
Master of Science in Communication Technology
June 2011
Peter Herrmann, ITEM
Frank Kraemer, ITEM

Submission date:
Supervisor:
Co-supervisor: 

Norwegian University of Science and Technology
Department of Telematics

Engineering Responsive Mobile
Applications for Android from Reusable
Building Blocks

Geir Sagberg





Problem Description

Student: Geir Sagberg

One quality mark of mobile applications is their responsiveness, that is, how a user
perceives that the application accepts feedback and reacts to events. Another as-
pect is how these applications are integrated within the system’s application life
cycle, so that there is a good balance between what they have to do in the back-
ground, the attention they require from the user and their resource consumption.

In this thesis, we want to study how Arctis can contribute to build applications
that are responsive and that integrate well with the application life cycle model
of Android. As basis, an existing voice communication application should be
improved and extended. The focus not only lies on the quality of the resulting
application with respect to responsiveness and its integration into the operating
system, but also the quality of the specifications and how well they can be reused
in other applications.

Assignment given: 17.01.2011

Supervisor: Peter Herrmann, Professor, ITEM

Co-supervisor: Frank Alexander Kraemer, Ph.D., ITEM





Abstract

This report describes the continued design and development of an instant voice
communication application for Android, with specific focus on creating a highly
responsive, stable application that is intuitive to use and integrates well with
the Android environment. Existing building blocks have been redesigned with
cleaner layouts and smaller state spaces, and new reusable blocks have been added.
Techniques and principles for optimizing an application for responsiveness will be
presented, along with specific measures for Android and Arctis. Another goal has
been to create the first Arctis application to be released on the Android market.

As a part of the design process, we have researched the development of Android
services in Arctis. All service implementation variants have been examined, and
the available patterns for communicating between a foreground activity and a
background service have been analyzed and compared. The result is a general de-
velopment methodology for creating a single Android application from two Arctis
system models representing a background service and a foreground user interface,
with the necessary Arctis modifications included.

i



ii



Preface

This report documents the results of my work in the course TTM4905 - Network
and Services, Master Thesis, during the spring semester of 2011. The thesis
is the final part of the Master’s degree program in Communication Technology
at the Department of Telematics (ITEM), Norwegian University of Science and
Technology (NTNU).

I would like to thank my supervisor Peter Herrmann, and my co-supervisor Frank
Alexander Kraemer for invaluable guidance, quick e-mail assistance and regular
updates to Arctis.

Geir Sagberg,

Trondheim, 20th June 2011

iii



iv



Contents

1 Introduction 1

1.1 Application Overview . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Application Use Case Scenarios . . . . . . . . . . . . . . . 3

1.2 Separation of Functionality . . . . . . . . . . . . . . . . . . . . . . 5

1.3 New Building Blocks Developed . . . . . . . . . . . . . . . . . . . 5

1.3.1 Additions To Arctis Android Library . . . . . . . . . . . . 7

1.3.2 Development Environment . . . . . . . . . . . . . . . . . . 8

2 Background 9

2.1 Building Responsive Applications . . . . . . . . . . . . . . . . . . 9

2.1.1 Techniques for Improving Responsiveness . . . . . . . . . . 10

2.1.2 Responsiveness in Arctis . . . . . . . . . . . . . . . . . . . 14

2.2 The Android Application Framework . . . . . . . . . . . . . . . . 15

2.2.1 Application Components . . . . . . . . . . . . . . . . . . . 16

2.2.2 Service Implementation and Communication . . . . . . . . 17

2.2.3 Best Practices for Seamlessness . . . . . . . . . . . . . . . 18

2.3 Instant Voice Messenger (Version 1) . . . . . . . . . . . . . . . . . 20

2.3.1 Main Version Differences . . . . . . . . . . . . . . . . . . . 22

v



3 Android Services in Arctis 25

3.1 From Activity to Service . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Communication Models and Prototypes . . . . . . . . . . . . . . . 27

3.2.1 Static Methods and Arctis Signals . . . . . . . . . . . . . . 27

3.2.2 Broadcasting Intents . . . . . . . . . . . . . . . . . . . . . 30

3.2.3 Bound Services and Arctis . . . . . . . . . . . . . . . . . . 30

3.2.4 Running the Service in Foreground Mode . . . . . . . . . . 33

3.3 Service Development Summary . . . . . . . . . . . . . . . . . . . 34

3.3.1 Automation of Service Creation and Merging . . . . . . . . 35

4 Foreground Application 37

4.1 Separation of Functionality . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Main Application Model Overview . . . . . . . . . . . . . . . . . 38

4.2.1 Sender 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Contacts UI 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 To Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5 General Optimizations . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5.1 State Space and Code Measurements . . . . . . . . . . . . 46

5 Background Service 47

5.1 Main Service Model Overview . . . . . . . . . . . . . . . . . . . . 47

5.2 XMPP Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2.1 XMPP Client 5 . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2.2 XMPP Gateway . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Message Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3.1 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3.2 Play Message . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3.3 Save Message . . . . . . . . . . . . . . . . . . . . . . . . . 55

vi



5.4 To GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.5 Areas of Improvement . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5.1 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5.2 RTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Conclusion 61

Bibliography 61

vii



viii



List of Figures

1.1 Illustrations of the four Messenger scenarios . . . . . . . . . . . . 4

2.1 “Application Not Responding” dialog from [14] . . . . . . . . . . . 11

2.2 “Application stopped unexpectedly” dialog from [14] . . . . . . . . 13

2.3 Indeterminate progress dialog . . . . . . . . . . . . . . . . . . . . 14

2.4 Progress Dialog 3 in action . . . . . . . . . . . . . . . . . . . . . . 15

2.5 The “back stack”. Opening new activities puts them on the stack,
pressing “Back” pops them. Taken from [23]. . . . . . . . . . . . . 19

2.6 User interface of InVoMe . . . . . . . . . . . . . . . . . . . . . . . 20

2.7 Internal behaviour of InVoMe . . . . . . . . . . . . . . . . . . . . 21

3.1 Simple Service Test application . . . . . . . . . . . . . . . . . . . 26

3.2 Internal behaviour of Signal Test application . . . . . . . . . . . . 29

3.3 Internal behaviour of Intent Test application . . . . . . . . . . . . 31

3.4 Intent Test screenshot . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Service Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Internal behaviour of the user interface part of NTNU Instant Voice
Messenger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Sender 2 behaviour and ESM . . . . . . . . . . . . . . . . . . . . 41

4.3 Contacts UI 2 behaviour and ESM . . . . . . . . . . . . . . . . . 43

4.4 Contacts UI 2 user interface . . . . . . . . . . . . . . . . . . . . . 44

4.5 Internal behaviour of To Service . . . . . . . . . . . . . . . . . . . 45

ix



5.1 Internal behaviour of the background service part of NTNU Instant
Voice Messenger . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 State diagram of Simple Mutex . . . . . . . . . . . . . . . . . . . 49

5.3 XMPP behaviour and ESM . . . . . . . . . . . . . . . . . . . . . 51

5.4 Internal behaviour of XMPP Client 5 . . . . . . . . . . . . . . . . 52

5.5 Internal behaviour of XMPP Gateway . . . . . . . . . . . . . . . 53

5.6 Receiver and RTP Receiver 3 behaviour and ESM . . . . . . . . . 54

5.7 Play Message and Play Audio 3 behaviour and ESM . . . . . . . 56

5.8 Save Message and Write File behaviour and ESM . . . . . . . . . 57

5.9 Internal behaviour of To GUI . . . . . . . . . . . . . . . . . . . . 58

x



List of Tables

3.1 Comparison of activity - service communication models, summa-
rized from Chapter 2.2.2 . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 State space comparison of old and new blocks . . . . . . . . . . . 46

xi



xii



Acronyms

AIDL Android Interface Design Language

ALC Activity Life Cycle

ANR Application Not Responding

API Application Programmable Interface

InVoMe Instant Voice Messenger

ESM External State Machine

GUI Graphical User Interface

OS Operating System

RPC Remote Procedure Call

RTP Real-time Transport Protocol

UI User Interface

VM Virtual Machine

XML Extensible Markup Language

XMPP Extensible Messaging and Presence Protocol

xiii



xiv



Chapter 1

Introduction

Mobile phones and devices have grown drastically in power and versatility over the
last decade. Advances in technology give better hardware, which in turn support a
wider range of software and applications. The move from device-specific operating
systems to common platforms such as Symbian [1], Android [2] and iOS [3] has
also laid the ground for “the app revolution”: thousands of free and inexpensive
lightweight applications available from the online application stores, with more
added daily.

For an application to be successful, it needs to feel stable and responsive to users.
Applications that crash, or cause the user interface to freeze, are perceived as
bad or unfinished software, and will usually provoke low ratings in the app stores.
Furthermore, even though an application may not crash or freeze, it might still
misbehave and use more than its fair share of the device resources, lowering battery
life and causing the rest of the system to appear unresponsive.

The focus of this report is the continued development of the Instant Voice Mes-
senger (InVoMe) application detailed in [4], re-branded as NTNU Instant Voice
Messenger. As with InVoMe, the application is developed using the Arctis mod-
eling framework [5], and the new and updated building blocks will be shown and
explained.

Special care has been given to producing a highly responsive and well-behaved
application. Nearly every existing building block has been redesigned with fo-
cus on a cleaner state space, graceful error handling and well-defined behaviour.
We have researched principles and techniques for creating a responsive, seamless
and intuitive user experience, and applied this knowledge to every aspect of our
application.

1



This is also the first Android application developed in Arctis with interaction
between a foreground user interface and a background service. As such, the de-
velopment of an Android Service in Arctis will be analyzed and generalized for
use in other projects.

1.1 Application Overview

NTNU Instant Voice Messenger is a stable and responsive communication applica-
tion for Android. It is based on the Instant Voice Messenger (InVoMe) application
developed in my project thesis [4], improved with a two-part architecture consist-
ing of a foreground user interface and a background service, and extended with
new features.

• Enables recording and streaming of voice audio messages between Android
terminals

• Uses an existing Google account (GMail) and contact list

• Color-coded presence - available, busy, away or unavailable

• Can receive messages while running in the background

• Messages received when busy are automatically stored for later playback

• Supports text chat and email with any Google Talk contact

The application opens with a login screen, where the user can enter their GMail
credentials. After logging in, the user’s contacts are shown, with color-coded
presence and notifications for voice-compatible contacts and stored messages.

Selecting a contact displays the choices available for that contact, depending on
their status. The application can be closed by pressing “Back” on the handset,
while the service continues running in the background. The user can log off either
by pressing “Menu” -> “Disconnect”, or by selecting the service notification in the
status bar.

2



On the Internet

NTNU Instant Voice Messenger is the first application developed in Arctis to be
published at the Android Market [6]. A demonstration video can be found at the
Arctis page on Vimeo [7]. The source code of the application can be found at the
Arctis github page [8], though access is restricted to members of the Arctis group.

1.1.1 Application Use Case Scenarios

The following scenarios illustrate the different uses of the Messenger application.
Figure 1.1 illustrates the scenarios with screenshots, although the names differ
from the ones in the scenarios.

Real-Time Voice Messaging John and James are working on a project from
two separate locations, both running the Messenger application. John finds a bug,
and sends a voice message to James asking him to fix it. James instantly receives
the message, fixes the bug, and sends a voice message back to confirm.

Asynchronous Voice Messaging John is at home and discovers there is no
more milk. He sends a voice message to his room mate Mary, asking her to pick
up some milk on her way home from work. Mary is currently in a meeting, so
the message is stored for later, and a discreet notification is shown on her phone.
When she exits the meeting, she plays the voice message from John, and picks up
milk on the way home.

Text Chatting John is lonely, and wants to chat with someone. He opens the
Messenger application and browses his Google contacts. He finds Peter is online,
but not currently using a voice-compatible client. John initiates a text chat, which
opens in the Google Talk application for both John and Peter. They chat by text,
and John is no longer lonely.

Email John and James are still working on the project, eagerly passing voice
messages back and forth. James then has to leave, and logs off the Messenger
application. John finds a new bug in James’s code. Seeing James is no longer
online, John uses the application to start an email, detailing the bug he has found.

3



(a) Real-time voice messaging

(b) Asynchronous voice messaging

(c) Text chatting

(d) Email

Figure 1.1: Illustrations of the four Messenger scenarios

4



The next time James checks his email, he finds the message from John, and fixes
the bug.

1.2 Separation of Functionality

The first version, InVoMe, could only receive voice messages while the application
activity was running. While the activity could run in the background by pressing
“Home”, there was no way to see if the application was still running, and it might
be closed at any time by Android, to save resources.

To provide a more stable user experience, the application functionality was split
in two: a background service containing the XMPP connection to the Google Talk
server, the RTP receiver and the audio playback functionality, and a foreground
application providing a graphical user interface, audio recording and RTP sender
functionality.

The two parts run in separate processes, and communicate by broadcasting An-
droid Intents. By default, any application can listen to broadcasted intents, but as
we need to protect sensitive information like the user’s Google account name and
password, the intents contain signature permission restrictions - only applications
signed using the same developer certificate can listen for the intents.

In order to run an application created with Arctis as a service, we had to develop a
wrapper class that inherits from the Service class, and replace the existing wrapper
class that inherits from the Activity class. In addition, we found that special
measures must be taken when the project is generated, to merge the foreground
application and the background service into a single Android application. This
process will be examined in Chapter 3.

1.3 New Building Blocks Developed

During the development of NTNU Instant Voice Messenger, some blocks from
the last version were reused, others were modified, and several new blocks were
created. This section will give an overview of the new libraries and blocks used in
the application, as well as prototypes and test applications. An overview of the
blocks used in the previous version can be found in [4, Ch 1.2], a summary will
also be given in 2.3.

5



Every following block has been analyzed by Arctis, and most blocks have no
issues. Where a block has issues, this will be commented in the relevant chapter.
External State Machines (ESM) for the most important blocks will be shown in
their respective chapters and sections.

Audio Contains blocks for playing and recording audio. A new reusable block,
Play Audio 3, was added. This block is updated to automatically stop playing
when it reaches the end of the input stream.

File Contains the reusable blocks Read File and Write File, used for reading
and writing files to and from the file system.

InVoMe 2 The main library for the application, contains mostly application-
specific blocks, but also a few reusable, generic blocks. The most important blocks
are:

Contacts UI 2 The redesigned user interface block, responsible for displaying the
contact list and updates, and handling input from the user. See Chap-
ter 4.3 for details.

InVoMe Service The system block representing the background service part of
the Messenger application. Examined in detail in Chapter 5.

NTNU Instant Voice Messenger The system block modeling the foreground inter-
face part of the Messenger application. Examined in detail in Chapter
4.

Notification 3 A generic block for sending Android notifications.

Play Message Wrapper around Play Audio 3, plays back a specific voice message.

Receiver Uses the RTP Receiver 3 block to listen for incoming voice messages.
Also keeps a mapping between user names and IP addresses, for saving
messages with their related user name.

Save Message Uses Write File to store a specific voice message to SD card.

Sender 2 Uses Audio RTP Send 2 to send a voice message to a given contact.
Also displays a “Sending...” dialog.

6



Service Controller Generic block used in a system block representing a service,
to start the service in either foreground or background mode. See
Chapter 3 for details.

XMPP A wrapper around XMPP Client 5 and XMPP Gateway.

XMPP Gateway A redesign of Voice Support in InVoMe, translating between
XMPP-specific objects and generic objects, for contact and presence
updates, etc.

RTP Contains blocks for sending and receiving data over RTP [9]. Two new
blocks were added, RTP Sender 3 and RTP Receiver 3. These blocks add “end-
of-stream”-recognition, as well as timeout support. RTP Receiver 3 supports
simultaneous reception from several participants, creating a new input stream for
each participant. Blocks for signaling over RTCP were also prototyped, but not
used in the final application.

Service Contains application prototypes for running an application created with
Arctis as an Android Service, and several versions of test applications for different
types of foreground-background communication. See Chapter 3 for details.

XMPP Contains generic blocks for connecting to an XMPP [10] server. XMPP
Client 5 has been added, designed for improved stability by eliminating blocking
transitions and reducing the number of states from earlier versions.

1.3.1 Additions To Arctis Android Library

The following blocks were created and added to the Arctis Android Library during
development:

ALC 5 A new version of the Activity Life Cycle (ALC) block, with a cleaner
layout and smaller state space.

Broadcast Receiver 2 A broadcast receiver that can listen for multiple intents
instead of just one.

CancelableButtonDialog A one-button dialog that can be dismissed without the
user pressing the button.

7



Progress Dialog 3 A dialog showing an updatable progress bar.

1.3.2 Development Environment

Development was done in Eclipse Classic 3.6.2 (Helios) on Windows 7 and Mac
OS X Snow Leopard, using the regularly updated Arctis plug-in alpha (latest
version 1.0.0.M0450) and Android Developer Tools plug-in for Eclipse, version
10.0.1. Subclipse v1.6 and Git v1.7.5 were used for version control. Application
testing was performed with a HTC Desire and a HTC Hero, both running Android
2.2.

8



Chapter 2

Background

This chapter will provide a short introduction to relevant technologies and con-
cepts. A basic knowledge of the Android operating system and the Arctis frame-
work is recommended; [2] provides a short introduction to Android, and documen-
tation for Arctis can be found in [11], or at the Arctis homepage [5]. For specific
details regarding the implementation of the Android activity life cycle in Arctis,
see [12].

We will define the concept of responsiveness and present techniques for improving
the responsiveness of an Android application, including Arctis-specific measures.
The Android application architecture will be detailed and explained, and the
InVoMe application developed in [4] will be introduced.

The RTP and XMPP protocols and the respective APIs used will not be described
here; a thorough description can be found in [4, Ch 2].

2.1 Building Responsive Applications

Mobile devices such as smartphones are mostly used “on the go”, when one is
away from a laptop or desktop computer. The user does not expect to be able
to perform the same tasks as on a PC, but the tasks they do expect to perform,
they want to perform as smoothly and effectively as possible.

A major aspect of the user experience on a mobile device is how responsive the
device and application seems. For our purpose, responsiveness can be defined as
an application’s ability to respond to the user’s input in a timely and expected

9



fashion, without stuttering or freezing. For user input, three important response
time limits can be recognized [13, Ch 5.5]:

Instantaneous response: < 100 ms For input reactions to appear instanta-
neous, they should happen no more than 100 ms after the input event. Any
higher delays will be noticeable by the user, and the UI will no longer feel
“snappy”.

Seamless operation: < 1 second Once an operation takes longer than about
a second to complete, the user’s flow of thought is interrupted and visual
feedback should be provided, e.g. a progress dialog, to keep the user’s at-
tention.

Attention limit: < 10 seconds If an operation takes longer than 10 seconds,
the user will likely have lost their attention to the task at hand. Visual
feedback showing percentage or time remaining should be provided, and the
user should be given an option to cancel the operation or switch to a different
task.

2.1.1 Techniques for Improving Responsiveness

To improve responsiveness in an Android application, there are a number of mea-
sures that can be taken:

Separate Threads for Blocking Operations

In Android, the user interface runs in a single thread, and a common development
mistake is to perform heavy operations or network calls directly in this thread.
This will block the thread from updating the user interface or responding to user
input, and if the UI thread is blocked for more than 5 seconds, the Android OS
will kick in and display the “Application Not Responding” (ANR) dialog (Figure
2.1), giving the user an option to force close the application [14].

To prevent an ANR, there are several options, all of which involve moving the
blocking calculations and methods to a separate thread or process:

Thread The simplest approach for avoiding blocking the user interface is to cre-
ate a new Thread [15], and handle calculations there. Threads can be given

10



Figure 2.1: “Application Not Responding” dialog from [14]

different priorities according to their importance, e.g. a thread for recording
audio should be given higher priority than a thread doing database index-
ing in the background. Communication with the main thread can be done
via static methods and variables, but this can cause concurrency problems
(deadlocks, inconsistent data) if not done carefully. To avoid concurrency
issues, communication can be done via a Message sent to a Handler running
in the main thread.

AsyncTask Android provides the AsyncTask class specifically for asynchronous
operations that work on a set of data in the background, producing contin-
uous updates and/or a final result. This class is not used in our application
and will not be mentioned further, however an example can be found at [16].

Service A service can run in a separate process from the main activity, and is
suited for more complex functionality such as recording or playing audio,
handling network connections or performing physics calculations. Note that
a service running in the main process uses the main thread, and must create
new threads to handle blocking operations.

Asynchronous Screen Updates

When presenting large amounts of data, or data arriving over a network connec-
tion, it may be tempting to wait until all the data has been loaded into memory

11



before displaying it on screen. However, usually the user will want some kind of
result as soon as possible; this can be done by handling data loading in a separate
thread with updates continually sent to the GUI thread. In this way the user
interface will still remain responsive, and information will be available to the user
at the earliest possible moment.

In Android only the main thread may directly access the screen element objects,
so any updates to the screen must either be wrapped in a Runnable block and
started with activity.runOnUiThread(Runnable r) or handler.post(Runnable r), or
sent as data in a Message to a Handler running in the main thread.

Control Element Feedback

In the real world, when we press a button or handle mechanical equipment, we
can immediately feel that something happens; buttons are physically depressed,
levers are pulled etc. When clicking or touching icons and buttons on a screen,
if we do not get some kind of response, it is hard to know whether our actions
actually had an effect. By adding simple feedback, such as blinking a button
when pressed or vibrating the device, we acknowledge the user’s input, and fulfill
their immediate expectations. This may even be enough to keep the user interface
feeling responsive even if the subsequent reaction takes longer than 100 ms.

In Android, most controls have visual feedback built-in, and haptic vibration
feedback can be added with the XML attribute android:hapticFeedbackEnabled
and calling the method aView.performHapticFeedback().

Graceful Handling of Runtime Errors

Coding errors can cause infinite loops or deadlocks, eventually bringing about the
ANR dialog in Figure 2.1. However, coding errors can also cause runtime excep-
tions, and if not caught they will prompt an “Application stopped unexpectedly”
dialog (Figure 2.2), forcing the user to close the application.

Runtime errors can be hard to anticipate and debug, but the API documentation
may give an overview of possible thrown exceptions. If it is known that a method
call may throw a runtime exception, it is better to wrap the call in a try/catch
block, and present an error message to the user in a graceful way, ideally allowing
continued operation of the application rather than forcing a close.

12



Figure 2.2: “Application stopped unexpectedly” dialog from [14]

Time and Percentage Feedback of Long-Running Operations

When an operation runs for an extended amount of time, if no indication of
progress is shown, the user might get the impression that the application is stuck.
For operations where the size of the data is known, percentage can be easily
calculated. Android provides a ProgressDialog [17] with a bar that is updated as
the operation proceeds. Time remaining can be calculated by timing the operation
and extrapolating, adjusting for variable speed if need be.

For operations of unknown size or time, ProgressDialog can also be shown as an
indeterminate animated symbol, as in Figure 2.3. If the operation has multiple
stages, the dialog can be updated with descriptions, e.g. “connecting...”, “authen-
ticating...”, “loading contacts...”. In this way, the user is reassured that something
is actually happening, and will hopefully endure the waiting.

Cancelable Operations

If an operation takes too long time, the user might decide that it is not worth it,
and may want to abort the operation. All Android phones have a “Back”-button,
which always should cancel the current activity and return the user to their previ-
ous activity. If the user attempts to cancel a long-running operation and nothing
happens, the application will seem unresponsive. To correctly handle cancella-

13



Figure 2.3: Indeterminate progress dialog

tions, the dialog can be made cancelable and assigned an OnCancelListener, with
logic for stopping the operation gracefully.

2.1.2 Responsiveness in Arctis

Arctis uses a background thread for running the runtime scheduler, and will nor-
mally not block the UI thread. However, building blocks can use the method
getHandler().post(aRunnable) to run code on the main thread, e.g. for displaying
dialogs. In this case, the same care must be taken as with regular code running
on the main thread.

Since every state machine transition in Arctis is handled by a single runtime
scheduler thread, blocking operations should be wrapped in runnables and run in
separate threads, to avoid lost transitions and blocking functionality.

Runtime errors in Arctis are caught by the runtime scheduler and displayed in
the Arctis Logger. However, to avoid disrupting the user with error notifications,
building blocks should anticipate runtime errors when possible and provide output
pins with Exception objects, so runtime errors may be handled as part of the
program flow and subjected to automatic analysis.

14



Figure 2.4: Progress Dialog 3 in action

For progress feedback, the Arctis Android Library contains progress dialog blocks
usable in any Android application. The blocks Progress Dialog 1 and Progress Di-
alog 2 show an indeterminate spinning progress wheel. Progress Dialog 3 (Figure
2.4) was developed during this project but not used in the application. It shows
a determinate progress bar that can be updated via a setProgress-pin.

Creating cancelable building blocks is as simple as implementing an OnCancelLis-
tener for the UI element in question, and sending a signal to the Arctis model so
a cancel -pin can be triggered. Every UI block used in our Messenger application
has been made cancelable.

2.2 The Android Application Framework

To create a responsive and well-behaved Android application, a certain under-
standing of the Android operating system and application structure is needed.
We will now provide an overview of the components of an application, with a
deeper look into services and communication between a foreground activity and a
background service. Lastly, we will present best practices for seamless integration
with the Android environment.

15



2.2.1 Application Components

Android applications consist of four different components: Activities, Services,
BroadcastReceivers and ContentResolvers. We will briefly explain all of them
except content resolvers, which are not used in our application. A more thorough
description of each component can be found in [18].

Activity Every screen the user sees is part of an activity. Activities have a set of
Views (text, images, buttons etc.) and usually take some form of input from
the user. Activities may start other activities, services or broadcast receivers.
Not to be confused with UML activities such as the models used in Arctis.
The latter will, to avoid confusion, be referred to as Arctis applications,
building blocks, or simply models.

Service Services run in the background, hidden from the user. They can be used
to perform operations in the background (playing music, indexing files etc.)
or can be bound to perform specific method calls.

BroadcastReceiver Broadcast receivers listen for specific events (Intents), ei-
ther from the system, e.g. when a headset is plugged in, or custom events
sent from applications. Like activities and services, broadcast receivers can
be declared in the AndroidManifest.xml file [19], but they may also be reg-
istered from inside a service or an activity.

All components in an application run by default in a single Linux process with
its own private memory space. However, a component can be put in a separate
process by specifying a process name in AndroidManifest.xml. The component
will then run in a separate Dalvik virtual machine and can not share memory
(static variables, etc.) with the other components [18].

In addition to the main components above, our service implementation will make
use of the Notification and Handler classes:

Notification When an application wants to notify the user of something without
interrupting the current activity, it can use the Notification class to show a
message in the status bar, optionally with an action that is performed when
the notification is selected.

Handler The Handler class can be used for safe communication between threads
(and processes, if wrapped in a Messenger). Any class with a reference to a

16



handler can send messages to it, optionally with a Bundle of serializable or
parcelable data [20]. The messages will then be received in the context and
thread of the handler.

2.2.2 Service Implementation and Communication

A service can be implemented in several different fashions. It can be started once
and run indefinitely, or bound to an interface and automatically destroyed when
no longer needed. It can run locally - in the same process as the main activity,
or remotely - in a separate process. It can run in the background, hidden to the
user, or in the foreground with a compulsory notification displayed in the status
bar.

Started vs. Bound

A service started with context.startService() (“started service”) will run until it re-
ceives a finish() call, or until it is killed for memory. Several calls to startService()
will not create multiple instances, but the service’s onStartCommand()-method
is called every time. This can be used to pass data for background operations.
Started services are suitable for operations running independently of a user inter-
face, or operations that should continue after a main activity is closed.

A service started with bindService() (“bound service”) will return an IBinder in-
terface for remote method calls, and will only keep running as long there are
contexts bound to it. A service may be both started and bound, in which case
it will continue running even after the binding context is ended. To disallow the
binding of a service, the bindService()-method can simply return null. Bound
services are suited for client-server type interactions, and for services needed only
in the context of a user interface, e.g. a rendering engine.

Local vs. Remote

Local services bound with bindService() can create an extension of the Binder
class, e.g. MyBinder, so that the binding activity may cast the IBinder interface
to MyBinder and use its methods directly. A local service implementation is
simple and uses less memory than a remote service, as only one process is needed.

17



Bound services running in a separate process must either use the Messenger class
with a Handler to provide a message passing interface, or describe a full RPC
interface using the Android Interface Definition Language (AIDL) [21]. AIDL
should be used if multi-threaded operation is needed, but requires explicit thread
handling and may be overly complex for simple services.

When a remote service is started with startService(), communication can only be
done by passing data with intents, either with repeated calls to startService() or
by registering broadcast listeners at service and activity, and broadcasting intents
back and forth. When intents are broadcast, by default any receiver can listen
for them; if sensitive data is passed, the intents must be imprinted with signature
permissions, restricting reception to applications signed with the same developer
certificate.

Local services can also communicate by using singletons or accessing an activity’s
static variables, and vice versa. However, this will introduce global state to the
application and make testing harder. In a multi-threaded application, extra care
must be taken to make the static methods thread-safe, e.g. by not allowing the
method to change an object that may be accessed by several threads at once.

Background vs. Foreground

A service runs by default as a background service, and may be killed by the system
if memory is scarce. If it is important to keep the service running at all times, it
can be flagged as a foreground service, and a notification icon must be displayed
in the status bar to show that the service is running. A foreground service will
not be killed unless under extreme memory conditions.

2.2.3 Best Practices for Seamlessness

To provide a seamless user experience, certain guidelines should be followed when
creating applications [22]:

Avoid Popups Although it is possible to display dialogs and start activities
from background threads or services, doing so may interrupt the user’s current
task. Instead one may use a Notification which will be shown discreetly in the
status bar, and may contain an Intent for starting an activity. In this way, the
user may decide whether to leave their current task.

18



Figure 2.5: The “back stack”. Opening new activities puts them on the stack,
pressing “Back” pops them. Taken from [23].

Intuitive Navigation When the user makes a selection that causes a new dialog
or activity to appear, the view is added to the stack of the activities the user has
visited in the current task. By default, pressing “Back” causes the current activity
to pop from the stack, bringing back the previous activity (Figure 2.5). However,
it is possible to override this behaviour by remapping the back button or displaying
uncancelable dialogs. While this may be suitable in certain situations (e.g. using
the back button as a button in a game or displaying a dialog during an operation
that must not be canceled), as a rule it is better to preserve the default behaviour
to provide a seamless and intuitive user experience.

Persistent State Android supports multitasking, but in contrast to PCs, mo-
bile devices have limited memory and no swap support [24]. Therefore, when
the current activity needs more memory, background applications may be shut
down by the system. However, the user expects to be able to switch to a previous
task and continue where they left off; to this end, the Activity class provides the
methods onSaveInstanceState() and onRestoreInstanceState(). The methods are
called when an activity is about to be stopped or restored, respectively, and can
be overridden to store the current state of the application.

19



Figure 2.6: User interface of InVoMe

2.3 Instant Voice Messenger (Version 1)

Instant Voice Messenger (InVoMe) is the result of my project thesis in the fall
semester of 2010 [4]. It is a fully functional voice message application for Android,
designed with Arctis using reusable building blocks. The application uses the
XMPP protocol [10] for connecting to the Google Talk servers with an existing
Google account, and supports streaming of voice messages over RTP [9] between
InVoMe clients.

The application model is shown in Figure 2.7. It consists of the following main
blocks:

Contacts UI The main user interface, shown in Figure 2.6. Displays a list of the
user’s Google Talk contacts, with a microphone icon denoting voice message
compatible contacts.

XMPP Client 4 Handles the XMPP connection to the Google Talk servers, and
sends and receives roster and presence updates. Also supports text chat, but
this functionality is not used in InVoMe.

Voice Support Translates between XMPP-specific objects and the generic ob-
jects used in Contacts UI.

20



Figure 2.7: Internal behaviour of InVoMe

21



Audio RTP Send & Receive 2 These blocks send and receive voice messages
over RTP, respectively.

Two blocks from the Arctis Android Library, Login UI and OneButtonDialog 3
are also used.

2.3.1 Main Version Differences

Features All the features from the first version are kept in the current version.
In addition, when a voice message arrives when the client is busy - either already
receiving a message, or running in the background - it is cached by the application,
and may be played back at a later time. Chat and email functionality has been
added via Intents, launching the appropriate applications if installed on the device,
e.g. GMail or Google Talk.

Service InVoMe is modeled as a single system block, and runs on a single Arctis
runtime, in a single Android process. This architecture was chosen because of its
simplicity; no extra customization of Arctis is needed to produce the resulting
application. However, to conserve memory, the application may be automatically
shut down by the system as soon as it is no longer in the foreground. The current
version alleviates this by separating non-GUI functionality into a service, which
is given higher priority than background activities.

User Interface In InVoMe the login credentials have to be re-entered every
time; in the new version, the username and password can be saved for faster
startup. The contact list has been updated with wider rows, for easier selection.
A notification displaying number of stored messages is shown for each contact.
Selecting a contact no longer immediately starts a voice message, but instead
opens a dialog with options relevant for the state of the contact.

Performance and Concurrency The previous version suffered from a 10 sec-
ond delay when sending a voice message. We traced the delay to a concurrency
problem in the jlibrtp API [25], specifically RTPReceiverThread.java: When at-
tempting to get the socket address of the first DatagramPacket [26] arriving, the
thread would hang for about 10 seconds. We eliminated the delay by replacing
the following line:

22



part = new Participant((InetSocketAddress) packet.getSocketAddress(),

nullSocket, pkt.getSsrc());

with:

InetSocketAddress rtpSocket = new

InetSocketAddress(packet.getAddress().getHostAddress(),

packet.getPort());

part = new Participant(rtpSocket, nullSocket, pkt.getSsrc());

The delay is likely due to a deadlock somewhere, as all the methods of the Data-
gramPacket class are marked as synchronized, i.e. only one thread can access the
method at once. We have registered the bug and the suggested fix at the jlibrtp
SourceForge page [25].

Presence Updates In the previous version, presence updates were sometimes
lost when they arrived before the respective contact update; in the new version,
presence updates are stored and applied when the matching contact update ar-
rives.

23



24



Chapter 3

Android Services in Arctis

In this chapter we will examine how an Arctis application can be implemented
as an Android service, and how communication between a service and an activity
can be performed. The available communication models will be analyzed and
compared, test applications created during development will be shown, and a
general development methodology for creating Android Services using Arctis will
be presented.

As a result of our experiments we have discovered that when merging two Arctis
applications - a foreground activity and a background service - the service must
run as a separate process to avoid Arctis runtime collisions. For our Messenger
application we have chosen to communicate by passing Intents to BroadcastRe-
ceivers, as this was both easy to implement and visualize, and fits well with the
Android application environment.

3.1 From Activity to Service

When an Arctis application is implemented, state machine code is generated and
a wrapper activity, Start, is set as the Android launch activity. When the ap-
plication is started on an Android device, the Start activity creates the runtime
scheduler that processes the generated state machine code.

We wanted to run the application as a service instead, so we decided to modify
the implementation procedure and create some prototypes for testing. As a first
step we wanted to create a proof of concept that a compiled Arctis application
can run as a service instead of an activity.

25



Figure 3.1: Simple Service Test application

The Start wrapper runs as an activity because it inherits from GeneralStartActiv-
ity3, which inherits from Activity and is part of the Arctis runtime package. We
created a new class, GeneralStartService, which inherits from Service instead.

GeneralStartService adapts the functionality of GeneralStartActivity3 to the life
cycle of a service, starting the scheduler in onStartCommand() rather than on-
Create(). Setup of the static Arctis Logger was removed to avoid collisions when
running the service locally with another Arctis application (as we later discovered,
only remote services are compatible with Arctis, so the Android Logger may be
re-added at a later date). We later added functionality for running the service in
foreground mode, this will be covered in Section 3.2.4.

To test the service implementation we created a simple application called Simple
Service Test, shown in Figure 3.1. The application starts a timer that increments
a counter every second. Every tenth second, a toast is shown with the current
counter value.

The code was generated, Start was edited to inherit from GeneralStartService,
and the application was tested and found to be working.

26



3.2 Communication Models and Prototypes

Once we had a working generated service, the next step was to start a service
from within another Arctis application, and select a way to communicate between
activity and service. Table 3.1 summarizes the communication models from Chap-
ter 2.2.2, showing the service implementations they apply to, with advantages and
disadvantages.

3.2.1 Static Methods and Arctis Signals

For our first test application, we wanted to examine the possibility of communicat-
ing between foreground activity and background service by using Arctis signals,
as an extension of the static method communication model. The idea was to start
the service locally with startService(), exchange block IDs, and send signals with
AbstractRuntime.getRuntime(blockID).sendToBlock(blockID, signal, data).

The service would send a signal containing a random message to the foreground
activity every second, and the foreground activity would print the message to
screen. The models for the foreground and background can be seen in Figure 3.2,
wrapped in building blocks so they can use AndroidBlock ’s method getContext()
and access the blockID field.

In order to run the application, a few extra steps were needed: merging the
two generated Arctis applications, editing the service Start class to inherit from
GeneralStartService and adding it to the Android manifest. The merging was done
by simply copying all code from the background project to the foreground project,
without overwriting. Our background application did not have any extra tags or
other resources, else these would have to be added manually in the foreground
project Android manifest.

When we ran the application, we found signals were being delivered to the wrong
state machines. After some debugging, we found the problem was due to both run-
times using the same memory space. Arctis uses several static fields and methods,
specifically a static Hashtable in AbstractRuntime, instances. The table instances
holds mappings from every block’s blockID to the runtime it belongs to. However,
each block ID is only unique per Arctis application, so when two runtimes each
register mappings from their blocks to their runtime, the latter mappings will over-
write the first ones. This caused our background service runtime to receive signals
meant for the foreground runtime, invoking “UNKNOWN TRIGGER”-errors.

27



Table 3.1: Comparison of activity - service communication models, summarized
from Chapter 2.2.2

Communication
model

Service
prerequisites

Advantages Disadvantages

Static methods and
variables, singletons

- Local only
- Started or
bound

- Easy to implement - Introduces global
state

Binder-based
interface

- Local only
- Started or
bound

- Object-oriented - None

Intents passed with
startService()

- Local or
remote
- Started only

- Easy to implement - One-way
communication only
- Data must be
serializable or
parcelable

Broadcast intents to
BroadcastReceivers

- Local or
remote
- Started or
bound

- Allows two-way
communication

- Requires signature
permissions to be
secure
- Data must be
serializable or
parcelable

Messenger-based
interface

- Local or
remote
- Bound only

- Less complex than
AIDL

- Unsuitable for
multi-threaded
services
- Data must be
serializable or
parcelable

AIDL files - Local or
remote
- Bound only

- Supports
multi-threaded
services
- Provides direct
method RPC
interface

- Very complex
- Needs explicit
thread handling to
be safe
- Data must be
parcelable

28



(a) Foreground activity, uses Console UI to print messages from the back-
ground service

(b) Background service, sends a random message to the foreground activity every second

Figure 3.2: Internal behaviour of Signal Test application

29



3.2.2 Broadcasting Intents

It was clear that we had to use a communication model that supported remote
services. This narrowed the choice down to four options: passing intents with
startService(), broadcasting intents, using a Messenger interface or writing AIDL
files.

Passing intents with startService() is very easy to implement, but only works from
activity to service. Also, there is no way to access the received intent from within
an Arctis model, without modifying Arctis further. However, by using broadcast
receivers, we could pass intents back and forth between service and foreground
application, and this seemed a simpler solution than using a Messenger or AIDL
files.

We created a new application, Intent Test, which can be seen in Figure 3.3. The
Arctis Android Library already contained a Broadcast Receiver block, but it only
listened for intents matching a single action, so we created Broadcast Receiver 2,
which takes in an array of action strings. The block is used in Intent Test FG
Wrapper, while in Intent Test BG Wrapper a broadcast receiver is created directly
in code, in the started()-operation. Creating the receiver directly in code makes
it harder to visualize the program flow, but makes it possible to unregister the
receiver from code, which may be suitable in models where the event flow is too
complicated to easily stop a receiver block.

In order to avoid the shared memory space problem encountered earlier, we added
the XML attribute android:process=“:service” to the service in AndroidMani-
fest.xml. This makes the service run in a separate process with its own memory
space. The process name is arbitrary, but the“:” appends the name to the package
declared in the manifest, and must be included to make the service private.

The application was started and found to be working, displaying incoming mes-
sages on the screen as they arrived from the service (Figure 3.4). Because of the
ease of implementation of this solution, and because it could be done using a
building block from the Arctis Android Library, we selected this communication
model for use in our Voice Messenger application.

3.2.3 Bound Services and Arctis

The GeneralStartService class we have created returns null in its onBind()-method,
and can not be used for bound services. However, while the complexity of full

30



(a) Foreground activity, uses Console UI to print messages from
the background service

(b) Background service, sends a random message to the foreground activity every
second

Figure 3.3: Internal behaviour of Intent Test application

31



Figure 3.4: Intent Test screenshot

AIDL files would prove a difficult implementation challenge in Arctis, using a Mes-
senger -based bound service with Arctis should only require a few modifications:

• A new block must be created, Service Messenger, which contains a Mes-
senger implementation that passes all received messages out through a re-
ceivedMessage-pin.

– The messenger must be added to Arctis’ runtime context with Abstrac-
tRuntime.getRuntime(blockID).addContext(“Messenger”, messenger).

• GeneralStartService must be modified in the following ways:

– An instance of the Messenger class must be created, containing a Han-
dler which passes messages on to the messenger registered in the run-
time context.

– The method onBind() must return the messenger as an IBinder, by
calling messenger.getBinder().

• When the foreground application binds the service, it must cast the received
IBinder to a Messenger in order to send messages.

– If the foreground wants a reply to a message, it must implement its
own messenger and pass it as the field message.replyTo.

32



Figure 3.5: Service Controller

3.2.4 Running the Service in Foreground Mode

The numerous types of service running on Android can be split in two distinct
groups: services that should be hidden to the user, e.g. synchronization services
and data processing, and services that the user would want to be aware of, e.g.
music players and instant messaging applications. Our application belongs to the
latter group, and we therefore decided to run its service in foreground mode, with
a notification displayed in the status bar.

In order to run our service in foreground mode, we needed to make some changes
to our GeneralStartService class. We created an interface, ForegroundController,
with the methods moveToForeground() and moveToBackground(). GeneralStart-
Service was made to implement this interface by using a code example from the
Android API startForeground() documentation [27], and to register itself in the
Arctis runtime static context, with runtime.setContext(”ServiceController”, (Fore-
groundController) this).

Then we created a new building block, ServiceController, with input pins corre-
sponding to the two methods. The block is very simple, and can be seen in Figure
3.5. Every information needed to create a notification is sent as a Notification-
Bundle to the moveToForeground -pin, and passed on to the ForegroundController
interface registered in the runtime context. The ServiceController block can be
seen in use in Chapter 5.

33



3.3 Service Development Summary

We will now summarize the steps needed to create an Android application with a
foreground interface and a background service, both modeled as separate system
blocks.

1. Create and design both models.

2. Foreground model must start the service with startService(intent). The
intent can be created in two ways:

(a) By name: Intent intent = new Intent(getContext(), Class.forName(“<package
of Service>.Start”));

(b) By action: Intent intent = new Intent(“<actionString>”);

3. In the foreground model overview:

(a) Under“Extra Tags”, add an“android service” with the value“<package
of Service>.Start”.

(b) Under“Required Resources”, add any resources used by the background
model.

4. Implement both models.

5. Copy classes and resources from generated background project to foreground
project.

6. Edit <package of Service>.Start.java to extend GeneralStartService instead
of GeneralStartActivity3.

7. To avoid Arctis runtime conflicts, service must run in its own process. Add
android:process=“:<any name>” to the service in AndroidManifest.xml.

8. If service is started by action, add a new Intent Filter to the service in
AndroidManifest.xml, with the same action used in step 2b.

34



3.3.1 Automation of Service Creation and Merging

Previously, GeneralStartService had to be copied over manually, but as of Arctis
version 1.0.0.M0450, the GeneralStartService class has been added as part of the
Arctis runtime package. In order to further automate the service creation and
merging process, we propose the following measures:

• When an Arctis model is implemented as a service, the generated Start.java
should extend GeneralStartService automatically.

• A new choice could be added to the generation process: “Add as Service to
existing project”. The generated code for the service should be automatically
merged with the code of the existing Android project, and the Android
manifest should be modified as in step 7 above.

35



36



Chapter 4

Foreground Application

This chapter will describe the user interface part of the NTNU Instant Voice
Messenger application. We will explain the choices made when splitting the ap-
plication functionality, the building blocks used will be explained in detail, and
the program flow will be described. Finally, optimizations for improved respon-
siveness and seamlessness will be listed, and the state space and code size of this
version and the previous version will be compared.

4.1 Separation of Functionality

The previous version, InVoMe, was a single monolithic application, containing
functionality for both audio recording and playback, RTP transmission and the
XMPP connection, in addition to a user interface. In order to receive messages also
when the application was not in the foreground, we needed to split the application
in two, a normal Android activity running in the foreground, and a service running
in the background. However, before creating the two application parts, we needed
to decide which functionality should go where.

XMPP The whole point of creating a service was to maintain a connection to
the XMPP server so messages can be received, so naturally the XMPP function-
ality must be implemented in the service.

RTP and Audio As with XMPP, the reception of messages over RTP is a
crucial part of the service, and audio playback is also kept with the service in

37



order to play received messages via the status bar notification, without starting
the main activity. However, the sending of messages will only occur when the user
is actively using the application, so we decided to implement audio recording and
RTP sending as part of the foreground application.

User Interface Naturally the contact list had to be a part of the foreground
activity, and any alert dialogs were also presented only when the activity was run-
ning and visible to the user, to avoid undue interruptions. For notifying the user
of new messages when only the service is running, we decided to use notifications,
because of their non-intrusive behaviour.

4.2 Main Application Model Overview

We wanted to design the models to be easy to read and understand, so we decided
on a few simple rules:

• All service-related functionality is wrapped into a single block, To Service,
with an equivalent To GUI block in the service model (Chapter 5).

• The earlier a pin or block is encountered in the event flow, the closer to the
top it should be placed. This should make it easier to follow the natural
flow of the application.

• To maintain model readability, event flows should have a minimum number
of joints and avoid crossing whenever possible.

The resulting model can be seen in Figure 4.1. Compared to the model of InVoMe
shown in Figure 2.7, this model is much cleaner and hopefully easier to understand.

The application starts in the top left corner, immediately starting Contacts UI
2. When Contacts UI 2 is active, it sends a signal to the start-pin of To Service.
If the service is already running, nothing happens (a signal is sent through start-
edEarlier, which is connected to nothing), and contact updates will start arriving
momentarily.

If the service was not running earlier, startedNow fires and Login UI is started.
The user enters their Google credentials, and these are sent to the service for

38



Figure 4.1: Internal behaviour of the user interface part of NTNU Instant Voice
Messenger

39



verification via connect on To Service. Successful authentication fires connected,
Login UI is closed and the user interface is ready for contact updates.

When a voice message arrives, To Service fires playingStarted with the name of
the sender. A dialog box opens, and stays open until the message is finished or
the user stops the message by pressing “Stop”.

When the user has selected to send a voice message, Contacts UI 2 fires sendMs-
gStarted with the VoiceContact containing the receiving contact. Sender 2 opens a
“Sending...”-dialog, and starts recording audio and sending it over an RTP stream
to the IP address in the VoiceContact. When the user presses “Stop”, the message
stops.

If the user has selected a previously recorded message for playback, Contacts UI
2 fires playMsg with the specified file, and it is sent to the service for playback,
which will again prompt a playingStarted from To Service.

Three kinds of updates are received from the service:

invomeUpdate fires with a CustomMessage, containing either an IP REQUEST
from another voice compatible client, or an IP RESPONSE in re-
sponse to a request sent from this client. In both cases, the Cus-
tomMessage contains the IP address of the other contact, which is
stored in the contact list, and a microphone icon is added to the con-
tact.

contactsUpdate fires with a Collection of VoiceContacts, representing the entire
user’s contact list. The user interface is updated, and any pending
presenceUpdates are applied.

presenceUpdate fires with a ChatPresence object, signaling that a user has changed
their presence status, e.g. logged off or busy. When the application
first starts, every contact’s presence is sent, coincidentally with the
contact list in contactsUpdate. It may happen that the presenceUp-
date arrives before the contact list. In this case, the presence is stored
and applied as soon as the contact list arrives.

When the activity is placed in the background, Contacts UI 2 will fire inactive,
which will notify the service to store incoming messages rather than play them,
and unregister the broadcast receiver to avoid memory leaks.

When the user disconnects, or the service connection is lost, To Service fires dis-
connected with an optional error string. A OneButtonDialog 3 block shows a

40



(a) Internal behaviour

(b) External State Machine

Figure 4.2: Sender 2 behaviour and ESM

“Service Disconnected”-message, with the error message if the user did not dis-
connect willingly. Sender 2 is also stopped if it is running.

4.2.1 Sender 2

Sender 2 uses Audio RTP Sender 2 developed in [4] to record and send a voice
message. The internal behaviour and the ESM of the block can be seen in Figure
4.2.

The block is started with a VoiceContact, the IP address is extracted and a mes-
sage is started. If for some reason the message cannot be sent, e.g. if the audio
recording device is busy, the block immediately stops. Else, a dialog is displayed
with the message “Recording message to <contact>...”. The dialog contains a
“Stop” button, which stops the message and the block.

While Audio RTP Sender 2 is mostly unchanged, we have replaced the block RTP

41



Sender 2 with RTP Sender 3, which sends a special signal when the end of stream
is reached. This signal is recognized by RTP Receiver 3, which can then close its
own stream.

4.3 Contacts UI 2

The newest version of the contact list user interface has been given a cleaner design
compared to its predecessor described in [4, Ch 6.2]. Figure 4.3 shows the internal
behaviour and ESM of the block. Only one UI block is used now, simplifying state
space considerably.

A new Activity Life Cycle block has been created, ALC 5, with a flat ESM.
Previous ALC blocks have sought to recreate the state of an activity as ESM states,
but Android does not guarantee that the onStop() and onDestroy() methods are
called when the activity is killed [28], so a flat ESM prevents the block from
ending up in a state inconsistent with the actual activity state. The downside
of this approach is that the Arctis analyzer gives six warnings of the form “Flow
stopped at <pin>”. Every one of these situations has been examined manually
and found not to cause any problems in the program flow.

Once the block is started, the Class of our ContactListActivity is sent to ALC 5
for initialization. The actual user interface (seen in Figure 4.4) is specified in XML
files, the main view with the list in contacts main.xml and the layout for a single
contact in single contact.xml. Once the block has been created, registerListeners()
is called, which sets up the dialog that is displayed when a contact is selected.
When the listeners are in place, active fires and the block is ready to receive
updates, process them, and update the screen.

When a new message has been saved, the msgSaved -pin fires and the sending
contact will get a “mail”-icon in the contact list, denoting the number of stored
messages. All UI input events are represented as Arctis signals and will fire their
respective output-pin when triggered, sending signals to the environment.

4.4 To Service

By gathering all service communication functionality in a single block, not only
do we make the communication easy to visualize, we also hide the specific com-
munication implementation from the main block; we could at any time create a

42



(a) Internal behaviour

(b) External State Machine

Figure 4.3: Contacts UI 2 behaviour and ESM

43



(a) A list of contacts with
presence and voice status

(b) Displaying options for a
selected contact

Figure 4.4: Contacts UI 2 user interface

new pair of communication blocks based on e.g. a Messenger interface, without
having to change any other parts of the model.

The internal behaviour of the block can be seen in Figure 4.5; the ESM is not
shown, as the block has only a single state, and all transitions are trivial. Once the
block is started with the start-pin, the service is started with the startService()
operation. A broadcast receiver is initialized with a list of the action strings it
should listen for, which we have specified in a separate interface, Constants. To
Service and To GUI both implement this interface, to ensure correct spelling of
the action strings.

After receiver initialization, the service is polled to find out whether it is connected
to the XMPP server already. As the service may not have started yet, we poll it
using getContext().sendStickyBroadcast(intent). A sticky broadcast is stored by
the system until a matching receiver appears, so we are ensured to get a response
as soon as the service is up and running.

All outgoing communication is shown on the left side of the model, with pins
connect, playMsg, disconnect, setStatus and stopPlaying. Each pin is connected
to an operation, which broadcasts an intent with the associated action, bundling

44



Figure 4.5: Internal behaviour of To Service

data if necessary.

Similarly, incoming intents are fired through the broadcast receiver’s intent-pin,
and sorted on the right side of the model. Only a received DISCONNECTED
intent is treated differently, causing the receiver to be stopped and unregistered,
and firing the disconnected -pin with an error message if present.

4.5 General Optimizations

In accordance with the techniques for improved responsiveness presented in Chap-
ter 2.1, and the best practices in Chapter 2.2.3, the following measures have been
taken:

• All buttons give visual feedback

• Contact list is refreshed continually as new contact updates arrive

• A progress dialog is displayed during the only extended operation, the login
process

45



Table 4.1: State space comparison of old and new blocks

• No network calls or blocking operations have been placed in the main UI
thread

• Every dialog and activity has been made cancelable

• Runtime errors are caught and displayed as well-formed alert dialogs

• When the application is hidden, only notifications and toasts are shown

4.5.1 State Space and Code Measurements

As a result of the redesigned blocks, the total state space has shrunk considerably.
The state space and transition differences for the most important blocks can be
seen in Table 4.1. For example: InVoMe, the main system block of the previous
version, had 33 states and 586 transitions, while the two system blocks of the new
version have a total of 15 states and 233 transitions.

These improvements, along with marking most blocks as single-session blocks,
translate into a considerably smaller code amount: The generated state machine
code for the old version has a total of 4133 lines, while the new version’s generated
code consists of 1173 lines for the service and 1301 lines for the foreground, totaling
2474 lines. This again translates into a smaller application that uses less system
memory.

46



Chapter 5

Background Service

This chapter will describe the building blocks used in the service part of our appli-
cation, starting with an overview of the main model and the general program flow,
and then covering each of the building blocks in turn, highlighting improvements
and new features versus the old InVoMe application. Finally, known issues will
be covered and solutions will be discussed.

5.1 Main Service Model Overview

As can be seen in Figure 5.1, the service model is a bit more complex than the
user interface model. This was necessary due to all the functionality contained in
the service, so the model does not follow the same top-down program flow as the
foreground model; we instead decided to place the service-activity communication
functionality to the left in the model and notifications to the right, with all the
rest of the functionality in the middle. This was found to be a good placement
for minimizing the number of crossing event flows, while still having the program
flow start in the top left as in the foreground model.

Once the service has been started, the sticky broadcast from the foreground is
received and answered, and To GUI will fire connect, sending credentials to the
XMPP block for logging in. A successful connection fires the connected pin, which
both notifies the GUI and sets up the Receiver with a listening port. As soon as
the Receiver is initialized and listening for incoming RTP connections, Service
Controller is used to move the service to foreground mode, with a Notification-
Bundle containing the icon and text to be shown in the status bar.

47



Figure 5.1: Internal behaviour of the background service part of NTNU Instant
Voice Messenger

48



A open
B open

A open
B closed

A closed
B open

A closed
B closed

in1 / out11
closeA

openA

openA
openB

closeA
closeB

in1 / out12
in2 / out22

closeB
openB

closeA
closeB

in1 / out12
in2 / out22

openA

in2 / out21
closeA

in2 / out21
closeB openB closeB

in1 / out12
openA

Figure 5.2: State diagram of Simple Mutex

All kinds of updates from XMPP are sent directly to GUI via To GUI. Contrary
to InVoMe, this application reacts to incoming chat messages, fired from the
msgReceived -pin of XMPP. When a chat message is received, a notification is
displayed with the sender name and a message preview, with an option for opening
the chat in a suitable application, e.g. Google Talk.

For controlling whether incoming voice messages should be played or stored, we
created a shallow block, Simple Mutex. Figure 5.2 shows how input signals are
routed. The block has two locks A and B, two input pins in1 and in2, and two
output pins per input pin; flows entering in1 can exit through either out11 or
out12, while flows entering in2 can exit through either out21 or out22. Input in1
is used for received voice messages, while in2 is used when the user has selected to
play a stored message. A is open if and only if the audio device is ready, and B is
open if and only if the user interface is active. Incoming messages (in1) can only
be played when both the audio device is ready and the user interface is showing.
Saved messages (in2 ) are played as long as the audio device is ready.

Incoming messages that are not played at once are instead passed via out12 to
Save Message. Save Message is marked as a multi-session block, as can be seen
in the title (Save Message [0..*]). This means that several instances of the block
can be started and run in parallel. In this way, every message that is received is

49



either played back instantly or stored safely to SD card for later playback.

5.2 XMPP Blocks

To keep the main model as simple as possible, XMPP Client 5 and XMPP Gate-
way were wrapped in a single block, XMPP, seen in Figure 5.3. Like the Voice
Support block of InVoMe, XMPP Gateway translates between XMPP-specific and
generic objects, prompts every contact for voice compatibility when a roster up-
date arrives, and answers IP REQUEST custom messages.

5.2.1 XMPP Client 5

The internal behaviour of XMPP Client 5 can be seen in Figure 5.4; the ESM is
not shown as it is roughly equivalent to the XMPP ESM shown in Figure 5.3b.
The model is based on XMPP Client 4 shown in [4, Ch 4], but has been redesigned
for a cleaner state space and better understandability. The previous version had
several blocking operations where synchronous network calls were performed in
the main thread, causing the Arctis runtime scheduler to freeze momentarily. In
this version, every operation containing network calls uses Runnables to run the
critical code in a background thread.

The block is started by sending a LoginBundle with credentials to the connect-
pin. The operation connectToServer() creates a new thread for registering update
listeners and connecting to the XMPP server, communicating the result back to
Arctis by the signals LOGIN SUCCESSFUL or LOGIN FAILED. A successful
login fires the connected -pin, and the block is ready to receive XMPP updates.
If at any time the connection to the server is lost, the CONNECTION CLOSED
signal is sent, with an exception detailing the error.

Because of how the block is programmed, either LOGIN SUCCESSFUL or LO-
GIN FAILED can be received, not both. However, the Arctis analyzer does not
know this, so a “Flow stopped at ’connectFailed”’-warning is given, highlighting a
state when LOGIN FAILED is received after the block is already in the connected
state. As we know this will never happen, this warning can safely be ignored.

Outgoing messages are shown on the left side of the model, with pins updateStatus,
sendMessage, sendCustomMsg, sendCustomMulti and requestUpdates. Every pin
has its associated operation with blocking operations wrapped in Runnables and

50



(a) Internal behaviour

(b) External State Machine

Figure 5.3: XMPP behaviour and ESM

51



Figure 5.4: Internal behaviour of XMPP Client 5

output sent as the signals on the right side of the model; for example, when
requestUpdates fires, a new thread is started, the contact roster is retrieved and
sent as a ROSTER CHANGED-signal, then the contact presences are retrieved
one by one and sent as PRESENCE CHANGED-signals.

5.2.2 XMPP Gateway

The internal behaviour of the stateless block XMPP Gateway can be seen in Fig-
ure 5.5. Not much has changed from Voice Support in InVoMe; we have added a
translation from the generic ChatPresence class to the XMPP-specific StatusBun-
dle, and removed the pins for handling multiple presence updates at once, as this
was no longer necessary and increased the model complexity of both this block
and XMPP Client. The rest of the functionality is as described in [4, Ch 6.3].

5.3 Message Blocks

In InVoMe, incoming voice messages were handled by a single block, Audio RTP
Receive 2. This block used RTP Receiver 2 and Play Audio 2 to play every
incoming message, and did not support more than one received message at once.

52



Figure 5.5: Internal behaviour of XMPP Gateway

In order to allow incoming messages to be either played or stored, we had to split
the functionality in three: one Receiver block for listening for RTP connections
and creating new InputStream objects for every new connection, one Play Message
block for playing messages, and one Save Message block for storing messages.

5.3.1 Receiver

The internal behaviour and ESM of Receiver and RTP Receiver 3 can be seen
in Figure 5.6. The block is initialized by passing the RTP listening port. In the
previous version, an InputStream was passed alongside the port number, and that
single stream was used for every received message. As every RTP packet was
printed to the same stream indiscriminately, two incoming voice messages at the
same time would result in garbled audio intermixed from the two messages. To
fix this, RTP Receiver 3 was created, which creates a new InputStream whenever
it receives an RTP packet from a new IP address, and sends it together with the
IP address as a MessageBundle through the msgStarted -pin.

When a message arrives and needs to be stored, our first thought was to create a
filename by using the sending IP address and a timestamp. However, we need to
know which user the message is from, and IP addresses may change without notice.
We therefore added a mapping between current IP addresses and usernames, so
the sender’s username could be used both in notifications and as part of the
filename. As can be seen in Figure 5.1, whenever an invomeUpdate arrives from

53



(a) Internal behaviour of Receiver

(b) Internal behaviour of RTP Receiver 3

(c) External State Machine of Receiver

Figure 5.6: Receiver and RTP Receiver 3 behaviour and ESM

54



XMPP, it is forked and sent both to To GUI and Receiver.

Another new feature is the timeout detection and end-of-stream detection added
to RTP Receiver 3. When no new packet has arrived for a given IP address after
a timeout delay of half a second, the input stream is closed. The end-of-stream
detection works when this block is used conjunction with RTP Sender 3 in Audio
RTP Send 2 ; RTP Sender 3 sends a special signal as part of the RTP stream,
which RTP Receiver 3 recognizes and promptly closes the input stream for the
given sender.

5.3.2 Play Message

Play Message was created as a simple wrapper around Play Audio 3, in order to
keep the main model more organized. Figure 5.7 shows the internal behaviour of
both blocks and their ESM, which is the same for both blocks.

While Play Audio 3 was created for generic use, Play Message is started with
an application-specific MessageBundle, containing the input stream to read the
message from, and the IP address or username of the sender. The input stream
is extracted from the bundle and fed to Play Audio 3, while the sender is stored
and sent as a string via playing, so the sender’s username can be displayed in a
“Playing...” dialog.

Play Audio 3 is based on Play Audio 2 used in InVoMe, but while the previous
version relied on external signals to stop the playback, Play Audio 3 will stop
automatically if end of stream is reached. This simplifies the program flow and is
more intuitive.

5.3.3 Save Message

Like Play Message, Save Message is an application-specific wrapper, using the
generic block Write File to store messages to SD card. Figure 5.8 shows both
models and their shared ESM.

When a message is to be saved, the operation createFilename() uses the sender’s
username and a timestamp to create a unique filename, which is passed to Write
File together with the message input stream. Once Write File encounters the end
of the stream, it sends a WRITE TO FILE FINISHED signal, and Save Message
sends a MessageFileBundle containing the sender’s username and the resulting
file.

55



(a) Internal behaviour of Play Message

(b) Internal behaviour of Play Audio 3

(c) External State Machine of Play
Message

Figure 5.7: Play Message and Play Audio 3 behaviour and ESM

56



(a) Internal behaviour of Save Message

(b) Internal behaviour of Write File

(c) External State Machine of Save
Message

Figure 5.8: Save Message and Write File behaviour and ESM

57



Figure 5.9: Internal behaviour of To GUI

If the message failed to save for any reason, the error message is displayed as a
toast, and the block terminates via the saveFailed -pin.

5.4 To GUI

The equivalent of To Service in the foreground model, this block handles all
the communication with the foreground activity. Figure 5.9 shows the internal
behaviour of the block. After the block is started, a Broadcast Receiver 2 is
initialized with the list of actions specified in the Constants interface.

Like its counterpart, To GUI consists of incoming intents handled on the right
side of the model, and outgoing intents on the left side. Most actions are self-
explanatory, the only outgoing objects that are not sent directly are the Exceptions
of the pins disconnected and connectFailed. Instead, a string is sent (“Disconnected
from server” or “Could not connect to server”, respectively) with the exception
message appended if it is not empty.

58



Once the receiver has been initialized, there is probably a sticky broadcast from
the foreground activity waiting, with the action SERVICE STATUS REQUEST.
The variable isConnected is set to true as part of the sendConnected() operation,
and to false in disconnected() and connectFailed(). In this way, we only have to
respond to the service status poll by sending back the value of isConnected. If the
service is already connected, requestUpdates fires, requesting an updated contact
list and presences from XMPP.

5.5 Areas of Improvement

While we have aspired to make our application as complete and stable as possible,
there are still points that might be improved; we will present them here with
suggested solutions.

5.5.1 Security

As every Android process keeps a private memory space, we do not need to worry
about other applications snooping on our memory. However, for communicating
between foreground and background, we broadcast intents system-wide. This
could be dangerous, as any other application could register itself to listen to these
intents, and snap up a user’s Google credentials. However, this is avoided by
imprinting the broadcasted intents with a signature permission, so only our own
processes can receive them. But if a phone is rooted, no guarantees are made that
the broadcasted intents are safe from malicious applications.

Another aspect of the Android system is the storage; as many phones have lim-
ited internal flash storage, we use the SD card for storing messages. However,
data stored on the SD card can be read by any other application, so in theory a
malicious application could read the stored voice messages and upload them to
the Internet. To alleviate this, we would have to store the messages encrypted;
however, this issue was not considered vital enough for us to spend the time to
implement message encryption.

In our application, the user has to enter their Google username and password
directly into our application. This means that the user must trust us enough not
to store their credentials and use them for malicious purposes. It was done this
way because the XMPP library we used, smack, only supports username/password

59



authentication; however, the XMPP protocol supports authentication by token
[29], so if a library was found that implemented this, or smack was updated to
support it, our application could use Google’s OAuth API [30] to authenticate
users. In this way, they would not have to trust us with their credentials.

5.5.2 RTP

Currently, the application listens for any incoming packets on the RTP port, and
creates a new InputStream whenever a packet from a new IP address is received.
While a mapping between known contacts and their IP addresses keeps unautho-
rized packets from being played as audio or stored as messages, the RTP block
could be abused by sending streams from several IP addresses at once, causing
numerous input streams to be created, and possibly using too much computa-
tional resources for the application to correctly handle the genuine connections.
This scenario was considered unlikely enough not to cause a problem, but could
be prevented by modifying the RTP blocks to keep a safe list of IP addresses, and
discard any packets from unknown sources.

60



Chapter 6

Conclusion

In this report, we have presented the development of NTNU Instant Voice Mes-
senger, a responsive and stable communication application for Android. The
application supports communication with other Google Talk contacts using voice
messages, text chat or email. The application is a major improvement on the
previous version, InVoMe, and has been considered good enough to be the first
Arctis-developed application released on the Android Market.

The application has been developed with a specific focus on providing a responsive,
seamless and intuitive user experience, as well as fit well into the Android appli-
cation environment. We have presented both theory and techniques for improving
the responsiveness of an application. General user interface design concepts have
been presented, and specific measures for both Android and Arctis have been
researched and explained.

The Android application structure has been researched to gain an understanding
of how an application created in Arctis can run as an Android service. The
various service implementations and communication models have been examined,
prototype applications have been developed and explained, and we have presented
a general methodology for merging two Arctis system models - a background
service and a foreground user interface - into a single Android application.

Several reusable building blocks have been developed, including blocks for writing
to and reading from the file system, blocks for showing status bar notifications,
and blocks for displaying dismissable dialogs. Existing building blocks have been
improved with cleaner layouts, smaller state spaces and non-blocking operations.

61



62



Bibliography

[1] Nokia, “Symbian at Nokia.” http://symbian.nokia.com/. Accessed
11.06.2011.

[2] Open Handset Alliance, “What is Android.” http://developer.
android.com/guide/basics/what-is-android.html. Accessed
13.12.2010.

[3] Apple Inc., “iOS Dev Center.” http://developer.apple.com/
devcenter/ios/index.action. Accessed 11.06.2011.

[4] G. Sagberg, “Voice-Based Group Communication System on Android,”
project thesis, Norwegian University of Science and Technology, 2010.

[5] F. A. Kraemer, “Arctis: Composing M2M Applications.” http://www.
thinkarctis.com/. Accessed 13.12.2010.

[6] Google, “NTNU Instant Voice Messenger - Android Market.”
https://market.android.com/details?id=no.ntnu.item.
arctis.android. Accessed 11.06.2011.

[7] Vimeo, LLC.,“NTNU Instant Voice Messenger on Vimeo.”http://vimeo.
com/24932676. Accessed 11.06.2011.

[8] GitHub Inc., “arctis/students.” https://github.com/arctis/
students. Accessed 16.06.2011.

[9] H. Schulzrinne et al, “RTP: A Transport Protocol for Real-Time Appli-
cations.” http://www.ietf.org/rfc/rfc3550, July 2003. Accessed
10.12.2010.

[10] P. Saint-Andre, “Extensible Messaging and Presence Protocol (XMPP):
Core.” RFC 3920 (Proposed Standard), Oct. 2004.

63

http://symbian.nokia.com/
http://developer.android.com/guide/basics/what-is-android.html
http://developer.android.com/guide/basics/what-is-android.html
http://developer.apple.com/devcenter/ios/index.action
http://developer.apple.com/devcenter/ios/index.action
http://www.thinkarctis.com/
http://www.thinkarctis.com/
https://market.android.com/details?id=no.ntnu.item.arctis.android
https://market.android.com/details?id=no.ntnu.item.arctis.android
http://vimeo.com/24932676
http://vimeo.com/24932676
https://github.com/arctis/students
https://github.com/arctis/students
http://www.ietf.org/rfc/rfc3550


[11] F. A. Kraemer, “Arctis and Ramses: Tool Suites for Rapid Service Engi-
neering,” in Proceedings of NIK 2007 (Norsk informatikkonferanse), Oslo,
Norway, Tapir Akademisk Forlag, November 2007.

[12] K.-A. Martinsen, “Encapsulation of Android User Interfaces in Arctis,”
project thesis, Norwegian University of Science and Technology, 2009.

[13] J. Nielsen, Usability Engineering. San Francisco, CA, USA: Morgan Kauf-
mann Publishers Inc., 1993.

[14] Open Handset Alliance, “Designing for Responsiveness.” http:
//developer.android.com/guide/practices/design/
responsiveness.html. Acccessed 04.06.2011.

[15] Open Handset Alliance, “Thread.” http://developer.android.com/
reference/java/lang/Thread.html. Accessed 11.06.2011.

[16] Open Handset Alliance, “AsyncTask.” http://developer.android.
com/reference/android/os/AsyncTask.html. Accessed
06.06.2011.

[17] Open Handset Alliance, “ProgressDialog.” http://developer.
android.com/reference/android/app/ProgressDialog.html.
Accessed 11.06.2011.

[18] Open Handset Alliance, “Application Fundamentals.” http://
developer.android.com/guide/topics/fundamentals.html.
Accessed 06.06.2011.

[19] Open Handset Alliance, “The AndroidManifest.xml file.” http:
//developer.android.com/guide/topics/manifest/
manifest-intro.html. Acccessed 13.06.2011.

[20] Open Handset Alliance, “Parcel.” http://developer.android.com/
reference/android/os/Parcel.html. Accessed 18.06.2011.

[21] Open Handset Alliance, “Android Interface Definition Language (AIDL).”
http://developer.android.com/guide/developing/tools/
aidl.html. Acccessed 15.06.2011.

[22] Open Handset Alliance, “Designing for Seamlessness.” http:
//developer.android.com/guide/practices/design/
seamlessness.html. Acccessed 11.06.2011.

64

http://developer.android.com/guide/practices/design/responsiveness.html
http://developer.android.com/guide/practices/design/responsiveness.html
http://developer.android.com/guide/practices/design/responsiveness.html
http://developer.android.com/reference/java/lang/Thread.html
http://developer.android.com/reference/java/lang/Thread.html
http://developer.android.com/reference/android/os/AsyncTask.html
http://developer.android.com/reference/android/os/AsyncTask.html
http://developer.android.com/reference/android/app/ProgressDialog.html
http://developer.android.com/reference/android/app/ProgressDialog.html
http://developer.android.com/guide/topics/fundamentals.html
http://developer.android.com/guide/topics/fundamentals.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/reference/android/os/Parcel.html
http://developer.android.com/reference/android/os/Parcel.html
http://developer.android.com/guide/developing/tools/aidl.html
http://developer.android.com/guide/developing/tools/aidl.html
http://developer.android.com/guide/practices/design/seamlessness.html
http://developer.android.com/guide/practices/design/seamlessness.html
http://developer.android.com/guide/practices/design/seamlessness.html


[23] Open Handset Alliance, “Tasks and Back Stack.” http://
developer.android.com/guide/topics/fundamentals/
tasks-and-back-stack.html. Acccessed 13.06.2011.

[24] Open Handset Alliance, “Multitasking the Android Way.”
http://developer.android.com/resources/articles/
multitasking-android-way.html. Acccessed 13.06.2011.

[25] SourceForge.net Open Source Community, “RTP Java Library.” http://
sourceforge.net/projects/jlibrtp/. Accessed 13.12.2010.

[26] Open Handset Alliance, “DatagramPacket.” http://developer.
android.com/reference/java/net/DatagramPacket.html.
Accessed 14.12.2010.

[27] Open Handset Alliance, “Service.” http://developer.android.com/
reference/android/app/Service.html. Accessed 18.06.2011.

[28] Open Handset Alliance, “Activity.”http://developer.android.com/
reference/android/app/Activity.html. Accessed 17.06.2011.

[29] XMPP Standards Foundation, “XEP-0235: OAuth Over XMPP.” http:
//xmpp.org/extensions/xep-0235.html. Accessed 20.06.2011.

[30] Google Inc., “Authentication and Authorization for Google APIs.” http:
//code.google.com/apis/accounts/docs/GettingStarted.
html. Accessed 20.06.2011.

65

http://developer.android.com/guide/topics/fundamentals/tasks-and-back-stack.html
http://developer.android.com/guide/topics/fundamentals/tasks-and-back-stack.html
http://developer.android.com/guide/topics/fundamentals/tasks-and-back-stack.html
http://developer.android.com/resources/articles/multitasking-android-way.html
http://developer.android.com/resources/articles/multitasking-android-way.html
http://sourceforge.net/projects/jlibrtp/
http://sourceforge.net/projects/jlibrtp/
http://developer.android.com/reference/java/net/DatagramPacket.html
http://developer.android.com/reference/java/net/DatagramPacket.html
http://developer.android.com/reference/android/app/Service.html
http://developer.android.com/reference/android/app/Service.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://xmpp.org/extensions/xep-0235.html
http://xmpp.org/extensions/xep-0235.html
http://code.google.com/apis/accounts/docs/GettingStarted.html
http://code.google.com/apis/accounts/docs/GettingStarted.html
http://code.google.com/apis/accounts/docs/GettingStarted.html

	Title Page
	Introduction
	Application Overview
	Application Use Case Scenarios

	Separation of Functionality
	New Building Blocks Developed
	Additions To Arctis Android Library
	Development Environment


	Background
	Building Responsive Applications
	Techniques for Improving Responsiveness
	Responsiveness in Arctis

	The Android Application Framework
	Application Components
	Service Implementation and Communication
	Best Practices for Seamlessness

	Instant Voice Messenger (Version 1)
	Main Version Differences


	Android Services in Arctis
	From Activity to Service
	Communication Models and Prototypes
	Static Methods and Arctis Signals
	Broadcasting Intents
	Bound Services and Arctis
	Running the Service in Foreground Mode

	Service Development Summary
	Automation of Service Creation and Merging


	Foreground Application
	Separation of Functionality
	Main Application Model Overview
	Sender 2

	Contacts UI 2
	To Service
	General Optimizations
	State Space and Code Measurements


	Background Service
	Main Service Model Overview
	XMPP Blocks
	XMPP Client 5
	XMPP Gateway

	Message Blocks
	Receiver
	Play Message
	Save Message

	To GUI
	Areas of Improvement
	Security
	RTP


	Conclusion
	Bibliography

