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Summary

Biometric recognition is a typical means to identify individuals or to verify claimed
identities. Use cases are manifold. For example, users can unlock their smart-
phones for convenience by presenting their faces or fingerprints. Or one’s identity
is verified when crossing borders. Today, biometric recognition already has many
points of contact with our daily life and there are more to come.

Besides iris and face, fingerprint is the most wide spread biometric trait used for
recognition. Fingerprints are assumed to be unique for each and every finger. This
makes it an ideal trait for recognition. In addition, fingerprint recognition has more
than a century of tradition in the field of biometric recognition. A great amount
of expertise and engineering skill made it a quite mature technology over time.
Only few false positive and false negative errors are made in recognition in today’s
deployed systems.

However, fingerprint recognition is still far from being perfect. In contrast to pop-
ular opinion, fingerprint recognition is not a solved problem. Actually, there is
still a lot of work to do. As biometric systems become larger and become more
inclusive, even new challenges arise. Systems need to deal with large amounts of
data while keeping performance with respect to recognition performance as well as
transaction times in a reasonable order. Recognition shall work for everyone and
shall not exclude a certain ethnic group or subset of the population. It will work
in unconstrained conditions. However, it shall still make no erroneous decisions.
Engineering may have come to its limits at this stage.

In contrast to classical engineering, machine learning based on artificial neural
networks may be a reasonable alternative. The emerging technologies of Deep
Learning achieve tremendous successes in many domains of image processing and
pattern recognition. This work assesses the application of such innovative machine
learning concepts to fingerprint recognition. Three central aspects and challenges
in fingerprint recognition are inspected in detail: fingerprint sample enhancement,
orientation field estimation, and efficient processing structures.
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Sammendrag

Biometrisk gjenkjenning er en vanlig måte brukt for å identifisere enkeltpersoner
eller for å verifisere en hevdet identitet. Bruksområdene er mangfoldige. For ek-
sempel kan brukere låse opp smarttelefoner på en enkel må te ved å presentere
deres ansikt eller fingeravtrykk. Et annet eksempel er når ens identitet blir veri-
fisert når man krysser en landegrense. I dag kommer vi i kontakt med biometrisk
gjenkjenning flere steder i det daglige liv, og det vil komme flere fremover.

Utenom iris og ansikt, er fingeravtrykk det biometriske kjennetegnet som er mest
vanlig når det kommer til gjenkjenning. Fingeravtrykk er antatt å være unik for
hver enkelt finger. Dette gjør det til et ideelt kjennetegn for gjenkjenning. I tillegg
har fingeravtrykk mer enn hundre års tradisjon innenfor biometrisk gjenkjenning.
En stor andel ekspertise og teknisk utvikling har gjort det til en ganske moden
teknologi over tid. Kun noen få falske positive og falske negative feil blir gjort i
systemer som er tatt i bruk i dag.

Derimot er gjenkjenning av fingeravtrykk fremdeles langt fra å være perfekt. I
motsetning til hva folk flest tror, er ikke gjenkjenning basert på fingeravtrykk et løst
problem. Det er fremdeles mye arbeid som gjenstår. Etter hvert som biometriske
systemer blir større og mer inklusive oppstår det nye utfordringer. Systemer må
håndtere store mengder data samtidig som ytelse når det gjelder gjenkjenning og
transaksjonstider opprettholdes på et rimelig nivå. Gjenkjenning skal virke for
alle og skal ikke ekskludere basert på etnisitet eller undergrupper i befolkningen.
Det skal virke under alle forhold. Likevel, skal det ikke gjøres noen feilaktige
beslutninger. Den tekniske utviklingen kan ha nådd sine begrensninger på dette
stadiet.

I motsetning til klassisk ingeniørvitenskap kan maskinlæring basert på kunstige
nevrale nettverk være et rimelig alternativ. Den fremvoksende teknologien innen-
for dyp læring oppnår fremragende suksess innenfor flere områder av bildeproses-
sering og mønster gjenkjenning. Dette arbeidet undersøker anvendelsen av slike
innovative maskinlæringskonsepter på gjenkjenning av fingeravtrykk. Tre sent-
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rale aspekter og utfordringer innenfor fingeravtrykk gjenkjenning blir vurdert i de-
talj: Forbedring av fingeravtrykkprøver, estimering av orienteringsfelt, og effektive
prosesseringsstrukturer.
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Chapter 1

Introduction

1.1 Machine Learning

1.1.1 General Concepts

Machine learning is a discipline in computer science, which deals with making
predictions based on given information. A machine can actually learn to solve
tasks like making decisions, estimations, and predictions. Sophisticated learning
or training strategies exist and are applied to obtain a prediction.

Figure 1.1: In the classical workflow of pattern recognition, features are extracted by a
feature extraction process first. A classifier predicts from these features.

In this context, a classifier or modelM can be any algorithm, which generates a
prediction y from an input x of data. Depending on the context, a single input data
x may also called a sample, an observation, features, or just short data. Likewise,
a prediction y may be called an estimation or a decision. The modelM is therefore
a function of the input data x:

M : x 7→ y (1.1)

A model is called trainable, if the modelM depends on parameters Θ, which can
be optimized with respect to an optimization criterion. The modelM adjusts its
predictions according to the data it has experienced so far.

3
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Figure 1.2: A training strategy consists of three parts: presentation, loss function, and
parameter update. First, input is presented in a defined manner to a trainable modelM.
Then, the model generates predictions based on the input and its internal parameters Θ.
The loss function generates loss by evaluation of the predictions (optionally using label
data). The loss can be used to update the parameters Θ.

The training of a model M is driven by the input data that is learnt and by the
training strategy that is applied. A training strategy consists of three parts: a loss
function, rules for optimization of the parameters Θ, and a protocol for the present-
ation of training data (see Figure 1.2).

A loss function l is a function, that assigns a value of loss to a prediction given a
specific input data. The loss function may also be called a cost function and the loss
may be called a cost respectively. The loss function represents the optimization
criterion, which is a formal expression for the task, that the modelM shall learn:
If the model M reacts with the correct decision to a given input, a low loss is
assigned to this decision. However, if the modelM makes incorrect predictions,
higher losses are assigned. A loss function can consist of several partial losses.
Each partial loss may represent a single optimization criterion. Training a model
M shall reduce the loss function l of the model’s decisionsM(x,Θ) for an input
x and not necessarily required expected decision ŷ:

min
Θ
l(M(x,Θ), ŷ) (1.2)

Training a modelM is therefore an optimization problem. It is the optimization of
the adjustable parameters Θ within the model. In each optimization step, the para-
meters are updated according to what is currently learned. It is beneficial, if the
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loss function is differentiable with respect to the adjustable parameters Θ within
the modelM. Differentiability allows to modify the modelM in a systematic and
analytically reasonable manner. For example, it allows to apply a gradient descent
approach leading to a minimized overall error..

Another important aspect of the training strategy is the way, in which training data
is presented to the modelM. In some strategies single samples are presented to
a modelM in each training step. In other cases, sets of samples are presented to
the modelM, e.g. two samples at a time in Siamese Networks[34], three samples
in Triplet Networks[109], or sets of several samples like in SphereFace[193]. The
modelM then learns from these sets of samples, whether the they belong to the
same class.

If the modelM shall learn the relation between samples, the training strategy re-
quires such information on the relation. In case of biometrics, such an information
on relation may be whether two samples are mated meaning they stem from the
same source, i.e. the same biometric instance. Such information is often called
a label. But label information is not available in all cases. Thus, two types of
training can be distinguished: supervised and unsupervised training.1

For the former additional information is present and used during training. Gener-
ation of such label data can be expensive. Large amounts of labels are necessary
for successful training and reasonable testing of a trained model. In addition, the
labels have to be reliable to be useful.

For the latter, no additional information is required. Unsupervised training allows
to use any reasonable data without the need for labels. It is often used to discover
the relevant structure from the data, e.g. in Auto-Encoders [15].

The most common use case for the usage of label data is, that a model M shall
learn to predict the label from the input data. There are two categories of such
predictions: classification and regression. The former is used to predict discrete
values or classes. The latter is used for the prediction of continuous values.

A typical challenge in machine learning is a lack of generalization capabilities
of trained models: This is when trained models performs well on training data,
i.e. the data they already know, but fail when processing unknown test data. If
this is the case, the model is over-fitted to the training data. This may be due
to systematic differences between training data and test data. This difference is
known as the co-variate shift or dataset bias. But this also may be due to the fact,
that the model has learned the training data completely by heart. In general, every

1There are also hybrid versions of training, e.g. where only partial information is available.
These trainings are called semi-supervised.
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trainable parameter is actually a degree of freedom for a model. If a model has
too many degrees of freedom, it is likely to happen, that the model will over-fit
to the training data. However, being unable to deal with unknown data is critical,
since the model may fail in any environment, which is different from the training
environment. Special techniques have to be applied to enable a model’s ability to
generalize well to unknown data.

1.1.2 Hand-crafted Features versus Learning Features

The base of every decision are the features. The features need to be relevant for
the value to be predicted. In the domain of digital image processing, the obvious
input into a machine learning approach is an image. Usually, the images are not
processed directly. The features used for prediction need to be extracted from the
images first. One can distinguish between two types of features:

• Hand-crafted or engineered features

• Learned features

In classical, hand-crafted approaches, engineers design features that are extrac-
ted from the images. Usually, such features are chosen by the engineers, because
those features seem to be relevant for solving a given task. A feature extraction
approach relies on the expertise of its engineers. Thus, these features are under-
standable by a human. Such an interpretability might be required for transparency
in automatic reasoning, e.g. when applying forensic testing or the General Data
Protection Regulation of the European Union.

But is also possible to learn features in a data driven manner. In this case, stat-
istical and systematic characteristics are used as features. Commonly, data driven
approaches learn to extract helpful features, which are not of obvious relevance
for a given task. Thus, those features are more difficult to interpret compared to
traditional handcrafted features. An algorithm might extract features, which might
have no obvious relevance for a given task. In fact, the actual features might be
anything, what helps solving the given task. In contrast to engineered features,
learned features may be hardly understandable to a human in some cases. How-
ever, due to the analysis of the data, the data-driven approaches are likely to be
more effective than the engineered ones.

1.1.3 Neural Networks

Artificial Neural Networks (ANN) are a class of well known classifiers or mod-
els, which are inspired by a simplification of the behaviour of real neurons (see
Figure 1.3). This simplified behavior can be summarized as follows: An ANN is



1.1. Machine Learning 7

stimulated by external stimuli, i.e. the input data. Each neuron in the first layer of
the ANN is connected to all external stimuli. The external stimuli usually features
extracted from the original input data (see Figure 1.4). The values of the stimuli

Figure 1.3: In an ANN a single neuron generates a weighted sum of all inputs. The
weighted sum is propagated through an activation function. The result is the output of the
neuron. This output may be used as the input to another neuron.

are multiplied by factors within the neuron. The value of a single factor represents
the sensibility of the neuron to a specific input stimulus. These factors are called
weights and form the set of trainable parameters Θ of an ANN. The count of train-
able parameters usually ranged from less than a hundred for more easy tasks up to
a few tens of thousands for tasks like face recognition [168]. Actually, the weights
are adjustable. Thus, the sensibility of a neuron to a stimulus is trainable. The
weighted input stimuli are summed up. If this weighted sum of stimuli exceeds a
specific level of stimulation, the neuron generates a new stimulus. A non-linear ac-
tivation function is commonly used to represent this specific level. The commonly
used activation function for ANNs was the Sigmoid function σ:

σ(x) =
1

1 + exp−x
(1.3)

Figure 1.4: Artificial neural networks (ANN) are a class of classifiers, which can predict
from features (compare to Figure 1.1).
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In ANNs neurons are usually organized in sets. In general, each set of neurons
shares and processes the same input. These sets are called layers. The output
stimuli of all neurons of one layer can be used as the input to the next layer. The
layer dealing with the input data is usually called input layer. The last layer is
called output layer. All layers between the input and the output layer are called
hidden layers. Figure 1.5 visualizes the architecture of an ANN.

Figure 1.5: An ANN can consist of an arbitrary number of layers. Each layer consists
of an arbitrary number of neurons. The input layer deals with the input features. The last
layer is the output layer. All layers inbetween are called hidden layers. The output of each
layer can actually be the input to the next layer.

The Sigmoid function (see Equation 1.3) has some beneficial attributes. The func-
tion is smooth and it maps the entire range of real values to the range [0, 1]. More
important is the fact, that the Sigmoid function can be differentiated very easily:

dσ(x)

dx
= σ(x)(1− σ(x)) (1.4)

This keeps the effort required for differentiation quite low and allows to differ-
entiate the loss function with respect to the weights of the output layer. Figure
1.6 visualizes the mapping and the derivative of the Sigmoid finction. The input
of the output layer is the output of the layer before, which allows to differentiate
the loss in each layer with respect to the weights in the layer before. By applic-
ation of the chain rule for differentiation, the gradients of the loss function can
be computed for all parameters Θ within the ANN. This technique is called Error
Back-Propagation. It allows to apply a gradient descent for optimization on the
model’s weights Θ.

There is a solid theoretical foundation for ANNs [71]. An ANN can have a large
expressive capacity, i.e. how many function it can approximate. It can be shown,
that an ANN with at least one hidden layer can approximate any given target func-
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Figure 1.6: Classical ANNs used the Sigmoid function as transfer function. The Sigmoid
function is easily derivable.

tion, if the number of neurons in the layers is sufficiently large. They shall be able
to solve any problem at least theoretically.

The influence of the number of layers on the capacity is stronger than the influence
the number of neurons in each layer. The non-linearity of the activation functions
between the layers causes the expressive capacity of a model to grow exponentially
in the number of layers. Thus, one would prefer to use more layers over the usage
of more neurons per layer. Unfortunately, the Sigmoid function has an undesired
attribute: It damps the error which is propagated back significantly from each
layer to the next. The gradients calculated for each layer decreases the more layers
they are propagated to the front of the ANN. This phenomenon is called vanishing
gradients. It makes it hardly possible to update parameters in first layers of an
ANN.

There was no solution to the problem of vanishing gradients. Hence, shallow
networks of few broad layers with large numbers of neurons were used until Deep
Learning overcame this problem (see 1.1.4).

Application to images was difficult, too: The straight forward approach would be
to treat each pixel in an image as a single feature. This would of course result
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Figure 1.7: The family of functions σa(x) = 1/(1 + (exp(−ax))) can be tuned by a
slope parameter a. It can be used to approximate the unit step function while being still
differentiable.

in very large input feature vectors. Such a processing was neither reasonable nor
feasible. Development in the domain of neural networks slowed down. Other new
and powerful approaches in machine learning came up. Support Vector Machines
(SVM)[59] became state of the art for a long time, e.g. at the ImageNet benchmark
[249].

1.1.4 Convolutional Neural Networks

However, development and research in the domain of neural networks never died
entirely. Convolutional Neural Networks (CNN) came up with some brilliant ideas,
which allowed application to images and circumvented the known limitations in
ANNs [171]. CNNs paved the way for Deep Learning (DL).

The central idea for application to images is to change the way a neuron processes
a given input. A neuron in a CNN works like a digital filter on the input. The output
of a neuron is then a feature map rather than a single value. Such a filter can detect
a feature independent from the position of the feature. It keeps local coherence
in the output data, where casual ANNs would loose the coherence, because they



1.1. Machine Learning 11

treat the data as vectors (see Figure 1.8). It also reduces the numbers of parameters
significantly while keeping the capacity of a model.

Figure 1.8: In a CNN, neurons generate feature maps. Like in ANNs the output of a single
layer can be used as an input to another layer. This allows to recombine features. While
usually simple features are learned in the first layers of a CNN, features in later layers may
be very complex. This allows a remarkably large capacity of CNNs.

In addition, the activation function was changed from the Sigmoid function to a
Rectified Linear Unit (ReLU):

ReLU(x) = max(x, 0) (1.5)

This change may seem very little. Actually, it is an important change. The most
important attribute of an activation function is its non-linearity. ReLUs provide
the required non-linearity and allow an extremely simple differentiation, while not
damping the gradients.

d ReLU(x)

dx
=

{
1 for x > 0

0 for x < 0
and define

d ReLU(x)

dx

∣∣∣∣
x=0

= 0 (1.6)

The problem of vanishing gradients therefore was attenuated. Figure 1.9 visualizes
the mapping and the derivative of the ReLU function.

This in turn enabled the use of deep networks consisting of almost arbitrary num-
bers of layers, e.g. ResNet contains more than thousand layers with a total of 19.4
million parameters [107]. The number of trainable parameters in modern CNNs is
therefore by orders of magnitude larger than it used to be in ANNs. For constant
number of parameters, the capacity of deep models is significantly larger than the
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Figure 1.9: CNNs used the ReLU function as transfer function. Compared to the Sig-
moid function, it is derivable even more easily. It also evades the problem of vanishing
gradients..

capacity of shallow networks. Using many layers enables to recombine the fea-
ture maps of single layers. By doing so, simple features in the early layers can be
recombined to more complex features in the later layers.

In the early days of CNNs, the parameters of the models were initialized by soph-
isticated strategies [72]. For example, appropriately dimensioned Auto-Encoders
were trained in an unsupervised manner. This allowed to train layers, which can
describe the data in a reasonable manner. The trained layers were then used as the
layers of the model dealing with the actual problem. As the layers are already able
to represent the data reasonably, this initialization improved the convergence of the
training on the actual problem. Nowadays, such an initialization is not necessary
anymore and is therefore only seldom used, because models usually converge fast
enough.

These ideas coincided with two significant changes in the environment of machine
learning. First, large amounts of usable data became available with the steady
rising of the internet. For example, the vast amount of face images in Facebook
allowed training of a face recognition. This has been allowing to train models
with large amounts of trainable parameters. Second, Graphical Processing Units
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(GPU) came up, which allowed fast and highly parallel processing of such large
amounts of data. Both factors paved the way for CNNs in the first place.

Another important factor in the rise of DL is the commercial interest in the field of
data mining. Dealing with large amounts of information is an important economic
sector. Thus, global players like Google and Facebook fostered the development
and research in this field. They even share parts of their research and development
with the public and provide necessary technology and infrastructure, e.g. the DL
framework tensorflow [1].

Last but not least, the structure of CNNs is actually a paradigm shift. In classical
approaches, feature extraction and pattern recognition are separated: First, features
are extracted from the data. Second, a decision is made based on the features. Both
aspects were improved and optimized separately. In contrast, one simply cannot
separate both aspects in CNNs (compare Figures 1.1,1.4, and 1.10). It is not clear
in which layer the feature extraction ends and the decision making starts. Thus,
both aspects are trained jointly. This holistic approach allows to learn to extract
features, that actually help making the correct decision.

Figure 1.10: The workflow of a CNN is different to the one of the classical approach
(compare to Figure 1.1). CNNs do not clearly split feature extraction and decision making.
This allows to train a feature extraction, which is helpful for solving the actual task.

Then in 2012, CNNs finally had their breakthrough at the famous ImageNet bench-
mark [163]. CNNs significantly improved the performance over the former state of
the art [248]. They suddenly became state of the art themselves. Today, almost all
benchmarks in the domain of image processing and pattern recognition are dom-
inated by CNNs. Tremendous improvements in performance were achieved over
the last years in terms of accuracy as well as speed [242]. Nowadays, CNNs even
outperform human performance, e.g. playing the game Go [90].

Meanwhile, there are DL frameworks and tutorials freely available, which al-
low an easy access to this powerful technology, e.g. Tensorflow[1], theano[284],
PyTorch[232], keras[58], or caffe[141]. This is boon and bane of this develop-
ment. On the one hand, anyone capable of minimal programming skills is able to
use DL. It enables everyone to do research with this powerful tool. On the other
hand, it might be even too easy to use. Even in academia DL often seems to be
applied without any understanding of DL itself. Reproducibility of reported results
in research is seldom given. In some cases, the researchers even admit, they cannot
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repeat their own experiments, e.g. the famous GoogLeNet [278]. Little assessment
of consequences of the results produced is given.

Improvements in GPU technologies and DL strategies led to very deep models.
Models with more than a thousand layers were trained successfully [107]. Such
models achieve impressive results. However, this depth makes what is happening
inside a model hardly understandable. Deep networks need to be treated as black
boxes.

This lack of understanding is only one of the current challenges in DL. There are
several further critical challenges, that stand against the great successes of DL.

While there is a solid theoretical foundation for ANNs, there is no such foundation
for CNNs. We are only about to start getting an idea, what is happening exactly
inside the model. We also do not know, why it is happening. CNNs therefore
achieve only unreasonable successes so far. However, the DL community is aware
of the problem and tries to improve on both aspects: understanding of the theory
and understanding of the actual models [93]. Another branch of science in this
domain is concerned with explainable artificial intelligence [99]. This branch of
research may also introduce a feedback to hand-crafted feature design: Learning
and understanding of the successes may be used to improve hand-crafting and
engineering of features.

CNNs can be very sensitive to the input data. Actually, the ill position of the prob-
lem resulted in the effect, that small changes in the input data can force the models
to fail. For examples, adversarial samples were designed by minimal distortions
of actual data with the aim to disturb a trained model [277]. There are adversarial
samples with distortion so small, that they are not perceivable, i.e. below the quant-
ization level for discrete valued images. Such samples show, that the processing
models are very sensitive to the input data. This is of course also an indicator
for overfitting. Today, research works on this challenge. Generative Adversarial
Networks (GAN) are used to generate samples from the data already learned [92].
Such samples can in turn be used to improve the stability of a model.

Another obvious challenge is the fact, that models grew larger and larger over
time. While smaller networks are already complex, larger networks are even more
complex. This actually is a problem in many ways. Most importantly, too large
networks are simply not deployable on systems with limited resources. There is a
branch of research in the domain of DL, that deals with improvements on the trade
off between capacity and resources [113].
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Another important issue in the near future will be the usage of unsupervised tech-
niques. Unsupervised learning can be seen as understanding the data by the data
itself. Not being dependent on labelled data will enable further improvements.

Last but not least, another open issue so far seems to be the amount of data used
for training. For many problems only little data is available. Learning and gener-
alization from very little sample data is one of the most impressive effort of our
human brains. This ability represents the understanding of concepts rather than
just making good predictions. To my mind, the most import challenge in the next
years will be dealing with little data. I assume, that solving this challenge will
again enable ground breaking improvements for DL.
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1.2 Fingerprint Recognition and its Challenges

1.2.1 Biometric Recognition

Biometric recognition is defined as the "automated recognition of individuals based
on their behavioural and biological characteristics"[126]. A biometric character-
istic requires mainly two attributes for an unambiguous recognition: uniqueness
and stability over time. On the one hand side, a biometric trait shall be unique for
every individual, i.e. the biometric trait must be different for different individuals.
No two individuals shall share the same biometric characteristic. Only uniqueness
of a trait allows to unambiguously recognise an individual. If a biometric trait is
not unique, several individuals share the very same trait and biometric recognition
will therefore be ambiguous. On the other side, a biometric characteristic shall be
stable over time. Such stability allows a repeatable usage of the biometric char-
acteristic for recognition. Only if stability is given, the biometric characteristic is
usable for long term biometric recognition. If a biometric characteristic changes
over time, biometric recognition needs to deal with the changes. For only slight
changes in the biometric characteristic, biometric recognition may still be feas-
ible. Significant changes over time may make biometric recognition impossible. If
a trait changes fast, only short term usability of a biometric characteristic may be
possible.

There are several biometric characteristics which fulfil both requirements. Each
may be used for biometric recognition. However, only three of those characterist-
ics are used most often in public responsibilities or in commercial domain: finger-
print, face, and iris [37].

Use cases for the application of biometric recognition are manifold. Recognition
of individuals in public responsibilities happens for example during immigration
across national borders. In the commercial domain biometric recognition has many
use cases. Whenever an individual has to be recognized by another party, biomet-
rics are applicable, e.g. when recognizing a bank customer at an ATM or when
unlocking a smart phone.

One can distinguish mainly two scenarios of application of biometric recognition:
identification and verification. The former scenario is defined as the "process of
searching against a biometric enrolment database to find and return the biometric
reference identifier(s) attributable to a single individual"[126]. The latter scen-
ario is defined as the "process of confirming a biometric claim through biometric
comparison"[126]. Thus, the difference between both is the interaction of the in-
dividual to be recognized. In case of verification the individual claims an identity,
while in identification no identity claim needs to be made. This results in different
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workflows. In verification the biometric characteristic of the individual to be re-
cognized is compared against the biometric characteristics attributed to the claimed
identity. Therefore, only a single comparison is performed. In case of identific-
ation, the biometric characteristic of the individual to be recognized is compared
against a set of biometric characteristics from known individuals. Two different
modes can be distinguished for the scenario of identification: closed set and open
set identification. In the former, the individual to be recognised is contained in the
set of known individuals. Therefore, recognition of the individual is possible. In
the latter, the individual does not have to be in the set of known individuals. Thus,
recognition of the individual does not have to be possible.

1.2.2 Fingerprints as a Biometric Characteristic

Fingerprints fulfil both requirements to allow long term biometric recognition.
Typically, the structure of the friction ridges is used as a biometric feature for
recognition. Biometric features are actually defined as "numbers or labels extrac-
ted from biometric samples and used for comparison"[122]. The friction ridge
structure alternates between ridges and valleys. The resulting structure is at least
assumed to be unique for every finger and for every individual even though there
is a discussion about the uniqueness [203]. In addition, for the aspect of stability
"‘the validity [...] has been established by empirical observations as well as based
on the anatomy and morphogenesis of friction ridge skin"’[203]. Of course, finger-
prints alter over time. A finger grows during childhood and so does the fingerprint
[96]. In addition, the skin of the finger ages. However, despite these changes
the relevant information can be represented invariant to these changes. Significant
changes of the relevant information will usually only happen, if the fingerprint was
altered by severe accidents or damaged by intention to evade identification [323].
As long as the relevant information is not altered significantly, stability over time
is therefore given.

Using fingerprints for biometric recognition has a long tradition. Systematic usage
of fingerprints goes back far more than the 20th century [81]. Computer aided
recognition of fingerprints has a tradition even as long as there is computer aided
image processing. Fingerprint recognition is an active field of research with global
attention. Over decades of sophisticated engineering, fingerprint recognition has
evolved to a mature technology. Today, fingerprints can be processed fast and
fingerprint identification systems can reach a high level of accuracy [310].

1.2.3 Fingerprint Identification System

The typical workflow in a fingerprint identification systems is as follows (see also
Figure 1.11 for the schema of an entire system): The workflow starts with the
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acquisition of the fingerprint samples from the actual fingerprints. Typically, the
fingerprint samples are digital images. There are several modes and techniques for
the acquisition of a fingerprint sample.

Figure 1.11: A generic biometric system contains subsystems for data capturing, signal
processing, data storage, comparison, and decision. Different workflows apply for the
modes enrolment, verification, and identification [120].

The acquisition technique describes how the fingerprint is acquired. There is a
multitude of techniques. There are dedicated capturing devices, which are called
livescanners. Such devices may have various technical details and may differ in
the physical principles, which are used for acquisition, e.g. optical or capacitive
sensors. Fingerprints may also be acquired with ink on paper. In some cases,
the fingerprint is not even present at all: latent fingerprints or fingermarks are
evidences from crime scenes (see Figure 1.12). In many cases, latent fingerprints
contain only little information. The utility of such fingerprints for identification
is only low. However, processing of latent fingerprints is a public demand, e.g. in
recently published EU regulation 2018/1861 [231] They are acquired with forensic
tools. Of course, any camera can be used for the acquisition of fingerprint, e.g. a
smart phone camera.

The acquisition mode describes how a fingerprint is presented to the acquisition
technique. The fingerprint may be placed plain on an acquisition surface. It also
may be rolled over the surface of a capture device. In some cases, the fingerprint
may be swiped over a line scanner, e.g. in smart phones and notebooks. While the
former modes are all contact based, fingerprints may also be captured contactless.
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Figure 1.12: Latent fingerprint or fingermarks usually are of low quality and may contain
only few minutiae ( ).

For latent fingerprints, the finger is not present during the acquisition process at
all.

Commonly, features are extracted from the fingerprint, which are relevant for the
process of the biometric comparison. What happens to these features depends
on the use case. If the individual shall be enrolled to a fingerprint identification
system, then the features will be stored as a biometric data record into a biometric
reference database. If the use case is an identification, the features are compared
in a biometric comparison against features from a biometric reference database of
enrolled individuals. If the use case is a verification, the features are compared
against those features enrolled to the biometric reference database for the claimed
identity. Thus, in the latter two cases a biometric comparison will be carried out.

Each comparison generates a biometric score. This number is related to the prob-
ability of both two feature sets belonging to the same fingerprint. Based on this
number a candidate list is generated in case of identification. In case of verification
a comparison decision is made.

1.2.4 Features from Fingerprints

Fingerprints contain several features for biometric recognition. Usually, three
levels of features are distinguished: 1st, 2nd, and 3rd level features. These features
represent a fingerprint from coarse to fine.

1st level features roughly describe a fingerprint at a global scale (see Figure 1.13).
A typical example for such a feature is the orientation field. The orientation field is



20 Introduction

(a) Arch (b) Whorl (c) Right loop (d) Right loop

Figure 1.13: The orientation field of a fingerprint is a representation for the local orienta-
tions of the ridge structure. The presence or absence of singularities within the orientation
fields significantly govern the orientations fields and builds typical patterns. Those singu-
larities are cores and deltas . The green lines emphasize the flow of the ridges around
those singularities. The relative positions of the singularities can vary the shape signific-
antly within a pattern type (compare Figures 1.13(c) and 1.13(d))

a representation for the local orientation of the fingerprint ridges. Presence and po-
sition of singularities within the orientation field mainly govern the pattern of the
orientation field itself. These typical patterns can be used as a feature in biometric
recognition. Since this feature is not unique, it cannot be used for reliable recogni-
tions. However, it allows exclusion during biometric comparisons, i.e. it allows to
decide reliably, whether fingerprint samples are non-mated, i.e. "paired biometric
probe and biometric reference [...] are not from the same biometric characteristic
of the same biometric data subject"[126].

In contrast to 1st level features, 2nd level features are unique for every fingerprint.
Thus, those features can be used for recognition. The classical features in fin-
gerprint recognition are fingerprint minutiae. A minutia is a distinctive point in
the fingerprint ridge structure. The two most prominent examples of minutiae
are ridge endings and ridge bifurcations (see Figure 1.14). An ending is a point,
where a ridge ends. A bifurcation is a point, where a single ridge splits up into
two ridges. Rarely, trifurcations occur, i.e. where a single ridge splits up into three
ridges. There are more known types of minutiae. All of them can be composed
from two minutiae, e.g. an island or point is a very short ridge delimited by two
ridge endings, which are very close together. Besides its type, a minutia has several
further features. The two typical features are a minutia’s position and its direction.
The position represents where the minutia is located within a fingerprint. The
direction can be derived from the minutia’s type and the local orientation of the
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(a) Ridge Bifurcation (b) Ridge Ending

Figure 1.14: Minutiae are characteristic points in the fingerprint ridge structure. The
points where single ridges split up into two ridges are called a bifurcations (1.14(a)). An
ending is the point, in which a ridge ends (1.14(b)).

fingerprint ridges at the position of the minutia. A single minutia does not make a
fingerprint unique. The relations of positions, directions, and types of all minutiae
in a fingerprint make it unique.

While 2nd level features are already quite small and local structures, 3rd level fea-
tures are even more detailed features of a fingerprint. The typical 3rd level feature is
a sweat pore. Those pores are located on the ridges. High resolutions (> 1000 dpi)
allow to capture this tiny detail reliably. Only for some few sensors with high util-
ity properties pores can be identified even in 500 dpi samples. Since the resolution
required for a reliable acquisition of pores usually exceeds the standard resolution
of 500 dpi, pores are not always detectable and are therefore only rarely used for
recognition. However, pores are very distinctive for a fingerprint. Like minutiae,
the positions and shapes of pores are unique for every fingerprint.

There is a classical workflow, which allows to extract the fingerprint minutiae from
a fingerprint sample. It consists of several processing steps. The workflow can
roughly be sketched as follows. First, the orientation field is extracted. Second,
the local distance between the ridges is estimated based on the orientation field.
Therefore the distance between adjacent ridges is measured orthogonal to the local
orientations. Third, an enhanced instance of the original fingerprint sample is gen-
erated. To do so, a filtering is applied which takes into account the local orient-
ations and the local frequencies, which can be derived from the local distances
between ridges. Usually, Gabor filters are used for the enhancement as they are
able to take orientation and frequency into account [110]. The resulting enhanced



22 Introduction

image contains the clear structure of the fingerprint ridges. Forth, the structure is
reduced to a graph-like structure by a skeletonization [128]. Finally, the minutiae
are extracted directly from the graph. Information on the position and the type of a
minutia can be extracted from the graph. The combination of the local structure of
the graph and the orientation field allows to extract information on the direction of
a minutia [121]. Figure 1.15 visualizes this workflow of extracting minutiae from
fingerprint samples.

Figure 1.15: The classical approach to extract minutiae from a fingerprint consists of
several processes. First, the orientation field is estimated. Then, local ridge frequencies are
estimated based on information from the fingerprint sample and the orientation field. In the
next step, the sample can be filtered taking local orientation and frequencies into account.
Finally, minutiae can be extracted from the resulting ridge structure. The orientation of
each minutiae can be derived from the orientation field.

This workflow only hinted here is straight forward and easy to implement. How-
ever, there are several challenges in the extraction of fingerprint minutiae.

Many processes like the estimation of the local frequencies rely on an accurate
estimation of the orientation field. Thus, the estimation of the orientation field is
a crucial task in this classical workflow. Estimations in areas of high curvature are
more difficult, because the variation is higher there.

For fingerprint samples of good quality the extraction is not challenging at all.
Even simple gradient based approaches work well for good quality images (see
Table 8.1). However, in case of low quality fingerprint samples, the extraction
will be more challenging. Low quality fingerprint samples may have several reas-
ons. Skin diseases, environmental conditions disturbing the acquisition process,
or simply inappropriate acquisition equipment are only some aspects, which might
result in low quality fingerprint samples. Estimation of the orientation field or es-
timation of the local frequency in areas of low image quality may fail. Filtering
with erroneous information on orientation or frequencies will result in an erro-
neous enhanced ridge structure. The final graph-like structure may be disturbed
significantly in this case. The disturbance can affect all aspects of information of a
minutia. For example, the direction and position of the minutia can be inaccurate.
Beside these inaccuracies, another type of erroneous extraction may even be more
severe: unreliability. Spurious minutiae may be extracted at locations where there
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is no minutia at all (see Figure 1.16). On the other hand side, actual minutiae might
be missed by the feature extraction.

Figure 1.16: Feature extractor MINDTCT finds many valid minutiae close to actual minu-
tiae ( ). However, minutiae are not always extracted semantically conform to actual
minutiae: Some actual minutiae are missing ( ) and also some spurious minutiae ( )
were introduced. Ground truth data was manually marked-up [148].

An inevitable aspect is the fact, that a fingerprint sample is only a sample. In
general, not all information of the fingerprint is included in the sample. Thus, the
extracted features will be incomplete. Incompleteness will be severe, if only a
small part of the fingerprint is present in the sample. However, this challenge of
incompleteness has to be dealt during the biometric comparison process.

Figure 1.17 visualizes the entire workflow of transforming a fingerprint into bio-
metric features.
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Figure 1.17: Extracting features from fingerprints represents the first part of the classical
machine learning workflow (compare to Figure 1.1). The workflow consists of acquisition,
preprocessing, and the actual feature extraction.

1.2.5 Fingerprint Comparison

Classical comparison of fingerprints uses minutiae as main features. Each finger-
print sample is represented by a set of minutiae, which were extracted from it. Each
set of minutiae can be interpreted as a point cloud. Thus, fingerprint comparison
can be seen as a point cloud similarity estimation problem.

As these point clouds are usually unaligned, one has to determine the relative po-
sition and orientation of the point clouds to each other. An exhaustive comparison
of the entire point clouds is too expensive in terms of computational effort. In the
next step, the corresponding neighbourhoods are inspected for consistency with
respect to their local relation. After some corresponding minutiae have been de-
termined, the point clouds can be aligned, such that both point clouds overlap best.
Finally, the two point clouds can be inspected for their similarity.

There are also challenges in the biometric comparisons. Some are effects of the
challenges of biometric feature extraction. Others are intrinsic to the comparison
process.

The challenges inherited from feature extraction are manifold. Due to the fact,
that a fingerprint sample is only a digital representation of the fingerprint, bio-
metric comparison has to deal with the differences between samples and actual
fingerprints. For example, the acquisition process might have introduced distor-
tions into the fingerprint sample. Distortions will occur for example, if the finger
is pressed on an contact-based capture devices. For finger photos from contact-less
capture devices, no distortions occur. However, in this case biometric comparison
has to deal with the degree of freedom arising from the free movement of the finger
during capturing. Eventually, all challenges can be summarized to the fact, that the
point clouds are unreliable, inaccurate, and incomplete.

The intrinsic challenges of the comparison process can be described best, if one
inspects and understands the outcome of a biometric comparison. The outcome of
a single biometric comparison of two fingerprint samples is a biometric score. This
score is more or less related to two different probabilities. First, it is related to the
probability, that the two compared fingerprint sample are mated, i.e. they belong
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to the very same fingerprint. Second, this score is also related to the probability,
that the two compared fingerprint samples are non-mated, i.e. they belong to two
different fingers.

The score is the base for a decision. For example, in the case of a verification
attempt the claimed identity might be accepted, if the score exceeds a specific
threshold. In this case the threshold can be interpreted as a required level of confi-
dence, that the two compared fingerprint samples are mated or vice versa that they
are not non-mated.
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1.3 Evaluation Methodology
The decisions whether two fingerprints are mated are not always correct. There
are two types of errors: false mates and false non-mates. If two fingerprints are
actually mated but decided by the decision subsystem to be non-mated, these will
be false non-mates. Vice versa if two fingerprint samples are non-mated but de-
cided to be mated, those will be false mates. The central challenge in fingerprint
comparison is of course to cause as little decision errors as possible. However,
there are three aspects which are most important to describe a Automated Biomet-
ric Identification System (ABIS): accuracy, accessibility, and speed [119].

Figure 1.18: Biometric decisions are made based on the biometric scores and a threshold
to be applied. If the score of a non-mated comparison exceeds a given threshold, a false
match error will occur. If the biometric score of mated comparison does not exceed a given
threshold, this will result in a false non-match error.

The aspect of accuracy is usually assessed in terms of error rates, i.e. the expec-
ted probabilities for the occurrence of errors. There are two error rates, which
can be derived for the types of errors being made during the biometric compari-
son. The probability for an erroneous decision for a comparison being non-mated
is represented by the false non-match rate (FNMR). The respective error rate for
comparisons being erroneously decided to be mated is the false match rate (FMR).
FNMR and FMR consider only errors resulting from the biometric comparison and
therefore are used for algorithm evaluation. When an entire ABIS is analysed, ac-
quisition error need to be taken into account, too. In this case false acceptance
rate (FAR) and false rejection rate (FRR) are used for system evaluation. Neither
FNMR nor FMR take prior probabilities for mated or non-mated comparisons into
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account. The decision whether two samples match is obtained by thresholding the
comparison against a predefined score value. Thus, both FNMR and FMR are in
general depending on a threshold. Throughout this thesis a technology evaluation
according to ISO/IEC 19795-1[118] is conducted, where data-subject to capture
device interaction and corresponding failure to capture cases are not investigated.
Thus all evaluations report algorithm performance. However, the relevant metric
for the former type of failures is the Failure-To-Enrol Rate (FTE) which repres-
ents the "proportion of the population for whom the system fails to complete the
enrolment process" [118]. The latter type of failures is tracked by the Failure-To-
Acquire rate (FTA), which stands for the "proportion of verification or identific-
ation attempts for which the system fails to capture or locate an image or signal
of sufficient quality" [118]. Figure 1.18 visualizes two exemplary distributions of
comparison scores and the respective errors to be made for both types of compari-
sons. FNMR and FMR can be plotted versus the threshold to visualize a system’s
error rate when the threshold is varied (see Figure 1.19(a)). As error rates are usu-
ally quite low, they are plotted in a logarithmic scale (see Figure 1.19(b)). Such

(a) Linear (b) Logarithmic (c) DET

Figure 1.19: Based on a variable threshold, the expected error rates will vary (1.19(a)).
As the error rates can be relative small, a logarithmic scaling may be reasonable (1.19(b)).
Detection error tradeoff (DET) curves allow an comparison of different systems (1.19(c)).
These plots are common tools to inspect biometric systems in case of a verification scen-
ario.

plots allow an inspection of the behaviour of a single system with respect to the
threshold. In general, different systems vary in their behaviour with respect to
the threshold. This complicates comparison of systems. Detection error tradeoff
(DET) curves are independent of any threshold and allow comparison between dif-
ferent systems (see Figure 1.19(c)) [118]. FNMR, FMR, and DET curves are used
for the scenario of verification.
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For the scenario of identification, other metrics are applied. Usually, candidate lists
of potentially mated individuals are generated.2 Thus, the order of the comparison
scores is usually more important than their actual values. For such cases, a rank-
based assessment is reasonable. Typically, cumulative match characteristic (CMC)

Figure 1.20: Cumulative match characteristic (CMC) curves allow a rank-based com-
parison of different systems in the identification scenario. CMCs consider the rank of
biometric scores. The x-axis may also be displayed relative to the size of the reference
database to be searched.

curves are used for visualization of rank-based analysis (see Figure 1.20). In this
case, two rates are mainly of interest: the False-Negative Identification-Error Rate
(FNIR) and the False-Positive Identification-Error Rate (FPIR) . For given rates
FMR, FNMR, and FTA, both rates FNIR and FPIR can be approximated as follows
[118]:

FNIR = FTA + (1− FTA) · FNMR (1.7)

FPIR = (1− FTA) · (1− (1− FNMR)N ) (1.8)

where N is the size of the biometric reference database. If one assumes FTA = 0
to focus on the algorithm errors, the equations simplify to the following:

FNIR = FNMR (1.9)

FPIR = 1− (1− FNMR)N (1.10)

The rate FPIR therefore significantly depends on the size of the biometric reference
database N .

2Actually, thresholds are also considered in some generation policies for candidate lists.
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In some cases, pre-selection algorithms are used to reduce the workload for the
actual identification algorithm. Such an algorithm is defined as an "algorithm
to reduce the number of templates that need to be matched in an identification
search of the enrolment database" [118]. For pre-selection algorithms, there two
rates central metrics: the penetration rate (PR) and the Pre-Selection Error Rate
(PSER) . The former is defines as the "measure of the average number of pre-
selected templates as a fraction of the total number of templates" [118]. The later
is the occurrence rate of pre-selection errors. A single pre-selection error is defined
as the "error that occurs when the corresponding enrolment template is not in the
preselected subset of candidates when a sample from the same biometric charac-
teristic on the same user is given" [118].

Defining a threshold or the policy for candidate list generation for a biometric
system influences a systems behaviour significantly. There is a typical tradeoff
between convenience and security in an ABIS. For more secure verification sys-
tems, one will likely allow a higher FNMR to enforce a low FMR. Convenient
verification systems will vice versa allow a higher FMR to ensure a low FNMR
[118].

For the case of pre-selection algorithms there are related metrics, which are used
for the evaluation at benchmark framework FVC-ongoing. At this benchmark, two
metrics are central: PR and Error Rate.3 The benchmark interprets PR as "the
portion of database that the system has to search on the average (corresponding
to the average length of the candidate lists)"3 and defines ER "as the percentage
of searched fingerprints that are not found"3. The benchmark evaluates candidate
lists returned for each identification search. The relation of ER and PR depends on
an additional parameter MaxPR. This parameter controls the maximum percentage
of the candidate list length relative to the size of the entire biometric reference
database NDB. Let Nq be the number of searches and let Ci be an ordered list of
Ni candidates returned for the i-th search. Then the effective length L(i,MaxPR)
of a candidate for i-th search containing at most MaxPR items is defined as follows:

L(i,MaxPR) = min(MaxPR, Ni) (1.11)

while a single error Err(i, L) for such a list is defined as:

Err(i, L) =

{
1 if the i-th mate is not in the first L candidate of Ci
0 otherwise

(1.12)

3https://biolab.csr.unibo.it/FvcOnGoing/UI/Form/BenchmarkAreas/BenchmarkAreaFIDX.aspx
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For a given maximum percentage MaxPR, the rates ER and PR are then evaluated
as follows:

PR(MaxPR) =
1

Nq

Nq∑
i=1

L(i,MaxPR)

NDB︸ ︷︷ ︸
Average PR considering at most MaxPR candidates

(1.13)

ER(MaxPR) =
1

Nq

Nq∑
i=1

Err(i, L(i,MaxPR))︸ ︷︷ ︸
Average ER considering at most MaxPR candidates

(1.14)

FVC-ongoing finally reports two rates: ER100 and ER1000. The former repres-
ents the lowest PR for ER ≤ 10−2 and the later represents the lowest PR for
ER ≤ 10−3. In addition, the Incremental Search scenario is defined as the scen-
ario "where an ideal matching algorithm is used to stop the search as soon as the
right candidate is retrieved, is considered. In such a scenario there are no retrieval
errors since, in the worst case, the search can be extended to the whole database,
and the average penetration rate is reported as"3 the rate IS.

The benchmark FVC-ongoing is essential for the evaluation of pre-selection al-
gorithms. Therefore, this work focusses on the metric used in this benchmark.
The rate IS is considered to be most important, since it indirectly aims for an op-
timal workload reduction while allowing no false non-identification errors in the
closed set identification scenario.

The aspect of accessibility monitors the limitations of an ABIS due to the indi-
viduals themselves. There may be individuals who are not able to provide sample,
e.g. if they are actually missing some fingers.

Of course, the aspect of transaction times is important, too. If an ABIS cannot
provide recognition within a reasonable and appropriate time, it might be useless.
This might be challenging for example in case of the identification scenario and
large databases. Identification might simply take too much time. But it also may be
challenging in the verification scenario, if the computational resources are sparse,
e.g. on smart cards.



1.4. Challenges 31

1.4 Challenges
There are more challenges in fingerprint recognition than those challenges men-
tioned above for biometric feature extraction and biometric comparison.

Nowadays, ABIS get larger and larger.4 Each and every new enrolled individual
enlarges the biometric enrolment database. The enlargement increases the work
load of the ABIS for every identification attempt. This in turn degrades the aspects
of the performance of systems described earlier: The more individuals are enrolled,
the more time a query in the biometric enrolment database will take. Thus, the re-
sponse time will increase and speed decreases. The more individuals are enrolled,
the more likely it is for a ABIS to make errors, too: Especially the FPIR decreases
significantly in the size of the dataset (see Equation 1.10). A famous example for
a false positive identification due to large databases is related to the Madrid train
bombing in March 2004. Since the bomber could not be found within Europe,
the search was widened globally. Due to this worldwide search, the size of the
biometric reference database of possible candidate was tremendous. A candidate
was found, whose fingerprint had a high likelihood to a trace found at the crime
scene. Despite this high likelihood, which was also assured by forensic experts,
he was not the bomber and was arrested wrongly [252]. It was a false-positive
identification, which might be inevitable for large biometric reference databases,
when other means of identification are not taken into account. Utilized techniques
need to keep this scaling issue to a reasonable order.

The multitude of variable components is an additional source of challenges. In-
teroperability is challenging in many ways. There are standardized formats for
interchange of fingerprint minutiae data [121]. Furthermore, there are three levels
of conformance tests for these formats. While conformance testing level 1 checks
the validity the structure of the format, level 2 deals with the internal consistency
of the stored data. However, different acquisition techniques result in varying char-
acteristics of the fingerprint samples [244]. Conformance testing level 3 actually
deals with variance, since this level is about semantic conformance of the stored
data to the actual fingerprint [36][4]. Feature extraction or preprocessing of finger-
print samples must be able to deal with such differences. Biometric features from
different acquisition modes can be very dissimilar. A biometric comparison of fin-
gerprint samples acquired as plain fingerprints needs to be at least slightly different
from a comparison dealing with fingerprint samples acquired as rolled fingerprints.
Different feature extractors extract biometric features differently [98]. The differ-

4 The Aadhaar project has today’s large scale ABIS par excellence. It aims to enrol the entire
population in the Republic of India [84].
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ences are systematic and can be significant. Biometric comparison of biometric
features with such varying characteristics is challenging.

Low quality of fingerprint samples is a central challenge in fingerprint recognition.
The lower the quality of a fingerprint sample is, the lower is its biometric utility, i.e.
its suitability for a reliable biometric recognition [123]. There are several causes
for low quality, e.g. unconstrained acquisition conditions. Low quality may also
be the result of skin issues due to work or skin diseases. Latent fingerprint samples
from evidence at crime scene are examples for very low quality. Biometric sample
quality for fingerprint images can be estimated by using ISO/IEC standard 29794-4
[124]

Beside the described challenges there are more open issues, of course. For instance
Presentation Attack Detection [125] and Biometric Template Protection5 [129] will
be essential for long term credibility and applicability in high security ABIS.

5 Once a biometric template is "stolen", it might be used to attack a ABIS. An individual’s
fingerprint, face, or iris is not changeable. Instead of storing plain biometric data, combinations of
biometric data with revocable helper data are stored in biometric data records. This allows regener-
ation of a biometric data record.



Chapter 2

Contribution

2.1 Research Objectives
Classical fingerprint recognition consists mainly of the two processes: biomet-
ric feature extraction and biometric comparison. Both processes are based on best
practices in engineering of image processing and pattern recognition. DL achieved
remarkable improvements in the domains of image processing and pattern recog-
nition. Despite these successes, DL had only very little application in fingerprint
recognition until recently. Thus, the main objective was the comparison of hand-
crafted approaches to DL approaches in fingerprint recognition:

"Comparison of hand-crafting and Deep Learning approaches in fingerprint re-
cognition"

However, this core objective is very general. Replacing the entire process of finger-
print recognition by a new one would be way too difficult to evaluate. Evaluation
of all aspects concerned would not be feasible. However, biometric feature extrac-
tion as well as biometric comparison are no monolithic processes. Both assemble
from modules performing single processing steps, e.g. estimation of the orientation
field. In conventional biometric information systems, each module is based on en-
gineered features. Thus, each processing step is a candidate for being replaced by
a process, which makes use of DL. Evaluation on the level of single modules is
reasonable and feasible.1

1 The influence of a single processing step on the entire workflow of fingerprint recognition
cannot be identified explicitly. However, the performance of the entire biometric recognition is the
most central fact for application. Therefore, the performance shall always be kept in mind.

33
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Since the objective is very general, several more specific research objectives can
be deducted from the challenges, which have been identified for fingerprint re-
cognition (see Section 1.4). In particular, research objectives arise with respect to
dealing with fingerprint samples of low quality, to estimation of the orientation
field, and to application of DL for efficient processing structures for fingerprint
recognition systems.
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2.2 Research Questions
The core objective just spans the larger frame of the research. The actual research
questions address the more specific research objectives in Section 2.1. The three
following research questions were derived:

RQ1 "Can DL outperform classical fingerprint sample enhancements?"

RQ2 "Can DL be used for a better orientation field estimation?"

RQ3 "Can DL provide solutions for efficient processing structures?"
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2.3 Publications
These publications addressing the research questions are part of this dissertation:

RQ1 "Can DL outperform classical fingerprint sample enhancements?"
[265] P. Schuch, S. Schulz, and C. Busch. Survey on the impact of fingerprint

image enhancement. IET Biometrics, 7:102–115(13), March 2018. ISSN
2047-4938. URL http://digital-library.theiet.org/content/

journals/10.1049/iet-bmt.2016.0088
[257] P. Schuch, S. Schulz, and C. Busch. De-convolutional auto-encoder for en-

hancement of fingerprint samples. In 6th International Conference on Image
Processing Theory, Tools and Applications (IPTA), pages 1–7. IEEE, 2016

[258] P. Schuch, S. Schulz, and C. Busch. Minutia-based enhancement of finger-
print samples. In International Carnahan Conference on Security Techno-
logy (ICCST), pages 1–6. IEEE, 2017

RQ2 "Can DL be used for a better orientation field estimation?"
[259] P. Schuch, S.-D. Schulz, and C. Busch. Convnet regression for fingerprint

orientations. In Scandinavian Conference on Image Analysis, pages 325–
336. Springer, 2017

[260] P. Schuch, S.-D. Schulz, and C. Busch. Deep expectation for estimation
of fingerprint orientation fields. In IEEE International Joint Conference on
Biometrics (IJCB), pages 185–190. IEEE, 2017
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orientation estimation. International Conference of the Biometrics Special
Interest Group (BIOSIG), 2017

RQ3 "Can DL provide solutions for efficient processing structures?"
[256] P. Schuch. Survey on features for fingerprint indexing. IET Biometrics, June

2018. ISSN 2047-4938. URL http://digital-library.theiet.

org/content/journals/10.1049/iet-bmt.2017.0279
[264] P. Schuch, J. M. May, and C. Busch. Unsupervised learning of fingerprint

rotations. In 2018 International Conference of the Biometrics Special In-
terest Group (BIOSIG), pages 1–6, Sept 2018. doi: 10.23919/BIOSIG.2018.
8553096

[262] P. Schuch, J. M. May, and C. Busch. Estimating the data origin of finger-
print samples. In International Conference of the Biometrics Special In-
terest Group (BIOSIG), pages 1–6, Sept 2018. doi: 10.23919/BIOSIG.2018.
8553235

[263] P. Schuch, J. M. May, and C. Busch. Learning neighbourhoods for finger-
print indexing. In 2018 14th Signal Image Technology and Internet-based
Systems (SITIS), pages 1–6, Nov 2018
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2.4 Structure of the Dissertation
The rest of this dissertation is structured as follows: The next three parts deal with
one research question each. Part II deals with fingerprint sample enhancement.
Fingerprint orientation field estimation is the topic of Part III. Part IV is about the
application of DL for efficient processing structures in fingerprint recognition sys-
tems. This part IV deals especially with Fingerprint Indexing. Each of these three
parts starts with a section regarding its motivation. Then, a section is dedicated to
provide an overview on state of the art in the respective topic. The next section
describes this work’s contribution to the respective topic, which exceeds the state
of the art. Then, all relevant peer-reviewed publications follow. Each part will be
concluded by its own section, which summarizes the respective topic of the part.
Finally, Part V concludes the entire work.
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Part II

Fingerprint Sample Enhancement
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Chapter 3

Introduction

3.1 Motivation
Insufficient quality of fingerprint samples is a critical issue in fingerprint recog-
nition [279]. Low quality may have several reasons: issues during the capture
process, skin issues, or insufficient cooperativeness of the individual.

During the capture process several aspects may result in low quality samples. En-
vironmental influences can disturb the acquisition process. For example, bright
ambient light can disturb the capture process when using optical live-scanners.
This may in turn result in over-exposure or low contrast of the fingerprint samples.
While new fingerprint scanners may produce high quality fingerprint samples, it is
likely that the quality of the capture device itself may decay over time. However,
the influence of ageing of fingerprint sensors is assumed to be irrelevant [145].
Contamination of acquisition surfaces or fingerprints with dirt can also result in
low quality fingerprint samples [203].

Another challenge during the capture process may be distortions of the fingerprint
structure. For example, such distortions may be intrinsic to the acquisition process.
Any contact-based capture process distorts the fingerprint structure automatically.
Such distortions are usually larger when the fingerprint needs to be moved during
the acquisition, e.g. when the fingerprint is rolled over a surface. But this may also
arise from inappropriate ergonomics of the capture device [165]. The device might
for example be out of place, such that it cannot be reached without any difficulty.
In such cases, the fingerprint may be severely distorted. Distortions are usually
present all the time. Even though such distortions are usually no challenge for
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the biometric feature extraction, they might be very challenging for the biometric
comparison.

Latent fingerprints or fingermarks are usually also of very low quality (see Figure
3.1(d)). This is due to the acquisition process, in which the fingerprints are lifted
from evidences. In some cases only very small parts of the fingerprints are vis-
ible at all. Latent fingerprints can have a very low signal to noise ratio, i.e. the
background and other disturbing noise may be more present than the relevant fin-
gerprint ridge structure. Processing such latent fingerprints of low quality is most
likely one of the hardest challenges in fingerprint recognition.

Skin issues can also be a challenge to the acquisition of fingerprints (see Figure
3.1(c)) [235]. Some skin diseases may results in dry or worn off skin. Acquisi-
tion of dry skin is usually more challenging, since the contact between acquisition
surface and fingerprint is reduced. Worn off skin usually results in a less clearer
presence of the relevant fingerprint ridge structure. For some diseases the outer
skin tissue, the epidermis, may be severely damaged. Acquisition of such finger-
prints may even be almost impossible. Besides skin diseases, manual labour as
in agriculture or in the construction industry can also make the skin dry and worn
off. Dry and worn off skin can also simply arise from the ageing of the skin. The
biometric quality of fingerprints in general tends to degrade over time [24]. Older
people tend to have low quality fingerprints. Low quality due to skin issues will
therefore be present in a biometric identification system in every case, if a system
shall be inclusive and not rejecting anyone due to skin issues.

(a) Good quality (b) Dry Skin (c) Skin Issues (d) Latent fingerprint

Figure 3.1: The quality of fingerprint samples varies significantly. While the fingerprint
ridge structure is clearly perceivable in high quality images (3.1(a)), samples of low quality
are challenging to biometric feature extraction. Low quality may arise for various reasons,
e.g. due to dry skin (3.1(b)) or skin issues (3.1(c)). Latent fingerprints may be hardly
perceivable due to significant background noise (3.1(d)).
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Last but not least, an individual simply might not want its fingerprints to be ac-
quired. This may happen for example, if a criminal wants to evade identification.
In such cases, the individual may intentionally distort or contaminate its finger-
prints to reduce the biometric sample quality.

There are tools which allow to assess the biometric quality of fingerprint samples.
A biometric quality is a metric, which allows to estimate the biometric utility of a
sample. The quality is defined as the "degree to which a biometric sample fulfils
specified requirements for a targeted application" [123]. It can be interpreted as
a sample’s suitability for usage in a biometric recognition process. A high value
of biometric quality shall indicate a high probability, that a sample can be used
for a reliable and accurate biometric recognition process. Usually, all commercial
biometric feature extraction algorithms provide their own methods for the assess-
ment of a sample’s biometric quality. Unfortunately, inter-operability between
metrics of different commercial vendors must be assumed limited. But there are
publicly available tools for assessment of the biometric quality. The most prom-
inent tool is the NIST Fingerprint Quality (NFIQ), which comes in two genera-
tions: NFIQ1[280] and NFIQ2.0[222][223], where the latter is the de facto stand-
ard worldwide. NFIQ2.0 is a development, which overcomes limitations of its
predecessor, e.g. by providing a finer granularity in the range of quality scores.
Both metrics are de facto standard and are widely used in deployed systems all
around the world [18]. Those tools allow to apply quality control on the finger-
prints, which are to be processed. However, quality control cannot be applied in
all scenarios. In some legacy systems quality control may not have been applied at
all.

The impact of low quality fingerprint samples on a biometric recognition system
can be severe. Like always in computer science, also for fingerprint recognition
holds: garbage in, garbage out. In the worst case, features extracted from low
quality fingerprint samples may be completely useless for biometric recognition.
Low quality samples result more likely in incorrect biometric decisions than high
quality samples. If a fingerprint sample of low quality is enrolled to a biometric
identification system, it is usually harder to be found than a high quality fingerprint
sample. Thus, low quality samples are more likely to result in false non-matches.

However, counter-measures can be taken to improve the biometric quality of a
fingerprint sample. The fingerprint samples acquired from a fingerprint can be
preprocessed before feature extraction is carried out. Figure 3.2 highlights this
process in the feature extraction workflow. As a preprocessing is usually applied to
enhance the biometric quality of a fingerprint sample, such a process may therefore
also be called a fingerprint sample enhancement.
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Figure 3.2: Preprocessing of fingerprint samples can be part of the workflow. Prepro-
cessing can be used for an enhancement of a sample with respect to its biometric quality.
An enhanced sample may have a higher biometric utility.

There are several ways to enhance a fingerprint sample. A typical enhancement ap-
proach is to enhance the relevant fingerprint ridge structure. The feature extraction
process will extract features the more reliable and the more accurate, the clearer
the fingerprint structure is. Another common preprocessing is a foreground detec-
tion. A foreground detection can allow a masking of the relevant fingerprint while
suppressing the irrelevant background. This can also improve the performance of
the biometric feature extraction process, since this process will not be distracted
by any structures in the background. Finally, it is possible to apply a dedicated
process to deal with systematic, known challenges of given fingerprint samples.
For example, fingerprint samples on paper often contain lines and writings on the
paper form, which was used for the acquisition. Elimination of such systematic
noise will increase the biometric quality. However, low biometric quality due to
distortions cannot be compensated by fingerprint sample enhancement. Thus, fin-
gerprint comparison needs to deal with such issues.

3.2 State of the Art

3.2.1 How to assess fingerprint sample enhancement?

A fingerprint sample enhancement shall improve a sample’s biometric utility. There
are biometric quality metrics like NFIQ1 and NFIQ2.0 available. The applicabil-
ity of such metrics to enhanced fingerprint samples is possible at least to some
degree [265]. However, there are no independent benchmarks available to assess
the impact of an enhancement on biometric utility.

A typical workaround is to evaluate the biometric performance explicitly. The
impact of enhancement can then be assessed by comparison of biometric per-
formances when using original samples and when using enhanced samples. Thus,
biometric error rates are considered as an appropriate means to assess fingerprint
sample enhancement. The lower the quality of a fingerprint, the more import-
ant is an enhancement. Thus, latent fingerprints are often used for assessment,
since those are considered most challenging [42][276][282]. However, fingerprint
sample enhancement can be important for good quality samples as well.
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3.2.2 Hand-crafted approaches

Sophisticated engineering yielded an almost de facto standard method of finger-
print enhancement called Contextual Filtering [110]. This kind of enhancement
makes strongly use of domain knowledge about the structure of fingerprints. Such
domain specific knowledge allows to apply a dedicated enhancement to fingerprint
samples.

Contextual Filtering basically consists of three central, consecutive processes. First,
the orientation field is estimated. The orientation field is a representation for the
local orientation of the fingerprint ridge structure (see Sections 1.2.4 and 8.1). If
the orientation field is known, the flow of the ridge structure is known. In a second
step, the distances between adjacent fingerprint ridges are estimated. For this es-
timation, knowledge about the orientation field is used: The distance is estimated
by assessing the ridge structure perpendicular to the local orientation. As the fin-
gerprint ridge structure is assumed to be similar to a cosine wave, cross sections
perpendicular to the local orientation reveals a cosine-like structure. This allows
to estimate the local distances between the fingerprint ridges. The distance can
also be represented in terms of local frequencies. Now that the orientation field
and local frequencies are known, a specialized filtering can be applied as a final
enhancement step. Usually, Gabor filters are used for the filtering. Such filters
take into account frequencies and orientations and are therefore well suited for an
enhancement. The fingerprint ridge structure in the resulting enhanced fingerprint
sample is usually clearly visible. However, the lower a fingerprint sample’s quality
is, the more challenging is an accurate enhancement.

(a) Original (b) Orientation Field (c) Frequencies (d) Enhanced

Figure 3.3: Contextual Filtering is a widely used technique for fingerprint sample en-
hancement. It consists of three steps: First, the orientation field is estimated 3.3(b). Then
local frequencies are estimated 3.3(c). Finally, knowledge of local orientations and fre-
quencies allows to apply appropriate filters. The enhanced sample 3.3(d) has a clearer
ridge structure.

Contextual Filtering is likely to be "the most widely used technique for fingerprint
image enhancement"[203]. It is the base for numerous variants, which propose im-
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provement on partial aspects like the estimation of the orientation field. Of course,
there are several more hand-crafted approaches to enhance fingerprint samples. For
example, there are approaches which aim for a noise reduction or other aspects of
preprocessing in more detail [97]. Chapter 4 provides a survey over methods of
fingerprint sample enhancement and a benchmark of their effectiveness.

3.2.3 Learning-based approaches

Machine learning offers several approaches, which are applicable to fingerprint
sample enhancement. There are two sets of approaches, which can be considered
state of the art here: dictionary-based approaches and DL approaches.

Cao et al. proposed to use dictionaries for fingerprint sample enhancement [42].
The dictionary consists of small image patches. Each item in the dictionary can be
considered a prototypical representative for other similar patches. The dictionary
is trained by learning such representative patches. The dictionary shall be able
to represent almost all reasonable patches. The workflow for fingerprint sample
enhancement is then somehow like solving a jigsaw puzzle: One identifies those
candidate items in the dictionary, which are similar to a given patch in a fingerprint
sample to be enhanced. In a second step, one combines the candidate puzzle pieces
with the neighbouring puzzle pieces. Solving this puzzle for the entire fingerprint
sample yields an enhanced sample. This approach was tested on latent fingerprint
and achieved quite impressive results.

The approaches in DL can roughly be categorized into two groups. There are
direct and indirect enhancement approaches. The former approaches aim directly
at an enhancement of the fingerprint sample. The later approaches may generate
enhanced fingerprint samples as a by-product.

Direct approaches aim to reconstruct the fingerprint ridge structure. Sahasrabudhe
et al. proposed to use Convolutional Deep Belief Networks (CDBN) for this task
[251]. Such networks and corresponding trainings are similar to those in Auto-
Encoders (see Section 1.1.4). Training can therefore be done in an unsupervised
manner. Svoboda et al. proposed to use Generative Convolutional Networks for
fingerprint sample enhancement [276]. The idea is to train a network to reconstruct
an ideal fingerprint sample from a corrupt sample. For this task, synthetic corrupt
and corresponding ideal fingerprints are generated. While the CDBN approach
was an unsupervised training approach, this approach is supervised, since it uses
ideal fingerprint samples as targets for reconstruction. This approach was also
applied to latent fingerprints.

In indirect approaches, by-products may be generated for examples in DL-based
approaches to extract minutiae from fingerprint samples. On the one hand side,



3.3. Contributions 47

there are approaches which are inspired by classical minutia extraction. Tang et al.
proposed a CNN called FingerNet [282]. The architecture of FingerNet imitates
the single processing steps from contextual filtering and minutia extraction. For
example, there are dedicated layers for estimation and smoothing of the orienta-
tion field as well a selection of an appropriate filtering. Even though all neurons
are trainable, they are initialized similar to a hand-crafted approach, e.g. edge de-
tection filters for the first layer of orientation field estimation. FingerNet explicitly
aims to generate an intermediate representation called enhanced sample in its ar-
chitecture, which is then processed further. However, this enhanced sample could
be used as an input to classical feature extraction. A slightly similar approach
was proposed by Nguyen et al., which additionally incorporated dictionary-based
methods [220]. On the other hand side, there are approaches, which do not in-
corporate a sophisticated network architecture and initialization like in FingerNet.
Those approaches train a CNN from scratch to extract minutiae from fingerprint
samples. It is not unlikely that such approaches also generate an intermediate rep-
resentation of a fingerprint ridge structure, which might also be used for classical
minutiae extraction. At the first glance, using such indirectly enhanced samples for
classical minutiae extraction might not seem reasonable, since entire CNNs may
produce more accurate and more reliable minutiae than the classical approaches
would do on such enhanced samples. But due to issues in the interoperability
between different minutiae extractors, it may be reasonable after all to use a clas-
sical minutia extraction on such enhanced samples.

3.3 Contributions
A survey provides an overview over different types of fingerprint sample enhance-
ment (see Chapter 4) [265]. This survey also provides contributions on the assess-
ment of the impact of fingerprint sample enhancement on biometric performance
as well as on biometric utility metrics.

There are two contributions on the actual process of fingerprint sample enhance-
ment. One method describes how to use CNNs for reconstruction of fingerprint
ridge structures (see Chapter 5) [257]. This method already inspired new ap-
proaches [276]. Another method describes how to train CNNs to enhance fin-
gerprint samples, such that minutia extraction actually improves (see Chapter 6)
[258]. This approach therefore aims to improve of the biometric performance more
directly than earlier approaches.
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Chapter 4

Survey on the Impact of
Fingerprint Image Enhancement

Summary Image enhancement is a common pre-processing step to
improve the biometric utility of a fingerprint sample. This work
inspects several representative approaches of fingerprint sample en-
hancement. The impact on biometric performance as well as on bio-
metric quality is assessed.
This publication is joint work with Simon-Daniel Schulz and Chris-
toph Busch. It was published in the journal IET Biometrics in 2018.

[265] P. Schuch, S. Schulz, and C. Busch. Survey
on the impact of fingerprint image enhancement. IET
Biometrics, 7:102–115(13), March 2018. ISSN 2047-
4938. URL http://digital-library.theiet.org/

content/journals/10.1049/iet-bmt.2016.0088
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Abstract The performance of fingerprint comparison algorithms de-
pends on the reliability and accuracy of the features extracted from
the fingerprints. The accuracy of the feature extraction algorithms
is assumed to depend on the quality of the fingerprint images. Es-
pecially low-quality images can be challenging for feature extraction
algorithms. Image enhancement may allow to extract features more
accurately. There is a lack of extensive and quantitative evaluation of
image enhancement methods. This work investigates the impact of
seven typical image enhancement methods on biometric sample qual-
ity and on biometric performance. The interrelation of image quality
and biometric performance is investigated on fourteen datasets. Bio-
metric quality measures are estimated based on image quality metrics
NFIQ1 and NFIQ2.0. Biometric performance is tested using MIN-
DTCT and FingerJetFX for feature extraction and BOZORTH3 for
biometric comparison. This work shows that the biometric perform-
ance can be improved by image enhancement. The significance of
improvements depends on both the quality of the datasets and the fea-
ture extraction. Thus, there is no single best improvement algorithm.
A correlation of changes in scores and image qualities can only be
found on the level of entire datasets. No significant correlation can be
found for single biometric comparisons.

4.1 Introduction
Biometric recognition in general is defined as the "automated recognition of indi-
viduals based on their behavioural and biological characteristics" [122]. Finger-
prints are one of the most relevant biometric traits used for biometric recognition.
Fingerprints have been used for verifying or identifying an individual for decades.
Despite the maturity of the fingerprint recognition technology, false positive and
false negative errors still occur.

In the process of fingerprint recognition two fingerprint samples are compared to
each other. There are different modes to acquire fingerprints samples: capturing
with dedicated devices (e.g. live-scanners), ink-based acquisition on paper, and ac-
quisition of latent fingerprints as forensic evidence. Recently it has been proposed
to capture fingerprint samples with smartphone cameras or other contact-less photo
capture devices. Such modes of acquisition intrinsically influence the properties
of the captured fingerprints. Such influences are for example the resolution of the
live-scanners or the rolling of the finger over the paper for ink-based acquisition.
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Comparison of two fingerprints is usually not performed directly on the fingerprint
images. It is done on biometric features extracted from the images. Therefore,
fingerprint recognition consists of two separate processes: biometric feature ex-
traction and biometric comparison. The accuracy of the biometric comparison de-
pends on both processes. The biometric feature extraction process extracts unique
features from the biometric samples. Such biometric features are fingerprint minu-
tiae from the fingerprint images for example. The extracted biometric features of
two biometric samples are then compared by the biometric comparison process.
The biometric performance is assumed to depend on the quality of the biometric
samples. A quality measure must express the biometric sample’s suitability for
biometric recognition. In this understanding, a successful biometric recognition
actually depends also on a third component: the quality of the fingerprint image
itself.

Methods of image enhancement might increase the biometric sample quality. This
in turn might increase biometric performance. Biometric sample quality and per-
formance should be the main aspects when assessing a method for fingerprint im-
age enhancement. But most surveys on fingerprint image enhancement do not
perform any assessment at all [74][209][208][146][2][254][238]. Only three pub-
lications evaluated biometric performance for a single biometric feature extraction
considering at most three datasets [304][8][73]. Only a single survey assesses the
influence on biometric performance and biometric quality in terms of NFIQ1 on
a single dataset [158]. In contrast, this work provides extensive and quantitat-
ive evaluation based on distinct figures of merit. Fourteen datasets with different
properties were used for the evaluation. A set of seven representative methods of
image enhancement was evaluated. The accuracy achieved with publicly available
feature extractors MINDTCT [309] and FingerJetFX [65] and the comparator
BOZORTH3 [309] was evaluated for the assessment of biometric recognition per-
formance. This publication is the first to adopt NFIQ2.0 along with NFIQ1. These
image quality metrics were designed with machine learning from matching scores
obtained using BOZORTH3. For the first time, fingerprint image enhancement is
evaluated with regard to the correlation between biometric performance and im-
age quality. The figures of merit in this work were designed especially to assess
biometric performance and fingerprint quality metrics. Recognition performance
is composed of a multitude on single comparison scores. The proposed figure of
merit is a single scalar for all comparison scores of those comparisons which are
most relevant for biometric performance. These scalars allow to assess the impact
of image enhancement of biometric performance. Similar scalars were proposed
to focus on the most important samples with respect to biometric quality.
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The rest of the publication is organized as follows: The relation to previous work is
described in Section 4.2. Section 4.3 categorizes methods of image enhancement
and provides a description of typical representatives which are to be assessed. Pro-
tocols, datasets, and tools for the evaluation of image enhancements in terms of
biometric image quality and biometric comparison performance are described in
Section 4.4. Section 4.5 lists the corresponding results. Conclusions are made in
Section 4.6, while Section 4.7 adds remarks on the findings of this work.

4.2 Related Work
The most related work is a survey by Klir. He evaluated image enhancements on a
single dataset for improvement in biometric performance. He correlated the results
with NFIQ1 [158].

Furthermore, there are three surveys assessing image enhancement only with re-
gard to biometric performance. Aurora and Garg evaluated seven methods in terms
of Equal Error Rate (EER) and timing on a single dataset [8]. Esan et al. evaluated
a few methods of image enhancement for their impact on recognition performance
[73]. Wang et al. measured the biometric performance in terms of EER for five
methods of image enhancement on dataset FVC2000 DB1 [304].

There are more surveys without any assessment at all. Ezhilmaran and Adhiya-
man’s review study is one of the most recent and broadest surveys which categorize
of methods [74]. Misra et al. provide two reports on image enhancement for fin-
gerprints [209][208]. One of them focuses on filtering techniques [209]. Kaur and
Kaur, Abbod et al., Sawant and Deore, and Rajin and Ajith only listed published
work on fingerprint image enhancement [146][2][254][238].

Baig et al. gave an overview on publications with image enhancements which
claimed performance improvement in terms of fingerprint recognition [12]. Yao
et al. proposed a quality metric for fingerprints which is alternative to NFIQ2.0
[320].

This work exceeds the related works by putting the image enhancement methods
to the test. Seven methods representing different types of theoretical models are
tested on their impact on biometric performance and biometric sample quality. Ex-
tensive and quantitative evaluations on fourteen datasets were conducted. The im-
pact of each tested method was assessed for two combinations of biometric feature
extraction and biometric comparison algorithms. This work also assessed meth-
ods of image enhancement by means of NFIQ2.0 and the correlation of biometrics
sample quality and biometric performance for the first time.
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4.3 Methods of Image Enhancements
A lot of ideas have been proposed to enhance fingerprint images. We grouped the
different approaches to fingerprint image enhancement according to their underly-
ing motivation in terms of signal and/or noise model. We then chose to evaluate
one common representative for each group. All but one of those representative
methods are mentioned in the "Handbook of Fingerprint Recognition" [203]. We
identified six groups of models:

• Signal domain models: These models are based on the statistics of function
values, i.e. the grey-values. One aim is e.g. to stretch the contrast of the
signal (see Section 4.3.1).

• Energy models: These approaches are motivated by physics. The energy of
the signal is modelled to normalize the stimulus on the processing system
(see Section 4.3.2).

• Noise statistics models: Such approaches use models for the signals’ statis-
tics to differentiate the relevant signal from noise (see Section 4.3.3).

• Frequency domain models: Modelling in frequency domain can be useful,
because the ideal fingerprint ridges may be assumed to be similar to a cosine
(see Section 4.3.4).

• Fingerprint models: Such models include domain-specific knowledge, e.g.
orientation and frequency information (see Section 4.3.5).

• Compositional models: These approaches try to model fingerprint samples
as a composition of many sub parts or of multiple models, e.g. one model
for the signal and one model for the disturbance. Image are decomposed
into those parts (see Section 4.3.6).

Each representative is described in its own paragraph. Figure 4.1 allows the com-
parison of the evaluated methods applied to three samples from dataset FVC2000
DB1. The leftmost column show the original samples and each subsequent column
shows an enhanced version of the original images.

The assessed methods are only representatives for their group of methods. A lot of
approaches were proposed in the past. The following listing provides an overview
on approaches published since 2013 which were not covered entirely in the cited
surveys (see Section 4.2).

Others signal domain models are used e.g. in approaches of Bouaziz et al. who
proposed to use the meta-heuristics cuckoo search algorithm and bat algorithm
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Figure 4.1: Three non-enhanced samples are shown for demonstration (leftmost column).
Each column is an evaluated enhancement method applied to three samples.

for manipulation of the grey-value histogram [30][31]. Ghosh et al. inspected the
application of cuckoo search algorithm for fingerprint enhancement, too [89]. Ma-
hashwari et Asthana proposed a fuzzy approach working on the grey-values [198].
Iloanusi proposed an adaptive and data-driven thresholding [115]. Stephen et al.
and Stephen proposed two variations of adaptive filtering using particle swarm
optimization for parametrization [274][273]. Kabir et al. and Kabir proposed a
cascade of three different filter types [144][143].

Noise statistics models are e.g. used by Selvi et George. They proposed a fuzzy
approach with adaptive thresholding to deal with noise [266]. Hari et al. proposed
to apply quadratic edge filters to deal with noisy background [105].

Several more frequency domain models were proposed, too. Neethu et al. proposed
a variation on BlockFFT using 4x4 blocks [219]. Tarar et Kumar proposed to
use FFT iteratively for enhancement [283]. Lee et al. proposed an approach for
filtering in frequency domain while taking the irregularities in orientation at the
locations of singular points and minutiae into account [174]. Deshmukh et al. and
Wang et al. proposed a wavelet-based image enhancement. The latter evaluate by
improvement in fingerprint classification [64][299]. Bandur et al. proposed to use
Log-Gabor filters in frequency domain [16]. Sutthiwichaiporn et al. proposed an
iterative approach of filtering in frequency domain and starting iteration in high
quality areas [275]. Borra et al. proposed to use Atom wave transform with hard
tresholding in the transform domain for de-noising [28].

Contextual Filtering is base for numerous variants. Bartåtunĕk et al., Rao et al., and
Geng et al. proposed a adaptive variation of Contextual Filtering [17][239][83].
Fahmy et Tabet proposed to estimate the local frequency by Radon transforma-
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tion [75]. Mohammedsayeemuddin et al. proposed a computational less complex
variation [210]. Nilam et Joshi propose to performed the Contextual Filtering in
frequency domain [221]. Kočevar et al. proposed a block-wise preprocessing be-
fore Contextual Filtering [159]. Gahfooor et al. and Zahedi et Ghadi combined
Contextual Filtering with filtering in frequency domain [87][325]. Yang et al. pro-
posed a variation of this, which is adaptive to the input [317]. Khan et al. proposed
to use multi-scale directional filter bank for the orientation and frequency estim-
ation [152]. Ahmed et al. proposed to use Discrete Curvelet Transform before
Contextual Filtering [6]. Divya and Chauhan proposed some tweaks for improv-
ing Contextual Filtering [66][55]. Dealing with latent fingerprints is particularly
challenging. Baig et al. emphasized the importance of segmentation before applic-
ation of Contextual Filtering to latent fingerprints [13]. Ahmad et al. proposed to
divide latent fingerprints into regions on which morphological operations are to
be applied later [5]. There were more approaches proposed which use fingerprint
models but which are no variation of Contextual Filtering. Khan et al. and Abdal-
lah et al. proposed to use anisotropic diffusion as fingerprint images are made of
flow-like structures and therefore assumed to be anisotropic [153][3]. Gottschlich
proposed the usage of curved filters and to make use of knowledge about finger-
prints [94]. This idea is picked up again by Khachay et Pasynkov and Mei et al.
[149][206]. Sharma et al. proposed to use vortex filters which take into account
the characteristic of ridges to be directed edges [267]. Cătălin evaluated various
filtering techniques to achieve skeletonized ridge image [53].

Many interesting approaches were proposed in the domain of compositional mod-
els. Feng et al. proposed to use local dictionaries of orientation patches for later
filtering [77]. Cao et al. and Jain et Cao used dictionaries of local ridge patches
[42][133]. Jain et al. used dedicated dictionaries for application to children [136].
Wang et Liu and Liu et al. proposed to use dictionaries of ridge like patches
[300][190]. Kumar et Velusamy proposed to learn dictionaries of orientation patches
for later use during enhancement [167]. Schuch et al. proposed to train and ap-
ply De-Convolutional Auto-Encoders for fingerprint enhancement [257]. Khan et
Khan proposed to use a data driven approach to reassemble a fingerprint from its
decomposition into directional images [151]. Liu et Zhang used a model of the
finger to assemble fingerprint from multiple 3D images [186].

Testing other methods is out of scope of this work. Combinations of methods are
possible, but also out of scope.

4.3.1 Signal Domain Models: (Localized) Histogram Equalization

The idea of Histogram Equalization is to remap the intensities in such a way that
the intensity distribution spreads over the resulting histogram as uniform as pos-
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(a) Input image (b) After HistEQ (c) After CLAHE (d) Grey-values

Figure 4.2: Histogram Equalization distributes the intensities as equal as possible over the
entire range of intensities.

sible. The order of the intensity values shall be kept the same. This approach
uses a model for the signal domain to achieve this. A monotonic function is used
to remap the intensity values. This transfer function T (i) for each grey-value in-
tensity n can be derived directly from the empirical cumulative density function
CDF(n):

T (n) = CDF(n) ∗ 255 (4.1)

Figure 4.2 shows the enhancement of an image. By such a mapping, the intensity
values are spread over the entire histogram (see Figure 4.2d) and the contrast gets
stretched over the entire image. This algorithm has the intrinsic trait that different
grey-values may be mapped to the same grey-value. Thus, after enhancement less
grey-value bins might be used than before. This can be observed in Figure 4.2d by
inspecting the histograms and its empty bins.

While Histogram Equalization is applied to an entire image, Contrast Limited Ad-
aptive Histogram Equalization (CLAHE) stretches the contrast in a more local
manner [336]. This overcomes limitations of the simple Histogram Equalization.
Figure 4.2c shows the enhancement of the sample image.

Comparing Figures 4.2 b and c reveals the local adaptivity of CLAHE. CLAHE can
e.g. stretch the low-contrast area in the upper half of the sample fingerprint while
Histogram Equalization cannot. Unfortunately, CLAHE is not sensitive whether
or not the relevant signal in present locally. Therefore, every local signal includ-
ing noise is stretched. This is most obvious in the background of the fingerprint
images: CLAHE amplifies the noise in this area, too, while simple Histogram
Equalization aplifies only little here.

For both methods implementations from opencv were used [32].
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(a) Input image (b) Enhanced image (c) Grey-values (d) Cumulative

Figure 4.3: Energy Normalization shapes the mean and the standard deviation of the grey-
value distribution to distinct target values. The image gets thereby specific characteristics.
All enhanced images theoretically have the same amount of energy.

4.3.2 Energy Models: Energy Normalization

Hong et al. proposed a reshaping of the grey-value distribution of the fingerprint
image data. This is part of a larger enhancement workflow [110]. This method was
evaluated in two ways: stand-alone and as a part of Contextual Filtering approach
(see Section 4.3.5). The aim of the distribution shaping of grey-values is to let
the mean and the standard deviation of the enhanced image meet distinct target
values. The remapping function m(g) operating on a grey-value intensity g is
defined according to the following equation:

m(g) =


µT +

√
σ2
T

σ2
S

(g − µS) , if g > µS

µT −
√

σ2
T

σ2
S

(g − µS) , else
(4.2)

where µS and µT are the mean of the source and target grey-value distribution
while σ2

S and σ2
T are the corresponding variances of both distributions. By doing

so, distributions of grey-values in the different enhanced images get more similar
to each other. Most important is the aspect that the resulting images should all have
similar energy. By doing so, the stimulus on the processing system is normalized.

Hong et al. propose to choose parameters µT = 100.0 and σT = 100.0. Figure 4.3
illustrates the enhancement with the proposed parameters applied.

4.3.3 Noise Statistics Models: Wiener Filter

Greenberg et al. proposed to use Wiener Filters for fingerprint image enhancement
[97]. Like Energy Normalization, this is only a single processing step in a lar-
ger workflow. This workflow aims for a binarization of fingerprint images. This
binarization could be used more of less directly for a feature extraction. Such an
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(a) Input image (b) CLAHE (c) Wiener Filtering (d) Estimated noise

Figure 4.4: Wiener filtering tries to reconstruct an image containing a noise-free finger-
print sample from a noisy one - the noise estimated is best visible in the center of the top
of the fingerprint (blue ellipse in (b)).

enhancement is out of scope because an assessment with image quality metrics
NFIQ1 and NFIQ2.0 would not be reasonable. Thus, it was evaluated stand-alone
only.

min
W

E

∥∥∥∥∥∥∥Bideal︸ ︷︷ ︸
Ideal

−F−1( W︸︷︷︸
Filter

· F(

Ideal︷ ︸︸ ︷
Bideal) ·

Degradation︷︸︸︷
H +

Noise︷︸︸︷
N︸ ︷︷ ︸

F(ReceivedImage)

)

∥∥∥∥∥∥∥
2

(4.3)

The received image is assumed to be composed of an ideal image Bideal and addit-
ive Noise N . The ideal image is corrupted by a degradation function H . The idea
is to estimate the statistics of the ideal signal and of the noise. The estimation is
based on the received signal. Finally, a filter W is to be designed to recover ideal
image Bideal from the received image. This approach assumes that the noise is ad-
ditive and that the auto-correlation of the noise is known. Figure 4.4 visualizes the
application of an unsupervised variant of the Wiener filtering which is provided by
opencv [32].

4.3.4 Frequency Domain Models: Block-wise Fourier Spectrum Enhance-
ment

Watson et al. proposed an enhancement in the frequency domain using a Block-
wise Fourier Spectrum Enhancement (BlockFFT) [305]. The idea is that the signal
of a fingerprint is locally similar to an oriented 2D-cosine. If so, the signal should
be observable in the frequency domain. That specific frequencies can then be
enhanced in the frequency domain more easily than in the spatial domain. Watson
et al. proposed the Fast Fourier Transformation in order to transfer a small blockB
(for locality) from time domain to frequency domain. The corresponding Fourier
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(a) Input block (b) Log. spectrum (c) Scaling (d) Enhanced block

Figure 4.5: Fingerprint images can be enhanced in the Fourier Spectrum.

Spectrum F is amplified relative to its Power Spectrum |F|:

BEnh = F−1(|F(B)|k︸ ︷︷ ︸
Scaling

F(B)) (4.4)

with k proposed to be 0.4. Frequencies with more energy get thereby enhanced
more than those with less energy. Assuming that the fingerprint ridge frequency
itself is the strongest contributor to the spectrum, this signal will be enhanced the
most.

Figure 4.5 visualizes the enhancement applied to a single block with the paramet-
ers suggested by Watson et al.. This enhancement may lead to artefacts especially
at the borders of each image block. These artefacts are arising mainly for two
reasons. First, FFT assumes that the signal periodically repeating. In general,
this assumption does not hold. Second, the signal’s orientation and frequency
vary from one block to its neighbouring blocks. To suppress this effect Watson et
al. proposed to apply this enhancement to overlapping blocks. The overlaps are
merged later. A block size of 64 pixels× 64 pixels is proposed for images with a
resolution of 500 dpi. Blocks are supposed to have an overlap of 16 pixels.

4.3.5 Fingerprint Models: Contextual Filtering

Energy Normalization (see Section 4.3.2) is only a part of an approach proposed
by Hong et al. [110]: Maltoni et al. called it Contextual Filtering [203]. In contrast
to most of the other approaches, contextual filtering is especially tuned for finger-
print image enhancement. It focusses on the fingerprint’s characteristics, e.g. ridge
orientation and frequencies. Thus, this approach uses specific knowledge about the
domain of fingerprints. First, Hong et al. suggested to normalize the energy (see
Section 4.3.2). Afterwards, the local orientation of the ridges is estimated (see
Figure 4.6b). Based on the local orientation, the local ridge frequency is estimated
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(a) Input image (b) Orientation (c) Ridge distance (d) Enhanced image

Figure 4.6: Contextual filtering extracts an estimation for local orientation ranging from
0 to π (b) and local distance between two ridges (c) to apply local Gabor filtering. Errors
in each of the estimations degrade the enhanced image significantly.

(see Figure 4.6c). Finally, local orientation and frequency are used to apply loc-
ally adapted Gabor filters. The Gabor filters use model driven information from
a vicinity to enhance the image. The clarity of the fingerprint ridge structure can
therefore be enhanced (see Figure 4.6).

The effect of this enhancement is highly sensitive to the estimations of local ori-
entation and frequency. Both were estimated as described by Hong et al. [110].

This approach is likely to be "the most widely used technique for fingerprint image
enhancement" [203]. It is the base for numerous variants with modified working
steps, e.g. estimation of local orientation and frequency by using Fourier trans-
formation.

4.3.6 Compositional Models: Cartoon-Texture-Decomposition

Buades et al. proposed a decomposition of the fingerprint image into two com-
ponents [35]. Only the texture component is assumed to contain the relevant in-
formation of the fingerprint pattern and will be processed further. The cartoon
component is not relevant. This enhancement is a common pre-processing step
in the feature extraction workflow for fingerprint recognition - especially when
processing latent fingerprints [329][324][42].

The idea is to measure sensibility regarding smoothing operations. The so-called
Local Total Variation (LTV) is used as a measure for this. It is defined as follows:

LTVσ(f)(x) = Lσ ∗ |∇f |(x) (4.5)
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(a) Input image (b) Cartoon component (c) Texture component

Figure 4.7: Local Total Variation can be used to decompose an image (a) into a so-called
cartoon (b) and a texture (c) component.

LTV describes the amount of variation of a function f in a region around a point
x. A measure λσ(x) can be constructed to describe how much variation remains
after a smoothing with some low-pass Lσ

λσ(x) =
LTVσ(f)(x)− LTVσ(Lσ ∗ f)(x)

LTVσ(f)(x)
(4.6)

The measurement λσ(x) is in the range from 0 to 1. Finally, λσ(x) can be used to
generate a cartoon component u and texture component v:

u(x) = f(x) + w(λσ(x))((Lσ ∗ f)(x)− f(x)) (4.7)

v(x) = f(x)− u(x) (4.8)

where w : [0, 1] 7→ [0, 1] is an additional transfer function which might be applied.
Yoon et al. proposed for example a monotone, piece-wise linear transfer function
[324].

Figure 4.7 visualizes the decomposition into both components. While the cartoon
components represents the component of low frequencies, the texture part contains
a clearly visible fingerprint.
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4.4 Assessment of the Impact on Biometric Quality and Per-
formance

4.4.1 Tools

All tools used for evaluation are publicly available. The tools for biometric feature
extraction and biometric comparison will be treated as black boxes in this work.

Image Quality Metrics

Biometric image quality shall have predictive power on the biometric utility
of a biometric sample. This means that the quality of a sample should express
the reliability of decisions based on biometric comparisons involving this sample.
Biometric comparison quality can be estimated by quality measures on the finger-
print images themselves. The National Institute of Standards and Technology of
USA (NIST) developed such a quality metric. It is called NIST Fingerprint Image
Quality (NFIQ1)[280]. It was developed for optical live-scanners with a resolution
of about 500 dpi. NFIQ1 assigns ordinal scores from 1 to 5 to fingerprint image.
A score of 1 indicates highest sample quality. A score of 5 indicates worst sample
quality. An artificial neural network has been trained on assign the quality classes
to fingerprint images.

NIST presented the successor of NFIQ1 called NFIQ2.0 [222]. An NFIQ2.0 score
represents the probability of a sample to belong to a group of reliable high-quality
samples. The idea is to calculate the probability based on quality-relevant fea-
tures, e.g. Frequency Domain Analysis, Local Clarity Score, Orientation Certainty
Level, Orientation Flow, and Ridge Valley Uniformity. Quality scores range from
0 to 100. 0 represents lowest biometric utility. 100 represents highest biometric
utility. The features are estimated blockwise and are therefore local. Each fea-
ture per se seems to be reasonable to describe the biometric comparison quality.
The potential of NFIQ2.0 lies in the combination of these complementary features.
The combination of features was achieved with the method Random Forest from
machine learning [223] [227].

Feature Extraction

Minutiae features were extracted with two different algorithms: MINDTCT and
FingerJetFX. The former is provided by NIST, the latter by the company Di-
gitalPersona. Both algorithms extract the locations, directions, and types of the
minutiae.
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Table 4.1: Datasets used for evaluation. Characteristics are low-cost sensor (L), strong
rotation (R), displacement (D), moisture (M), low quality (Q), and control on the acquisi-
tion (C). Data suited best (bold) to evaluate image enhancement is captured with optical
live-scanners with a resolution of about 500 dpi and has no intrinsic characteristics which
are challenging to the biometric comparison.

Dataset Samples Dimensions Resolution Data Origin Characteristics
FVC2000 DB1 800 300×300 500 dpi Optical L
FVC2000 DB2 800 364×254 500 dpi Capacitive L
FVC2000 DB3 800 478×448 500 dpi Optical
FVC2002 DB1 800 388×374 500 dpi Optical R, D, M
FVC2002 DB2 800 560×296 569 dpi Optical R, D, M
FVC2002 DB3 800 300×300 500 dpi Capacitive R, D, M
FVC2004 DB1 800 640×480 500 dpi Optical R, D, M
FVC2004 DB2 800 364×328 500 dpi Optical R, D, M
FVC2004 DB3 800 480×300 512 dpi Thermal Sweeping R, D, M
FVC2006 DB2 1,680 560×400 569 dpi Optical R, D, M, Q
FVC2006 DB3 1,680 500×400 500 dpi Thermal Sweeping R, D, M, Q

MCYT DP 39,600 400×256 500 dpi Optical C
MCYT PB 39,600 300×300 500 dpi Capacitive C
NIST SD14 54,000 768×832 500 dpi Ink-based

Biometric Comparison

The comparison was performed by algorithm BOZORTH3. It is provided by
NIST. BOZORTH3works on fingerprint minutiae. It is compatible with the features
extracted by MINDTCT and FingerJetFX.

4.4.2 Datasets

The impact of image enhancement on biometric performance and sample quality
needed to be evaluated on representative data. It was performed in a manner that
results can be reproduced. We selected the appropriate data in three steps:

1. We selected a set of relevant datasets.

2. We selected only those samples from the datasets which contain sufficient
information.

3. We selected only those samples from the datasets which are most relevant
for the biometric performance.

A multitude of datasets is publicly available. The first step was to select a set of
relevant datasets from those available. The benchmark series Fingerprint Verifica-
tion Competition (FVC) has four editions, which supply the following volumes of
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datasets: 2000 [200], 2002 [201], 2004 [202], and 2006 [47]. All but five datasets
from this series were selected for assessment. One dataset with low resolution and
all synthetic datasets were excluded. Moreover the Ministerio de Ciencia y Tecno-
logía of Spain (MCYT) provided a multi-modal data-set containing two subsets
of fingerprint samples [228]: MCYT DP and MCYT PB. NIST provides a data-
set NIST SD14 [306]. These fourteen datasets represent the diversity of potential
data sources and characteristics which may occur in real world application. Table
4.1 gives an overview of the evaluated datasets and their characteristics. Some
of the datasets have special characteristics. These characteristics restrict an eval-
uation by quality metrics NFIQ1 or NFIQ2.0 (see Section 4.4.1). NFIQ1 was
designed for application to fingerprint images with a resolution 500 dpi captured
with optical live-scanners only. Thus, only datasets containing images from op-
tical live-scanner should be considered for both image quality metrics. In addition
to this, NFIQ2.0 is designed to process even ink-based fingerprints. In other cases
the evaluation of recognition accuracy may be compromised. During capturing of
most of the datasets the participants were encouraged to enforce strong displace-
ments and rotations of the fingerprint. Both aspects are obviously challenging for
the biometric comparison. But an image enhancement method is not a reason-
able counter measure to such challenges. Three datasets comply best with these
requirements of the image quality metrics: FVC2000 DB1 and DB3, and MCYT
DP. NIST SD14 is appropriate for assessment with NFIQ2.0. MCYT BP, MCYT
DP, and NIST SD14 contain numbers of samples which are of orders of magnitude
larger than the other datasets. All evaluations were performed on only the first ten
percent of these datasets. By doing so, such subsets can still be assumed repres-
entative for the evaluation and those subsets are still larger than the other sets.

In a secend step only those images were selected which provide sufficient inform-
ation for biometric recognition. The larger the area of a fingerprint is, the more
information is contained in the fingerprint. Therefore, only those images i will be
kept where the area A(i) of the fingerprint is large enough to provide sufficient
information for comparison. The area A is estimated by one of the features of
NFIQ2.0. Let S an entire dataset. The subset SLarge is defined as follows:

SLarge = {i ∈ S : A(i) >= µA(S) − 2σA(S)} (4.9)

where µA(S) is the mean over all fingerprint areas in the dataset S and σA(S) the
respective standard variation. The intention of this was to avoid genuine compar-
isons that are attributed with a low comparison score due to a small overlapping
region of the image pair. Small overlaps for two fingerprints result in little inform-
ation, which both sample have in common. The challenge of small overlap is none
an image enhancement can take care of. Therefore those samples were discarded
from further evaluation.
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Finally, the most relevant comparisons were selected. We therefore identified the
samples which were involved in comparisons resulting in unexpected high or low
comparison scores. Therefore, biometric features were extracted from the remain-
ing non-enhanced samples with MINDTCT and FingerJetFX. Comparison was
performed on both sets of extracted features. Afterwards the comparison scores
were inspected. We identified the 2,000 non-mated comparisons resulting in the
highest biometric comparison scores (so-called Highest Impostors). Then we iden-
tified the 2,000 mated comparisons resulting in the lowest biometric comparison
scores (so-called Lowest Genuines). Highest Impostors and Lowest Genuines
formed the fixed set of critical comparisons. All samples from dataset S involved
in the critical comparisons were denoted as the critical images C(FE, S). These
sets depend only on the feature extractor FE but not on the enhancement method.

By doing so, the selection of data for evaluation was completed. The critical com-
parisons were repeated on features extracted from the enhanced images. This al-
lowed to inspect the impact of image enhancement.

Figure 4.8: Workflow for all evaluations

4.4.3 Protocols

Figure 4.8 visualizes the workflow which was applied to the samples of the pre-
pared datasets.

Protocol 1: Evaluation of NFIQ1

The distribution of NFIQ1 scores is an indicator for the characteristic of the data-
sets. Scores for NFIQ1 were extracted before and after enhancement on the critical
images. This allowed to track the development of the distribution. Samples with
NFIQ1 score σNFIQ1 of 3, 4, and 5 are of lowest assumed biometric utility (see
Figure 4.9c). The relation of number of samples with NFIQ1 score larger than two
after enhancement Enh can therefore be used as an indicator on the quality of a
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dataset S:

pNFIQ1(S,Enh) =
#{i ∈ S : σNFIQ1(Enh(i)) >= 3}

#S
(4.10)

Values pNFIQ1(S,Enh) will be calculated relative to the values before enhancement
Enh per dataset S to assess the relative improvements.

Protocol 2: Evaluation of NFIQ2.0

NFIQ2 scores σNFIQ2.0 were extracted before and after enhancement on the critical
images C(FE, S). This was done for each dataset S and for both feature extractors
FE. The distribution of NFIQ2 scores was determined by calculating the empir-
ical cumulative probability density function CDFS,Enh(sNFIQ2.0). This curve was
characterized by the scalar value of its Area under the Curve AuCNFIQ2(S,Enh):

AuCNFIQ2(S,Enh) =

∫ 100

0
CDFS,Enh(σNFIQ2.0)dσNFIQ2.0 (4.11)

Values AuCNFIQ2(S,Enh) were calculated relative to the values before enhance-
ment per dataset to allow better comparison across datasets.

Protocol 3: Evaluation of biometric performance

All critical comparisons were repeated with features extracted from the en-
hanced images. Detection Error Tradeoff curves (DET) curves were calculated
on the resulting comparisons scores. The Area under the Curve AuCDET(S) were
then calculated for the DET curves. DET curves were in linear scale by intention:
as only a small set of mated and non-mated comparisons were inspected, logar-
ithmic scaling would have been misleading. Values were calculated relative to the
values achieved before enhancement.

Protocol 4: Evaluation of predictive power with respect to image enhancements

This evaluation protocol uses results from protocols 1-3. The quality of the bio-
metric comparison is assumed to depend on the qualities of both samples involved.
One may assume that the sample with the lower quality has more influence on the
comparison than the other sample. We therefore defined the pair-wise quality q̂·Enh
for samples i1 and i2 to be the lower quality of both samples:

q̂NFIQ1
Enh (i1, i2) = max(σNFIQ1(Enh(i1)), σNFIQ1(Enh(i2))) (4.12)

q̂NFIQ2
Enh (i1, i2) = min(σNFIQ2(Enh(i1)), σNFIQ2(Enh(i2))) (4.13)
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(a) NFIQ1 scores (b) NFIQ2.0 scores (c) DET curves

Figure 4.9: Distribution of NFIQ1 and NFIQ2.0 scores of images from
C(FVC2000 DB1,MINDTCT) and dependence of performance with respect to
NFIQ1 scores.

The difference between the pair-wise qualities ∆q̂NFIQ1 and ∆q̂NFIQ2 and differences
between comparison scores ∆

Comp
s after and before enhancement were calculated:

∆NFIQ1
q̂ (Enh, i1, i2) = q̂NFIQ1

Enh (i1, i2)− q̂NFIQ1
id (i1, i2) (4.14)

∆NFIQ2
q̂ (Enh, i1, i2) = q̂NFIQ2

Enh (i1, i2)− q̂NFIQ2
id (i1, i2) (4.15)

∆Comp
s (Enh, i1, i2) = s(Enh(i1),Enh(i2))− s(i1, i2) (4.16)

If the difference indicates that the pair-wise quality increased, one can assume the
comparison to be more accurate. In such cases non-mated comparisons should
result in lower scores than before enhancement and vice versa for mated com-
parisons. The correlation of differences of NFIQ scores and differences of com-
parison scores before and after enhancement is evaluated for the critical compar-
isons. NFIQ1 and NFIQ2.0 scores are ordinal. Spearman’s ρ(S,Enh,FE) rank-
correlation was therefore used to inspect the correlation of ∆

Comp
s with ∆NFIQ1

q̂

and ∆NFIQ2
q̂ . Since changes in scores were expected to be opposing for non-mated

and mated comparisons, correlations were inspected separately.

4.5 Results

4.5.1 NFIQ1

Fingerprint images with an NFIQ1 score of 3, 4 or, 5 assigned to them are assumed
to be of low biometric utility. For instance, figure 4.9c shows DET curves for
different levels of allowed NFIQ scores for dataset FVC2000 DB1 with features
extracted by MINDTCT. Obviously, the performance is significantly lower when
samples with NFIQ1 scores of 3 are included in the evaluation than for evaluations
on samples with NFIQ1 score of 1 and 2. Adding samples with NFIQ score 4 or 5
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Table 4.2: pNFIQ1(C(·,MINDTCT), ·). Lowest values per dataset are marked bold.
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Baseline (abs) 0.42 0.10 0.59 0.05 0.08 0.41 0.10 0.42 0.16 0.28 0.12 0.19 0.35 0.57
BlockFFT 0.59 0.21 0.52 0.08 0.19 0.81 0.64 0.71 0.98 0.55 0.89 0.34 0.67 0.51
Cartoon 0.19 0.40 1.09 0.18 0.50 0.72 0.23 0.56 0.33 0.29 0.30 0.56 0.54 1.11
CLAHE 0.31 0.60 1.22 0.26 4.05 0.97 0.79 1.36 1.82 2.62 2.50 1.41 0.91 1.02

Contextual-Filtering 0.00 0.70 0.05 0.00 0.00 0.11 0.35 0.03 0.62 0.04 0.39 0.00 0.24 0.30
Energy-Normalization 0.92 0.82 1.24 0.32 1.08 1.48 1.16 1.17 1.09 1.53 1.40 1.14 1.37 1.12

HistEQ 0.90 0.94 1.26 0.95 2.13 1.41 2.59 1.46 1.33 1.62 1.37 2.83 1.46 0.80
Wiener-Filtering 0.27 0.58 1.30 0.37 4.09 0.99 0.67 1.39 2.15 2.91 3.58 1.65 0.89 0.85

to the evaluated dataset does not change the performance significantly any more.
Samples with NFIQ1 score of 3 or higher can be assumed to be most challenging.

The distribution of NFIQ1 scores varied depending on the image enhancement ap-
plied to the fingerprint images. Figure 4.9a shows exemplarily the distributions
measured on the fingerprint images from critical comparisons C(FVC2000 DB1,
MINDTCT). Most significant is the change achieved by Contextual Filtering: all
samples with NFIQ1 score of at least 3 have a score of at most 2 after enhancement.
Table 4.2 gives an overview on the percentages of C(·,MINDTCT) which have an
NFIQ score of 3 or higher after the enhancement method applied. Contextual Fil-
tering significantly reduces the percentage of samples which have an assumed low
biometric quality. Contrary to this, some methods of image enhancement even in-
crease the percentage of low quality samples. If an image enhancement reduced
the percentage of images with bad quality, the biometric performance might prob-
ably be increased.

The percentages on NFIQ1 scores of 3 to 5 is lower than ten percent even before
image enhancement for datasets FVC2000 DB2 and DB3, and FVC2002 DB2 and
DB3. Relative improvements have to be interpreted carefully since since small
changes result in large improvements. The lower the percentages pNFIQ1(S) are,
the noisier the measurements may be.

4.5.2 NFIQ2.0

Figure 4.9b shows the cumulative occurrence probabilities of NFIQ2.0 score be-
fore and after enhancement exemplary for critical imagesC(FV C2000DB1,MINDTCT).
Only the image enhancement method Cartoon-Texture-Decomposition improved
the NFIQ2.0 scores of this set compared to the baseline.
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Table 4.3: AuCNFIQ2(·, ·). Best values per dataset are marked bold.
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Baseline (abs) 47.9 42.8 62.5 36.4 45.4 74.4 41.5 62.1 53.6 61.7 52.5 54.7 68.6 61.8
BlockFFT 1.07 0.91 0.91 1.20 0.97 0.73 1.13 0.84 1.12 0.86 1.14 1.01 0.85 0.94
Cartoon 0.87 1.21 0.81 1.20 0.79 0.79 0.99 0.87 0.84 0.64 0.89 1.07 0.91 0.88
CLAHE 1.15 1.34 1.00 0.96 1.17 1.02 0.94 1.21 1.11 1.09 1.21 1.12 1.09 0.93

Contextual-Filtering 0.99 1.06 0.73 1.30 0.94 0.63 1.12 0.75 0.82 0.68 0.82 0.89 0.71 0.93
Energy-Normalization 1.15 1.33 1.00 1.37 1.02 1.01 1.40 1.05 1.01 1.00 1.03 1.19 1.11 1.02

HistEQ 1.18 1.43 1.04 1.49 1.06 1.06 1.64 1.11 1.04 1.02 1.09 1.45 1.18 0.95
Wiener-Filtering 1.08 1.00 1.04 1.37 1.25 0.89 1.06 1.19 1.10 1.16 1.29 1.07 0.99 0.97

To allow comparison over all datasets and image enhancements AuCNFIQ2(S,Enh)
was calculated. Table 4.3 summarizes the results. The best improvements in
terms of this metric were achieved by the image enhancement methods Contextual-
Filtering, Cartoon-Texture-Decomposition, and CLAHE. The methods Cartoon-
Texture-Decomposition and Contextual-Filtering resulted in an AuC values which
are smaller than values for the baseline on almost all datasets. However, methods
Energy Normalization, HistEQ, and Wiener Filtering achieved an AuC larger than
the baseline for all datasets. No obvious trend can be found for methods CLAHE
and BlockFFT.

4.5.3 Biometric Performance

Figure 4.10 visualizes the DET curves before and after image enhancements on
FVC2000 DB1 for the critical comparisons. To allow comparability between
different image enhancement methods on different datasets, the calculated DET
curves are projected into a scalar value: the AuC. Tables 4.4 and 4.5 contain the
AuC values for all combinations of datasets, image enhancements, and feature
extractors.

According to Table 4.4, there is no single best image enhancement. The method to
achieve the best improvement in terms of this metric therefore depends on the
dataset. The highest count of best results per dataset was found for methods
Cartoon-Texture-Decomposition and Contextual-Filtering. However, the method
Contextual Filtering even decreased biometric performance in this metric on some
datasets. Thus, not all methods worked out of the box for all datasets.

The biometric performance was remarkably lower for features extracted with Fin-
gerJetFX than for those extracted with MINDTCT. This does not yield any advant-
age of MINDTCT over FingerJetFX. The biometric performance does not depend
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(a) MINDTCT on critical comparisons
FVC2000 DB1

(b) FingerJetFX on critical comparisons
FVC2000 DB1

(c) MINDTCT on entire FVC2000 DB1 (d) FingerJetFX on entire FVC2000 DB1

Figure 4.10: DET curves before and after image enhancement. The performance can be
increased by image enhancements. The impact differs between the entire dataset and the
critical comparisons only.
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Table 4.4: AuCDET(·, ·,MINDTCT). Rightmost column represents evaluation on the en-
tire dataset.
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Table 4.5: AuCDET(·, ·,FingerJetFX). Rightmost column represents evaluation on the
entire dataset.
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only on the feature extractor. It depends on their combination with a comparison
algorithm. However, the relative improvements are therefore larger for Finger-
JetFX compared to those for MINDTCT.

Table 4.5 reveals that no clear trend can be found for the biometric performance
based on features extracted with FingerJetFX as well. The highest count of best re-
sults was found here for the methods Wiener-Filtering and CLAHE. Again, in few
cases the biometric performance was decreased when an image enhancement had
been applied to the fingerprint samples. The image enhancement method which
achieved best biometric performance therefore does not only depend on the data.
It also depends on the feature extractor used.

Both tables include as their rightmost column the result for evaluation on the entire
dataset FVC2000 DB1. Values for measures on the entire dataset and on critical
comparisons were biased, e.g. by a-priori probabilities of mated and non-mated
comparisons. Thus, they were not comparable directly. However, rank-correlation
was applicable to evaluate correlation of both measurements. Spearman’s rank
correlation coefficient is 0.96 when MINDTCT is used and 0.88 when FingerJetFX
is used. This indicates a significant correlation. Reduction to critical comparisons
for evaluation purposes seems therefore reasonable.

4.5.4 Correlation of Image Quality and Biometric Performance

Figure 4.11 shows exemplarily 2D-histograms of the changes in biometric scores
and changes in image quality scores when Cartoon-Texture-Decomposition was
applied to the critical images C(FVC2000 DB1,MINDTCT). The visualization is
split into mated and non-mated comparisons. Pair-wise qualities were improved by
image enhancement. There was a trend for mated comparison to result in higher
comparison scores after image enhancement. The trend for comparison scores
for non-mated comparison to be lower was even more present. When comparing
Figures 4.11b and d, the changes in NFIQ2.0 scores and changes in comparison
scores are more like expected for the mated comparisons than for the non-mated
ones. A cause for this behaviour may be that NFIQ2.0 has been trained on mated-
comparisons. However, no significant correlation between the differences in qual-
ity metrics and comparison scores was found at the level of single comparisons.

Nonetheless, the figures of merit for biometric performance and quality are of a
certain value. Those figure of merit have units which are hardly comparable. But
they provide an order. Thus, rank-correlation can be used to assess the relation
of both values. We inspected only those three datasets which are suited best for
assessment by NFIQ1. We inspected absolute values for the figures of merit as
these were not biased by a baseline measurement. Figure 4.12 visualizes the cor-
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(a) NFIQ1 score differences versus compar-
ison score differences for mated compari-
sons

(b) NFIQ1 score differences versus compar-
ison score differences for non-mated com-
parisons

(c) NFIQ2 score differences versus compar-
ison score differences for mated compari-
sons

(d) NFIQ2 score differences versus compar-
ison score differences for non-mated com-
parisons

Figure 4.11: Correlation of differences of comparison scores and image quality scores
before and after enhancement Cartoon-Texture-Decomposition on critical comparisons
(MINDTCT) on FVC2000DB1.



74 Survey on the Impact of Fingerprint Image Enhancement

relation for AuCDET and pNFIQ1 and AUCNFIQ2 respectively for features extracted
with MINDTCT and FingerJetFX. For MINDTCT we found correlation coeffi-
cients of 0.66 for AuCDET with pNFIQ1 and 0.72 with AUCNFIQ2 respectively. This
is a fair correlation. For FingerJetFX the correlation coefficients were lower: 0.41
and 0.38. When comparing the subfigures in Figure 4.12, the changes in AuCDET
for FingerJetFX were smaller than for MINDTCT. This indicated that the image
enhancement changed the biometric performance less significant for FingerJetFX.
Therefore the correlation over more than one dataset is lower for FingerJetFX than
it is for MINDTCT.

When inspecting the figures of merit in detail for Contextual-Filtering, the reduc-
tion of pNFIQ1 is remarkably. The change is more slightly in AUCNFIQ2. This
reduction is not corresponding to the chance in AuCDET. Therefore, NFIQ1 seems
to be more prone to the over-emphasized ridge structure produced by Contextual-
Filtering than NFIQ2.0 seems to be.

Table 4.6 summarizes the evaluated rank-correlation coefficients for all combina-
tions of datasets and image enhancement methods on features with MINDTCT. At
the level of single comparisons, both image quality metrics therefore seem to be
of limited use for estimation of the impact of an image enhancement on biomet-
ric comparison performance. This work treats quality assessment tools, biometric
feature extraction, and comparison algorithms as black boxes. They are quite com-
plex. Therefore, reasoning on causes for the behaviour we have found would just
be speculation.

4.6 Conclusion
Image enhancement was found to be able to improve the biometric performance in
a lot of cases. But the improvement to be achieved varied strongly between data-
sets. The performance also varies depending on the feature extraction algorithms.
Contextual Filtering and Cartoon-Texture Decomposition performed best among
the evaluated methods for MINDTCT. Wiener Filtering performed best for Fin-
gerJetFX. We found that assessing the impact of image enhancement on the sub-
set of critical comparisons can be an indicator for the performance on an entire
dataset. In some constellations of feature extractors and datasets simple image en-
hancement methods outperformed the more sophisticated approaches. However,
no enhancement was able to improve performance for every dataset and for every
feature extractor. Thus, no single solution was found to work best out of the box.

In some cases image enhancements improved the biometric quality metrics NFIQ1
or NFIQ2.0 of fingerprint samples. When inspecting sets of images, improve-
ments in terms of quality metrics coincided with improvements in biometric per-
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(a) AUCDET vs pNFIQ1 for MINDTCT (b) AUCDET vs AUCNFIQ2 for MINDTCT

(c) AUCDET vs pNFIQ1 for FingerJetFX (d) AUCDET vs AUCNFIQ2 for FingerJetFX

Figure 4.12: The absolute values of the figures of merit and their degree of rank-
correlation ρ. Each point in the figures is an result from a single method of image en-
hancement.
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formance. This trend was found especially for the non-mated comparisons. The
figures of merit introduced in this work were used to estimate the impact of differ-
ent methods of image enhancement on biometric comparison. But, at the level of
single comparison the changes in image quality did not correlate significantly with
changes in comparison scores. Neither NFIQ1 nor NFIQ2.0 are therefore suited
to assess the impact of image enhancement methods on biometric performance at
this level. Actually, none of both was intended to do such an assessment.

All tools used for the assessment were treated as black boxes. Detailed reason-
ing on the empirically experienced behaviour and correlations would have been
nothing more than speculation.

4.7 Discussion
Almost all related approaches that were evaluated do have parameters which might
be adjusted to the input data and therefore tweaked for a higher performance. Para-
meters were set as suggested by the references. Arbitrary combinations of image
enhancement methods are possible and may also lead to higher performance, too.

Evaluations were performed only on the set of critical comparisons. These are the
most relevant cases in terms of biometric performance. We found the reduction to
the subset of critical comparisons to be reasonable. But the critical comparisons
were not representative by definition. Therefore, performances shall always be
cross-checked on the entire dataset.

Two feature extractors were evaluated, but all comparisons were performed with
only a single algorithm. Another comparison algorithm might allow inspection on
this degree of freedom.
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Chapter 5

De-Convolutional Auto-Encoder
for Enhancement of Fingerprint
Samples

Summary Auto-Encoders can be trained to reconstruct the relevant
ridge structure from fingerprint samples. Synthetic fingerprints and
corresponding ideal images are used for training such a model. The
trained model enhances fingerprint samples. The impact of the en-
hancement on biometric performance is assessed on several datasets.
This publication is joint work with Simon-Daniel Schulz and Chris-
toph Busch. It was presented at the International Conference on Im-
age Processing Theory, Tools and Applications in Oulu (Finnland) in
2016.

[257] P. Schuch, S. Schulz, and C. Busch. De-convolutional auto-
encoder for enhancement of fingerprint samples. In 6th Interna-
tional Conference on Image Processing Theory, Tools and Applic-
ations (IPTA), pages 1–7. IEEE, 2016
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Abstract Reliability and accuracy of the features extracted from fin-
gerprints are essential for the performance of any fingerprint compar-
ison algorithm. Image Enhancement as a pre-processing step allows
to extract features more accurately by enhancing the quality of the
fingerprint signal. This work proposes to use De-Convolutional Auto-
Encoders for fingerprint image enhancement. Its performance is com-
pared to seven state-of-the-art methods regarding their improvements
for recognitions of the biometric system. Biometric performance is
tested with MINDTCT and FingerJetFX for feature extraction and
BOZORTH3 for biometric comparison. Critical comparisons are de-
termined from 14 datasets. Those are used for evaluation of the meth-
ods. The impact of a method on biometric performance varies signific-
antly. No single image enhancement can be found, which works best
for all combinations. However, the proposed method ConvEnhance
achieves highest count of best improvements among the evaluated
methods.

5.1 Introduction
Using fingerprints for biometric recognition has a long tradition. Despite all ad-
vances and the maturity of fingerprint recognition technology, false positive and
false negative errors still occur. One reason is the lack of quality of the signals
processed.

Fingerprint recognition is about comparing two signals: the images captured from
fingerprints. Usually, comparison of two fingerprints is not performed directly on
the fingerprint images but on biometric features extracted from those images. A
fingerprint recognition transaction therefore consists of two separate processes.1

The first process is the biometric feature extraction, which extracts unique fea-
tures from the biometric samples, e.g. the fingerprint minutiae from the fingerprint
images. The second process is the biometric comparison which compares the bio-
metric features of two biometric samples. The original input signal significantly
influences the performance of the processing. Therefore, all three aspects are rel-
evant for a successful biometric recognition: the quality of the fingerprint image
itself, the biometric feature extraction, and the comparison algorithm to be applied.

Image enhancement can improve the aspect of the quality of the fingerprint image.

1The entire process starts with the acquisition of the fingerprints, which in itself is subject of
numerous environmental factors and depends on human interaction. However, it is out of scope for
this work.
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This approach learns characteristic structures directly from the data. The structure
of the data is later used to reconstruct the relevant signal even from low quality
input. By doing so, this data-driven approach has the potential to outperform com-
pletely engineered approaches which may not be suited for all datasets.

It compares this approach to previous presented methods for enhancement in terms
of their impact on biometric recognition performance. This impact will be evalu-
ated by the accuracy achieved with publicly available feature extractors MINDTCT
[309] and FingerJetFX [65] in combination with the comparator BOZORTH3
[309]. Critical comparisons are identified on fourteen datasets in order to illustrate
the effect.

The rest of the publication is organized as follows: A selection of image enhance-
ments is briefly explained in Section 5.2. Our approach will be explained in Sec-
tion 5.3. Section 5.4 introduces the test protocol including datasets, metrics for
testing, and the corresponding results. Conclusions are made in Section 5.5. Sec-
tion 5.6 adds remarks on the findings of this work and gives an outlook on future
work.

5.2 Related Work
Over the last decades several ideas were proposed on how to enhance fingerprint
images. Seven methods will be described by how they manipulate the signals
of fingerprints, i.e. the grey-values. Some methods are composed from several
single processing steps. Where reasonable, single working steps are described and
evaluated stand-alone.

Histogram Equalization (HistEQ) is a general method for image enhancement. Its
idea of HistEQ is to remap the pixel intensities in such a way that the intensity dis-
tribution spreads over the resulting histogram as uniform as possible while keeping
the order of the intensity values. By such mapping, the values of the signal are
spread over the entire valid range and the contrast is stretched in a global manner.
While HistEQ is applied to an entire image, Contrast Limited Adaptive Histogram
Equalization (CLAHE) performs a contrast stretching of the signal in a more local
manner [336]. The local adaptivity overcomes limitations of the simple HistEQ,
e.g. it is able to enhance even local low-contrast areas. Unfortunately, CLAHE
is not sensitive, whether or not a relevant signal in present locally. Therefore, the
contrast of every local signal - including noise - will be amplified. For both HistEQ
and CLAHE functions included in openCV have been used [32].
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Hong et al. proposed another reshaping of the signal distribution of a fingerprint
image [110]. 2 The intention of shaping the distribution of the signal is to let the
mean and the standard deviation of the enhanced image meet distinct target values.
By doing so, distributions of grey-values get more similar over a set of images. All
resulting signals should have therefore similar energy.

Watson et al. assumed that locally the signal of a fingerprint is similar to an ori-
ented 2D-cosine [305]. If so, this signal should be observable well in the frequency
domain. Its specific frequency can then be enhanced more easily in the frequency
domain than in the spatial domain. Thus, they proposed an enhancement in the fre-
quency domain using a Block-wise Fourier Spectrum Enhancement (BlockFFT). It
is proposed to amplify the spectrum of local image blocks according to its cor-
responding power spectrum. Assuming that the fingerprint ridge frequency itself
is the dominant contributor in the spectrum this signal will be boosted the most.
Processing of overlapping blocks is proposed to prevent artefacts at the borders of
local blocks.

Greenberg et al. proposed to use Wiener Filters for fingerprint image enhancements
[97].3 The idea is to estimate the characteristics of noise and to remove such noise
from signal.

Hong et al. proposed a method [110], which has later been called Contextual Fil-
tering by Maltoni et al.. They state that it may be "the most widely used technique
for fingerprint image enhancement" [203]. In contrast to most other approaches,
contextual filtering is especially tuned to fingerprint image enhancement and fo-
cusses on its specific characteristics. Based on estimations for local orientation
and ridge frequency appropriately parametrized Gabor filters are applied locally.
With the usage of Gabor-Filters again the underlying assumption is, that the sig-
nal of a fingerprint is locally similar to an oriented cosine. Several extensions to
Contextual filtering were proposed which modify one or more working steps, e.g.
using the frequency domain for estimation of local orientation and ridge distance.

Buades et al. proposed a decomposition of the signal of the fingerprint image into
two components [35]. Local Total Variation is used as a measure for sensibility
regarding smoothing operations. This measure can be used to determine the so-
called cartoon component which represents the very low frequency component
which is less sensible to smoothing. The texture part shall contain a clearly visible

2This method is a single processing step in a larger enhancement workflow named Contextual
Filtering

3Wiener Filtering is proposed as a first processing step in a larger enhancement workflow. It
will be evaluated only stand-alone in this work. For this work an unsupervised variant of the Wiener
filtering provided by opencv [32] is used.



5.3. Proposed Method 83

fingerprint signal. The method is therefore called Cartoon-Texture-Decomposition
(Cartoon).

While these seven evaluated image enhancement methods cover the methods from
the Handbook of Fingerprint Recognition [203], more ideas have been proposed.
A broad survey on methods is e.g. given by Ezhilmaran and Adhiyaman [74].

Sahasrabudhe et Namboodiri proposed an approach which is the most relevant for
our own approach [251]. They propose to train a Convolutional Restricted Boltz-
man Machine (CRBM) with two hidden layers on hand-selected fingerprint image.
Finally, they apply the train CRBM iteratively to reconstruct an enhanced image
from a given fingerprint image. This approach is out of scope for the evaluations
of this work.

Figure 5.1: All evaluated enhancements applied to sample fingerprint images.

5.3 Proposed Method
Deep Learning and Convolutional Neural Networks (CNNs) have led to significant
advances in the domains of image processing and pattern recognition [173]. These
advances are promising for many pattern recognition tasks. Thus, we are motivated
to explore its benefit for fingerprint recognition.

The central idea in CNNs is that digital filters are used as feature extractors. These
feature extractors can be trained by systematic modification of the filter coeffi-
cients: the digital filters will learn to detect and extract features. The partial de-
rivatives of the filter coefficients with respect to a given objective function can be
used for a gradient descent and therefore induce such systematic modifications.
The filters therefore learn features that help solving the given task.

The central idea of Deep Learning is to stack a multitude of sets (layers) of such
trainable digital filters. An distinct set of combined layers is called a modelM. In
the first layer of a CNN only very simple features will be learned, e.g. edges. The
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second layer learns re-combinations of the features extracted in the first layer. With
each layer of non-linear re-combinations the extracted features can represent more
complex structures. The capacity of a model for features that can be described
grows with the number of layers and so does the complexity of describable features
grow.

CNNs and techniques from Deep Learning are very versatile in their application.
Thus, they can be used as a method for image enhancement of fingerprints. As
CNNs combine local and more global features, they are promising for fingerprint
image enhancements. In areas, where the fingerprint signal is of good quality,
CNNs can rely more on the local data. For regions of low quality more global
information (e.g. regional orientation) will be taken into account for local recon-
struction. As CNNs learn directly from the data, CNNs automatically learn how
to combine local and more global features. Especially De-ConvLayers have high
potential of solving the problems in fingerprint image enhancement [327].

5.3.1 Architecture

Five types of layers were used during the experiments. Those were Convolutional,
De-Convolutional, Rectified-Linear transformation, DropOut, and Normalization.
A Convolutional Layer (ConvLayer) consists of trainable filters [172] and imple-
ments the ideas explained roughly above. A special type of the ConvLayer is the
De-Convolutional Layer (De-ConvLayer) introduced by Zeiler et al. [327]. They
can be used to reassemble local structures from features. The De-ConvLayers are
therefore the most relevant layers for the reconstruction in this architecture since
they can reconstruct larger regions from local representations in the layers before.
The layout of ConvLayers and DeConvLayers can be described by the number
of filters and dimensions of the filters. All filters are 3D-filters. According to
their spatial behaviour, dimensions are therefore HEIGHTxWIDTHxCHANNELS4.
A Rectified Linear Unit (ReLU) is a simple non-linear transformation, which sets
all negative values to 0 and use the identity for all other values.5 Despite its simpli-
city, ReLUs are helpful mainly for two reasons. They introduce sparsity in the out-
put values [217] and they introduce additional non-linearities which increases the
capacity of a model. DropOut randomly sets features to zero and serves to coun-
teract over-fitting [272]. Finally, Mean Variance Normalization (MVN) layers will
conduct a normalization on the input values. This leads to faster convergence and
more accurate results. In general, all input values will be transformed such that
after enhancement all values have zero mean and unit variance.

4Each filter generates its own feature channel. The number of channels is therefore equal to the
number of filters of the predecessor layer.

5ReLU(x) = max(0, x)
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Table 5.1: The evaluated model is composed from an ordered sequence of layers with
distinct types. ConvLayer and De-ConvLayer can be described by their number of filters
and the dimensions of those 3D-filters (HEIGHTxWIDTHxCHANNELS). MVN, ReLU,
and DropOut layers do not have filters. The output of each layer is exemplary given with
respect to an input image used for training.

Nr Type Number Dimensions Output
of Filters of Filters Dimensions

0 Input image 336x256x1
1 MVN 336x256x1
2 ConvLayer 64 5x5x1 336x256x64
3 MVN 336x256x64
4 ReLU 336x256x64
5 DropOut 336x256x64
6 De-ConvLayer 64 5x5x64 336x256x64
7 ReLU 336x256x64
8 DropOut 336x256x64
9 De-ConvLayer 64 5x5x64 336x256x64

10 ReLU 336x256x64
11 De-ConvLayer 1 7x7x64 336x256x1

The De-ConvLayers used for reconstruction and the straight forward reconstruc-
tion are the central differences to the iterative CRBM approach of Sahasrabudhe
et Namboodiri [251]. The model used in this work was designed and trained in
the framework caffe [141]. The proposed model consists of eleven layers. The
combination of layers can be found in Table 5.1. Among several evaluated lay-
outs this architecture achieved the lowest reconstruction error for the training data.
The enhancement of a single fingerprint image with dimensions 300x300 with this
method takes about 75 ms on a GPU6.

5.3.2 Training

Training of a model M to map an image I to a target T can be formulated as a
quadratic optimization, i.e.

min
M
||T (I)−M(I)||2 (5.1)

We propose the target to be an ideal binarization of the image. We use the synthetic
fingerprint image generator SFinGe [46] to generate 50,000 synthetic fingerprint
samples and corresponding ideal binarized images (see Figure 5.2 for samples).

6An NVIDIA GTX 780 has been used for evaluation.
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Figure 5.2: Three sample sets of images and targets used for training

These binarized versions B(I) have been used as targets for training:

min
M
||B(I)−M(I +N0,σ)||2 (5.2)

where N0,σ is white Gaussian noise, which acts like a corruption of the input
image. This corruption can increase the capability of generalization of a model
M [298]. This method tries to approximate a binarization of a local signal with
respect to its neighbourhood.

The training has been performed with a learning rate λ = 5 ∗ 10−8. Errors have
been tracked on an 800 sample validation set of synthetic images for early stop-
ping. Weight decay has been set to 105.

As training is carried out on synthetic data which is totally separated from the data
used for testing, there is no need for techniques like cross-validation.

5.4 Experiments

5.4.1 Data

Accuracy of the biometric recognition needs to be evaluated on representative
data. This has to be done in such a manner that results are reproducible. Eval-
uations in this work were performed on fourteen publicly available datasets. The
benchmark series Fingerprint Verification Competition (FVC) has four editions
providing datasets [200][201][202][47]. Five out of sixteen datasets from these
series have been excluded from evaluation: one dataset with low resolution and
all synthetic datasets. The Ministerio de Ciencia y Tecnología of Spain (MCYT)
has provided a multi-modal data-set containing two subsets of fingerprint samples
[228]: MCYT DP and MCYT PB. NIST provides the data-set NIST SD14 [306].
Table 5.2 gives an overview over the evaluated datasets and their characteristics.

These three sets MCYT PB, MCYT DP, and NIST SD14 are in an order of mag-
nitude larger than the other datasets. All evaluations on those datasets have been
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Table 5.2: Datasets used for evaluation and Training. Characteristics are strong rotation
(R), displacement (D), moisture (M), low quality (Q), and control on the acquisition (C).

Dataset Samples Dimensions Resolution Data Origin Characteristics
FVC2000 DB1 800 300×300 500 dpi Optical Low-cost Sensor
FVC2000 DB2 800 364×254 500 dpi Capacitive Low-cost Sensor
FVC2000 DB3 800 478×448 500 dpi Optical
FVC2002 DB1 800 388×374 500 dpi Optical R, D, M
FVC2002 DB2 800 560×296 569 dpi Optical R, D, M
FVC2002 DB3 800 300×300 500 dpi Capacitive R, D, M
FVC2004 DB1 800 640×480 500 dpi Optical R, D, M
FVC2004 DB2 800 364×328 500 dpi Optical R, D, M
FVC2004 DB3 800 480×300 512 dpi Thermal Sweeping R, D, M
FVC2006 DB2 1680 560×400 569 dpi Optical R, D, M, Q
FVC2006 DB3 1680 500×400 500 dpi Thermal Sweeping R, D, M, Q

MCYT DP 39,600 400×256 500 dpi Optical C
MCYT PB 39,600 300×300 500 dpi Capacitive C
NIST SD14 54,000 768×832 500 dpi Ink-based

Training Data 50,000 N×M ∼ 500 dpi SFinGe Synthetic

carried out only on first ten percent. The subsets can still be assumed representative
for the evaluation since those subsets are still larger than the other sets.

Figure 5.3: Low comparison scores for mated comparison can arise from low fingerprint
area.

Specific subsets of image pairs have been selected systematically to focus eval-
uation on the most relevant cases of the biometric comparisons. The selection
consists of two steps.

First, only those images I will be kept where the area A(I) of the fingerprint is
large enough to provide sufficient information for comparison. The intention with
this is to avoid genuine comparisons that are attributed with a low comparison
score due to a small overlapping region of the image pair. The area A is estimated
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by one of the features of NFIQ2.0 [222]. The subset DBLarge of a whole dataset
of fingerprints DB is defined as follows:

DBLarge = {I ∈ DB : A(i) >= µA(DB) − 2σA(DB)} (5.3)

where µA(DB) is the mean over all fingerprint areas in the entire dataset DB and
σA(DB) is the respective standard variation.

Figure 5.3 shows the comparison scores against the pair-wise minimum fingerprint
area for all mated comparisons on the dataset FVC2000DB1. Small fingerprint
areas may lead to small overlap areas between fingers. Image enhancement should
not be able to increase the fingerprint areas. Therefore, the challenge of small
overlap is none an image enhancement can take care of. Thus, those samples were
not considered in our analysis.

Second, only those comparisons are selected which are most relevant for the bio-
metric comparison performance. In general, the vast majority of biometric com-
parisons result in comparison scores, which allow to easily decide right whether
it has been a mated or a non-mated comparison. Improvements on those compar-
isons are of little relevance for the biometric performance. Usually, the biometric
performance depends on only a small subset of biometric comparisons in which
the resulting comparison scores do not allow a sound decision if the comparison
has been mated or non-mated. Those are the mated comparison resulting in very
low comparison scores and vice versa for the non-mated comparisons. Only those
can lead to false positive and false negative errors. As the focus of this work is on
the influence of image enhancement on the biometric performance, we will reduce
our analysis to the lowest scoring mated comparisons and highest scoring non-
mated comparisons. For each dataset features will therefore be extracted from the
non-enhanced original images with MINDTCT and FingerJetFX. Comparison
will be carried out on both sets of extracted features. From all comparison results
the 2,000 non-mated comparisons resulting in the highest biometric comparison
scores and the 2,000 mated comparisons resulting in the lowest biometric compar-
ison scores. Those 4,000 comparisons are of highest relevance for the biometric
performance and form the fixed set of critical comparisons CDB

FE . To inspect the
impact of image enhancement those critical comparisons CDB

FE will be performed
again on features from the enhanced images. To clarify this: these sets of crit-
ical comparisons depend only on the feature extractor FE but not on the image
enhancement method Enh.

5.4.2 Metric

To assess the biometric performance all critical comparisons will be repeated with
features extracted from the enhanced images. Figure 5.4 show the workflow ap-



5.4. Experiments 89

Figure 5.4: Workflow on the evaluation

plied to the critical comparisons. The fingerprint images involved in the critical
comparisons CDB

FE are enhanced with an enhancement Enh. Features will be ex-
tracted from the enhanced images with MINDTCT and FingerJetFX. Comparison
will be performed by BOZORTH3. The Area under the Curve AuC will be calcu-
lated for the resulting detection error tradeoff curve (DET) and used as the measure
m(Enh,FE,DB):

m(Enh,FE,DB) = AUCFE
DET(Enh, CDB

FE ) (5.4)

The DET curve is evaluated in linear scale and the AuC is calculated for the entire
range or errors by intention: as only the small set of critical mated and non-mated
comparisons are inspected, logarithmic scaling would be misleading. Finally, val-
ues m relative to the values before image enhancement are used as the relevant
measure mrel:

mrel(Enh,FE,DB) =
m(Enh,FE,DB)

m(Baseline,FE,DB)
(5.5)

where ’Baseline’ indicates the identity function, i.e. the original image are evalu-
ated.

Computational complexity is an important criterion for assessing image enhance-
ment methods. The processing time for a fingerprint sample image of dimensions
300x300 will therefore be measured for all methods.

5.4.3 Results

Figures 5.5 and 5.6 visualize exemplary the DET curves for all evaluated methods
of image enhancement for the critical comparisons CMINDTCT

MCYTDP
and respectively

C
FingerJetFX
MCYTDP

. The solid black lines mark the baseline performance where no image
enhancement has been applied. Such DET curves have been used to calculated the
measures mrel in Table 5.4. Those measures mrel are relative to the measures m
in Table 5.3. Since the baseline performances tend to be better for MINDTCT the
relative improvements for this extractor have other characteristics than for Finger-
JetFX.
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Figure 5.5: DETs on CMCYT DP
MINDTCT

Table 5.3: Absolute values for measure m(Baseline,FE,DB) allow comparison of
baseline performances between datasets and feature extractions.
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Figure 5.7 visualizes the distributions of the achieved relative measures mrel per
dataset and feature extractor for all related methods as violin plots7. The left,
blue halves of the violins represent the distribution of achieved relative AuC for
all related image enhancements for the dataset denoted on the x-axis with fea-
tures extracted with MINDTCT. The right, green halves represent the values for
features extracted with FingerJetFX. Red stars indicate the improvement achieved
by the proposed method ConvEnhance. The stars therefore give an idea about the
performance of ConvEnhance with respect to the other methods of image enhance-

7These plots are slightly inaccurate since the number of measurements is small.
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Figure 5.6: DETs on CMCYT DP
FingerJetFX

Table 5.4: Measure mrel(Enh,FE,DB). Smaller values indicate stronger improvements.
The best improvement per dataset and feature extraction is marked bold.
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ment. In most cases ConvEnhance achieves a performance better than the mean of
all other methods.

Improvements vary significantly for the different datasets and feature extractions.
There is no single best image enhancement that provides the best improvement
for all combinations of datasets and feature extractions. An enhancement working
well for one feature extraction on a single dataset in some cases does not work at
all with another combination. There is no obvious trend in performance in depend-
ence to origin of data8.

The results for datasets FCV2002 DB1 and DB2 and features extracted with MIN-
DTCT have to be approached with caution. The AuC values are already low for
the baseline. Thus, only very few comparisons can have an erroneous outcome
at all. The changes in the results depend on a small number of comparison what
may make the results sensitive to noise. For those two datasets mrel values larger
than 1 can be found, i.e. the biometric performance even decreased after an image
enhancement.

For features extracted with MINDTCT the most frequent best improvement is
achieved with ConvEnhance (5 best improvements). The next most best improve-
ments are achieved by Contextual-Filtering (3) and HistEQ (2). The other best
results are achieved by the other methods.

ConvEnhance and Wiener Filtering both achieved the most best improvements (5
each) for features extracted with FingerJetFX. This might be a an indication that
FingerJetFX is sensitive to noise. The next best improvements are achieved by
CLAHE (2). The remaining best results again spread over different methods of
enhancement.

It is remarkable that in some constellations very simple image enhancements like
HistEQ outperform the more sophisticated approaches.

The computational complexity of an image enhancement can be an important cri-
terion when designing a system. Table 5.5 summarizes the processing time when
the image enhancement methods are applied to a fingerprint sample image with
dimensions 300x300. No runtime optimized versions of the image enhancement
methods have been tested. Therefore, the timing measurements can only be taken
as a very rough indicator for the computational complexity. While HistEQ and
CLAHE process an image in less than a millisecond, the processing time for
Contextual Filtering and ConvEnhance (when working on CPU only) is larger
by orders of magnitude. However, as CNNs are suited for operation on GPU,
ConvEnhance can be processed in about 75 ms when using GPU.

8See Table 5.2 for the origin of the data for each dataset.
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Figure 5.7: Violin plot for AuC. Red stars mark the values for ConvEnhance

Table 5.5: The evaluated methods differ is their numerical effort by orders of magnitude.
The processing time is measured for the implementations applied to a 300x300 fingerprint
sample image.

Method Processing Time [ms]
BlockFFT 74

Cartoon Texture Decomposition 18
CLAHE < 1

Contextual Filtering 13,599
ConvEnhance (GPU) 75
ConvEnhance (CPU) 3,010
Energy Normalization 3

HistEQ < 1
Wiener Filtering 443

5.5 Conclusion
Several methods have been proposed for the enhancement of fingerprint images.
Seven related methods and a newly proposed one have been evaluated for their
impact on biometric performance on fourteen datasets and two different feature
extractors. No single best image enhancement can be found and the impact of en-
hancement strongly varies. The best improvement depends on both: data and fea-
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ture extraction. The proposed method ConvEnhance performs competitive against
the other image enhancements. It achieves the highest count of best improvements
over all combinations of datasets and feature extractors. Given this measure it
outperforms all other methods.

The computational time is about 75ms for the enhancement of an image with di-
mension 300x300. This amount of time seems reasonable for operational use but
a GPU is necessary.

5.6 Discussion and Outloook
Optimization of hyper-parameters like the layout of single layers is essential in
Deep Learning. We do not claim that the proposed architecture is the best but
it can be used for further improvements. Especially, if a cost function can be
formulated which is more related to the biometric performance, a more powerful
image enhancement may be learned.

Synthetic fingerprint images were used for training. The model has learned how
such fingerprint images have to be enhanced. This approach may fail, if the finger-
print data which is to be enhanced differs significantly in its characteristics from
training data, e.g. in its image resolution. Changing the data source to authentic
fingerprint images may increase the performance of a trained modelM or to apply
to specific characteristics of the data of a target system.

Fingerprint image quality can be also be assessed by specialized metric NFIQ2.0.
This metric therefore would be an alleged candidate for the assessment of the im-
pact of image enhancement on fingerprint recognition.

Using the AuC on only a subset of all data is always a simplification. This was
done for a better illustration the effect of image enhancement on biometric per-
formance. For application, one shall always consider the performance on the entire
datasets.

It was found that the method of image enhancement, which is suited best, depends
on the feature extractor. Further methods of image enhancement might be con-
sidered for comparison. Combinations of image enhancements as cascades are
conceivable. Such cascades may be an appropriate approach to deal with chal-
lenges specific for the data or feature extractor used. More feature extractors and
more comparison algorithms might be considered for evaluation.



Chapter 6

Minutia-based Enhancement of
Fingerprint Samples

Summary Fingerprint feature extraction shall be as accurate and reli-
able as possible. An ideal fingerprint sample enhancement takes these
aspects into account. We introduce a cost function for a Convolutional
Neural Networks, which incorporates the accuracy and reliability of
the feature extraction. This allows to tailor an image enhancement
directly to the needs of a feature extraction module. Evaluations of
the biometric performance demonstrate the potential of this approach.
This publication is joint work with Simon-Daniel Schulz and Chris-
toph Busch. It was presented at the International Carnahan Confer-
ence on Security Technology in Madrid (Spain) in 2017.

[258] P. Schuch, S. Schulz, and C. Busch. Minutia-based enhance-
ment of fingerprint samples. In International Carnahan Confer-
ence on Security Technology (ICCST), pages 1–6. IEEE, 2017
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Abstract Image enhancement is a common pre-processing step be-
fore the extraction of biometric features from a fingerprint sample.
This can be essential especially for images of low image quality. An
ideal fingerprint image enhancement should intend to improve the
end-to-end biometric performance, i.e. the performance achieved on
biometric features extracted from enhanced fingerprint samples. We
use a model from Deep Learning for the task of image enhancement.
This work’s main contribution is a dedicated cost function, which is
optimized during training. The cost function takes into account the
biometric feature extraction. Our approach intends to improve the ac-
curacy and reliability of the biometric feature extraction process: No
feature should be missed and all features should be extracted as precise
as possible. By doing so, the loss function forced the image enhance-
ment to learn how to improve the suitability of a fingerprint sample
for a biometric comparison process. The effectivity of the cost func-
tion was demonstrated for two different biometric feature extraction
algorithms.

6.1 Introduction and Motivation
Fingerprint recognition requires careful selection of suitable signal processing al-
gorithms. This signal processing is about comparing two signals for their similar-
ity. The signals are fingerprint samples that represent friction ridges. In general,
the comparison is not performed on the fingerprint samples directly. Usually, dis-
tinct biometric features are extracted from the fingerprint samples, which can be
evaluated to a comparison subsystem. Typical examples of such features are the
fingerprint minutiae, e.g. the endings and bifurcations of the fingerprint ridges. The
higher the quality of a fingerprint sample is, the better the biometric features can be
extracted. But feature extraction can be challenging when low quality samples are
processed. The accuracy of fingerprint recognition therefore depends remarkably
on the quality of the fingerprint samples.

The quality of the fingerprint samples varies. Good quality fingerprints can usually
be processed accurately. But the lower the quality is, the more challenging is the
biometric feature extraction. Fingerprint image enhancement (FIE) can improve
the suitability for accurate feature extraction of the fingerprint sample. FIE is a
common preprocessing step before the biometric feature extraction process [203].
Figure 6.1 visualizes the typical workflow of biometric fingerprint recognition in-
cluding a FIE.
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The intention of the FIE should be to improve the performance. The enhance-
ment therefore does not need to improve the aesthetics of a fingerprint sample. It
should intent to increase the utility of a fingerprint sample for biometric compari-
son [123]. Other proposed approaches for FIE usually assess the improvement of
biometric performance after enhancement. But those approaches cannot address
the performance directly. Actually, this is the intended purposes at the end. But
this also is a very indirect approach as it also incorporates the comparison. The

Figure 6.1: The workflow of fingerprint recognition can roughly be described in three
sequential processes. First the fingerprint samples are enhanced. Biometric features are
extracted afterwards. Finally, the features of two samples are compared to estimate the
likelihood of being samples from the same finger.

biometric feature extraction is the successive processing step after image enhance-
ment. It is therefore reasonable to enhance the samples in such a way, that the
feature extraction algorithm can extract the minutiae as accurate and reliable as
possible. Accuracy means to extract features with a high fidelity in position. Re-
liability covers two partial aspects. No spurious minutia should be found and no
actually present minutia shall be missed out.

Deep Learning (DL) is quite successful in many tasks of image processing nowa-
days. One of the important assets of DL is the ability to learn how to solve a task
directly from training data. It is therefore also promising for FIE.

Thus, we propose to train a DL model for FIE. We chose a convolutional Auto-
Encoder for image enhancement and sketched an exemplary model architecture.
This work’s main contribution is our proposed cost function. The cost function
is optimized during training. Formulation of the cost function usually is a funda-
mental design step, because it defines what a model will actually learn during train-
ing. Our cost function addresses the aspects of accuracy and reliability of a fea-
ture extraction. It compared minutiae extracted from the feature extractor against
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ground truth minutiae. As different feature extractors work differently, the image
enhancement can be adjusted to the needs of the feature extractor in this way. We
demonstrated this approach for two different feature extractors: MINDTCT and
FingerJetFX.

The rest of this work is organized as follows: Section 6.2 contains an overview on
related work. Our approach is presented in section 6.3 and is evaluated in Section
6.4. Section 6.5 concludes the findings of this work.

6.2 Related Work
A lot of methods for FIE were proposed before. Several surveys on FIE allow an
overview over general methods in FIE methods [74][209][208][146][2][254][238].

Most relevant for our approach were those methods, which used DL or represent-
ations in general for FIE. There are DL approaches which train a reconstruction
of ideal ridge structures from fingerprint samples [257][276]. Ideal ridge structure
were provided by synthetic fingerprint generation tool SFinGe [46]. Deep Be-
lief Network built from Boltzman Machines were proposed for FIE [251]. Auto-
Encoders were used to learn representations for minutia and non-minutia patches
[253]. Those representations were later used to classify the local presence of minu-
tia which in turn should enhance biometric performance. There are also indirect
approaches, which use a DL based orientation field estimation for FIE [250][133].

Learning dictionaries for fingerprint image enhancement has the idea in common
with DL, that it is possible to learn representations directly from the data, which en-
able an image enhancement. There are approaches, which use dictionaries of ridge
structure patches directly for image enhancement [154][43][133][270][167][190]
[300][190][311]. Singh et al. proposed dictionaries for super-resolution [269]. Su-
per resolution can also be understood as an enhancement or reconstruction. Cao
et Jain reconstructed fingerprints from fingerprint minutia via dictionaries [39].
This is kind of an inverse problem to ours, but it is quite similar as the aim was
to reconstruct fingerprint samples which would end up in the same minutiae after
feature extraction. Like for the DL approaches, there are also indirect approaches,
which learn an orientation field for later FIE [321][322][77][319]. Finally, there
are also hybrid approaches, which combine dictionaries and techniques from DL
[136][40].

Another approach for FIE based on a decomposition into representations was to
use Morphological Component Analysis [57].

All approaches assessed the impact of FIE on the biometric performance. But none
is able to incorporate biometric feature extraction or biometric comparison directly.
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Our proposed approach uses a typical Auto-Encoder training in the first training
phase. The main contribution of this work is the cost function used during the
second training phase. The cost function exceeds all the related work by allowing
to incorporate the accuracy and reliability of a biometric feature extraction directly
into the training of the method.

6.3 Our Approach
We use a convolutional Auto-Encoder. In the following, we sketch an exemplary
architecture first. The actual architecture of the model is not that important for this
work at the end of the day, since our focus was on the cost function. Afterwards,
the two successive training phases are explained. The second step includes our
main contribution: the designated cost function. Finally, we describe the signal
normalization, which was applied to the fingerprint samples before enhancement.
Such a normalization is usually helpful when a model is applied to data that is
unseen during training.

6.3.1 Architecture

We used DL framework caffe for the design and training of the modelM [141].
We decided to train a Convolutional Auto-Encoder because the main task of an FIE
should be to recover the relevant structure from an input. The modelM consists
of Convolutional layers (ConvLayer), DeConvolutional Layers (DeConvLayer), a
MaxPooling layer and two type of activation layers (ReLU and Sigmoid).

The model’s architecture is visualized in Figure 6.2. The architecture was com-
posed of three parts. One part is responsible for local representations. It is com-
posed of three consecutive blocks of ConvLayers and ReLU. Each ConvLayer op-
erates with a striding of 2. This results in an eight-fold subsampling, which is about
half the distance between two fingerprint ridges when processing images of 500dpi
resolution. The second part of the structure should take care of regional representa-
tions. Therefore, this part works partially at 32-fold subsampling. This means, that
a single pixel represents a region with the width of about two fingerprint ridges in
this representation. At the end of the block of regional representation, the informa-
tion is upscaled by a DeConvLayer. The third and last block reconstructs the image
from the local and the regional representations. This is done by a DeConvLayer
and a ConvLayer, which works like a proxy for a fully connected layer.

6.3.2 Auto-Encoder Pre-Training

In the first phase, the modelM was trained unsupervised in a de-noising manner
[298]. This pre-training allowed to learn a reasonable representation for fingerprint
samples. Let I be the input image and let N0,σ be Gaussian Noise with zero mean
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Figure 6.2: The model M consists of ConvLayers, De-ConvLayer, MaxPooling layers,
and activation layers.

and standard deviation σ. The cost function is then defined as follows:

min
M
||I −M(I +N0,σ)||2 (6.1)

The model M learns to reconstruct the image I from the corrupted version I +
N0,σ. The model was trained by optimizer Stochastic Gradient Descent. The
batch size in each training step was 64 of randomly sampled training images. Each
sample was a random crop of size 256 × 256 pixels from the training images.
Learning rate was initialized with 10−4. It was adjusted during training accord-
ing to the Inverse policy (γ = 10−4 and power = 0.75). A small weight decay
coefficient of 5 · 10−8 was used to prevent overfitting. Momentum was set to 0.5.
Additive Gaussian Noise was generated with a standard deviation σ = 0.03.

6.3.3 Minutia-based Fine-Tuning

The pre-trained model was then fine tuned. We therefore exchanged the Auto-
Encoder cost function by our minutia-based cost function which is described in
the following.

A derivable cost function needed to be established to allow training of the model.
The cost function should take the accuracy and reliability of the biometric features
into account. Let us first focus on the accuracy. In order to achieve higher accur-
acy, the cost function needs to relate the positions of the ground truth minutiae to
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the extracted ones in a derivable manner.1 This approach therefore assumes know-
ledge of the ground truth minutiae. We introduced such relation information by
placing Gaussians at the positions of minutiae. This gave rise to a new reasonable
2D representation for a set on minutiae. Figure 6.3 visualizes such a representa-
tions over the positions of minutiae. This 2D representation can then be used for
formulation of the cost function.

The cost function was defined as the mean squared error of all pixels (x, y) between
the target representation ϑ|(x,y) for the ground truth minutiae and the actual repres-
entation α(g)|(x,y) for the extracted minutiae. The actual α(g)|(x,y) representation
depends on the local grey value g. The cost function is then defined as sum over
the squared distance between both representations at every pixel:

cost =

x∑ y∑
(ϑ|(x,y) − α(g)|(x,y))

2 (6.2)

For improved readability, the local dependency is left out in the following. The
derivation of this cost function with respect to the grey value g is as follows:

dcost

dg
=

d(ϑ− α(g))2

dg

=2(ϑ− α(g))
d(ϑ− α(g))

dg

=2(ϑ− α(g)) lim
ε→0

(ϑ− α(g + ε)︸ ︷︷ ︸
:=α+

)− (ϑ− α(g))


ε

(6.3)

=2(ϑ− α(g)) lim
ε→0

α− α+

ε

The derivative of the cost function is built by chain rule. The inner function (θ −
α(g)) cannot not be differentiated analytically. Thus a numerical approximation
using α+ := α(g+ ε) is used. This gradient could then be used during training the
model.

Minimizing the cost function forces the model to generate a representation α as
similar as possible to representation ϑ. It therefore takes the accuracy into account,
because this forces the Gaussians in representation α to be placed similar to those
in representation ϑ. The cost function also considers the reliability of the feature

1There are more features of a minutia beside its position. Features like minutia type and angle
are out of scope for this work.
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extraction, since missed out features or spurious features result in large distances
between representations ϑ ans α.

The pre-training was assumed to learn a reasonable representation of fingerprints
in the layers, which were responsible for the local and the regional representa-
tions. As pre-training was finished, we froze the training for those layers, i.e. the
parameters were not altered by the training anymore. Only those layers were fine
tuned, which took care of the final reconstruction. The model was trained with
similar training parameters as during the pre-training. Only the learning rate was
set to 0.05 and no regularization by weight decay was enforced.

Figure 6.3: Extracted minutia positions (blue bar) and ground truth (red bar) should be as
close as possible. Placing Gaussians at the positions of the minutiae induced a new rep-
resentation. The target representation ϑ (red Gaussian) and actual representation α (blue
Gaussian) should be as similar as possible. The difference between both representations
can be used to establish local gradients which are necessary for training the model.

6.3.4 Data Normalization

Each fingerprint image was contrast enhanced, before DL based enhancement was
applied. Even though such a normalization could be trained within the model, a
normalization is a common pre-processing step. This normalization aims to re-
duce differences in signal characteristics between different image. The simplifies
the training process. We chose a simple contrast stretching, which is robust to stat-
istical outliers. The highest and lowest 3% of all grey values in each images were
clipped and the remaining grey values were stretched to the range [0, 1].

6.4 Results

6.4.1 Data

Using the proposed cost function required ground truth minutia positions for the
training images. We used the tool SFinGe for generation of such a dataset. SFinGe
provided such information for each generated fingerprint [46]. We used the tool’s
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(a) (b) (c)

Figure 6.4: A fingerprint sample (6.4(a)) usually contains only a vague representation
of the true present ridge structure (6.4(b)). An image enhancement can achieve a closer
approximation (6.4(c)) of the true ridge structure from a sample.

defined setting Low Quality for generation of the fingerprint samples. We gener-
ated 500 different fingers with 4 impressions each. The entire set was split into
two parts: 1,000 fingerprint samples for training and 1,000 fingerprint samples for
testing. Figure 6.4 shows an example of a generated fingerprint and the provided
ground truth ridge structure.

6.4.2 Auto-Encoder Pre-Training

The model was trained first as an Auto-Encoder. Training was stopped after 5,000
training steps. Neither cost on training data nor cost on validation data improved
significantly anymore. We therefore assumed, that the model then had learned a
reasonable representation for fingerprints. The left image in Figure 6.5 visual-
izes the development of the cost function for training and validation data over the
training steps.

6.4.3 Minutia-based Fine-Tuning

The pre-trained model was fine-tuned for 5,000 more training steps. We stopped
training then, because the potential of our approach to improve the accuracy and
the reliability of the feature extraction was clearly revealed already (see Figures
6.5(b) and 6.5(c)). Figure 6.6 visualizes the impact of our approach on an example
on the biometric feature extraction. It shows the fingerprint minutia positions from
three different sources. Ground truth minutia positions are marked as red squares.
Minutia positions extracted from original samples are marked as green stars. Po-
sitions after image enhancement are marked as blue points. The FIE increased
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(a) (b) (c)

Figure 6.5: The Auto-Encoder was trained first. Pre-training the AutoEncoder was
stopped after 5,000 training steps, because the costs function did not decrease anymore
(6.5(a)). Afterwards all layers were frozen and excluded from fine tuning, which were
responsible for the local and the regional representations. Afterwards, those layers were
finetuned, which were responsible for the reconstruction. Equal error rates on the training
data tend to improve over time for extractors MINDTCT (6.5(b)) and FingerJet (6.5(c)).

the accuracy of the feature extraction, where the blue points were extracted closer
than the green stars to the red squares. Green stars and blue points without a close
red square indicate spurious features. Red squares without green stars and blue
points indicate features which were missed by feature extraction. Those are the
two aspects of the reliability of the feature extraction.

Finally, we wanted to assess the impact of the enhancement on the biometric per-
formance. Figure 6.7 visualizes the Detection Error Tradeoff curves [DET]. DETs
have been measured for the training and validation data. The DETs show, that the
performance was improved compared to the performance on the original unaltered
samples. The performance could be improved by using the fine tuned models for
image enhancement for both feature extractors.

The fine tuning improved the biometric performance compared to the pre-trained
enhancement on the training data. There was a slight difference between the per-
formances when training was done with another feature extractor than the one
which used used for final biometric comparison. Thus, different feature extractors
seemed to be better supported by enhancements, which were particularly tailored
for them. Enhancing the with a fine-tuned model worked also on test data even
though the effect is smaller.
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6.5 Conclusion
A reasonable method of FIE should improve the suitability of the samples for bio-
metric recognition. This work contributed a dedicated cost function for this task.
This cost function takes into account the relevant aspects of biometric feature ex-
traction: The extracted features should be as precise as possible in terms of location
and they should be reliable, i.e. no feature should be left out or spuriously intro-
duced. We demonstrated the effectiveness of such a cost function by evaluations
on a synthetic data set. This allowed to show up the relation between improved
feature extraction and improved biometric performance.
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Figure 6.6: The ground truth positions of the minutiae are marked as red squares. The
positions of minutia after an enhancement (blue dots) should be closer to the ground truth
than those extracted from the original images (green stars). Red squares without a close
green star or blue dot indicate minutia which are not found by the feature extraction. Green
stars or blue dots without a close red square indicate a spurious feature.
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Figure 6.7: Detection Error Tradeoff cureves (DET) allow comparison of the biometric
performances. Enhancing with a fine-tuned model could improve the performance com-
pared to an enhancement with a model which was only pre-trained. Training for a specific
feature extractor was more effective than training on another feature extractor than the one
that was used during testing.
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Chapter 7

Conclusion on Fingerprint
Sample Enhancement

Fingerprint samples vary in their biometric quality, i.e. their suitability for an ac-
curate and reliable biometric recognition. To enable the best possible performance
of a fingerprint recognition system, fingerprint samples can be enhanced to im-
prove their biometric quality, i.e. their utility for biometric comparisons. It was
shown that fingerprint enhancement can improve the biometric performance. The
typical measures for biometric quality can even be used for the assessment of the
improvement due an enhancement at least to some degree. However, it was also
found that not all methods of enhancements can be applied to all kinds of finger-
print data. There is no solution yet, that works best for all kinds of data.

Part II is dedicated to answer the research question RQ1: "Can DL outperform
classical fingerprint sample enhancements?" De-Convolutional neural networks
can be used to train an enhancement model. Such CNNs can be trained to recon-
struct the relevant ridge structure even from strongly disturbed fingerprint samples
as they can be found on crime scenes. DL also enables training of models by tak-
ing the performance of the biometric feature extraction into account. By doing so,
CNNs can even be tailored for the special needs of a given feature extraction pro-
cess. The opportunity to do so is a paradigm shift in the development of fingerprint
sample enhancement. Classical approaches simply were not able to consider this
aspect directly. For some types of data, DL based approaches already outperform
hand-crafted approaches. In addition, an enormous potential of DL approaches
for fingerprint sample enhancement was found. Parallel developments from other
researchers also indicate a current superiority of DL based approaches over hand-
crafted approaches in the domain of fingerprint sample enhancement.
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Part III

Orientation Field Estimation
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Chapter 8

Introduction

8.1 Motivation
A fingerprint orientation field is a representation for the local orientations of a
fingerprint’s ridge structure (see Figure 8.2). An orientation field represents each
position by an orientation θ ∈ [0, π). The flow of the ridges and therefore the
orientation field depends mainly on the positions and relations of so-called singu-
larities. There are two types of singularities: cores and deltas. Cores are those
points, where the highest curvature of the ridge structure occurs. Neighbouring
ridges are bending around cores. Delta are those points, where three ridge flows
seem to merge in a single point. The local orientation cannot be defined neither for
deltas nor for cores. Figure 8.1 highlights the positions singularities and the flow
of the ridge structure. The count and relation of singularities form typical patterns
of orientation fields.

Besides at the positions of singularities, the orientation field can be assumed to
be smooth. If a fingerprint was not injured, the local changes in the orientation
field are continuous. At the very vicinity of minutiae the local orientation might
be slightly disturbed, if one followed the flow of single ridges strictly. However,
this aspect is usually ignored in the representation for the sake of the smoothness.

Orientation fields are relevant for many aspects of fingerprint recognition. Besides
its position, the direction or the angle of a minutia is one of its most important
features. A minutia’s direction can of course be derived from the orientation field
at the position of the minutia. The orientation field can also be relevant for finger-
print sample enhancement (see Part II). For example, it is used for the application
of reasonable filters during Contextual Filtering [110]. The orientation field is

113



114 Introduction

(a) Whorl (b) Arch (c) Right Loop (d) Right Loop

Figure 8.1: The presence or absence of singularities significantly shapes the orientations
fields and builds typical pattern types. Those singularities are cores and deltas . The
green lines emphasize the flow of the ridges around those singularities. The relative pos-
itions of the singularities can vary the shape significantly within a pattern type (compare
Figures 8.1(c) and 8.1(d)).

also relevant for the process of classical minutia extraction (see Section 1.2 and
Figure 8.3). The orientation field is such a remarkable attribute of a fingerprint,
that it can even be used as a 1st level feature for biometric comparison. While
some fingerprints have similar orientation fields, others can be distinguished by
their orientation field at first glance (see Figure 8.1). Therefore orientation fields
can be used for exclusion during biometric comparison, i.e. deciding whether two
fingerprint samples are non-mated. This can be done for example in Fingerprint
Classification and Fingerprint Indexing (see Chapter 14). Since it is relevant for
many applications, an accurate and reliable estimation of the orientation field is a
crucial task in fingerprint recognition.

However, the estimation of an orientation field is no trivial task. If the fingerprint
ridge structure is not clearly perceivable in some locations, one can only guess the
orientation field there. Such guesses usually rely on the orientation field’s attrib-
ute of smoothness and information from regions, in which orientation in known
reliably. Figure 8.5 visualizes typical challenges in fingerprint orientation estim-
ation. Estimation of the orientation field is of course more challenging in regions
of higher curvature. Thus, estimations near singularities can be challenging even
for high quality samples. If an estimation of the orientation field is not reliable nor
accurate, challenges in other processes can arise. For example, erroneous inform-
ation on minutia angles can be challenging for biometric comparison.
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Figure 8.2: The orientation field is a representation for the local orientations of the finger-
print ridge structure. Each red line represents the orientation of the local ridges.

Figure 8.3: Orientation field estimation is a crucial task during minutia extraction. The
resulting orientation field is used for all following processes of minutia extraction.

8.2 State of the Art

8.2.1 How to assess algorithms for orientation field estimation?

A lot of ideas were proposed on how to estimate fingerprint orientation fields [26].
But only few proposed methods are evaluated on a common data set and even
less with a common metric. Fortunately, there is a relevant benchmark framework
available: FVC-ongoing[68]. It provides the possibility to test algorithms for ori-
entation field estimation with common metrics on a common sequestered data set.1

Thus, FVC-ongoing provides an independent assessment for methods of orienta-

1https://biolab.csr.unibo.it/FvcOnGoing/UI/Form/BenchmarkAreas/BenchmarkAreaFOE.aspx

Figure 8.4: The orientation field is mainly used in the process of minutia extraction. It
can be used to estimate a minutia’s directional angle. However, the orientation field can
be used in many ways, e.g. it can be used for fingerprint sample enhancement or even for
biometric comparison as a 1st level feature.
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(a) Dry Skin (b) Moist Skin (c) Scars

Figure 8.5: Orientation field estimation is challenging for low quality fingerprints, since
the flow of the ridge structure is not clearly perceivable for all locations.

tion field estimation. Over 500 algorithms or rathers versions of algorithms were
evaluated at this benchmark so far.2 Results are reported for ten algorithms. This
allows to identify the current state of the art in this domain.

FVC-ongoing uses a dataset of 60 fingerprint samples for evaluation. Ten finger-
print samples are good quality images. Fifty fingerprint samples are of low quality
(see Figure 8.5). The low quality fingerprint samples represent typical challenges.
All images are livescanner images acquired at a resolution of 500 dpi.

The benchmark uses the Root Mean Squared Error (RMSE) as a metric to assess
the deviations between estimations and ground truth orientations. Therefore, the
ground truth orientation field is sampled at every eighth pixel and compared to
the estimation. This results in about 20,000 sampling points for the good quality
samples and about 90,000 sampling points for the bad quality samples respect-
ively. RMSE is calculated per fingerprint sample. The RMSE weights every
sampling point in a fingerprint sample equally, since the mean is computed over all
sampling points. Selection of an appropriate metric is crucial for the evaluation.
But iIt is argue, that "this choice is well suited in most of the feature extraction
tasks where orientations are needed (e.g. minutiae detection)" even though "other
measures may be more appropriate for specific tasks, such as singularity detec-
tion" [50]. However, the quadratic term makes RMSE still sensitive to outliers, i.e.
large local deviations between estimations and ground truth. The root allows inde-
pendence of the any unit or scaling. The ground truth data for the orientations is
provided through mark-ups from human experts [50]. The reliability and accuracy

2https://biolab.csr.unibo.it/FvcOnGoing/UI/Form/Statistics.aspx
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of marked-up ground truth for orientation fields can of course be a critical issue
[261]. RMSE is reported separately for good and bad quality fingerprint samples.

Besides the accuracy, other aspects might be relevant for application. The most im-
portant side aspect might be the time it takes to estimate the orientation field. If an
approach cannot estimate an orientation field in a reasonable amount of time, the
approach is simply not applicable. Aspects of timing and memory consumption
usually depend on the application scenario. Those aspects might be of highest rel-
evance for biometric recognition scenarios with limited computational resources.
However, both aspects might even be neglectable when processing latent finger-
prints for offline identification of criminals.

The benchmark FCV-ongoing reports the accuracy of algorithms when dealing
with low quality and high quality fingerprint samples, timing and memory con-
sumption. Table 8.1 provides the reported results at FVC-ongoing. State of the art
in orientation field estimation therefore can be derived from this table. Estimation
of orientation fields is comparatively simple for samples of good quality. Almost
all reported approaches achieve an RMSE about 5◦ on good quality samples. The
RMSE of bad quality samples is significantly worse. This rate shall therefore be
regarded as the most important aspect for an assessment.

Table 8.1: Reported results at FVC-ongoing. Best algorithm per aspect is marked bold.
Error metrics AvgErrBQ and AvgErrGQ assess the deviation of between estimations and
manually marked-up ground truth orientations.

Algorithm Participant AvgErrBQ AvgErrGQ Avg. Time Max Mem. Ref[◦] [◦] [ms] [kBytes]
Adaptive-3 Turroni et al. 13.27 5.93 4,772 121,936 [290]

AntheusOriEx Antheus Technology 17.06 5.46 205 34,176 n/a
ConvNetOF Schuch et al. 8.53 5.80 6,096 939,212 [259]

DEX-OF Schuch et al. 7.52 4.89 4,340 758,356 [260]
FOMFE Wang et al. 21.44 6.70 1,996 10,196 [301]
Gradient Ratha et al. 21.83 5.86 74 42,872 [240]
LocalDict Yang et al. 9.66 6.08 5,987 67,544 [319]

MXR Zengbo Xu 11.36 5.59 2,937 11,140 n/a
OriNet Zhejiang University 8.44 6.94 1,483 1,019,172 n/a
ROF Cao et al. 11.20 5.24 762 671,984 [41]

8.2.2 Hand-crafted approaches

Conventional fingerprint orientation field estimation techniques can roughly be
divided into two approaches: local estimations and global estimations. A clear
classification into global and local approaches is not possible for all algorithms.
Sometimes there is a smooth transition between the categories. For instance, global
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approaches typically incorporate a local approach for an initial estimation. There
is a survey on proposed algorithms provided by Biradar and Sarojadevi [26].

With respect to bad quality sample, the model-based approach named ROF by
the authors, which is using regularized partial differential equations, achieved the
highest accuracy of all hand-crafted approaches at FVC-ongoing [41]. This ap-
proach models the orientation field by a non-linear partial differential equation.
Divergence and curl of the vector field are then used for a regularization. ROF
achieved an average RMSE of about 11.2◦ on bad quality samples.

8.2.3 Learning-based approaches

Two branches of approaches apply machine learning for the task of fingerprint
orientation field estimation. There are approaches using dictionaries and those
applying DL.

FVC-ongoing contains a reported result for an approached called LocalDict, which
is using local dictionaries [319]. Each item in the dictionary represents a typical
patch of orientation. An initial estimation for the orientation field is performed.
Each location in the fingerprint is then associated with candidate items from the
dictionary. The smaller candidate items are then used to assemble the orientation
field for the entire fingerprint. LocalDict achieved an average RMSE of 9.6◦ on bad
quality samples at FVC-ongoing. This already outperforms the best hand-crafted
approach ROF, which achieved about 11.2◦. This approach was also demonstrated
on latent fingerprints.

The three best reported results so far with respect to RMSE achieved on bad quality
fingerprint samples all apply DL: DEX-OF[260], OriNet, and ConvNet-OF[259].
This is therefore state of the art. Those approaches used CNNs for the estima-
tion of orientation field directly from the fingerprint samples. The best approach
DEX-OF achieved an average RMSE of about 7.5◦ on bad quality samples. This
outperforms all reported hand-crafted approached significantly.

8.3 Contributions
Two approaches for estimation of fingerprint orientation fields are provided. The
first approach is called ConvNet-OF (see Chapter 9) [259]. Estimation of the ori-
entation field is an estimation of a continuous value. Therefore, application of a
regression is the obvious choice. ConvNet-OF applies a regression for estimation
of the orientation field. This approach achieved the best accuracy with respect to
bad quality samples by the time. The second approach is called DEX-OF (see
Chapter 10) [260]. DEX-OF applies a classification on this task. By using a
technique called Deep Expectation[247], classification can even outperform the
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regression-based approach ConvNet-OF. DEX-OF achieved the best results repor-
ted by FVC-ongoing for good quality sample as well as for bad quality samples.
This approach can therefore be considered current state of the art in orientation
field estimation.

Mark-ups of orientation fields by human experts were assessed for their reliability
and accuracy (see Chapter 11) [261]. This assessment revealed, that accuracy
and reproducibility of such mark-ups is limited. It also allows assumptions on
reasonable lower bound for accuracies. The evaluation yields, that an accuracy of
about 5◦ RMSE seems to be a reasonable lower bound for estimation of orientation
field estimation for good quality images.
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Chapter 9

ConvNet Regression for
Fingerprint Orientations

Summary Estimating the orientation field of a fingerprint sample is
a typical regression task. This publication contributes a Convolutional
Neural Network for estimation of the fingerprint orientation field. The
network’s architecture as well as its training are described. Evalu-
ations at benchmark framework FVC-ongoing prove its high perform-
ance in accuracy.
This publication is joint work with Simon-Daniel Schulz and Chris-
toph Busch. It was presented at the Scandinavian Conference on Im-
age Analysis in Tromsø(Norway) in 2017.

[259] P. Schuch, S.-D. Schulz, and C. Busch. Convnet regression
for fingerprint orientations. In Scandinavian Conference on Image
Analysis, pages 325–336. Springer, 2017
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Abstract Estimation of orientation fields is a crucial task in finger-
print recognition. Many processing steps depend on their precise es-
timation and the direction of fingerprint minutiae is a valuable inform-
ation. But especially for regions of low quality the task is not trivial
and engineered approaches on local features may fail. Methods that
combine local and global features learned from the data are state of
the art and benchmarked with the framework FVC-ongoing. We pro-
pose to use Convolutional Neural Networks trained in a regression to
estimate the orientation field (ConvNetOF). Regression is more accur-
ate than classification in this case. Our approach achieves an RMSE
of 8.53◦ on the Bad Quality Dataset of the FVC-ongoing benchmark.
This is the best result reported so far.

9.1 Motivation and Introduction
Fingerprint recognition is one of the most wide spread biometric modalities, when
it comes to identification and verification of individuals. Recognition algorithms
make use of the distinctive features in the fingerprints. Fingerprint minutiae are
features, which are typically used for recognition. Minutiae are characteristic
points of the papillary ridges, e.g. an ending and a bifurcation [203]. The spa-
tial distribution and relations of positions and directions of minutiae are unique for
every finger which allows to distinguish fingerprints.

The direction of a fingerprint minutia is one of its most valuable information for
recognition besides its type and position. It directly depends on the local orient-
ation at its location. The orientation field (OF) of the papillary ridges (see figure
9.3(a)) is itself another important feature in fingerprint recognition [203].

Besides this, the OF is relevant information for image enhancement and many
processing steps along the workflow of a biometric feature extraction [203]. Devi-
ations between the estimation and the real OF have to be as small as possible for
the whole fingerprint area [26]. Otherwise biometric features may not be extracted
correctly or spurious features may be generated.

Because of this, an accurate and reliable estimation of the OF is needed for fin-
gerprint recognition. But an accurate estimation is challenging especially for low-
quality fingerprint images.

Techniques and ideas for estimating the OF are vast. They can roughly be divided
into local and global techniques [26]. Local techniques are based on the very vi-
cinity of every point, e.g. by calculation of local gradients on grey-values in finger-
print images. Those techniques often are not reliable in areas of low quality [26].
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In contrast, global techniques usually take benefit of models for the global OF (see
figure 9.1(a)-9.1(c) for typical patterns of OFs). The drawback in constructing OFs
is that this tends to overly smooth local irregularities and regions of high curvature.
In consequence hypothesized models are insufficiently representing the actual OF.
Computational complexity in general is higher for global methods than for local
ones [26]. Hybrid versions of both try to compensate the drawbacks. However, es-
pecially for images of low quality the estimation of the OF is still challenging. The
Fingerprint Verification Contest (FVC-ongoing) is providing a benchmark area for
fingerprint orientation extraction [68]. As results of this benchmark show, devi-
ations between estimated and real OF are still significantly higher for low quality
fingerprint images than for images of higher quality [50]. Closing this gap is one
key factor for a more accurate and more reliable fingerprint recognition.

Recently, methods of machine learning, which combine local and global features
and furthermore learn directly from the data seem to become a promising solution
for OF estimation [319]. In general, techniques which learn from the data, have
shown their superiority over engineered techniques in the last decade for vari-
ous image processing tasks. Techniques from the domain of Deep Learning (DL)
and especially Convolutional Neural Nets (CNN) are state of the art at numerous
benchmarks, e.g. ILSVR [249]. Significant improvements have been achieved by
DL in the domains of Speech Recognition, Signal Processing, Object Recognition,
Natural Language Processing, and especially in Multi-Task and Transfer Learning
[22].

The versatility of CNNs and Deep Learning techniques enables them to estimate
the OF of fingerprints. Our approach is to train a CNN as a regression. This allows
to learn an estimation for the continuous valued OF directly from the data.

The rest of the paper is organized as follows: Related work in terms of OF estim-
ation and benchmarking of proposed approaches is discussed in section 9.2. Our
suggested approach will be explained in section 9.3. Section 9.4 summarizes the
results and conclusions are made in section 9.5. Section 9.6 adds remarks on the
findings of this work and gives an outlook on future work.

9.2 Related Work

9.2.1 State of the Art: Benchmarking

Benchmarks are inevitable for a quantitative evaluation and comparison of ap-
proaches. The University of Bologna provides such a public benchmark frame-
work for specific tasks in biometric recognition: FVC-ongoing [68]. It also con-
tains a benchmark for Fingerprint Orientation Extraction (FOE). The benchmark
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(a) (b) (c) (d) (e) (f)

Figure 9.1: Figures 9.1(a)-9.1(c) show images of good quality. The orientations differ
between fingers and form typical patterns. Figures 9.1(d)-9.1(f) show examples of images
with lower quality representing typical challenges. Quality of a fingerprint image can be
affected by the moisture of the finger and many other factors. 9.1(d) shows a sample with
very moist skin, where the fingerprint in 9.1(e) is rather dry. In addition, 9.1(f) shows
scars.

is on-going and it allows to measure performance of algorithms for fingerprint ori-
entation estimation. Implemented algorithms can be uploaded and tested. FVC-
ongoing is the only benchmark offering independent measurements on common
sequestered dataset and defined metrics for this task. Therefore we report our re-
sults based on the quantitative measurements provided by FVC-ongoing.

Data Set

The benchmark consists of two data sets. Dataset FOE-TEST is available for eval-
uation purposes by the contestants. Dataset FOE-STD-1.0 is available only to the
organizers of the benchmark. Both training and test set are divided into two cat-
egories: images of good and images of bad quality. According to their image’s
quality, the sets are called Good Quality Dataset and Bad Quality Dataset [48].
For the Good Quality Dataset 10 samples are provided, while for the Bad Qual-
ity Dataset 50 samples are provided (see Figure 9.1 for examples). About 90,000
training data points are provided which represent the local orientation at a single
pixel of an eight-fold sub-sampling grid (see Table 9.1).

The images are captured with fingerprint livescanners at a resolution of 500dpi.
The Bad Quality Dataset shows typical challenges in processing fingerprint im-
ages. This set consists of images from fingers with different levels of skin mois-
ture (compare the wet finger in figure 9.1(d) to the dry one in figure 9.1(e)) and
the presence of scars in the fingerprint (see figure 9.1(f)). The data is close to what
operational data of low quality may look like. The ground truth label data has been
produced by manual labelling [50]. The orientation is sampled at an equidistant
grid and angles are provided in 256 steps. Labelling is carried out with support
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Set Name Number of Number of
Samples Data Points

FOE-TEST
Good Quality Dataset 10 18,946
Bad Quality Dataset 50 75,812

FOE-STD
Good Quality Dataset 10 19,260
Bad Quality Dataset 50 89,562

Table 9.1: FVC provides datasets consisting of a Good and a Bad Quality dataset each.

of a tool introduced by Maltoni et al [48].1 Additionally to the fingerprint images
and the ground truth orientation, a foreground mask is provided. Only OF samples
which are in the foreground area will be evaluated.

Metrics

The four central aspects measured by the benchmark are the deviations between
predicted and actual OF achieved on the Good Quality Dataset (AvgErrGQ) and
on the Bad Quality Dataset (AvgErrBQ) of FOE-STD1.0, memory consumption,
and average processing time for each sample. The measure for the OF deviation is
the average Root Mean Squared Error (RMSE) observed at all data points. RMSE
averages over all sampling points in the fingerprint area in a single sample image.
One may argue that deviation might be more important in highly curved regions
than in regions of more or less constant orientation, e.g. regions around OF sin-
gularities are highly curved. Accurate estimation in those regions is necessary for
localization of singular points. In contrast, the benchmark organizers argue that
weighting all points equally is suited well for most of the other feature extraction
tasks where orientation is needed [50]. The most important measure is AvgErrBQ
since this metric quantifies the ability of algorithms to handle challenging images.

9.2.2 State of the Art: Algorithms

Many ideas for fingerprint OFs estimation have been proposed. A broad survey
of OF estimations with qualitative assessments is given e.g. by Biradar et al [26].
But only seven results have been published for FVC-ongoing so far. The two
approaches LocalDict and ROF are performing best in terms of minimizing the

1 The workflow for labelling is roughly as follows (see [50] for details): A human expert selects
a pixel location, which he wants to label. The tool estimates the local orientation by calculating
the gradient. The expert may choose to accept the orientation estimate provided by the tool or do
a manual correction. A Delaunay triangulation on all labelled points is performed. Each sampling
point will be interpolated based on the supporting points of its surrounding Delaunay triangle.



126 ConvNet Regression for Fingerprint Orientations

deviation achieved on the Bad Quality Dataset of FVC-ongoing. Therefore, those
methods are worth a closer inspection and will be described below.

Yang et al provide the best performing algorithm yet called LocalDict[319]. They
propose to learn dictionaries of OF patterns. The dictionary contains prototypes
for local orientation patterns. In a second step, co-occurrence and spatial distribu-
tion of the prototypes is learned. Those aspects represent the global structure of
fingerprint OFs. Thus, the proposed algorithm combines local and global informa-
tion. The algorithm first learns a rough estimate of the OF. The locally best fitting
prototype is assigned to each point. Finally, corrections of assigned prototypes are
performed to optimize likelihood of spatial co-occurrence of the prototypes.

Cao et al proposed an algorithm they call ROF. It extracts first an estimation of
the OF by the gradient method applied to a root filtered image [41]. The OF is
represented as the gradient vector field. In addition, the positions of singularities
are estimated. The idea is to smooth the OF while keeping divergence and coher-
ence of the orientation vector field. Intensity of smoothing is varied according to a
specific local quality and the distance to a near-by singularity. Thus, areas of high
quality and those close to singularities will be smoothed less.

Using Neural Networks and utilizing learning from the data for fingerprint recog-
nition has been suggested previously. Baldi et al already proposed to use a struc-
ture like modern Siamese CNNs (without pooling layers) for fingerprint indexing
already in 1993 [14]. Zhu et al used a Multi-Layer Perceptron to estimate a 16 step
quantization of the OF in 2006 [335]. Olsen et al. used self organizing networks to
estimate fingerprint sample quality[225].

Using techniques from DL especially for OF estimation is a more recent develop-
ment. Sahasrabudhe et al proposed to use Restricted Boltzman Machines (RBM)
to estimate fingerprint OFs [250]. An RBMs is probabilistic model which uses a
bi-directional neural network. RBMs therefore are not straight feed-forward. An
initial OF is estimated and the estimation is vectorized into x and y components.
Each component is fed into a separate single-layer RBM. The trained weights of
an RBM contain representations for the data used for training which form a basis.
Trained RBMs try to approximate the input by this basis. The corresponding out-
put can be interpreted as the best fit to the learned representations. Thus, the output
is like a corrected version of the input, which fits best the learned data. The correc-
ted OFs are used to enhance fingerprint images. Finally, performance is measured
in terms of the number of spurious minutia extracted by a biometric feature extrac-
tion on the enhanced images and in term of the accuracy a biometric comparison
algorithm achieved with such extracted features.
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The most relevant work with respect to its methodology is an approach by Cao et
al which proposes to use a CNN trained as a classifier for orientation [38]. They
propose to train a CNN for a classification task. Target labels for the classes are
a selection of 128 characteristic OFs, which have to be selected beforehand. Cao
et al propose to use engineered noise to corrupt input images. This in turn shall
simulate artefacts one in fingerprint images of bad quality.

9.3 Proposed Approach

9.3.1 Idea

We propose to train CNNs as a regression to estimate the OF in fingerprint images.
During the training for a regression, a CNN modelM usually learns to minimize
the quadratic error between its propagation M(inp) and the target value T (inp)
for a given input inp:

min
M
||T (inp)−M(inp)||2 (9.1)

During testing, for an input ˆinp the modelM will create a predictionM( ˆinp).

A CNN modelM itself is assembled from multiple sets (layers) of trainable filter
kernels. The output of each layer is fed into the next layer of filters. While such
models learn simple local features in the first layers, the following layers learn
more complex and more global features.

By doing so, our approach utilizes learned local and global characteristics at once.
This turned out to be a successful strategy in the LocalDict approach. Our ap-
proach has three advantages over LocalDict. First, our approach does not need an
initial estimation of the OF. Second, CNNs use sparse representations for inform-
ation. This enables a more flexible representation than the one-hot representation
used by LocalDict. Third, our approach is an end-to-end solution, i.e. input is the
raw grey-value image and the corresponding foreground mask and the output is
an estimation of the OF. No separate processing steps need to be carried out. No
special assumptions about the spatial distribution have to be separately modelled
by learned data.

We train the model as a regression on a vectorization of the target orientations.
Compared to Cao et al.’s classification approach, regression is a more natural ap-
proach for the estimation of continuous values. In addition, no selection of target
patterns is necessary.

9.3.2 Model Architecture

The proposed CNN has been trained in the framework Caffe provided by Jia et al
[141].
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(a) Network architecture

(b) Receptive fields of ConvLayers

Figure 9.2: Block diagram of the layout of the evaluated modelMwhich calculates a vec-
torized estimation of the OF for a given input fingerprint sample and a given foreground
mask. M consists of Normalization, canvas, Convolutional (ConvLayer), Pooling (Max-
Pooling), and Rectified Linear Unit (ReLU) layers. The receptive field, which is processed
from the original image, increases with each layer. While the filters work locally in the
first ConvLayers, the last ConvLayers work in a more global range. In this way, local and
global features can be combined by a ConvNet.
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Our approach combines three different types of layers provided in Caffe: Convo-
lutional layers, Pooling layers and non-linear transfer layers. Grey values of the
fingerprint images are normalized in the foreground area to have zero mean and
unit standard deviation while the background is set to zero (Normalization). To
enforce the same image dimensions for all training samples the images are embed-
ded into a larger canvas.

Neurons in ConvLayer work like filter kernels (see figure 9.3(b) for trained filters).
Pooling layers perform a reduce operation on the local neighbourhoods. They
therefore work like sub-sampling. The pooling functions in this approach is the
maximum over all local values. The layers are therefore called Max-Pooling. Non-
linear transfer units simply apply a non-linear function to each input value, e.g.
ReLU(x) = max(0, x).

Our CNN is designed for the special needs in OF estimation (see figure 9.2(a)).
Accurate local estimations are needed as well as regional smoothness and global
patterns. It therefore differs from typically very deep cascade of same 3x3 filters.
The original fingerprint image is normalized in a Normalization layer. The nor-
malized image is filled into a larger canvas of 576x464 pixels in an Embedding
layer. In the following blocks of ConvLayers and ReLU layers are concatenated.
Additionally, in the first three blocks MaxPooling layers are used to sub-sample
the image dimensions to the provided target dimensions. Filter sizes are designed
to cover half of the width of a typical fingerprint ridge. This is done to ensure
good local estimations. In the next three blocks larger ConvLayers of dimension
13x13x49 each are used for regional smoothness. All ConvLayers have a striding
of 1 and do padding to equalize height and width of input and output. The sub-
sequent combination of MaxPooling and larger kernel leads to a larger receptive
field for each output of layer 15, i.e. all pixels within the turquoise area contribute
to the output value of layer 15 in figure 9.2(b). This allows to combine the local
features to more global ones. Usually, so-called fully-connected layers are used at
the end of the cascade of layers. In a fully-connected layer each neuron is connec-
ted with every input as in classical Multi-Layer Perceptrons. We use ConvLayers
with kernel height and width of 1 as a proxy for such fully-connected layers at
the end of our layer cascade [184]. The final layer has two output channels which
estimating the vectorized target orientation.

9.3.3 Training Algorithm

The CNN in our approach has been trained using a Stochastic Gradient Des-
cent [29]. The cost function is formulated as a quadratic regression on the two-
component representation of the orientation θ at input inp:
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(a) Local Orientations (b) Filters in first layer

Figure 9.3: The training data provides fingerprint images and the hand-labelled ground
truth orientation, indicated here as red lines. The filter kernels in the first ConvLayer work
like edge filters and do a rough estimation of this orientation.

min
M

∥∥∥∥(sin(2 · θ(inp))
cos(2 · θ(inp))

)
−M(inp)

∥∥∥∥2

(9.2)

The images and ground truth orientation data from FOE-TEST are taken as train-
ing data. This data provides 94,758 labelled targets for training. Figure 9.3(a)
visualizes a typical representative taken from the training data. The modelM has
1,347,967 parameters. A cost function for large weights is added for a so-called
Weight Decay to enforce generalisation [164]. Since large weights induce high
costs, weight decay punishes over-specialisation of weights and therefore prevents
over-training.

Parameters for training are the following: Weight decay factor is 10. Starting
learning rate is 10−5 and adapted according to Inverse Decay policy with γ = 10−4

and a power of 0.75.

Figure 9.3(b) visualizes the filter kernels of the first ConvLayer after training. The
kernels of the first ConvLayer work similar to edge filters. The next ConvLayer
recombines those features to more complex features. Figure 9.4 visualizes the
output of all ConvLayers for a fingerprint sample after training. The outputs of
some filters have only very little absolute values. This is an effect of Weight Decay
reducing the energy of unnecessary filter kernels.
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Figure 9.4: The output of all ConvLayers for a single input fingerprint sample. Layer
21 represents the estimation for the vectorized OF of the input image. The vectorized OF
can be used to calculate the final OF estimation. Weight decay can prevent a model M
from over-fitting. As a result of weight decay the output of some kernels has low absolute
values.

9.4 Results
As mentioned in section 9.2.1, the four central aspects observed in the benchmark
are the deviations achieved on the Good Quality Dataset and on the Bad Quality
Dataset of FOE-STD1.0, processing time, and memory consumption. Figure 9.5
visualizes the four aspects for all reported results. The benchmark organizers do
not provide a overall ranking based on the four aspects.

The reported deviations AvgErrGQ for all algorithms do not outperform the baseline
algorithm significantly (see table 9.2). Performing well for images of good quality
therefore does not seem to be challenging even for simple algorithms. The error
rates on this set range from 5.24◦ to 6.7◦ while the baseline algorithm achieves an
error rate of 5.86◦. ConvNetOF achieves 5.80◦. The local information extracted
by the baseline algorithm is just sufficient.2 However, the deviation AvgErrGQ can
be taken into account as a lower bound for the deviations AvgErrBQ.

2 Outperforming the baseline algorithm for AvgErrGQ might be challenging for a good reason:
The Gradient algorithm is more or less used to generate the ground truth. One can assume that for
good quality images the human editor might consider the initial estimation to be right even though it
might show a systematic bias by the algorithm. In contrast, for bad images manual correction might
be obvious to the human editor. However, FVC-ongoing still remains the best mean to compare OF
estimators.
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(a) (b) (c)

Figure 9.5: Visualization of the reported results for the benchmark FVC-ongoing FOE.
Figure 9.5(a) shows a scatter plot for the deviations achieved on both datasets. Four al-
gorithms outperform the baseline with respect to the deviation of the Bad Quality Dataset.
Figure 9.5(b) reveals that memory consumption varies significantly between these top four.
A trade-off between Speed and Accuracy can be observed in figure 9.5(c).

To our mind, the most important aspect is the deviation achieved on the Bad Qual-
ity Dataset for FOE-STD1.0. Here deviations vary more than on the Good Quality
Dataset: they range from 9.66◦ to 21.83◦. Our approach ConvNetOF achieves
8.53◦. This reduces the deviation to about 88% relative to the former best result.
Figure 9.5(a) visualizes the error rates for all reported results (compare to table
9.2). On training data FOE-TEST ConvNetOF achieves 5.14◦.

Timing and memory constraints strongly depend on the application. In figure
9.5(b) the memory consumption is plotted against the deviation on the Bad Quality
Dataset. In general, memory consumption is seldom a limitation and may only be
a critical issue for systems with very limited memory, e.g. for SmartCards. The
consumption of memory varies by orders of magnitudes and ConvNetOF has the
highest requirements for memory among all evaluated algorithms.

Figure 9.5(c) reveals a trade-off between deviation and average processing time:
The longer the computation time, the more accurate the result. Like in memory
consumption, the reported top results vary in their average processing time in an
order of magnitude. However, all algorithms are way faster than the time limit
of 60s per sample allowed by the benchmark framework. Our approach takes the
longest time to process an image. This is due to the evaluation performed on a
CPU at FVC-ongoing. However, CNNs are suited for operation on a GPU, which
can increase the speed in orders of magnitude: While processing one image takes
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Algorithm AvgErrBQ AvgErrGQ Avg. Time Max Mem. Ref
[◦] [◦] [ms] [kBytes]

ConvNetOF (R) 8.53 5.80 6,096 939,212
ConvNetOF (C) 8.91 6.17 6,257 943,888

LocalDict 9.66 6.08 5,987 67,544 [319]
ROF 11.20 5.24 762 671,984 [41]
MXR 11.36 5.59 2,937 11,140 n/a

Adaptive-3 13.27 5.93 4,772 121,936 [290]
AntheusOriEx 17.06 5.46 205 34,176 n/a

FOMFE 21.44 6.70 1,996 10,196 [301]
Gradient 21.83 5.86 74 42,872 [240]

Table 9.2: Reported results on FVC-ongoing. The table is ordered by the error rate on
the bad quality set (AvgErrBQ) and only four results outperform the current baseline
performance on this aspect. ConvNetOF is evaluated as a regression (R) and as a clas-
sification (C). As a regression it performs best among all evaluated algorithms on this
data set. Best algorithm per aspect is marked bold. For result of ConvNetOF see ht-
tps://biolab.csr.unibo.it/FvcOnGoing/UI/Form/AlgResult.aspx?algId=5604

about 6.1s on the benchmark system, it takes only about 25ms of our GPU3 which
is about 244 times faster and would allow processing 40fps.

For comparison, we also trained a model as a classification with the same layout
but the last layer as prediction for the 256 orientation classes. With the same error
on the training set, this model achieves 8.91◦ on the Bad Quality Dataset and 6.17◦

on the Good Quality Dataset for FOE-STD1.0.

9.5 Conclusion
We have proposed to use CNNs trained in a regression to estimate the OF of fin-
gerprints. Our approach has been evaluated on the benchmark framework FVC-
ongoing, which is the most relevant benchmark for estimation of OF. ConvNetOF
achieves a deviation of 8.53◦ on the Bad Quality Dataset. Our approach there-
fore outperforms all other algorithms in this aspect. The deviation on bad quality
images is lowered to about 88% relative to the second best result. This narrows
the performance gap between the estimation of OF on images of good and those
of bad quality. The performance of ConvNetOF on the Good quality Dataset is
competitive to the other evaluated algorithms. The model trained as a regression
outperforms the model trained as a classification. We found a generalization gap
between training and testing.

3An NVIDIA GTX 780 has been used for evaluation
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In terms of memory consumption our approach has the highest requirements among
all evaluated algorithms. Using a GPU it outperforms all other approaches in terms
of speed.

9.6 Discussion and Outlook
The trained model is likely to be over-sized for this task. Inspection of the trained
CNN reveals that some filter kernels may be obsolete. For application it would be
reasonable to reduce the size of the CNN. This would not only make it faster and
less memory consuming but it would also prevent over-training. However, runtime
optimization is out of scope for this work.

Some remarks on the benchmark FOE of FVC-ongoing seem worth mentioning.
The number of images (especially for the Good Quality Dataset) is small. In addi-
tion, the ground truth for the orientation may be biased since it has been edited by
a human expert who manually corrects the output of an OF extraction algorithm.
Both facts in combination are bad circumstances for learning from the data. Eval-
uations on larger datasets seem reasonable.



Chapter 10

Deep Expectation for Estimation
of Fingerprint Orientation Fields

Summary This publication contributes a Convolutional Neural Net-
work for orientation field estimation. A technique called Deep Expect-
ation allows to outperform regression networks on regression tasks.
The network’s architecture as well as its training is described. Evalu-
ations at benchmark framework FVC-ongoing prove its high perform-
ance in accuracy.
This publication is joint work with Simon-Daniel Schulz and Chris-
toph Busch. It was presented at the International Joint Conference on
Biometrics in Denver (USA) in 2017.

[260] P. Schuch, S.-D. Schulz, and C. Busch. Deep expectation
for estimation of fingerprint orientation fields. In IEEE Inter-
national Joint Conference on Biometrics (IJCB), pages 185–190.
IEEE, 2017

135



136 Deep Expectation for Estimation of Fingerprint Orientation Fields

Abstract Estimation of the orientation field is one of the key chal-
lenges during biometric feature extraction from a fingerprint sample.
Many important processing steps rely on an accurate and reliable es-
timation. This is especially challenging for samples of low quality, for
which in turn accurate preprocessing is essential. Regressional Con-
volutional Neural Networks have shown their superiority for bad qual-
ity samples in the independent benchmark framework FVC-ongoing.
This work proposes to incorporate Deep Expectation. Options for fur-
ther improvements are evaluated in this challenging environment of
low quality images and small amount of training data. The findings
from the results improve the new algorithm called DEX-OF. Incor-
porating Deep Expectation, improved regularization, and slight model
modifications enable DEX-OF to achieve an RMSE of 7.52◦ on the
bad quality dataset and 4.89◦ at the good quality dataset at FVC-
ongoing. These are the best reported error rates so far.

10.1 Introduction and Motivation
Fingerprint Orientation Estimation (FOE) is one of the central processes in clas-
sical biometric feature extraction for fingerprints [203]. Many processing steps
depend on a reliable FOE, e.g. an oriented filtering. Particularly, the direction of
fingerprint minutiae (which are the classical biometric features) directly depends
on the local orientation field (OF). But especially for images of low quality, FOE
is no trivial task (see Figure 10.1 for challenging examples). Unfortunately, for
those images preprocessing is essential and will only work reasonable well with
an accurate and reliable FOE.

Many approaches have been proposed for FOE. But only a few have been evalu-
ated by the FOE benchmark at the independent benchmark FVC-ongoing [68]. The
published results show that there is only small variation in precision between the
benchmarked algorithms for good quality images (GQ). The precision is signific-
antly lower for bad quality images (BQ) and the precision varies strongly between
the different approaches. Deep Learning (DL) has provided promising results in
many domains of image processing, their application to FOE is straightforward:
The best result for BQ was achieved by the approach OriNet which claims to use
DL. The second best result was achieved by ConvNetOF which uses a convolu-
tional neural network (CNN) trained as a regression [259].

This work assesses five central questions regarding the model ConvNetOF by ex-
tensive quantitative evaluations. The first question [Q1] is whether the proposed
use of Deep Expectation can outperform Regression or Naïve Classification. The
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(a) Moist skin (b) Dry skin (c) Scars (d) Orientation Field

Figure 10.1: Samples from the bad quality training data (10.1(a)-10.1(c)). Estimation of
the local orientation (orange lines in 10.1(d)) on such images can be challenging.

model seems to be oversized when comparing the number of data points for train-
ing and the number of trainable parameters (see Tables 10.1 and 10.2). The second
question [Q2] is therefore how generalization can be achieved despite this imbal-
ance. The layout of the model differs from approaches typically used today (see
Figure 10.3(a)). Thus the next question [Q3] is whether there is a better layout
of the network for FOE. The fourth question [Q4] is regarding an appropriate di-
mensioning for a CNN for FOE. The last questions [Q5] is how the foreground
masking provided by FVC-ongoing improves performance.

This work contributes special findings on FOE from the experiments regarding
these questions. In addition, it provides findings on various aspects relevant when
designing a CNN.

The rest of this paper is organized as follows: Related work is described in Sec-
tion 10.2. Section 10.3 describes our approach using Deep Expectation. Section
10.4 explains the experiments, which have been conducted to answer the above
research questions. The results of the experiments can be found in Section 10.5.
The findings will be taken to design and train an improved model called DEX-OF.
Section 10.6 concludes this work’s findings.

10.2 Related Work
Neural Networks were used for FOE before. Zhu et al. used a Multi-Layer Per-
ceptron to estimated a 16 step quantization of the OF in 2006 [335]. Sahasrabudhe
et al. proposed to use Restricted Boltzman Machines (RBM) for FOE [250]. Even
more relevant was an approach by Cao et al., which used a CNN trained as a clas-
sifier for FOE [38]. They proposed to train a CNN for a classification task to 128
classes of characteristic OFs.
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Only algorithms published at FVC-ongoing can be benchmarked objectively and
were therefore of interest in the scope of this work. Most relevant for this work
was an approach by Schuch et al. called ConvNetOF, which uses CNNs trained
as a regression [259]. Yang et al. provided the algorithm in third place at FVC-
ongoing called LocalDict[319]. Dictionaries of prototypes for local orientation
patterns were learned. A rough initial estimate of the OF was locally replaced by
the best fitting prototype. Spatial distribution and co-occurrence of the prototypes
derived from training data was used to apply some final corrections.

Seven further results have been published for FVC-ongoing so far (see Table 10.3).
OriNet claims to use DL but lacks detailed information as yet. Cao et al. proposed
to smooth the OF while keeping divergence and coherence of the OF and taking
into account specific local quality and the distance to near-by singularities [41].
Wang et al. proposed to use 2D Fourier expansion for FOE [301]. Turroni et al.
improved the performance of a simple gradient based OF estimation [290] which
has been originally proposed by Rathe et al. [240]. No references were published
for the two other algorithms MXR and AntheusOriEx.

10.3 Our Approach
The local orientation is a continuous value. Thus, FOE is a typical regression prob-
lem. However, classification CNNs can be superior to regression CNNs even on
such regression problems [247]. The key is to use a technique called Deep Ex-
pectation: In order to achieve good regression performance using a classification
approach, the regression nature can be encoded by establishing a relation between
the classes. The idea is to avoid a winner-takes-all policy by using a weighting
strategy (see Figure 10.2).

We propose to use Deep Expectation for FOE. But we need to apply some modific-
ations since we are estimating orientations and we have to deal with the phase shift
at the equivalent orientations 0 and π. The relevant relation between the classes
of orientations is of course the angle between them. Therefore, the probabilities
for the distinct angle classes are estimated first. The probabilities are then used
for a weighted sum over the angles. Finally, this weighted sum can be taken as
the output estimation. Using a transformation T for a vectorization of an orienta-
tion θ allows to deal with the phase shift and a straightforward implementation of
weighted sums over angles:

T (θ) =

(
cos(2 ∗ θ)
sin(2 ∗ θ)

)
(10.1)
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Figure 10.2: Example for a 16 class classification problem. When using naïve classication
a winner-takes-all policy promotes the class with the highest probality as the most likely
class. Deep Expectation calculate a mean weighted bv the estimated probabilities p for the
singles classes.

Using the estimated probabilities pθ we can build the vectorized weighted sum W :

W =

θ∑
pθT (θ) =

(
wcos

wsin

)
(10.2)

The first component wcosof the weighted sum vector represents the cosine part of
the doubled estimated orientation. The second component wcos represents the sine
part respectively. The final orientation estimation θ̃ can be calculated as follows:

θ̃ = 0.5 · arctan(wsin, wcos) (10.3)

10.4 Experiments
The CNN ConvNetOF consists of three components (see Figure 10.3(a)). First,
a stem is built from three blocks. Each block consists of a Convolutional Layer
(ConvLayer) with smaller filter sizes, Rectified Linear Unit (ReLU), and a Max-
Pooling layer. The stem subsamples the original size to the target evaluation size
and shall take care of a good local estimation of the OF and local smoothing.
Then, three blocks of large 13x13 ConvLayers and ReLUs reconstruct the global
patterns (GP layers) from the local estimates. Finally, blocks of 1x1 ConvLayers
and ReLUs work like proxies for fully-connected layers (FC layers). These take
care of the final estimation. The input images were normalized by whitening in the
foreground area. All weights were initialized according to Glorot et Bengion [91].
We used the DL framework caffe[141] for our experiments.
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(a) Layout of ConvNetOF

(b) Receptive Fields of ConvnetOF (c) Receptive Fields of various layouts

Figure 10.3: The original layout of ConvNetOF (10.3(a)) included a stem for an accurate
local estimation and local smoothness. Large ConvLayers on top of the stem learned global
patterns and allowed to process information for a large receptive field (10.3(b)). Varying
the layout of a model changed the size of its receptive field (10.3(c)). Finally, ConvLayers
were used as proxies for fully-connected layers.



10.4. Experiments 141

Set Name Number of Number of
Samples Data Points

FOE-TEST
Good Quality Dataset 10 18946
Bad Quality Dataset 50 75812

FOE-STD
Good Quality Dataset 10 19260
Bad Quality Dataset 50 89562

Table 10.1: FVC provides datasets consisting of a Good and a Bad Quality dataset each.
Each data point is a local orientation on an 8-fold subsampled grid. While FOE-TEST is
available for training, FOE-STD is sequestered.

Stochastic Gradient Descent was used for training and learning rate was adjus-
ted by the Inverse policy (γ = 10−4 and power= 0.75). The cost function to
be optimized is the deviation between actual and target orientation at all sampling
points. Initial weight decay coefficient was 5∗10−6 and momentum was set to 0.5.
In each training step an entire image was processed. The training data consisted
of the fingerprint images and locally sampled OF provided in dataset FOE-TEST
(see Table 10.1). To deal with the small number of available training data we used
a 10-fold cross validation. By doing so, we could estimate the generalization gap
between training and test sets. If not explicitly noted in the experiment description,
all training parameter but the learning rate were the same for all experiments. Only
the learning rate was adjusted to achieve a similar training error on GQ over train-
ing steps. This allowed better comparison of the models. Finally, trained models
after different training steps were evaluated at FVC-ongoing.

FVC-ongoing measures four aspects: average Root Mean Squared Error (RMSE)
for the BQ dataset called AvgErrBQ and AvgErrGQ for the GQ data, average pro-
cessing time for a fingerprint sample, and the peak memory consumption. The
benchmark has three central limitations: algorithms need to be a win32 applica-
tion, the size of the executable must not exceed 20 MB, and deviation on the GQ
dataset must be lower than 7◦ RMSE. Thus, FVC-ongoing results are not available
for all submissions.

In the following we will explain the series of experiments which will answer the
research questions.

10.4.1 Q1: Prediction Mode

In this first series of experiments we evaluated, whether a regression or a classifi-
cation is better suited for FOE. We therefore evaluated four models which differed
only in the formulation of the problem of FOE, i.e. how they predict the OF:

• Regression: Original layout of ConvNetOF.
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• Naïve Classification: Layout like ConvNetOF but the final output layer has
256 neuron - one for each orientation class. The training costs were based
on cross-entropy of the 256 output neurons.

• Implicit Deep Expectation (ImplicitDE): We took the trained Naïve Classifi-
cation model and estimated the fingerprint orientation field by Deep Expect-
ation when testing.

• Explicit Deep Expectation (ExplicitDE: Same layout as NaïveClassification
but the training cost function depended directly on the orientation estimation
carried out in a Deep Expectation manner.

10.4.2 Q2: Regularization

Large CNNs are prone to overfit on small training data like FOE-TEST. Using
additional auxiliary training data would be an obvious choice. Unfortunately, ac-
cording to our experiments this led to worse performance. The reason for this
effect was the difficulty of human experts to markup the ground truth data, which
resulted in discrepancies in repetitive assessments by the same expert as well as
discrepancies of the markups between experts.

However, regularization seemed reasonable. Zhang et al. gave an interesting view
on the regularization in CNNs [328]: Some techniques were designed to explicitly
regularize a model while some do it implicitly. We therefore evaluated some of the
most common methods of regularization separately:

• Weight Decay: Large weights in the neurons may indicate overfitting. The
weight decay factor was increased to 5 ∗ 10−3 as a countermeasure to this.

• Drop-Out: Drop-Out is a mean for convergence acceleration [272]. It can
also implicitly improve generalization.

• Affine Data-Augmentation: Training data was augmented by flipping and/or
rotation.1

• Batch Normalization: Batch Normalization usually accelerates convergence
and may also improve generalization.

• Batch Size: Increasing the batch size may reduce the risk of overfitting to a
single image in each training step.

1In contrast to most other cases where data augmentation is used, these affine transformations
changed the target labels.
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• Gaussian Noise: Additive Gaussian NoiseN0,5.0 is added to the original set
of training images.

• Gamma: Inspired by Howard, Gamma Correction G(I) = Iγ was applied
during training, where γ ∈ [0.2, 5] was a random value for each training step
[112].

10.4.3 Q3: Model Layout

The layout proposed by Schuch et al. for ConvNetOF was not conform with com-
mon practices in DL. Today, usually very deep cascades of 3x3 ConvLayers are
used, e.g. in ResNet [107]. A common straight forward approach is to fine-tune a
pre-trained models for FOE.

• Inception Modules: Motivated by GoogLeNet from Szegedy et al. we used
Inception modules [278]. We decided to replace all GP layer by such mod-
ules.

• 3x3 Cascades: We replaced all larger kernels in ConvLayers by a cascade of
ConvLayer with kernels of size 3x3.

• Dimension Reduction: Inspired by Lin et al. we used 1x1 ConvLayers for
dimension reduction between the larger ConvLayers [184].

• AlexNet: We chose ImageNet 2012 winning AlexNet proposed by Krizhevsky
[163] as a pre-trained model. We dropped the last pooling layers to achieves
the appropriate output sampling size, adjusted the size of the output layer,
and retrained the model.

10.4.4 Q4: Model size

Especially the GP layers and the FC layers seemed to be oversized and worth a
closer inspection. We created the following experiments:

• 50% of all Neurons: We reduced the number of neurons to 50% for each and
every ConvLayer but the very last.

• 50% Fully Connected: The number of neurons in the FC layers was reduced
to 50%.

• Slightly Smaller GPs: The ConvLayers in the GP blocks was reduced to 32
filters of 11x11 each.
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• 2 GP Blocks: To test whether the model is already too deep, we excluded
one of the GP blocks.

• 4 GP Blocks: To test if a deeper net could still improve performance, we
added another GP block.

10.4.5 Q5: Is foreground necessary?

FVC-ongoing framework provided a foreground mask for each image. ConvNetOF
made use of this information during normalization and for removal of background.
It was of interest how much the performance depended on this extra information
or if this mask was necessary:

• No Mask: No foreground mask was used in the normalization layer.

10.5 Results
The central results of all experiments can be found in Table 10.2. Figure 10.4
shows the development of RMSE on BQ over training time for all experiments.
Using 10 fold cross validation, the mean validation RMSE (solid lines) could be
used as an upper bound for RMSE measured at FVC-ongoing (bold lines). As we
judge the performance on BQ measured at FVC-ongoing to be the fundamental
measure in FOE, results focus on this aspect when discussing the research ques-
tions in the following.

10.5.1 Q1: Prediction Mode

A model trained as a regression achieved better results on BQ than a model trained
as a Naïve Classification (see Figure 10.4(a)). Training the model with explicit us-
age of Deep Expectation achieved the same performance as the regression model.
However, the best result was achieved by the model with implicit usage of Deep
Expectation: 8.54◦. Therefore, this type of model was used in all of the following
experiments.

10.5.2 Q2: Regularization

The highest improvement was achieved by Affine Data Augmentation (see Figure
10.4(b)). The BQ RMSE could be reduced to 8.28◦ at FVC-ongoing. Increasing
the Weight Decay parameter also ended up in an improvement. This seemed to be
necessary to deal with the imbalance between the number of trainable parameters
and the number data points to learn from. Adding Gaussian Noise and applying
a gamma correction also slightly improved the performance measured at FVC-
ongoing.
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(a) Prediction Mode (b) Regularization

(c) Model Layout (d) Model Size

(e) Is Foreground Necessary?

Figure 10.4: Comparison of RMSE for evaluated models of the number of samples seen
during training. Learning rate has been adjusted to ensure similar training errors for GQ
data. Bold lines represent measurements at FVC-ongoing. Due to benchmark require-
ments some experiments miss this measurement. Dashed lines represent mean training
RMSE over the n-fold cross-validations over FOE-TEST and thin lines represent valida-
tion RMSE respectively.
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Table 10.2: Each experiment consists of a ten fold cross validation. For each experiment
the mean training and validation RMSE for BQ and GQ. AvgErrBQ and AvgErrGQ are
measured at FVC-ongoing. AvgErrBQ is the most relevant measure. Experiments on the
prediction mode show that ImplicitDE performs best. Therefore experiment in Q2-Q5 and
DEX-OF use ImpliciteDE. In addition, DEX-OF makes uses of the findings from Q2-Q5.
Improvements are marked bold.
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Q1

Regression 5.14 3.96 9.66 6.32 8.77 5.58 1,346,708
Naïve Classification 5.71 4.28 10.29 6.66 8.90 5.88 1,476,805

ImplicitDE 5.38 3.93 9.94 6.40 8.54 5.64 1,476,805
ExplicitDE 4.09 3.23 9.82 6.68 8.77 5.81 1,476,805

Q2

Weight Decay 5.45 4.10 10.09 6.34 8.36 5.65 1,476,805
Drop-Out 2.91 3.01 11.77 7.97 10.32 6.91 1,476,805

Affine Data Augmentation 5.43 4.71 9.29 6.67 8.28 5.78 1,476,805
Batch Size 6.49 4.82 11.15 6.78 8.87 5.74 1,476,805

Gaussian Noise 5.78 4.27 10.38 6.77 8.48 5.56 1,476,805
Random Gamma Correction 5.52 4.27 10.22 6.39 8.29 5.40 1,476,805

Q3
Two Inception Modules 5.60 3.71 12.09 6.22 10.40 4.98 869,409

Pre-trained AlexNet 5.88 3.95 13.63 5.23 11.39 5.12 11,746,656
Dimension Reduction 5.09 4.06 10.86 7.50 9.67 6.54 840,500

Q4

2 GP Blocks 4.35 3.03 11.19 5.71 9.17 5.35 1,070,987
4 GP Blocks 5.01 4.20 10.80 6.96 9.08 6.09 1,882,525

50% of all filters 5.62 4.51 10.60 7.58 8.75 6.01 390,458
50% of filters in FC 4.79 3.96 10.10 6.94 8.49 5.69 1,202,068
25% of filters in FC 4.48 3.70 10.24 7.19 8.82 6.03 1,113,876

Slightly Smaller GPs 5.25 4.13 10.24 6.25 8.62 5.73 794,097
Q5 No Foreground 5.07 3.28 10.97 6.86 8.63 6.17 1,476,805

DEX-OF 5.15 3.83 6.35 4.28 7.52 4.89 523,761

Using Drop-Out actually increased convergence speed but even decreased per-
formance. Increasing the number of samples per training step (batch size) did
not improve performance.

10.5.3 Q3: Model Layout

Using alternative layouts did not achieve an increase in performance. However,
there were some remarkable results to each of the approaches.

AlexNet was an order of magnitude larger than ConvNetOF in terms of number of
trainable parameters. The trained model itself was even too large to comply with
the file size limit at FVC-ongoing. Thus, it was simply non-competitive. Luckily,
we were allowed by the hosts of the benchmark to evaluate the model anyway
by using workarounds. The RMSE achieved on BQ is 11.39◦. This might be an
indicator that the AlexNet was prone to overfit even more on the small number
of data points for training. Another problem with this approach might be that
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Table 10.3: Reported results on FVC-ongoing. Best algorithm per aspect is marked bold.

Algorithm AvgErrBQ AvgErrGQ Avg. Time Max Mem. Ref[◦] [◦] [ms] [kBytes]
Adaptive-3 13.27 5.93 4,772 121,936 [290]

AntheusOriEx 17.06 5.46 205 34,176 n/a
ConvNetOF 8.53 5.80 6,096 939,212 [259]

DEX-OF 7.52 4.89 4,340 758,356
FOMFE 21.44 6.70 1,996 10,196 [301]
Gradient 21.83 5.86 74 42,872 [240]
LocalDict 9.66 6.08 5,987 67,544 [319]

MXR 11.36 5.59 2,937 11,140 n/a
OriNet 8.44 6.94 1,483 1,019,172 n/a
ROF 11.20 5.24 762 671,984 [41]

the receptive field of the model was essentially smaller than for ConvNetOF (see
Figure 10.3(c)). Training an AlexNet from scratch did not work out at all in the
number of training steps used for all other evaluated models. Likely it would take
far more training steps to achieve a equivalent performance since the model was
quite large.

Replacing the GP blocks by Inception Modules did not achieve good performance
either. The first approach using two Inception Modules achieved an RMSE of
10.40◦ on BQ. In contrast, the performance on GQ was remarkably good: RMSE
is 4.98◦. According to the findings of Szegedy et al. the usage of fully-connected
layers at the end might not be necessary when using Inception Modules [278].
When leaving out the fully connected layers the RMSE increased slightly to 10.64◦

for BQ and 5.12◦ for GQ respectively. The receptive field might be too small like it
was for AlexNet. We did some more variations on this experiments: Enlarging the
receptive field by adding three Inception Modules failed and therefore was not been
evaluated at FVC-ongoing and models with only one Inception Module performed
worse.

Introducing dimension reduction between the blocks concerned with the global
pattern, reduced the number of trainable parameters. However, this decreased per-
formance.

When replacing all ConvLayers by cascades of 3x3 ConvLayers, training did not
reach competitive performance.

10.5.4 Q4: Model Size

Simply reducing the number of neurons in each layer did not improve performance.
The remaining model did not seem to have enough capacity. In contrast, reducing



148 Deep Expectation for Estimation of Fingerprint Orientation Fields

the number of neurons in the fully connected layers to 50% actually improved
performance. This reduction was a means to improve generalization. Experiments
with further reduction to 25% showed a decay in performance. This was another
indication for a lack of capacity of the model.

When slightly reducing the number of neurons and size of the filter kernel in the
GP blocks, performance did not drop significantly.

Changing the number of GP blocks did not improve the performance. When using
three GP blocks, already most of the fingerprint was in the receptive field. Figures
10.3(b) and 10.3(c) visualize, that it is helpful to take into account global pattern
when local information is too vague. When using 4 GP Blocks, the receptive field
was even larger but the number of trainable parameters was likely to be too large
to generalize well - like it was for AlexNet. When reducing to 2 GP Blocks, the
receptive field of the model was likely to be too small (see Figure 10.3(c)).

10.5.5 Q5: Is Foreground Necessary?

If the information of the foreground was not used during normalization of the
fingerprint data, the performance decreased only slightly. The RMSE on BQ rose
from 8.54◦ for Implicit Deep Expectation to 8.64◦. The RMSE on GQ rose from
5.64◦ to 5.99◦ respectively.

10.5.6 Final Model: DEX-OF

The results of the earlier experiments were used to design and train a final model.
Implicit Deep Expectation performed best among the evaluated model types. There-
fore, the final CNN will be called DEX-OF. Data Augmentation, Gaussian Noise,
and Gamma improved the performance and were therefore also be used when train-
ing DEX-OF. None of the layout variations achieved a higher performance than the
original layout. DEX-OF therefore used the original layout. Reducing the number
of filters in the fully connected proxies to 50% was applied. A slight reduction
of filter size and in number of neurons in the GP layers achieved almost the same
performance as the baseline Implicit Deep Expectation. The number of parameters
was significantly reduced in this case. Thus, we decided to apply these changes to
DEX-OF as well. The total number of trainable parameters was 523,761. Com-
pared to ConvNetOF this was a reduction of about 60%. Memory consumption is
reduced by about 30% and average processing time was reduced by about 20%.2

By introducing the extra amount of training data and shrinking the CNN it took
longer to train the model. However, it still reached acceptable performance within
hours.

2Using a GPU processing a single sample took 35ms on an NVIDIA GTX 780.
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DEX-OF achieved an RMSE of 7.52◦ on BQ while a deviation of 4.89◦ on GQ
was achieved.

10.6 Conclusions
The experiments designed to answer the five research questions gave some in-
teresting findings. The problem formulation was found to be essential for final
performance. Deep Expectation performed best among the prediction modes even
though Regression performed better than Naïve Classification on this task. Gen-
eralization is a critical issue for CNNs especially for FOE. However, the ratio
of numbers of training points and trainable parameters could be compensated by
augmenting the training data by affine data augmentation and disturbances like ad-
ditive Gaussian noise or application of random Gamma correction. Changing the
layout of the model to other layouts typically used today did not reach perform-
ance of ConvNetOF. But it showed to be important to keep the receptive field of
the model large enough to be able to deal with very low quality areas in an im-
age. The influence of the size of the single layers had only little influence on the
results. However, reasonable reduction of the size of the layers from ConvNetOF
increased the performance slightly and simultaneous reduced the numerical effort.
Experiments showed that including the information on the foreground was benefi-
cial even though the benefit was limited.

The number of layers used was significantly smaller than the tens and hundreds
of layers which are typically used today. In addition, the training took only a few
thousands training steps. Training was done not within weeks but within hours.
Therefore, training a CNN for FOE seemed to be easier than others problems to
which CNNs are applied to.

We designed and trained a CNN called DEX-OF which achieved RMSE of 7.52◦

on BQ at FVC-ongoing. Compared to OriNet this was an improvement of 10.9%.
This was an improvement by 11.8% compared to ConvNetOF while the number
of trainable parameters was reduced by about 60%. Compared to LocalDict the
RMSE on BQ was an improvement of about 19%. Even though our focus was on
BQ, DEX-OF achieved an RMSE of 4.89◦ on GQ. Compared to ROF this was an
improvement of 6.7%. Both were the best results reported so far.
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Chapter 11

Intrinsic Limitations of
Fingerprint Orientation
Estimation

Summary Assessing the performance of approaches for fingerprint
orientation fields requires ground truth data. In general, such data is
not available. It has to be produced by manual mark-up carried out
by human experts. This works analyses the reliability and accuracy of
such mark-ups.
This publication is joint work with Simon-Daniel Schulz and Chris-
toph Busch. It was presented at the BIOSIG conference in Darmstadt
(Germany) in 2017.

[261] P. Schuch, S.-D. Schulz, and C. Busch. Intrinsic limitations
of fingerprint orientation estimation. International Conference of
the Biometrics Special Interest Group (BIOSIG), 2017
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Abstract Estimation of orientation field is a crucial issue when pro-
cessing fingerprint samples. Many subsequent fingerprint processing
steps depend on reliable and accurate estimations. Algorithms for
such estimations are usually evaluated against ground truth data. As
true ground truth is usually not available, human experts need to mark-
up ground truth manually. However, the accuracy and the reliability
of such mark-ups for orientation fields have not been investigated yet.
Mark-ups produced by six humans allowed insights into both aspects.
A Root Mean Squared Error of about 7◦ against true ground truth
can be achieved. Reproducibility between two mark-ups of a single
dactyloscopic expert is at the same precision. We concluded that the
accuracy of human experts is competitive to the best algorithms eval-
uated at FVC-ongoing.

11.1 Introduction and Motivation
The Orientation Field (OF) of a fingerprint is a characteristic feature. It represents
the local orientation of the papillary ridges on the fingerprint. The OFs form typical
patterns (see Figure 11.1). They are decisive for the orientation of the character-
istic points of the fingerprint ridges: the minutiae. Minutiae are the most common
biometric features when recognizing fingerprints. Further processing steps may
use information of the OF, e.g. image enhancement and automated minutiae ex-
traction. Thus, Fingerprint Orientation Estimation (FOE) needs to be accurate
to allow a precise processing. This makes FOE one of the most important sub-
processes in biometric feature extraction from fingerprints [203].
But what does it mean to have an accurate FOE? An accurate FOE shall not devi-
ate significantly from the so-called true ground truth (GT), i.e. the actual OF. Thus
one needs to know GT for a quantitative assessment of an FOE. Unfortunately, the
true GT is usually unknown as one does not know the exact OF. To circumvent this
lack of true GT, human experts may mark-up GT, i.e. estimate the OF manually
and record the estimation.
Whenever estimations are made, they should be questioned and analysed for their
accuracy. If in addition humans perform an estimation, reproducibility and whether
the humans need expertise can be a critical issue. Despite the fact that FOE is a
key aspect in biometric feature extraction, neither accuracy nor reproducibility
have been assessed in literature yet. This paper addresses both aspects of FOE by
humans.
As a special use case we inspect the benchmark framework FVC-ongoing. It
provides the one and only relevant benchmark for quantitative assessment of al-
gorithms for FOE. This of course makes use of a human mark-up of the GT [50].
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Algorithms under assessment will perform FOE on given fingerprint samples and
this estimation is compared to the GT. GT consists of triplets (x, y, θGT) repres-
enting ground truth orientation θGT at pixel locations (x, y). Let θE(x, y) be the
estimated orientation at location (x, y).
Then accuracy can be measured as the Root Mean Squared Error (RMSE) over all
N sampling points provided in a sample:

RMSE =

√√√√ 1

N

N∑
i=1

(θGT
i − θE(xi, yi))2 (11.1)

It is worth mentioning, that the benchmark performs evaluations on two data-
sets: one data set contains images of good quality (GQ)and the other one contains
images of bad quality (BQ). Performance is therefore measured in two scalars:
AvgErrGQ and AvgErrBQ representing the average RMSE over all samples on the
single datasets. This splitting takes into account the obvious fact that FOE is a
harder task on BQ samples than it is on GQ samples. Published results of FVC-
ongoing confirm this assumption (see Figure 11.2). It is surprising to observe that
since the FVC-ongoing benchmark was started in 2010, the AvgErrBQ has im-
proved significantly over time, while AvgErrGQ did not. This may be an indicator
for some kind lower bound for RMSE which depends on the benchmark itself.
Additionally, this benchmark gives the opportunity to compare the performance of
humans against the performance of algorithms tested at the benchmark.
The rest of the paper is organized as follows: Related work is described briefly in
Section 11.2. Section 11.3 describes our assessment on the accuracy of FOE. The
findings of this paper are summarized in Section 11.5.

11.2 Related Work
Some previous work on FOE is relevant for the method proposed in this paper.
One of the mark-up tools used in this work was presented by Cappelli et al.
[48]. Lodrova et al. have proposed averaging of minutia directions for estima-
tions form multiple experts and define thresholds when consensus on estimations
is found [194]. Dactyloscopic examiners were assessed on several aspects: de-
termination of quality [293][226], minutia mark-up [294][295], and identification
decisions [291][292]. Oehlmann et al compared algorithms for FOE with two fur-
ther measures: average deviation (as an alternative to RMSE) and percentage of
area with a deviation larger than 15◦ [224]. This bound of 15◦ can be considered
as a threshold between a reasonable estimation and an unacceptable deviation.
Chapman et al. provided a guide for the markup of directions of minutiae [54].
Capelli et al., and Turroni et al. constituted the base for the FOE benchmark at
FVC-ongoing [50][290]. The works of Feng et al. and of Gottschlich et al. are
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(a) Whorl (b) Arch (c) Right Loop (d) Right Loop

Figure 11.1: The presence or absence of singularities significantly shapes the orientations
fields and builds typical patterns. Those singularities are cores (yellow crosses) and deltas
(red crosses). The green lines emphasize the flow of the ridges around those singularities.
The relative positions of the singularities can vary the shape significantly within a pattern
type (compare figures 11.1(c) and 11.1(d)).

Figure 11.2: Algorithms are ordered by their publication date. While AvgErrBQ has been
improved significantly over time, AvgErrGQ stagnates at about 5◦.

examples, where manually marked-up OFs were used for assessment of proposed
approaches [77][95]. Zhao et Jain used manual markups to separate overlapping
fingerprints [331].

11.3 Assessment
Tools We used two different tools for mark-up. Both differ in the way the mark-
up is done and how the OF is constructed from the mark-up.
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(a) Tool A (b) Tool B

Figure 11.3: Two tools are used for mark-up of OF. Tool A interpolates the OF based on
marked support points (yellow lines in 11.3(a)). Additionally to local orientation (green
lines), our internal tool B takes into account singularities (cyan triangles and crosses in
11.3(b)) and uses Thin Plate Splines for estimation of the OF.

Tool A is called FingerprintAnalyzer (see Figure 11.3(a)). It was kindly provided
to us by the Università di Bologna. It was the same tool which was used for
marking-up the GT at FVC-ongoing. The tool allows a markup at an equidistant
grid. It supports the editor by giving an initial estimation for the OF at a selected
mark-up point. If the editor does not agree with this estimation, the local OF
can be corrected manually. The final OF is calculated as a interpolation based on
the marked-up support points. Relevant support points for interpolation are the
corners of surrounding triangles of a Delaunay triangulation on the support points.
The output is the OF sampled at an equidistant grid of every eighth pixel.

Tool B was an internal tool from our team (see Figure 11.3(b)). It allows to mark-
up at any point of the sample. In addition to local estimations, this tool allows
to mark-up singularities (compare to Figure 11.1). The OF is calculated as a thin
plate spline (TPS) on the a complex plane based on the singularities. The global
shape of the OF is modelled using a Zero-Pole Model. Local deviations from this
model can be corrected using control points which use a TPS to interpolate the
residual. No initial orientation proposal is provided for the control points, i.e. the
orientation of the control points must be set manually. The output is an interpolated
OF for every pixel.

Data Acquisition Three experts with perennial experience in the domain of fin-
gerprints and three laymen marked-up a total of 15 samples. More reliable results
would require more humans involved in the time-consuming mark-up. As we were
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(a) SFinGe1 (b) SFinGe2 (c) SFinGe3 (d) Lines (e) Circles

Figure 11.4: The set of samples to be marked-up consists of the ten GQ samples of FOE-
TEST, three samples generated with SFinGE (11.4(a)-11.4(c)), and two analytical patterns
(11.4(d) and 11.4(e)).

interested in the highest achievable accuracy and best reproducibility, we focused
on GQ samples. There were ten GQ fingerprint samples of dataset FOE-TEST
provided by FVC-ongoing (file names are "110"-"119"). GT marked-up by a hu-
man was available for these ten samples.
In addition, three synthetic fingerprint samples were generated by an external syn-
thesizer tool called SFinGe [46] (see figures 11.4(d) - 11.4(e)). Two pure synthetic
samples completed the dataset to be marked-up: straight lines and circle patterns
(see figures 11.4(d) and 11.4(e)). Used frequencies were similar to those in finger-
prints. For these cases true GT is available.
Both mark-up tools described in Section 11.3 were used for mark-up (see subsec-
tion 11.3). Mark-up was repeated in three sessions. At least one day break was
made between two consecutive sessions.
In addition, one expert performed two mark-up sessions on the 50 BQ fingerprint
samples of FOE-TEST. For these samples manual marked-up GT was available,
too.
Dataset FOE-TEST provided GT subsampled at an equidistant grid at every eighth
pixel. This sampling rate was the lowest common denominator and was therefore
used for all comparisons. In addition, the foreground area containing the finger-
print is provided with the set. As only these areas were relevant, only those were
evaluated in the RMSE.

11.4 Analysis and Results
Accuracy The accuracy of mark-ups for FOE can be assessed most accurately
only in comparison to unbiased true GT. We therefore inspected the RMSE achieved
on the synthetic SFinGe samples, the lines sample and the circles sample (see Fig-
ure 11.4). Table 11.1 revealed that experts performed significantly better than
laymen on the task of FOE. They achieved RMSE of 7.8◦ for all SFinGe samples



11.4. Analysis and Results 157

Table 11.1: RMSE when marking-up with Tool A/B

Person Session SFinGe 1 SFinGe 2 SFinGe 3 Lines Circles µSFinGe

Expert 1
1 8.9/7.7 8.9/8.3 6.7/5.6 1.6/0.7 6.1/2.7 8.2/7.2
2 8.9/7.3 8.3/8.2 6.5/7.1 2.1/0.7 6.2/0.9 7.9/7.5
3 7.7/5.3 6.9/7.9 5.2/5.7 1.7/0.7 6.7/0.7 6.6/6.3

Expert 2
1 8.5/6.8 8.8/7.4 8.7/6.1 1.7/0.7 8.3/1.3 8.7/6.8
2 7.8/6.9 7.8/8.2 7.2/5.4 1.3/0.7 6.9/0.6 7.6/6.9
3 8.5/6.1 9.0/7.8 8.6/5.9 3.4/0.7 6.6/0.6 8.7/6.6

Expert 3
1 9.4/9.2 10.0/7.4 6.6/6.3 2.4/0.7 5.1/0.8 8.6/7.6
2 8.3/9.5 8.6/8.5 5.6/6.5 2.6/0.7 2.9/0.7 7.5/8.2
3 8.3/9.6 6.6/8.7 4.7/5.9 1.5/0.7 2.2/1.1 6.5/8.0

Layman 1
1 12.3/21.4 9.7/13.8 7.8/19.8 2.2/0.7 4.8/6.3 9.9/18.3
2 17.0/23.6 9.4/13.2 7.9/11.8 2.5/0.7 8.4/6.8 11.5/16.2
3 11.7/13.0 10.8/13.5 9.5/8.0 1.9/0.7 8.1/8.7 10.7/11.5

Layman 2
1 10.7/11.3 7.5/12.4 7.6/8.3 1.5/2.8 5.0/7.3 8.6/10.7
2 9.5/11.5 8.2/13.4 5.2/6.5 2.0/3.5 5.4/6.5 7.6/10.5
3 10.8/14.7 8.2/11.2 8.3/8.4 2.5/0.0 5.4/6.6 9.1/11.4

Layman 3
1 10.1/9.4 9.8/10.4 5.8/8.7 1.9/2.1 7.6/5.9 8.6/9.5
2 8.2/8.5 9.0/9.5 7.8/6.6 4.4/0.3 5.6/3.9 8.3/8.2
3 10.6/10.8 8.5/11.1 7.9/9.1 2.6/2.8 5.6/2.6 9.0/10.4

µExperts all 8.5/7.6 8.3/8.0 6.6/6.1 2.0/0.7 5.7/1.1 7.8/7.2
µLaymans all 11.2/13.8 9.0/12.1 7.5/9.7 2.4/1.5 6.2/6.1 9.3/11.9
µAll all 9.8/10.7 8.7/10.0 7.1/7.9 2.2/1.1 5.9/3.6 8.5/9.5

when the tool A was used. When tool B was use, 7.2◦ was achieved. These per-
formances was better than the RMSE of 9.3◦ and 11.9◦ respectively achieved by
the laymen. Expertise in the domain of fingerprint recognition was therefore ne-
cessary to produce a more reliable mark-up.

The best single mark-up session for all SFinGe samples achieved RMSE of 6.2◦.
The RMSE achieved for the lines sample showed that this task can be performed
with high accuracy. Tool B could be used to better approximate the circles due to
the capability to mark-up cores.

Gaining Expertise The development of the RMSE over the consecutive sessions
gave insight, whether FOE is a task which could be learned fast. Surprisingly,
laymen did not improve constantly over time. Despite this, the RMSE for the
experts tended to improve over time. We assumed this effect did not reflect an
improvement in the task of FOE itself. It reflected the fact that the experts got used
to the tools and thus became able to express their knowledge of OF better with the
tools.
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Table 11.2: RMSE against the alleged ground truth provided in dataset FOE-TEST (file
names "110"-"119") when marking-up with tool A/tool B. The lowest RMSE achieved
over all session is 5.2◦.

Person Session 110 111 112 113 114 115 116 117 118 119 µ110−119

Expert 1
1 7.6/7.3 4.9/6.2 5.5/6.1 7.7/7.0 7.3/7.4 5.3/7.0 5.9/6.3 5.5/6.6 7.6/6.8 5.2/6.3 6.2/6.7
2 6.6/5.7 6.7/6.4 6.5/5.8 7.9/7.0 8.3/6.5 5.0/6.4 7.4/5.4 5.9/7.4 7.0/7.0 5.1/5.2 6.7/6.3
3 5.0/4.9 4.5/5.7 5.3/6.1 7.2/7.0 7.8/7.1 5.0/6.3 5.5/5.1 5.1/6.5 6.4/7.2 4.3/5.7 5.6/6.2

Expert 2
1 6.8/6.7 5.8/6.1 7.4/9.5 9.9/7.3 8.7/9.5 4.8/7.9 6.1/5.5 5.5/8.9 6.4/7.9 5.3/5.3 6.6/7.5
2 6.9/5.3 4.9/6.6 5.7/9.2 8.0/6.8 7.6/8.5 4.3/6.5 5.6/6.1 5.4/7.9 6.7/8.1 5.0/5.1 6.0/7.0
3 6.6/6.5 6.6/5.9 6.8/10.3 8.7/9.2 7.9/10.1 4.8/6.8 6.3/5.4 6.1/7.5 5.9/7.9 7.4/6.2 6.7/7.6

Expert 3
1 6.4/6.5 6.4/6.9 6.4/7.7 8.5/8.5 8.1/10.3 6.6/6.7 6.3/8.4 8.6/8.7 6.7/8.1 6.2/6.1 7.0/7.8
2 5.1/7.0 4.6/7.7 4.8/6.1 6.3/8.9 6.6/7.7 4.2/5.5 5.4/6.7 7.1/8.6 5.5/8.9 4.4/5.7 5.4/7.3
3 4.9/7.4 4.5/6.0 4.5/6.1 5.8/7.7 6.7/8.7 4.9/6.0 5.4/6.6 4.4/8.2 6.3/7.4 4.8/5.7 5.2/7.0

µExperts all 6.2/6.4 5.4/6.4 5.9/7.5 7.8/7.7 7.7/8.4 5.0/6.6 6.0/6.2 6.0/7.8 6.5/7.7 5.3/5.7 6.2/7.0

(a) Tool A (b) Tool B

(c) Between Tools (d) KDE of RMSE

Figure 11.5: RMSE between all sessions of all experts and laymen. The block diagonal
matrix is highlighted by black squares. Those contain the comparison between all sessions
of a single person and therefore allow inference on reproducibility of mark-ups.
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Humans vs Algorithms Table 11.2 contains the RMSE achieved against the GT
provided for the samples of FOE-TEST. This allowed to compare the performance
of humans against the capabilities of those algorithms evaluated at FVC-ongoing.
The mean RMSE µ110-119 for all experts achieved with the tool A is 6.2◦ and 7.0◦

for the tool B respectively. It is worth mentioning, that this was opposite to the
higher accuracy against the true GT from the synthetic images when using tool
B. This was likely due to the fact, that tool A was used to mark-up the GT. Thus,
the results might slightly be biased by the mark-up tool. The best RMSE over
all samples µ110-119 was achieved by expert 3 with the tool A: 5.2◦. This was
competitive to the best algorithm at FVC-ongoing (see Figure 11.2).

As lower bounds for BQ samples were of interest, too, we performed some extra
assessments. One expert additionally performed two mark-up sessions on the 50
bad quality images of dataset FOE-TEST. The expert achieved a RMSEs of 8.4◦

in the first and 8.3◦ in the second session against the alleged GT when using tool
B and 11.0◦ and 9.6◦ with tool A respectively. The tool B might therefore be
more appropriate for mark up of bad quality images. However, this accuracy was
competitive to the best algorithm at FVC-ongoing which is called DEX-OF [260].

Local Deviations The distribution of deviations was not uniform for every sampling
point. Figures 11.6(a) and 11.6(b) visualize the degree of dissent on local orient-
ations for all experts on a single sample. Let θE

i (x, y) be the local estimation at
location (x, y) from mark-up i. Then the local dissent δ(x, y) can be measured as
the mean deviation from an averaged estimation µθ(x, y) over M mark-ups:

µθ(x, y) = 0.5 ∗ arctan

(∑M
i=1 sin(2 · θE

i (x, y))∑M
i=1 cos(2 · θE

i (x, y))

)
(11.2)

δ(x, y) =
1

M

M∑
i=1

∣∣](θE
i (x, y), µθ(x, y))

∣∣ (11.3)

The more intense a block was colored red, the larger was the dissent. Not surpris-
ingly, the dissent was larger in the vicinity of singularities than it was in regions of
low curvature. The local distribution of dissent was similar for both tools (see Fig-
ure 11.6(c)). The area of dissent near singularities was larger for tool B than it was
for tool A (yellow circles). Due to the fact that singularities could be marked-up
with tool B, slight deviations in position of singularities led to larger areas of dis-
sent. Relevant deviations can also be found where curvature has saddle points, i.e.
where the ridges change their bending (blue rectangle). Additionally, there were
deviations at those points, where experts had to decide between smoothness of the
OF and high fidelity to local changes of the OF (green circle). This was more an
individual bias than it was a critical deviation.
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The local deviation among the experts from their estimated mean was strongly
correlated to their mean deviation against the GT on the three samples generated
with SFinGE. Pearson’s correlation coefficient between both mean deviations is
0.8. Therefore, it is likely that dissent among multiple mark-ups will coincide
with deviations from true GT.

Reproducibility Whenever humans are involved in processes, reproducibility is
an important issue. Single mark-up sessions of the human editors were com-
pared against each other to assess this aspect. Figures 11.5(a)-11.5(c) visualizes
the RMSE between all mark-ups made by the six human editors. Since also RMSE
between all sessions of a single person were included in this graphic, it contains
information regarding reproducibility. In general, experts achieved lower RMSE
between their sessions than the laymen did. This holds except for layman 2 when
marking up with tool A. This good reproducibility needed to be put into perspective
of significant higher deviation against true GT (see Table 11.1). However experts
could achieve RMSE between 5◦ and 7◦ between two mark-ups. Surprisingly,
these accuracies were only slightly better than the accuracies between the particu-
lar experts. This was an indicator that the single mark-ups were good estimations
of the true OF. The RMSE between the two sessions on the BQ samples was 11.7◦

when using the tool A and 7.6◦ when using the tool B.

Approximating True GT It seemed, that the mark-ups could be interpreted as true
GT disturbed by some noise. If the noise is mean-free, averaging mark-ups will
reduce the influence of noise. Figure 11.6(e) visualized the empirical cumulative
density function of deviations between µθ and the true GT of the SFinGe samples.
The more mark-ups involved in averaging, the lower was the deviation against the
true GT. There was no significant difference between averaging all three mark-ups
of one expert and averaging one session each from all three experts.

11.5 Conclusions
By extensive and time consuming mark-up of OFs, we investigated questions re-
garding FOE when performed by humans. We found that expertise in fingerprints
increases the accuracy of marked-up OFs. Experts achieved an RMSE of about
7◦ compared to true GT. Averaging over more than one mark-up increased the
accuracy. Inspection of multiple mark-ups of a single expert showed, that mark-
ups could be produced at similar values of RMSE. These values were, therefore,
interpreted as rough lower bounds for a reasonable accuracy at FVC-ongoing.
When humans were compared to the alleged GT at benchmark FVC-ongoing, they
achieved roughly 5◦ on GQ samples and about 8.4◦ on BQ samples respectively.
This was competitive to the best algorithms evaluated by FVC-ongoing.
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(a) Tool A (b) Tool B

(c) Between Tools (d) Against GT

(e) Averaging Mark-ups

Figure 11.6: The local dissent among experts on FOE (red tinting in Figures 11.6(a) and
11.6(b)) is similar for both tools. Dissent is strong near singularities (yellow circles),
saddle points of curvature (blue rectangle), and where the experts need to choose between
local fidelity and smoothness (green circle). Where dissent is large among the expert, the
deviation to true GT is large, too (11.6(d)). Averaging over more than one mark-up can
reduce such deviations (11.6(e)).
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Chapter 12

Conclusion on Orientation Field
Estimation

The orientation field is an essential feature of each fingerprint. It is so informative,
that it can even be used as a 1st level feature for biometric recognition. Orientation
fields are relevant for many process. This feature can be used for Fingerprint Clas-
sification and Fingerprint Indexing. Estimation of the orientation field is a crucial
task when processing fingerprint samples. Orientation fields are also important
during minutia extraction, since the direction of a minutia is one of its most im-
portant features. They can also be relevant for fingerprint sample enhancement.
Thus, there are many processes, which rely on an accurate estimation. However,
estimation of the orientation field is no trivial task especially when fingerprint
samples are of low quality.

Part III is dedicated to answer the research question RQ2: "Can DL be used for
a better orientation field estimation?" The benchmark framework FVC-ongoing
provides a benchmark for assessing the module of orientation field estimation. It
therefore helps answering the research question. DL approaches significantly out-
perform all hand-crafted and learning-based approaches at this benchmark. The
proposed approach DEX-OF achieved an RMSE of 7.5◦ for bad quality finger-
print samples and an RMSE of 4.5◦ for good quality fingerprint samples respect-
ively. This outperforms all hand-crafted approaches significantly and can be con-
sidered as the new state of the art. As true ground truth data for orientation fields
is unknown, data marked-up by human experts are used for assessment. A lower
bound of 5◦ for the accuracy of such mark-ups was found. DL-based approaches
therefore already approach the limits of reasonable accuracies in orientation field
estimation.
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Part IV

Efficient Processing Structures
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Chapter 13

Introduction

13.1 Motivation
There are usually two main requirements on fingerprint recognition systems: bio-
metric performance and speed. If a fingerprint recognition system is not accurate
enough for a given scenario, it is simply not applicable. If a fingerprint system
does not work fast enough for a given scenario, it is not applicable as well. Thus,
these two properties are of highest relevance for a fingerprint recognition system.

Even though fingerprint recognition is a rather straight forward workflow, it is a
quite complex process executed in many sub-systems that interact with each other.
Each sub-system can be a bottleneck with respect to the biometric performance or
speed. Thus, there are many aspects, which can be improved on.

When dealing with large datasets, both speed and biometric performance are very
important. Sophisticated minutia-based algorithms for the thorough fingerprint
comparison of pairs of samples enable highly accurate recognition systems [310].
However, such a thorough comparison of two minutiae point clouds can be a tedi-
ous job. Thorough minutiae comparison of probe samples against very large bio-
metric reference databases in a an exhaustive, brute force manner might take too
much time. Recognition systems like Aadhaar will deal with more than a billion
of individuals [84].

There is no need for an exhaustive search of thorough comparisons against an en-
tire biometric reference database. Some pairs of fingerprint samples can be decided
to be non-mated at first glance, e.g. by application of pre-selection algorithms
like Fingerprint Classification or Fingerprint Indexing. Fingerprint Classification
makes use of Henry pattern types (see Figure 13.1 and also Part III). Only pairs
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of samples sharing the same characteristics are worth a thorough minutia-based
comparison. Pre-selection therefore allow to filter a database for the most relevant
individuals for every identification query. This reduces the recognition system’s
workload and enables dealing with larger databases.

Figure 13.1: Some references in a biometric reference database share the same charac-
teristics with the query fingerprint. Those are candidates worth a closer inspection by the
thorough minutia-based comparison. Fingerprint Classification uses Henry pattern types
as a relevant characteristic, e.g. right loops, left loops, whorls, or arches. By such a pre-
selection, Fingerprints not sharing the characteristic with the query item can be excluded
from further thorough comparison.

Besides pre-selection algorithms, there are more ways to improve the speed and
accuracy of a fingerprint recognition system. Feature extraction as well as bio-
metric recognition can benefit from an alignment of the fingerprint samples, i.e.
transforming samples to a specific position and orientation. The feature extraction
process may benefit from an alignment, e.g. if specialized fingerprint models can
be applied, which require an alignment. This may improve mainly on the accur-
acy of the biometric feature extraction. Biometric comparison may benefit from
an alignment even with respect to biometric performance and speed. If aligned
samples are compared, the degrees of freedom arising from orientation and po-
sition are eliminated. This simplifies the comparison process significantly. Bio-
metric decisions can be made faster and more reliable. In the domain of template
protection, there are approaches which even explicitly require an alignment [314].

In the end, there are plenty of processes, which can be improved. For example,
fingerprint samples can have very different characteristics, which arise from their
data origin, e.g. rolled and plain fingerprint samples. Being able to identify the
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Approach FIDX-10K FIDX-50K
ER100 ER1000 IS ER100 ER1000 IS

MCC 5.898% 9.888% 1.215% 6.450% 15.140% 0.954%
DIMI 20.0% 22.0% 0.723% 20.0% 36.0% 0.747%

Table 13.1: Results at FVC-ongoing. For definitions of the metrics ER, PR, and IS see
Section 1.3.

data origin enables application of dedicated process. This can in turn improve the
biometric performance.

13.2 State of the Art

13.2.1 How to assess approaches efficient processing structures?

The relevant metrics and evaluation for the various aspects of efficient processing
structures differ. Evaluation shall focus on the intention of a certain aspect but
keep the biometric recognition performance and processing troughput in mind.

Fingerprint Indexing most likely has the highest potential for improving finger-
print recognition systems. There is an independent benchmark at FVC-ongoing
for Fingerprint Indexing [68]. This benchmark therefore allows to identify state of
the art in Fingerprint Indexing. As FVC-ongoing can be considere most import-
ant for evaluation, this work focusses on the provided metrics at this benchmark:
PR, ER, and IS (see Section 1.3). FVC-ongoing additionally reports on memory
consumption and speed.

There are more sophisticated metrics for reporting aspects of workload reduction
[69]. Those metrics exceed the definitions by ISO and FVC-ongoing. Unfortu-
nately, most of these metrics require a baseline algorithm for the thorough com-
parison. In general, such a baseline is not given for fingerprint recognition. In the
special case of FVC-ongoing, thorough comparisons after indexing is not intended
at all. Thus, applicability of these metrics is limited in this domain.

About two hundred algorithms or rather versions of algorithms were evaluated at
the FVC-ongoing benchmark so far.1 However, results are reported only for two
algorithms: Minutia Cylinder Code (MCC)[49] and our Deep ISO-Minutia Index-
ing (DIMI)[263] (see Sections 13.2.2 and 13.2.3). Table 13.1 contains the reported
results. The table allows identification of the state of the art for Fingerprint Index-
ing.

1https://biolab.csr.unibo.it/FvcOnGoing/UI/Form/Statistics.aspx
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13.2.2 Hand-crafted approaches

The most prominent approach in Fingerprint Indexing is MCC [49]. MCC uses
fingerprint minutiae as input features for the index vector generation. The idea of
MCC is to represent neighbourhoods of minutiae in a compact and fixed-length
representation. Neighbouring minutiae are represented by their relative position
and angular difference with respect to a central anchor minutia. The representation
is encoded on a T2 torus. As a simplification such tori are displayed as cylinders.
The actual biometric comparison is reduced to the comparison of such cylinders:
Similar cylinders indicate similar minutiae neighbourhoods. There are published
results for MCC at FVC-ongoing. MCC can be considered as state of the art
for many years. There are many variations of this approach, which improve on
several aspects of MCC [303][10][334][11]. The original MCC even comes as a
publicly available Software Development Kit (SDK), which allows to integrate it
and improve on it.

Besides fingerprint minutiae, there are other features, which can be used for Fin-
gerprint Indexing. There are approaches using orientation fields, ridge textures,
or biometric scores. Even hybrid approaches using more than one feature were
proposed. As there was no recently published survey, this dissertation will present
research review survey providing an overview on the usage of different features
used for Fingerprint Indexing in Chapter 14 [256].

13.2.3 Learning-based approaches

Up to now, there was no learning based approach. Thus our work presented in
Chapter 16 is the first for which results are published in FVC-ongoing This ap-
proach is called DIMI [263]. The idea is to use CNNs to learn fixed-length repres-
entations for entire fingerprint samples. Like in MCC, DIMI uses neighbourhoods
of fingerprint minutiae as input features. DIMI improves significantly on the as-
pect of IS compared to MCC. DL-based approaches can therefore be considered
also as state of the art in Fingerprint Indexing besides MCC.

13.3 Contributions
About a hundred approaches were proposed for Fingerprint Indexing so far. A
research review survey provides overview on the features used for Fingerprint In-
dexing (see Chapter 14) [256]. This survey also inspects the quality of the body of
research in Fingerprint Indexing.

A new approach using CNNs for Fingerprint Indexing was presented: DIMI (see
Chapter 16) [263]. DIMI performs at least competitive to state of the art MCC. It
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even outperforms MCC in some aspects. It can therefore also be considered state
of the art.

Besides Fingerprint Indexing, there are more aspects to improve on in efficient
processing structures. An unsupervised learning strategy for CNNs was presented,
which allows learning a rotational alignment (see Chapter 15) [264]. It was also
shown, that CNNs can be used to estimate the data origin of fingerprint samples
(see Chapter 17) [262].
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Chapter 14

Survey on Features for
Fingerprint Indexing

Summary About a hundred approaches were proposed for fingerprint
indexing so far. This work provides a survey over the multitude of
features, which were proposed for fingerprint indexing.
This work was published in the journal IET Biometrics in 2018.

[256] P. Schuch. Survey on features for fingerprint in-
dexing. IET Biometrics, June 2018. ISSN 2047-
4938. URL http://digital-library.theiet.org/

content/journals/10.1049/iet-bmt.2017.0279
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Abstract Nowadays, several biometric databases already contain
millions of entries of individuals. With an increasing number of en-
rolled individuals, the response time of queries grows and can become
critical. Fingerprint Indexing offers a set of techniques to reduce the
workload of entries, which have to be compared thoroughly. This
work surveys research on such techniques. It focuses on the features
of fingerprints, which are used as input. This survey also provides
assessment on the quality of the body of research in this field. Defi-
ciencies herein are identified, e.g. there is a lack of common datasets
and metrics used for testing.

14.1 Introduction
Biometric systems are a widespread means for identification of individuals today.
Response times of such systems mainly depend on three aspects: the response time
for an individual comparison of two fingerprint samples, the size of the database
to be searched, and the actual hardware used for biometric comparison. All three
aspects result in the biometric system’s throughput.

As biometric databases in general tend to grow over time, the throughput declines
over time. Nowadays, there are biometric systems rolled out, which contain sev-
eral million individuals. The most prominent and largest example is the Aadhaar
project in the Republic of India. It already contains more than 100 million entries
and targets over one billion people.

In general, classical fingerprint comparison of fingerprint minutiae is computation-
ally expensive. This survey will refer to this exhaustive comparison as the thor-
ough comparison. Besides scaling the hardware, there is another way to increase
the throughput. While some fingerprints are very similar, some fingerprints are
very different. When comparing fingerprints, only those comparisons are worth
a closer look, where both fingerprint samples are similar. For many comparisons,
one can decide at the first glance that both fingerprint samples are not mated. Thus,
one does not need to perform the thorough comparisons on the entire database but
only on a subset. This reduces the mean response time for an individual compari-
son indirectly. This reduction can be done by any kind of filtering the entire dataset
for those, which are most likely relevant for the current identification query. The
number of thoroughly evaluated entries is therefore reduced. This is usually ex-
pressed as the so-called penetration rate, i.e. what ratio of the dataset has to be
compared thoroughly against. If the combination of time for overhead of prefilter-
ing and time for thorough comparison of the remaining entries reduces the mean
response time, the throughput can be increased.
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There are mainly two kinds of such prefiltering: Fingerprint Classification (FC)
and Fingerprint Indexing (FI). The former clusters all fingerprints into distinctive
classes. The most common clustering assigns one out of five pattern types to a
fingerprints. FC can reduce the mean response time. However, it has three draw-
backs: The clustering may be ambiguous for many fingerprints, it may fail, if the
fingerprint sample contains only a small part of the finger’s area, and the penet-
ration rate is not very low due to the small number of classes. FI assigns one or
more index values to each fingerprint sample. Usually, a fixed number of features
is concatenated to a fixed-length feature vector. This in turn allows a rough but
computational simple comparison. The comparison is no hard classification like in
FC. It is continuous and therefore allows lower penetration rates. FI may therefore
be superior to FC. The generation of fixed-length feature values is common also
for other biometric traits. Examples are the so-called Iris-Code[62] for iris recog-
nition or Eigen-Faces[288] for face recognition. For both biometric traits such an
indexing is distinctive enough to allow not only prefiltering but even identification.

Various approaches for FI have been proposed. This work surveys the research on
this topic. It focuses on the features of the fingerprint samples, which are used to
generate the index vectors. There is no other survey on the features for FI yet. In
addition, the quality of the body of research is assessed.

The rest of this work is organized as follows: Section 14.2 gives a short introduc-
tion into FI. The actual survey process is described in Section 14.3. Section 14.4
categorizes and describes the reviewed research items. Section 14.5 gives an over-
view on the datasets and metrics, which have been used in the surveyed works. A
summary with conclusions of this survey can be found in Section 14.6.

14.2 Indexing
The technique of FI consists of multiple processing steps. Fingerprint samples are
taken as inputs. The final output is a candidate list C.

FI makes use of an index generating function F , which maps a fingerprint sample
on an identifier. This identifier is called an index or an index vector. An ideal index
would be unique for every fingerprint. Thus, all fingerprint samples of the same
fingerprint would be mapped to the same index. In general, the index generating
function is not injective, i.e. more than one sample may be assigned to the same
index. In addition, two samples of the same fingerprint may be mapped to different
index vectors. Thus, the index generating function is not distinctive enough to
generate a unique index.

However, the similarity between indices indicates the likelihood for both being
mated, i.e. belonging to the same finger. The comparison of indices results in
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an indexing score si representing the likelihood. W.l.o.g. one can assume, that a
higher score indicates a higher likelihood. This means that the order of the index-
ing scores matters. The actual values and relations in magnitude do not necessarily
have an explicit meaning.

A requirement for FI is, that the comparison of indices has to be way faster than the
typical thorough comparison based on fingerprint minutiae. This aspect of speed
is usually achieved by two techniques: comparing index vectors of fixed length
and a computationally simple comparison, e.g. L2 norm of the difference between
indices.

The result of an FI for a single query is a candidate list C of identities. This list
C contains a subset of those candidates in the database, which are most likely
targets for a given query sample. FI can be interpreted as a fast prefiltering before
the thorough comparison will be performed. Figure 14.1 visualizes, how FI can
be integrated schematically into the entire biometric comparison workflow. The
index generating function F generates an index F (q) for a given query sample q.
This index F (q) is compared against the set of indices {F (id) : id ∈ DB} of all
entries id in database DB. Each comparison between two indices F (q) and F (id)
results in an indexing score si(F (q), F (id)). Then an initial candidate list C of
identities is generated. If applicable, the initial candidate list is reduced further in
an additional List reduction process into a final candidate list. If no list reduction
is applied, the initial candidate list can be passed as the final candidate list. For the
sake of simplicity, this survey will only deal with the final candidate list and define
it as the candidate list C. Finally, all identities in the candidate list are evaluated
by the thorough comparison against the query q. The final biometric decision is
then carried out only on the remaining candidates. The candidate list C can be

Figure 14.1: A fingerprint recognition workflow incorporating Fingerprint Indexing
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generated according to several policies. Each represents its own idea of how to use
the indexing scores generated by the indexing. Cappelli et al. identified the five
typical policies on how to reduce the candidate list C:

• Fixed threshold: All indexing scores are compared against a fixed threshold
θ. Only those candidates exceeding the threshold θ are added to the can-
didate list C. Thus, the candidate list C is of variable length. In this case
the indexing score si is interpreted as a probability for being the a mated
comparison. Therefore, the fixed threshold θ represents some kind of prob-
ability, which is at least necessary for being a mated comparison.
C = {id : si(F (q), F (id)) > θ, id ∈ DB}

• Top N ranking: In this scenario the candidate list consists of a fixed number
N of candidates, which achieved the highest indexing scores for a single
query q. The constant length of C allows a forecast on the runtime of an
entire query. Only the order of the index scores is relevant in this case.
The actual values of the index scores are irrelevant. This may help in more
difficult comparisons, e.g. those in which indexing scores may be low due
to bad quality.

• Variable threshold on score differences: The highest indexing score smax(q)
for a query is identified. The candidate list C contains all candidates resulting
in a comparison score not smaller than the maximum indexing score reduced
by a given offset δ. This results in a candidate list C of variable length.
C = {id : s(F (q), F (id)) > smax(q)− δ, id ∈ DB}

• Variable threshold on score ratio: This approach is similar to the approach
Variable threshold on score differences. The highest indexing score smax(q)
for a query is identified. The list C contains all candidates resulting in an
index score exceeding a given ratio ρ with respect to the highest found index
score. This also results in a candidate list C of variable length.
C = {id : s(F (q), F (id))/smax(q) > ρ, id ∈ DB}

• Oracle: In this case, for every query the candidate list is of exactly the op-
timal size, which is required to include the correct identity. The workflow
would be to thoroughly compare the candidates in the candidate list until
the correct one is identified. This implies a perfect thorough comparison.
Therefore, this policy is mainly of theoretical value.

Generating the candidate list can be quite time consuming, e.g. if a very long lists
of indexing scores needs to be sorted. In such cases, the candidate list generation
can take a large amount of the total time of the FI. The policy for the candidate list
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construction might therefore be considered as a critical component. All policies
have their own reasoning and are reasonable to some degree. None of the policies
is superior to the others by design. Every policy has its own to reasonable metrics.

Other forms of candidate list reduction are possible. For example, if one was able
to decide or knew whether a fingerprint sample belongs to a male or a female, one
could reduce the candidate list by gender. Dantcheva et al. provided a compre-
hensive review on such approaches [61].

14.3 Survey

14.3.1 Survey Process

I decided to search for relevant works in the four most relevant archives in com-
puter science which require a review: IEEE Xplore, ScienceDirect from Elsevier,
SpringerLink, and ACM Digital Library (ACM). Table 14.1 reports the exact search

Table 14.1: Number of relevant research items after the distinctive review stages and
instructions for a reproducible review search.

Archive # Initial #After #After Search Additional
Results 1st screen 2nd screen Command Filters

IEEE Xplore 139 40 31
(((Fingerprint) "Conference
AND Indexing) Publications Journals"
AND Biometric*) or "Magazines"

ScienceDirect 52 21 16
("Fingerprint
Indexing") "Journals"

and Biometric*

SpringerLink 33 15 11
Biometric "Conference

AND "Fingerprint Paper"
Indexing" or "Article"

ACM 128 13 5
(+Fingerprint

no filter+Biometric
Indexing)

From reference n/a n/a 19 n/a n/alists

phrases. Only original research works have been included in the survey. There-
fore, some additional filtering had to be applied on the search results. The table
also lists the numbers of research items found by the review.

The first screening was to sort out roughly the irrelevant works from all found
results. This was done considering only publication titles and abstracts. Mainly,
there were two criteria for inclusion. First, a proposed approach had to be ap-
plicable to fingerprint samples. Second, it needed to generate a fixed-length index
vector for samples or features, which could be used for FI. In case of doubt, re-
search was kept for closer inspection during the second screening.
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During the second screening, the remaining publications were analysed thoroughly.
Some works, which had not been sorted out before, were filtered by this stage. No
further criteria have been applied in this stage. Deficiencies in the quality of work
have been captured by using a survey questionnaire (see Subsection 14.3.2.)

The reference lists of the most popular publications found during the regular survey
have also been inspected. This allowed to identify additional relevant works, which
had been missed by the search in the archives. Actually, this review is not complete
in respect to all publications ever done in the domain of FI. The survey is limited
by the described review process. To the best of my knowledge, no ground-breaking
features for FI were missed by this review process.

14.3.2 Survey questionaire

The approaches found during the survey were evaluated according to a defined
catalogue of aspects. Those aspects are:

• [Level]: What is the level of detail?
This aspect shall estimate how well the actual methods are described. This
is very important for reproduction of the claimed results. The clearer and
the more detailed the description is, the higher the chance of reproducibility.
However, this aspect is subject to the opinion of the survey’s author. This
aspect’s ratings range from a good level ( ), over a fair level ( ) to a bad
level ( ) of description.

• [Repr]: Is the approach working in a local or a global manner?
Some approaches inspect local structures, e.g. neighbourhoods of fingerprint
minutiae. Others use a global representation, e.g. the orientation field of the
entire fingerprint sample.

• [Mod]: Which biometric modality is addressed?
This aspect indicates, whether an approach is bound to fingerprints (FP)
only. Some approaches are also proposed to be applicable for the modality
Palm (P) and some even to any modality (*).

• [Multi]: Is a solution provided to process more than one finger at a time?
Some biometric systems use more than one fingerprint as an identifier, e.g.
all four fingerprints of a hand. Checkmarks indicate, whether the approach
provides a solution for the combination of more than one fingerprint.

• [Index]: Is a single index generated for sample or are there multiple indices
for each feature?
In general, a single index vector per sample allows a simpler comparison



180 Survey on Features for Fingerprint Indexing

workflow, because in the other case special consolidations on the sub re-
sults have to be performed. This aspect correlates slightly with the as-
pect of Repr: most local approaches generate indices per feature and most
global approaches generate indices per sample. However, there are counter-
examples.

• [O(·)]: Is there any assessment on computational complexity?
FI is meant to improve a system’s throughput. A proposed approach shall
therefore be evaluated on the effort which must be performed to apply the
approach. An approach is even useless, if it is so computationally expensive
that there is no benefit in terms of the throughput at the end. Checkmarks
indicate any assessment of the aspects.

• [�]: Is there any assessment on time consumption?
The aspects of computational complexityO(·) and timing �strongly depend
on each other. Nonetheless, the former is the more significant one. Check-
marks indicate any assessment of this aspect.

• [Cit.]: How often was the work cited?
The number of citations can be interpreted as a rough indicator of the impact
of an approach. The actual number of citations was measured on Google
Scholar on November 1st 2017. The higher the count of citations, the more
important a publication can be assumed. Google Scholar includes self-
citations into the citation count. Self-citations distort this indicator.

An additional aspect would be the memory consumption of an approach. In gen-
eral, this aspect is not addressed by the approaches. But it can be derived by the
reader.

14.4 Relevant approaches
The found approaches can be grouped into four domains of features: fingerprint
minutiae, fingerprint ridges, orientation fields, and biometric scores. Each domain
will be described in its own subsection in the following. Tables 14.2-14.6 give an
overview over the found approaches with respect to the aspects monitored by the
survey questionnaire.

14.4.1 Approaches using Fingerprint Minutiae

The vast majority of approaches for FI uses fingerprint minutiae (see Figure 14.3)
as a feature. Due to the use of minutiae, all approaches in this domain are bound
to the biometric modality of fingerprints. Fingerprint minutiae are also the most
common features used for thorough comparison of fingerprint samples.
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Minutiae are well suited even for biometric identification. Thus, approaches using
fingerprint minutiae for FI make use of very descriptive and powerful features.
Another advantage over other features is the fact, that most of these approaches
are applicable without any knowledge about the original fingerprint sample. They
can therefore be also applied to already deployed systems, in which no fingerprint
images are available.

Table 14.2: Approaches making use of minutiae.

Authors Ref. Approach Level Repr Mod Multi Index O(·) � Cit.

Bai et al. [9] k-nearest neighbours local FP feature X 6
Bai et al. [10] Statistics on MCC local FP feature 0

Bebis et al. [21] Delaunay local FP feature X 189
Benhammadi et al. [23] Minutia Code local FP feature 68

Bhanu et al. [25] Triplets local FP feature X 223
Biswas et al. [27] Triplets local FP feature 24

Cappelli et al. [52] MCC local FP feature X 111
Chen et al. [56] Matching of minutia subsets local FP n/a X X 28

Germain et al. [85] Triplets local FP feature X 287
Gago-Alonso et al. [79] Delaunay triangulation local FP sample 25

Hartloff et al. [106] Sequences of minutiae local FP feature X 13
Iloanusi et al. [114] Quadruplets local FP X feature X 22

Iqbal et al. [117] Triplets and quadruplets local FP sample X 1
Jain et al. [132] Geometric representation global FP sample X 1
Jain et al. [131] Geometric representation global FP feature 2

Jayaraman et al. [138] Minutia in relation to cores global FP sample X 15
Khachai et al. [150] Delaunay triangulation local FP feature 3

Khodadoust et al. [156] Expanded Delaunay triangulation local FP feature X 0
Khodadoust et al. [155] Triplets of minutiae and cores local FP feature 1

Kovacs-Vajna [161] Triplets local FP feature X 419
Kumar et al. [166] Nearest neighbours local FP sample 2

Le et al. [169] Triplets local FP feature X 2
Le et al. [170] Hashing on neighbourhoods local FP feature X 0
Li et al. [178] Minutia disks local FP feature 6
Li et al. [78] Minutia disks local FP sample 0

Liang et al. [182] Delaunay with minutia type local FP feature X 38
Liang et al. [183] Delaunay with minutia type local FP feature X 96
Liu et al. [185] Minutiae and BioCode global FP sample 23

Mansukhani et al. [204] Trees of neighboorhoods local FP feature X 21
Muñoz et al. [211] Low order Delaunay triangles local FP feature 2
Muñoz et al. [212] Delaunay triangulation local FP feature 2
Muñoz et al. [213] Extended Delaunay Triangulation local FP feature X 0

Nagati [216] Minutiae around cores local FP sample 0
Reddy et al. [241] Triplets local FP feature 1
Ross et al. [245] Tiplets with ridge curves local FP feature 50

Vandana et al. [296] Lower order Delaunay triangles local FP feature 8
Vij et al. [297] Selection of quadruplets local FP feature X 7

Wang et al. [302] Speheric variation of LSH global FP sample X 1
Wang et al. [303] Shrinking of MCC local FP sample X 9

Xu et al. [312] Spectral representation global FP X sample 2
Yang et al. [315] Pixel Look-up via 3 minutiae global FP sample 0
Zhou et al. [333] Triplets local FP feature X 8
Zhou et al. [334] Alternative hasing for MCC local FP feature 0

A set of approaches is working on sets of few minutiae. For each set features
are calculated, which describe the relation of the minutiae. Germain et al. were
the first to propose triplets (see Figure 14.3(b)) of fingerprint minutiae [85]. The
triplets can then be represented by their geometric features, e.g. angles and side
lengths. The number of possible combinations of minutiae to triplets is very large.
When no restrictions on the triplets apply and an index is generated for every
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triplet, the number of triplet comparisons will be even larger. Therefore, restric-
tions seem reasonable. Kovács-Vajna, Bahnu et al., Reddy et al. and Zhou et al.
proposed variations in the selection of relevant triplets and features to be extracted
[161][25][241][333]. These strategies allow to keep the number of triplets to a
reasonable order. Ross et al. enriched triplet features with the ridge curves associ-
ated with the vertices [245]. The information on adjacent curves is of course a valu-
able information. By the way, this approach is quite similar to the methods human
examiners would apply. Biswas et al. extended the features of triplets with inform-
ation on the local curvature of the ridge structure [27]. Each region in a fingerprint
sample has its own characteristic curvature. Thus, adding curvature information
significantly increases the total information of a single minutiae. The gain in in-
formation of course increases by using not one but three minutiae. Triplets become
very descriptive in regions of strongly varying curvature. Khodadoust et al. pro-
posed to use triplets containing two minutiae and a singularity as corners [155].
This approach of course depends on a reliable detection of the fingerprint singular-
ities. Detection of the singularities is challenging especially for fingerprint samples
of bad quality. Singularities may not be detected at all in partial fingerprints or in
fingerprints with pattern types without singularities at all, i.e. arches.

Several approaches proposed to use a Delaunay triangulation for selection of rele-
vant triplets. Sampling triplets in such a manner is a special and popular strategy
in triplet selection. Bebis et al. were the first to use Delaunay triangulation [21].
The advantage of using this sampling strategy is that a Delaunay triangulation gen-
erates unique sets of triplets. Even though the Delaunay triangulation may slightly
differ, when the minutia positions are disturbed, most of the Delaunay triangu-
lation usually works stable for most of the entire fingerprint sample. Liang et
al. proposed to variant integrating the minutia type as a feature [182][183]. The
type of a minutia can either be a so-called ridge ending or a ridge bifurcation.
Adding such information to the description of minutiae can enhance the inform-
ation significantly. However, distinguishing both types is challenging especially
for fingerprint samples of low quality. Vandana et al. proposed to use triplets from
a lower-order Delaunay triangulation [296]. This approach increases the amount
of generated triplets. The approach gets more tolerant to spurious and missing
minutiae. Muñoz-Briseño et al. additionally used distances to the next nearby sin-
gularity as a feature [212]. This information can be interpreted as a rough indicator
for the region in the fingerprint sample. Again, detection of singularities can be
challenging or even impossible. They further proposed two variations of the triplet
selection by the Delaunay triangulation [213][211]. Khodadoust et al., Khachai et
al., and Gago-Alonso also proposed further variations of the Delaunay triangula-
tion [156][150][79]. Those approaches mainly deal with the challenges arising due
to missing and spurious minutiae or from positional variations of the minutiae.
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Some approaches use more than three minutiae. The more minutiae one uses,
the more informative the set of minutiae becomes. These approaches suffer from
missing and spurious minutiae, too. Vij et al. and Iloanusi et al. proposed to use
quadruplets of fingerprint minutiae [297][114]. In some cases of biometric com-
parisons, two fingerprint samples from the same fingerprint share only a small area.
In such cases, finding shared quadruplets will be harder than finding shared triplets.
Thus, the strong gain in information comes with drawbacks for mated comparisons
with small overlapping area. Iqbal et al. proposed to combine triplets and quad-
ruplets of minutiae and perform cascaded filtering on these [117]. This approach
therefore tries to combine the benefits from triplets and quadruplets. Cappelli et al.

Figure 14.2: Minutia Cylinder Code encodes a neighbourhood of minutiae. Each neigh-
bouring minutia (purple) is represented with its relative angle and position to a central
minutia

proposed to represent minutiae and their relative neighbourhood in a compact form
called Minutia Cylinder Code (MCC) [52]. In this approach a cylinder describes
the relative position and relative angles of the neighbouring minutiae (see Figure
14.2). The cylinders represent a special tessellation grid. Neighbouring minutiae
are represented as Gaussians on the grid. This deals with the sampling errors on
the grid and also enables tolerance to slight positioning errors of minutiae. Each
plane in the cylinder represents a relative angle with respect to the central minutia.
By the way, actually it is not a cylinder but a torus, which allows to deal with the
cyclicity of angles. MCC is the only approach, which was evaluated at benchmark
FVC-ongoing [68]. FVC-ongoing is the only available independent benchmark



184 Survey on Features for Fingerprint Indexing

for FI. There is an SDK for MCC available by the way. MCC is the base for some
variations. Wang et al. proposed to reduce the size of the cylinders [303]. Even
though the original MCC has a compact format, only a small share of each cylinder
is non-zero, i.e. the points where the neighbouring minutiae lie. This fact allows
reduction of the size. The original MMC also has a straightforward tessellation
grid. Sampling and quantisation leaves space for improvement here. Bai et al.
proposed therefore to use statistics on the cylinders for an improved quantization
of the cylinders [10]. Zhou et al. proposed an alternative hashing for MCC [334].
Li et al. proposed two variants of descriptions of neighbourhoods, described as
Minutiae Disks [178][78]. Neighbouring minutiae are represented here in Polar
coordinates. Polar coordinates enable a more natural dealing with positional and
angular relations compared to Cartesian coordinates.

There are further approaches describing local neighbourhoods of minutiae (see
Figure 14.3(a)). Those approaches usually use the nearest neighbouring minutiae
around a central minutia. These neighbourhoods therefore are local descriptions.
Such descriptions can be interpreted as small puzzle pieces. Those usually allow to
deal with biometric comparison of fingerprint samples with small overlap. In such
cases only very few puzzle pieces match between the fingerprint samples. Kumar
et al. proposed to add some undefined features to minutiae [166]. Mansukhnai
et al. and Bai et al. proposed to use trees for fast comparison of local minutia
neighbourhoods [204][9]. Hartloff et al. used series of neighbouring minutiae and
concatenated them to sequences (see Figure 14.3(c)) of minutiae [106]. Those
sequences have similar features like triplets or quadruplets. The concatenation
of minutiae to sequences can be interpreted as a sampling strategy of neighbours
like in the approaches using triplets. However, this approach might be promising
for comparisons of mated fingerprints with very small overlaps. This interpreta-
tion of minutia sequences as Strings allows to use methods from string processing.
Benhammadi et al. proposed to describe the minutia by their surrounding local ori-
entations in so-called Minutia Code [23]. Local orientations give an idea, in which
region of a fingerprint the sampled minutia is in. The representation is especially
expressive in regions of high curvature or near orientation field singularities.

Some approaches deal in more detail with the index generation from the features.
Le et al. improved the index generation [169][170], e.g. with error correcting
codes. Wang et al. proposed a variation of Locality-sensitive hashing (LSH) on
fingerprint minutiae [302].
There are also ideas, which only aim on a fast comparison, but do not necessar-
ily use a fixed-length representation. For example, Nagati proposed to use only
the minutiae in the central region for a fast but thorough comparison [216]. This
region usually contains the highest curvature and dynamic. One can assume, that
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most of the information is clustered in this region. However, by doing so avail-
able information is discarded. The reduction to a quite small region automatically
introduces the problems arising from small overlap between fingerprint samples.
Jayaraman et al. described the local neighbourhoods in the regions around the sin-
gularities [138]. Chen et al. proposed to compare just a subset of minutiae in a
thorough manner [56]. Both approaches suffer from the same drawbacks as the
approach proposed by Nagati.

Other approaches use minutiae for a global representation. Jain et al. proposed
two variations of a geometric representation of all minutiae of a fingerprint sample
[132][131]. This representation is called Spiral Tree and can be used for feature ex-
traction. The generated representation looks like a snail shell. This representation
is quite helpful for visual inspection, since it allows easy comparisons between
two fingerprint samples. Weaknesses of the approach might be the detection of
the inner most point of Spiral Tree and the disturbance from spurious and missing
minutiae. Yang et al. proposed to assign a value from a random look-up table and
three pixels each to each pixel in an image [315]. The random look-up induces
revocability. Xu et al. proposed to use a complex representation of the fingerprint
minutiae [312]. Each minutia is represented by a complex impulse in the image
domain. A minutia’s orientation is encoded into the phase of the impulse. By ap-
plying Fourier transformation and mapping to Polar coordinates this approach is
invariant to translation and rotation. Fourier transformation enables the invariance
to translations. Rotations in the image domain result in translations in the Polar
coordinates of the Fourier spectrum. These translations can be dealt with by applic-
ation of correlation between two samples. Thus, this approach nicely uses signal
processing techniques. Liu et al. proposed to combine minutiae with a modifica-
tion of BioCode (which originally included an additional token) [185]. External
tokens induce extra effort for users but usually enable them to apply verification
approaches rather than identification approaches, of course.

14.4.2 Approaches using Fingerprint Ridges

Several approaches for FI make use of the ridges of the fingerprint samples. Thus,
those methods are dealing with the textures in an image. Such approaches usually
assume that fingerprints actually look similar between multiple impressions. This
assumption does only hold for some samples. Usually, two fingerprint samples of
the very same fingerprint vary. The stronger the variation is, the less applicable
those approaches are. Table 14.3 lists the found approaches. Four approaches pro-
pose to use local descriptors, which are commonly used for dealing with textures.
Those techniques are often used for the task of image registration, which can be
seen as a similar task to finding out how two fingerprint samples fit together. Shuai
et al. proposed to use a fixed number of Scale-invariant feature transform features
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(a) (b)

(c) (d)

Figure 14.3: Minutia are characteristic points on the ridge structure: endings (green) and
bifurcations (red). Other characteristic points are the singularities: delta (orange triangle)
and core (orange circle). Minutiae can be used for Fingerprint Indexing in various repres-
entations. Usually, neighbouring minutia are described in groups, e.g. nearest neighbours
(14.3(a)), triplets (14.3(b)) or a sequence (14.3(c)). In some cases the neighbourhood is
sampled at a tessellation grid (14.3(d)).
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Table 14.3: Approaches making use of ridges/texture.

Authors Ref. Approach Level Repr Mod Multi Index O(·) � Cit.

Feng et al. [76] Ridge Invariants local FP feature 41
He et al. [108] SURF and DAISY features global * sample 15

Komal et al. [160] Radon transformation local FP sample 0of core region
Jakubowski et al. [137] Ridge crossing over random lines global FP sample 3

Jazzar et al. [139] Zernike moments global FP/P X sample X 13
Liu et al. [191] Region around singularities global FP sample 53

Montoya et al. [326] Wavelets for core regions local FP sample 45

Nanni et al. [218] Various block-wise local FP feature 57local descriptors
Shuai et al. [268] Subset of SIFT of 3 impressions global FP sample 67
Yang et al. [318] Invariant Moments local FP sample X 97
Zheng et al. [332] SURF features local FP sample X 4

(SIFT)[195] features as a descriptor (see Figure 14.4)[268]. SIFT features are
scale-invariant and were quite popular for matching two images, e.g. in computer
vision with two cameras. Since actual sizes of structures in a fingerprint are known
due to known image resolutions and physiological limitations of fingerprints, the
scale-invariance of the SIFT features might be an unnecessary restriction of the
feature description. For instance, a twice as large copy of a fingerprint sample
would match the original fingerprint perfectly, while two samples of such scal-
ing difference could never be originated from the same fingerprint. Fingerprint
samples of low quality usually differ strongly. Such variations make SIFT even
less applicable. He et al. proposed a combination of Speeded Up Robust Features
(SURF)[19] and DAISY[285] features to describe the textures [108]. SURF fea-
tures are similar to SIFT features, while replacement of internal filters leads to a
speed-up compared to SIFT features. The same restrictions as for SIFT features
apply for SURF features as well. The speed up is mainly achieved during the fea-
ture index generation, in which timing is of little relevance. Zheng et al. used only
SURF features, but combined it with clustering [332]. Nanni et al. proposed to
use a selection of local descriptors for FI [218]. Some other approaches focus on
the description of a small region of the fingerprint sample. Like in the approaches
for fingerprints, the reduction to sub region is always discards information. Chal-
lenges from comparisons of samples with small overlap do also apply here. Those
approaches usually detect the fingerprint singularities first and process only the
area around those singularities. Liu et al. were the first to describe this central
region [191]. Montoya et al. proposed to use a wavelet decomposition to describe
this region [326]. Representation with wavelets usually require a precise align-
ment of the input samples. Alignment is a research field on its own, which brings
its own challenges. Wavelet approaches usually are also disturbed strongly by
elastic transformations. Komal et al. described the central region with a variation
of the Radon transformation [160]. The Radon transformation can be understood
as a representation for lines. This makes it an appropriate means for the descrip-
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Figure 14.4: Scale-invariant features can describe textures (coloured circles). These
descriptors can be matched (green lines) and may also be used for FI.

tion of fingerprint ridges. However, the flow of fingerprint ridges is disturbed by
fingerprint minutiae. Yang et al. proposed the usage of invariant moments in the
central region [318]. These moments are invariant to position, scale, and rotation.
This makes a precise alignment irrelevant.

Three other texture-based approaches have been proposed. Feng et al. proposed to
calculate so-called Ridge invariants from the ridge structures [76]. This approach
is related to the minutia-based approaches as it describes ridges by minutiae on
them. However, the focus here is on the ridges. Indices are generated for lines,
which cross over fingerprint ridges. The ridges are identified by minutiae on them.
This approach imitates the method a human examiner might use, when he counts
ridges between minutiae. The approach therefore also might deal well with elastic
distortions of the fingerprint, since those disturbances cannot change the connec-
tions of ridges between minutiae. Jakubowski et al. proposed to use the count
of crossings of the ridge structure over several random lines [137]. This method
does not only describe the texture, but also the orientations found in the fingerprint
samples. This approach would require an alignment. Otherwise, the approach
would fail, since the random lines would cross different ridges. This approach
is not tolerant to elastic deformations. Jazzar et al. proposed to use Zernike mo-
ments for the description of an entire fingerprint sample [139]. Zernike moments
are invariant to rotation by definition and can be modified to be also invariant to
scaling and translation. Those moments are derived from a set of complex polyno-
mials, which form an orthogonal base. This results in a compact description of the
fingerprint ridge structure.
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14.4.3 Approaches using Scores

All approaches in this domain of features make use of the conventional and thor-
ough biometric comparison. Those approaches use the biometric comparison scores
as a biometric feature on its own. The key to still achieve an improvement in
throughput is to compare only a small fraction of the entire search database. The
most charming aspect in such approaches is the fact, that one incorporates the
same technology as in the thorough comparison. What cannot be compared cor-
rectly during FI, will most likely not be compared correctly during the thorough
comparison anyway. As the thorough comparison usually makes use of fingerprint
minutiae, these approaches can also be linked to the minutia-based approaches
in Section 14.4.1. They make use and benefit indirectly of these descriptive fea-
tures. Improvements over time made in the thorough comparisons, may also result
in improvements in such FI approaches. On the other hand, all approaches will
suffer from the same challenges, which are also present during the thorough com-
parison. Most challenging here are partial fingerprints, which potentially result in
mated comparisons with small overlap. Table 14.4 gives an overview over the five
approaches in this feature domain.

Gyaourova et al. proposed a total of three approaches, which are all quite similar
in their basic idea to use a Bag-of approach [100][101][102]. The idea here is to
identify a set of samples in the search database, which represents some prototypes
of fingerprints. All queries are compared only against this set (bag) of prototypical
fingerprints. Each score is a single feature in the index (see Figure 14.5). It is
therefore a representation by means of the similarity to prototypes. It is assumed
that all impressions of the same fingerprint will result in similar biometric scores
when compared against the prototypes. This approach is slightly related to the so-
called Doddington Zoo [67], because it assumes that each fingerprint will generate
its individual biometric score distribution. The fix number of thorough compari-
sons allows assumptions on the processing time. Partial fingerprints may result in
small biometric scores for all pattern types. Depending on the policy for candidate
list construction, partial fingerprints will then result in very long candidate lists
or the correct identity might not be in the list at all. Cappelli et al. proposed to
perform only a few comparisons [51]. The idea of Doddington’s zoo also applies
in this case. For instance, there are some fingerprints matching well with many
others. These a called chameleons. For so-called ghost fingerprints mated and
non-mated comparisons both result in low biometric scores. Murakami et al. pro-
posed a slightly related approach [214]. They used a few scores to imitate a search
against an entire database. This approach strongly depends on the predictive power
of those few scores.
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Figure 14.5: Biometric scores can be used for Fingerprint Indexing. Comparison against
a set of prototypes will result is similar biometric scores for similar fingerprints.

Table 14.4: Approaches making use of biometric comparison scores.

Authors Ref. Approach Level Repr Mod Multi Index O(·) � Cit.

Gyaouorova et al. [100] Bag of templates global * sample X 44
Gyaouorova et al. [101] Bag of templates global * sample 25
Gyaouorova et al. [102] Bag of templates global * X sample X 50
Murakami et al. [214] Imitation of query global * sample X 12
Cappelli et al. [51] Evaluation on few scores global * sample X 16

14.4.4 Approaches using Orientation Fields

There are also approaches, which make use of the orientation field of the finger-
print samples. The orientation field is a representation for the local orientations
of the ridge structure. It is a so-called 1st level feature. The orientation field is
such a distinctive feature that it can be used especially for exclusion during finger-
print comparison (see Figure 14.6). However, estimation of the orientation field is
no trivial task. The estimation may fail especially in regions of bad quality. Es-
timation of the orientation field is a research field on its own [203]. Moreover,
orientation fields are also the most frequent used feature in FC approaches [80].
Approaches using the orientation field therefore have similar advantages and draw-
back as approaches in FC. The main advantage over FC is the fact that there is
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(a) Arch (b) Right Loop

(c) Right Loop (d) Whorl

Figure 14.6: An orientation field describes the local orientations (roughly indicated as
green lines) of the ridge structure. The orientation fields are dominated by the positional
relation and presence of singularities (yellow and red crosses). Orientation fields have
already been used for Fingerprint Classification, which classified each fingerprint into a
distinctive pattern type class. Each pattern type represents a large variation of orienta-
tion fields (compare Figures 14.6(b) and 14.6(c)). Orientation fields can also be used for
Fingerprint Indexing.
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no hard classification in pattern types. FI allows continuous index vectors. This
mainly allows to deal with two challenges in FC. First, even though the classi-
fication sorts into single classes, the classification is unambitious in some cases.
There is small inter-class variance for some classes of pattern types. The transition
from one pattern type to another is continuous in those cases. Second, two finger-
prints from the same pattern type may still have really different orientation fields.
Actually, there is quite large intra-class variance for some fingerprint classes. For
instance, singularities may be quite close to each other in one fingerprint and far
away in the other. Descriptive power is not used, if one uses only hard classes
like in FC. Another advantage of using orientation fields for FI is the fact that ori-
entations fields are smooth and can be modelled mathematically. This allows to
make estimations of what the orientation field looks like in regions close to the
area of the actual fingerprint sample. This in turn allows to deal with biometric
comparisons with small overlap. However, this hypothetical advantage is not used
by any approach. Another charming aspect of using orientation fields is the fact,
that the orientation field is visually perceivable and understandable for humans.
One can easily see and tell, why FI using orientation fields works in some cases
and fails in the other cases. Many approaches are neither invariant to rotation nor
to translation. Therefore, those approaches rely on some kind of alignment before
processing. All approaches use a global representation and generate a single index
for each sample.

Table 14.5: Approaches making use of the orientation field.

Authors Ref. Approach Level Repr Mod Multi Index O(·) � Cit.

Jain et al. [135] FingerCode global FP sample 1393
Kavati et al. [147] 8 Gabor filters global FP sample X 3
Leung et al. [176] Variation of FingerCode global FP sample X X 31

Li et al. [180] Symmetric filters global FP sample 40
Liu et al. [192] Local symmetries for alignment global FP sample 14
Liu et al. [188] Complex filters global FP sample 34

Lumini et al. [196] PCA on orientation field global FP sample 116
Maio et al. [199] Variation of FingerCode global FP sample X 25
Ross et al. [246] 8 Gabor filters of tessellation global FP sample X 465
Turky et al. [289] SOMs for representation of OFs global FP sample 8

Xu et al. [313] Sparse representation global FP sample 3
Yang et al. [316] Invariant moments global FP sample X 8

Jain et al. proposed so-called FingerCode [135]. The idea is to use eight Gabor
filters for filtering the fingerprint samples. The eight resulting filter responses is
sampled at a tessellation grid over the fingerprint sample. The tessellation grid
is circular with its center on a detected reference point. By doing so, all local
orientations and their signal quality are encoded into a fixed length vector. This
fact makes the features in this approach very descriptive as it uses the advant-
ages of the high intra-class variance. FingerCodes are an appropriate example
for visually perceivable and understandable representation, as differences between
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different FingerCodes can easily be identified even by visual inspection. Ross et
al. proposed usage of a square tessellation [246]. In addition, no reference point
is required. The fingerprint sample is instead aligned using information on the fin-
gerprint minutiae. This results in a more or less simple description of orientation
field for the entire fingerprint sample. Yang et. al. used Discrete Wavelet Trans-
form instead of Gabors filters for [316]. Invariant moments around core regions
are used to generate features. Maio et al., Leung et al., and Kavati et al. proposed
further variations of the MinutiaCode approach [199][176][147].

Liu et al. proposed to use local symmetries for the alignment of the fingerprint
sample [191]. The aligned orientation field is then used to generate the index vec-
tor. Symmetries again are perceivable by humans, which facilitates understanding
of this approach. Li et al. used similar symmetric filters for description of char-
acteristics in the orientation field [180]. Liu et al. proposed to use complex filters
on the orientation field to find singularities [188]. Those singularities are used as
features. Of course, challenges will arise, if no singularities are present, e.g. in
small fingerprints.

Some approaches describe the orientation field more directly. Lumini et al. pro-
posed to use a Principal Component Analysis (PCA) on the orientation field [196].
With respect to orientation fields, this approach was the first to evolve from FC
to continuous FI. This is a straightforward approach to generate a compact repres-
entation from an orientation field. Xu et al. proposed to use the method of Total
Variation to reconstruct the assumed orientation field of a fingerprint sample [313].
Total variation is a popular method for modelling smooth vector fields like a fin-
gerprint orientation field. It is quite tolerant to disturbances of the vector field. As
orientation field estimation is no trivial task, this approach might be quite robust
against quality variations between fingerprint samples. This approach therefore
makes use of the fact, that fingerprint orientation fields are smooth. Finally a
sparse representation is generated from the reconstructed orientation field. Turky
et al. proposed to use Self-organizing maps (SOM) for description of the orient-
ation field [289]. SOMs can finally also be used to for generation of the index
vector. SOMs have the capabilities to deal with disturbed inputs. This approach
may therefore be appropriate for fingerprint samples of low quality.

14.4.5 Hybrid Approaches

A few approaches have been proposed, which use features from more than one
domain. These approaches in general do not propose new features for generation
of index vectors. They only combine features proposed by others. Due to the
combination of features and the fact that more information is processed, these
approaches may achieve higher accuracies. Another advantage is of course, that if



194 Survey on Features for Fingerprint Indexing

a single sub component like the orientation field estimation is improved, the entire
FI may be improved. On the other hand, such hybrid approaches may be prone
to failures in the single sub component. Such approaches may unintentionally
combine not only the advantages but also the drawbacks of their sub components.
In some cases each feature is indexed for its own and in some cases the features
are used jointly. All found approaches use a global representation of the features.

Even though these approaches do not provide any new features, they are still worth
listing here. Lee et al., Jiang et al., Liu et al., and Cappelli proposed to use the
orientation field and ridge frequencies (describing distances between neighbouring
ridges) as features for FI [175][142][189][44]. Later, Capppelli et al. extended
this approach with the use of MCC [45]. Paulino et al. extended this approach
even further [233]. They proposed to use a combination of minutia triplet, MCC,
the orientation field, fingerprint singularities, and ridge frequencies. Bazen et al.
combined orientation fields and minutia [20]. De Boer et al. used orientation fields,
FingerCode, and triplets for FI [63]. Pandey et al. proposed to use minutia triplet,
MCC, and the orientation field for FI [230]. All features are compared individually.
In the end a fusion of all three results is performed. Han et al. proposed a hashing
directly on the fingerprint minutiae and enriched the minutiae information with
features extracted from the fingerprint image [103].

Table 14.6: Approaches making use of more than one characteristic.

Authors Ref. Approach Level Repr Mod Multi Index O(·) � Cit.

Bazen et al. [20] OF and minutiae global FP sample X 2
de Boer et al. [63] OF, FingerCode, and triplets global FP sample 104

Cappelli [44] OF and ridge frequencies global FP sample X X 46
Cappelli et al. [45] MCC, OF, and ridge frequencies global FP sample X 23

Han et al. [103] Minutiae and image global FP sample 17
Jiang et al. [142] OF and ridge frequencies global FP sample X 80
Lee et al. [175] OF and ridge frequencies global FP sample 22
Liu et al. [189] OF and ridge frequencies global FP sample 68

Pandey et al. [230] Triplets, MCC, and OF global FP feature 0

Paulino et al. [233] Triplets, MCC, OF, singularities, global FP feature X 22and ridge frequencies

14.5 Usage of Data and Metrics
The International Organization for Standardization (ISO) is currently working on
the topic of indexing techniques. But by now, there is no standard to evaluate
biometric indexing. Thus, there is also no standard test set. The surveyed works
evaluated their proposed approaches on a multitude of different datasets. Table
14.8 gives an overview over the evaluations.

There are datasets publicly available for evaluation. The benchmark series Finger-
print Verification Competition (FVC) has four editions, which supply the following
volumes of datasets: 2000 [200], 2002 [201], 2004 [202], and 2006 [47]. The Na-
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tional Institute of Standards and Technology (NIST) provides a so-called special
database NIST SD4 of rolled fingerprints [307]. There is a variant of this data-
set available, which reassembles a natural distribution of pattern types: NIST SD4
nat. NIST also provides another dataset of rolled fingerprint: NIST SD14. The
University of West Virginia provides the multi-modal data set WVU. This set also
contains fingerprint samples. All datasets have individual characteristics. Table
14.7 provides information on the characteristics of the datasets. Table 14.8 shows

Table 14.7: Datasets used for evaluation.

Dataset Samples Dimensions Resolution Data Origin Ref
FVC2000 DB1 800 300×300 500dpi Optical

[200]FVC2000 DB2 800 364×254 500dpi Capacitive
FVC2000 DB3 800 478×448 500dpi Optical
FVC2000 DB4 800 320×240 ∼500dpi Synthetic
FVC2002 DB1 800 388×374 500dpi Optical

[201]FVC2002 DB2 800 560×296 569dpi Optical
FVC2002 DB3 800 300×300 500dpi Capacitive
FVC2002 DB4 800 384×288 ∼500dpi Synthetic
FVC2004 DB1 800 640×480 500dpi Optical

[202]FVC2004 DB2 800 364×328 500dpi Optical
FVC2004 DB3 800 480×300 512dpi Thermal Sweeping
FVC2004 DB4 800 384×288 ∼500dpi Synthetic
FVC2006 DB1 1,680 96×96 250dpi Capacitive

[47]FVC2006 DB2 1,680 560×400 569dpi Optical
FVC2006 DB3 1,680 500×400 500dpi Thermal Sweeping
FVC2006 DB4 1,680 384×288 ∼500dpi Synthetic

NIST DB4 4,000 512×512 500dpi Ink-based [307]
NIST DB4 natural 2,408 512×512 500dpi Ink-based

NIST SD14 54,000 768×832 500dpi Ink-based [306]
WVU 7,219 292×248 500dpi Optical [60]

which approach was evaluated on which dataset. Some approaches were evaluated
on unknown, sequestered or only rarely used datasets. Those datasets are sum-
marized to the category Others. Two datasets were used for testing most often:
FVC2002 DB1 and the NIST SD4 or rather its natural subset. Because of their fre-
quent usage, both can be seen as some kind of pseudo standard testsets. In general,
no reviewed work gave reasons for selection of the evaluated datasets.

When dealing with pattern recognition, generalization is an important aspect. Gen-
eralization indicates, how well a task can be solved by an approach on unknown
data. A method’s degree of ability to generalize can be assessed typically in two
ways. First, a strict splitting of the data into a part used for training and a part
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Table 14.8: Checkmarks Xindicate reported results for a dataset. Brackets indicate that
only a subset was tested. Some approaches explicitly state a training set or claim separation
of training and test data.
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[9] X X (X)
[10] X X
[21] X
[23] X X X X X X X X
[25] X X
[27] X
[52] X X X X X X X X
[56] X
[79] X X X X X X X (X)
[85] X
[106] X X X X
[114] X X
[117] X X X X X X
[132] X X X X X X X X X
[131] X X X X
[138] X X X
[150] X
[156] X X X X X (X)
[155] X X X X X X
[161] X
[166] X
[169] X
[170] X
[178] X X X X X X X
[78] X X X X
[182] X X
[183] X X
[185] X X
[204] X X X
[211] X X X X
[212] X X
[213] X
[216] X
[241] X
[245] X X X X X X X X
[296] X
[297] X X X X
[302] X
[303] X X X X
[312] X
[315] X
[333] X X X
[334] X X

for testing. Second, testing on multiple different test sets may reveal the ability
to generalize with respect to a larger variety of data. Achieving good results on a
single dataset may just be a fluke.

Most of the approaches have tunable parameters. But in almost no case a training
set to tune the parameters was declared. It is therefore unclear, whether a strict
separation of the data was applied. This in turn allows doubts in the generalization
ability of most of the approaches. Many approaches have been tested only on one
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Table 14.9: Checkmarks Xindicate reported results for a dataset. Brackets indicate that
only a subset has been tested. Some approaches explicitly state a training set or claim
splitting training and test data.
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[76] X
[108] X X
[137] X
[139] X
[160] X
[191] X
[318] X X X X X X X X X X X X X X
[326] X X X X X X X X
[218] X X X X
[268] X X
[332] X X X
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[100] (X)
[101] X (X)
[102] X
[214] X
[51] X X X X X

O
F

[135] X
[147] X
[176] X X X (X)
[180] X
[192] X
[188] X X
[196] X
[199] (X) (X) (X) (X)
[246] X
[289] X X X
[313] X X
[316] X X E
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[20] X X
[63] X
[44] X X X X X X X X
[45] X X X X X X
[103]
[142] X X X
[175] X
[189] X
[230] X
[233] X X

or two data sets. A larger variety of data would have been desirable. Unfortu-
nately, only very few approaches have been tested thoroughly on a larger number
of datasets.

FI is meant to be applied to large datasets. Unfortunately, no really large datasets
are publicly available. Some approaches have been tested on large but sequestered
datasets. This does not allow reproducibility of the claimed results.

Besides the aspect of datasets, metrics are also important when assessing an ap-
proach. There are several policies on how to generate the candidate list (see section
14.2). Each policy has its own reasonable metrics. In general, no approach was
evaluated with respect to all policies. Usually, only a single policy was evaluated.
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This results in a multitude of used metrics, which are not comparable directly.
In addition, even the naming of the metrics is not following a standard. This re-
sults in the confusing usage of a multitude of synonyms for metrics. Two metrics
and their synonyms are used most frequent: Penetration rate and Error rate. The
Penetration rate is the ratio between the length of the candidate list and the entire
database. The Error rate is the ratio of candidate lists, which do not contain the
genuine candidate. Both rates usually depend on ranks in an ordered candidate list.

It is worth mentioning, that there is an independent benchmark for FI: FVC-
ongoing [68]. This benchmark evaluates on a large, sequestered dataset. In addi-
tion, it would provide common metrics for evaluation. Thus, FVC-ongoing would
allow reasonable comparison of approaches. Unfortunately, there is only one ap-
proach with published results.

14.6 Conclusion
FI can be a key processing step when dealing with large fingerprint databases.
Various approaches for FI were proposed in the past. This work surveyed the
approaches, which were found in the four relevant archives. The approaches can
be grouped into five categories with respect to the features which are processed.
Most approaches use fingerprint minutiae as input features. A few approaches
work on ridges/textures, orientation fields, or biometric scores. There are also
some hybrid approaches.

It is almost impossible to identify a state-of-the-art in FI for several reasons: First,
there is no standard protocol or common metric. Usually Error Rate is evaluated
against Penetration Rate. Second, there is no standard dataset for evaluation. Even
though, the datasets FVC2002 DB1 and the NIST SD4 are the most commonly
used, only about half the approaches evaluated on these datasets. Some approaches
even evaluated on sequestered data. Claimed results are therefore not reproducible
at all. Only very few approaches were evaluated on large datasets even though
this would be the use case for FI. Third, there is a lack of independent external
evaluation, even though the benchmark FVC-ongoing would be available for this
very task.

The level of description of the proposed approaches is quite good in most of the
reviewed works. This allows a fair chance of reimplementation of the approaches.

Unfortunately, several deficiency in the quality of the body of research have been
observed. In almost all approaches the methods have tunable parameter. But only
in very few cases, the dataset used for optimization of those parameters is declared.
This lack of declaration makes it impossible for those approaches to claim separa-
tion of training and test data. Having no separation between training and test data
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allows no conclusion on generalization of the approaches. But generalization is an
important aspect in pattern recognition.

The aspect of computational complexity is a central aspect of FI. Even approaches
allowing lowest penetration rates are worthless, if computations just take too much
time. A very large fraction of found publications simply neglects this aspect. After
all, about half of the approaches report some kind of timing of their approaches -
even though this is only a weak proxy for the computational complexity.

Bit sizes of index vectors are especially of interest when databases are large, which
is essentially the use case for application of FI. Almost no approach explicitly
reports this aspect. However, thanks to quite good descriptions of the approaches,
bit sizes are derivable.
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Chapter 15

Unsupervised Learning of
Fingerprint Rotations

Summary Alignment of fingerprint samples can be a useful prepro-
cessing steps in fingerprint recognition. Designing approaches for
alignment usually requires knowledge on ground truth alignments. An
unsupervised training strategy for CNNs is presented, which does not
depend on unreliable ground truth. A proof of concept is demonstrated
on several datasets.
This publication is joint work with Jan Marek May and Christoph
Busch. It was presented at the BIOSIG in Darmstadt (Germany) in
2018.

[264] P. Schuch, J. M. May, and C. Busch. Unsupervised learn-
ing of fingerprint rotations. In 2018 International Conference of
the Biometrics Special Interest Group (BIOSIG), pages 1–6, Sept
2018. doi: 10.23919/BIOSIG.2018.8553096
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Abstract The alignment of fingerprint samples is a preprocessing
step in fingerprint recognition. It allows an improved biometric feature
extraction and a more accurate biometric comparison. We propose to
use Convolutional Neural Networks for estimation of the rotational
part. The main contribution is an unsupervised training strategy sim-
ilar to Siamese Networks for estimation of rotations. The approach
does not need any labelled data for training. It is trained to estimate
orientation differences for pairs of samples. Our approach achieves
an alignment accuracy with a mean absolute deviation 2.1◦ on data
similar to the training data, which supports the alignment task. For
other datasets accuracies down to 6.2◦ mean absolute deviation are
achieved.

15.1 Introduction
Despite the fact that fingerprint recognition is a mature and widely deployed tech-
nology, it still can be improved or extended to uprising demands. Some aspects in
fingerprint recognition can benefit from aligning fingerprint samples to a common
orientation and positioning. Both concerns can be tackled separately [203]. This
work focusses on the orientation part of the alignment. There are two categor-
ies of alignments: alignments common for all fingerprints and those shared for all
samples of the same finger. The former is the more general approach. The latter al-
lows a higher degree of freedom in the alignment, since each fingerprint may have
its individual alignment. Such an alignment can be beneficial in many cases. Most
important, biometric comparison algorithms may benefit and especially speed up
since they do not have to deal with large rotations between compared samples.

A trivial orientation alignment is the upright position in the direction of the finger-
tip. But finding this trivial orientation is actually far from being trivial. Usually,
fingerprint alignment works on focal points [243]. Detection of such points is chal-
lenging, if the fingerprint quality is low or there is only a partial print without any
focal points in it. Another serious challenge in fingerprint alignment is the fact
there is no ground truth for the alignment, i.e. you never know for sure what the
correct alignment is. No assumptions on initial rotations of fingerprint samples can
be made. Any manual labelling is prone to inaccuracies and lacks reproducibility.

Deep learning has provided quite impressive solutions in many domains of digital
image processing and pattern recognition in the last years. We propose to use
Convolutional Neural Networks (CNN) for the task of fingerprint alignment. Our
main contribution is a training strategy. Similar as in Siamese Networks the CNN
learns a rotational distance between two arbitrarily rotated instances of a single
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fingerprint sample. As the approach is not dependent on any ground truth data, the
training can be done unsupervised. Large amounts of unlabelled data in turn allow
to train the CNN. The training finally yields an orientation assignment, which is
individual to each finger.

The rest of this paper is organized as follows: Section 15.2 provides an overview
on related work. Our approach will be explained in Section 15.3. Section 15.4
explains the experiments, which were carried out to test the proposed approach.
Section 15.5 concludes the findings. An outlook on future work can be found in
Section 15.6.

15.2 Related work
Several approaches for the task of fingerprint pose estimation have been proposed
in the past. Sood and Kaur provide an overview on alignment methods in fuzzy
vault [271].

Markert et al. proposed to use the almost parallel ridges above creases for align-
ment, as those ridges usually all have similar directions in every fingerprint [205].

Most of the approaches make use of the orientation field of a fingerprint. The
orientation field is a representation for the local orientations of the ridges in a
fingerprint. If no original fingerprint sample is available, the orientation field can
also be estimated for extracted fingerprint minutiae [162].

Some approaches work directly on the orientation fields. Yang et al. proposed to
learn dictionaries of orientation field patches [319]. They used the orientations
fields to perform a pose estimation for the fingerprint. Hotz proposed to extract an
intrinsic coordinate system based on a longitudinal axis [111]. The longitudinal
axis can be found by searching for symmetries in the orientation field. This axis
could also be used for a rotational alignment.

Other approaches extract distinctive points from the orientation field. So-called
singularities (cores and deltas) can be used for an alignment [135]. For finger-
prints lacking singularities, focal points can be defined as those points with the
highest curvature [243]. Nagar et al. and Zhang et al. also used points of max-
imum curvature as reference points for an alignment [215][330]. Li et al. proposed
to use isosceles triangles for alignment [177]. Isosceles triangles are placed on the
ridges. The approach makes use of local symmetries near focal points. Liu et al.
proposed a multi-scale approach for detection of the focal points from orientation
fields [187]. Tams proposed to extract reference points from the fingerprint ori-
entation field [281]. Jain and Minut used kernel curves to describe the flow of the
fingerprint ridges [134]. Those kernel curves describe the behaviour of the ridges
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Figure 15.1: During training a fingerprint sample is rotated by two random angles θ1 and
θ2. The CNN estimates rotations θ̃1 and θ̃2, so that differences (θ1-θ2) and (θ̃1-θ̃2) are as
similar as possible. During testing estimation θ̃ can be used for rotational alignment.

around the focal points. Best fitting kernel curves can be used for an alignment to
typical patterns. Li et al. proposed to estimate an alignment by topological struc-
tures around cores [181]. Detection of singularities and focal points depends on
an accurate extraction of the orientation field. Such a detection may fail for partial
fingerprint samples.

Merkle et al. proposed to use the shape of the fingerprint sample [207]. The outline
of the fingerprint sample usually can be approximated by an ellipse. This ellipse
is aligned to its principal axis. Yang et al. proposed to align small neighbourhoods
of minutiae [314].

There is also an approach, which uses techniques from the domain of Deep Learn-
ing (DL). Ouyang et al. proposed to use a variation of a Region-based Convo-
lutional Network (R-CNN), which have originally been proposed to the task of
object detection [229]. The authors compared the estimated poses to manually
labelled ground truth poses. They have also found positive effects of alignment
when applying Fingerprint Indexing.
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There are further approaches in Deep Learning for the task of general alignment,
e.g. Spatial Transformer Networks proposed by Jaderberg et al. [130]. Those can
learn transformations of sampling grids for given tasks. The original image is
then sampled at the transformed sampling grid. Any transformation, which helps
solving the given task, can be learned in this approach. Our approach does not
need a given task for training.

15.3 Our Approach

15.3.1 CNNs for Estimations of Rotations

We will exploit a training strategy called Siamese Network [34] for the task of
learning fingerprint alignment. Each training input consists of a pair of randomly
rotated instances of a single fingerprint sample (see Figure 15.1). The CNN es-
timates a rotation for each instance. The CNN shall learn to assign estimations in
such a way, that the difference between the two estimated values is close to the
difference of the two actual rotations. The main advantage of this approach is, that
no expert based ground truth rotational information is necessary at all. This allows
to use any unlabelled fingerprint sample for training. For testing the trained CNN
estimates the rotation for a given input fingerprint sample (see Figure 15.1). This
estimation can be used to align the input fingerprint sample by a corresponding
rotation.

15.3.2 Architecture

There was no extensive optimization of any hyperparameters. The entire model as-
sembles seven different types of layers: Convolutional layers (ConvLayer), Para-
metric Rectified Linear Units (PReLu), Batch Normalization layers (BatchNorm),
Maximum Pooling layers (MaxPooling), Flatten layers (Flatten), Dense layers
(Dense), and Softmax layers (Softmax). There was no striding in the ConvLay-
ers. Table 15.1 gives an overview over the entire architecture and the outputs of
each layer.1 The CNN has 179, 424 trainable parameters. The input is a grey scale
image. A region of interest of size 192 × 192 pixels is cropped from the image’s
center.2 This size allowed reasonable performance for images of about 500 dpi
resolution. It also allows application to small images, e.g. 300 × 300 images in
FVC2000DB1 [200].

Rotation estimation is obviously a regression task. However, it was shown that
classification can be superior over regression even on regressions task, e.g. if one

1The model was created and trained in the DL framework Tensorflow [1].
2Cropping the region of interest to the center of the fingerprint sample’s foreground might be

beneficial. However, this approach is independent from such a foreground detection.
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# Layer Output
0 Input (192×192×1) (192×192×1)
1 ConvLayer (32×5×5×1) (192×192×32)
2 BatchNorm (192×192×32)
3 PReLU (192×192×32)
4 MaxPooling (4×4) (48×48×32)
5 ConvLayer (32×5×5×32) (48×48×32)
6 BatchNorm (48×48×32)
7 PReLU (48×48×32)
8 MaxPooling (4×4) (12×12×32)
9 ConvLayer (32×5×5×32) (12×12×32)

10 BatchNorm (12×12×32)
11 PReLU (12×12×32)
12 MaxPooling (4×4) (3×3×32)
13 Flatten (288)
14 Dense (256×288) (256)
15 PReLU (256)
16 Dense (256×256) (256)
17 PReLU (256)
18 Dense (181×256) (181)
19 Softmax (181)

Table 15.1: CNN’s architecture. The final output can be interpreted as probabilities for
different alignment angles.

uses Deep Expectation, which averages estimations over classes to form a better
estimation [247]. The method of Deep Expectation has also already been success-
fully applied to the domain of fingerprint recognition: It was used for fingerprint
orientation field estimation [260]. Each class in the classification approach rep-
resents a distinctive angular offset. The outputs of the Softmax layer in this CNN
can be interpreted as probabilities for the angular offsets. Weighted averaging ac-
cording to the probabilities yields the final estimation. We tried regression and
classification for the task of estimating a rotational alignment. Our experiments
yielded classification including Deep Expectation to be more effective than regres-
sion for this task.

15.3.3 Training

Training of the CNN can be roughly summarized as follows: The CNN’s task is to
learn the rotational difference between two randomly rotated instances of the same
fingerprint (see Figure 15.1).

In detail, during training a fingerprint sample is picked from the training data. Two
random values θ1 and θ2 for rotations are sampled from a uniform distribution
U[−90◦,90◦]. The fingerprint sample is rotated according to θ1 and θ2. Those two
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rotated instances are then fed into the CNN, which calculates two estimations θ̃1

and θ̃2 respectively. We cannot make any assumptions about the initial rotation of
the original fingerprint sample. However, θ1 and θ2 must be assumed to be biased
by this initial rotation. Therefore, minimization of the differences |θ1 − θ̃1| and
|θ2− θ̃2| likewise does not seem reasonable. To circumvent the lack of knowledge
on the initial rotation, we formulate the loss function using the difference between
the random rotations and the difference between the estimations:

loss
(
θ1, θ2, θ̃1, θ̃2

)
=
∣∣∣(θ1 − θ2)− (θ̃1 − θ̃2)

∣∣∣ (15.1)

By doing so, the CNN learns the rotational difference between two rotations. Min-
imization |θ1 − θ̃1| and |θ2 − θ̃2| would have a single optimal solution {(θ∗1, θ∗2) :
θ∗1 = θ1, θ

∗
2 = θ2}. The proposed loss function allows an infinite set of optimal

solutions {(θ∗1, θ∗2) : (θ∗1 − θ1 = θ∗2 − θ2)}. A training sample therefore consists
of two random rotation angles and the corresponding rotated instances of the same
fingerprint sample. By the way, using two different samples would fail, since their
initial rotation is unknown.

Eight pairs of samples were processed as a single batch. We used optimizer
AdaGrad [70]. Other optimizers like Stochastic Gradient Descent or Adam did
not perform significantly different. Learning rate was set to 10−5.

Training was stopped, when the mean absolute deviations of a validation set did
not improve any further. This was done to prevent over-fitting to the training data.
Training took only a few hours on a GPU3. Estimation of the rotation for a single
fingerprint sample takes about 4ms on GPU.

15.3.4 Data Augmentation

For CNNs holds in general, that the more appropriate training data is available, the
higher is the performance. A common method to increase the amount of training
data is data augmentation. Rotating the input data according to the random angular
distortions already increases the amount of available training data. In addition, we
did some additional augmentation by slightly shifting the input image horizontally
and vertically. This is a way to prevent over-fitting, i.e. the CNN works signific-
antly better on the training data than on any other data, which has not been seen
during training.

15.4 Experiments
We tested our approach by training the CNN on fingerprint samples from dataset
FVC2002 DB1[201]. The dataset consists of 100 fingers with eight impressions

3NVIDIA GTX 780
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(a) (b)

Figure 15.2: For testing, the CNN estimates rotations for rotated instances of a given
fingerprint sample. Normalization allows to ignore the unknown initial offset of a single
sample (15.2(a)). A linear regression with unit slope represents an ideal estimation. It
allows inspection of the actual deviations (15.2(b)).

each. We split the set of 800 fingerprint samples into three parts: the first 400
samples for training, the next 200 samples for validation, and the last 200 samples
for testing. By doing so, we took care, that no finger is shared between the sets.

No assumptions on distributions of rotations in the real world can be made. We
therefore set up a test scenario, in which each fingerprint sample was rotated by
angels from [−45◦, 45◦]. Quantisation step for the angles was 1◦. The trained
CNN was then applied to the rotated fingerprints to estimate the rotational offsets.
Only differences between rotations are relevant. Plain estimations cannot be used
for evaluation. A normalization is necessary. Let µθ be the mean of the estimations
for all rotated samples of the same fingerprint. We can then calculate a normalized
estimation θ̃N (α) for estimation θ̃(α) for a sample rotated by α by subtracting the
mean estimation µθ:

θ̃N (α) = θ̃(α)− µθ (15.2)

The normalized estimation θ̃N (α) is independent from any initial rotations in the
original fingerprint sample. Thus, the normalization yields evaluations in the first
place. Then we calculated a linear regression with a unit slope for the normalized
estimations for all rotated instances of the fingerprint (see Figure 15.2). The linear
regression represents an ideal estimation. Therefore, the linear regression can be
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(a) (b) (c)

Figure 15.3: Visualization of deviations between input orientations and normalized es-
timation for the entire datasets(see Figure 15.2 for deviations of a single sample).

used to evaluate the estimation independent from the unknown initial rotation of
the original fingerprint sample.

Linear regressions are calculated for each fingerprint sample in a dataset. The
box plot in Figure 15.3(a) visualizes the deviations between estimations and ideal
estimations for all samples in the training set. The deviation of the mean for the
entire dataset varies about 1◦ around the ideal estimation. The relative deviation
is therefore small compared to the range of the input rotations. The normalized
deviation θ̃N (inpα) of a given input sample inp rotated by angle α can be used to
calculate the mean absolute deviation δ over M samplings:

δ(inp) =
1

M

45◦∑
α=−45◦

∣∣∣α− θ̃N (inpα)
∣∣∣ (15.3)

For a given dataset with N input samples inp and a given range of input rotations
we can calculate the mean deviation δ̄ per dataset:

δ̄ =
1

N

N∑
i=1

δ(inpi) (15.4)

This value δ̄ can be used to estimate the expected deviation on a dataset, i.e. how
well the estimation works on a dataset. Using the proposed evaluation method,
we evaluated the trained CNN on the training part, the validation part, and the test
part of dataset FVC2002DB1. We extended our evaluations also to other datasets
to test the CNN for its generalisation capabilities. We therefore chose beyond
FVC2002DB1 five additional datasets from the Fingerprint Verification Contest
(FVC) benchmark series, which also consists of fingerprint samples from optical
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Trained on Trained on
Data FVC2002 DB1 FVC2000 DB3

Mean Abs Dev δ̄ Mean Abs Dev δ̄
FVC2002 DB1 Training 1.3◦ -

FVC2002 DB1 Validation 1.8◦ -
FVC2002 DB1 Test 2.1◦ 17.2◦

FVC2000 DB1 17.2◦ 35.0◦

FVC2000 DB3 Training - 1.6◦

FVC2000 DB3 Validation - 2.0◦

FVC2000 DB3 Test 20.8◦ 2.6◦

FVC2002 DB2 13.9◦ 40.4◦

FVC2004 DB1 6.2◦ 13.2◦

FVC2004 DB2 13.4◦ 15.4◦

Table 15.2: Results when trained on FVC2002 DB1 and FVC2000 DB3.

fingerprint livescanners with a resolution of approx. 500 dpi: FVC2000 DB1 and
DB3 [200], FVC2002 DB2 [201], and FVC2004 DB1 and DB2[202]. Only the
last 200 fingerprint samples from each dataset were taken for evaluation.

Table 15.2 summarizes the results, when the CNN is trained on the training set of
dataset FVC2002 DB1. Keeping in mind, that the quantisation step for estimation
classes was 1◦, the trained CNN achieves a very small mean absolute deviation of
only one degree on the training data. While the approach achieves a mean absolute
deviation δ̄ of 1.8◦ on the validation data, 2.1◦ are achieved on the test data. Figure
15.4 visualizes eight samples of a single fingerprint. The trained CNN estimated
the rotation in the original samples and the samples were rotated according to the
estimations.

When applied to other datasets the empirical mean absolute deviations δ̄ range
from 6.2◦ for dataset FVC2004 DB1 to 20.8◦ for dataset FVC2000 DB3. Finger-
print samples in these datasets have other characteristics than the samples in the
training data. A distribution shift in the input data is a typical challenge in pat-
tern recognition. Figure 15.5 visualizes the cumulative probabilities for absolute
deviations between the normalized estimations and the ideal rotations.

As the CNN performed worst on FVC2000 DB3, we wondered whether our ap-
proach is applicable to this data at all. If training is successful, the distribution shift
can be tackled by training on the relevant data. We therefore trained another CNN
for estimations on this database. It achieved a mean absolute deviation of 2.6◦ on
the test part of FCV2000DB3 (see Table 15.2). It can therefore also be applied to
this dataset.



15.4. Experiments 211

Figure 15.4: Eight samples of a single fingerprint from the test set were rotated according
to corresponding estimations by the trained CNN.

Ref Approach Dataset Performance

[111] Longitudinal axis NIST SD4 4.2◦ mean difference
[177] Isosceles triangles CASIA 4.1◦ mean difference
[207] Ellipse from outline sequestered 2.3◦ mean difference

[229] R-CNN NIST SD14
95% samples with

difference < 5◦

[319] Localized dictionaries NIST SD27 13.8◦ mean difference

Table 15.3: Results reported in related work.

Comparisons to other approaches is hardly possible, since there are no other un-
supervised approaches for estimation of rotations. Unfortunately, most of the ap-
proaches in the related work treat the aspect of rotational alignment as part of a lar-
ger workflow and do not explicitly report results for the estimation of the rotation.
All reported results from related work can be found in Table 15.3. Comparison is
still difficult, since different metrics and different datasets are used for evaluation.
However, the reported results allow some comparison to our proposed approach.
Hotz et al. achieved a mean difference of 4.2◦ on dataset NIST SD4[307]. Li et al.
tested their approach on 80 samples with pattern type Arch from dataset CASIA.
They reported a mean difference of 4.1◦. Merkle et al. achieved a mean difference
of 2.3◦ on a sequestered dataset. Ouyang et al. reported a deviation smaller than
5◦ for 95% of the tested samples of dataset NIST SD14[308]. Yang et al. achieved
a mean difference of 13.8◦ on the latent fingerprint dataset NIST SD27[82].
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Figure 15.5: Cumulative probabilities of exceeding absolute angle differences when
trained on dataset FVC2002 DB1.

15.5 Conclusion
We presented an approach to estimate a rotational alignment for fingerprint samples.
The fingerprints are not guaranteed to be upright after alignment. CNNs were
trained to estimate an individual rotational offset for each fingerprint. Our main
contribution is the definition of a dedicated loss function, which yields an unsu-
pervised training, independent of any initial rotation of the samples. Application
of this loss function is not limited to fingerprint samples. It can be applied to any
image data.

The proposed approach was tested on several datasets containing plain fingerprint
samples acquired with livescanners. For data similar to the training data a relative
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small mean absolute deviation of 2.1◦ to an ideal alignment can be achieved. The
best mean absolute deviation for other datasets is 6.2◦. Generalization therefore
is an issue. However, if enough appropriate training data is supplied, then the
approach can be applied to new data.

15.6 Future Work
Our approach does only assign an individual rotation to every finger. Extending
this approach to train for an absolute rotation alignment may be even more bene-
ficial. In addition, this approach does also tackle only the orientation part of the
alignment task. Extending this approach with a translational alignment and scaling
would beneficial as well.

Figure 15.6: Similar strategies may allow to learn translational offsets.

A similar unsupervised learning strategy for the translational offsets or the scaling
shall be applicable (see Figures 15.6 and 15.7). An obvious strategy to further
improve the orientation estimation is to apply the CNN to several crops of a single
fingerprint sample and apply a voting strategy among the resulting estimations.
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Figure 15.7: Similar strategies may allow to learn scaling.



Chapter 16

Learning Neighbourhoods for
Fingerprint Indexing

Summary Fingerprint Indexing can reduce workload of a fingerprint
recognition system by generation of candidate lists. Our approach
DIMI allows to learn index vectors from ISO/IEC minutiae. Index
vectors are only 16 float values per sample, which allows fast compar-
ison. DIMI was tested at FVC-ongoing and achieved the best average
candidate list length in the incremental search scenario.
This publication is joint work with Jan Marek May and Christoph
Busch. It was presented at the Signal Information Technology & Inter-
net Based Sytems conference (SITIS) in Las Palmas de Gran Canaria
(Spain) in 2018.

[263] P. Schuch, J. M. May, and C. Busch. Learning neighbour-
hoods for fingerprint indexing. In 2018 14th Signal Image Tech-
nology and Internet-based Systems (SITIS), pages 1–6, Nov 2018
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Abstract Fingerprint Indexing allows filtering databases for samples
most similar to a query fingerprint. Fixed-length feature vectors in-
variant to the count of minutiae allow fast comparison. This is the first
approach, which uses Deep Convolutional Neural Networks to gen-
erate fixed-length index vectors from minutia neighbourhoods. It is
also invariant to any sorting of minutiae with respect to their vicin-
ity. No fingerprint image data is required. Usage of only standardized
ISO/IEC minutia templates allows even to deploy to legacy systems.
Our approach is therefore called Deep ISO Minutiae Indexing (DIMI).
Index vectors can be as short as 16 float values per sample. DIMI was
evaluated at the independent benchmark framework FVC-ongoing. In
the incremental search scenario, DIMI achieves an average penetration
ratio of 0.747% for test FIDX-50K and 0.723% for test FIDX-10K re-
spectively. These are the best results reported so far.

16.1 Introduction and Motivation
Running fingerprint recognition systems demands specific requirements on the re-
sponse time. Thorough biometric comparison of two fingerprint samples is a tedi-
ous job and can be very time consuming. If it takes longer to identify an individual
than acceptable for a given scenario, the system is simply unusable. The idea
of Fingerprint Indexing (FI) is to sort the fingerprint database beforehand [203].
While some fingerprints are quite similar, some are obviously different. In many
cases one can decide at first glance, whether some fingerprints are not mated, e.g.
if pattern types between two fingerprints differ. FI excludes those from thorough
comparison.

The sorting of the database is achieved by a new and compact representation of the
fingerprints. Every item in the database is represented by an index vector, which
can be interpreted as a vague description of the fingerprint. FI compares index
vectors of query fingerprints with those in a database. This comparison should
be a computationally cheap operation compared to the thorough comparison. The
output of the index comparison is a candidate list C. This list contains only finger-
prints similar to the query fingerprint.

Fingerprint minutiae are the most common features used for fingerprint recog-
nition. Minutiae are salient points in the ridge structure of the fingerprint, e.g.
endings and bifurcations of ridges. The location and topology of those minutiae
are assumed to be unique for every fingerprint. Unfortunately, the count of minu-
tiae found in every fingerprint sample might be different. Finding a fixed-length
representation for an input of variable length is not trivial.
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(a) (b) (c) (d) (e)

Figure 16.1: Minutiae (endings and bifurcations ) and singularities (deltas and
cores ) can be used for FI in various representations: e.g. nearest neighbours (16.1(a)),
triplets (16.1(b)) or sequences (16.1(c)). In some cases the neighbourhood is sampled at a
tessellation grid (16.1(d)). Minutia Cylinder Code transforms each neighbourhood into a
single index vector (16.1(e))

Convolutional Neural Networks (CNN) can be trained to find an appropriate rep-
resentation for many tasks. CNNs have shown superiority over hand-crafted rep-
resentations and are state of the art in many domains of image processing and
pattern recognition, e.g. the benchmark ImageNet[249]. CNN architectures like
PointNet enable to learn fixed length representations from the variable count of in-
puts [236]. We adapt and extend it to work on minutiae neighbourhoods. By using
maximum pooling at different stages of the CNN, representations for neighbour-
hoods are learned. Those are pooled to form representations for entire fingerprint
samples. Our approach is therefore called Deep ISO Minutiae Indexing (DIMI),
since we are using only ISO/IEC compliant minutia templates[121] as input to the
CNN. Thus, our approach can be applied to deployed biometric enrolment data-
bases, in which no image data is available.

Numerous FI approaches were proposed in the past. This is the first one to learn
a fixed-length representations from minutiae using CNNs. DIMI was successfully
evaluated at independent benchmark framework FVC-ongoing[68].

The rest of this work is organized as follows: Section 16.2 gives an overview on
related work. Our approach is described in Section 16.3. Section 16.4 describes
the results achieved with our approach on test data. A conclusion can be found in
Section 16.5.

16.2 Related Work
Various approaches using minutiae were proposed for FI. Figure 16.1 outlines ap-
proaches to FI. Approaches can be divided into local and global approaches.

Most approaches work in a local manner. Those approaches are working on sets of
few minutiae. Features are designed, which describe the relation of the minutiae
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within such set. Triplets of minutiae can be represented by their geometric features,
e.g. angles and side lengths (see Figure 16.1(b)) [85]. There are many variations
and extensions of this approach[161][25][241][333][245][27][155]. Delaunay tri-
angulation is a common way to select triplets [21][182][183][296][212][213][211]
[156][150][79][179]. Some approaches use more than three minutiae, e.g. quad-
ruplets [297] [114]. There are also approaches combining triplets and quadruplets
[117].

Cappelli et al. proposed to represent minutiae and their relative neighbourhood
in a compact form called Minutia Cylinder Code (MCC) [49]. In this approach
a cylinder describes the relative position and relative angle of the neighbouring
minutiae (see Figure 16.1(e)). MCC can be considered as state of the art for FI. It
is the only approach, which is evaluated at benchmark FVC-ongoing. In addition,
there are numerous variations of MCC [303][10][334][11]. Minutia Disks describe
neighbourhoods in polar coordinates [178][78].

Further approaches describe the local neighbourhoods of minutiae (see Figure
16.1(a)) [166][204][9][23][138][56]. Those approaches usually use the nearest
neighbouring minutiae around a central or an anchor minutia. Series of neigh-
bouring minutiae concatenated to sequences can also be used to form a description
(see Figure 16.1(c)) [106].

Some approaches focus more on the index generation than on the features [169][170]
or the index comparison [302] [216]. Other approaches use minutiae to gener-
ate a global representation. This can be achieved by geometric representations
[132][131], or a complex representation [312], or random look-up tables [315].

PointNet is an approach to apply CNNs to point clouds with a variable number of
points [236]. The key here is to apply maximum pooling. This yields invariance
to the number of points. PointNet++ extends this to pairs of points [237]. We
will extend the approach of PointNet to deal with neighbourhoods of fingerprint
minutiae. Our approach is the first to use CNNs for generation of fixed length index
vectors from fingerprint minutiae. It is invariant to the number of input minutiae
and invariant to the order of minutiae in each neighbourhood.

16.3 Deep ISO Minutiae Indexing (DIMI)

16.3.1 Processing Fingerprint Minutiae with CNNs

Fingerprint minutiae are a wide-spread representation of the fingerprint as biomet-
ric trait in biometric systems. The set of standardized features of a single minutia
is typically reduced to only a few data fields, e.g. its position, angle and type. A
single minutia on its own is not informative. Only sets of minutiae allow to use
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Figure 16.2: Spatial and angular relations between an anchor minutia and its neighbours
describe a neighbourhood. All neighbourhoods together yields a representation for an
entire sample.

them for biometric recognition. Usually, spatial and angular relations between the
minutiae enable the biometric recognition.

Our approach uses neighbourhoods of minutiae. A neighbourhood consists of an
anchor minutia and its neighbours. N nearest neighbouring minutiae are iden-
tified for each anchor minutia (see Figure 16.1(a)). In our approach, we found
empirically N = 13 neighbours for description of a neighbourhood to be a good
value. The more neighbours are used, the more computational effort is to be ex-
pected during index generation time but also the index can be expected to be more
descriptive.

Each neighbourhood is aligned to the direction of the anchor minutia first. This
enables rotational invariance. Then, features can be extracted from the relation of
each neighbour to the anchor minutia (see Figure 16.3). In our approach we used
Cartesian and Polar coordinates between an anchor and a neighbouring minutia
as a feature. In addition, we added the angle of the aligned neighbouring minutia
as a feature. All angular features were represented in a vectorized form. This
allowed to extract seven features in total for each aligned neighbouring minutia
with respect to an anchor minutia (see Table 16.1). Using these features allows to
apply our FI approach to fingerprint systems, which are already rolled out in the
field. However, extension of this approach is straight forward: Additional features
per neighbour can just be appended to the existing ones.

Each fingerprint sample shall finally be represented by a single global represent-
ation. The global representation shall be assembled from a set of local represent-
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Figure 16.3: The first stage describes relations between each anchor minutia and its neigh-
bours. Representations of neighbourhoods in the next stage yields a final representation
for the entire sample.

Nr. Feature
1 Relative offset of the neighbour in x direction
2 Relative offset of the neighbour in y direction
3 Cosine part of angle difference between both minutiae
4 Sine part of angle difference between both minutiae
5 Distance between both minutiae
6 Cosine part of polar coordinate angle
7 Sine part of polar coordinate angle

Table 16.1: Features used for representation of a relation between an anchor minutia and
a neighbouring minutia.
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ations, i.e. neighbourhoods of minutiae. Each neighbourhood is represented by
features, which describe the relation of the anchor minutia to its N neighbours.

To deal with the variable number of inputs we pick up an idea from PointNet [236].
PointNet was designed to classify point clouds. A CNN generates features for each
point. At some stage of the CNN, maximum pooling is applied to all features over
all samples. This yields permutation invariance. PointNet actually represents only
single points. PointNet++ extends this idea to work on pairs of points [237].

We propose to use the maximum pooling at two stages (see Figure 16.3 and Table
16.2). There is no natural order in the neighbouring minutiae. Order by distance
to the anchor minutia will vary, if positional noise changes the distances of neigh-
bours. Order can also fail entirely, e.g. if minutiae are missed by biometric feature
extraction. To learn order invariant representations, we therefore apply a max-
imum over the dimension representing the neighbours in the first stage. In the
second stage we want to enable invariance to the number of input minutiae. Ap-
plying the maximum function over the neighbourhoods yields representations for
entire samples. Thus, this sample representations are finally invariant to the order
of neighbours and invariant to the number of neighbourhoods. Cosine distance
between the representations will be used as the similarity metric.

16.3.2 Architecture

The input to our model is a sample of dimensions (#Minutiae × #Neighbours ×
#Features) (see Figure 16.2). The actual number of neighbourhoods for a given
sample depends on its number of minutiae. Despite this variability, CNNs need
fixed numbers of dimensions as input. MaxNeighbourhoods may therefore be lar-
ger than the actual number of neighbourhoods in each sample. If the number of
actual neighbourhoods is smaller, some space in the input representation of the
sample will remain empty. Dedicated Masking layers (Masking) and pooling op-
erations will take care of this mismatch. The Masking will leave out the empty
neighbourhoods. By doing so, the empty neighbourhoods do not harm the entire
processing.

The entire model may be divided into different stages. Each stage can be further
subdivided into blocks. In the first two stages a block consists of a sequence of
a Convolutional layer (ConvLayer), a Batch Normalization layer (BatchNorm), a
Parametric Rectified Linear Unit layer (PReLU), and a Masking layer. The third
stage consists of block of ConvLayers and PReLUs. Table 16.2 gives a system-
atic overview on the stages and their layers. Each stage works on different fea-
tures (see Figure 16.3). The first stage works on the features of neighbouring
minutiae. MaxPooling over the neighbouring minutiae yields a representation for
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Stage Block Type

Input Features
(Minutiae×13×7)

Neigh-
bours

1st

Conv (256×1×1×7)
Batch-Norm

Masking
PreLU

2nd

Conv (256×1×1×256)
Batch-Norm

Masking
PreLU

3rd

Conv (256×1×1×256)
Batch-Norm

Masking
PreLU

MaxPooling (1×13×1)

Neighbour-
hoods

1st

Conv (128×1×1×256)
Batch-Norm

Masking
PreLU

2nd

Conv (128×1×1×128)
Batch-Norm

Masking
PreLU

MaxPooling (Minutiae×1×1)

Samples
1st Conv (64×1×1×128)

PreLU

2nd Conv (64×1×1×64)
Flatten

Index Dense (16×64)
Spherical

Table 16.2: DIMI consists of four stages: The first works on features of neighbouring
minutiae, the second on neighbourhoods, and the third on entire samples. The last stage
generates the fingerprint indices. MaxPooling between the stages enables necessary in-
variance.
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neighbourhoods. Therefore, the second stage works on features for neighbour-
hoods. MaxPooling over the minutiae neighbourhoods yields a representation for
entire samples. Those representations for samples are processed in the third stage.
The final stage generates the feature indices by using a Dense layer (Dense) and a
spherical projection.

The model was designed and trained using the framework Tensorflow [1]. The
CNN contains less then 200k trainable parameters.

16.3.3 Training

The approach was trained entirely on a sequestered dataset "SQ FDB-35TC10Fx5"
(Sonateq) of fingerprint samples provided by company Sonateq. The entire dataset
consists of fingerprints from 3,500 individuals. Each individual provided all ten
fingerprints with 5 samples each. The set therefore contains a total of 175,000 fin-
gerprint samples. All fingerprint samples were acquired with optical livescanners
with a resolution of 500 dpi. The dataset was split into two parts: a training set
and a validation set.1 75% of the fingerprint samples were used for training. The
remaining 25% were used as a validation set.

We also did experiments on other datasets. We found, that large amounts of
training data are necessary to achieve reasonable generalization capabilities of the
trained CNN. Publicly available dataset therefore were simply too small for train-
ing and resulted in insufficient generalization. Experiments with synthetic finger-
prints generated by tools SFinGe [46] or Anguli[7] did not achieve reasonable
generalization to real fingerprint samples.2 Fingerprint Minutiae were extracted
by biometric feature extractor. We used three feature extractors in total: publicly
available feature extractors MINDTCT[309] provided by NIST and FingerJetFX[65]
provided by company Digital Persona and a COTS feature extractor.

The model was trained with the optimizer Adam[157]. There were no significant
differences when using optimizers Adagrad and SGD. Learning rate was set to
λ = 10−4. The number of samples per batch was selected to be 256.3 A single
batch consisted of 64 fingerprints with 4 samples each.

1 In early experiments, we found, that there was no significant deviation in performance on a
validation set and test set. We decided therefore to use only a validation set and to use as many
samples as possible for training, since the amount of training data needed to be as large as possible.

2 This is due to significant differences in the distributions of the input features between synthetic
training data and real world test data. The largest difference was found for the distributions of angular
difference between center and neighbouring minutiae. Synthetic neighbouring minutiae tend to have
more similar orientations, while real minutiae orientations differ more.

3Larger batch sizes did not improve performance. Smaller batches resulted in instabilities during
training.
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The cost function makes use of the structure of a single training batch. Let a batch
B = {smk : k ∈ [1, ..64],m ∈ [1, 2, 3, 4]} consist of fingerprint samples smk
representing the m-th sample of the k-th fingerprint in the batch. Let CNN model
M generate index vector M(smk ) ∈ R16. The we can define the average index
vector µk all samples of the k-th fingerprint as follows:

µk =
1

4

4∑
i=1

M(sik) (16.1)

The cost function consists of two parts:

cost =

64∑
i=1

4∑
j=0

|^(M(sji ), µi)|︸ ︷︷ ︸
intra class

−
64∑
i=1

64∑
j=1

|^(µi, µj)︸ ︷︷ ︸
inter class

| (16.2)

This cost function enforces two aspects. First, the CNN generates index vectors
that are very similar for samples, which belong to the same fingerprint. Second,
the average index vectors for all samples are spread over the entire unit sphere.
Both aspects enable to train a reasonable indexing. This training strategy achieved
significantly better results than training as a Siamese Network[34] or using Triplet
loss[255].

Training was stopped, when the improvement on the validation set stopped. Train-
ing took only a few hours on a GPU4.

16.3.4 Data augmentation

Generalization capabilities of a CNN can be improved by data augmentation. All
augmentation works directly on minutiae and imitates typical challenges (see Fig-
ure 16.4). It contains several separate processes:

• Spurious minutiae: During biometric feature extraction sometime minutiae
are found which do not exist. We added minutiae at random positions. The
numbers of spuriously added minutiae were sampled from a distribution
Pspurious ∼ Poisson (λ = 5.0). Poisson distribution are commonly used for
description of processes of occurrences and processes of failures. Thus, a
mean of five extra minutiae have been added to each sample.

• Missing minutiae: Sometimes biometric feature extraction misses existing
minutiae. Data augmentation excluded randomly picked minutiae from the
original set on minutiae. The numbers of excluded minutiae were sampled
from a distribution Pmissed ∼ Poisson (λ = 5.0).

4NVIDIA GTX1080 Ti
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(a) (b) (c) (d) (e)

Figure 16.4: [
Augmentations for DIMI]Data augmentation imitates typical challenges: spurious
minutiae (a), missing minutiae (b), partial fingerprints (c), positional inaccuracies
(d), and angular inaccuracies (e). Minutiae before and after augmentation.

• Positional noise: Biometric feature extraction is not always precise in terms
of position. Positional disturbances can also arise from deformations of the
finger during the acquisition process. Noise is usually modeled by Gaus-
sian distributions. Minutia positions have been slightly translated by noise
distributed equal to a Gaussian distribution N0,0.02.

• Angular noise: Angular disturbances may arise from the acquisition pro-
cess and imprecise feature extraction. Minutia angles have been augmented
by noise distributed equally to a Gaussian distribution N0,0.2. This equals
roughly a variance of 10◦.

• Partial fingerprint: The acquired fingerprint area usually varies between
samples. Data augmentation imitated this behavior by excluding outmost
minutiae in a terms of a random direction. While missing minutiae are ran-
domly sampled from all minutiae, this augmentation has a spatial aspect.
The percentages of excluded minutiae were equally distributed between 0
and 20%: U[0,0.2].

In addition, all training samples were also flipped. This doubles the amount of
training data. Our approach is invariant to rotation and translation by design.
Simple rotational and affine translational augmentation is therefore irrelevant. All
augmentations but angular noise have impact on the nearest neighbours selection.
This improves robustness to such variations. Data Augmentation is only applied
to samples during training.
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16.4 Experiments

16.4.1 Data

The central aspect of our experiments was the evaluation at the independent bench-
mark framework FVC-ongoing. FVC-ongoing has a benchmark called Fingerprint
Indexing.5 This benchmark consists of two parts: FIDX-10K-1.0 (FIDX-10K) and
FIDX-50K-1.0 (FIDX-50K). Both benchmarks use datasets containing fingerprint
samples acquired with optical live-scanners with a resolution of 500 dpi. Test
FIDX-10K contains 10,000 fingerprint samples to be indexed and 100 fingerprint
samples to be searched. Test FIDX-50K contains 50,000 fingerprint samples to be
indexed and 500 fingerprint samples to be searched.

For further tests, we used those three datasets for testing, which are most com-
monly used for FI. All three datasets are publicly available: FVC 2000DB2[200],
FVC2002DB1[201], and NIST SD04[307]. All images were acquired at a res-
olution of 500 dpi. The former two sets contain 100 finger with 8 impressions
acquired with fingerprint live scanners. NIST SD 04 contains 2,000 rolled finger-
prints with two impressions each. A common protocol is to build a gallery from
the first impressions of all samples and use all other impressions as queries. The
size of the test data is relatively small. Nevertheless, all datasets are commonly
used for evaluation of FI approaches. Thus, they allow comparison with many
approaches proposed in literature.

The fingerprint minutiae were extracted with a COTS biometric feature extractor.
Input features for the CNN were generated from these fingerprint minutiae.

16.4.2 Metrics

There are two metrics in terms of FI, which are somehow de facto standard: penet-
ration rate (PR) and error rate (ER). The former is the relation between the count
of candidates returned by the FI and the count of indexing samples. Therefore,
it represents the percentage of the data, which remains in the candidate list after
FI. The later rate represents the rate of mated samples which are missed by the
returned list of candidates. Those mated samples cannot be found by the thorough
comparison stage later. Both rates depend on how a candidate list is created. For
these experiments a sample is included into the candidate list, if the distance is
smaller than a given threshold.

In addition, we report the rate IS for an incremental search retrieval scenario [52].
Each candidate list is of exactly the appropriate size to include the mated sample.
The rate IS is the mean length of such an ideal candidate list. Even-though this is

5 Requires a win32 console application conform with a test protocol.
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Approach FIDX-10K FIDX-50K
ER100 ER1000 IS ER100 ER1000 IS

MCC 5.898% 9.888% 1.215% 6.450% 15.140% 0.954%
DIMICOTS 20.0% 22.0% 0.723% 20.0% 36.0% 0.747%

Table 16.3: Results at FVC-ongoing. Rates ER100 is the benchmark’s definition for
PR@ER=0.01 and ER1000 for PR@ER=0.001 respectively.

(a) MCC on FIDX-
10K

(b) DIMI on FIDX-
10K

(c) MCC on FIDX-
50K

(d) DIMI on FIDX-
50K

Figure 16.5: Cumulative Match Characteristics (CMC) visualize the tradeoff between
Penetration rate and Error Rate. They allow comparison of MCC and DIMI. Plots are
provided by FVC-ongoing.

an idealized approach, it allows to estimate an ideal penetration rate independent
from any candidate list construction policy. It is also independent from any errors
made by the thorough comparison of the fingerprints in the candidate list. This
focus on FI makes IS a well suited metric.

16.4.3 Results

The results achieved at the independent benchmark framework FVC-ongoing are
of most interest. About two hundred algorithms or rather versions of algorithms
were evaluated at FVC-ongoing so far. 6 Unfortunately, only for MMC results
were published. Table 16.3 allows comparison of MCC and our approach DIMI.
An IS rate of 0.747% was achieved for test FIDX-50K and 0.723% for FIDX-
10K respectively. DIMI therefore outperforms the only other evaluated method
MCC in this metric. MCC achieved 0.954% in this metric for FIDX-50K and
1.215% for FIDX-10K respectively. DIMI improves the performance by 22%
and 40% respectively compared to MCC. However, in both other metrics DIMI
performs worse than MCC. Figure 16.5 visualizes the corresponding Cumulative

6https://biolab.csr.unibo.it/FvcOnGoing/UI/Form/Statistics.aspx
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Match Characteristics (CMC) curves for MCC and DIMI for both parts of the
benchmark.

Table 16.4 summarizes the results achieved with our approach on publicly avail-
able datasets. We found that, DIMI performs significantly better when using COTS
feature extractor compared to using MINDTCT and FingerJetFX feature extract-
ors. It also allows comparison with other minutia-based approaches which reported
results for the datasets. There were slight differences in the performance between
training and validation data. DIMI performs extremely well on the validation set,
which was split from the dataset Sonateq. When applied to other datasets DIMI
performs worse: 3.5% for FVC2000DB2, 4.0% for FVC2002DB1, and 7.9% for
NISTSD04 (see also Table 16.4). The performance for NISTSD04 was signific-
antly worse. This may be due to the differences in characteristics of rolled fin-
gerprint samples and plain fingerprint samples. Unfortunately, comparability with
other approaches is limited, since there are no unified processes for reporting in-
dexing performances: Each approach evaluates with different metrics on different
data.7 In some cases metrics must be estimated by reading graphs (indicated in the
Table by ∼).

Interoperability is an important issue in biometric recognition. Table 16.5 lists IS
rates for models, which were trained on features extracted with a specific feature
extractor but tested on minutiae extracted with a different extractor. The minutiae
extracted with FingerJetFX and COTS seem to enable interoperability.

We also tested on a set of additional impressions of the fingerprint samples used
for training. The difference in performance on those impression and the test data
is small, too. This indicates, that our approach is not explicitly over-fitting to the
specific samples used during training.

The proposed indexing comes with additional costs in terms of memory resources.
For instance, an ISO/IEC template generated by minutiae extractor FingerJetFX
has a mean size of about 336 Bytes per sample of FVC2000 DB2. The proposed
index feature vector is of size 16 float values. This equals 64 Bytes. MCC uses
6.4 KB in average per sample [52]. Adding the indexing feature vector to the tem-
plate increases the required amount of data by about 19% for samples of FVC2000
DB2.

16.5 Conclusion
We presented an approach called Deep ISO Minutiae Indexing (DIMI) to gener-
ate a FI vector from neighbourhoods of minutiae. Only standard ISO/IEC minutia

7Drozdowski et al. proposed metrics for relevant performances [69].
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Dataset Approach ER ER
IS @PR=0.05 @PR=0.01

Sonateq (Train)
DIMICOTS 0.0023 0.0030 0.0320
DIMIMD 0.0059 0.0172 0.1490
DIMIFJ 0.0031 0.0065 0.0720

Sonateq (Validation)
DIMICOTS 0.0038 0.0110 0.0540
DIMIMD 0.0077 0.0281 0.1753
DIMIFJ 0.0049 0.0158 0.1042

FVC2000DB2

DIMICOTS 0.0354 0.1686 0.4671
DIMIMD 0.0608 0.3286 0.6814
DIMIFJ 0.0439 0.2043 0.5286

[52] 0.0172 ∼0.03 ∼0.056
[333] n/a 0.09 0.12
[155] n/a ∼0.07 ∼0.09
[156] n/a ∼ 0.08 ∼ 0.06
[79] n/a ∼ 0.04 ∼ 0.025
[11] n/a ∼ 0.18 ∼ 0.05

FVC2002DB1

DIMICOTS 0.0399 0.1660 0.4249
DIMIMD 0.0640 0.2800 0.5971
DIMIFJ 0.0508 0.2257 0.5271

[52] 0.0137 ∼0.012 ∼0.02
[333] n/a 0.06 0.09
[297] n/a ∼ 0.13 ∼ 0.42
[178] n/a ∼ 0.10 ∼ 0.18
[106] 0.1031 ∼ 0.21 ∼ 0.36
[302] n/a ∼ 0.12 ∼ 0.34
[183] n/a ∼ 0.02 ∼ 0.09
[211] n/a ∼ 0.01 ∼ 0.008
[156] n/a ∼ 0.04 ∼ 0.03
[79] n/a ∼ 0.01 ∼ 0.05

[114] n/a ∼ 0.02 n/a
[303] n/a ∼ 0.02 ∼ 0.01
[10] n/a ∼ 0.4 ∼ 0.05
[11] n/a ∼ 0.07 ∼ 0.02
[78] n/a ∼ 0.17 ∼ 0.1
[9] n/a ∼ 0.08 ∼ 0.0

NIST SD04

DIMICOTS 0.0785 0.3280 0.5445
DIMIMD 0.1057 0.4550 0.7000
DIMIFJ 0.1006 0.3850 0.6245

[52] 0.0159 ∼0.046 ∼0.067
[212] n/a ∼0.036 ∼ 0.058
[25] n/a ∼0.17 ∼0.23

[155] n/a ∼0.07 ∼0.085
[211] n/a ∼ 0.08 ∼ 0.03
[156] n/a ∼ 0.08 ∼ 0.07
[79] n/a ∼ 0.11 ∼ 0.05
[11] n/a ∼ 0.25 ∼ 0.06
[11] n/a ∼ 0.09 ∼ 0.06
[9] n/a ∼ 0.08 ∼ 0.05

Table 16.4: Results on other test data. Our approach performs well, when test and training
data are similar.
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Test minutiae
FVC2000 DB2 FVC2002 DB1 NIST SD04

COTS MD FJ COTS MD FJ COTS MD FJ

Tr
ai

n
m

in
ut

ia
e COTS 0.0354 0.2258 0.0439 0.0399 0.2157 0.0499 0.0785 0.2182 0.0853

MD 0.1853 0.0608 0.2290 0.1829 0.0640 0.2061 0.2305 0.1057 0.2259
FJ 0.0457 0.2242 0.0439 0.0542 0.2206 0.0508 0.1031 0.2138 0.1006

Table 16.5: IS rates reveals aspects on interoperability. Compatibility between different
feature extractors is important. Models trained on minutiae extracted with the COTS fea-
ture extractor perform similar with features extracted with FingerJetFX (FJ) and vice versa.
However, when those models use minutiae extracted with MINDTCT (MC) performance
decays significantly.

templates are used as input features, which allows compatibility with biometric re-
cognition systems in which only minutiae but no fingerprint samples are available.
The approach is easily extendable to additional features. Our main contribution
is to allow CNNs to deal with variable number of input minutiae in any order
by systematic use of the maximum function. This allows invariance to the order
of neighbours in each neighbourhood of minutiae and invariance to the number
of neighbourhoods. Index vectors are very short and allow very fast compari-
son based on only 16 float values. An IS rate of 0.747% for test FIDX-50K and
0.723% for FIDX-10K respectively at independent benchmark framework FVC-
ongoing was achieved. These are the best reported results for so far.



Chapter 17

Estimating the Data Origin of
Fingerprint Samples

Summary Fingerprint samples vary significantly in their appearance.
The appearance depends on the data origin. Knowledge on the data
origin allows specialized processing. Six method of classification
were evaluated on fifteen datasets for their capabilities of estimating
the data origin. Estimation can be performed very accurate and reli-
able.
This publication is joint work with Jan Marek May and Christoph
Busch. It was presented at the BIOSIG in Darmstadt (Germany) in
2018.

[262] P. Schuch, J. M. May, and C. Busch. Estimating the data ori-
gin of fingerprint samples. In International Conference of the Bio-
metrics Special Interest Group (BIOSIG), pages 1–6, Sept 2018.
doi: 10.23919/BIOSIG.2018.8553235
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Abstract The data origin (i.e. acquisition technique and acquisition
mode) can have a significant impact on the appearance and character-
istics of a fingerprint sample. This dataset bias might be challenging
for processes like biometric feature extraction. Much effort can be
put into data normalization or into processes able to deal with almost
any input data. The performance of the former might suffer from this
general applicability. The latter losses information by definition. If
one is able to reliably identify the data origin of fingerprints, one will
be able to dispatch the samples to specialized processes. Six meth-
ods of classification are evaluated for their capabilities to distinguish
between fifteen different datasets. Acquisition technique and acquisi-
tion mode can be classified very accurately. Also, most of the datasets
can be distinguished reliably.

17.1 Introduction
No two fingerprints are the same. Every fingerprint is at least slightly different
from another. This fact makes a fingerprint a valuable trait for biometric recogni-
tion. However, two fingerprint samples of the very same fingerprint can also be
very different. An important source of variation arises from the two aspects of a
sample’s data origin: acquisition technique and acquisition mode.
Fingerprint samples might have been acquired with different techniques. For ex-
ample, they can be acquired using dedicated fingerprint livescanners. There is a
variety of manufacturers and devices. The latter can differ in physical acquisition
principles, e.g. optical or capacitive. Besides dedicated devices, almost any cam-
era may be used for acquisition. Fingerprints may also be acquired using ink and
paper. There are also latent fingerprints or fingermarks, which are typically evid-
ences from crime-scenes. Those fingerprints are captured using special techniques,
e.g. photography of fingerprints highlighted with powders.
Not only the technique of acquisition matters, but also how the finger is presented.
There are namely four modes of acquisition. The finger may be placed plain on an
acquisition surface. Fingerprints can be rolled over an acquisition surface. Some
devices require the fingerprint to be swiped over a line scanner. While these three
modes are all contact-based, the fingerprint may also be acquired contact-less.
Many of the possible combinations of technique and mode are actually deployed
in the operational scenarios.
In general, the fidelity of a fingerprint sample to its source depends on the data
origin [123]. Thus, all data is biased by its origin. This dataset bias tends to be
very different among different datasets. Dealing with such differences can be chal-
lenging for any process using the data. And it turns out that biometric comparison



17.1. Introduction 233

Figure 17.1: Knowing a sample’s origin enables usage of specialized processing methods.

across different data origins is challenging [140].
There are two ways of dealing with the dataset bias (see Figure 17.1). One-fits-all
solutions need to be able to deal with any input. This general applicability comes
at the cost of recognition performance. Dedicated or specialized modules mod-
ules can be tailored to the special needs of an input at hand. The more the inputs
differ, the larger is the benefit of a specialized processing pipeline. If you do not
know, what you are processing, you will have to apply a one-fits-all solutions. But
if you do know, what kind of data you are processing, you will be able to bene-
fit from specialization. There are standardized data interchange formats, which
provide meta information about acquisition mode and technique, e.g. the interna-
tional standard ISO/IEC 19794-4 [127]. But fingerprint samples do not always
come with such information about their origin or the information is not reliable.
This lack of information may be unintentional, e.g. when processing legacy data
in a system, in which the samples have various data origins. Or it may be by inten-
tion, e.g. in benchmarks or competitions like FVC-ongoing [68]. If you still want
to apply specialized approaches, you will have to guess the origin of the input data.
Guessing the origin essentially makes use of dataset bias, since this bias is what
makes data distinguishable. In this case, the dataset bias is a desirable property.

Ghiani et al. proposed linear Support Vector Machines for pairwise discrim-
ination of datasets [88]. This is the first extensive investigation of methods for
estimating the origin of fingerprint samples using a multitude of datasets. In this
work, we propose to use a Convolutional Neural Network (CNN) for guessing the
origin of the fingerprint. To assess this approach, its performance is then compared
to other prominent classifiers.
The rest of this work is organized as follows: Section 17.2 gives an overview on
related research. A CNN based approach is described in Section 17.3. Section
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17.4 describes the experiments with this approach and five alternative classifiers.
It also presents the results achieved. A conclusion can be found in Section 17.5.

17.2 Related work
Capabilities of generalization are always important for methods of pattern recog-
nition. If a pattern recognition method is not able to deal with other data than the
data used for training, the method will be useless. The dataset bias, also known as
the covariate shift, might be the most challenging aspect for generalization. Deal-
ing with the dataset bias is therefore an important topic in pattern recognition. A
lot of research has been done in enabling methods to deal with data, that has not
been seen during the training phase.
Besides the improvements in the generalization capabilities, there is another way
to look at the dataset bias. For example, Torralba and Efros investigated how well
image datasets can be distinguished [287]. They evaluated their method on data-
sets available at the time for large classification benchmarks. They called this task
the Name the Dataset game. Their motivation was to measure and to understand
the bias in datasets. This bias may usually result in generalization problems for
classifiers, when the test data differs from the training data.
The challenge of generalization becomes even more important as the accuracies
rise. In case of high accuracies, slight differences in performances between train-
ing and test data can result in significant relative differences between these per-
formances. CNNs are state of the art in several domains of image processing and
pattern recognition. The accuracies achieved with CNNs are remarkably high and
dataset biases can have a strong impact here. Tommasi et al. did extensive experi-
ments on the dataset bias when using CNNs [286].
The dataset bias is a prominent challenge in fingerprint recognition. This challenge
is also known as cross device biometric recognition. Jia et al. developed a dataset,
which contains fingerprint samples from the same fingerprint acquired with nine
different devices [140]. They showed that recognition across different devices is
challenging.
Ghiani et al. proposed to use a linear Support Vector Machine for classification of
different datasets [88]. They used the classification to apply specialized methods
of presentation attack detection on the fingerprint samples. They evaluated classi-
fication between pairs of datasets. This work provides comparison of six methods
of classification and evaluation on a multitude of fingerprint datasets.

17.3 CNNs for Data Origin Estimation
Estimating the data origin is a typical classification task. CNNs are currently state
of the art in classification tasks. We therefore propose to use a CNN for this task.
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Table 17.1: Straight forward architecture of proposed CNN.

# Layer Output
0 Input (192×192×1) (192×192×1)
1 ConvLayer (32×3×3×1) (190×190×32)
2 MaxPooling (2×2) (95×95×32)
3 PReLU (95×95×32)
4 ConvLayer (32×3×3×32) (93×93×32)
5 MaxPooling (2×2) (46×46×32)
6 PReLU (46×46×32)
7 ConvLayer (32×3×3×32) (44×44×32)
8 MaxPooling (2×2) (22×22×32)
9 PReLU (22×22×32)
10 ConvLayer (32×3×3×32) (20×20×32)
11 MaxPooling (2×2) (10×10×32)
12 PReLU (10×10×32)
13 ConvLayer (32×3×3×32) (8×8×32)
14 MaxPooling (2×2) (4×4×32)
15 PReLU (4×4×32)
16 Flatten (512)
17 Dense (32×512) (32)
18 PReLU (32)
19 Dense (32×32) (32)
20 PReLU (32)
21 Dense (15×32) (15)
22 Softmax (15)

In the following we will sketch an architecture for a CNN, which is capable of
this task. We will also provide information on how the training of the CNN was
performed.

17.3.1 Architecture

Table 17.1 gives an overview over the entire architecture and the outputs of each
layer. There has been no extensive optimization of any hyperparameters. The
entire model is built from six different types of layers: Convolutional layers (Conv-
Layer), Parametric Rectified Linear Units (PReLu), Maximum Pooling layers (Max-
Pooling), Flatten layers (Flatten), Dense layers (Dense), and Softmax layers (Soft-
max). All ConvLayer have 32 kernels. All kernels are 3x3 filters. There was no
striding in the ConvLayers. MaxPooling was performed on 2x2 blocks. The CNN
has less than 60,000 trainable parameters.
Generalization is always a crucial issue when training a classifier. In this approach,
the capability of generalization was enforced by adding a l2-regularization on the
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kernels of the Dense layers. A common approach to strengthen the generalization
capabilities of a CNN is the introduction of Batch Normalization [116]. However,
usage of Batch Normalization in this approach led to an undesired behavior: The
CNN was not able to distinguish between the different datasets any more.
The input to the CNN is a grey scale image, which is cropped to its central re-
gion of size 192x192 pixels (see Figure 17.2). The approach does not rely on any
foreground detection. It simply crops a region of interest from the center. This
allows an automatic processing. The CNN therefore does only see a small part of
the fingerprint sample.
The output of the Softmax layer can be understood as the likelihood for the fifteen
respective classes of datasets (see Section 17.4.1). The model was created and
trained in the Deep Learning (DL) framework Tensorflow [1].

17.3.2 Training

The model was trained with the optimizer Adam[157] . There were no significant
differences when using optimizers Adagrad or SGD. Learning rate was set to
λ = 10−4.
The number of samples per batch was selected to be 128. Larger batch sizes did
not improve performance. Smaller batch sizes resulted in instabilities during train-
ing. The network was trained to minimize cross validation loss. The samples
in each batch were randomly picked from the training data. Data augmentation
was applied to the fingerprint samples. The samples were rotated randomly. The
192x192 pixel region used as the input was cropped randomly from a region nearby
the sample’s center. Such a data augmentation is commonly used to increase the
amount of training data. This indirectly prevents the CNN from overfitting to the
training data. Therefore it also helps enabling generalization of the CNN.
For training the CNN, the training set was split into two parts. About two thirds
of the fingerprint samples were used as training data. The remaining fingerprint
samples were used as a validation set. Training was stopped when the improve-
ment of loss for the validation set stopped. Such an early stopping strategy is a
common method to prevent a CNN from over-fiting. Training the CNN took less
than an hour on a GPU1.

17.4 Experiments

17.4.1 Datasets

The fifteen tested datasets are a subset of publicly available datasets. Only publicly
available dataset were chosen to allow reproducibility of the results. Even though,
some dataset might be some kind of out-dated, they still represent legacy data.

1NVIDIA GTX 780
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Table 17.2: Datasets used for evaluation.

Acquisition Acquisition
# Dataset Technique Mode Ref
1 FVC2000 DB1 Optical Plain

[200]2 FVC2000 DB2 Capacitive Plain
3 FVC2000 DB3 Optical Plain
4 FVC2002 DB1 Optical Plain

[201]5 FVC2002 DB2 Optical Plain
6 FVC2002 DB3 Capacitive Plain
7 FVC2004 DB1 Optical Plain

[202]8 FVC2004 DB2 Optical Plain
9 FVC2004 DB3 Thermal Swiped

10 FVC2006 DB2 Optical Plain [47]
11 FVC2006 DB3 Thermal Swiped
12 MCYT DP Optical Plain [228]
13 MCYT PB Capacitive Plain
14 NIST DB4 Ink-based Rolled [307]
15 NIST SD14 Ink-based Rolled [306]

Each dataset represents its own class for classification. Table 17.2 summarizes de-
tails of the single datasets used during our experiments. These datasets represent
a subset of the variability of acquisition techniques and acquisition modes.2 There
are datasets, which were acquired by livescanners using optical, capacitive, and
thermal sensors. There are also two datasets acquired by using ink-based tech-
niques. Most of the datasets contain plain fingerprints. Two datasets contain rolled
fingerprints and two datasets contain swiped fingerprints. Each data will represent
one class in the classification. Thus, it will be a multi-class classification.

The number of samples in the datasets differs. Using all samples in the evaluation
would have imbalanced the influence of each dataset. Therefore, only the first 800
samples in each dataset have been selected for these experiments. By doing so, all
datasets have the same amount of training data and testing samples respectively.
The images were cropped to their central region of 192x192 pixels. This prevents
the classifiers to learn from trivial features like image dimensions or any systematic
artifacts at the borders of the fingerprint samples.

2In terms of ISO/IEC 19794-4 the acquisition technique may be deducted from the capture
device ID identifier. The acquisition mode is represented by the impression type identifier in the
standard.



238 Estimating the Data Origin of Fingerprint Samples

(a)
(b)

(c) (d)

(e)

(f)
(g)

(h)
(i) (j)

(k)
(l)

(m) (n) (o)

Figure 17.2: Samples from the datasets used for evaluation (see Table 17.2 for number-
ing). The red square indicates the 192x192 crop region used for training and testing.
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17.4.2 Metrics

The performance of the classifiers was assessed by the accuracy acc in predict-
ing the correct data origin. Three accuracies were evaluated. First, the accuracy
accdataset of estimating the correct dataset was evaluated. Second, the accuracy
accmode for estimating the correct acquisition mode was measured. Third, the ac-
curacies acctech for estimating the correct acquisition technique was measured.
Let a tuple (xi, yi) contain the i-th fingerprint sample xi and its actual class yi ∈ Y
in the set Y of all classes. Let F (xi) be the estimated class for fingerprint sample
xi. The accuracy accdataset for a set X = {xi : i ∈ [1, N ]} containing N samples
is therefore the expected value for the rate of correct estimations for the dataset
and can be calculated by using the indicator function 1:

accdataset =
1

N

N∑
i=1

1F (xi)=yi (17.1)

Let Ft(y) = m : y ∈ Y 7→ t ∈ T be the function that maps a class y to it
corresponding mode t in the set T of all acquisition modes, i.e. T = {’Optical’,
’Capacitive’, ’Thermal’, ’Ink-based’}. Then the accuracy acctech can be calculated
as follows:

acctech =
1

N

N∑
i=1

1Ft(F (xi))=Ft(yi) (17.2)

This accuracy acctech can be understood as the expected value for the rate of correct
estimations for the acquisition technique.
Respectively, let Fm(y) = m : y ∈ Y 7→ m ∈ M be the function that maps
a class y to it corresponding mode m in the set M of all acquisition modes, i.e.
M = {’Plain’, ’Rolled’, ’Swiped’}. Then the accuracy accmode can be calculated
as follows:

accmode =
1

N

N∑
i=1

1Fm(F (xi))=Fm(yi) (17.3)

This accuracy accmode can be understood as the expected value for the rate of
correct estimations for the acquisition mode.

The priors of the acquisition modes and acquisition technique are not equally dis-
tributed over all classes. This imbalance has of course impact on the respective
accuracy measures.

4-fold cross-validation was used to allow a more reliable evaluation. Each finger-
print dataset was therefore split into four parts of equal size. In each fold of the
evaluation, one of the parts was kept out of the training data and used for test-
ing only. No fingerprint sample is in more than one testing split. The splits were
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Figure 17.3: t-SNE embedding for GLCM features already allows distinguishing between
some datasets.

performed randomly. All datasets have more than one fingerprint sample per fin-
gerprint. It was enforced, that all samples of the same fingerprint are in the same
split. Therefore no two samples belonging to the same finger are in the training
split and the test split of the same fold. The fact, that fingerprint samples stem-
ming from the same source (finger instance) were splitted into different datasets,
was neglected. The accuracies reported here are actually the mean accuracies over
all four evaluation runs.

For inspection of the failures in classifying the datasets, confusion matrices are
calculated. Those matrices allow to analyze the failures made with respect to the
real data origin.
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17.4.3 Alternative Classifiers

Five alternative classifiers were tested to benchmark the performance of the CNN
based approach: Random Forest Classifier [33], Extra Trees Classifier [86], De-
cision Tree Classifier, Logistic Regression and K Nearest Neighbor Classifier.3 All
alternatives have implementations in the python based machine learning toolbox
scikit-learn and can be used out of the box [234].
Classification applied directly to the signal of the central crops did not perform
well. Thus, Grey level co-occurrence matrices (GLCM) have been calculated for
each central crop.4 Those represent the entire range of grey level values in a crop
and the dynamics of neighboring pixels [104]. The intensities of grey values were
subsampled by a factor of 4 to reduce the number of features to a reasonable order.
A common step in classic pattern recognition is to do Feature Selection. Principal
Component Analysis (PCA) is probably the most standard method here. PCA ana-
lyses input data for their components of maximal variance. PCA transforms input
data to a new base. This base allows to select only those axes with the largest vari-
ance in the data. Figure 17.3 visualizes a two dimensional embedding of the re-
duced feature set, which was generated by t-distributed Stochastic Neighbour Em-
bedding (t-SNE)[197]. Obviously, the input features allow distinguishing between
most datasets.
All approaches were evaluated on the full set of input features and also on a re-
duced feature set. The reduced set contained the important components, which
together explain more than 99.9% of the variance in the original data. The PCA
based transformation was calculated on the training data only, of course.

17.4.4 Results

Table 17.3 summarizes the results of the evaluated methods. Figure 17.4 visualizes
the confusion matrices for classifications based on the features derived from entire
GLCMs.

Most of the classifiers were able to classify the acquisition mode and the acqui-
sition technique very reliable. The CNN based approach achieved an accuracy of
99.7% for estimating mode and 99.5% for technique respectively. The best altern-
ative classifier achieved similar accuracies.

Despite this, dataset classification is more challenging. Most of the classifiers are
able to distinguish very reliably even between the different datasets. Of course,

3AdaBoost, Huber Regressor, and SVM were also tested but failed totally to learn a classifica-
tion.

4GLCM is a classic feature for texture classification. Other features for texture classification
may be applied, of course. However, GLCM already yielded impressive results for data origin
classification.
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(a) (b)

(c) (d)

(e) (f)

Figure 17.4: The confusion matrices can be used to identify class-specific failures made
by a classifier. Each dataset is identified by the numbering provided in Table 17.2. Most
failures in classification are made between datasets 9 and 11 (both thermal swipe), between
datasets 14 and 15 (both ink-based rolled), and datasets 5 and 10 (both likely the same
scanner).
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Table 17.3: The most relevant accuracies are those achieved on test data. Best result is
marked in bold.

Input Classifier Feature
Selection

accdataset accmode acctech

Train Test Train Test Train Test

GLCM

Decision
Tree

none 100% 89.2% 100% 97.4% 100% 96.7%
PCA 100% 83.2% 100% 93.5% 100% 91.6%

Extra
Trees

none 100% 92.9% 100% 98.5% 100% 98.3%
PCA 100% 90.2% 100% 97.0% 100% 96.2%

Random
Forest

none 99.8% 93.2% 100% 98.6% 100% 98.4%
PCA 99.8% 91.1% 99.9% 97.0% 99.9% 96.4%

Logistic
Regression

none 100% 95.6% 100% 98.1% 100% 97.9%
PCA 84.3% 83.3% 94.9% 94.5% 93.6% 93.0%

K Nearest
Neighbors

none 92.8% 86.7% 98.1% 96.6% 97.4% 95.2%
PCA 92.6% 86.4% 98.0% 96.5% 97.3% 95.1%

Images CNN none 100% 94.7% 100% 99.7% 100% 99.5%

the most important aspect is the accuracy achieved for the test sets. The best result
of all evaluated approaches is achieved by the Logistic Regression: 95.6% of the
samples were classified correctly.

Some pairs of datasets were confused more often than others. Failures are made
by confusing samples from the two thermal/swipe datasets. Samples from both
datasets containing rolled fingerprints were also confused in some cases. Finally,
samples from datasets FVC2002D DB2 and FVC2006 DB2 often were also mis-
classified. Actually, both datasets were acquired with scanners from the same
manufacturer. It is likely, that the same scanner model or even the very same scan-
ner was used for acquisition. If so, the classifiers based their decision on additional
dataset biases, e.g. environmental influences.

All classifiers overfitted to the training data. All training data could be classified
almost perfectly by all classifiers. However, using the PCA for feature selection
did not work out well. In general, the accuracy achieved on the test data was lower,
when feature selection was applied before classification.

17.5 Conclusion
The dataset bias can be a challenge for any process, which has to deal with un-
known input data. We propose to exploit the database bias. If one can use the
dataset bias as a distinguishing property for the origin of a fingerprint sample, one
will be able to use this information to dispatch the sample to a process, which
is specialized on such inputs. Six classifiers to guess the origin of a fingerprint
were evaluated. Acquisition mode and acquisition technique were classified very
reliable. Fifteen datasets containing their individual dataset biases were tested for
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evaluation. Most of the conventional classifiers worked well out of the box: Ac-
curacy for the estimation was over 95%. The classification errors do not distribute
equally among the different classes. While most of the datasets were distinguished
reliably by the classifiers, some are harder to be distinguished. The CNN based
approach and the conventional approaches performed similar.
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Chapter 18

Conclusion on Efficient
Processing Structures

This Part IV is dedicated to answer the research question RQ3 "Can DL provide
solutions for efficient processing structures?" There are many aspects in a finger-
print recognition system to improve on. The most central aspects here may be
Fingerprint Indexing, as it has significant impact on biometric performance and
speed. A survey provides an overview about a hundred different approaches for
Fingerprint Indexing. DL-based approach DIMI performs competitive to state of
the art approach MCC. DIMI even outperformed MCC at benchmark framework
FVC-ongoing with respect to the metric IS representing the average candidate list
length. Compared to MCC, DIMI reduces the IS rate from 1.21% to 0.72% for test
FIDX-10K and from 0.95% to 0.75% for test FIDX-50K respectively. This allows
to increase the throughput in the incremental search scenario, while keeping the
recognition accuracy. DL can therefore be considered at a competitive alternative
to hand-crafted approaches in Fingerprint Indexing.

CNNs are very versatile. Application of DL to further aspects in fingerprint recog-
nition systems was demonstrated as well. They can be used to learn a rotational
alignment as well as to estimate the data origin of fingerprint samples.

The findings for fingerprint alignment, data origin estimation, and especially for
pre-selection algorithms, yield an enormous potential of Deep Learning Thus, it
can be concluded with respect to the research question RQ3, that DL can provide
manifold improvements on the efficient processing in fingerprint recognition sys-
tems.
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Part V

Conclusion on Deep Learning for
Fingerprint Recognition Systems
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The research of this thesis had the following objective:

"Comparison of hand-crafting and Deep Learning approaches in fingerprint re-
cognition"

This research frame is very general and wide. Thus, three more specific research
questions were stated, which address prominent challenges and fingerprint recog-
nition and therefore allow fulfilling the more general research objective:

RQ1 "Can DL outperform classical fingerprint sample enhancements?"

RQ2 "Can DL be used for a better orientation field estimation?"

RQ3 "Can DL provide solutions for efficient processing structures?"

Fingerprint sample enhancement can improve the biometric utility of fingerprint
samples significantly. DL-based enhancement even improves the performance on
latent fingerprint samples, which can be considered most challenging. CNNs can
even be trained directly to improve biometric feature extraction with respect to
reliability and accuracy. Thus, DL allows to tailor an enhancement to the envir-
onments of data and feature extraction. For some types of data, DL-based ap-
proaches already outperform hand-crafted approaches. For other environments,
simple hand-crafted approaches work better. Thus, there seems to be no solution
yet, which works best for all kind of data. Application of DL shall be therefore
considered carefully. But with respect to research question RQ1 one can con-
clude from the findings of this thesis and parallel developments, that DL-based
approaches are currently superior over hand-crafted approaches especially in the
most challenging environments.

The orientation field is a coarse representation of a fingerprint. Estimations of ori-
entation fields need to be reliable and accurate, because they are relevant for many
processes in biometric feature extraction and biometric comparison. Results of
DL-based approaches at independent benchmark framework FVC-ongoing yield
superiority of those approaches over hand-crafted approaches. The currently best
approach DEX-OF is state of the art in fingerprint orientation field estimation. It
already performs close to reasonable boundaries of performance, which is lim-
ited by the accuracy of mark-ups used as ground truth for evaluation. Thus, one
can conclude with respect to research question RQ2, that DL-based approaches
currently outperform hand-crafted approaches for fingerprint orientation field es-
timation.

Three fields of application were evaluated in this thesis: Fingerprint Indexing,
alignment, and data origin estimation. The indexing approach developed in this
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thesis (DIMI) performs well at independent benchmark framework FVC-ongoing.
DIMI can be considered state of the art for Fingerprint Indexing besides MCC.
DL-based approaches for fingerprint alignment achieved promising results. DL-
based approaches can also be used for data origin estimation. But there are no
significant differences in performance compared to hand-crafted approaches. The
findings with respect to research question RQ3 allow conclusion, that DL-based
approaches can provide improvements to many aspects of efficiency in fingerprint
recognition systems.

Finally, one can conclude with respect to the main research objective, that there are
many aspects, in which DL already outperforms hand-crafted approaches. Thus,
DL can be considered current state of the art for fingerprint orientation field es-
timation and Fingerprint Indexing. DL was applied to several more aspects, which
yield new alternative solutions to hand-crafted approaches. However, DL did not
always perform best and in some cases hand-crafted approaches may still be the
more appropriate solution.
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