it carries no additional computational cost.

The Euler scheme displayed some unwanted numerical damping, compared with Crank-
Nicolson. Evaluating the scheme using a Taylor expansion;

uk = uk+1 −∆t

(
du

dt

)

k+1

+
∆t2

2!

(
d2u

dt2

)

k+1

+H.O.T. (13)

where H.O.T denotes higher order terms. Rearranging will give the following;

uk+1 − uk
∆t

=

(
du

dt

)

k+1

− ∆t

2!

(
d2u

dt2

)

k+1

+H.O.T. (14)

Where we see that the scheme produces the time derivative we seek (it is consistent), and
that the scheme is first order accurate, as predicted. Interestingly, the first order error term

is related to a d2u
dt2

- acceleration operator. The damping seen in figure 3 is likely to originate
in this term. This might indicate that structures with high eigenfrequencies, and thus high
acceleration, will be more sensitive to discretization error. The structure in this case does have
a fairly high eigenfrequency, however a sensitivity study on this have not been performed.
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Figure 4: Frequency content during simulations of self-induced vibration

4.2. Self-induced vibration
Figure 4 shows the frequency spectrum of the vibration of the hydrofoil. The magnitude is
normalized such that the different flow velocities can be compared. Interestingly, we see a
component of the structural eigenfrequency (f = 1 in the figure) in all the simulations, along
with another frequency component. The other component is the shedding frequency.

Figure 5 shows on the left axis the dominating frequency component as a function of the
reduced velocity. The relation is close to linear as expected, however there is some discrepancy
around the point where the eigenfrequency of the foil matches the shedding. This is signs of the
lock-in phenomenon, although not as clear as was shown in other experimental works [16, 3].
On the right axis, the normalized amplitude of the self-induced vibration is plotted. It is clear
that the effect of resonance is extreme.

Another finding is that the reduced velocity at which these phenomena occur is exactly where
Bergan et. al [11] predicted, v∗ ≈ 0.018 − 0.02, even though this is a 2D representation of the
foil, with changed eigenfrequency. This is a great justification of the use of the reduced velocity.
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Figure 5: Shedding frequency and lock-in effect
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Figure 6: Numerical simulation of damping and eigenfrequency across lock-in

4.3. Damping and Eigenfrequency
Figure 6 shows the damping and natural frequency of the Francis-99 hydrofoil. The x-axis shows
the reduced velocity rather than the absolute velocity, due to the 2D representation of the foil.
The scale on the y-axis is purposely omitted as the changes are fairly small and should not be
compared with figure 1 in terms of absolute values, again due to the 2D representation, however
the relative change is clear. The shaded areas represent the ”lock-in” area where the change in
characteristics changed in the experiments.

Comparing figure 6 to figure 1 it is clear that similar trends are seen. The change in damping
across the ”lock-in” is simulated before, but the fact that it is observed here as well verifies the
methods used. More interesting is the figure showing the eigenfrequencies. Similar as for the
damping, a clear change is observed when crossing the ”lock-in” region. Such a shift would be
impossible to obtain in a one-way coupled simulation, as the vibration frequency would be an
input to the simulation, see i.e. [5].

The primary goal of the paper is to be able to simulate the shift in damping and
eigenfrequency seen in the experiments. This was done in this section. Equally important
is to understand why such phenomena occur. The following section will try to use one of the
inherent advantages in the presented two-way procedure, the ability to separate the different
terms in the second order oscillatory system, and track them over time.

If we start with the second order equation for structural oscillating motion, eq. 1, we can
label the terms as inertial, damping, restoring and external forcing.

inertial forces︷︸︸︷
Mü +

damping forces︷︸︸︷
Cu̇ +

restoring forces︷︸︸︷
Ku =

external forces︷︸︸︷
F (15)

An observation; the structural damping in all simulations have been set to zero, yet damping
is still observed. However, if the external forcing is also set to zero, as in section 4.1 where the
discretization schemes was tested, there was no damping at all. This indicates that the damping
originates in the external forcing. The next question is how.

One hypothesis is that the external force can have a phase shift relative to the structural
deformation. If the force has such a phase shift, it can be decomposed into the different order
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derivatives of the structural motion, u, u̇. An equivalent or additional damping can then be
found as the u̇ component. This is a normal way of looking at the damping, see i.e. [5], as only
the velocity-proportional term in eq. 1 is energy dissipative.

Assume that the deflection can be expressed as u = a1sin(ωt) and the forcing on the blade
F = aF sin(ωt+ φ). This means that the two are similar in shape and frequency, but separated
by a phase shift. Now assume that the forcing can be decomposed into two terms;

aF sin(ωt+ φ) = ausin(ωt) + au̇cos(ωt) (16)

one term following the structural motion u, and one term following its derivative u̇. This
decomposition was done in MATLAB by solving a set of coupled equations for different phase
shifts on a generic sinusoidal force. Figure 7 shows how the amplitudes of the decomposition
changes with the phase shift. On closer inspection we see that the amplitude of the u-term follows
the relation au = cos(φ), and the amplitude of the u̇-term follows the relation au̇ = sin(φ). For
small values of φ, sin(φ) is linear. This might explain why the damping is linearly increasing
after lock-in, if the phase shift is also linearly increasing. This representation will not however,
explain why the eigenfrequency increases, as figure 7a shows a strictly decreasing u-component
of the force, going away from the lock-in region.
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Figure 7: Force decomposition

In fact, if we insert the ”damping” from figure 7b into the classical formula for damped
eigenfrequency, fd = fn ·

√
1− ξ2 we get exactly figure 7a. Additional information is therefore

needed to separate the eigenfrequency component of the force.
From classical vibration we have that the eigenfrequency can be defined as ωn =

√
k/m,

proportional to the stiffness and inversely proportional to the mass. Note as well that the above
decomposition of the force does not separate between the u and ü components, as the two are
the negative of each other (180◦ phase). This means that the u-component above really contains
information regarding both. Or in other words, even if the sum is reduced, the ratio r = k/m
may not do so. An increase in this ratio would in theory increase the eigenfrequency. The next
section will try to split the u-component into an acceleration and stiffness component.

Here we will use the inherent advantage of the two-way approach, the possibility to track
the different forcing terms. Let us again start with the second order equation for structural
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oscillating motion, with damping set to zero. If one during the derivation of equation 10 keeps
the different forcing terms separated, we get discretized terms representing the inertial, restoring
and external forces:

inertial forces︷ ︸︸ ︷
2(
vi,k+1 − vi,k

∆t
) +

restoring forces︷ ︸︸ ︷
ω2(qi,k+1 + qi,k) =

external forces︷ ︸︸ ︷
(fi,k+1 + fi,k) (17)

These terms, and their ratio can be tracked throughout the simulation as a way of quantifying
the shift in eigenfrequency.

Figure 8a shows the approximate phase shift of the external forces with respect to the
structural deformation. The phase shift is manually extracted from a time-series of the force and
deflection, and will therefore be somewhat uncertain, however there seems to be an increasing
trend across the lock-in region, although not as clear as in figure 6a.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

Reduced velocity

2

3

4

5

6

7

8

9

P
h
a
s
e
 s

h
if
t 
[D

e
g
re

e
s
]

(a) Phase shift across lock-in

0.01 0.015 0.02 0.025 0.03 0.035

Reduced velocity

0.995

1

1.005

1.01

1.015

1.02

1.025

R
a
ti
o
 r

(b) r-ratio across lock-in

Figure 8: Analysis of phase shift between force and deflection (left), and ratio between restoring
and inertial forces (right)

Figure 8b shows the approximate ratio between the restoring and inertial forces for the
different flow velocities. Interestingly there is a change in this ratio across the lock-in region.
It is dangerous to draw conclusions based on such a limited number of data points, however
it seems like the r-ratio is about 1 before lock-in, but increases a couple of percent after. As
discussed above, this change might be a reason for the added stiffness effect seen across the
lock-in region.

4.4. Future work
In this paper, a modal decomposition-based model order reduction method was used. Some
limitations apply, namely symmetric matrices such that a diagonal system can be created. This
is then solvable inside CFX as simple expression evaluations. If a more sophisticated model
order reduction technique was used, i.e. a Krylov based model, used on a similar geometry
in [18], then this would allow for inclusion of phenomena such as gyroscopic effects, arbitrary
damping and more. The simulation time would be the same, but as the reduced system is no
longer simple evaluations, it would have to be solved by i.e. a Fortran script.
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5. Conclusion
The hydrodynamic damping of a hydrofoil changes significantly across the lock-in region. The
same is true for the eigenfrequency, there is actually a stiffening effect observed in experiments
when the flow velocity is increased. Both effects are successfully simulated in this paper using
a quasi-two-way FSI approach.

The hydrodynamic damping is approximately constant before the lock-in region and linearly
increasing after, something shown numerically and experimentally earlier. This behaviour may
be explained by the fact that the fluid load on the foil changes its phase relative to the foil, and
thus dissipates more energy. The simulation of the added stiffness is new, and may be explained
by tracking the inertial and restoring forces on the hydrofoil during the simulations. The ratio
of the two is non-constant, and can be the reason for the changed behaviour.

Even though the test geometry in this case was fairly simple, the modal decomposition based
two-way approach is shown to provide a great way of adding a layer of information to the
simulations. Especially cases where there is a risk of significant fluid structure interaction could
easily be investigated using this approach.
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Abstract 

This article compares a numerically simulated, and an experimentally obtained Hill-Diagram. The Francis99 model 
turbine was used in the validation. By using steady-state simulations and passage modeling in ANSYS CFX, the simulation 
time is in the order of minutes for each operating point. Except for the smallest guide vane opening, the error in hydraulic 
efficiency is less than 2.5% for all flow configurations. The individual error in head and torque follow clear, almost 
identical trends. The error along a line of small incidence losses indicate less than 0.5% error in the efficiency in almost 
the complete simulated range. The results in this article may be used in future optimization design processes using Hill-
Diagrams. 

Keywords Hydro-power, Validation, CFD, Hill-Diagram, Optimization, Francis99 

1. Introduction 

The continuous development in the computational world enables simulations to be an integral part of the design of new products. 
Simulation Driven Product Development (SDPD) is the concept of introducing simulation tools early in the design process, rather 
than using it as a verification tool in the final stages of production [1]. If SDPD were fully utilized, it could be a significant speedup 
and cost-saving measure. However, for SDPD to be trusted and fully embraced by the industry, the methods have to be verified and 
validated with experimental results. This article will recreate an experimental Hill-Diagram by use of simulations. Moreover, the 
article aims to prove that the time used for the chart generation is low enough so that it can be used in an optimization design process. 

The long-term goal for this work is to use an optimization routine in a turbine design phase. Optimization routines for turbines 
have been used earlier (see i.e. [2]–[4]), however this paper aims to prove the accuracy of a complete Hill-Diagram, rather than 
certain operating points [5]. This diagram is crucial if the goal is to design a variable speed turbine, as both the rotational speed of 
the runner and the flow rate can be varied. Variable speed operation is a technology that allow a turbine to operate at high efficiencies 
in a wider range of operating conditions, as well as avoiding dynamic phenomena and increasing the range of operation [6], [7].The 
optimization characteristic of each turbine design will be taken from a Hill-Diagram, thus, a diagram has to be made for all turbine 
designs. Therefore, a validation of the accuracy of the numerically simulated Hill-Diagrams is needed. 

The model turbine used in this article is the Francis99 turbine, a model turbine located at the Hydropower Laboratory at the 
Norwegian University of Science and Technology. The runner consists of 15 main blades, and 15 splitter blades. More information 
about the runner can be found in [8]. The model turbine has been the focus point of extensive research, among others, the research 
project Francis99 [8], which is focusing purely on numerically replicating detailed experimental results from the model, and the 
HiFrancis project [9]. The simulations presented in this article are in the extreme, short duration, end of the simulation spectra, 
where loss of accuracy is unavoidable. Quantifying this loss in accuracy is one of the main objectives of this article. 

2. Theory and methods 

2.1. The Hill diagram 

The hydraulic efficiency in a hydro turbine is calculated as the power output divided by the available water power [10]: 
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where T is torque,  is the volume flow,  is the angular velocity, g is the gravitational acceleration and ρ is the fluid density.  
is referred to as the head and will be defined precisely later. It is a measure of the mechanical energy difference over the runner. The 
losses in the runner is to a large extent determined by how the water flow coincides with the runner geometry. Fig. 1 shows the 
velocity triangles on a generic blade, where  denotes the runner peripheral velocity,  the absolute water velocity, and  the 
relative water velocity. The guide vane angle is denoted as atan	 /  (not explicitly shown in Fig. 1). If the combination 
of runner speed and guide vane angle is off-design, the angle of the relative velocity , will not coincide with the runner geometry, 
and losses occur. 
 

 
 

Fig. 1 Velocity components in a turbine 
 
 

Several combinations of runner speed and guide vane opening can be tested, measuring the hydraulic efficiency for every flow 
configuration. The resulting surface will be a convex surface, or simply, a Hill. A Hill-Diagram is a two-dimensional visualization 
of this surface. Fig. 2 shows the general idea. The lines in the 2D plot are iso-lines of constant hydraulic efficiency. 

 

 
 

Fig. 2 Hill Diagram; a 2-dimensional projection of a 3-dimensional surface. 
 
 
The axis may be defined in several ways, the most common is to use reduced quantities of flow and runner speed, qed and ned, 

respectively. This way, comparing different turbine runners is easier. The definitions are as follows [10];  
 

 

√ 		
		 2  

 

√
		 3  
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where  is the outlet diameter and  is the runner speed.  as above, is the head, defined by eq. 4  (see [11] for details), where 
Δ  is the pressure difference upstream and downstream the turbine, see probe PT02 and PT03 respectively, in Fig. 3. 
 
  

Δ
2

	 4  

 
Hydropower plants today are usually operated at a constant speed , and for most cases (unless there is a large variation in head 

during operation) a 1 dimensional representation of the efficiency can be used. This 1-dimensional representation is the line of 
intersection between the 3D surface in Fig. 2 and a vertical plane at a constant speed at varying flow rate due to varying guide vane 
opening. This figure will typically have a parabolic shape indicating the efficiency at different flow rates. If new technologies like 
variable speed operation is developed, the 2-dimensional representation of a Hill Diagram will become very important. This is 
because both the guide vane opening (flow rate) and the runner speed is variable. Regarding efficiency, this could in theory allow 
for relative velocities that follow the geometry better in a wider range of operation, and in turn, creates smaller losses. This is the 
motivation for why a full Hill-Diagram can be used in an optimization process on variable speed turbines. 

A note on the construction of Hill-Diagrams; The Hill Diagram is composed of lines of constant efficiency, the efficiency iso-
lines. Depending on how many operating points that are tested/simulated, and what interpolation/extrapolation method is used, 
vastly different results can be obtained. A purely visual comparison of charts is therefore not recommended. If two Hill Diagrams 
are created using the same algorithm, then a visual comparison can be done with care. There is also the case of balancing overfitting 
and prediction. A low order surface fit will create more circular iso-lines, a method possibly suited for indicating trends in the 
diagram. Higher order fits, and extrapolation outside of the tested range may increase the accuracy, but also overfit the test data to 
the extent that the predictive quality of the chart decreases. These problems can be seen in the Hill-Diagram published in [12], where 
extrapolation outside the experimental range creates an unphysical result in some regions.  

 
2.2. Experimental measurements 

Experiments have been performed on the Francis99 model turbine at the Hydropower Laboratory at the Norwegian University 
of Science and Technology. The experimental procedure followed the guidelines set in IEC 60193 [11]. The experimental results 
have been used for validation of the numerical results in this article. More information about the experimental setup in the lab can 
be found in [12], [13], however the actual results used for validation comes from personal correspondence with the laboratory staff, 
and is not related to the mentioned references. The results used here was used as a reference for a model acceptance test of the 
runner being replaced at Tokke power plant.  

 
 

 
 

Fig. 3 Experimental Setup[5] 
 

 
The laboratory consists of a closed loop and an open loop. Only the closed loop was used in the experiment, and is presented in 

Fig. 3. The loop consists of an upstream pressure tank, the turbine, draft tube, and a downstream pressurized tank. The pressure 
probes PT02 and PT03 define, as mentioned, the head over the turbine. One important thing to remember is that the efficiency 
calculated from the experimental results will be the efficiency of the entire length between these measurement sections, including 
not only the efficiency of the runner itself, but also the guide- and stay vanes, spiral casing and draft tube. As we shall see, much of 
this is not included in the numerical simulations. 

The experimental data provided to the author consisted of almost 150 points, distributed evenly in the  plane. The 
guide vane opening was operated on 10 levels in the range 50%, 40%  of the assumed best efficiency point. The runner 
speed was operated on 15 levels in the range 20%. In the experiments, the head was kept approximately constant (<0.5% 
deviation). 
 
2.3. Numerical simulations 

A Hill-Diagram consists of many points, the simulation time have to be low for each point. One of the main goals of this article 
is to assess the loss of accuracy when simulation time is minimized. The excellent review paper by Trivedi et.al [14] lists, and 
reviews a spectra of simulation settings, and have been used as a recommended practice reference. A summary of simulation settings 
can be found in Table 1, a detailed explanation will follow. 
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Table 1 Simulation settings 

Parameters Description 

Software 
Analysis type 

ANSYS CFX 
Steady State 

Components Inlet section, node matching to runner 
Runner: 1 main blade, 1 splitter blade 
Draft tube: Straight, shortened section, pitch ratio 1:1 

Interfaces Frozen Rotor (Inlet-Runner, Runner-Draft Tube) 
Fluid properties 
Boundary Conditions 
 
 
 
 
Turbulence model 
Run type 

Incompressible water, constant properties 
Inlet: Mass flow 
Outlet: 0 Pa average static pressure (relative pressure) 
Periodic interfaces, node matching 
No-slip walls 
No leakage flow 
SST  
Parallel MPI: 6 cores 

 
 

The first, and possibly most important time-saving measure, have been to only perform steady-state simulations. Because only 
global parameters, , , ,  is needed for creation of a Hill-Diagram, steady-state simulations have proven to be sufficient [15], 
[16]. This reduces the simulation time to a fraction of what could be required of transient simulations. It can however, introduce 
simulation inaccuracies, especially at off design operation, where transient effects are more prominent.  

 
 
2.3.1. Geometry and Mesh 

A second time-saving measure was to use passage modelling in all the simulations. This means that only one passage, i.e. one 
main and one splitter blade of the runner, was simulated. This simplification is possible due to the rotational symmetry of the runner 
geometry, and it is assumed that there are negligible changes in the main flow field in the different passages. This simplification is 
fairly standard in the industry, and have previously shown good results [17]. Additionally, as the simulations are steady state, no 
particular interface treatment (other than conventional periodicity) is needed at the rotationally symmetric interfaces. Fig. 4 shows 
the simulated geometry. 

 
Fig. 4: Simulated Domain 

 
No guide vanes were included in the simulations. The main reason for not including the guide vane domain is that the current 

setup only requires one mesh regardless of the operating point. The different guide vane angles will be accounted for by the boundary 
conditions, see next section for details. If the guide vane domain was included, different guide vanes angles would need different 
meshes, or mesh motion. Mesh motion could be possible if mesh quality was continuously monitored, however it does require a 
transient simulation. If optimization is the end goal, the setup presented here would be the easiest, and fastest, as there is no need 
for re-meshing of the guide vane domain.  

A second argument is that the flow parameters, i.e. the pressure will, to a first approximation, assume the following form; 
∗ 	 , where  is the mean pressure, A is some amplitude of oscillation, and k indicates the number of guide vanes. 

If however, this is integrated over time as in a steady simulation, the sinusoid will disappear, and we are left with the mean parameter, 
. For global parameters like torque, efficiency and such, the approximation of using only the mean parameter can be used. If the 

goal of the simulations was pressure amplitudes, time-dependent fluctuations and such, the guide vane domain would have to be 
included (or at least be described as a sinusoidal function in time).  
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Using the setup presented, the same mesh could be used for all points in the Hill-Diagram. A small, stationary inlet domain is 
included in front of the runner to allow for development of the pressure and velocity field upstream of the blades. A cut-off draft 
tube cone with pitch (angular span) equal to the runner was included at the outlet. Leakage flow was not included. There exist 
several (usually Fourier based) methods for approximating the complete runner flow field, even if only passage modelling is used. 
These are all transient methods and cannot be used in the current case. However, as global parameters are integrated quantities over 
the whole domain, and if the assumption of negligible changes between the channels are correct, then the global quantities should 
not change much even if only one passage is simulated.  

The runner mesh was created using ANSYS Turbogrid. The mesh is one 15th of the full runner, rotationally symmetric with node-
matching periodic interfaces. The draft tube mesh was created separately using ANSYS Meshing to improve the mesh quality close 
to the draft tube centre. The number of elements is 636000 and 303000 in the runner and draft tube respectively. With the inlet 
section, the total number of elements was 1M. The Grid Convergence Index (GCI) [18] was used to verify the quality of the mesh. 
The GCI is an industry-recognized method for assessing mesh quality, a step-by-step explanation can be found in [19], but will not 
be repeated here. Table 2 list the GCI for head and torque, and indicates that the spatial discretization error on the selected mesh is 
small. Please note that the values used for the GCI analysis is taken from simulations with the full spiral casing, full runner (15 
mode matching passages) and complete draft tube [15]. This should reduce the modelling error, and isolate the discretization error 
better. The mesh used in this article is one passage of the converged mesh in the reference. A stepwise refinement was performed in 
the near-wall region, leading to an average y+ of 2.8 in the runner. 
 

Table 2 Grid convergence index 

Parameter GCI 

Head 
Torque 

0.22% 
0.04% 

2.3.2. Boundary Conditions 
From the experimental results, all parameters were given. This includes pressure at inlet and outlet, head, mass flow and 

rotational speed. This allowed for a range of possible boundary condition configurations. The mass-inlet, pressure-outlet 
configuration is widely used, and regarded in the industry as the most stable [14]. In the laboratory however, this is not how it is 
done. In the laboratory, the head is fixed to a near constant value. The mass flow is developing freely, it is not controlled by the 
experimentalist. This configuration is harder to achieve in the simulations, as the total pressure cannot be specified at both inlet and 
outlet. The mass-inlet, pressure-outlet configuration was therefore used, with the experimental mass flow at the inlet, and zero 
relative pressure at the outlet. The head was defined as the difference in the total pressure from inlet to outlet, with an additional 
hydrostatic term accounting for the different pressure probe locations in the experiments and the simulations (compare Fig. 3 and 
Fig. 4). The torque is a built-in parameter in CFX, defined as ̅ 	 	 	 . 

Almost tangential velocity components were imposed on the inlet domain in order to replicate the effect of the guide vanes. The 
flow was otherwise uniform. Numerical error is more likely to occur if there is tangential flow on a domain, the default minimum 
allowed angle in CFX is 10° [20]. An expert parameter was therefore included such that simulations could be performed down 
to 6°. This guide vane opening is outside of normal operating range, and the tested range covers most practical cases. Even 
lower angles were deemed too uncertain, and disregarded. In the results section, this assumption will be assessed. The angle imposed 
on the inlet domain was the same as the guide vane outlet angle. The assumption comes from atan	 / , where ∝ 1/  
by continuity and ∝ 1/  by free vortex theory [21]. Thus,  in the inlet section, see Fig. 5 with . This 
assumption is normal practice in vaneless spaces in turbine design.  

 
 

 
Fig. 5 Velocity components in extended inlet section 

 
The 150 experimental points given to the author was excessive for validation of this method, every third point was therefore 

chosen. Additionally, no simulations were performed on the smallest guide vane openings, 5°, such that the total simulated 
points ended up being about 40. All simulations were initialized from a simulation at design point, making the Hill-Diagram highly 
parallelizable. In this article, the points were simulated sequentially on a workstation with 6 cores. 

 

3. Results 

The following section will list the results of the numerical simulations. First the Hill-Diagram will be presented in both 3-
dimensional and 2-dimensional form. This first section is mostly a visual comparison, rather than detailed analysis. Then the error 
in the quantities head, torque and hydraulic efficiency will be regarded separately. This is to avoid that errors in head and torque 
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cancels, as per eq. 1 . This is a common mistake, and could potentially lead to perfect results in hydraulic efficiency, even though 
both head and torque have errors. Each of the 40 simulated points took about 15 minutes each on 6 cores. 

Fig. 6 shows the 3D (a) and 2D (b) Hill-Diagram from the experiments and the simulations. Reduced quantities ,  make 
up the axis of the charts. In the 3D comparison, we observe a good fit in almost the complete simulated space. Interestingly, the 
simulations underestimate the efficiency slightly 0.5%  around the best efficiency point. In such a visual comparison, the trends 
are more interesting than the details, and a complete third order fit was deemed sufficient. 

 

 
Fig. 6 Comparison of Hill-Diagrams, 3D(left), 2D(right). 

In the 2D figure, bold font and dashed lines mark the simulations  
 

In 2-dimensional Hill-Diagrams, the measured points are usually included. This is purposely left out of Fig. 6 to improve 
readability, as the points do not perfectly overlap. The lines marking constant guide vane opening is also omitted. The reason is that 
it would be two set of lines indicating the guide vane opening (because ,  is dependent on the simulated head), and this 
would be a disturbing element in the chart. Even though a 2-dimensional comparison is not visually ideal, we see a good agreement 
between the experiment and the simulation. 

 
3.1. Head 

In the following sections the individual quantities will be presented in more detail. Fig. 7 shows the error, in percent, in the 
simulated head versus the experimental head. The error is defined as / , in other 
words, a negative error indicates an underprediction. The axis in this, and the following plots, are not reduced values, but actual 
runner speed and flow. This is because the reduced values both are dependent on the simulated head, and this could introduce errors 
in the axis points.    
 

 
Fig. 7 Error in Head 
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The surface fit in the figure is a complete second order polynomial, ( ), but a distinct 
planar trend is observed. The error is clearly not normally distributed about the zero plane, but rather about a defined, tilted plane. 
If the flow and runner speed is normalized to be in the range [0,1], and a plane fit is performed on the error, the following relation 
is obtained.  
 

% 8.7 4.8 ∗ 9.7 ∗ ,			 , ∈ 0,1 5  
 

If the simulation perfectly matched the experiments, all the coefficients in eq. 5  would be zero. In this case we see that the 
error is close to twice as sensitive to changes in flowrate as changes in rotational speed. Please note that this is within the simulation 
ranges explored in this article. From section 2.2 we remember that the guide vane angle was tested in a wider percentage range than 
the runner speed, and larger error may therefore be expected.  

 
3.2. Torque 

Fig. 8 shows the error, in percent, in the simulated torque versus the experimental torque. We see almost the same conceptual 
behavior as for the head in Fig. 7, where higher values of runner speed and flow rate tends to overestimate the torque. The opposite 
is true for lower values.    

 
Fig. 8 Error in torque 

 
As above, the polynomial fit is second order, and as above, a distinct planar trend is observed. The same normalization exercise 

was performed on the torque, which resulted in the following plane fit:  
 

% 7.5 5.9 ∗ 7.9 ∗ ,			 , ∈ 0,1 6  
 
The error is still more sensitive to changes in flow rate than changes in rotational speed, however not as much as for the head 

(eq. 5 ). 
 

3.3. Hydraulic Efficiency 
The hydraulic efficiency is calculated as per eq. 1 . Fig. 9 shows the error, in percent, in the simulated efficiency versus the 

experimental hydraulic efficiency. 

 
Fig. 9 Error in Hydraulic efficiency 
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As the individual error in torque and head is similar, the error in efficiency is expected to be lower than both. This is observed 
here. In fact, the error is within 0.5%, 2.5%  in almost the complete simulated range. Observe also the “tails” of the error, the 
efficiency is overestimated at off-design operation. Furthermore, the error is by far largest in the region with low flow rate, i.e. small 
guide vane angle and small tangential velocity angles. This validates the assumption made in section 2.3 regarding minimal 
tangential vector, and at the same time sets a limit for what is possible using this setup. 

4. Discussion 

In Fig. 6 it is shown that the efficiency is underestimated slightly around the best efficiency point. This is somewhat counter-
intuitive, and contrary to what is seen in many other studies [14]. Consider the location of PT02 and PT03 in Fig. 3, compared with 
the size of the domain in Fig. 4. The simulated geometry does not extend to where the pressure measurements are taken in the 
experimental domain, and thus, larger frictional losses should be expected in the experiments. The absence of leakage flow and 
corresponding viscous losses should also indicate a larger efficiency in the simulations. One way of explaining this is to look into 
the components of the efficiency, the torque and the head, ∝ / . In this case, at BEP, both quantities are slightly underestimated, 

1%, however torque is obviously underpredicted most as the efficiency is underpredicted. Because of the small errors however, 
small variations will heavily affect their ratio, i.e. the efficiency. A small change (a tenth of a percent) in the torque would actually 
cause an overestimation of the efficiency. This may explain why the efficiency is underpredicted, as it is a ratio of two simulated 
components. It should also be noted that the uncertainty in the experimental results are approximated to be 0.2%.  

The way the different variables are extracted in the laboratory and in the simulation, may also be a source of error. In the lab, 
the torque is calculated using a load cell and a lever arm on the generator casing in accordance with IEC60193. The exact definition, 

̅ 	 	 	 , is used in CFX. This definition is sensitive to the mesh resolution. A second possible way of calculating the torque 
would be from the Euler equations, where it can be showed that Δ  [22]. This is not done in the current study, but the two 
methods have been shown to converge to the same solution for satisfactory mesh resolution [15]. As for the uncertainties in the 
simulated head; the locations were the pressure difference is defined, is different in the simulations and experiments. This is 
unavoidable as the geometrical domain in the simulation is restricted to save computational cost, but accounted for manually. 

The simulated head, torque and efficiency was all well within an acceptable error range, especially considering the short 
simulation time. This could open for new possibilities within SDPD and optimization. Interestingly, the error seems to be clearly 
defined. Both the error in head and torque is distributed in virtually the same way, not randomly. This could potentially help in the 
understanding of simulation of hydro turbines, or at least be used as a possible post-processing tool. However, one should be careful 
in deriving any universal rules based on a sample of one. 

 
5. Further work 

The present work will be used as the foundation for future optimization routines involving a Hill-Diagram as key characteristic. 
The goal is to use a Francis-runner design tool, create Hill-Diagrams at different designs, analyze the Hill-Diagrams, and couple it 
all together in an optimization loop. The basic idea is presented in Fig. 10.  
 
 

 
 

Fig. 10 Optimization loop based on Hill-Diagrams 
 
 

Standard response surface algorithms require in the order of	 2  runs, where  is the number of optimization parameters. 
Therefore, keeping the simulation time per Hill-Diagram low is of absolute necessity, if this is to be used in an optimization 
procedure. The simulations in this article were performed on a workstation using 6 cores in parallel. Each simulated point took 
approximately 15 minutes, 40 points are thus simulated in 10 hours. This is by no means powerful hardware, and most companies 
have access to parallel computing frameworks orders of magnitudes as fast. This means that a Hill Diagram could be created in the 
order of an hour or less. Parallelization is also very easy using the setup presented, and will reduce the simulation time drastically.  

Another way of speeding up the process is the following. From Fig. 1 we get the angle of the relative velocity entering the runner, 
atan	 / . At the best efficiency point (BEP), the incidence losses should be small. All the variables in  are 

inputs (at least implicitly) to a simulation, and the condition  is fulfilled several places in the  plane. This 
concept is shown in Fig. 11. Moving along such a line may be a direction of interest when designing turbines for variable speed. 
Also shown in Fig. 11 is the 10 simulated points closest to . Fig. 12 shows the efficiency at these points in order of 
increasing flow rate.  
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Fig. 11 Possible line where  

 

 
Fig. 12 Hydraulic efficiency in points close to  

 
The error is smaller than 0.55% for all points except the first, where the guide vane opening is 6°. If a variable speed runner is 

to be designed using an optimization scheme and Hill-Diagrams as characteristic, points along such a line may be sufficient, and 
will reduce the number of simulations needed drastically. 

6. Conclusions 

As this article shows, it is possible to create a Hill-Diagram with good accuracy, fast enough that it may be used in a design 
process. This allows for new possibilities within simulation driven product development, where an optimization algorithm can search 
for the best possible turbine design. Moreover, it is shown that the simulation error follows distinct trends, which can be used to 
post-process simulation results.  

The biggest sources of error are thought to be steady state simulation, and passage modeling with no Fourier methods. The errors 
are primarily at off-design conditions, where there are transient flow phenomena not captured by the steady simulations. If 
simulations are performed without a guide vane domain, and tangential velocity components are imposed on an inlet domain, care 
should be taken when simulating angles below 6°. It is shown that simulations at part-load gives larger errors than full load. 
For flow configurations where the incidence losses are small, , the error is 0.55% or less. This may be used in further 
work using optimization routines. 
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Nomenclature 

BEP 
c 

 
H 
n 

 
Q 

 
SDPD 

Best Efficiency Point 
Absolute water velocity [m/s] 
Outlet diameter [m] 
Head [m] 
Runner speed [rev/min] 
Reduced runner speed [-] 
Flow rate [m3/s] 
Reduced flow rate [-] 
Simulation Driven Product Development 

T 
u 
w 

 
 
 
 

 
 

Torque [Nm] 
Runner peripheral velocity [m/s] 
Relative water velocity [m/s] 
Guide vane angle [°] 
Angle of relative velocity [°]  
Hydraulic efficiency [%] 
Water density [kg/m3] 
Angular velocity [rad/s] 
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ABSTRACT
This article outlines a design procedure for variable speed Francis turbines using optimization soft-
ware. A fully parameterized turbine design procedure is implemented in MATLAB�. ANSYS� CFX�
is used to create hill diagrams for each turbine design. An operation mode of no incidence losses is
chosen, and the mean efficiency in the range ±20% of the best efficiency point is used as optimiza-
tion criterion. This characteristic is extracted for each design, and optiSLang� is used for system
coupling and optimization. In the global optimization loop, the downhill simplex method is used to
maximize the turbine performance. For this article, the bounding geometry of the runner is kept as
in the original configuration. This way, the performance of the different variable speed turbines can
be compared directly. Two optimization parameters describing the blade leading-edge geometry
have been used in the optimization procedure. The resulting design was an almost circular lead-
ing edge, and shows an increase in mean efficiency of 0.25% compared to the reference case. There
was a significant change in the turbine performance, with close to no change at the best efficiency
point, and an increase in efficiency of almost 1% at low rotational speed. The outlined procedure is
parallelizable and can be performed within an industrial timeframe.
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1. Introduction

Modern computational resources allow Computational
Fluid Dynamics (CFD) to be an integral part of tur-
bine design. A vast amount of research has been done
on numerical simulation of hydraulic turbines. A state-
of-the-art review can be found in Trivedi, Cervantes,
and Gunnar Dahlhaug (2016). The main take-away is
that the different flow phenomena require very different
modeling strategies; tip vortices require more advanced
turbulence models than other phenomena, pressure pul-
sations need transient simulations, but simulation time
can be drastically reduced by Fourier-series-based pas-
sage modeling, and importantly, global parameters can
easily be obtained with steady simulations due to the
periodic-in-time nature of the flow field. Within numer-
ical simulations on hydropower, the most advanced
numerical simulations include all components, use hun-
dreds of millions of mesh elements, model water as
a compressible fluid, and use sophisticated turbulence
models like large eddy simulations. The accuracy of the
simulations has reached excellent levels, shown e.g. by
the research project Francis99 (Norwegian Hydropower
Centre, 2018). Research also shows that, for global
parameters such as hydraulic efficiency and head, simpler

CONTACT Erik Tengs erik.tengs@edrmedeso.com
This article has been republished with minor changes. These changes do not impact the academic content of the article.

modeling assumptions give good results (Tengs, Storli,
& Holst, 2018). When simulations are trusted, the natu-
ral extension of traditional design involves optimization
techniques.

Optimization of hydraulic turbines is not new. Sev-
eral examples of Francis turbine runner optimization
exist (Enomoto, Kurosawa, & Kawajiri, 2012; Nakamura
& Kurosawa, 2009; Pilev et al., 2012), some even opti-
mizing the runner and draft tube simultaneously (Lyu-
tov, Chirkov, Skorospelov, Turuk, & Cherny, 2015). Most
of these attempts deal with medium-to-high specific
speed Francis turbines, but other turbine types have also
been optimized using similar techniques (Ezhilsabareesh,
Rhee, & Samad, 2018; Semenova et al., 2014). The peak
efficiency of hydro turbines has not increasedmuch in the
last decades, as noted in Electric Power Research Insti-
tute (1999) and Lyutov et al. (2015). Instead, optimization
attempts usually aim to increase the efficiency away from
the best operating point. Typically, one point at part load
and one point at high load are chosen.

Recent changes in the international power market and
the introduction of intermittent power sources have led
to increased demand from hydro turbines. The operation
of turbines has changed to more off-design operation,

© 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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which results in lower efficiencies and higher wear.
One solution to this problem is to make variable speed
turbines, a technology that allows a turbine to operate in
a larger operating range without increased fatigue wear.
The idea of using variable speed is not new. Back in
1987, several turbine types were tested to investigate if
variable speed could increase performance (Farell &Gul-
liver, 1987). More recent investigations into variable
speed utilize computational tools and show the possibil-
ity of increasing the efficiency at off-design conditions
(Abubakirov et al., 2013). Power plants with large varia-
tions in headwill also gain fromvariable speed operation,
as seen in Pérez, Wilhelmi, and Maroto (2008). Today,
most variable speed units are reversible pump–turbines
(Energy Storage Association, 2018). This article intro-
duces a simulation and optimization framework for the
design of variable speed turbines. The optimization pro-
cedure is based on the two-dimensional hill diagram of
a variable speed Francis turbine. The optimization objec-
tive is taken from a number of operating points along a
line in the operating space with small incidence losses.
Structural performance, draft tube phenomena, etc. will
not be covered in this article.

2. Theory andmethods

2.1. Conventional and variable speed operation of
Francis turbines

An hydraulic turbine converts the available static pres-
sure energy in a water body into torque and rotational
energy in the runner. The static pressure in pascals is
given by

pstat = ρgH, (1)

where ρ kg/m3 is the water density and H metres is
the height of the water column above the turbine. The
potential power, P watts, in the water body can then
be expressed as P = Q · pstat, where Qm3/s is the vol-
ume flow. The rotational output power in the runner can
be expressed as the torque, T newton-metres, multiplied
by the rotational speed, ω hertz, and as it is impossi-
ble to extract all the potential energy from the water, an
hydraulic efficiency can be defined as follows:

η = Tω

ρgHQ
. (2)

The hydraulic efficiency of a modern Francis turbine
can exceed 96% at the best operating point (Andritz
Hydro, 2018). At off-design conditions, however, the effi-
ciency will be lower due to incidence losses at the inlet,
spin losses at the outlet, etc. The hill diagram is used
as a visual representation of how the efficiency changes.
Assuming a test plant where both the flow rate and the

Figure 1. Example hill diagram: a 2D projection of a 3D surface.

runner speed are adjustable, if the hydraulic efficiency
is measured at various points in the operational space
and plotted, the resulting surface will form a convex hill,
with the best operation point (ideally) at the top. A hill
diagram is a two-dimensional projection of such a sur-
face. The general idea is presented in Figure 1. The axes
are normalized versions of the flow rate, Q, and rota-
tional speed, n, see Equations (3) and (4), whereDmeters
is the runner diameter (Dörfler et al., 2012). This for-
mulation allows for easier comparison between different
turbines.

ned = nD√
gH

(3)

qed = Q
D2√gH

. (4)

Conventional hydro turbines operate at a fixed speed
controlled by the frequency of the power grid. The guide
vanes allow for adjustment of the mass flow through the
runner, and the hydraulic efficiency can be displayed as
a function of the flow rate or guide vane opening only.
In a variable speed turbine, however, both the runner
speed and the flow rate are adjustable. This allows the
turbine operator to match the runner speed and guide
vane opening such that the water entering the runner
perfectly coincides with the runner geometry. This could
reduce the aforementioned incidence losses at off-design
operation. In terms of bounding geometry, there is no
difference between a runner installed in a variable speed
turbine and one installed in a conventional hydro turbine.
However, from an optimization point of view, it is obvi-
ous that the desired characteristics from a hill diagram
are different. In a conventional runner, the efficiency
need only be optimized in one dimension (the flow rate),
whereas a two-dimensional representation is required for
a variable speed turbine.

134



654 E. TENGS ET AL.

2.2. The optimization procedure

The idea is to design turbines using a Francis-runner
design tool, create hill diagrams for the different designs,
analyse the hill diagrams, and couple them all together
in an optimization loop. The goal is to end up with a
variable speed turbine design. The optimization proce-
dure is presented in Figure 2. The procedure is similar to
that presented in Ezhilsabareesh et al. (2018) and Jiang
et al. (2018), although applied on a different turbine
type. The following sections will describe the different
blocks presented in Figure 2 in some detail, and how they
interact.

2.2.1. Block A – turbine design
Traditional turbine design is a combination of using the
Euler turbine equations and empirical knowledge. The
procedure outlined here is adapted from the works of
Brekke (2003). In order to describe the design steps of a
Francis turbine, we need to define some nomenclature.
The rated water head, H, and flow rate, Q, are known
in advance. The velocity components entering and exit-
ing a typical blade are shown in Figure 3. The letter u
(m/s) denotes the runner velocity, c (m/s) denotes the

Figure 2. Optimization loop based on hill diagrams.

Figure 3. Velocity components on runner blade.

water absolute velocity, and w (m/s) denotes the water
velocity relative to the runner. The guide vane angle, α◦,
is controlling the angle of the water entering the run-
ner, and thus implicitly also β◦, the angle of the water in
the rotating frame of reference. The subscripts u and m
denote the tangential and meridional directions, respec-
tively, and the subscripts 1, 2 denote the inlet and outlet.
The meridional velocity component is the component in
the flow direction, i.e. Q = cmA.

Before defining the main dimensions of the turbine,
we use the Euler turbine equation (Subramanya, 2013) to
derive an important relation:

η = (u1cu1 − u2cu2)/gH. (5)

The second term inEquation (5)will contribute purely
negatively to the efficiency, therefore this term is set to
zero at optimum design. As u2 is the runner velocity, and
strictly non-zero, this equates to setting

cu2 = 0. (6)

Physically, this condition means is that there should
be no spin in the water body at the outlet. The turbine
should transfer all the rotational energy in the water over
to the runner. This condition will be used throughout
the following derivation. It is customary to start design-
ing a turbine from the outlet. Two parameters are chosen
in advance, β2 andu2. Based on empirical knowledge,
these parameters are taken from the following range
(Gogstad, 2012):

15◦ ≤ β2 ≤ 22◦ (7)

35m/s ≤ u2 ≤ 42m/s, (8)

with higher values corresponding to higher head. Once
the above parameters are chosen, the meridional outlet
velocity can be calculated (keeping in mind Equation 6):

cm2 = tan(β2) · u2. (9)

The outlet radius is then easily derived:

r2 =
√
A2

π
=

√
Q

πcm2
, (10)

whereA2 m2 is the outlet area. Once the outlet dimension
is set, the rotational speed of the turbine is calculated as
follows:

ω = u2
r2
, n = 30ω

π
, (11)

where ω and n is the rotational speed in hertz and r.p.m.
In general, n will not be the synchronous speed, which is
a requirement in conventional turbines. To change this,
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the closest synchronous speed is chosen, and the design
process of Equations (9)–(11) is repeated in reverse order.
This is strictly not necessary for variable speed turbines.
Once the outlet dimensions are set, the inlet is designed.
As for the outlet, an empirical range is used, this time for
the runner inlet velocity:

0.7 ≤ ū1 ≤ 0.75, (12)

where the overbar notation denotes a reduced parameter:

x̄ = x√
2gH

. (13)

The inlet radius is now given directly by the runner
speed, and the inlet runner velocity:

r1 = u1
ω
. (14)

The meridional velocity can be found by demanding
that the velocity through the runner is increasing. This
will reduce the chance for flow separation, backflow, and
other phenomena in the runner. A typical acceleration is
10%, i.e.

cm2 = 1.1cm1. (15)

The height of the inlet channel,Bmetres, is then found
by

B = Q
2πr1cm1

. (16)

Finally, the inlet blade angle, β1, needs to be calcu-
lated. From Figure 3 we see that the inlet tangential
water velocity is needed. Returning to the Euler turbine
equation,

η = (u1cu1 − u2cu2)/gH. (17)

With cu2 = 0, Equation (5) reduces to η = (u1cu1)/
gH, and as the runner speed u1 is set, this allows for
calculation of the tangential water velocity component:

cu1 = η

u1
gH, (18)

with η = 0.96 being a typical value (Brekke, 2003). This
is because 100% efficiency is impossible due to hydraulic
friction, bearing losses, etc. As the final main parameter,
β1 can be calculated as

β1 = a tan
(

cm1

u1 − cm1

)
. (19)

When the main parameters are set, further details
need to be determined. From the Euler turbine equation,
Equation (5), we see that the quantity uicui is a measure
of energy. From Equation (6) we also see that this quan-
tity is zero at the outlet (u2cu2 = 0). How the distribution

changes through the runner is free for the designer to
choose. Typically, the ucu- distribution is chosen such
that most of the energy is transferred to the runner in the
beginning of the runner. This is due to runner blades gen-
erally being thinner and more prone to fractures at the
outlet. The blades will also be given a thickness distribu-
tion, and leading and trailing edge profiles. These modi-
fications will change the flow area in the runner channels,
and in general one should revert back to Equations (10)
and (16) to account for this. The design procedure out-
lined here is implemented in a MATLAB� code. The
program writes the turbine geometry into text files that
are compatible with the ANSYS� software.

In terms of optimization, there exist tens of free opti-
mization parameters: number of blades, energy distribu-
tions, thickness distributions, leading and trailing edge
shape, etc. In this article, only two parameters, as listed
in Table 1 and shown in Figure 4, have been chosen.
The parameters define the leading-edge geometry of the
blade. Both the pressure and suction sides of the leading
edge are expressed as ellipses, and the parameters aps, ass
control the free axis in the ellipses, as the blade leading
edge thickness in this case is held constant at t = 30mm.
Changing the parameters changes the curvature of the
leading edge, and presumably also the turbine perfor-
mance at different operating conditions, i.e different inlet
flow angles.

The reason only these parameters are chosen is
twofold: the main goal of this article is to prove that
the optimization framework works. This is best shown
using few parameters so that the simulation time is in a
reasonable range. Secondly, it is desired to use parame-
ters where the bounding runner geometry is unchanged.
This way, the different designs can be compared directly.
For reference, the main dimensions in all the runners
in this article are the following: H=350m, Q=25m3/s,
ū1 = 0.72, D2 = 1.71m and B1 = 0.205m. The specific

Table 1. Optimization parameters.

Parameters Type Range (mm)

aps, pressure side geometry Continuous 10–40
ass, suction side geometry Continuous 10–40

Figure 4. Definition of leading edge geometry.

136



656 E. TENGS ET AL.

speed is ns = ω · √
Q/(2gH)0.75 = 0.26, classifying this

as a high-head Francis turbine. The ucu- distribution
through the runner follows the relation ucu = x2, where
x=1 marks the inlet and x=0 the outlet.

2.2.2. Block B – simulation
Block B contains an ANSYS� Workbenchtm project,
where the geometry is meshed in TurboGridtm, and
simulated in CFX�. The present authors have previ-
ously published an article on the accuracy and time-
consumption of a numerically simulated hill diagram
(Tengs et al., 2018). Some of the results will be repeated
here. The Norwegian University of Science and Technol-
ogy provided an experimentally obtained hill diagram
along with a model geometry. About 40 operating points
were simulated, and the experimental data were used
as validation. The guide vane opening and the runner
speed were operated in the range α ≈ [−50%,+40%]
and n ≈ ±20%, respectively, of the assumed best effi-
ciency point. ANSYS CFX was used for simulation, as
this is the leading simulation software with regards to
rotating machinery. Only the runner domain and a cut-
off draft tube were simulated, this ensured that only one
mesh was needed for the whole hill diagram. In the run-
ner domain, one passage was simulated, utilizing the
rotational symmetry of the geometry. The different oper-
ating points were tested by changing the direction of the
velocity components on the inlet, the mass flow, and the
runner speed. The simulation strategy of no re-meshing
allowed for parallel simulation of all operating points.
Steady state, passage modeling, and incompressible flow
were assumed to reduce the simulation time where possi-
ble. The SST turbulence model was used, and the average
y+ in the runner was 2.8. Mesh convergence was con-
firmed using theGCImethod due to Celik, Ghia, Roache,
and Christopher (2008). The boundary condition at the
inlet was the mass flow taken from the experiment; at the
outlet, zero relative pressure was used. The results were
highly encouraging. If one disregards operating points
with extremely low guide vane opening, the error in
hydraulic efficiency was found to be less than 2.5% in
the whole simulated range. Around the best efficiency
point, the deviationwas in the order of 0.5%, see Figure 5.
The error was also not randomly distributed, but fol-
lowed a clear pattern. The simulations were performed
on a workstation using 6 cores in parallel, and each sim-
ulated point took approximately 15 minutes. Using more
powerful hardware, or utilizing the parallelization prop-
erties of the method, could decrease the simulation time
drastically.

Based on the above, a numerically obtained hill dia-
gram is assumed to be trusted, especially for identifying

Figure 5. Error in hydraulic efficiency, taken from Tengs
et al. (2018).

Figure 6. Typical mesh used in the simulations.

behavioural trends. This is based on the non-random
error distribution of the simulated head and torque
(Tengs et al., 2018). Far away from the best efficiency
point, simulation error is inevitable; however, the error
is assumed to behave equally in all designs, making a rel-
ative comparison valid. Similar simulation settings as in
the reference are used in this article, however expanded to
include automatic meshing of the new runner geometry
as well as the draft tube. Another necessary change is to
use total pressure inlet conditions, as the mass flow is not
given a priori in the simulations. The outputs of the sim-
ulation are thus the hydraulic efficiency and mass flow.
The mesh was automatically generated with TurboGrid
for each design; a typical blade surface mesh and inlet are
shown in Figure 6. Note that the extended inlet section
and draft tube is omitted for clarity. The total number
of mesh elements was ≈ 2× 105 per passage, equivalent
to 4.2 million elements if the whole turbine had been
simulated rather than using passage modeling.
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2.2.3. Block C – analysis
Block C defines the optimization objectives in the loop.
There are many ways of analyzing the simulation out-
put; the goal could be a high peak hydraulic efficiency, or
conversely a ‘flatter’ curve, albeit with a lower peak per-
formance. In terms of variable speed turbines, it might
be clever to synchronize the flow and runner speed
such that the direction of the water entering the run-
ner matches the runner geometry. This equates to β =
βblade in Figure 3. This should in general result in smaller
incidence losses, fewer transient effects, and better tur-
bine operation. A high mean efficiency along this ‘line
of operation’ could be an optimization criterion. Figure 7
illustrates such an approach. In this single-objective func-
tion, all operating points are given the same impor-
tance/weight; if this were a real optimization case for
a customer, a weight function based on actual turbine
operation should be provided. More advanced objec-
tive functions including curvature of the hill diagram,
etc., is just as easily implemented; however, the mean is
chosen here.

If it were possible to input β = βblade to the simula-
tions, there would be no need to simulate the complete
hill diagram. Some flow/speed combinations will not be
used, and are therefore not of interest. This would in
turn result in fewer simulations, and faster optimiza-
tion. The problem with this approach is that it is difficult
to input β = βblade in the simulations. β is defined as
β = a tan{cm/(u − cm)}, and since cm = Q/A and the
flowrate is not specified in the simulations, beta cannot
be precisely determined in advance.Optimization along a
lineβ = βblade is still possible; however, amore ‘complete’
hill diagram is needed, assuming several operating points
have been simulated. The flow rate can now be plotted
with respect to guide vane opening and runner speed.
By using a surface fitting procedure, one can obtain a
mathematical description of this relation, Q(ω,α). Thus,
the inlet angle can be reduced to a function of the inlet

parameters only:

β = tan−1

⎛
⎜⎜⎝ Q(ω,α)/A

ωr − Q(ω,α)

A · tan(α)

⎞
⎟⎟⎠ . (20)

Such an approach was implemented inMATLAB. The
runner speed and guide vane angle were simulated in a
3 × 3matrix for each design. The limits were set to±30%
of the assumed optimal configuration for both input val-
ues. A complete second order fit was performed on the
resulting mass flow versus speed and α; β was then cal-
culated from Equation 20, and the hydraulic efficiency
was extracted at five points along a line where β = βblade.
Finally, the mean efficiency of the five points was used
as optimization characteristic. The above algorithm was
tested on the experimental data from the hill diagramval-
idation case mentioned in Section 2.2.2. The guide vane
angle/runner speed combinations with β equal to that of
the best operating point was found and plotted together
with the hill diagram in Figure 8. A line indicating the
conventional fixed-speed operation is also included to
illustrate the difference in the two operation schemes. In
this example, the optimization characteristic, themean of
the five points, isη = 92.8%.

2.3. Optimization

Optimization is a scientific field of its own, with a vast
amount of research. Surrogate models are very popu-
lar, the most known being the classical Response Surface
Method (RSM) (Box & Wilson, 1992). In the RSM, the
variable space is properly sampled, using Box–Behnken,
Central Composite Design or similar, then the outcomes
are evaluated and a surrogate model is created based
on the results. This allows for the possibility of cre-
ating meta-models/reduced order models of a process

Figure 7. Optimize efficiency along line of small incidence losses.
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Figure 8. Difference in operating schemes.

response, and makes the method very popular. Simi-
lar methods have also been used in the turbine indus-
try (Enomoto et al., 2012; Ezhilsabareesh et al., 2018).
Another, newer, optimization strategy is the evolution-
ary algorithm. The method mimics biological popula-
tions; a randomly sampled parameter set evolves in a
fashion similar to how populations evolve through gen-
erations (Jiang et al., 2018; Vikhar, 2016). Recently, artifi-
cial/computational intelligence (CI) or machine learning
methods have received much attention; e.g. in Kazemi
et al. (2018) andArdabili et al. (2018), 21 articles from the
present decade regarding the usage of CI in the hydrogen
production industry alone are reviewed. The mentioned
methods are global methods, and fairly computation-
ally expensive. A more classical approach employs gra-
dient based methods, e.g. the conjugate gradient method
(Hestenes & Stiefel, 1952). In essence, thesemethods find
the gradient of the response and ‘move’ in the desired
direction (i.e. maximize a function). These methods are
not a global methods, meaning the final solution may be
a local optimum rather than the global one. However,
such methods will find an approximate optimum fairly
fast. Finally, there is a branch of optimization techniques
called local search, including the hill-climbing method
and the simplex method (Nelder & Mead, 1965). Com-
mon to these methods is making small local changes in
the variables, and a direct evaluation of the new response.
As with gradient based methods, these methods are
not global.

The commercial software optiSLang� has been used
to couple all the blocks presented in Figure 2 together.
optiSLang is an optimization software based on graphi-
cal programming, where external programs can be used
as modules in a system. In this case, MATLAB and
ANSYS have been the different modules. The program

can automatically select the appropriate optimization
algorithm from among gradient methods, evolutionary
strategies, adaptive response surface method (ARSM),
etc. Which methodology is used is very much depen-
dent on the problem at hand, and the time needed for the
evaluation of each outcome. In this article, the simplex
method will be used, owing to its simplicity.

2.3.1. Downhill simplexmethod
The downhill simplex method is a non-gradient-based
method. It is, however, not a globalmethod, and the solu-
tion does therefore in general risk getting caught in a local
optimum. For a small number of optimization parame-
ters, the convergence is fast. For a larger number, other
algorithms may be preferred. The method is chosen here
owing to its simplicity. The simplex method starts of by
creating a geometrical figure (a simplex) ofN+1 vertices,
with N being the number of optimization parameters.
The vertex values are evaluated, before simple transfor-
mations (reflection, expansion, contraction) are applied
to the simplex, to obtain new design points to be eval-
uated. In this way, the solution progresses towards the
optimum. A thorough explanation can be found in the
original article by Nelder and Mead (1965). In summary,
the downhill simplexmethodwill be used to optimize the
leading-edge geometry of a Francis turbine runner. The
optimization goal is tomaximize themean hydraulic effi-
ciency along a line of small incidence losses, as presented
in Section 2.2.3.

3. Results

The results from the optimization procedure are pre-
sented in Table 2.We observe that the converged solution
is well within the given parameter range. Throughout the
results section, designs 5 and 24 will be used as repre-
sentatives for designs early and late in the optimization
process, respectively. The first few designs are avoided
because the initial guess was chosen arbitrarily. Figure 9
shows the change in the leading edge geometry (please
refer to Figure 4 for definitions).

The optimization algorithm was manually terminated
after 28 iterations following a visual inspection of the
convergence. Figure 10(a) shows the convergence of the
simplex algorithm. The y-axis shows the mean efficiency
relative to the maximum mean efficiency. We see a dif-
ference of≈ 0.25% in the mean efficiency in the different

Table 2. Optimization results.

Method Result [aps, ass]

Downhill simplex [14.06, 16.15]
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Figure 9. Comparison between one of the earlier and one of the
final designs, i.e. 5 and 24, respectively.

designs. The increase is significant when such a limited
parameter set is considered.

The objective function in this article is the mean,
and no information is thus provided as to how the
hill-diagram shape changes. Figure 10(b) is therefore
included to show the hill diagram of designs 5 and 24,
with the z-axis being the efficiency relative to the best
efficiency. We see that, around the best operating point,
there are no significant variations; however, at low run-
ner speed and small guide vane opening, the performance
differs by more than 0.5%.

It should be noted that the assumption that the best
operation mode is along β = βblade is not necessarily
valid, at least not for the designs tested here. By operat-
ing the new design as a conventional runner (constant
speed), the mean efficiency will be larger than if β =
βblade is satisfied. The optimized design performs bet-
ter than the start design in both operation modes. See
Figure 11 for comparison of designs 5 and 24 (vari-
able speed is denoted by dashed lines). The different
operation modes are shown in Figure 8. The reason

Figure 11. Efficiency along different lines of operation.

why conventional operation is superior is that, when
only the leading edge geometry is changed, the differ-
ent turbines will still be very similar. The design from
Section 2.2.1 is unchanged, the thickness of the blades is
the same, etc. Keeping in mind that the original turbine
was designed for constant speed, then conventional oper-
ation is therefore more efficient. There are a number of
other design parameters that could trigger larger changes
in the hydraulic efficiency and be more interesting from
a design point of view. In essence, to get a proper, opti-
mized, variable speed turbine, more parameters have to
be included in the optimization loop.

4. Discussion and further work

The simulations in this article were performed on a
laptop using four cores in parallel. The simulation of
each hill diagram took about two hours. The time used
on design and post-processing was negligible, mesh-
ing and simulation in ANSYS accounting for all time
consumption. By using hardware with more cores, the

Figure 10. Change in performance as the simplex method is converging to the final design.
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simulation time per hill diagram could be significantly
reduced. ANSYS reports scaling properties of >80% effi-
ciency for additional cores (ANSYS, 2018), a close-to-
linear reduction of simulation time. Another way of
drastically speeding up the simulation would be to sim-
ulate the different points in the hill diagram in parallel,
as the mesh is the same. This will give a linear reduction
factor equal to the number of simultaneously simulated
operating points, and coupled with more powerful hard-
ware this will reduce the simulation time to the order of
minutes per hill diagram.

The simplex algorithm was terminated after a visual
inspection. The reasoning is that the underlying uncer-
tainty in the simulation of the hill diagrams, and the
second order approximation when calculating the rela-
tive flow angle β , makes further optimization excessive.
The absolute change from iteration to iteration reached
the order of 0.01% in mean efficiency before termina-
tion. Further work should verify the simplex method by
using another, preferably global, optimization method,
such as the ARSM due to Gary Wang, Dong, and Aitchi-
son (2001), to see if the same leading edge geometry is
obtained.

The resulting ellipse axes are aps = 14.1mm, ass =
16.2mm, see Figure 9, which means that the final
leading-edge geometry is close to a circular shape, as the
blade thickness is 30mm. It is interesting, though some-
what intuitive, that a circular edge is better at dealing
with velocity entering from different angles. Any definite
recommendation with respect to leading edge geometry
should however not be taken from these results, as this
article is a test to prove the optimization concept. As a
reference, a high-fidelity simulation could be performed
to reveal the actual hydraulic performance. If we do, how-
ever, assume that the result is correct, then another con-
clusion is that the efficiency is not very dependent on the
leading-edge geometry at the best operating point. At low
runner speed, however, the changes are dramatic – close
to 1% increase in efficiency and a visually flatter curve.
This is exactly the desired change, and indicates that the
method works. The choice of using the mean as objective
function, however, might not be optimal, as a flat curve is
not explicitly looked for. An alternative could include, for
example, the standard deviation of the points, to force a
flatter curve. In future work using this framework, amore
advanced analysis will be implemented.

5. Conclusions

This article presents an optimization procedure for vari-
able speed turbines and shows that the idea of using
hill diagrams as the optimization characteristic is feasi-
ble. A parametric test of the leading edge shows a mean

efficiency improvement of 0.25% along a certain line of
operation. At lower rotational speeds, the differences in
the designs becomesmore prominent, in some cases with
a close to 1% efficiency increase. The actual hydraulic
performance should be verified with a high-fidelity sim-
ulation. As of now, each hill diagram was created in the
order of hours. The procedure is however highly paral-
lelizable and, by utilizing this fact, the simulation time
could be reduced to the order of minutes. If this is done,
several parameters could be added to the optimization
and the procedure still be performed within an industrial
timeframe.
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Abstract. The present work shows how a complete full-wheel model of a high head Francis 

turbine can be reduced directly by leaving out parts of the computational domain, but without 

losing accuracy in the RSI pressure that is of primary interest. Instead great savings in mesh 

size and consequently computational time is gained. Two main modifications have been 

performed: 1) Reducing the draft tube and 2) Excluding the distributor except for the guide 

vanes. This is performed both on separate models as well as combining them obtaining an 

ultimate mesh reduction of about 60%. From this process it is shown that the volute could be 

replaced by a very simple set of inlet boundary conditions without affecting the results as well 

as simplifying the meshing procedure. A close to linear speed-up with mesh size is obtained. 

For comparison, simulations performed on passage models have also been included and all 

results are validated against full-wheel transient simulations as well as experimental data. The 

work has been performed as part of the HiFrancis project at the Norwegian University of 

Science and Technology and the Norwegian Hydropower Centre. 

1.  Introduction 

Computational Fluid Dynamics (CFD) is a powerful tool when designing and investigating 

hydraulic turbines. However, using CFD puts a high demand on computational resources. 

Acknowledging the fact that an industrial design loop must be completed within a practical time 

frame, typically 6-12 hours, it is crucial to reduce the computational effort. Today this is usually 

achieved by utilizing very simplified numerical models of the turbines, compromising on accuracy and 

the available information that can be retrieved from the simulation results. For high head Francis 

turbines, the latter is commonly justified by the need to only focus on Rotor-Stator-Interaction (RSI) to 

avoid resonance effects between the pressure pulsations and natural frequencies of the turbine as these 

are main sources for blade cracking [1]. A thorough overview of existing numerical techniques applied 

to high head Francis turbines can be found in [2]. 

Aiming to achieve more time efficient simulation procedures that are of industry relevance, the 

present work shows how a complete 360º model (also referred to as full-wheel model) of a high head 

Francis turbine can be reduced directly by leaving out parts of the computational domain, but without 

losing accuracy in the RSI pressure that is of primary interest. Instead great savings in mesh size and 

consequently computational time is gained. Two main modifications have been performed: 1) 

Reducing the draft tube 2) Excluding the distributor except for the guide vanes. This is performed both 

on separate models as well as combining them. In general, reducing the draft tube will lead to the 

greatest reduction in computational mesh due to the vast number of elements being contained there, 

but modifying the distributor will also simplify the meshing procedure and consequently reduce the 

time needed for mesh generation. The present investigation also includes simulations performed on 
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some of the much faster passage models available in ANSYS CFX, utilizing the periodic symmetry of 

the turbine. 

Existing experimental data together with CFD simulations on the same geometry and operating 

points are used for data validation. The latter include three-dimensional transient simulation of a full-

wheel turbine model with spiral casing (also referenced as volute or distributor), guide vanes, runner, 

and draft tube. This mesh consists of about 42 million nodes leading to extensive simulation times 

before reaching a periodic state.  

The work has been performed as part of the HiFrancis project at the Norwegian University of 

Science and Technology and the Norwegian Hydropower Centre. 

2.  Reference data 

In the following section, reference data used to validate the reduced models will be presented. This 

includes both experimental and numerical assessments.  

2.1.  Experimental validation data 

As presented in [3], an overview of the experimental setup is shown in Figure 1. The runner is a 

modified model of the turbine previously installed at the Tokke power plant in Norway and is used at 

Norwegian University of Science and Technology (NTNU) for research on pressure pulsations inside 

high head Francis turbines. Moreover, the runner is a so-called splitter design and consists of 15+15 

blades and the distribution unit of 28 guide vanes and 14 stay vanes. To perform the measurements 

and capture the propagation of the pressure pulses, five pressure sensors were positioned in the middle 

of two of the runner channels. This is shown in Figure 2. 

With the present setup combined with a runner speed of 5.54Hz, the predominant frequencies seen 

in this test rig become the guide vane passing at 155Hz and the blade passing at 166Hz. In addition to 

the RSI frequencies the system will be subjected to additional phenomena such as draft tube pulsations 

(Rheingans frequency), vortex shedding and elastic fluctuations in the waterway when going outside 

of BEP. These are included in the experimental results but are not part of the scope. 

The operating point of primary interest in the present study is BEP performed at a head of 11.94m 

and flow rate equal 0.2m3/s. It is referred [3] for further details on this and other load conditions.   

 

 

Figure 1. Overview of measurement setup. 

 

Figure 2. Position of hub mounted pressure sensors in runner channels. 
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2.2.  Numerical validation data 

Mimicking the setup of the model measurements, CFD simulations of the full-wheel model have been 

presented in [4] and [5]. Referred to as Base Case in the present paper, the results from these analyses 

are used as numerical validation data for the reduced models, both in terms of accuracy and 

computational speed. The simulations are transient utilizing a sliding mesh interface between the 

runner and volute (rotor/stator).   

A mesh independent solution consisting of approx. 42 million nodes has been utilized, where the 

volute consists of mesh with tetrahedral elements (size), while the runner and draft tube are generated 

with hexahedral elements (size). The industry standard k-w SST turbulence model has been applied 

for all simulations with the boundary conditions as shown in Figure 3. Performed in ANSYS CFX, the 

simulations were run for three revolutions after steady periodic flow behaviour had been achieved. 

Three distinct operating points were considered, however, only BEP will be presented here.   

In general, the full-wheel results agree very well with the experimental data discussed in the 

previous section. For BEP, this is exemplified through global parameters in Table 1 and the 

corresponding pressure signal in PT10 in Figure 4. The second harmonic is clearly underpredicted, 

which in recent studies has been shown to be due to resonance effects occurring at the double RSI 

frequency in the experiments. 

 

Figure 3. Computational domain for full-wheel simulations [5].  

 

Table 1: Global parameters for full-wheel simulation and experiments at BEP [5]. 

Case 
Net head 

[m] 

Torque to 

generator 

[Nm] 

Inlet 

pressure 

[kPa] 

Outlet 

pressure 

[kPa] 

Hydraulic 

efficiency 

[%] 

Experiment 11.94 620.7 215.6 111.1 92.2 

CFD transient 12.08 640.8 218.4 111.8 94.1 

Deviation 1.17% 3.24% 1.30% 0.63% 2.06% 
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Figure 4. Pressure signal in PT10 at BEP for full-wheel simulation and experiments [5]. 

3.  Reduced models 

This section will compare different approaches to reduce the overall computational time on the high 

head Francis turbine. Two main methods will be discussed: 

 

1) Reducing the total number of elements in the full-wheel model directly by leaving out parts of 

the volute or the draft tube domain. 

2) Utilizing the rotational symmetry of the Francis turbine through different passage models 

available in ANSYS CFX.  

The experimental and numerical investigations presented in the previous two subsections are used as 

validation data.  

3.1.  Reducing full-wheel model 

The effects of removing the volute or draft tube have been investigated in the following, including one 

case combining both. Figure 5 shows the resulting computational domains. Same boundary conditions 

as for the Base Case have been used for all cases, except for the no volute/combined inlet condition for 

which velocity vectors have been specified at the slightly extended guide vane passage (see Figure 6). 

The velocity direction was determined from the stay vane angle, which is independent of the operating 

point. 

 
 

 

Figure 5. Computational domain of reduced full-wheel models. Left: No volute, middle: Short Draft 

Tube, right: Combined. 
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Figure 6. Constant velocity profile at inlet. 

Figure 7 shows streamlines for all three cases and Figure 8 and Figure 9 give the pressure signals 

and corresponding FFT plots from the PT10 probe onboard the runner (see definition of sensor 

location in Figure 2). Clearly, none of the separate full-wheel model reductions affect the results to 

any significant degree relative to Base Case as both the pressure amplitudes and the pulsation 

frequencies match well. This is also true for the combined case. Although insignificant, it is interesting 

to note that the No Volute case produce a slightly higher pressure amplitude and the Short Draft Tube 

case sees a somewhat higher average pressure signal. These effects can be explained by the strictly 

uniform velocity profile substituting an otherwise periodic inlet condition and the outlet pressure 

condition being much closer to the measurement locations for the respective cases, respectively. The 

Combined case sees both effects accordingly. The small differences seen can easily be reduced further 

by adjusting the outlet condition at that location due to the shorter draft tube giving a lower pressure 

reduction from the runner to the outlet. Furthermore, a more accurate inlet condition can be obtained 

by for instance assuming a sinusoidal periodic velocity profile. This is expected to reduce the pressure 

amplitude at the measurement location. Noticeably, this is also information that can be gained prior to 

performing any simulations. 

It is referred to section 2.2.  and [5] for validation of the full-wheel simulations.  

   

   

 
 

 

Figure 7. Streamlines on reduced model. Left: No volute, middle: Short Draft Tube, right: Combined. 
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Figure 8. PT10 pressure signal. Left: No Volute, right: Short Draft Tube. 

 

Figure 9. PT10 pressure signal for Combined at BEP. 

 

3.2.  Passage modelling 

Parts of the following section is adapted from [6] with permission from author. 

The turbine runner is rotationally symmetric and significant speed-up can be achieved by 

simulating only a section of the geometry. Challenges arise, however, when the number of stator (S) 

and rotor (R) components are not equal. First, periodic interfaces must be prescribed. Conventional 

periodic interfaces require the assumption that fluxes on one interface equals that of the other. This is 

not the case in a hydro turbine if S≠R. Instead, phase-shifted periodic boundaries will be present, 

meaning that one periodic interface will equal the other at an earlier or later instance in time. This will 

have to be addressed by the methods used. Furthermore, pitch change also occurs when S≠R as 

illustrated in the passage model in Figure 9 (S=19 and R=24). If the pitch is different from unity, some 

modification will be performed on the information crossing the frame change interface 
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Figure 10. Computational domain of passage models. Right: definition of boundary conditions and 

pitch change [6]. 

The present investigation includes simulations on three of the passage methods available in 

ANSYS CFX: 

 

1. Profile Transformation (PT) 

2. Fourier Transformation (FT) 

3. Frozen Gust (FG). 

 

In all passage models, the inlet boundary conditions have been defined as total pressure and 

velocity directions taken from a steady simulation. The settings were otherwise as for the full-wheel 

simulation discussed in chapter 2.2.  The direction of the velocity components imposed on the inlet to 

replicate the effect of the guide vane/stay vanes, was the same as the guide vane/stay vane outlet 

angle. This work was first published in [6] 

Whereas the PT method simply scales the flow from the stator domain to match the size of the 

runner domain conserving mass and momentum, the FT utilizes the periodic nature of the flow 

through Fourier series decomposition. In the latter method, the trigonometric functions are applied 

directly at the rotor/stator interface resulting in a close to pitch independent methodology. Frozen Gust 

is an alternative to FT where only the runner passage is included in the simulation and the inlet 

conditions are applied directly upstream of the runner. Obviously, this results in great reduction in 

mesh size, but the results will depend significantly on the accuracy of the inlet conditions. Detailed 

descriptions of the respective methods can be found in [7]. 

Figure 11 shows the spectral content at pressure probe PT10 with the PT and FG methods together 

with the experimental measurements and full-wheel simulations presented previously. Manual Fourier 

coefficient sampling was implemented in the full-wheel simulation to extract the true periodic nature 

at the RSI interface. The profile was then reconstructed at the inlet of the Frozen Gust simulation as a 

periodic inlet boundary condition (FG Fourier Inlet). Clearly, the blade passing frequency is very well 

predicted. However, in accordance with the full-wheel and reduced model simulations, the second 

harmonic is consistently underpredicted by approx. 50%. Only the results from the PT and FG have 

been included as the FT simulation diverged after two runner revolutions and were deemed too 

uncertain to be included in this section. 

In order to address the sensitivity of the choice of inlet condition, additional simulations were 

performed by applying a constant velocity profile as illustrated in Figure 6 (FG Original) as well as a 

sinusoidal periodicity (FG Sine Inlet). Figure 12 shows the spectral content of these simulations. Both 

alternatives match the blade passing frequency, but significantly overpredict the pressure amplitude of 

the first harmonic, especially FG Original. 
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Figure 11. PT10 spectral content for Profile Transformation and Frozen Gust [6]. 

 

 

Figure 12. PT10 spectral content for Frozen Gust with different inlet conditions [6]. 

4.  Speed up 

The main purpose of this investigation has been to reduce computational time without compromising 

on accuracy to any significant degree. The present section will thus address the speed-up gained by the 

various methods presented.  

Table 2 summarizes the node count for the reference case (Base Case) and the three modified cases 

for the full-wheel reductions together with relative speed up for each case normalized by number of 

time steps and compute cores. Comparing the No Volute and Short Draft Tube cases, most is gained 

by excluding the draft tube leading to a node reduction of 44%. And obviously, combining both effects 

results in the highest speed up of all cases. Nevertheless, all reductions show a close to linear speed-up 

with respect to mesh size and as discussed in section 3.1 only minor effects on the results were 

experienced by performing these simplifications. A more time efficient meshing procedure can also be 

expected, especially for the No Volute and Combined cases for which the meshing of the spiral casing 

has now been made redundant.  

Table 2 also shows the relative speed-up gained by utilizing the various passage models. Here, the 

FT method has been included for comparison. Normalized by the number of runner revolutions, time 

steps and compute cores, clearly higher speed-up is achieved that for the full-wheel reductions, but 

only the FG Fourier Inlet method proved to give results at an acceptable level of accuracy. 

Remembering also that the results were obtained using information from an existing full-wheel 

simulation, this highlights the main advantage of the full-wheel reduction method. That is, despite the 

lower speed-up, no extra information is needed to achieve the level of accuracy presented and the full 

frequency content of the flow field is retained when moving from the Base Case to the simplified 

solutions.  
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Table 2. Speed-up of reduced models. 

 
Global Number of 

Nodes 

Mesh size 

factor 

Relative 

speedup [-] 

Base Case 42476565 1 1 

No Volute 36021993 1.18 1.2 

Short Draft Tube 23822372 1.78 1.7 

Combined 17367800 2.45 2.2 

FT - - 3.7 

FG - - 5.5 

PT - - 8.3 

 

 

5.  Concluding remarks 

Aiming to adopt to an industry time frame, the present work shows how a complete 360º simulation 

model of a high head Francis turbine can be reduced directly without losing accuracy in the RSI 

pressure that is of primary interest. The reduction is achieved by: 1) Reducing the draft tube and 2) 

Excluding the distributor except for the guide vanes. Consequently, great savings in mesh size and 

computational time is gained. This has been applied both on separate models as well as combining 

them, obtaining an ultimate mesh reduction of about 60% and a relative speed-up factor equal 2.2. A 

nearly linear speed-up with mesh size was achieved for all cases. 

In general, reducing the draft tube will lead to the greatest reduction in computational mesh due to 

the vast number of elements being contained there, but modifying the distributor will also simplify the 

meshing procedure and consequently reduce the time needed for mesh generation. Despite a moderate 

speed-up compared to the passage models, the reduction of the full-wheel model does not lose any of 

the frequency content in the flow during this process. This is an essential aspect in describing the high 

level of accuracy that has been achieved. It is also shown that the entire volute could be replaced by a 

very simple set of inlet boundary conditions without affecting the results to any significant degree.  
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Abstract 

Traditionally, there has been one main method for improving computational speed of hydraulic machines such as high head 

Francis Turbines. Namely, utilizing the periodicity in the flow field through so-called passage models. These are time marching 

schemes, but considers only a small section of the turbine, for instance one or two runner blades. Now, however, ANSYS CFX offers 

a method for solving in the frequency plane instead, called Harmonic Analysis. Theoretically, this method is set to improve speed 

up by about 100 times considering targeted frequencies only such as the RSI. The present work shows how the Harmonic Analysis 

method applied to a high head Francis turbine (Tokke runner) is converging within 5 hours of wall clock time. Retaining all flow 

features, however, a different method is presented aiming at reducing the full-wheel domain directly, i.e. leaving out parts of the 

volute and draft tube and working on the complete runner geometry. The work shows that not nearly the same speed up is achieved 

by this method, nor was it expected to be, but the solution space is kept in accordance with the full-wheel system and at equally 

high accuracy in the RSI pressure. Following the latter method, an ultimate mesh reduction of about 60% is obtained with a close 

to linear speed-up with mesh size. However, simulation time is still a matter of days at the given compute cluster, so by targeting 

the RSI pressure pulsation and solving in the frequency domain the Harmonic Analysis gives accurate results at an unprecedented 

solution time. 

The work has been performed as part of the HiFrancis project at the Norwegian University of Science and Technology and the 

Norwegian Hydropower Centre.  

Keywords: High Head Francis, Reduced Models, Harmonic Analysis. 

1. Introduction 

Part of the work presented in the paper has been presented and discussed at the 29th IAHR Symposium on Hydraulic Machinery 

and Systems in Kyoto [1], and as such a couple of text passages not concerning the actual work have been left unmodified. The 

paper presents new results giving a more in-depth understanding of the work, together with a completely new set of passage 

modelling simulations, including a theory section.  

Computational Fluid Dynamics (CFD) is a powerful tool when designing and investigating hydraulic turbines. However, using CFD 

puts a high demand on computational resources. Acknowledging the fact that an industrial design loop must be completed within a 

practical time frame, typically 6-12 hours, it is crucial to reduce the computational effort. Today this is usually achieved by utilizing very 

simplified numerical models of the turbines, compromising on accuracy and the available information that can be retrieved from the 

simulation results. For high head Francis turbines, the latter is commonly justified by the need to only focus on Rotor-Stator-Interaction 

(RSI) to avoid resonance effects between the pressure pulsations and natural frequencies of the turbine as these are main sources for blade 

cracking [2]. A thorough overview of existing numerical techniques applied to high head Francis turbines can be found in [3]. 

Aiming to achieve more time efficient simulation procedures that are of industry relevance, the present work shows how a complete 

360º model (also referred to as full-wheel model) of a high head Francis turbine can be reduced directly by leaving out parts of the 

computational domain, but without losing accuracy in the RSI pressure that is of primary interest. Instead great savings in mesh size and 

consequently computational time is gained. Two main modifications have been performed: 1) Reducing the draft tube 2) Excluding the 

distributor except for the guide vanes. This is performed both on separate models as well as combining them. In general, reducing the 

draft tube will lead to the greatest reduction in computational mesh due to the vast number of elements being contained there, but 

modifying the distributor will also simplify the meshing procedure and consequently reduce the time needed for mesh generation. The 

present investigation also includes simulations performed on a new and much faster passage model available in ANSYS CFX Release 

R2019, utilizing the periodic symmetry of the turbine and solving in the frequency plane. This model has been available since Release 

18, but at the time only applicable for blade flutter simulations. It has since seen continuous improvement.  
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Existing experimental data together with CFD simulations on the same geometry and operating points are used for data validation. 

The latter include three-dimensional transient simulations of a full-wheel turbine model with spiral casing (also called volute or 

distributor), guide vanes, runner, and draft tube. The mesh consists of about 42 million nodes leading to extensive simulation times before 

reaching a periodic state. This simulation is referenced as Base Case. 

2. Reference Data 

In the following section, reference data used to validate the reduced models will be presented. This includes both experimental 

and numerical assessments and has been taken from existing investigations.  

 

2.1 Experimental Validation Data 

As presented in [4], an overview of the experimental setup is shown in Fig. 1. The runner is a modified model of the turbine 

previously installed at the Tokke power plant in Norway and is used at Norwegian University of Science and Technology (NTNU) 

for research on pressure pulsations inside high head Francis turbines. Moreover, the runner is a so-called splitter design and consists 

of 15+15 blades and the distribution unit of 28 guide vanes and 14 stay vanes. To perform the measurements and capture the 

propagation of the pressure pulses, five pressure sensors were positioned in the middle of two of the runner channels. This is shown 

in Fig. 2. 

With the present setup combined with a runner speed of 5.54Hz, the predominant frequencies seen in this test rig become the 

guide vane passing at 155Hz and the blade passing at 166Hz. In addition to the RSI frequencies the system will be subjected to 

additional phenomena such as draft tube pulsations (Rheingans frequency), vortex shedding and elastic fluctuations in the waterway 

when going outside of BEP. These are included in the experimental results but are not part of the scope. 

The operating point of primary interest in the present study is BEP performed at a head of 11.94m and flow rate equal 0.2m3/s. 

It is referred [4] for further details on this and other load conditions.  

 

 
 

Fig. 1 Overview of measurement setup 

 

 

 
 

Fig. 2 Position of hub mounted pressure sensors in runner channels 

 

2.2 Numerical Validation Data 

Mimicking the setup of the model measurements, CFD simulations of the full-wheel model have been presented in [5] and [6]. 

Referred to as Base Case in the present paper, the results from these analyses are used as numerical validation data for the reduced 

models, both in terms of accuracy and computational speed. The simulations are transient utilizing a sliding mesh interface between 

the runner and volute (rotor/stator). However, extensive CPU requirements from the size of the mesh in combination with small 

time steps lead to simulation times that are totally unrealistic in terms in an industry time frame.  

A mesh independent solution consisting of approx. 42 million nodes has been utilized, where the volute consists of mesh with 

tetrahedral elements (size), while the runner and draft tube are generated with hexahedral elements (size). The industry standard k-

w SST turbulence model has been applied for all simulations with the boundary conditions as shown in Fig. 3. Performed in ANSYS 

CFX, the simulations were run for three revolutions after steady periodic flow behavior had been achieved. Three distinct operating 

points were considered, however, only BEP will be presented here.   

In general, the full-wheel results agree very well with the experimental data discussed in the previous section. For BEP, this is 

exemplified through global parameters in Table 1 and the corresponding pressure signal in PT10 in Fig. 4. The second harmonic is 
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clearly underpredicted, which in recent studies has been shown to be due to resonance effects occurring at the double RSI frequency 

in the experiments [7]. Obviously, a very interesting topic in itself, but outside the scope of the present report.   

 

 
 

Fig. 3 Position of hub mounted pressure sensors in runner channels (Base Case) 

 

Table 1 Global parameters for full-wheel simulation (Base Case) and experiments at BEP [5]. 

Case 
Net head 

[m] 

Torque to 

generator 

[Nm] 

Inlet 

pressure [kPa] 

Outlet 

pressure 

[kPa] 

Hydraulic 

efficiency [%] 

Experiment 11.94 620.7 215.6 111.1 92.2 

CFD transient 12.08 640.8 218.4 111.8 94.1 

Deviation 1.17% 3.24% 1.30% 0.63% 2.06% 

 

 

Fig. 4. Pressure signal in PT10 at BEP for full-wheel simulation and experiments [5]. 
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3. Reduced Models 

When specific features such as RSI is the primary focus, this section compares different approaches to reduce the overall 

computational time on the high head Francis turbine. Two main procedures will be discussed: 

 

1) Reducing the total number of elements in the full-wheel model directly by leaving out parts of the volute or the draft tube 

domain. Note that this will also retain a solution space outside the RSI pressure pulsations.  

2) Utilizing the rotational symmetry of the Francis turbine through different passage models available in ANSYS CFX. Only 

the Harmonic Analysis (HA) method is included here, while [1] also discusses the Profile Transformation (PT) and Fourier 

Transformation (FT) methods. 

The experimental and numerical investigations presented in the previous two subsections are used as validation data. 

  

3.1 Reducing Full-Wheel Model 

The effects of removing the volute or draft tube have been investigated in the following, including one case combining both (ref. 

Combined). Fig. 1 shows the resulting computational domains. Same boundary conditions as for the Base Case have been used for 

all cases, except for the no volute/combined inlet condition for which velocity vectors have been specified at the slightly extended 

guide vane passage (see Fig. 2). The velocity direction was determined from the stay vane angle, which is independent of the 

operating point. 

 
 

 

Fig. 1 Computational domain of reduced full-wheel models. Left: No volute, middle: Short Draft Tube, right: Combined 

 

Fig. 2 Constant velocity profile at inlet 

Fig. 3 shows streamlines for all three cases and Fig. 4 and Fig. 5 give the pressure signals and corresponding FFT plots from the 

PT10 probe onboard the runner (see definition of sensor location in [4]) . Clearly, none of the separate full-wheel model reductions 

affect the results to any significant degree relative to Base Case as both the pressure amplitudes and the pulsation frequencies match 

well. This is also true for the combined case. Although insignificant, it is interesting to note that the No Volute case produce a slightly 

higher pressure amplitude and the Short Draft Tube case sees a somewhat higher average pressure signal. These effects can be 

explained by the strictly uniform velocity profile substituting an otherwise periodic inlet condition and the outlet pressure condition 

being much closer to the measurement locations for the respective cases. The Combined case sees both effects accordingly. If desired, 

the small differences seen can easily be reduced further by for instance adjusting the outlet condition at that location due to the 

shorter draft tube giving a lower pressure reduction from the runner to the outlet. This is demonstrated in the error plot in Fig. 6 

where a step-wise adjusted outlet pressure reduces the average pressure measured in P10 towards the values obtained in the full-

wheel Base Case. From estimates using the Bernoulli equation, the pressure reduction in Combined DP3 corresponds roughly to the 

pressure drop in the section of the draft tube that was cut away. This is calculated from only knowing the mass flow and areas at the 

respective boundaries. Hydrostatic pressure difference has not been accounted for. 

By following the above procedure, one will obtain very accurate results compared to a full-wheel case (0.04% from Base Case) 

and at a much lower cost, but without the need of prior knowledge to the flow behavior, e.g. no interpolation at inlet boundary of 

existing pressure field. All the flow frequencies in the runner domain have also been retained. A more accurate inlet condition can 

be obtained by for instance assuming a sinusoidal periodic velocity profile with number of periods depending on the stay vane 

configuration. This is expected to reduce the pressure amplitude at the measurement location (see No Volute in Fig. 4). Noticeably, 
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this is also information that can be gained prior to performing any simulations. Testing of the latter has been left for future work.  

 

 
 

 

Fig. 3 Streamlines on reduced model. Left: No volute, middle: Short Draft Tube, right: Combined 

 

  

Fig. 4 PT10 pressure signal. Left: No Volute, right: Short Draft Tube 

 

 

Fig. 5 PT10 pressure signal for Combined at BEP 
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Fig. 6 Absolute pressure in probe P10 with outlet reduction 

 

Speed up 

Table 2 summarizes the node count for the Base Case and the three modified cases for the full-wheel reductions together with 

relative speed up for each case normalized by number of time steps and compute cores. Comparing the No Volute and Short Draft 

Tube cases, most is gained by excluding the draft tube leading to a node reduction of 44%. And obviously, combining both effects 

results in the highest speed up of all cases. Nevertheless, all reductions show a close to linear speed-up with respect to mesh size 

and as discussed in section 3.1 only minor effects on the results were experienced by performing these simplifications. A more time 

efficient meshing procedure can also be expected, especially for the No Volute and Combined cases for which the meshing of the 

spiral casing has now been made redundant.  

Despite the lower speed-up than would be achieved using a transient blade row method [1], no initial conditions are required to 

meet the same level of accuracy, and the full frequency content of the flow field is retained when moving from the Base Case to the 

simplified solutions.  

Table 2 Speed-up of reduced models 

 
Global Number of 

Nodes 

Mesh size 

factor 

Relative 

speedup [-] 

Base Case 42476565 1 1 

No Volute 36021993 1.18 1.2 

Short Draft Tube 23822372 1.78 1.7 

Combined 17367800 2.45 2.2 

 

3.2 Harmonic Analysis 

The turbine runner is rotationally symmetric and significant speed-up can be achieved by simulating only a section of the 

geometry when utilizing the periodic nature of the flow, so-called passage modelling (see Fig. 7). Challenges arise, however, when 

the number of stator and rotor components are not equal. [1] discusses some of the general theory behind passage modelling and 

presents results for the PT and FT methods applied to the same high head Francis turbine as used here. Results for the Frozen Gust 

(FG) approach has been replicated in Fig. 8. The latter is an alternative to FT where only the runner passage is included in the 

simulation and the inlet conditions are applied directly upstream of the runner. While these are time marching schemes, however, 

the Harmonic Analysis (HA) method solves the system in the frequency domain converging on a steady state solution.  

A brief introduction to the HA theory is presented below followed by a review of the simulation results.  
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Fig. 7 Definition of boundary conditions and pitch change [1] 

 

 

 
Fig. 8 PT10 spectral content for Frozen Gust with different inlet conditions [1] 

 

 

General theory 

In cases where the solution to the Navier-Stokes equations are assumed to be transient and periodic, solving in time can be a 

very inefficient method. Temporal periodicity can be described as:  

 

𝑄(𝑥; 𝑦; 𝑧;  𝑡) = 𝑄(𝑥; 𝑦; 𝑧; 𝑡 + 𝑇)      (1) 

 

where Q is some conserved variable (momentum in the incompressible NS), and T is the period of oscillation, 𝑇 = 1/𝑓. With 

the presence of a spatial periodicity as well, such as a cascading runner blade, this can be expressed as: 

 

𝑄(𝑥; 𝑦 + 𝜌; 𝑧;  𝑡) = 𝑄(𝑥; 𝑦; 𝑧; 𝑡 + 𝑇)     (2) 

 

where ρ is a spatial shift, and only variation in y-direction is considered for simplicity. In cases where the above is valid, a 

harmonic solution method can be applied to converge the flow solution to a steady-periodic state faster than for a true time marching 

scheme. The reason is easily seen from eq. (1), where it is clear that the only time interval of interest is t = T. If a solution is given 

for the interval T, this solution will by equation 1 repeat itself in infinitum. If a solution is sought using a time stepping manner, 

however, reaching this periodic state might take a very long time, as initial transient effects often require several oscillatory periods 

to dissipate. Looking at the simplest harmonic solution, 𝑄 = 𝐴 ∙ sin(𝜔𝑡), we see that the two parameters of interest is the amplitude, 

A, and the frequency, ω. Extracting this will require a long time series to reach sufficient accuracy, and the matter will be even more 

complicated if the solution assumes the form of a more general harmonic solution, such as 𝑄 = ∑ 𝑎𝑛 cos(𝜔𝑛𝑡) + 𝑏𝑛 sin(𝜔𝑛𝑡)𝑛 , 

for which the time step has to be small enough to resolve all frequencies present. A remedy against costly simulations is then to 

solve the system of equations in the frequency plane. 

A review of different implementations of the idea presented above in [8]. In short, the conservation variables in the Navier-

Stokes equation are expressed as a Fourier series, and then substituted into the governing equations. The Fourier coefficients are 

balanced, and the result is a set of algebraic equations that are solved using a steady solver, driving a pseudo time derivative term 

to zero. A time-spectral form of the harmonic balance method, where the solution is stored at a number of time instances during one 

time period, is the method used in ANSYS [9]. This is called Harmonic Analysis, where M harmonics are retained in the Fourier 

series and the unsteady period is divided into 𝑁 = (2𝑀 + 1) time levels. A pseudo-time marching approach is used to solve the N 

time level coupled equations.  

More complex transient flow features require a greater number of harmonics to be specified. Obviously, this comes at the cost 

of reduced efficiency compared to a true transient simulation. Also, for fast simulations the pseudo time steps per period must be 

kept as low as possible, although within limits of convergence. The main drawback of using Harmonic Analyses, however, is that 

the solution contains only the frequency associated with targeted fundamental frequencies, such as the blade passing frequency and 

retained harmonics. The rest is filtered out. In a time-marching method, on the other hand, the flow solution typically sees a large 

frequency content and captures most of the flow characteristics. 
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In this work, manual Fourier coefficient sampling was implemented in the full-wheel simulation to extract the true periodic 

nature at the RSI interface. The profile was then reconstructed at the inlet of the Frozen Gust simulation as a periodic inlet boundary 

condition (FG Fourier Inlet).  

 

 

Results 

In the following section, results obtained from simulations with the Harmonic Analysis method available in ANSYS CFX 

Release R2019 are presented. Today, HA is not compatible with using mixing plane interface between runner and draft tube as 

applied in [1]. Therefore, the present geometry sees an elongated runner forming a passage of the draft tube. In that way, no draft 

tube/runner interface is required. The runner and boundary conditions are the same as previously discussed, except for the inlet 

condition as seen (see Fig. 9). Here, a pressure field has been mapped on to the RSI interface on the new geometry through Fourier 

coefficients sampled from Base Case (full-wheel). This ensures the true periodic nature of the flow to be represented at the interface 

and allows for leaving out the guide vanes as well for further mesh reduction. But it does indeed require results from a previous 

simulation.   

The mesh has been acquired through the Francis-99 project [10] and consists of approximately 2 million nodes. The main goal 

of these simulations is to document how well the HA method handles a high head Francis case in terms of accuracy and increased 

computational speed. In general, passage models, including Harmonic Analysis, performs better for machines with a high number 

of blades/passages and multiple stages, such as for an axial compressor.    

 

 

Fig. 9 Pressure interpolation through Fourier coefficients  

 

An overview of the simulation cases investigated is presented in Table 3, where M is the number of retained harmonics and 

TSSP is the pseudo-time steps discussed in the theory section. The physical timescale applied in the simulations then becomes:   

 

𝑑𝑡 =
1

𝑇𝑆𝑆𝑃 ∙ 𝑇𝐹
 [𝑠] 

 

where TF is the targeted fundamental frequency in the system, in this case the blade passing frequency equal to 155 [Hz]. In 

theory, the relatively simple flow case requires only few retained harmonics, but the results also reveal that the solutions actually 

become unstable for M higher than one (see Fig. 10). And as indicated in Table 3, the same is true for TSPP less than 90. Comparing 

the average absolute pressure in P10 for HA2 and HA3, however, close agreement with the Base Case is seen. Fig. 11 presents the 

convergence behavior for the two cases. 

The above simulations were started from scratch, i.e. with no initial results file, and the solutions converged after approximately 

1800 iterations, equaling about 5 hours wall clock time on 72 CPUs. 

 

Table 3 HA simulations cases with P10 results 

Case M TSPP P10 [Pa] 

Base Case - - 13845 

HA1 1 60 Not converged 

HA2 1 90 13987 

HA3 1 120 13984 

HA4 3 90 Not converged 

HA5 5 90 Not converged 
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Fig. 10 HA diverging for higher modes 

 

 
Fig. 11 Convergence for the P10 pressure probe 

 

4. Conclusion 

The main purpose of this investigation has been to reduce computational time without compromising on accuracy. Thus, adapting 

to an industry time frame when designing high head Francis turbines. The focus of the work has been on the RSI pressure in specific 

locations of the Tokke runner as defined by an experimental setup performed at NTNU. 

The paper shows how a full-wheel simulation model of a high head Francis turbine can be reduced directly without losing 

accuracy in the RSI pressure that is of primary interest. The reduction is achieved by: 1) Reducing the draft tube and 2) Excluding 

the distributor except for the guide vanes. Consequently, great savings in mesh size and computational time is gained. This has been 

applied both on separate models as well as combining them, obtaining an ultimate mesh reduction of about 60% and a relative 

speed-up factor equal 2.2. A nearly linear speed-up with mesh size was achieved for all cases. Noticeably, with this method all flow 

frequencies in the runner are retained.   

Simulations performed with the passage model called Harmonic Analysis are also included, solving in the frequency plane rather 

than utilizing a traditional time-stepping procedure. Although somewhat unstable for increasing number of retained harmonics, 

convergence was obtained in the matter of hours compared to days for the previous method. However, only results for the targeted 

flow frequency (RSI) is then available.  

In general, reducing the draft tube will lead to the greatest reduction in computational mesh due to the vast number of elements 

being contained there, but modifying the distributor will also simplify the meshing procedure and consequently reduce the time 

needed for mesh generation. Despite a moderate speed-up compared to the passage models, the reduction of the full-wheel model 

does not lose any of the frequency content in the flow during this process. This is an essential aspect in describing the high level of 

accuracy that has been achieved. It is also shown that the entire volute could be replaced by a very simple set of inlet boundary 

conditions without affecting the results to any significant degree.   
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Abstract. As Francis turbines are chasing a higher efficiency, while trying to accommodate a
wider load region, turbine blade fatigue is becoming a more pronounced problem. Details of the
Fluid-Structure Interaction (FSI) between the turbine blades and the passing water is necessary
to accurately predict the dynamic behavior of a runner in the design phase. The dynamic
behavior of the turbine blades is characterized by three properties: The added mass of the
surrounding water, the increased stiffness due to passing water, and the hydrodynamic damping
provided by the surrounding water. Of the aforementioned properties, the hydrodynamic
damping is not yet fully understood. When the turbine blades are excited close to resonance,
the damping of the vibrating system determines the vibrational amplitude, and is therefore
important in order to estimate the lifetime of a runner. The hydrodynamic damping of passing
water has been investigated in a simplified setup, where the turbine blades are represented by a
2D hydrofoil. Two separate hydrofoil geometries have been tested. The hydrofoils were mounted
in a “fixed-beam” configuration, meaning that both the deflection and the angle at the fastening
point is zero. This setup was chosen, since it is the way that turbine blades are fastened in
a Francis runner, and should therefore give applicable results when performing modal testing.
The hydrofoils were mounted without any angle of attack, and exposed to water velocities up
to 28 m/s. Modal tests in the entire velocity regime indicates that the damping factor increases
linearly with water velocity, but at different rates below an above lock-in. The damping factor is
rapidly increasing when the velocity goes beyond that of lock-in. This behavior is observed for
both hydrofoils, even if the magnitude of the vortex shedding is of different magnitude for the
two. A slight increase in natural frequency was also observed with increasing velocity, due to a
combination of a stiffening effect of the water passing over the deflected blade, and a reduced
added mass effect, in that the amount of water that vibrates with the hydrofoil is diminished
when the water velocity is sufficiently high, i.e. it is blown away. The measurements have been
compared with CFD simulations, indicating that the observed trend does indeed continue up to
at least 45 m/s, indicating that the results are applicable to the velocity regimes occurring in a
prototype Francis runner

1. Introduction
In the current energy market, Francis turbines are expected to deliver power at high efficiency
while accommodating a large range of operation [1, 2]. This has caused several high head Francis
runners to fail due to blade cracking, caused by Rotor-Stator Interaction (RSI) [3]. Fatigue
damage due to vibration is a complex phenomena, with several factors: The static (mean) stress,
the amplitude of the vibration, and the frequency of vibration. Within this, the amplitude of
vibration, and hence the amplitude of the stress, can determine whether a turbine will withstand
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the load, or if it will fail during operation. It is therefore important to understand the underlying
mechanics that determine the vibrational amplitudes in the RSI-caused vibrations.

A classic damped vibrating system with a single degree of freedom can be characterized by
three key parameters: stiffness, mass and damping. If one considered the oscillating turbine
blade as a classic damped vibrating system, these characteristics will be slightly modified, as
the presence of flowing water adds to stiffness, mass and damping. These parameters have been
extensively investigated, and the impact of water on the stiffness and mass is well understood
[4, 5, 6, 7]. The effect on damping has received less attention in the past, but recent studies
have been conducted, indicating that the damping is indeed affected by the moving water.
The damping is a critical quantity to understand, as the vibration amplitude is sensitive to
damping at resonance. Some investigations of this have been performed in recent years, but
they are limited in the velocity range investigated. In addition, the behavior of fluid damping
in the velocity range where the blade’s natural frequency coincides with the shedding frequency,
known as lock-in, has not been a point of focus.

This paper presents experimental results on two separate hydrofoils, and a comparison is
made between the results and simulation efforts.

2. Materials and Methods
The experimental setup and data analysis methods are described in the following section. The
numerical setup is briefly explained, for an in-depth description, see [8].

2.1. Experimental Setup
The experiments were conducted at the Waterpower Laboratory at the Norwegian University
of Science and Technology (NTNU). The test set-up consisted of a 150 mm by 150 mm square
channel, containing the hydrofoil in a fixed-beam configuration, i.e. fastened in both ends. An
image of the test rig is shown in Figure 1

Figure 1. Image of the test rig.

The hydrofoils tested are illustrated in Figure 2. They are of the same width and cord length,
but F0 has an asymmetric trailing edge, and a more blunt leading edge than F1 .
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φ =178.97◦

250 mm

12 mm φ =177.85◦

150 mm

θ =46◦

R=9 mm

4.8 mm

θ =30◦

R=20 mm

5.25 mm
50 mm

F1

F0

12 mm

32 mm

Figure 2. Hydrofoil geometries tested. Note that the tapering is much longer for F1 than
for F0 , allowing for a much smoother tapering angle, φ . In addition, F0 as an asymmetric
trailing edge, while F1 has a symmetric trailing edge. The leading edge of F0 closely resembles
a semicircle with diameter equal to the foil thickness, whereas the leading edge of F1 is elliptic
with major and minor diameter of 62 mm and 12 mm respectively.

The excitation was performed using Piezoelectric Macrofiber Composites (MFCs), which
have the ability to provide excitation at specific frequencies, enabling measurements when the
damping is quite large. This procedure is based on the approach previously employed by Coutu
et al, Yao et al, and Roth et al [4, 9, 10, 5, 6], and the MFCs are similarly excited 180◦out of
phase, in order to obtain the maximum excitation force. For a more in-depth explanation on
the application of MFCs in conjunction with modal testing of hydrofoils, the reader is referred
to the work of Seely et al [10]. The response was measured with a combination of Laser Doppler
Vibrometry (LDV) and semiconductor strain gauges from Kulite. A schematic of the test setup
is shown in Figure 3. The tests were performed in cavitation-free conditions.

2.1.1. Testing procedure In order to avoid transient effects, a stepped-sine excitation pattern
was chosen, as recommended by Ewins [11]. The testing therefore consisted of

(i) performing a continuous sweep, to identify the natural frequency

(ii) generating discrete sine waves around the resonant region

(iii) testing the response of each frequency

This process was repeated approx. 30 times for each velocity in order to estimate the uncertainty
in both natural frequency and damping.
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Figure 3. Schematic view of the measurement setup.

2.1.2. Analysis The amplitudes of both the excitation and response were calculated using the
Welch method as implemented by MATLAB. The Welch method is an estimate of the power
spectrum, which reduces the noise by reducing the frequency resolution through overlapping
windows. For the amplitude estimates, the flattop window was chosen. Since the Welch
method in MATLAB does not yield phase data, the phase difference between the excitation
and response was estimated by calculating the cross-power spectral density. The magnitude
ratio between the excitation and response, along with the phase difference was used to recreate
the complex Frequency Response Function (FRF), which was used to calculate damping and
natural frequency, using the nyquist diagram. By plotting the real part vs. the imaginary part
of the FRF, a resonant region will appear as a circle. By curve fitting the data to a circle,
geometric properties of the curve fit can be used to accurately estimate modal properties. This
method was chosen, since it does not rely on data far away from the resonant region, and is
therefore less sensitive to neighbouring modes of vibration. For a detailed explanation of the
circle-fit method and the Nyquist diagram, the reader is referred to Ewins [11], and Bergan et
al [12].

2.2. Numerical setup
The damping of F1 has been tested numerically using ANSYS CFX. To ensure fully developed
flow conditions in the test section, the inlet of the test domain was extended in order to satisfy
a common entrance length criterion of L > 10 · Dh. Similarly, the test domain was extended
downstream to avoid outlet conditions affecting the simulation results. The damping was found
using a one-way coupling, but investigating the structural response in advance, and performing
CFD on the blade with pre-determined vibration. For a more in-depth explanation of the
numerical setup and results, the reader is referred to [8].

3. Results
In Figure 4, the damping factor ζ is shown with respect to the water velocity w . Figure 6
shows the evolution of the natural frequency ωn of the hydrofoils with respect to w . The slope
estimates for the evolution of the damping are summarized in Table 1
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Figure 4. Damping vs velocity. Note that both hydrofoils exhibit a discontinuity in the slope
around lock-in, at approx. 11 m/s for F0 , and at approx. 8 m/s for F1 .

Table 1. Slope of damping change vs. velocity

ζ/w F0 F1
below lock-in 2.18 × 10−4 3.48 × 10−4

above lock-in 1.37 × 10−3 2.12 × 10−3

To give an idea of the numbers provided in table 1, the Half-Amplitude method is a useful
tool [13]: A damping factor, ζ , of 0.01 (or 1%), means that oscillations will half in amplitude
after 11 cycles, which for a hydrofoil with a natural frequency of 500 Hz is approx. 0.02 s.

The measurements are closely matched by the numeric simulations, shown in figure 5.
The experiments were limited to 28 m/s due to the onset of cavitation upstream the test

section, even with a gauge pressure of 9 bar in the test section. Simulations were therefore
conducted at 45 m/s, indicating that the trend obtained above lock-in continues.

As seen in Figure 4, the damping is nearly constant up to lock-in, but with a slightly positive
slope. There is a distinct discontinuity, at approx. 11 m/s for F0 and at approx. 8 m/s for
F1 . This is the lock-in region for each hydrofoil, the velocity at which the vortex shedding
frequency coincides with the hydrofoil’s natural frequency. This is detailed in table 2, where
the maximum vibrational amplitudes are shown with and without MFC excitation. Vibration
measured without MFC excitation is solely due to vortex shedding.

The natural frequency of the hydrofoils, as seen in Figure 6, seem to be relatively unaffected,
but a closer investigation reveals a trend, see Figure 7.

Figure 7 shows that the natural frequency is not constant with velocity, it does in fact increase
slightly with water velocity. F0 shows a sudden jump in natural frequency around lock-in, a
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Figure 5. Experimental and numeric results for F1 . Note that both the experimental and
numerical results indicate a change around the lock-in region (at 8 m/s), but they differ in the
results below lock-in.

Table 2. Maximum Vibrational Amplitudes

Excitation Source F0 F1
MFC 0.085 mm 0.125 mm
Vortex Shedding 0.013 42 mm 1.4 × 10−9 mm

behaviour that is not reflected in F1 . The order of increase seems to be quite similar as well,
around a 0.1% increase for each m/s

The maximum vibrational amplitudes for F0 and F1 are shown in table 2. As the results
indicate, the effect of vortex shedding is virtually non-existent for F1 , whereas the shedding-
related vibrational amplitude for F0 is at approx. 16% of the maximum excited amplitude.

4. Discussion
The measurements were limited to 28 m/s due to cavitation, but the numerical analysis indicates
that the trend is likely to continue at least up to 45 m/s, see figure 5. Given the similarities
between the numerical and experimental results at velocities up to 28 m/s, there simulations
performed at 45 m/s are most likely accurate.

At this stage, it is relevant to make comparison to other similar measurements, mainly those
of Coutu et al [4], where a hydrofoil has been mounted in a fixed-beam configuration, and modal
testing was done for velocities up to 25 m/s; and those of Yao et al [6], where the effect of the
trailing edge shape was tested on a cantilever beam.
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Figure 6. Natural Frequency. Note that there is a slight increase in natural frequency for both
F0 and F1 .
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Coutu et al found that the damping factor was consistently increasing with water velocity,
without any discontinuities, but only above lock-in velocity. Comparing with Yao et al, a
discontinuity in damping slope was observed at lock-in for the torsional bending mode, which
for a cantilever beam is quite similar to the bending mode of a fixed-beam foil. Said discontinuity
was observed at lock-in, which agrees very well with the trends observed in the present work.

In order to make a quantitative comparison to the results obtained by Yao et al, consider
figure 8. Here, the damping is presented as a function of the reduced velocity, C∗ , defined by
Equation 1.

C∗ =
w

L · ωn
(1)

As Figure 8 shows, the slope of the damping factor change is nearly identical for F0 and
F1 when plotted against their reduced velocities. Compared with figure 9, it is clear that the
observed damping behavior is similar in scale.

The slope of the damping change measured in the present work agree adequately with the
measurements conducted by Yao et al, in which the slope of the damping was approx. 3.9 × 10−3

(when the velocity is expressed in absolute terms), as compared to approx. 2 × 10−3 obtained
in this work. In the work of Coutu et al, the damping factor slope was found to be 1.07 × 10−2

to 1.23 × 10−2, approx. 5 times higher than the results from this work. This result was fairly
consistent for all the geometries tested by Coutu. Even if the geometry of the hydrofoils differ
within each experiment, the dimensions for the test section remains.

Another key feature in the work of Yao is the apparent jump in natural frequency observed
at lock-in, something that was also seen in the present measurements. Coutu et al found that
the natural frequency remains constant, but CFD simulations performed by Nenneman et al
[14] indicate that the natural frequency does indeed increase with velocity. The present results,
and those of Yao, found that the natural frequency does change through the lock-in region, but
there is no conclusive experimental evidence of further trends above lock-in. It could very well
be the case that it is constant above lock-in.

Previous results have indicated that the phase shift in vortex shedding is the main contributor
to the observed discontinuity in the evolution of the damping factor[12], but the present results
contradict this. It is difficult to argue that the vortex shedding is the main contributor to
the increase in damping when the same behavior is observed for both F0 and F1 , even if the
magnitude of the vortex shedding is quite different for the two test specimens.

The divergence in the present results, along with those of Coutu and Yao, raises the question
of dimensionlessness: To what degree do we expect the damping factor to be dependent on the
geometry and/or scale? Since the geometries in question differ, the proportion between the added
mass and the blade stiffness is varying, which could cause different hydrodynamic behavior. It
is also interesting to address the validity of the assumption of linearity in the vibrating system.
Most theory regarding vibrating structures assume linearity, ie. spring force linearly proportional
with displacement, damping force linearly proportional with velocity [13]. This may not be the
case when the effects of FSI are prevailing[11]. There is lacking documentation on the effect of
non-linearities in turbine blades, but the difference in scale between the prevailing experiments
in this field suggest that the relative scale of the hydrofoil could be crucial to the expected rise
in damping factor.

5. Conclusion
The present measurements show that the damping factor of a hydrofoil behaves differently
above and below lock-in conditions, and the natural frequency is also affected by this. The
two different test geometries indicate that a more slender blade might produce a lower natural
frequency, having a reduced stiffness with the same oscillating mass, due to the larger relative
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Figure 8. Damping vs reduced velocity.

Figure 9. Measurements preformed by Yao et al [6].

contribution from the water. Comparisons with similar experiments indicate that the increase
in damping factor will be smaller for a stiffer hydrofoil, due to the reduced relative influence
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of the fluid and the inherent non-linearities in a fluid-structure vibration. This could arguably
be extended to encompass similar geometries of different scale, meaning that different types of
turbines, with different relative blade thickness might have very different damping evolution
with respect to the changing water velocities.

6. Further Work
Further investigations of damping behavior in submerged hydrofoils should include a thorough
assessment of the linearity of the vibrating system. In addition, focus should be placed upon
understanding the behavior of the natural frequency above lock-in, as the present measurements
are inconclusive. Additionally, all the work performed on vibrating hydrofoils has focused on a
single blade in vibration. Further measurements will encompass a multi-blade cascade, in order
to capture influence from neighbouring blades.
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Abstract. Due to thinner blades and higher demands for flexibility, the high-head Francis
runners designed today face considerable challenges that severely affect the runners’ expected
lifetime. For many high-head Francis runners, the leading cause of fatigue is blade cracking due
to Rotor-Stator Interaction, which cause vibrations in the runner blades.

Accurate prediction of the vibration magnitudes in a turbine is paramount in designing a
reliable Francis runner. The understanding of the interaction between the hydrodynamic forces
and the internal stresses in the runner is not yet sufficient to make this prediction. Previous
investigations have identified some key parameters that affect dynamic behaviour in water, such
as added mass, as well as added stiffness and damping from moving water. These parameters
affect the natural frequency and damping of a structure, which in the end will affect what
vibrations magnitudes the runner will be subjected to for a given frequency of excitation. The
behavior of these parameters have recently been investigated by several researchers, but the
effect of neighboring blades is yet not understood.

A multi-blade cascade has been tested for four of its different modes of vibration. The
results indicate that the slope of the damping with respect to the inverse Strouhal number is
constant. This slope was found to be the same as for several single-blade tested performed,
both in the same rig and in other works. The implication is that the product of added mass
and mode shape does not change significantly.

1. Introduction
Evaluating the dynamic response of a Francis runner is becoming increasingly important, in
order to avoid resonance with pressure pulsations induced by Rotor-Stator Interactions (RSI).
In fact, resonance with RSI has been the cause of failure in several high head Francis runners
in the past 15 years [1]. At the design stage, turbine designers need to analyze the levels of
vibration a runner is expected to experience during operation, and in order to achieve this, a
better understanding of the vibrating system that the runner and water comprises is needed.

A classic damped vibrating system with a single degree of freedom can be characterized by
three key parameters: stiffness, mass and damping. If one considered the oscillating turbine blade
as a such a system, these characteristics will be slightly modified, as the presence of flowing water
adds to stiffness, mass and damping. These parameters have been extensively investigated, and
the impact of added mass is well understood [2–5]. The effect on damping has received less
attention in the past, but recent studies have been conducted, indicating that the damping is
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indeed affected by the moving water. The damping is a critical quantity to understand, as the
vibration amplitude is sensitive to damping at resonance. Recent papers have investigated the
effect of water velocity on damping, and the general conclusion is that the damping increases
with increasing water velocity. [2–4, 6] There is some indication that the damping and natural
frequency undergo a change in the lock-in region [4, 6], and Computational Fluid Dynamics
(CFD) results indicate that the damping increases linearly up to at least 45 m/s [7]. There are
two key limitations with the investigations performed up to this point: They do not evaluate
the effect of adjacent blades, and they only investigate a single mode of vibration. The aim of
this paper is therefore to investigate the effect of the neighbouring blades, and to state whether
or not it is sufficient to examine a single blade. Multiple modes of vibration of a multi-blade
cascade will be evaluated, and comparisons will be made to similar works in the field.

2. Materials and Methods
The experimental setup and data analysis methods are described in the following section.

2.1. Experimental Setup
The experiments were conducted at the Waterpower Laboratory at the Norwegian University
of Science and Technology (NTNU). The test set-up consisted of a 150 mm by 150 mm square
channel, containing the hydrofoil in a fixed-beam configuration, i.e. fastened in both ends. The
test rig itself is rigid, with steel walls of 25mm thickness. This was done to minimize simulation
errors resulting from the assumption of stiff walls.

The hydrofoil geometry is presented in Figure 1. The three hydrofoils are identical, and their
centerlines are spaced 39 mm apart.

Blade 1 and 3 were excited to vibration using Piezoelectric Macrofiber Composites (MFCs).
MFCs were chosen for their ability to excite vibration with direct frequency- and phase control,
making them ideal for this test case. The use of MFCs in hydrofoil testing has been documented
previously by Presas et al [9], and they have been successfully employed for hydrofoil experiments
by multiple researchers [2–4, 6, 10, 11]. The response was measured with semiconductor strain
gauges from Kulite at both the leading edge and the trailing edge, in order to be able to separate
the vibration modes of a single blade. The tests were performed in cavitation-free conditions,
for velocities up to 20 m/s.

2.2. Testing procedure
2.2.1. Mode shapes, damping and natural frequencies Preliminary simulations indicated that
the system contains modes with blade 2 as a node. In order to be able to investigate modes,
both with blade 2 moving and with blade 2 as a node, a preliminary measurement was performed
with excitation at blade 3 only, in stationary water. The Frequency Response Functions (FRFs)
from that sweep are shown in Figure 2.

The relative phase delay between the trailing edges and leading edges, along with the natural
frequency, are used to identify the modes. The modes chosen for further investigation are shown
in Figure 3, and outlined in Figure 2 as vertical dash-dot lines.

In order to get a more powerful response from the system, excitation was applied at both
blade 1 and 3 simultaneously. M1, M2 and M3 are achieved by exciting blade 1 and 3 in phase,
while M4 is achieved by exciting blade 1 and blade 3 with a phase delay of 180◦.

For each water velocity, a preliminary continuous sweep was conducted to roughly locate
the frequencies of the modes of interest. The modes were then further investigated using a
classical stepped-sine excitation, as recommended by Ewins [12]. Each stepped-sine excitation
was repeated 30 times to get statistical data to accurately calculate the damping and natural
frequency for each mode.
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Figure 1: Blade cascade geometry. Note that the trailing edge is symmetric, and that there is
a tapering of the hydrofoil, indicated in the detailed image of the leading edge. The choice in
leading edge and trailing edge geometries is based on the setup previously employed in the same
rig, with a single-blade configuration. [8]. The blade thickness has been reduced to 18mm, to
counterbalance the increased "blocked area" imposed by multiple blades. The strain gauges were
placed as close to the leading and trailing edges as possible while being situated in a flat area of
the geometry, for practical reasons. The MFC placement was dictated by a minimum distance
to the hydrofoil’s center-line

2.2.2. Analysis The amplitudes of both the excitation and response were calculated using the
Welch method as implemented by MATLAB. The Welch method is an estimate of the power
spectrum, which reduces the noise by reducing the frequency resolution through overlapping
windows. For the amplitude estimates, the flattop window was chosen, with 30 windows
overlapping by 50%. The sample rate was 5120 S/s, and the measurement length was 14
000 samples. Since the Welch method in MATLAB does not yield phase data, the phase
difference between the excitation and response was estimated by calculating the cross-power
spectral density. The magnitude ratio between the excitation and response, along with the
phase difference was used to recreate the complex FRF, which was used to calculate damping
and natural frequency, using the Nyquist diagram. By plotting the real part vs. the imaginary
part of the FRF, a resonant region will appear as a circle. By curve fitting the data to a
circle, geometric properties of the curve fit can be used to accurately estimate modal properties.
This method was chosen, since it does not rely on data far away from the resonant region, and
is therefore less sensitive to neighbouring modes of vibration. For a detailed explanation of
the circle-fit method and the Nyquist diagram, the reader is referred to Ewins [12], Craig and
Kurdila [13], and Bergan et al [6].

3. Results and discussion
The resulting variations in damping are shown in Figure 4

Due to the low amplitude of vortex shedding, measurements without external excitation were
unable to determine the velocity for lock-in. However, since the hydrofoil geometry is quite
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Figure 2: Bode plot for excitation at a single blade. The vertical dash-dot lines indicate the
frequency of the modes investigated. Note that this is a preliminary and transient measurement,
as such, the exact amplitudes of each mode is not accurate. This can be seen in particular for
the amplitude of blade 2 around 310 Hz, 575 Hz, and 900 Hz. These are frequencies where blade
2 is a node, but in this transient measurement, the anti-resonance is swept through before blade
2 reaches zero amplitude. The bottom plot shows the phase delay between each blade and the
excitation signal. Note that only trailing edge measurements are shown here.

similar to previous investigations in the same rig [8], the lock-in velocity is expected to be found
at more or less the same velocity. Referring to Figure 4, it is evident that a change in the slope
of the damping factor occurs at around 5 to 10 m/s, depending on which mode is investigated.
This is due to the difference in natural frequency for the different vibrational modes, causing
lock-in to occur at different velocities. According to Figure 4, we expect lock-in to occur in the
order M1, M4, M2, M3. This corresponds to increasing natural frequency, see Figure 3.

Another interesting feature of Figure 4, is that M3 appears to have a much flatter slope than
all the other modes. In order to make comparisons between the different modes, the reduced
velocity is suggested as a dimensionless term. The reduced velocity is defined as the ratio between
the time for a single vibration cycle, and the time for a particle to travel from the leading edge
to the trailing edge. The formula is given in Equation (1)
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(a) Mode 1 (M1), fn=252.0Hz (b) Mode 2 (M2), fn=491.0Hz

(c) Mode 3 (M3), fn=708.2Hz (d) Mode 4 (M4), fn=300.1Hz

Figure 3: The four modes investigated. Note that the main difference between M1 and M2 is
the phase between the leading and trailing edge. Also note that for M4, the middle blade is
stationary.

v∗ =
v

L · fn
(1)

The reduced velocity is, in fact, the inverse of the Strouhal number, defined in Equation (2),
but with the chord length in stead of the trailing edge thickness as the characteristic length.

St =
fL

v
(2)

in Equation (2), St is the Strouhal number, f is the frequency, L is the "characteristic length",
and v is the velocity.

If the results from Figure 4 are plotted against the inverse Strouhal number, the behavior of
the different modes is much more similar, see Figure 5

Figure 5 shows that, for this particular test rig, the damping factor evolution is more or less
the same for all the tested modes of vibration, when plotted against the inverse Strouhal number.
This is an interesting result, indicating that some generalizations can be made. For comparison
purposes, the experimental data of Coutu et al [2] has been manually read from the plot shown in
Figure 6. Lacking information about the physical scales, the unit length has been omitted in the
modified reduced velocity used in the comparison. This does not affect the internal similitude
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Figure 4: Damping vs velocity for the four modes investigated. Note that M3 deviates from the
common pattern of the other modes, maintaining a nearly constant damping.

between the modes investigated in this paper, as the geometry, and hence the unit length, is
unchanged throughout the experiment.

Figure 7 shows the damping plotted against the modified reduced velocity, defined by
Equation (3)

v∗∗ =
v

fn
(3)

As Figure 7 shows, the slopes for H0, H1 and H3 share the same similarity as before, but in
the lower left corner of the graph, it is evident that the data obtained in this paper, combined
with previous measurements in the same test rig [6–8], approximate the same slope. This is
clearer when considering Figure 8, where the data for v∗∗ < 0.08 is displayed.

The similarity in slope means that the actual damping of low-frequency vibrations increases
at a higher rate than those of high-frequency vibration. However, this assertion is based on
measurements performed at a limited selection of natural frequencies, and more data is needed
for making an empirical generalization. In addition, this limitation in v∗∗ investigated leaves
some uncertainty to the slope, as Figure 8 shows, where the markers for F0 and M2 apparently
follow a steeper curve. Nonetheless, not only do similar hydrofoil in the same rig approximate
the same slope, different modes of a multi-bladed cascade approximate the same slope, as well
as experiments performed in an entirely different test rig, with natural frequency an order of
magnitude lower. As a simple test of this concept, CFD simulations were performed on one of
the hydrofoils previously investigated in this test rig, denoted F1 in Figure 7. For details about
the CFD setup, see Tengs et al [7]. The modified reduced velocity was altered by manually
altering the hydrofoil’s natural frequency in the numerical setup. The results of this simulation
are shown in Figure 7.

If one were to interpret the physical meaning of the modified reduced velocity, 1
fn

is a measure
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Figure 5: Damping plotted against the inverse Strouhal number. Note that all modes of vibration
show a change in behavior around St−1 = 2.5. This is the lock-in region as discussed in Figure 4,
meaning that the vortex shedding frequency is equal to the natural frequency. The relatively
high value for St at lock-in indicates that the trailing edge thickness is not representative for the
wake thickness for this geometry.

of time, namely the time per cycle of vibration, and v is a measure of how much water passes
the blade per unit time. In that regard, v∗∗ is a measure of how much water passes the trailing
edge per cycle of vibration, and could very well be a relevant quantity in determining the effect
of the water’s momentum on the trailing edge’s vibration. Going back to the reduced velocity, or
the inverse Strouhal number, the selection of the characteristic length is not straightforward.
For simple geometries, there are conventions, such as for the cylinder, the diameter is the
characteristic length. For a hydrofoil, the chord length is a viable candidate, and it has been
used by Yao [4]. The blade thickness is also a possibility, which in combination with trailing
edge geometry is widely used for estimating vortex shedding frequencies [14]. Looking back at
the damping comparisons, Figures 7 and 8, it is evident that for the vibrations investigated, it
doesn’t really matter. The slope is more or less the same, but that is not surprising. Although
the test rigs, natural frequencies, number of blades, and physical scales are different, the mode
shape of each single blade is not that different in each case. For a broader investigation on how
damping behaves in submerged structures, with different boundary conditions and other modes
of vibration, there is a need to asses geometric parameters. This is where the use of characteristic
length is a drawback: it does not factor in how much of the structure is vibrating.

At this point, it is appropriate to take a step back, and consider the theoretical work performed
by Monette et al [10]. The damping ratio for a submerged vibrating structure can be calculated
as follows:

ζ =
v

fn

[
1 −

(
fn
fv

)2
] ∫∫

Φ(x, y)∂Φ(x,y)
∂x dx dy∫∫

Φ2(x, y) dx dy
(4)
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Figure 6: Damping measurements obtained by Coutu et al [2]

In Equation (4), fn denotes the structure’s natural frequency in the fluid, fv the natural
frequency in vacuum, while Φ denotes the mode shape, an integral of the structure’s deflection.

By considering the equation, it is clear that it contains three main parts:

(i) the "modified reduced velocity", as defined in Equation (3)
(ii) a measure of the added mass, or the thickness of fluid affected by the motion, defined by

M̂ =

[
1 −

(
fn
fv

)2
]

(5)

(iii) a measure of the "amount of movement" of the structure, namely the mode shape.

Φ̂ =

∫∫
Φ(x, y)∂Φ(x,y)

∂x dx dy∫∫
Φ2(x, y) dx dy

(6)

If only the results measured in this experimental campaign are considered, the slope of
damping ratio is constant above lock-in velocities, meaning that the second and third term in
Equation (4) must either cancel each other out, or individually remain constant for the different
mode shapes.

M̂ Φ̂ = const (7)

It is not unreasonable to expect the mode shape integral to yield the same result for different
hydrofoils, given that the boundary conditions are similar, ie. fixed beam, single blade. Given
that the vibration deflections are not too large, the relative added mass is not expected to change,
and as such, Equation (7) still holds: the product is constant, and hence the damping slope is

188



Francis 99: Fluid structure interactions in Francis turbines

IOP Conf. Series: Journal of Physics: Conf. Series 1296 (2019) 012003

IOP Publishing

doi:10.1088/1742-6596/1296/1/012003

9

0 0.05 0.1 0.15 0.2 0.25 0.3
v∗∗ [m]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ζ
[-]

F0
F1
M1
M2
M3
M4
H0
H1
H3
H0-fit
H1-fit
H3-fit
CFD

Figure 7: Damping comparison. The lines indicate the linear curve fits from Figure 6, when
corrected for their natural frequencies. The mean slope of all the plots was found to be
ζ/v∗∗ = 0.873
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Figure 8: Damping comparison zoomed.
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constant. In fact, small variations in the added mass, M̂ , could explain the difference in the
slope in Coutu’s measurements, see Figure 6.

Even for the three-bladed cascade, although the blade movement is coupled through the
water, their deflections can still be integrated in Equation (6), yielding a similar value as for
their single-blade counterpart. The value of M̂ is a bit more tricky to estimate for the three
bladed cascade case. This is because the response of the water does more than just add mass
and damping, it couples the structural movement, producing modes that were not there in air.
As such, the assumption of unchanged modes does not hold in a strict sense, but one could
speculate that the relatively large spacing of the hydrofoils, combined with the relatively high
frequency of vibration, means that the relative added mass of each blade is not affected by the
proximity o neighbouring blades. As such, the damping should still adhere to Equation (4), with
some substitutions for the estimate for added mass.

This raises an interesting possibility: Even with a multi-blade cascade, with blades coupled
through the fluid, we still expect the damping to be described by Equation (4), as long as the
appropriate term is found to describe the amount of added mass. If this is indeed true for larger
and more complex structures, a runner may be analyzed by considering it as a collection of blades
with individually known modes of vibration. However, there are still some unknown parameters
to this: Although this experiment shows that three blades behave similarly as one, it is not
known for certain if that behavior will translate to a cascade of more blades. Additionally, the
question of complex modes and rotational symmetry is not assessed in this experiment, and it is
therefore not known if the damping estimates for such a vibration will be different.

4. Conclusion
This experiment indicates that the modes of vibration in a blade cascade show the same
behavior in damping when plotted against the reduced velocity. Further comparisons with other
experiments indicate that the damping slope can be determined if the natural frequency of the
hydrofoil is known, for blades with the same boundary conditions. This can be described by
theory developed by Monette et al, and the present investigations show that the product of
the added mass and the mode shape integral remain fairly constant for fixed-beam hydrofoils.
Moreover, it has also been shown that this product is unchanged when higher modes of multi-
blade cascades are considered. This indicates that damping estimates for the blades of a turbine
runner can be performed in the same way as for a single blade. However, this has only been
demonstrated on a structure exhibiting real modes of vibration. Four modes of vibration were
tested, including one where the center blade was stationary. The observed behavior is that the
damping factor is unchanged up to St−1 = 2.5, beyond which the change is linear with respect
to reduced velocity. The slope was the same for all modes of vibration, when plotted as reduced
values, ζ/v∗∗ = 0.873.

5. Further Work
The main focus of further investigations should be to systematically vary different geometric
parameters, in order to provide data for the added mass and the mode shape integral for typical
geometries. In addition, further work on such a multi-blade cascade should aim to investigate
the effect of complex modes. Complex modes are not necessarily going to behave similarly to
real vibration modes, and this investigation is of particular relevance for turbines, as they are
prone to complex modes due to their rotational symmetry. In addition, although several modes
of vibration have been investigated in this work, they are quite similar in their shape. For further
investigations on the turbine blade behaviour in high-velocity flows, a twisted blade is suggested,
as it is expected to produce less symmetric vibrational modes. Finally, the effects of vibration
amplitude have not been investigated in this work. At large amplitudes, the added mass might
begin tho change, altering the slope of the damping.
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Nomenclature
Greek Symbols
Φ Mode shape
φ Taper angle
θ Trailing edge angle
Φ̂ Measure of mode shape movement
ζ Damping
Latin Symbols

M̂ Measure of added mass
f Frequency
L Cord Length
St Strouhal number
v Water velocity
F0 Old Hydrofoil
F1 New Hydrofoil
Indices, superscripts
∗∗ Reduced Modified
∗ Reduced
Indices, subscripts
n Natural
v In vacuum
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