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between an attacker and a victim in the above mentioned scenarios in an efficient

way and with high probability.
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Abstract

In order to provide hassle-free connection options many wireless local area network

(WLAN) providers choose to have their networks completely open. In other words

there is no password required in order to connect. Such open configurations do not

provide any security features on the wireless medium, but are often implemented

with other solutions as captive portals. A captive portal forces a Hypertext Trans-

fer Protocol (HTTP) client to see a certain webpage, usually for authentication

purposes. All other packets are blocked. Once authenticated, the client’s medium

access control (MAC) address is whitelisted and he will have access to the Internet.

The MAC spoofing attack is easy to perform in open networks, see Appendix A.

This attack can have severe consequences as the attacker masquerades as a legitimate

client, potentially getting the victim caught for crime done by the attacker. The

preferred way to handle these attacks has been through detection, as it can be

done on the server side without complicating anything for the user. Effective and

reliable detection techniques for plain and quality of service enabled 802.11 networks

exists [1,5]. However, no good solution exists to detect attacks when the legitimate

client is no longer connected. The two main scenarios are the session hijacking

attack, where the attacker forces the victim offline, and the wait-for-availability

attack where the attacker waits until the legitimate client leaves the network.

An algorithm based on MAC layer fingerprinting was developed to detect the

class of attacks where attacker and victim are not connected simultaneously. A

fingerprint is based on the behavior of a station (STA), and each STA’s behavior

varies due to implementation differences of the 802.11 protocol. Experiments in

a real network was performed with 11 different STAs in order to determine the

fingerprints. The results show that on average 2.82 of the 8 fingerprinting properties

were different when comparing two fingerprints.

The fingerprinting algorithm developed is capable of passively creating a finger-

print of wireless STAs without specialized equipment in realistic network conditions.

Fingerprints from different STAs are unique with high probability, even when there

are little data available. In addition, the technique used is accurate, fast, and re-

quires no pre-computed databases. The algorithm used in combination with the

intrusion detection system developed by Idland [1] is now able to detect all of the

five different MAC spoofing attacks described in Section 2.6.2.
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Chapter 1

Introduction

This chapter will provide the background of the problems described in the abstract as

well as give a general introduction to the relevant topics. It will start by explaining

why open 802.11 networks are commonly deployed before the need for intrusion

detection systems (IDSs) in such networks are presented. This will be followed by

an introduction to Wireless Trondheim and a thorough description of the problem at

hand. Then, an overview of relevant work done by others will be given, and finally

the chapter will end with an outline of the rest of the report.

1.1 Motivation

1.1.1 The Popularity of 802.11 Networks

A wireless network is a type of computer network connecting devices without any

kind of wiring or cables. The two most common types of wireless networks would

be the ones used for mobile telecommunications (cellular phones) and wireless local

area networks (WLANs). WLANs are based on the 802.11 standard and are often

referred to as Wi-Fi networks1 or hot-spots, and this is the type of network that

will be considered in this thesis. Although a network in itself could have some

value, these networks usually provide access to the Internet as their main service.

Most mobile devices produced over the last five years such as smartphones, laptops,

personal digital assistants (PDAs), and tablets have the ability to connect to Wi-Fi

networks.

WLANs are found almost everywhere where people move, this includes stores,

offices, cafés, schools, private homes and sometimes even downtown outdoors areas

as the one found in Trondheim, Norway. People want to be connected to the Internet

wherever they are and as a result hot-spots are commonplace in public areas. These

1Wi-Fi networks are 802.11 networks that are based on components certified by the Wi-Fi
Alliance. Wi-Fi is commonly, but incorrectly used as a synonym for 802.11.

1



1.1. Motivation

public hot-spots can be separated into two types based on the payment model.

Access to the network can be free of charge to consumers as a complementary

service, or access to the network can be sold as a service of its own. The first

approach is commonly found in coffee shops, and a good example is Starbucks

which is known for their free Wi-Fi access. The payment model on the other hand

is typically found in most airports in North America and Europe. Common for both

approaches is the need to be convenient and easy. Users expect to be able to connect

with any kind of Wi-Fi equipment without the hassle of a complex configuration or

other tedious information entering.

In order to provide hassle-free connection options to their network many WLAN

providers choose to have their networks completely open. This implies that there

is no encryption, and no password required to connect to the network. Such open

configurations do not provide any security features on the wireless medium, but are

often implemented with other solutions as captive portals. A captive portal forces

an Hypertext Transfer Protocol (HTTP) client to see a special web page (usually for

authentication purposes) before gaining access to the Internet. All other packets are

blocked. Once the client enters proper credentials, the captive portal will mark the

clients medium access control (MAC) address on a whitelist. After this subsequent

traffic will no longer be blocked, and the associated client will be able to access the

Internet. The login credentials are often temporary and acquired through a third-

party as a complementary service (hotel, coffee shop) or by paying a fee. Using your

credentials from other systems is sometimes possible, and this feature is present in

Wireless Trondheim (WrT) where students can use their unversity credentials to

log-in.

1.1.2 Security Implications with Open 802.11 Networks

As there are no encryption in open 802.11 networks everything a station (STA) sends

will be available for everyone in the vicinity, this clearly presents a confidentiality

issue. Authentication is either non-existing or barely existing as in the case of

captive portals. The confidentiality issue is not as bad as it first looks, this is due

to the fact that most sensitive web-pages such as e-mail, bank, web-shops etc. will

be using HTTP Secure (HTTPS) and thereby encryption on the application layer.

Confidentiality can also be acquired on other services by using a virtual private

network (VPN) solution.

The problem with the authentication is identification, or the ability to link an

action performed on the network to a STA, its user, and in the end to a specific

person. The ability to successfully do this becomes especially important in criminal

cases. One wants to make sure that if an illegal act has been carried out from a
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client’s credentials it was in fact the legitimate client who performed the act, and

not someone else masquerading as him. Stealing another user’s credentials is known

as an identity attack.

The latter is the rationale for the use of IDSs as a mean to avoid accusing the

wrong person for a crime he did not commit. More details of how IDSs can be used

in this case will follow.

1.1.3 Wireless Trondheim

WrT began as a project for research and development at the NTNU in 2005. In the

autumn of 2006, several public and private partners came together to set the project

in motion and Tr̊adløse Trondheim AS (Wireless Trondheim) was founded [7].

The main objectives of WrT are to build and deliver easy wireless Internet access

in the city of Trondheim, Norway. In addition they are doing research and develop-

ment of new wireless and mobile services. WrT hosts a quality of service (QoS)

enabled 802.11 network that covers most of the downtown area in Trondheim,

both outdoors and indoors. This is accomplished by positioning lightweight access

points (LAPs) in strategic locations, these LAPs are controlled by wireless LAN

controllers (WLCs). A figure depicting this setup is presented in Section 3.1.1.

Access to the Internet is gained after a successful login through their captive

portal. Students can login with their university credentials to get free access, and

anyone can pay a small fee to get access for a specific time frame. It is important for

WrT that it is possible to connect to their network with any Wi-Fi equipment, this

includes laptops, smartphones, PDAs, tablets and so on. This puts a restriction on

what is possible to do on the client side in terms of preventing attacks. For instance,

the active Secure Sockets Layer (SSL) window technique [8] cannot be deployed as

many smartphones cannot run two browser windows at the same time.

1.2 The Problem

Identity attacks in open 802.11 networks with a captive portal are easy to perform,

even with limited knowledge and equipment. One such attack is called the wait-for-

availability attack, for details on how to perform it see Appendix A.2. As indicated

earlier identity attacks can have serious consequences when a malicious user performs

some illegal activity, as for instance browsing of child sexual abuse images, while

using the identity of a legitimate client.

WrT is concerned about this type of identity attacks and they are the ones who

initially presented this problem as a potential task for a master’s thesis. As a result

I will focus on the specific network type that is deployed in WrT, as well as take
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into consideration the specific restriction due to their aim to be a easy network to

connect to for all kinds of devices. There exists ways to prevent these kinds of

attacks, and some details will be given on this topic in the next chapter. The main

problem with these prevention techniques is that they require the user to be active

(setting up encryption keys or certificates) or they require that the STA is relatively

advanced (i.e. able to run two browser windows at once). None of these options are

desirable when you want to sell quick and easy Internet access to a broad range of

devices. That is why detection has been, and will be in this project, the preferred

way to deal with this problem. Detection can be done on the provider side of the

network without complicating anything for the users.

Plain MAC sequence number (SQN) analysis has previously been proven to be

an effective and reliable detection technique in 802.11 networks [5]. More sophisti-

cated detection techniques that also works in Wi-Fi Multimedia (WMM) enabled

networks have been specifically designed to meet the demands of WrT [1]. The IDS

developed by Idland showed good results, particularly in detecting attacks of the

freeloader type — that is when both attacker and victim are connected and generate

traffic simultaneously. On the other hand, no good solution exists to detect attacks

where the legitimate client is no longer connected. The two main scenarios are the

session hijacking attack, where the attacker forces the victim offline, and the wait-

for-availability attack where the attacker waits until the legitimate client leaves the

network. More details will be presented in Section 2.6.

Some interesting papers on MAC layer fingerprinting and homogenity on the

MAC layer in 802.11 have been published [3, 4, 9]. Fingerprinting is the act of

collecting externally observable characteristics from a specific source in order to

identify it. Based on the information in the above mentioned papers it is possible

that a detection based on fingerprinting could in fact prove viable against the types

of attacks in question.

The problem can be stated as:

How to detect a session hijacking attack or a wait-for-availability attack on an

open 802.11 network.

In collaboration with WrT and my supervisors from NTNU we formulated the

following task description.

Determine whether different implementations of the 802.11 protocol can provide

means to fingerprint devices on the MAC layer. And more importantly if these

fingerprints can be used to distinguish between an attacker and a victim in the above

mentioned scenarios in an efficient way and with high probability.

The task description describes a possible solution to the problem with the use of
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fingerprinting and thereby narrows the scope as there are certainly several ways of

addressing this problem. The scope is further narrowed to not include work aimed

at spoofing a fingerprint or altering a STA’s behavior in order to match a specific

fingerprint. Even though that would have been relevant work, this prioritization

is necessary due to the limited time available for this thesis. The main priority

is therefore to develop an algorithm to fingerprint devices on the MAC layer, and

thoroughly test this algorithm with real STAs in order to address the issues pointed

out in the task description above.

While the problem and task description are both focused on WrT, the work

done in this thesis is general enough to be relevant for the vast majority of open

802.11 networks. The fact that many 802.11 networks have a strong focus on ease of

connectivity and hassle-free setup on different kinds of equipment, makes the work

done here relevant in a general sense.

1.3 Method

The work done in this thesis was completed in four different phases. Acquire infor-

mation, developing an algorithm, performing the experiments and analyzing & pre-

senting. The details of these phases and the rationale behind will soon be explained.

These phases were performed in the order explained below, but they were revisited

at least once as the work was done in an iterative manner. In the first iteration new

information was discovered while analyzing the results from the experiments, this

information was in turn included in the algorithm which again required new tests,

analyzing and presentation.

1.3.1 Phase One — Acquire Information

The first phase consisted of acquiring information and knowledge about the relevant

special field. More precisely an understanding of the current state of the art in

fingerprinting, MAC spoofing detection and 802.11 implementation differences were

obtained.

1.3.2 Phase Two — Developing an Algorithm

The second phase consisted of constructing an algorithm for fingerprinting on the

MAC layer. That included determining which properties in a STA’s behavior and in

the 802.11 protocol that could be used for fingerprinting, creating individual tests or

small algorithms for each such property, and implementing the most time consuming

of these tests in Perl for easy execution when dealing with large amounts of data.
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The work done in phase two naturally depended on the information obtained in

phase one.

1.3.3 Phase Three — Performing the Experiments

As the potential solution itself relies on implementation differences of the 802.11

protocol it became clear that the method used should be based on empirical data

and not solely theoretical information or simulation. As a result, experiments in a

real network (WrT) with real STAs was performed in the third phase in order to be

able to evaluate the fingerprinting algorithm.

1.3.4 Phase Four — Analyzing & Presenting

Phase four, the last phase, started with analyzing the data obtained through the

experiments in the previous phase. Then, the majority of the work was done in

writing this report, making sure that the work done in this and all the previous

phases was presented in a logical and readable way.

1.4 Contributions

The main contributions of this thesis are the design, implementation, and evaluation

of a passive wireless fingerprinting technique to enable detection of certain types of

MAC spoofing attacks.

The fingerprinting technique is based on ideas found in [3] and [4] and the dis-

cussion of what to include and why can be found in Section 3.4. A thorough walk-

through of the algorithm developed including pseudocode can be seen in Section 3.5.

The experiments and the rationale behind them will be presented in Chapter 4. The

results and conclusion from the experiments will be presented in the result chapter

and conclusion chapter respectively. The source code, in its entirety, can be seen in

Appendix C.1 (FPP.pl).

1.5 Related Work

The work covered in this report is a continuation of the work done by Idland in

his specialization project Detecting Identity Thefts in QoS Enabled Open 802.11

Wireless Networks [1] and it is necessarily very relevant related work. In addition to

that one report this section will present other work done on relevant attacks, ways to

prevent them, different detection techniques as well as work done on fingerprinting

on the MAC layer.
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1.5.1 Attacks on Wireless Networks

As wireless networks are very popular there exist numerous attacks on the confiden-

tiality and authenticity of the network. The most relevant attacks for this thesis are

found in a class called MAC spoofing attacks. As the name implies these attacks is

based on spoofing another STA’s MAC address as one’s own. There are three main

versions of this attack, the MAC freeloader attack, the session hijacking attack and

the wait-for-availability attack and they will all be explained in greater detail in the

next chapter.

The necessary technical information and descriptions of how to execute the above

mentioned attacks are easily found. The attacks performed in the experiments in

this thesis were based on the general information about 802.11 found in Edney and

Arbaugh’s book, Real 802.11 Security [10], combined with an overall description of

the different types of MAC spoofing attacks found in [8].

1.5.2 Preventing Attacks through Active Methods

A promising solution called active SSL window is presented in [8]. This could ef-

fectively prevent both the session hijacking attack and the freeloader attack. The

downside is that this technique requires that the STA always run a browser window

with the SSL connection. As a result a STA must run two windows at the same time

if the user want to browse the web, a feature that is currently not supported by a

host of smartphones and other Wi-Fi equipment (tested by employees at WrT).

Despite this technique’s effectiveness against the exact attacks this thesis ad-

dresses it is not very relevant as it is restricted to STAs as laptops and possibly

more advanced tablets. This is due to WrT’s and other WLAN operators goal to

not limit the type of equipment that can connect to their network.

1.5.3 Detection Based on Physical Properties

Two detection techniques based on physical parameters were proposed in [5],they

were based on monitoring received signal strengt (RSS) and monitoring round trip

time (RTT) of the request to send / clear to send (RTS/CTS) handshake. The

accuracy of these techniques were published a year later [11]. These techniques were

aimed towards detecting MAC spoofing attacks and the results are promising with

one important constraint. Their experiments were performed in static environments,

including an office premises, and are therefore not necessarily applicable to our

setting in WrT.

In 2009 Pedersen performed experiments with RSS techniques in urban, dynamic

and mobile environments as the one found in WrT in his master’s thesis [2]. The
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conclusion from his work is that RSS is not at all reliable and conclusive when moving

away from office landscapes and lab environments, and into urban environments. He

goes on to say:

The rate of failure stated here may be adequate concerning location

based services, but an IDS should depend on reliable and conclusive

parameters in order to trigger alarms on attacks [2].

Therefore, detection based on physical parameters will not be further pursued

in this thesis.

1.5.4 Detection Based on Logical Properties

The paper Sequence Number-Based MAC Address Spoof Detection [12] explains the

basics behind the SQN detection method used to counter the MAC freeloader attack.

This paper is also the foundation for a IDS developed by Holgernes [13] and further

improved by Idland [1]. Holgernes and Idland augments the basic detection based on

MAC sequence numbers with state machine analysis and QoS validation respectively.

The IDS is tested in WrT’s network with good results, but it is only applicable to

scenarios when the attacker and victim are connected simultaneously. Nevertheless

it is very relevant work and this work can be seen as a continuation of that work

expanding the detection to other scenarios.

1.5.5 Heterogeneity in 802.11 Devices and Implementations

It turns out there are quite some heterogeneity in 802.11 implementations and the

behavior of different devices. These differences are in fact what makes fingerprinting

on the MAC layer possible. This subsection will give a short overview of the most

relevant work done in this area and explain how it has affected and motivated the

fingerprinting algorithm developed in this thesis.

Wireless Driver Fingerprinting In the paper by Franklin et al. [9] the authors

exploit the fact that the algorithm used for scanning channels for access points

(APs) is not explicitly defined in the 802.11 protocol. As it is not explicitly defined

different manufacturers have developed different algorithms. The authors of the

paper developed a method based on statistical analysis of the inter-frame timing of

transmitted probe requests in order to identify a specific driver.

They call this Wireless Device Driver Fingerprinting and concludes that the

majority of wireless drivers do have a distinct fingerprint. The focus in this paper

is on the attacker’s perspective, that it is easy for an attacker to determine which
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driver a given STA is using, and then be able to perform driver specific attacks

against that STA.

Heterogeneity in the 802.11 Protocol Gopinath et al. gives an empirical

analysis of the heterogeneity in the 802.11 protocol in their paper [3]. The differences

they identify are; different random backoff algorithms, whether or not the duration

field is honored, the calculation of the duration field, reassociation latency, rate

switching behavior and vendor extensions in the association request. They show

that these differences can result in unfair bandwidth allocation and poor network

utilization as the STAs do not all act the same.

More interesting for this thesis is the fact that they suggest that these differences

can be used in device fingerprinting in order to detect for instance a MAC spoofing

attack. They do not however explore that possibility further. Some of the differences

in the 802.11 protocol identified in this paper will be part of the algorithm developed,

while others not.

Null Data Behavior The paper On Security Vulnerabilities of Null Data Frames

in IEEE 802.11 based WLANs written by Gu et al. [4] is very important to the work

done in this thesis. The authors create seven rules to identify different behavior re-

garding the Null Data frames. These rules form the basis of the algorithm developed

in this thesis. The authors of the paper focus on the attacker’s perspective and the

fact that this fingerprinting allows an attacker to recognize a user, and to determine

his location at a given time. Location is in this case limited to a WLAN, for instance

at a café, at home or at school. They call it Implementation based Fingerprinting

Attack. In this thesis the rules will be used the other way around, namely in order

to detect attacks and not aid them.

1.6 Report Outline

The outline for the remaining of the report is presented below.

Chapter 2 provides the relevant background theory to the work done in this

thesis. This includes detailed information about the 802.11 protocol, an overview

of relevant attacks and methods to prevent such attacks. An explanation of the

rationale behind IDSs is given as well as an explanation of what fingerprinting is

and how it can be done on the MAC layer. If you have a background in wireless

security you might want to skim or even skip the first part of this chapter, the

fingerprinting part might still prove useful.

Chapter 3 presents the background for why fingerprinting can be used as a viable

detection method and a detailed description of how the fingerprinting algorithm is
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developed. The last part of this chapter includes pseudocode and descriptions of

the algorithm and makes up a major part of the contributions in this thesis.

Chapter 4 elaborates on how the experiments was performed, this includes the

physical setup, an overview of the different STAs used in the experiments and the

test scenarios. Then, Chapter 5 presents the results obtained through performing

the scenarios as described in the previous chapter.

This is followed by Chapter 6 which turns to the discussion and analysis of the

results obtained, their uniqueness and validity, as well as how the fingerprinting

algorithm would do as a detection method in a real world IDS.

Chapter 7 outlines the potential for further research within the same field of

study. Finally, Chapter 8 concludes the work done in this thesis and relates it to

the problem described in Section 1.2.
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Theoretical Background

This chapter will provide the necessary theoretical background in order to under-

stand the relevant attacks and how fingerprinting on the MAC layers is possible due

to the nature of the 802.11 protocol. The chapter will start with a general overview

of the 802.11 standard before a more detailed review will be given on some of the

more relevant frames used in the protocol. Finally the chapter will present the most

relevant attacks on open 802.11 networks and the idea behind IDSs.

2.1 General Overview of IEEE 802.11

2.1.1 The 802.11 Set of Standards and Wi-Fi

The Institute of Electrical and Electronics Engineers (IEEE) 802.11 is a set of stan-

dards for wireless networking created and maintained by the IEEE. The most well

known protocols are the 802.11b and 802.11g, which are amendments to the original

standard. The base current version is the IEEE 802.11-2007 (referred to as 802.11 in

this report) and it includes the above mentioned amendments in addition to others

including 802.11e (QoS) and 802.11i (security).

802.11 operates in the data link layer and the physical layer (PHY) of the Open

Systems Interconnection (OSI) model provided in Figure 2.1. In 802.11 the data link

layer is a composite layer, consisting of the sublayers logical link control (LLC) and

MAC. As evident from Figure 2.1 the MAC layer is the layer above the PHY in the

OSI model. On the physical layer 802.11b and 802.11g use the 2.4 gigahertz (GHz)

band. The 802.11a use the 5 GHz band while the newer amendment 802.11n operates

in both the 2.4 GHz and 5 GHz bands.

Complying with the standard should ensure that your equipment can communi-

cate correctly with other equipment also adhering to the standard, and together form

a wireless network. Nevertheless there exist independent certifications for interoper-

ability, the most popular is Wi-Fi. The Wi-Fi Alliance is a non-profit organization
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and their certification includes rigorous testing to ensure that different devices can

interoperate in a wide variety of configurations. Approved equipment can then be

branded with the Wi-Fi logo to promote their interoperability. The terms Wi-Fi

and 802.11 are therefore sometimes, incorrectly, used interchangeably.

Figure 2.1: The OSI reference model

2.1.2 Operating Modes: Ad-hoc and Infrastructure

There are two operating modes defined in 802.11: ad-hoc and infrastructure mode.

In Ad-hoc mode each STA communicates directly with another STA without the use

of an AP. In infrastructure mode on the other hand there is a dedicated AP that

is providing services to all the STAs in the given network. When in infrastructure

mode a STA can only communicate with the AP directly, the AP will in turn relay
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the traffic to the correct receiver STA on the local network or to another destination

on the Internet. The latter approach is the one most commonly used, and it is the

one found in WrT. For this reason infrastructure mode will be the only operating

mode in focus in this thesis.

2.2 The 802.11 MAC Frame

The 802.11 standard [6] defines three different frame types; control, management

and data frames. All information and signaling between STAs and APs in 802.11

networks is sent by using one or more of these frame types. The frames are sent on

the MAC layer, and more information on each type as well as some of the subtypes

will follow in later in this chapter.

2.2.1 The Frame Structure

Every MAC frame, regardless of the type has the structure shown in Figure 2.2.

The first three fields (Frame Control, Duration/ID, and Address 1) and the last

field (frame check sequence (FCS)) constitute the minimal frame format and are

present in all frames. The other parts are only present in certain frame types and

subtypes [6].

Figure 2.2: The general 802.11 frame [6]

Frame Control The Frame Control field consists of several subfields, some more

important for the work done in this thesis than others, and these important fields

will be explained now. See Figure 2.3 for the format of the Frame Control field.

The Type subfield identify whether the frames is a management, control or data

frame, the Subtype field further identifies the subtype. In data frames, the most

significant bit (MSB) of the Subtype field, b7, is defined as the QoS subfield. A

value of 1 here indicates that the QoS field is present in the MAC frame [6].

The Power Management field (denoted PwrMgt in the figure) is used to indicate

the power management mode of a STA, more details will be presented in the section

on power management, Section 2.4. For a complete overview of the Frame Control

field consult Section 7.1.2 in [6].
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Figure 2.3: Format of the Frame Control field

The Remaining Fields Duration/ID is the first field after Frame Control, and

in most cases it contains the calculated value from a STAs perspective on how long

it will take until the frame is transmitted. An exception to this is in PS-Poll frames

were this field contains the association ID (AID) of the STA. This is part of the

power management protocol and more information will be presented in Section 2.4.

The four addresses are MAC addresses and they are called source address (SA),

destination address (DA), transmitting STA address (TA), and receiving STA ad-

dress (RA) respectively. In our case when a STA sends frames to an AP the different

fields will have the following values. SA = TA while RA = the AP’s address and DA

is the address to the final destination somewhere on the local area network (LAN).

Sequence Control is the field including a sequence number for each frame de-

livered between two stations. This field has traditionally been the most important

field in detection of MAC spoofing attacks, see for instance [1], but this field will

not play an important part in the detection algorithm presented in this thesis.

The QoS Control field is specific for 802.11e and it is only present if the AP and

STA supports it. This field is 16 bits long. The first four bits make up the traffic

identifier (TID) subfield, and is used to determine the QoS class, or TID class

in the 802.11 frame. This allows for a total of 8 different TID classes. If QoS is

not in use by the active application, Differentiated Services Code Point (DSCP) or

a similar service the default priority value of 0 used.

The actual data or payload is inserted in the Frame Body field, and it is variable.

The maximum size of the payload is 2312 bytes per frame.

Finally the FCS field is added for error control, it consists of a cyclic redundancy

check (CRC) [6].

2.2.2 Frame Types

The three different types of frames in the 802.11 standard are control, data and

management. The control frames assist in the delivery of data frames, but do not

carry any payload itself. They are used for time-critical signaling and examples of

such frames is the acknowledgment (ACK) frame which is used to acknowledge that

another frame is received and the PS-Poll frame which is used in power management.

Another pair of well known control frames is the frames used in the RTS/CTS
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protocol1 to avoid frame collisions. Note that the RTS/CTS protocol is optional

and some networks do not use it due to the extra traffic overhead it introduces.

Control frames do not include the Sequence Control field in their frame body.

Data frames carry the actual payload, this is done by encapsulating packets from

a higher layer in the OSI model. The payload has a maximum size of 2312 bytes, and

as a result larger frames must be fragmented. A special version of the data frame

is the Null Data frame. It does not contain any payload, and as will be explained

later, it is used for several different things depending on the implementation.

Management frames are used to establish and maintain the wireless link be-

tween an AP and a STA. This is also signaling, but compared to the control frames

management frames are not as time-critical. The subtypes for management frames

include specific frames for association, disassociation, authentication and deauthen-

tication.

2.3 Detailed Information on Relevant Frames

Some frames are more relevant than others in order to understand the work done in

this thesis as they are used in the fingerprinting algorithm developed. These frames

all share the common trait that their values and usage differ depending on the

implementation and equipment used. A more detailed description of these frames

will now follow.

2.3.1 Beacon Frame

The Beacon frame is a management frame (type 00) with subtype 1000. Beacon

frames are periodically transmitted by the AP. It is used to announce the network

to new clients and to inform STAs about several different parameters and settings

regarding the network. The most relevant parts of the Beacon frame for the work

done in this thesis will now be presented. For a full overview the reader is referred

to Section 7.2.3.1 in [6].

The Timestamp field contains the value of the timing synchronization func-

tion (TSF) timer of the AP and is used to inform STAs about the correct time

to enable synchronization. Each STA maintain a TSF timer counting in increments

of microseconds. This is a 64-bit modulus timer [6].

The second field in the Beacon frame is the Beacon interval field. This field

represents the number of time units between target beacon transmission times [6].

1RTS/CTS is a protocol where a node wishing to send data initiates the process by sending
a request to send (RTS) frame. The destination node replies with a clear to send (CTS) frame.
Any other node receiving the RTS or CTS frame should refrain from sending data for a given time
(solving the hidden node problem).
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The service set identifier (SSID) field is the fourth field in the frame body,

it is an information element, and it indicates the identity of the network (the name).

In our case the SSID equals Wireless Trondheim.

The last field to be highlighted in this section is the traffic indication map

(TIM) field. This is also an information element and the full details of its structure

can be found in Section 7.3.2.6 in [6]. The TIM element contains a field called

Partial Virtual Bitmap, this field is 1-251 octets long and each bit corresponds

to a STA’s AID. More details regarding its usage is given in power management

section.

2.3.2 Association Request

The association request frame is a management frame (type 00) with subtype 0000.

This is an important frame in the authentication-association procedure and it con-

tains a lot of configuration information from the STA that is connecting to the

network. The frame contains the different fields and information elements as shown

in Table 2.1. The Capability field is two octets long a and consists of a num-

ber of subfields that are used to indicate requested or advertised optional capabili-

ties [6, Section 7.3.1.4]. The Listen interval field is as described in Section 2.4.

The purpose of the next fields and information elements is pretty self-explanatory

by their name in Table 2.1, if you still want a more detailed description consult

Section 7.3 in [6].

The three first elements of the frame are called fields and they are always present.

The next elements are called information elements, and do not have to be present

under every condition. An example is the Extended Supported Rates element

which must be present if the STA supports more than eight rates, but is optional

otherwise. There might also be zero, one or several vendor specific elements present

at the end of the frame. For a complete overview it is once again referred to Section

7.3 in [6]. A lot of differences between implementations and equipment are found

in the association request frame, and these differences provide an opportunity to

fingerprint as will be demonstrated later.

2.3.3 PS-Poll

The PS-Poll frame is a control frame (type 01) with subtype 1010. The format of the

PS-Poll frame can be seen in Figure 2.4. It has no payload, and the Duration/ID

field contains the AID of the STA. This is a 16-bit identifier (ID) given to the STA

by the AP in the association response during the initial handshake. The PS-Poll

frame is used in power management as described in Section 2.4.
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Order Information

1 Capability
2 Listen interval
3 SSID
4 Supported rates
5 Extended Supported Rates
6 Power Capability
7 Supported Channels
8 RSN
9 QoS Capability
Last Vendor Specific

Table 2.1: Association Request frame body [6]

Figure 2.4: The PS-Poll frame body [6]

2.3.4 Null (no data) and QoS Null (no data)

The Null (no data) and QoS Null (no data) frames are both data frames (type 10)

with the subtype 0100 and 1100 respectively. For simplicity the parenthesis will be

dropped and these frames will be referred to as Null Data frames throughout the

report. The frame body of the Null Data frame can be seen in Figure 2.5. There is

no payload and the QoS field is only present in QoS Null Data frames, this is true

regardless if QoS is activly used or not (default TID = 0 in use).

The 802.11 standard does not specify the use of the Null Data frames. Neverthe-

less they are used extensively, and for many different purposes. In [4] it is stated that

Null Data frames have three main usages; association keep alive, changing power

management mode and channel scanning. More details of the specific use of Null

Data frames in these scenarios will be presented in Section 3.4.1.

2.4 Power Management

Power management enables STAs to save power by turning off their receivers at

certain times without the risk of not receiving frames by doing so. Most mobile

devices use power management as reduced power consumption is a desired trait.
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2.4. Power Management

Figure 2.5: The Null Data frame body

2.4.1 Background

During the association a STA is assigned a 16-bit ID called AID. The value assigned

as AID is in the range 1-2007. Each STA have its own ListenInterval that indi-

cates the maximum number of beacon intervals the STA might be dozing before it

awakes and listens for Beacon frames.

Recall that Beacon frames contain the information element TIM which again con-

tains the field Partial Virtual Bitmap. The Partial Virtual Bitmap contains

up to 251 octets (2008 bits) and each bit corresponds to a AID of a STA. If bit x

equals 1 then the AP has buffered one or more MAC service data units (MSDUs)

for the STA with AID x.

2.4.2 The Frame Exchange

STAs changing power management mode shall inform the AP of this fact using the

Power Management subfield within the Frame Control field of transmitted frames.

This subfield is only one single bit and the value indicates the mode in which the

STA will be after the successful completion of the frame exchange sequence.

The standard does not specify which frames that should be used for this purpose,

but it does provide the requirement that a change must be done via a frame exchange

that includes an acknowledgment from the AP. In other words, using an ACK would

not suffice, but using an Null Data frame would be good as the AP would ACK the

Null Data frame. Null Data frames are often used as they are very lightweight.

2.4.3 How Power Management Works

A STA can be in two different power states, Awake and Doze. While in Awake

the STA is fully powered, when in Doze on the other hand the STA is not able to

transmit or receive anything and consumes very little power.

The state of a STA is determined by the STA’s power management mode. There

are two different modes, active mode (AM) and power save (PS) mode. A value of 1

in the Power Management subfield indicate PS mode while 0 indicates AM. In AM
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the STA is in the Awake state and may receive frames at any time. In PS mode the

STA is in the Doze state and shall only enter the Awake state to receive selected

Beacon frames based upon the ListenInterval.

If the TIM element in the Beacon frame have a value of 1 in the bit map corre-

sponding to the STA’s AID the AP has buffered one or more MSDUs while the STA

was in the Doze state. The STA then sends a PS-Poll frame to the AP, and the AP

responds by transmitting the buffered MSDUs to the STA. This is done even if the

STA is still in PS mode.

For a complete overview regarding power management in 802.11 consult Section

11.2 in [6].

2.5 Radiotap Header

The radiotap header is not a header that is actually sent, but it is created on the

receiver side and is a mechanism to supply additional information about frames [14].

The radiotap header is included in the captures done in the experiments as it contains

some important information needed for the fingerprinting.

2.5.1 MAC Timestamp

Timestamps are available through the TSFT field in the radiotap header. The TSFT

field, known as radiotap.mactime in Wireshark, is defined as follows: Value in

microseconds of the MAC’s 64-bit 802.11 TSF timer when the first bit of the MAC

protocol data unit (MPDU) arrived at the MAC. For received frames only [15]. This

field will be used in the algorithm developed in this thesis.

2.5.2 Data Rate

The datarate used to transmit a packet is not contained in the MAC frame, but it

is also available in the radiotap header. This information is available in the Rate

field, also known as radiotap.datarate in Wireshark. The definition of this field

is: TX/RX data rate in units of 500 Kbps.

The rate information is actually extracted from the PHY, more specifically from

the physical layer convergence procedure (PLCP) header in the PLCP sublayer. The

PLCP header varies depending on the type of PHY specification used. For more

information consult the 802.11 standard under the PHY technique in use, see for

instance Section 19.3 in [6] for details regarding the PLCP sublayer in extended rate

PHY (ERP), commonly known as 802.11g.
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2.6. Relevant Attacks on 802.11 Networks

2.6 Relevant Attacks on 802.11 Networks

This chapter will present different types of attacks that are relevant in order to

perform an identity theft in form of a MAC spoofing attack. More precisely the

chapter will focus on how such an attack is performed in an open 802.11 network

with a captive portal, i.e. the network type found in WrT. For a more general

overview and introduction to attacks on 802.11 networks see for instance [10].

2.6.1 Eavesdropping and Traffic Analysis

Eavesdropping and traffic analysis is a group of passive attacks. In a passive attack

the attacker does not interact with the network at all. He does not generate any

traffic, but passively listens to the packets available ”in the air” at his physical lo-

cation. As a result of not transmitting anything these attacks are almost impossible

to detect, in addition they are also simple to perform as one just need to receive

packets.

In the eavesdropping attack the attacker typically uses some sniffing tool2 to

capture all the packets available in his geographical position. The challenging part

for the attacker is then to be physically close to the AP and/or STAs in question in

order to receive the packets. Gathering packets through a sniffing tool constitutes

a successful eavesdropping attack, and in an unencrypted network this would give

the attacker a complete overview of what the victim(s) are communicating.

Traffic analysis is the process of deducing information from the traffic patterns

found by observing the number and frequency of packets transmitted as well as

their length and type. This is typically a lot more complex attack than simple

eavesdropping and requires detailed knowledge about the protocols in use in order

to draw some conclusions.

Eavesdropping and traffic analysis are often the starting point from an attacker’s

perspective in order to gather information about specific clients and the network in

general. These attacks will almost never be the end goal itself, rather they will be a

stepping-stone to enable other, more complex attacks. This holds true for the MAC

spoofing attack which will be described later in this section.

2.6.2 Masquerading: MAC Spoofing

As noted earlier a user of WrT’s network must have his MAC address whitelisted

before the he is able to access anything except the login-page. The whitelisting is

done in the Nomadix gateway. An overview of the network topology depicting the

2Wireshark, Airodump, Kismet etc.
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gateway and other important elements will be presented in Chapter 3. An easy way

to fool this system is by performing a MAC spoofing attack.

Overview of the MAC Spoofing Attack The theory of the MAC spoofing

attack is that the attacker masquerades as an legitimate client, one who already has

his MAC address whitelisted. Thereby the attacker gains access to the network. As

the name implies the masquerading is done by spoofing the MAC address of the

legitimate client. This information can easily be obtained through eavesdropping.

Note that the attacker will only have access to the network as long as the legitimate

user is whitelisted.

There exist several variations of this attack. They differ in the way the victim is

treated, whether the attacker tries to avoid detection, and as a result the complexity

of performing the attack. In the remaining of this section five different versions will

be briefly explained without going into the practical details of performing each of

the attacks. The categorizations and explanations is based on the paper written by

Xia [8] as well as a thorough overview of these attacks described by Idland in [1]

specifically for the network type found in WrT.

MAC Freeloader Attack This is the simplest variation of the attack. It does

not require much skill, and it does not try to avoid any form of detection. The

attack consists of spoofing the MAC address of a legitimate client and nothing

more. In this case both the attacker and victim will be connected to the network

at the same time, and as a result both STAs will receive each other’s traffic. It

is pointed out in [8] that this behavior should cause problems in the Transmission

Control Protocol (TCP) layer. More specifically it should result in a termination

of the ongoing TCP connections, thus making it very difficult for the attacker to

use TCP. This is usually not the case in practice, and the same paper points out

that modern firewalls block TCP traffic not originating from the client and thereby

aiding the attacker in this specific case.

QoS Optimized MAC Freeloader Attack In the QoS optimized version the

attacker tries to avoid detection based on simple SQN analysis. This is done by

changing the 802.11 QoS priorities to some priority not currently in use by the

legitimate client. Each QoS class has its own sequence counter. By using an previous

unused class the attacker will obtain his own counter and fool some systems based

on plain SQN analysis. This variation is described here for completeness as WrT

runs a QoS enabled network, but it will not play a significant role in this thesis.

See [1] for an algorithm specifically designed to detect this attack.
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Wait-for-Availability Attack This attack is very similar to the freeloader at-

tack, but there is one important difference. In this case the attacker waits until

there is no longer any traffic going to or from the victim’s STA. Then, assuming

the victim has left; the attacker spoofs the address and tries to connect. In WrT a

MAC address stays whitelisted for 20 minutes after the traffic has ceased regardless

if the client deauthenticated or just stopped transmitting. This is the most relevant

version of the MAC spoofing attack as it is easy to perform and very hard to detect

with existing methods based on two STAs transmitting at the same time.

Session Hijacking — Deauthenticate Attack In this variation the attacker

first spoofs the AP’s MAC address in order to send fake deauthenticate messages

to the victim. The victim’s STA believes that the deauthenticate is legit, and as

a result it terminates its association with the AP. The attacker can then spoof

the victims MAC and have the session for himself. To prevent the victim from

reconnecting the deauthenticate procedure will have to be repeated frequently.

Session Hijacking — Channel Switch Attack A recent variation of the session

hijacking, called channel switch attack, is described in [16]. In this version the

attacker does not send fake deauthenticate messages; instead he sends a channel

switch announcement element. A correctly crafted element would result in the

victim changing channel (to an invalid one) immediately, and stay on that channel

for up to 255 beacon intervals before switching back. The authors report that a

denial of service (DoS) effect of up to one minute can be achieved with a single

message.

2.6.3 Man in the Middle

The man in the middle (MITM) attack is a more complex attack than the MAC

spoofing attack, but it turns out that the added complexity might be worth it as

this attack is also much harder to detect. The attack can be described as follows.

The attacker sets up a rogue AP3 and waits for a legitimate client to connect.

All the data is then relayed to the real AP. The real AP then interpret the rogue

AP as the legitimate client [10].

The victim believes he is connected to the real network and continues as usual.

The network also believes that everything is correct as the attacker have full control

over the frames sent to the real AP. Having full control over all the frames sent

allows the attacker to inject his own frames into the stream from the legitimate

3A rogue AP is an AP controlled by the attacker. It can be a physical AP or created in
software running on a laptop. It masquerades as a real AP of the target network — preferably
undistinguishable from a regular clients view.
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client and modify them in such a way that sequence numbers and other parameters

behave correctly. As noted in the beginning of this subsection the MITM attack

is a lot more complex than the previously mentioned attacks, but with automated

software this could be a very viable attack, even for a novice attacker.

It should also be noted that a channel switch attack could be used to trick a STA

to change from a legitimate AP to a rogue one. This technique allows the attacker

to actively acquire clients and not just wait for a client to connect to his rogue AP

by chance. At the same time the sending of channel switch announcement elements

makes detection easier.

2.7 MAC Spoofing Prevention

2.7.1 Robust Security Network

A logical solution to significantly reduce the risks associated with MAC spoofing

attacks would be to not use the MAC address as a vital part in the identification

process. Using other methods to distinguish and identify users could be imple-

mented, for instance with the use of Robust Security Network (RSN) [6]. RSN is

not used in WrT as it requires keys and certificates, and is therefore regarded as too

much hassle for the average user that just wants access to the Internet while sitting

on a café in downtown Trondheim.

2.7.2 Active Methods

Active methods are a class of methods that does not require the setup of keys or

certificates, thus reducing the hassle for the user. What these methods do require is

an active STA. Several active countermeasures to prevent the effectiveness of MAC

spoofing attacks exist. An good example that demonstrates this class is the active

SSL window technique mentioned in Section 1.5.2 and explained in [8]. The downside

with this technique is that it requires the STA to run two browser windows at the

same time, a requirement that is currently not supported by a host of smartphones

and other Wi-Fi equipment.

Keeping in mind WrT’s goal of having an easy to connect to network that is

open for every type of Wi-Fi equipment it is obvious that this puts some constraints

on what one can do regarding security. To the author’s knowledge no active method

exists that can prevent MAC spoofing attacks while at the same time upholding

WrT’s goals. As a result the focus has in the last years been, and will continue in

this thesis to be on detection.
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2.7.3 Whitelist Flushing

A technique worth mentioning, and that could be used is something called a log-off

function. WrT have the possibility to enable this functionality, but it is currently

not in use. The idea is to have a button on a webpage or some known Uniform

Resource Locator (URL) one can visit to log-off when you are done. What happens

then is that your MAC address is flushed from the whitelist immediately. This

would effectively prevent the wait-for-availability attack which is the main attack in

question, but it would do nothing to prevent the other types of attacks.

Giving each user the responsibility of logging off would probably not yield the

best results as most users would forget to do it, or simply not care whether they

flushed the whitelist or not. An idea would then be to flush the whitelist auto-

matically on a deauthenticate message, thereby ensuring that it is done when the

user logs off. The problem with this approach is that some devices, for instance the

Apple iPhone sends deauthenticate messages whenever it enters sleep mode [1]. The

user would then be required to enter his credentials in the captive portal again after

awaking the phone. This could happen quite frequently and the additional hassle

would probably not be worth the increased security.

2.8 Fingerprinting

Fingerprinting is the act of collecting externally observable characteristics from a

specific source in order to identify it, i.e. develop a fingerprint of that source. A

good fingerprint resembles fingerprints in humans in the way that they are unique or

almost unique for each individual. In the case of WrT the target of the fingerprinting,

or the fingerprintee, is typically the STA.

Fingerprints exist as a consequence of implementation differences between differ-

ent devices and user specific options. These differences are often reflected in the type

of traffic generated by a given STA. Fingerprints for a known device with known

settings can often be pre-determined. The task is therefore often to determine which

kind of STA we are dealing with by observing and potentially interacting with it,

and then comparing the observed data with known fingerprints.

2.8.1 Active versus Passive

Fingerprinting can be done actively or passively. Passive fingerprinting is the most

straightforward case, and it does not involve interaction with the fingerprintee. In

this case the fingerprinting program acts as an observer without sending any requests

or queries. The fingerprinting technique used in this thesis is of the passive sort.
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On the other hand, an active fingerprinting program is one that is sending some

kind of request to the fingerprintee in order to obtain additional information. The

idea is that by being able to create the request one might get more relevant in-

formation from the target than what is acquired through merely observing. An

example of active fingerprinting is found in the feature called OS Detection in the

popular network scanner Nmap [17]. It is stated on their web-page that this feature

is based on TCP/IP stack fingerprinting where Nmap sends a series of specially

crafted TCP and User Datagram Protocol (UDP) packets to the remote host and

examines practically every bit in the responses [18].

An active fingerprinting system is often more complex than a passive one as it

not only observe (receive packets), but also transmit packets. Typically an active

system requires more hardware in order to transmit as well. In some cases the

extra cost of complexity and hardware might be acceptable if the active techniques

increase the success rate substantially. Other times a passive system would have the

same success rate as an active one, and thus it would not be worth the extra costs.

2.8.2 Sources for Fingerprinting

There are many different sources for fingerprinting and this section will present some

of the more popular and relevant sources of fingerprinting in 802.11 networks.

User Users can be a good source for fingerprinting as they usually have some pref-

erences reflected in settings and options that differentiate them from other users. In

addition to different settings the behavior pattern of a user can be used to finger-

print as well. Examples of the latter could be the duration of an association, type

of protocols used and first web-page loaded (start-up page).

Web Browser Different browsers generate different requests and responses during

normal use. With the addition of plug-ins and user specific settings the entropy of a

browser is reported to be over 18 bits [19]. The author in [19] created a fingerprinting

algorithm and showed that for browsers which support Flash or Java 94.2% had a

unique fingerprint. This demonstrates that browser fingerprinting can be very viable.

TCP/IP Stack Some of the parameters within the TCP are not specified by the

standard. As a result implementations differ in how these parameters are calculated

and used. The set of these parameters include the initial value of the TTL field, the

Window Size field and the DF bit to name a few [20, page 229]. There exist several

programs that fingerprint on the TCP/IP stack, and amongst the more popular is

the already mentioned active program Nmap [17] and the passive program p0f [21].
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MAC Layer As with the TCP there are several parameters and options that are

not unambiguously specified in the 802.11 standard. This gives room for different

implementations which again provides us with a fingerprinting possibility. Two

examples of implementation differences in the 802.11 standard is the use of Null

Data frames and how the Duration field is calculated. MAC layer properties is the

source of choice in this thesis. A thorough explanation of how the fingerprinting on

the MAC layer is performed, as well as the rationale behind choosing MAC layer

fingerprinting as the preferred source will be given in Chapter 3.

2.9 Intrusion Detection Systems

2.9.1 Introduction to Intrusion Detection Systems

An IDS is a system designed to detect attacks through monitoring and analyzing live

behavior for abnormalities. These systems often require some additional hardware

in order to monitor and potentially interact with clients. This hardware could

be standard off the shelf equipment as a regular wireless card or it could be very

specialized equipment.

IDSs are similar to intrusion prevention systems (IPSs), but an IPS has its main

focus on preventing and blocking an intrusion before it is successful. IDSs on the

other hand will only detect an attack after it is executed, but hopefully very soon

after.

The ideal IDS will detect every attack and never flag normal behavior as suspi-

cious. A real world IDS will never be as good as the ideal, but it should be designed

with the goal of approximating the ideal IDS in terms of reliability.

There is no one preferred method of detection, but it is a common understanding

that the combination of several techniques will increase the probability of the IDS to

succeed. The most relevant detection techniques in order to detect a MAC spoofing

attack will be presented below.

2.9.2 Active versus Passive

IDSs can be grouped in several ways; one of them is how they interact with the

environment, in our case the network. An IDS can either be passive or active.

Being passive implies that the IDS does not interact with the network or STAs

at all, the system is only a passive observer. On the contrary an active IDS does

interact with the network, STAs or both in an attempt to elicit abnormal behavior.

An example of active behavior is a system that sends out a request and analyzes

the response. The request could have been crafted in such a way that a specific

26



Chapter 2. Theoretical Background

response would be expected from legitimate clients while another response might be

expected from clients with irregular settings.

This is parallel to the active versus passive discussion regarding fingerprinting

programs found in Section 2.8.1, both regarding the behaviour and tradeoff between

complexity and success rate.

2.9.3 False Positives and False Negatives

False positives and false negatives are two important terms used in relation to IDSs.

The first term, false positive, is used to denote a situation where the system has

detected suspicious behavior (flagged an attack) when there in fact is no such at-

tack. The last term, false negative, is used to imply that an actual attack was not

detected by the IDS. Ensuring low rates of both false positives and false negatives

is paramount for any IDS in order to be reliable and useful in real situation.

Another term that is closely related to the term false negatives is the success

rate of an IDS. The success rate is the percentage of attacks that is detected. In

other words the success rate is the compliment of the false positive rate, and they

together add up to 100% (all the attacks).

2.9.4 Statistical Anomaly- and Signature-based Detection

There are two main types of detection techniques, statistical anomaly-based and

signature-based. An IDS which utilizes statistical anomaly-based detection will

typically have a baseline of what behavior that is considered normal. Activity on the

network is monitored and then analyzed in accordance with the baseline parameters.

If the behavior does not fall within what is defined as normal the user or STA will

be flagged as suspicious.

In signature-based detection the IDS analyzes the activity, searching for specific

attack patterns known as signatures. Once a known attack pattern is recognized the

user or STA will be flagged as suspicious. This type of detection resembles the one

used in anti-virus software and a similar problem arises; attackers will adapt and

change their methods so that they no longer fit the attack signature, and thus the

IDS requires frequent updates of signatures [22].

2.10 Relevant Detection Techniques

This section will present several classes of detection techniques that have been used

in wireless IDSs. Some of these techniques have proven to be efficient in the relevant

environment as described in Chapter 1 while others not. The reason for success or

lack therof will be explained.
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2.10.1 MAC SQN Analysis

MAC SQN analysis is a technique based on how the sequence numbers operate in the

802.11 standard. Each STA have its own SQN counter that increase monotonically.

During a MAC freeloader attack, described in Section 2.6.2, there will be two STAs

each transmitting with the same MAC address. These STAs will each have their own

SQN counters. From the IDS’s viewpoint the numbers will therefore not increase by

one for each frame delivered from that MAC address, but rather jump back and forth

as a result of following two independent counters. See Figure 2.6 for an example of

how the SQN could behave seen from an observer’s (IDS) perspective.

Figure 2.6: Observed SQNs during a freeloader attack

This detection mechanism was presented in the paper Sequence Number-Based

MAC Address Spoof Detection [12]. It later formed the basis for an proof-of-concept

IDS developed specifically for WrT by Holgernes and Pedersen [23] and later im-

proved by Idland [1]. This detection technique plays an important role in detecting

MAC spoofing attacks, but it is limited to the types of attacks where attacker and

victim transmit at the same time. As this thesis focuses on detecting the attacks

where the attacker and victim are not connected at the same time the MAC SQN

analysis will not be used.

2.10.2 RSS Monitoring

Received signal strength (RSS) is a value measured by the receiving network interface

controller (NIC), indicating the signal strength at the receiver. In this detection

technique the IDS analyzes the RSS measurements, looking for abnormalities. A

scenario with oscillating values originating from the same MAC address within a

short timeframe would typically be flagged as suspicious.
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A major strength with this technique is that it works regardless of protocol,

encryption or any other settings as the measurements are done on the physical

layer. It is also very hard for an attacker to spoof the value as the value itself is not

sent, but measured at the receiving party [5, 24].

As mentioned oscillating values in the RSS would typically be flagged as suspi-

cious. The rationale behind this decision is that different values is an indication that

there are in fact two STAs located in different positions and sending with the same

MAC address. In a static network, as within an office premises, this would be true

as demonstrated in [5]. As mentioned in the related works section Pedersen looked

into how this technique would perform in an urban and dynamic environment as

WrT. He concluded that RSS monitoring as detection technique in WrT and similar

networks are in fact unreliable [2].

2.10.3 RTS/CTS Roundtrip Analysis

Two of the control frames in 802.11 are the RTS and CTS frames. They are part

of an optional protocol used to avoid collisions due to the hidden node problem

mentioned earlier. The detection technique is based on analyzing the RTT of the

RTS/CTS message exchange. In [25] the authors are able to estimate the distance

from the IDS to a given STA with a meters accuracy.

In this case, as in the case of RSS monitoring, oscillating values could indicate

an attack, i.e. two different STAs. The downside is once again that the experiment

in [25] was performed with a stationary STA, and thus are not applicable to our

network for the same reasons as with RSS monitoring. In addition several networks,

including WrT, do not have the RTS/CTS protocol enabled as it results in increased

overhead traffic.

2.10.4 Protocol Specific Analysis

This technique is based on analyzing the packets originating from a MAC address,

looking for inconsistencies or irregularities when taking into account the protocol

standard. Holgernes used this detection technique with the 802.11 protocol in his

master’s thesis [13] in order to detect the freeload attack. Specifically he analyzed

how the 802.11 states operate and which management frames that are invalid in a

given state. Not conforming to the standard would be regarded as suspicious. The

theory is that two STAs that follow the standard with the same MAC address would

appear to be one STA not following the standard.

Contrary to the previous methods based on physical measurements this technique

is not automatically deteriorated in a mobile environment, but it is very dependent

on having a low drop-rate. If a single management frame is dropped it could cause

29



2.10. Relevant Detection Techniques

the state held by the IDS to be different from the actual state in the STA, the next

management frame received would then probably result in a false negative or a false

positive.

The sending of management frames is not an unspoofable property as it is defined

in the drivers of the NIC. Nevertheless Holgernes argues that it would be a complex

task to edit these drivers in order to stop them from sending certain management

frames. Regardless this technique is also of little use when regarding the wait-for-

availability attack as the legitimate client then is already deauthenticated and will

not transmit any more frames.

2.10.5 Behavior Monitoring through Fingerprinting

Behavior monitoring through fingerprinting as a detection technique requires some

set-up time. First the behavior of the STAs in a network is monitored, and based on

several specific traits, a fingerprint of the STAs is developed. Recall fingerprinting

from Section 2.8. The creation of the fingerprints is under the assumption that

no attack is currently ongoing, thus the STAs are uniquely identified by the MAC

address.

Then, if an attack is performed after the initial set-up the fingerprint should

change as a new STA (the attacker) is sending frames with MAC address of the

first (legitimate) STA. This sudden change in a fingerprint for a given MAC address

would then indicate that an attack has been performed.

The fingerprint should be based on several different properties and they should

not be easy to spoof. In this thesis such a fingerprint is developed on the basis

of heterogeneity found in the 802.11 standard. As is turns out there are a lot of

differences to be utilized in a fingerprinting algorithm, and several of them are not

easily spoofable as they are a result of the drivers running the NIC.

One drawback with this technique is that two identical STAs probably would

have an identical fingerprint. A major strength on the other hand is that this

technique in theory should work very well against the wait-for-availability and the

session hijacking attack. The rest of this thesis will be focused on developing an

algorithm for detecting these attacks through fingerprinting and testing it in a real

network.
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The Fingerprinting Algorithm

This chapter will present the background for why fingerprinting can be used as a

viable detection method and a detailed description of how the fingerprinting algo-

rithm is developed. It will start by defining the threat model in terms of network and

attacker with a discussion of relevant attacks. Then a rationale for fingerprinting

as the preferred detection method is given before a discussion of potential finger-

printing properties. Finally, details of how the algorithm was developed and how it

works is presented, this includes pseudocode and literal descriptions.

3.1 Threat Model

The treat model includes descriptions of the network in question and a generic at-

tacker. The attacker is defined in terms of motive, skills, know-how and equipment,

while the network is described by its relevant equipment and software. These de-

scriptions are important in order to understand the decisions made in this thesis.

3.1.1 The Network

The network in question is WrT’s network. An simplified overview depicting the

relevant components and the network’s topology can be seen in Figure 3.1. On the

wireless side WrT hosts an open 802.11 network with WMM (QoS) enabled. Both

802.11a, 802.11b and 802.11g are supported. WrT do not have regular APs, but

instead uses LAPs. These LAPs are minimalistic APs and all the setup and settings

is controlled from the WLC. The captive portal functionality is implemented in the

Nomadix gateway. No IDS or IPS is currently used in the network.

The entire network is naturally a lot more complex and includes several LAPs,

WLCs and so on. For simplicity and readability these entities are not included in the

figure. What is included on the other hand is a legitimate STA, a attacker STA and

the computer used as monitor in the experiments (marked IDS server). It should
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be noted that the actual attacks and other experiments were performed on the real

WrT network. In the threat model the wired network in considered secure, whereas

the wireless is not. The following can therefore be stated about the network:

Attacks on the network will only be considered on the LAPs.

Figure 3.1: Overview of Wireless Trondheim’s network [1]

3.1.2 The Attacker

Motive There are a lot of possible specific motives for performing an identity

theft. One of the most serious cases is the case when the attacker wishes to perform

some kind of illegal activity masquerading as an innocent client, and this is the case

WrT is concerned about. Browsing of sexual abuse images of children is a typical

example of the latter. Generally the motive of the attacker is defined as:

The attacker’s motive is to gain access the network and the Internet masquerad-

ing as someone else.

Skills WrT want host a network that is easy and convenient to connect to and

security features should not interfere with this. As a result of not proclaiming a

bulletproof network a highly skilled attacker is not considered. What is considered

is an attacker that is able to perform the different masquerading attacks described

in Section 2.6.2 as well as passively listening to the network traffic. It is also fair
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to assume that he has knowledge about SQN analysis and other popular detection

methods. His skills are defined as follows:

The attacker has the skills to perform the five different versions of the MAC

spoofing attack. In addition he have a thorough understanding of the basics behind

the 802.11 protocol, IDSs and commonly used detection methods.

Equipment The equipment available should match the motivation and skills of

the attacker. In order to limit the scope of this thesis advanced equipment is assumed

to not be available. The attackers equipment is defined as:

The attacker has a laptop with a wireless NIC and have access to all relevant

software. Other physical equipment is not considered available.

3.2 Discussion of Possible Attacks

The attacker with limited skills as defined in the threat model can perform several

different attacks; some that will be considered, while others not. The current section

presents a discussion of the different attacks and whether they are considered in this

thesis. This is mainly done in order to specify the scope of the work done in this

thesis.

3.2.1 Eavesdropping and Traffic Analysis

Eavesdropping and traffic analysis is often the starting point for other attacks, specif-

ically this is true for the MAC spoofing attack. Naturally these types of attack will

be considered.

3.2.2 MAC Spoofing

In the threat model the attacker is defined to have the skills to perform all of the

five different types of MAC spoofing attacks. Nevertheless not all of them will be

considered when developing the detection techniques in this thesis. Idland reports

good results in detecting the freeloader type with or without QoS optimization [1].

As this is a continuation of his work those attack types will not be considered.

The relevant type of MAC spoofing attack is the ones were the attacker and

victim are not connected simultaneously. This includes the three remaining types.

The main focus will be on the wait-for-availability attack as it is the easiest to

perform form the attacker’s viewpoint, recall Section 2.6.2. One can also argue that

it is the most difficult attack to detect as the attacker does not force the legitimate
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client off the network1. It should also be noted that an algorithm that is able to

detect the wait-for-availability attack will also be able to detect the session hijacking

attack. This is due to the fact that the algorithm only take into consideration that

a new STA, with a new fingerprint is active with the same MAC address. Not how

the old (legitimate) STA is treated.

3.2.3 Man in the Middle

The MITM attack is a more complex attack that requires one to setup a fake AP.

This attack no longer requires dedicated additional hardware as an AP can be setup

in software — for instance on a Windows computer [26].

Given the limitations of our attacker as defined in the threat model, software

MITM is still a viable method to gain access the network and the Internet mas-

querading as someone else. At the same time this attack is more in the class of

phishing2 and does not share many similarities with the wait-for-availability attack,

it is therefore not considered part of the scope in this thesis.

3.3 Fingerprinting as Detection Method

3.3.1 The Need for a New Detection Method

To the author’s knowledge there currently does not exist any method to detect

MAC spoofing attacks of the type where the attacker and victim is not connected

simultaneously. The other variation of this attack is more thoroughly tested and

several possible solutions exists [1]. These solutions are based on detecting abnor-

malities due to two STAs acting as one, and are not suitable to distinguish two STAs

connected at different times.

Fingerprinting is a method that from a theoretical standpoint should fit this

problem well as a good fingerprinting algorithm is able to identify subjects (STAs)

and thereby enable a program to distinguish between two different STAs.

3.3.2 Strengths of MAC Layer Fingerprinting

Fingerprinting on the MAC layer is based on implementation differences as high-

lighted in the papers discussed in Section 1.5, Related Work. Many of the properties

mentioned are not easily modifiable as they are hardcoded in the drivers of the NIC.

1Forcing the client off the network requires sending of deauthenticate or channel switch frames.
These frames can easily be observed by an IDS, ergo it can easily be detected.

2Phishing is a way of attempting to acquire sensitive information by masquerading as a trust-
worthy entity in an electronic communication [27].
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Using properties that are hard to spoof is a very important part in creating a fin-

gerprinting algorithm that is reliable.

The MAC layer properties are unencrypted, even in encrypted networks. These

properties include frame type, power management information and other properties

form the MAC header. This fact makes fingerprinting on the MAC layer more

versatile than using properties from higher levels in the OSI model that might be

encrypted. Another strength is that these properties are available through passive

observation, not requiring any interaction with the STAs from the IDS.

3.4 Potential Fingerprinting Properties

3.4.1 Null Data Behavior

In the paper On Security Vulnerabilities of Null Data Frames in IEEE 802.11 based

WLANs [4] the authors create seven rules to identify different behavior regarding

the usage of Null Data frames. These rules can be seen below.

Rule 1 Some NICs use Null Data frames for power management (Y) while others

use PS-Poll control frames (N)

Rule 2 Some NICs send Null Data frames once per 10 seconds when there is no

data communication to keep association alive (Y), while others do not (N)

Rule 3 Some NICs send Null Data frames before sending Probe Request frames

during active channel scanning (Y), while others do not (N)

Rule 4 When switching mode from PS mode to AM, some NICs send a Null Data

frame (PwrMgmt set to 0) before sending the first data frame (Y), while others

send the data frame directly (N)

Rule 5 Some NICs can still receive data frames for a short period of time after

sending a Null Data frame (PwrMgmt set to 1) (Y), while others switch to the

Doze state immediately after sending such a Null Data frame (N)

Rule 6 Some NICs send Null Data frames periodically (Y), while others send it

aperiodically depending on the availability of data (N)

Rule 7 Some NICs send a Null Data frame (PwrMgmt set to 1) and switch to the

Doze state after sending out all its data frames to the AP even if there are

more buffered data frames at the AP (Y), while others do so only when there

are no frames in both directions (N)
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These rules motivated this work and form the basis of the algorithm developed

in this thesis. A detailed explanation of how five of these rules are tested for will be

presented in Section 3.5. Two of the rules are not applicable in our setting, these

rules are Rule 5 and Rule 7 as they cannot be determined by merely observing. Both

rules require access to some internal information from the STA in order to determine

(Y) or (N). Rule 5 requires access to the internal power state while Rule 7 requires

knowledge about whether the STA have sent all its packets or if it just entered PS

mode periodically. These rules will therefore not be included in the fingerprinting

algorithm developed.

3.4.2 Duration Calculation

Recall that the MAC header have a field called Duration/ID. In data frames this

field contains a value that indicate the duration of the current transmission in mi-

croseconds [6]. The standard specifies that this calculation is dependent on the

PHY in use as well as the transmission rate, still an algorithm for determining the

duration is not specified. This point is stated in the paper by Gopinath et al. [3].

Not having a specified algorithm has led to several different implementations,

the result is that identical frames sent over the same PHY with the same rate get

different values in the Duration/ID field. Not many data frames are identical, but

one particular type is — the Null Data frame. The value of the Duration/ID field

in Null Data frames is therefore suited as a fingerprinting property.

3.4.3 Implicit Identifiers

As mentioned in related works the authors of [3] describes several ways to fingerprint

a 802.11 device. The authors mention vendor specific extensions as a source for

fingerprinting. Such extensions are included in the Association Request frame. This

frame contains a lot of information about the STA, and it turns out that most STAs

sends Association Request frames that differ from each other in several ways, not

only in regards to vendor specific extensions. Fields or values whose main function

is to inform the network about specific traits of the STA will be called implicit

identifiers in this thesis. Examples of such fields in the Association Request frame

are Supported rates, Listen interval and Vendor Specific amongst others.

3.4.4 QoS Usage

In [1] Idland points out that some STAs uses QoS Null Data frames while others

do not. Even among those who do use QoS there are differences in which TID class

they use. These properties will be used in the fingerprinting algorithm.
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3.4.5 Other Properties

Some other potential fingerprinting properties have been mentioned in the related

literature, this included differences in the random backoff algorithm (not random

in some cases), reassociation latency, unique rate switching behavior and honor of

the duration field as mentioned in [3]. None of these properties are used further

in this thesis as they seem inferior in terms of being deterministic. Being able to

determine whether a rule is upheld or not with little available traffic, and within a

short timeframe is an important feature of the fingerprinting algorithm in our case.

In the paper by Franklin et al. [9] they present a fingerprinting technique based

on statistical analysis of the inter-frame timing of transmitted Probe Request frames.

The authors had good results with the inter-frame timing method and concluded

that the majority of wireless drivers do have a distinct fingerprint. As this method

is already implemented and tested it is not included in the algorithm developed in

this thesis. It could however be included at a later stage to increase the number of

different tests and potentially increase the success rate.

3.5 Developing the Fingerprinting Algorithm

3.5.1 Fingerprinting on the Fly

The first issue with developing the fingerprinting algorithm, hereafter referred to as

the FPA, was to figure out how the fingerprints were to be used.

The traditional method is to have a database with known fingerprints for known

subjects with specific settings. This would translate into generating a database for a

set of STAs with different settings (QoS and probe settings can alter the fingerprint)

and then identify STAs on the network as one type or another. This would in theory

be good, but it would require a very large pre-computed database in order to be

usable in a random network with arbitrary set of STAs. Another downside with

this approach is that it in many cases would require a full fingerprint3 in order to

determine the exact match in the database.

The goal with the FPA is to detect a specific type of MAC spoofing attack, in

other words being able to distinguish between two different STAs by observing them.

This is more relaxed goal than being able to identify a given STA in terms of NIC,

drivers, operating system (OS) and so on. It became evident that due to this goal

another method could be used in order to detect unlikely changes in the behavior.

This method does not share the two downsides with the traditional method, we call

this method fingerprinting on the fly.

3A full fingerprint denotes a fingerprint created with every available property and not a subset
of them.
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Fingerprinting on the fly starts off as regular fingerprinting. As the necessary

information is observed certain traits or properties are determined one by one. The

big difference compared to the traditional method is that we do not wish to compare

our fingerprint to pre-computed fingerprints in a database. There is also no need

for a full fingerprint as a partial fingerprint, with only a subset of the properties

determined, should be sufficient in many situations. The theory is that a change of

STAs would with high probability result in a change in one or more of the properties

already determined.

3.5.2 Expressing the Tests in Pseudocode

The next step in the development of the FPA is to create a procedure for determin-

ing each of the properties that should make up the fingerprint. The procedure or

algorithm for determining a property is called a test.

The remainder of this section will be devoted to explaining and describing these

tests. The tests are presented under the assumption that we are only looking at

frames originating from one single MAC address (supposedly one STA). This is

done in order to simplify the code and remove logic needed to identify the STA by

MAC source address or AID, as well as keeping track of different STAs’ fingerprints.

The actual implementation includes these features and the entire Perl source code

is available in Appendix C.1.

3.5.3 Test 1, PS-Poll

Test 1 is based on Rule 1 from [4], described in Section 3.4.1. Rule 1 states that some

NICs uses Null Data frames and others uses PS-poll frames for power management.

That is somewhat imprecise in relation to what was observed in the experiments

done in this thesis. All STAs in the experiment used Null Data for changing power

mode, but one STA used PS-Poll frames when the AP had buffered frames for it.

The test is therefore whether a STA use PS-Poll or not. If a STA use PS-Poll

the FPA should observe a PS-Poll frame from the STA after the AP has announced

that it has buffered frames for it. This PS-Poll frame should be observed within

the Listen interval of that STA. The pseudocode for Test 1 can be seen in

Algorithm 1 and an explanation will follow.

If the frame is a Beacon frame and the bit in the TIM corresponding to the STA

in question is set the beacon count is incremented. If the beacon count exceeds

the Listen interval then the algorithm concludes that PS-Poll is not in use and

returns suspect attack if it previously was in use. When a PS-Poll frame is observed

the beacon count is reset and the algorithm naturally concludes that PS-Poll is in

use, if that was not the case before the algorithm will return suspect attack.
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Algorithm 1 Test 1, PS-Poll

Input: frame

if frame == Beacon frame and bit in TIM is set then
beacon count++
if beacon count > listen interval then
use PSPoll = false
if use PSPoll was true then

return suspect attack

if frame == PS-Poll frame then
beacon count = 0
use PSPoll = true
if use PSPoll was false then

return suspect attack

3.5.4 Test 2, Keep Alive

Test 2 is a direct implementation of Rule 2. The code found in Algorithm 2 tests

whether a STA sends a Null Data frame if it has been idle for 10 seconds in order

to keep the session alive. The timestamps are in milliseconds and thus testing for

exactly 10 seconds would yield very few hits, therefore the test is implemented with

a buffer, currently set to 0.15 seconds.

Algorithm 2 Test 2, Keep Alive

Input: frame

time delta = timestamp previous frame - timestamp current frame
buffer is 0.15 sec
within buffer = 9.85 < time delta < 10.15

if within buffer and frame == Null Data then
use keep alive = true
if use keep alive was false then

return suspect attack

else if time delta > 10.15 then
use keep alive = false
if use keep alive was true then

return suspect attack

A step by step explanation of the algorithm will now be given. First the

time delta is calculated from the timestamp of the previous frame and the cur-

rent frame. Then the algorithm checks if the time delta is within the range of
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10 seconds ± the buffer of 0.15 second and in addition if the frame is a Null Data

frame. If both of these conditions is true the algorithm concludes that keep alive is

in use and returns suspect attack if keep alive was not in use prior to this frame.

If the conditions in the first if-statement were not met a new if-statement checks

if the time delta is larger than 10.15 seconds (10 + buffer). If that is the case this

is interpreted as the STA not using keep alive, and thus the algorithm concludes so

and returns suspect attack if this was not the case previously.

3.5.5 Test 3, Null before Probe

Test 3 is also based on the rules given in [4], specifically Rule 3. The rationale

behind this test is that some STAs sends a Null Data frame and goes into PS mode

before starting the channel scanning with Probe Request frames while other STAs

do not do this.

Algorithm 3 Test 3, Null before Probe

Input: frame

set size = 5
min limit = 0.80

if frame == Probe Request then

if previous frame was Null Data then
using count++
total count++

else if previous frame was not Probe Request then
total count++

if total count == set size then
use null before probe = using count > set size×min limit
if use null before probe changed value then

return suspect attack
using count = 0
total count = 0

The algorithm for this particular test is pretty uncomplicated and can be seen

in Algorithm 3. First a set size and a minimum limit is defined. The set size is

the number of probe request bursts that will be observed before any conclusion is

made. The minimum limit is a number ∈ [0, 1] representing the percentage of probe

request bursts where the STA first sends a Null Data frame required in order for the

algorithm to conclude that null before probe is in use.

If the current frame is a Probe Request frame the algorithm continues. If the
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previous frame was a Null Data frame null before probe is in use and the algorithm

increment the using count as well as the total count. On the other hand, if the

previous frame was not a Null Data frame or a Probe Request frame then null before

probe is not in use and the algorithm only increments the total count.

The last part of the algorithm checks if the percentage of times null before probe

was in use is over the minimum threshold in order to conclude if it in fact is in use.

Suspect attack is returned whenever the current conclusion differs from the previous

conclusion.

3.5.6 Test 4, Mode changing Null Data

Test 4 is almost a direct implementation of Rule 4, the only difference is regarding

the Listen interval check as explained below. Test 4 checks if the STA, when it

have data frames to send, uses a Null Data frame to change mode or if it directly

sends a regular data frame when changing power mode. During the experiments it

was noted that some STAs always use mode changing Null Data except when they

have been in PS mode for a duration equal to their own Listen interval, this is

therefore included in the test.

The pseudocode can be seen in Algorithm 4 and an explanation will now follow.

First a set size and a minimum limit is defined. The set size is the number of power

mode changes that will be observed before any conclusion is made. The minimum

limit is a number ∈ [0, 1] representing the percentage of power mode changes that

must be done by using Null Data frames in order for the algorithm to conclude that

mode changing Null Data is in use.

The first if-statement checks whether the STA has been in PS mode longer than

its Listen interval, and if so changes the recorded power mode of the STA to

AM.

The next if-statement checks if the chk nxt pkt variable is set. The first time

the algorithm is executed this is not the case and the algorithm continues to check

if the STA is in PS mode. If the STA is in PS mode (before the current frame) the

algorithm checks if the current frame is a Null Data frame that changes the power

mode to AM. If this is the case, the chk nxt pkt variable is set. If it is not a Null

Data frame with pwr mgt bit == 0, but a regular data frame with pwr mgt bit == 0

the algorithm interpret this as the STA is not using null before probe and therefore

increments the total count without incrementing the using count.

The reason for having the chk nxt pkt varialbe is that we are only interested in

the power mode changes made when the next packet is a data packet. So, when the

next packet is processed in the algorithm the chk nxt pkt variable is set and the

algorithm checks if the current packet is a regular data packet. If this is the case
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Algorithm 4 Test 4, Mode changing Null Data

Input: frame

set size = 30
min limit = 0.9

if frame == Beacon frame then
if number of Beacons since data > listen interval then
pwr mode = AM

if chk nxt pkt == true then
if frame type is data and fame 6= Null Data then
using count++
total count++

chk nxt pkt = false
else

if pwr mode == PS then
if frame == Null Data and pwr mgt bit == 0 then
chk nxt pkt = true

else if frame is DATA and pwr mgt bit == 0 then
total count++

pwr mode = pwr mgt bit (1 = PS, 0 = AM)

if total count == set size then
use mode chng null = using count > set size×min limit
if use mode chng null changed value then

return suspect attack
using count = 0
total count = 0
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the using count is incremented as well as the total count.

The last part of the algorithm works the same way as in Algorithm 3 and returns

suspect attack if the overall conclusion has changed since last time.

3.5.7 Test 5, Fixed Interval

Test 5 is based on Rule 6, but instead of looking at the interval between any two Null

Data frames this test checks the duration between Null Data frames with different

values in the Power Management bit. In the case were the STA is using mode

changing Null Data this interval would translate into the time the STA was in PS

mode. The idea behind this test is that some STAs stays in PS mode for a fixed

interval, regardless if they get new data to transmit.

Algorithm 5 Test 5, Fixed Interval

Input: frame

buffer = 0.2
set size = 50
min limit = 0.80

if frame == Null Data then
time delta = time elapsed since previous Null Data frame

if pwr mgt previous == PS and pwr mgt current == AM then
if average exists then

if time delta is within average± 20% (buffer) then
pair ok count++

pair total count++
else

calculate average from first 10 pairs

if pair total count == set size then
use fixed interval = (pair ok count/set size) ≥ min limit
if use fixed interval changed value then

return suspect attack
pair ok count = 0
pair total count = 0

The pseudocode for Test 5 can be seen in Algorithm 5. First three variables are

defined, their use will become clear later. If the current frame is a Null Data frame

the algorithm continues. If the pwr mgt bit of the previous Null Data frame was

1 (PS) and the value in the current frame is 0 (AM) then we have a pair of Null

Data frames that we want to examine further. If there exists an average, then the

time delta between the two frames is compared to this average time ±20% (which
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is the buffer defined in the beginning). If the time delta is in the specific range,

then a counter for successful pairs (pair ok count) is incremented. Regardless of

the comparison the pair total count is incremented.

The last part of the algorithm checks if the fraction of pairs, where the time

delta is within the range of the average time plus/minus the buffer, of a set of pairs

(equal to the set size) is greater than the minimum limit defined. If this is the

case, then the algorithm concludes that the STA do use a fixed interval and returns

suspect attack if this was not the case previously and vice versa.

3.5.8 Test 6, Null Data Type

Test 6 is based on some of the observations done by Idland in his specialization

project [1] regarding Null Data behavior. Recall from Section 2.3.4 that the 802.11

standard has two types of Null Data frames; the regular one and the QoS Null Data

frame.

It turns out that in a network where QoS is enabled (as it is in WrT) some STAs

uses the QoS Null Data while others do not use it. Amongst those who use the

QoS version there is also differences in which QoS priority (TID class) they utilize.

These implementation differences are what make Test 6 viable.

Algorithm 6 Test 6, Null Data Type

Input: frame

if frame == Null Data then
categorize frame as QoS or regular
if frame was QoS type then

identify the priority class (TID)
if frame differs from the previous Null Data frame then

return suspect attack

The algorithm for Test 6 can be seen in Algorithm 6 and it is relative simple

compared to the algorithms for the other tests. Nevertheless it identifies a viable

fingerprinting property. The algorithm basically identifies the type of Null Data

frame in use and its priority class (TID) if it was a QoS frame. The algorithm then

returns suspect attack if the identified frame differs from the previous identified Null

Data frame.

3.5.9 Test 7, Duration Calculation

Test 7 was motivated by the paper by Gopinath et al. [3]. Revisit Section 3.4.2

for a short discussion of duration calculation as a fingerprinting property and the
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rationale behind this test. The theory is that Null Data frames have the exact same

size, and thus should have the same duration when the data rate is the same. A

difference in the Duration/ID field would indicate different implementations in the

calculation algorithm that again indicates two different STAs.

Algorithm 7 Test 7, Duration Calculation

Input: frame

if frame == Null Data then
get the duration value from the Duration/ID field
get the data rate from the radiotap header

compare duration for given data rate with previous value

if differences in duration value for same data rate then
return suspect attack

The algorithm for Test 7 is described in Algorithm 7. It basically works by

recording the duration taken from the Duration/ID field in the Null Data frames

for each data rate used. Recall that the data rate is available in the radiotap header.

If an inconsistency is found the algorithm returns suspect attack.

3.5.10 Test 8, Association Request

Vendor specific extensions as a fingerprinting source is mentioned in the paper by

Gopinath et al. [3]. This was the motivation to further investigate the Association

Request frame looking for possible sources for fingerprinting. Several potential fields

were identified and they are: Duration/ID, Listen interval, Supported Rates,

Extended Supported Rates, QoS Capability and Vendor Specific.

Algorithm 8 Test 8, Association Request

Input: frame

if frame == Association Request then
record implicit identifiers
if Ass. Req. for same MAC address is recorded before then

compare implicit identifiers from current and previous frame
if inconsistencies in implicit identifiers then

return suspect attack

The algorithm for Test 8 can be seen in Algorithm 8 and is very straight for-

ward. When the input frame is an Association Request frame the relevant fields as
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mentioned above, called implicit identifiers, are recorded. If an Association Request

has been recorded for this MAC address before a check on each individual field is

done and suspect attack is returned in case of any inconsistencies.

3.5.11 Creating a Compound Fingerprint

In order to avoid a high false negative rate when using fingerprinting it is important

to rely on several different properties and tests that can flag suspicious behavior.

The fingerprint created in the experiments is a composition of properties determined

by the eight tests explained above. The first six tests result in one fingerprinting

property each while to two latter results in several properties. Each of the properties

from the two latter tests can be used to detect suspicious behavior in their own right.

See Table 3.1 for an exhaustive list of fingerprinting properties and their possible

values that make up the compound fingerprint. For a more in-depth explanation of

the possible values and their usage consult the 802.11 standard [6].

Fingerprinting Property Possible Values

PS-Poll True / False
Keep Alive True / False
Null before Probe True / False
Mode changing Null Data True / False
Fixed Interval True / False
Null Data Type Regular/QoS including TID
Duration Calculation Pairs of (rate, duration) for each rate
Association Request Duration [0...32767]
Listen Interval [0...256]
Supported Rates Set of up to eight integers ∈ [2...127]
Extended Supported Rates Set of up to 255 integers ∈ [2...127]
QoS Capability Present / Not Present
Vendor Specific Type of vendor specific element

Table 3.1: The fingerprinting properties and their possible values

The final FPA is a combination of each of the eight tests and some additional

logic to determine whether or not we are dealing with a MAC spoofing attack. The

pseudocode can be seen in Algorithm 9. Each of the individual tests return suspect

attack if they find anything suspicious according to the above described algorithms.

The logic to determine whether we are dealing with an attack based on the output

from the tests has not been defined. As mentioned we want to do fingerprinting on

the fly and not necessarily generate a complete fingerprint. How many properties

that are needed in order to have sufficient low false positive and negative rates

is uncertain. Some of the tests might prove to be sufficient alone, while others
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Algorithm 9 The Fingerprinting Algorithm (FPA)

Input: frame

run Test 1, PS-Poll
run Test 2, Keep Alive
run Test 3, Null before Probe
run Test 4, Mode changing Null Data
run Test 5, Fixed Interval
run Test 6, Null Data Type
run Test 7, Duration Calculation
run Test 8, Association Request

evaluate outputs from tests 1-8

return attack / no attack based on evaluation

require at least one other test in combination in order to conclude attack with a

high probability. The experiments and the following results will shed some light on

these issues and they will be further discussed in Chapter 6.

47





Chapter 4

Performing the Experiments

This chapter will elaborate on how the experiments with the FPA were performed.

This includes the setup for the implementation in Perl, how to capture traffic and

save it for later analysis, an overview of the different STAs used, and the test sce-

narios.

4.1 Implementing the FPA in Perl

Some of the tests in the FPA, especially those regarding Null Data behavior, would

be very tedious to perform by manual analysis. In order to be able to run several

experiments with relative large packet captures these tests had to be automated.

This was done by implementing them in Perl. Perl was chosen as it is suitable for

packet handling, and because it was the language used in previously work on a very

related problem by Idland [1].

The implementation of the FPA in Perl is called the fingerprinting program

(FPP) in order to separate them. Test 1-5 and 8 is implemented in Perl and the

source code is available in Appendix C.1. Test 6 and 7 are not implemented in Perl

as it was feasible and convenient to perform the analysis required manually through

the use of Wireshark [28].

The FPP can run in live mode, i.e. not requiring any packet capture input, and

in offline mode on a capture file. Live mode was not used in the experiments as it

was expected that changes were to be made in the algorithm as the development was

done in iterations as explained in Section 1.3. It was therefore an obvious advantage

to have the entire scenario saved to a capture file, ready to be executed again and

again instead of actually performing the scenario all over again each time a change

was made. The live mode is on the other hand is suitable in a real world situation,

supporting fingerprinting on the fly.
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4.2 Experimental Setup

Certain hardware, software and specific NIC configurations must be in place before

the FPP will be able to run at all. The NIC configuration is crucial to ensure that

all the relevant wireless traffic is captured, and that it is done in such a format that

it is readable by the FPP. The setup presented in this section is exactly what was

used in the experiments.

4.2.1 Equipment

The necessary equipment used can be seen in the list below.

� Dell desktop (Dimension 9150) with Ubuntu 10.10 — the Maverick Meerkat

� Wireless NIC, Atheros AR5001X+, for sniffing all wireless data

� Wired NIC for regular Internet access

� Cisco LAP from WrT, connected to their network

4.2.2 Drivers, Software and Packages

The NIC must be set in monitor mode and the radiotap header must be included

in order for the FPP to work correctly. These configuration options might not be

available through the standard drivers, and thus might require installation of other,

more advanced drivers. In the setup used in the experiments the MadWifi tools and

drivers [29] were used with good results.

In order to capture the traffic form the wireless network and save it for later

analysis a packet sniffer had to be used, the program of choice was Wireshark.

Two of the tests were performed with manual analysis and this required a packet

analyzer. An analyzing tool with powerful filtering and display options is recom-

mended for this job, such a tool would also do well in case of any troubleshooting.

The tool used throughout the work done in this thesis was the same as the one used

for the packet sniffing, namely Wireshark.

Perl is required to run the FPP, and it was included in my Ubuntu distribution.

Some additional packages are necessary in order to do the packet handling and these

can be obtained through the synaptic packet manager. A list of software, drivers

and packages is found below.

� MadWifi tools and drivers, version 0.9.4

� Wireshark, version 1.4.6

� Perl

– Net::Packet

– Net::Pcap
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– Bit::Vector

4.2.3 Configuring the Wireless NIC

The wireless NIC that is used for packet capture has to be set in monitor mode,

listening to a specific channel. It is also crucial to specify how the capture should

be formatted and what is to be included in the capture. There are several different

headers that can be included or excluded, but only one configuration will work with

the FPP. The following commands will set up the wireless NIC correctly.

wlanconfig ath0 destroy # (1)

wlanconfig ath create wlandev wifi0 wlanmode mon # (2)

iwconfig ath0 channel 6 # (3)

ifconfig ath0 up # (4)

echo ’803’ > /proc/sys/net/ath0/dev_type # (5)

# (1) Destroy any previous interface

# (2) Create a new interface in monitor mode

# (3) Monitor a specific channel, here channel 6

# (4) Make the interface accessible to the IP layer

# (5) Include Radiotap headers

4.3 Capturing Packets

After the necessary setup is in place as explained in the above section the packet

capture can begin. This is done by starting the capture in Wireshark on the interface

ath0. If the capture is done in an environment with several other Wi-Fi networks one

might consider to apply a filter, filtering out all packets not going to or originating

from target LAP or the Nomadix gateway in order to reduce the size of the capture

file. Recall the network topology from Figure 3.1 in Section 3.1.1.

When the relevant scenario is captured the file should be saved to disk by by

choosing save in the file menu, it is then ready to be used as input to the FPP.

4.4 The Scenarios

Two main types of scenarios have been used in the experiments. The first type is

called General Usage and it is a scenario simulating general usage and will be used

to determine how unique the fingerprints are. The next type of scenario includes an

actual attack. Both types have their place in the testing of the FPA.
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4.4.1 Scenario 1, General Usage

Scenario 1, General Usage, is a scenario constructed to contain behavior needed

to conclude each of the eight tests in the FPA. When creating this scenario two

behavior patterns were considered important to include. First, the STA should

generate traffic and have more than enough data to send for a period of time,

resulting in little or no idle time. Second, the STA should have longer periods where

there were no traffic to send. The rationale is that this is a realistic usage pattern

as users often browse the web, start reading or watching something before they

continue the browsing. A scenario including these patterns should also be able to

elicit different power management and Null Data behavior.

The scenario was performed the exact same way for every STA. This was done in

order to enable an accurate comparison of the results, as well as identify differences

due to implementation variations, and not due to the way the STA was used. The

exact scenario can be seen in Appendix B.1.

4.4.2 Scenario 2, Wait-for-Availability Attack

Scenario 2, Wait-for-availability Attack, is actually performed in two versions. In

version 2a a STA, client A is operating for approximately eight minutes having some

periods with a lot of traffic and other periods with no or less traffic similar to the

behavior found in Scenario 1. Then, client A logs off and a client B spoofs his MAC

address and performs the wait-for-availability attack. Client B continues to browse

the web having some periods with little or no traffic as well as periods with a lot of

traffic, this goes on for about eight minutes before the capture stops.

In this scenario two STAs were arbitrarily chosen from the pool of test STAs,

one laptop (S-7) and one smartphone (S-5). Only this one combination of STAs

were used as it turned out that the capture file from the scenario was more or less

identical to the concatenation of the capture files form Scenario 1 for the two relevant

STAs. There were in other words little or nothing to gain by repeating Scenario 2a

for every possible combination of available STAs.

The second version, Scenario 2b, contains the same main scenario as in 2a, but in

a much shorter time frame. The main difference is that now there are five additional

STAs connected to the LAP generating traffic at the same time. In other words,

there were a total of seven STAs connected to the LAP and generating traffic. As

there were seven different STAs generating traffic the capture file grow very large

very fast, and as a result the scenario was shortened down to a total of eight minutes

(four minutes before the attack and four minutes after). This fact certainly makes

it harder for the algorithm to determine the fingerprints as it will be a lot less data

to analyze. The results will show if four minutes in an active network is enough, or
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if longer observations as the ones in Scenario 2b and Scenario 1 are required.

4.5 The Sample STAs

In order to test the FPA the behavior of several different STAs had to be analyzed.

In the experiments 10 different STAs were tested. They were not specifically chosen,

but happened to be the ones available through WrT, friends and personal equipment

of the author. As a result the set of STAs is relatively randomized and representative

for what typically is connected to WrT any given day. None of the settings of the

STAs were altered from how they were before being used in the experiments with

one exception. One STA was used twice (S-4 and S-11), first in its regular setup and

then with the use of Backtrack 5 [30]. This was done as Backtrack is regarded as a

typical attacker OS, and it would therefore be interesting to see how the OS affects

the behavior of the STA, and how its fingerprint compares to the other regular STAs.

The specification of each STA can be seen in Table 4.1. Seven of the STAs used

in the experiments are laptops. The other STAs include two iPhones and HTC Hero

which are all smartphones, and the iPod which is a smart music player. Even though

there are only 10 different physical STAs they will be referred to as 11 due to the

one STA with two different software setups.

No. Name and Model OS NIC Browser

S-1 Dell XPS Windows 7 Intel WiFi 1000bgn IE 8
S-2 Lenovo S10-3S Windows 7 Broadcom 802.11n Opera 11
S-3 Acer Aspire 5745G Windows 7 Broadcom 802.11n IE 8
S-4 Dell Inspiron 9400 Windows 7 Intel P/W 3945abg Chrome 11
S-5 iPhone 1. gen. iOS 3.0.1 Not available Safari
S-6 iPhone 4. gen. iOS 4.3 Not available Safari
S-7 Dell Latitude D610 Windows 7 Intel P/W 2915abg IE 8
S-8 Acer Aspire 5670 Win. XP SP3 Intel P/W 3945abg Firefox 3.6
S-9 iPod touch 1. gen iOS 3.1.3 Not available Opera Mini 5
S-10 HTC Hero Android 2.2.1 Not available ”Internet”
S-11 Dell Inspiron 9400 Backtrack 5 Intel P/W 3945abg Firefox 4

Table 4.1: Overview of the STAs used in the experiments

4.6 Performing the Wait-for-Availability Attack

Scenario 2a and 2b requires that the wait-for-availability attack is performed. This

is a basic MAC spoofing attack where the attacker waits until the legitimate clients
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leaves the network before he tries to connect with the legitimate client’s MAC ad-

dress. Wireshark was used for the first part, i.e. it was used to find a potential vic-

tim, identify his MAC address and for observing when the traffic ceased. The setup

required in order to use Wireshark can be found in Appendix A.1. The commands

required to perform part two, the MAC spoofing, can be seen in Appendix A.2.

4.7 Obtaining the Results

After the scenarios were completed and the related packets were captured and saved

to a .cap file it was time to apply the tests from the FPA in order to get some results

that could be further analyzed. This part was done in two different ways. The more

complex tests were solved by running the FPP as they have been implemented in

Perl, while the simpler tests were completed by manually analyzing the packets.

4.7.1 Running the FPP

When running the FPP offline mode is used, as previously stated, and it is then

important to set the dump-file variable to the capture file (.cap) that contains the

captured frames one wants to analyze. The configuration used in the experiment

can be seen in the source code in Appendix C.1.

The values of the variables can be seen in Table 4.2. For a recap these variables

and their meaning consult the relevant test in Section 3.5.2. The program is then

executed the same way as any Perl script: ./FPP.pl.

Test Variable Value

Test 2, Keep Alive buffer 0.15 sec
Test 3, Null before Probe set size 5
Test 3, Null before Probe min limit 80%
Test 4, Mode changing Null Data set size 30
Test 4, Mode changing Null Data min limit 90%
Test 5, Fixed Interval buffer 20%
Test 5, Fixed Interval set size 50
Test 5, Fixed Interval min limit 80%

Table 4.2: Values of the variables in the experiments

4.7.2 Manually Analyzing Packets

Wireshark was used for the manual analysis as it has powerful filtering options.

First, the capture was filtered on a given MAC address with this filter: wlan.da ==
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STA MAC OR wlan.ra == STA MAC OR wlan.sa == STA MAC OR wlan.ta == STA

MAC OR (wlan.da == ff:ff:ff:ff:ff:ff AND wlan.sa == LAP MAC). That en-

sured that only packets going to or from that address as well as Beacon frames

and other frames sent to everyone from the LAP was included. Then other more

specific filters were used as for instance this one: wlan.fc.type subtype == 0x2c

AND wlan.fc.type subtype == 0x24 that filters out all QoS Null Data and regular

Null Data frames.
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Results

This chapter will present the results obtained by executing the tests in the FPA

either by use of the FPP, or by manual analysis of the packet captures. The capture

files containing the packets used were obtained by performing the different scenarios

as described in Section 4.4.

5.1 Scenario 1, General Usage

The results from each of the eight tests performed on the capture files from Scenario

1 from each of the 11 different STAs is presented in Table 5.1 and Table 5.2. The

first column in each table presents the different fingerprinting properties, each of the

other columns represents one STA. Each vertical column below a STA is in fact the

fingerprint of that particualar STA.

Fingerprinting Property S-1 S-2 S-3 S-4 S-5 S-6

PS-Poll F F F F F F
Keep Alive T F F — F F
Null before Probe T — T T T —
Mode changing Null F F F T F F
Fixed Interval F F F F F F
Null Data Type QoS 0 Regular Regular QoS 0 QoS 7 Regular
Duration Calculation 314 44 44 314 258 44
Ass. Req. Duration 60 314 213 314 314 314
Listen Interval 10 10 10 10 10 10
Supported Rates s1 s2 s3 s3 s3 s2
Ext. Sup. Rates e1 e2 e1 e1 e1 e2
QoS Capability F F F F F F
Vendor Specific v1-v4 v1,v5 v1-v4 v1 v1 v1,v5

Table 5.1: Results from Scenario 1 on tests 1-8 for S-1 to S-6. Detailed results from
Duration Calculation can be seen in Table 5.3
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Fingerprinting Property S-7 S-8 S-9 S-10 S-11

PS-Poll F F F T F
Keep Alive F F F F F
Null before Probe T T F — F
Mode changing Null T T F F —
Fixed Interval T F — F —
Null Data Type Regular QoS 0 QoS 7 Regular Regular
Duration Calculation 44,314 44,314 258 44,213,223,258 44
Ass. Req. Duration 314 213 314 258 314
Listen Interval 10 10 10 3 5
Supported Rates s3 s1 s3 s4 s1
Ext. Sup. Rates e1 e1 e1 e3 e1
QoS Capability F F F T F
Vendor Specific v1 v1-v4 v1 v1 v1

Table 5.2: Results from Scenario 1 on tests 1-8 for S-7 to S-11. Detailed results from
duration calculation can be seen in Table 5.3

The first five fingerprinting properties have one of two possible values, T repre-

senting True and F representing False. These values are determined as described in

Algorithms 1-5 with the values as noted in Table 4.2.

The Null Data Type, Ass. Req. Duration and Listen Interval should be self

explanatory, the Duration Calculation on the other hand is more cryptic and the

detailed results of this test can be seen in Table 5.3. The values each STA have for

the Supported Rates and Ext. Sup. Rates property is a category. These categories

represent different sets of data rates as shown in Table 5.7 in Section 5.3. The QoS

Capability is either present or not present, here denoted by T or F respectively. The

values in the Vendor Specific property refer to a short name for the vendor specific

information element, the explanation of these short names can be seen in Table 5.8

Section 5.3.

In Table 5.1 and Table 5.2 some STAs have the value ”—” instead of T or F in

property 2-5. These properties are determined by tests 2-5, and these tests do all

require a minimum number of observations before a conclusion can be made. The

dash is a symbol for undetermined, and is used when the required minimum number

is not met.

Figure 5.1 depicts the Hamming Distance1 between the fingerprints shown in

Table 5.1 and Table 5.2. When calculating the Hamming distance the last six

fingerprinting properties count as one property as they all depend on a single frame,

namely the Association Request frame, that could be dropped or faked. In other

words, each of the eight tests count as one property, and thus the maximum distance

1The Hamming distance between two strings of equal length is the number of positions at which
the corresponding symbols are different [31]
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Figure 5.1: Hamming Distance for the fingerprints in Scenario 1

is eight. The average distance for each STA to every other STA ranges from 2.2 to

3.5 i.e. some STAs display a more unique behavior than others. The average of the

averages is 2.82.

Data Rate S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9 S-10 S-11

1 314 — — 314 258 — 314 314 — — —
2 — — — — 258 — — — — 258 —
5.5 — — — — — — — — — 223 —
6 — — — — 258 — — — — — —
9 — — — — — — — — — — —
11 — — — — — — — — — 213 —
12 — — — — 258 — — — — — —
18 — — — — 258 — — — — — —
24 — — — — 258 — — 44 — 44 —
36 — 44 44 — 258 44 — — 258 — —
48 — 44 — — — 44 44 44 — — —
54 — 44 44 — — 44 44 — — — 44

� of frames 3008 406 770 432 734 1802 1698 307 51 113 1

Table 5.3: Detailed results from Duration Calculation in Scenario 1: Observed
duration of Null Data frames for each possible data rate
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Table 5.3 shows the detailed result from Test 7, the first column contains every

data rate in 802.11a/b/g. Every STA used in the experiments supports each of these

rates. After the first column, each STA have its own column with the observed

duration for a Null Data frame for the given data rate. The dashes indicate that no

Null Data frame was observed on that particular data rate. The last row shows the

total number of Null Data frames observed for a given STA during Scenario 1.

5.2 Scenario 2, Wait-for-Availability Attack

In both Scenario 2a and 2b the attacker’s Authentication Request frame was ob-

served, making it easy to identify exactly when the attack occured. The fingerprints

from the two scenarios can be seen in Table 5.4 and Table 5.5.

Fingerprinting Property S-5 S-7

PS-Poll F F
Keep Alive F F
Null before Probe T T
Mode changing Null F T
Fixed Interval F F
Null Data Type QoS 7 Regular
Duration Calculation 258 44,223,258,314
Ass. Req. Duration 314 314
Listen Interval 10 10
Supported Rates s3 s3
Ext. Sup. Rates e1 e1
QoS Capability F F
Vendor Specific v1 v1

Table 5.4: Results from Scenario 2a on tests 1-8 for S-5 and S-7. Detailed results
from Duration Calculation can be seen in Table 5.6

The fingerprints of S-5 and S-7 are identical to the fingerprints found in Table 5.1

and Table 5.2 with the exception of Fixed Interval for S-7. There were now observed

Null Data frames on four additional data rates for S-7 compared to what was ob-

served in Scenario 1. These particular results will be commented on in Chapter 6,

Discussion and Analysis.

Table 5.6 shows the detailed result from Test 7, Duration Calculation, for Sce-

nario 2a and 2b. This data is presented the exact same way as in Table 5.6. The

durations marked with the � symbol are durations that were not observed in Sce-

nario 1. The * symbol on the other hand denote durations that were observed in

Scenario 1, but not in Scenario 2a or 2b. Notice that S-7 only sent a total of 10 Null
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Fingerprinting Property S-5 S-7

PS-Poll F F
Keep Alive F F
Null before Probe — T
Mode changing Null — —
Fixed Interval — —
Null Data Type QoS 7 Regular
Duration Calculation 258 314
Ass. Req. Duration 314 314
Listen Interval 10 10
Supported Rates s3 s3
Ext. Sup. Rates e1 e1
QoS Capability F F
Vendor Specific v1 v1

Table 5.5: Results from Scenario 2b on tests 1-8 for S-5 and S-7. Detailed results
from Duration Calculation can be seen in Table 5.6

Data Rate S-5 (2a) S-7 (2a) S-5 (2b) S-7 (2b)

1 258 314 258 314
2 258 258� 258 —
5.5 — 223� — —
6 258 — 258 —
9 — — — —
11 — — — —
12 258 — 258 —
18 258 — —* —
24 258 44� 258 —
36 258 44� 258 —
48 — 44 — —*

54 — 44 — —*

� of frames 439 562 264 10

Table 5.6: Detailed results from Duration Calculation in Scenario 2: Observed
duration of Null Data frames for each possible data rate
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Data frames in Scenario 2b compared to 562 in Scenario 2a. Recall that Scenario

2b lasted around four minutes, compared to eight minutes for 2a.

5.3 Categories and Short Names

Table 5.7 presents the categories for supported rates and extended supported rates

and Table 5.8 shows the short names for the vendor specific information elements.

Both categories and short names were used in the result tables in the previous

sections.

Category Data Rates Note

s1 1, 2, 5.5, 11, 6, 9, 12, 18 802.11b rates first
s2 1, 2, 5.5, 11, 18, 24, 36, 54
s3 1, 2, 5.5, 6, 9, 11, 12, 18 As s3, but ordered from low to high
s4 1, 2, 5.5, 11 Only basic and 802.11b rates
e1 24, 36, 48, 54 Four highest 802.11a/g rates
e2 6, 9, 12, 48 Compliment of s2
e3 6, 9, 12, 18, 24, 36, 48, 54 All 802.11a/g rates

Table 5.7: Categories of supported and extended supported rates

Short Name Vendor Details

v1 Microsoft WME
v2 Aironet Aironet CCX version = 4
v3 Aironet Aironet Unknown
v4 Cisco Cisco CCX1 CKIP + Device Name
v5 Broadcom

Table 5.8: Short names for vendor specific information elements
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Discussion and Analysis

This chapter will discuss the results obtained in terms of the uniqueness of the

fingerprints, the validity in a general perspective and how the FPA would do as a

detection method in a real world IDS.

6.1 Uniqueness of the Fingerprints

As mentioned before it is not required that each STA has a unique fingerprint.

What is, important is that the probability that two arbitrarily chosen STAs have

different fingerprints is high. Figure 5.1 shows in great detail how different each

STAs’ fingerprint is. Except from when you compare a STA to itself there is only

one single occurrence where the Hamming distance is zero, i.e. the fingerprints

are identical. This is true for the couple consisting of S-2 (Lenovo laptop) and S-

6 (iPhone 4G). Both of these STAs’ fingerprints are undetermined in Test 3, Null

before Probe, so it is possible that with more data they would end up being different

as well.

Comparing the fingerprints, 29 of 55 (52.7%) out of the possible couples (not

counting a STA with itself) have a Hamming distance of three or higher, and the

average distance among all STAs is 2.82. These numbers are relativly high, and

they indicate that the STAs do in fact have a unique observable behavior.

A high Hamming distance on a full fingerprint allows for a non-zero Hamming

distance on several possible partial fingerprints which clearly is what we would like

in a good IDS.

6.2 The Validity of the Results

The experiments were done in the actual WrT network with different STAs ranging

from large and small laptops to smartphones and music players. The scenario was
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performed by a human user, and not a script or the like, and it was done with

the standard settings in use. With that in mind the result should be very close or

identical to what one could obtain by actually monitoring an active part of the WrT

network, i.e. the results seem valid from a general perspective.

6.3 The FPA as Detection Method

This section will present a discussion on how the FPA would perform as the main

detection method in a IDS targeting the wait-for-availability or session hijacking

attack.

6.3.1 Spoofing a Fingerprint

In order to be a good detection method the properties that the algorithm relies on

should not be easily spoofable. Every property used in the FPA originates from

transmitted bits, in other words it should theoretically be possible to alter them.

From the results we know that S-4 and S-11 is in fact the same physical STA, but

with Windows 7 and Backtrack 5 respectively. The Hamming distance of their fin-

gerprints is three. This is due to the Backtrack version not using power management

at all, and only sent out one single Null Data frame. The Association Request frames

even have different parameters.

The case with S-4 and S-11 indicates that everything is in fact dependent on

drivers and settings, but how easy is it to alter a STA’s behaviour to match a

certain fingerprint? Some drivers have settings for power management that should

alter the behavior in the first five tests. Changing the duration calculation and

Association Request frame parameters on the other hand is probably not that easy

as they are typically hard coded in the drivers. Turning everything off like Backtrack

5 does is not very helpful, as no other STA does that. An easy, but potentially very

time requiring approach is to wait for a STA with an identical fingerprint before

performing the attack.

How much a fingerprint changes by altering the power management settings, and

if it is possible to change it to match a specific STA should be tested in order to

obtain a better understanding of exactly how hard it is to fool a system based on

the FPA. This work is, as noted in Section 1.2, out of scope for this thesis due to

time limitations as the development and testing of the FPA was considered more

important. It should however be done before the FPA is utilized in a real setting,

and it is therefore naturally recommended for future work.
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6.3.2 Fingerprinting on the Fly

Recall that we want to do fingerprinting on the fly and be able to make decisions on

attack / no attack based on partial fingerprints. Scenario 1 lasted for about eight

to ten minutes, that was enough to create more or less complete fingerprints for all

STAs involved.

The only test that require more time across all STAs was Test 7, Duration

Calculation. With more time, and more STAs connected to the LAP we might see

an increase in the number of observed data rates used. The results from Scenario 2a

included Null Data frames observed on four new data rates for one of the two STAs

(S-7). This is a clear indication that with more time and data more duration/data

rate pairs will be observed.

The results from Scenario 2b showed that a significant decrease in the time spent

observing, going from eight minutes (Scenario 2a) to four minutes, had a large impact

on the fingerprint. It also showed that one of the two STAs sent distinctively less

Null Data frames when the network was more congested. S-7 went from transmitting

562 frames in 2a to only 10 frames in 2b, this was not the case for the other STA as

we can see from Table 5.6. Nevertheless the fingerprints created from Scenario 2b

differed on two properties, and that should be enough to conclude attack.

6.4 Comparison with a Commercial Wireless IDS

A comparison of a commercial wireless IDS with the FPA when dealing with the hi-

jacking or wait-for-availability attack would be very interesting in order to determine

if the developed algorithm in fact increased the probability to detect such attacks.

Practical comparisons were not feasible due to time and resource constraints, but a

theoretical comparison could be performed.

Several wireless equipment providers as Cisco and Aruba Networks state that

they provide IDSs without giving any detailed information. Different vendors were

contacted through Wireless Trondheim as they are in fact seeking a good IDS solu-

tion. A reply with some detailed information was given by company called fdXtended

regarding their product HSMX which is an Internet access platform implemented

with a wireless IDS. It is a system that provides captive portal functionality and

IDS features for open 802.11 networks [32]. This system is a direct competitor to

WrT’s Nomadix gateway. The following quote is taken from the HSMX datasheet

under intrusion detection:

Spoofing detection: MAC address spoofing and fixed IP spoofing detec-

tion. Hijacking prevention: A heartbeat between the console of a user
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and the HSMX ensures nobody can spoof that MAC address and gain

access to the Internet without authentication [32].

Spoofing detection and hijacking prevention sounds very promising. In order to

determine which techniques that were used here fdXtended was contacted through

WrT. The heartbeat used for hijacking prevention is in fact the live SSL window

technique mentioned in 1.5.2 and require two active browser windows at the same

time. fdXtended claims that it does work on the iPhone 4 and iPad, but they had not

tested it on other smart clients. The spoofing detection was based on not accepting

more than one single IP address for a given MAC address. When presenting them

for the wait-for-availability attack this was the response:

Indeed in this case user B will get the IP of user A and there is no way

to tell the difference between the two users, but obviously simultaneous

[access] will not work.

The HSMX did in other words not have any possibility to detect the wait-for-

availability attack and thus the FPA would substantially increase the probability to

detect such attacks compared to this commercial IDS.
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Chapter 7

Future Work

This chapter will present ideas for future work. The chapter will start by present-

ing additional tests that might augment the uniqueness of the fingerprint, then it

will continue with a recommendation for determining the difficulty of spoofing the

fingerprinting properties. Finally some ideas for how to improve the threshold tests

are presented.

7.1 Additional Tests

During the experiments and analysis some behavior patterns were noted that might

be used as bases for new tests. These tests would then add more fingerprinting

properties to the fingerprint, and as a result probably increase the uniqueness of the

fingerprints.

Use Power Management The STA with Backtrack 5, S-11, did not use power

management at all. That is, none of its frames had the pwr mgt bit set to 1. Every

other STA used power management.

Probe Request Interval During the experiments in this thesis it was discovered

that some STAs sent out Probe Request frames with a regular interval, while others

did not. This relates to the time between sets of Probe Request frames, and not

single frames.

A test on inter-frame timing of transmitted Probe Request frames has already

been implemented by Franklin et al. [9] with good results and could be added to the

FPA.

Prioritized Data Rate From the data in Table 5.3 it seems like some STAs use

all available data rates when sending Null Data frames, while others only use one

single data rate or only a few. For example during Scenario 1 S-5 sent 734 Null
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Data frames divided on seven of its 12 supported data rates. S-1 on the other hand

sent 3008 Null Data frames, and every single frame was sent on data rate 1.

Deauthentication versus Disassociation It turns out that some STAs use the

Deauthentication frame while other use the Disassociation frame when the user

disconnects from the network. A fingerprinting property based on this fact will not

be determined before the client have logged off, in other words pretty late compared

to the other tests. Nevertheless it could be the one test that made the difference,

and it is mentioned here to show the variety of implementation differences.

Association Request The Association Request frame contains more parameters

as Supported Channels and Power Capability that could be added to Test 8 in

order to make the fingerprinting property based on the Association Request frame

even more unique.

7.2 Difficulty of Spoofing the Properties

A comprehensive research into how difficult it is to alter each of the fingerprinting

properties found in Table 3.1 as well as the new ones proposed in the section above

would be very interesting. This should preferably be done on different STAs with

different OSs as it is reasonably to believe that laptops with Linux is easier to alter

than their Windows counterpart, or even smartphones.

7.3 Tuning the Logic

7.3.1 Conclude Attack

The final logic to determine if there was an attack or not needs to be specified. Some

of the properties as Fixed Interval or Null before Probe is based on a threshold value

and therefore includes some uncertainty. Other properties like PS-Poll, Duration

Calculation and Null Data Type is constant for a given STA. Requiring differences

in at least two of the more uncertain tests before concluding attack could be the

optimal choice in terms of minimizing false positives and false negatives. On the

other hand, a disparity in one of the tests not based on a threshold should be enough

to conclude attack.

An investigation into which properties that can be used alone to conclude attack,

and which that require others should be interesting for future work.
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7.3.2 Threshold Tests

Test 2, 3, 4 and 5 is based on a threshold value. These values need some fine tuning

in order to find the optimal value for minimizing false positives and false negatives.

This would require larger data sets than what was used in this thesis.

An idea to further improve these tests is to introduce one additional state for

each of the threshold properties, namely indifferent. Right now the threshold for

True ranges from 80% to 90%. Everything below the threshold for a given test is by

default False. In the experiments is was noted that some STAs had 0-10 of 50 in the

Mode changing Null Data test, while other had 15-20 of 50 in the same test. Both

these results was interpreted as False, but it could be an idea to introduce indifferent

in order to separate them from each other and make the fingerprints more unique.

Figure 7.1 shows the idea with two thresholds, one for True and one for False.

Figure 7.1: Slider depicting two thresholds, one for True and one for False
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Chapter 8

Conclusion

The FPA has proved to create unique fingerprints. More precisely, fingerprints

created on the basis of an 8-10 minute scenario exhibited an average Hamming

distance of 2.82. In the case of severely reduced data the algorithm was still able

to distinguish between STAs as evident from the results from Scenario 2b. No pre-

computed database of fingerprints is required, reducing the need for storage and

development of such a database, but equally important it allows for detection based

on partial fingerprints.

The FPA works on the MAC layer and will therefore also work in networks

where the upper layers are encrypted, as supposed to methods based on fingerprint-

ing in the higher layers of the OSI model. Compared to a commercial IDS from

fdXtended [32] the FPA is able to detect spoofing attacks of the type where the

attacker and victim are not connected simultaneously.

Regarding the difficulty of faking a fingerprint it is known that identical STAs will

have an identical fingerprint. Some fingerprinting properties are not easily altered

as they are hard coded in the drivers, while others could potentially be easy to alter.

Determining how difficult it is to alter a given fingerprint to match another one is

proposed as future work. Nevertheless, the difficulty and skill required to avoid

detection is raised considerably by implementing the FPA.

Considering the problem statement and task description from Section 1.2 it is

evident that there now exists a way to detect the session hijacking attack, and the

wait-for-availability attack in 802.11 networks, hence the following can be stated.

The FPA is capable of passively creating a fingerprint of wireless STAs without

specialized equipment in realistic network conditions. Fingerprints from different

STAs are unique with a high probability, even when there are little data available.

In addition, the technique used is accurate, fast, and requires no pre-computed

databases. The FPA used in combination with the IDS developed by Idland [1]

is now able to detect all of the five different MAC spoofing attacks described in

Section 2.6.2.
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Appendix A

The Attacks

This appendix includes details of how the attacks can be performed in the Ubuntu

environment. The attacks are also possible to perform in Windows, but the details

are not included here. The first part of this appendix describes how the necessary

information is obtained, then the next section describe the wait-for-availability at-

tack. Some of the commands require sudo privileges, but the sudo prefix is excluded

for simplicity.

A.1 Obtaining the Necessary Information

First, the attacker needs some basic information about the network in order to be

able to start and sniff the network. To find the network name (SSID) and the

corresponding channel the following commands are performed.

wlanconfig ath0 create wlandev wifi0 wlanmode sta # (1)

ifconfig ath0 up # (2)

modprobe wlan_scan_sta # (3)

wlanconfig ath0 list scan # (4)

# (1) Create a regular (sta) interface

# (2) Up the interface, that is make it available

# (3) Insert the scanning module to enable scanning for APs

# (4) Perform the actual scan and get the result as a list

The above commands should produce a list of wireless networks within range.

With this list the attacker is able to find the desired network and its channel number.

For WirelessTrondheim this was 6. Next, the attacker needs to configure the wireless

NIC to be in monitor mode so that he can sniff the desired network, this is done with

the following commands. These commands are the first four of the five commands

shown in Section 4.2.3, nevertheless they are included here for completeness.
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wlanconfig ath0 destroy # (1)

wlanconfig ath create wlandev wifi0 wlanmode mon # (2)

iwconfig ath0 channel 6 # (3)

ifconfig ath0 up # (4)

# (1) Destroy any previous interface

# (2) Create a new interface in monitor mode

# (3) Monitor a specific channel, here channel 6

# (4) Make the interface accessible to the IP layer

When the NIC is correctly set in monitor mode the attacker can start Wireshark

with the command wireshark and the monitor interface called ath0 should be avail-

able for capturing. Assuming that there is at least one active client on the network

the attacker should now see some traffic. Wireshark helps to identify the STAs

by changing the prefix of their MAC address to the manufacturer that it belongs

to. For instance the MAC address to an iPhone 1. generation (S-5) was shown as

Apple 03:d2:db, the address to the LAP made by Cisco was Cisco 0e:01:90 and

the address of the Nomadix gateway as shown as Nomadix 01:b5:eb. The full MAC

address is also shown in parentheses behind the manufacturer prefixed address. The

attacker would then record the addresses of regular STAs (not LAPs or gateways)

and wait for one of them to leave so that he can perform the wait-for-availability

attack.

Before the attacker can perform the attack he must change the configuration

of his NIC form monitor to sta. This is done by executing the same commands

as above, except that second command is changed to wlanconfig ath create

wlandev wifi0 wlanmode sta.

A.2 Performing The Wait-for-Availability Attack

Assuming the attacker has obtained the necessary information as described in Ap-

pendix A.1 he is now ready to perform the wait-for-availability attack. This is done

by executing the following list of commands after he believes that the legitimate

client has left. Determining whether the legitimate client has left can be done by

either observing a special frame (Deauthenticate or Deassociate) from it or simply

not seeing any traffic originating from target STA for a while.

ifconfig wlan0 down # (1)

ifconfig wlan0 hw ether 00:1c:b3:03:d2:db # (2)

iwconfig wlan0 essid "WirelessTrondheim" # (3)

ifconfig wlan0 up 192.168.1.2 # (4)

78



Appendix A. The Attacks

# (1) Put the interface down to be able to change the MAC address

# (2) Set the MAC address equal to the legitimate clients address

# (3) Set which wireless network to connect to

# (4) Up the interface and give yourself an IP to avoid IP conflicts

# This connects the attacker to the given network

The attacker is now connected to the network, and he have the MAC address

of a legitimate connected client, in this case an iPhone 1. generation (S-5). This

should ensure that he bypasses the captive portal and gains access to the Internet,

masquerading as the legitimate client.
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Appendix B

The Scenario

B.1 Scenario 1, General Usage

Scenario 1 is a scenario performed by one single STA at a time without any other

STAs connected to the LAP.

1. Connect to WirelessTrondheim (start timer)

2. Go to www.vg.no (dynamic site)

3. Open first story

4. Wait for one minute after the loading is complete

5. Go to www.wikipedia.org

6. Search for ”Norway” (in English) and open that page (static page)

7. Refresh five times, wait until completely downloaded before refreshing again

8. Wait two minutes

9. Refresh again

10. Go to www.vg.no

11. Scroll all the way down while waiting for the timer to reach eight minutes

12. Refresh two times

13. Wait for one minute

14. Disconnect
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Appendix C

The Source Code

C.1 FPP.pl

1 #! / usr / b in / p e r l

# F i n g e r p r i n t i n g Program (FPP)

3 # by C h r i s t e r Id land

5 use Net : : Pcap ;

use NetPacket : : Ethernet ;

7 use NetPacket : : IP ;

use NetPacket : :TCP;

9 use Bit : : Vector ;

use IO : : Handle ;

11

use s t r i c t ;

13 use warnings ;

use d i a g n o s t i c s ;

15

use constant {
17 MGT => ”00” ,

CTRL => ”01” ,

19 DATA => ”10” ,

21 ASS REQ => ”0000” , # Type = MGT

ASS RES => ”0001” , # Type = MGT

23 BEACON => ”1000” , # Type = MGT

PROBE REQ => ”0100” , # Type = MGT

25 PSPOLL => ”1010” , # Type = CTRL

ACK FRAME => ”1101” , # Type = CTRL

27 CTS => ”1100” , # Type = CTRL

NULL => ”0100” , # Type = DATA

29 QOS NULL => ”1100” , # Type = DATA

} ;

31
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my(

33 $err ,

$pcap err ,

35 $pcap descr ,

) ;

37

my $ c a p t u r e f i l e = ”/home/ c h r i s t e r /Dropbox/ master // s c e n a r i o captures /

iPhone4G . cap” ;

39

my $ap mac = ”00235 d0dfaa5 ” ; # WrT Lap

41 my $gtway mac = ”0050 e801b5eb ” ; # Nomadix

43 # O f f s e t = 0 when only 802.11 frame i s i n c l u d e d and o f f s e t = 26 when

r a d i o t a p headers i s i n c l u d e d

my $ o f f s e t = 26 ;

45

my $ i n o f f l i n e m o d e = 1 ; # Set to 1 to use the capture f i l e , 0 f o r l i v e

capture

47

my %mac s ignatures = ( ) ;

49 my %id to mac = ( ) ;

my $must chk next pkt ;

51

my %SrcSeq = ( ) ; # Source MAC/ Sequence Number combination

53 my %SrcAlm = ( ) ; # Source MAC/Alarm Counter combination

my %qos mac = ( ) ; # QoS/MAC combination

55 my %cnt mac = ( ) ; # Counter and MAC combo

my %mac state = ( ) ; # Mac adress and 802.11 s t a t e

57

my $ i n t e r f a c e = ” ath0 ” ; # Def ines i n t e r f a c e f o r l i s t e n i n g

59 my $snaplen = 1500 ; # How much o f each frame to be p ic ked up

my $promisc = 1 ; # L i s t e n to a l l packets , Promiscous mode

61 my $readt imeout = 1000 ; # Read t imeout on packages

my $ f i l e c o u n t = 0 ;

63

my $capture = ( ) ;

65

i f ( $ i n o f f l i n e m o d e ) {
67 $capture = Net : : Pcap : : o p e n o f f l i n e ( $ c a p t u r e f i l e , \ $ e r r ) ;

print”\n\nCapture has s t a r t e d ( o f f l i n e mode) \n\n” ;

69 } else {
$capture = Net : : Pcap : : o p e n l i v e ( $ i n t e r f a c e , $snaplen , $promisc ,

$readtimeout , \ $pcap er r ) ;

71 print”\n\nLive capture has s t a r t e d \n\n” ;

}
73

my $w802 = Net : : Pcap : : da ta l i nk name to va l ( ’ DLT IEEE802 11 ’ ) ;

84



Appendix C. The Source Code

75 Net : : Pcap : : s e t d a t a l i n k ( $capture , $w802 ) ;

Net : : Pcap : : loop ( $capture ,−1,\& p r o c e s s s i n g l e p a c k e t , ’ ’ ) ;

77

unless (defined $capture ) {
79 die ’ Unable to c r e a t e packet capture on dev i c e ’ , ”wlan1” , ’ − ’ ,

$pcap er r ;

}
81

Net : : Pcap : : close ( $capture ) ;

83

85 sub p r o c e s s s i n g l e p a c k e t {###−−−−−====(( MAIN ROUTINE ) )====−−−−−###

87 my( @tim aids ) ;

89 my( $pkt , $ f r ame c t r l , $dur id , $ds t id , $ s r c i d , $ frametype ,

$subtype , $timestamp m , $pwr mgt ) = e x t r a c t b a s i c i n f o (\@ ) ;

91 my $pkt be longs to ntwrk = 1 ; # No need to f i l t e r

93 i f ( $pkt be longs to ntwrk ) {

95 ## Get a d d i t i o n a l i n f o depending on type o f frame ##

97 i f ( $ frametype == MGT && $subtype == ASS REQ) {
my( @ l i s t o f I E s ) = f i n d i n f o e l e m e n t s ( $pkt ) ;

99

t e s t o n a s s r e q ( $pkt , $ s r c i d , $dur id , @ l i s t o f I E s ) ;

101 }

103 i f ( $ frametype == MGT && $subtype == ASS RES) {
s t o r e a i d ( $pkt , $d s t i d ) ;

105 }

107 i f ( $ frametype == MGT && $subtype == BEACON) {
@tim aids = g e t i n f o f r o m b e a c o n ( $pkt ) ;

109 }

111 i f ( $ frametype == MGT && $subtype == 1100) {
print ”DEAUTH\n” ;

113 }
i f ( $ frametype == MGT && $subtype == 1010) {

115 print ”DEASS\n” ;

}
117

119 ## S t a r t t e s t s ##
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121 t e s t 1 u s e p s p o l l ( $ frametype , $subtype , $ s r c i d , @tim aids ) ;

123 t e s t 2 u s e k e e p a l i v e ( $ frametype , $subtype , $ s r c i d ,

$timestamp m ) ; #Lagrer ogsÃ¥ t i m e d e l t a

125 t e s t 3 u s e s t a t e c h n g n u l l ( $ frametype , $subtype , $ s r c i d ,

$pwr mgt ) ;

127 t e s t 3 b n u l l b e f o r e p r o b e ( $ frametype , $subtype , $ s r c i d ,

$timestamp m ) ;

129 t e s t 4 u s e f i x e d i n t e r v a l ( $ frametype , $subtype , $ s r c i d ,

$pwr mgt , $timestamp m ) ;

}
131

}
133

sub e x t r a c t b a s i c i n f o {
135

my $ = sh i f t ;

137 my ( $data , $hdr , $pkt ) = @$ ;

139 # Gets unpacket in ”wrong” endian , i n s i d e each b y t e .

141 my $data ra t e = hex(unpack( ’H* ’ , substr ( $pkt , 17 , 1) ) ) / 2 ;

# Datarate from r a d i o t a p header

143 my $ f r a m e c t r l = unpack( ’B* ’ , substr ( $pkt , $ o f f s e t + 0 , 2) ) ; #

The 802.11 header s t a r t s from the 24 th b y t e

my $dur id = unpack( ’B16 ’ , substr ( $pkt , $ o f f s e t + 2 , 2) ) ; #

The durat ion /ID f i e l d

145 my $d s t i d = unpack( ’H* ’ , substr ( $pkt , $ o f f s e t + 4 , 6) ) ; #

D e s t i n a t i o n address

my $ s r c i d = unpack( ’H* ’ , substr ( $pkt , $ o f f s e t + 10 , 6) ) ; #

Source address

147 my $t imestamp s = ${$hdr}{ ’ t v s e c ’ } ; #

Timestamp in seconds f o r t h i s packe t

my $timestamp m = ${$hdr}{ ’ t v u s e c ’ } ; #

Timestamp in microseconds f o r t h i s packe t

149

my $timestamp = $t imestamp s + $timestamp m / 1000000;

151

my $ frametype = substr ( $ f r ame c t r l , 4 , 2) ;

153 my $subtype = substr ( $ f r ame c t r l , 0 , 4) ;

my $pwr mgt = substr ( $ f r ame c t r l , 11 , 1) ;

155
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157 i f ( ( $ frametype == CTRL && $subtype == ACK FRAME) | | ( $ frametype ==

CTRL && $subtype == CTS) ) {
# ACK and CTS does not have source address , on ly RA address

159 $d s t i d = $ s r c i d ;

$ s r c i d = 0 ;

161 }

163 return ( $pkt , $ f r ame c t r l , $dur id , $ds t id , $ s r c i d , $ frametype ,

$subtype , $timestamp , $pwr mgt ) ;

165 }

167 sub t e s t o n a s s r e q {

169 # Frame body s t a r t s a f t e r 24 b y t e s o f header

171 my ( $pkt , $ s r c i d , $dur id , @ l i s t o f I E s ) = @ ;

173 my $dur = bin2dec ( substr ( $dur id , 10 , 8) . substr ( $dur id , 0 , 8) ) ;

my $ c a p l i s t = unpack( ’B* ’ , substr ( $pkt , $ o f f s e t + 24 , 2) ) ;

175 my $ l i s t e n i n t e r v a l = hex(unpack( ’H* ’ , substr ( $pkt , $ o f f s e t + 27 , 1)

) . unpack( ’H* ’ , substr ( $pkt , $ o f f s e t + 26 , 1) ) ) ;

177 my $ a s s r e q r e c = $mac s ignatures { $ s r c i d }{ a s s r e q r e c } ;

179 my $ l ength = scalar ( @ l i s t o f I E s ) ;

181 i f ( $ a s s r e q r e c ) {

183 print ”Has sendt an a s s o c i a t i o n reque s t be fore , check ing f o r

c o n s i s t e n c y \n” ;

185 i f ( $mac s ignatures { $ s r c i d }{ as s dur } ne $dur ) { print ” Duration

i s d i f f e r e n t \n” ;}
i f ( $mac s ignatures { $ s r c i d }{ l i s t e n i n t e r v a l } ne

$ l i s t e n i n t e r v a l ) { print ” L i s t en I n t e r v a l i s d i f f e r e n t \n” ;}
187

for (my $cnt = 0 ; $cnt < $ l ength ; $cnt++) {
189 my $o ld va lue = $mac s ignatures { $ s r c i d }{ $ l i s t o f I E s [ $cnt

]−> [0 ]} ;

my $new value = $ l i s t o f I E s [ $cnt ]−> [1 ] ;

191

i f ( $o ld va lue ne $new value ) { print ”IE with ID :

$ l i s t o f I E s [ $cnt ]−>[0] i s d i f f e r e n t \n” ;}
193 }
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} else { #No Ass Req has been recorded b e f o r e f o r t h i s MAC, so we

need to save a l l the in format ion

195

$mac s ignatures { $ s r c i d }{ as s dur } = $dur ;

197 $mac s ignatures { $ s r c i d }{ l i s t e n i n t e r v a l } = $ l i s t e n i n t e r v a l ;

print ” id : $ s r c i d l i s t e n : $ l i s t e n i n t e r v a l \n” ;

199 for (my $cnt = 0 ; $cnt < $ l ength ; $cnt++) {
$mac s ignatures { $ s r c i d }{ $ l i s t o f I E s [ $cnt ]−>[0]} =

$ l i s t o f I E s [ $cnt ]−> [1 ] ;

201 }
# Set the a s s r e q r e c to 1 to ensure we check f o r

i n c o n s i s t e n c i e s next time we g e t a ass req

203 $mac s ignatures { $ s r c i d }{ a s s r e q r e c } = 1 ;

}
205

}
207

sub f i n d i n f o e l e m e n t s {
209

# ID , S t a r t b y t e ( w i t h i n ass req . ) , Length

211

my $pkt = sh i f t ;

213

my $moreIEs = 1 ;

215 my $nextIE pos = 28 ;

my @ l i s t o f I E s = ( ) ;

217 my $ t o t a l l e n g t h = length ( $pkt ) − 4 ; # Minus the Frame Check

Sequence i f r a d i o t a p i s on

219 while ( $moreIEs ) {

221 my $ id = bin2dec (unpack( ’B* ’ , substr ( $pkt , $ o f f s e t + $nextIE pos

, 1) ) ) ;

my $ l en = bin2dec (unpack( ’B* ’ , substr ( $pkt , $ o f f s e t +

$nextIE pos + 1 , 1) ) ) ;

223 my $IE = unpack( ’B* ’ , substr ( $pkt , $ o f f s e t + $nextIE pos + 2 ,

$ l en ) ) ;

225 $nextIE pos = $nextIE pos + 2 + $ l en ;

$moreIEs = ( $nextIE pos + $ o f f s e t != $ t o t a l l e n g t h ) ;

227

spl ice ( @ l i s t o f I E s , 0 , 0 , [ $ id , $IE ] ) ;

229

print ” id : $ id , l en : $ len , i e : $IE\n” ;

231 }

233 return @ l i s t o f I E s ;
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235 }

237 sub s t o r e a i d {

239 my ( $pkt , $d s t i d ) = @ ;

241 # Ass r es = header (24) , c a p a b i l i t y i n f o (2) , s t a t u s code (2) , AID

(2)

243 my $ a i d f i e l d = unpack( ’B* ’ , substr ( $pkt , 28 + $ o f f s e t , 2) ) ;

my $aid = bin2dec ( substr ( $ a i d f i e l d , 10 , 6) . substr ( $ a i d f i e l d , 0 ,

8) ) ;

245

$ id to mac { $aid } = $d s t i d ;

247

#I n i t i a l i z e f i n g e r p r i n t hashmap

249 $mac s ignatures { $d s t i d }{ bcn cnt } = 0 ;

$mac s ignatures { $d s t i d }{ u s e p s p o l l } = 0 ;

251 $mac s ignatures { $d s t i d }{ u s e k e e p a l i v e } = 0 ;

$mac s ignatures { $d s t i d }{ n u l l c n t } = 0 ;

253 $mac s ignatures { $d s t i d }{ s t a t e chng cnt } = 0 ;

$mac s ignatures { $d s t i d }{ us ing s ta t e chng } = 0 ;

255 $mac s ignatures { $d s t i d }{ l a s t t y p e } = 0 ;

$mac s ignatures { $d s t i d }{ l a s t s u b t y p e } = 0 ;

257 $mac s ignatures { $d s t i d }{ n u l l p r o b e t r u e c o u n t } = 0 ;

$mac s ignatures { $d s t i d }{ n u l l p r o b e f a l s e c o u n t } = 0 ;

259 #l i s t e n i n t e r v a l i s i n i t i a t e d e a r i l e r

}
261

sub g e t i n f o f r o m b e a c o n {
263

my $pkt = sh i f t ;

265

# Frame body s t a r t s a f t e r 24 b y t e s o f header

267 # TIM s t a r t s a t 68 b y t e s ( at l e a s t on beacon from WrT)

# TIM i s 6 b y t e s in l e n g t h ( but has TIM Length = 4) at l e s t when

t h e r e a few (<8) us ers on

269

my $bitmap = unpack( ’B* ’ , substr ( $pkt , $ o f f s e t + 73 , 1) ) ;

271 my @bits = sp l i t (// , $bitmap ) ;

my $counter = 7 ; #bitmap o f max id = 7 ( 0 , 1 , 2 , 3 . . )

w i t h i n a b y t e (8 b i t s )

273 my @tim aids ;

275 foreach my $b i t ( @bits ) {
i f ( $b i t ) { push( @tim aids , $counter ) ; }
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277 $counter−−;

}
279 #p r i n t ” bitmap : $bitmap , t i m a i d s : @tim aids \n ” ;

281 return @tim aids ;

}
283

sub bin2dec { return unpack( ”N” , pack ( ”B32” , substr ( ”0” x 32 . shift ,

−32) ) ) ; }
285

sub t e s t 1 u s e p s p o l l {
287 my( $ frametype , $subtype , $ s r c i d , @tim aids ) = @ ;

289 # When frame == bacon frame check which AIDs t h a t have data

b u f f e r e d (TIM)

# Increment number o f beacons wi th AID

291

i f ( $ frametype == MGT && $subtype == BEACON) {
293

foreach my $aid ( @tim aids ) {
295 #p r i n t ”Beacon frame t i m a i d s : @tim aids \n ” ;

$ s r c i d = $ id to mac { $aid } ;

297 i f ( $ s r c i d ) {

299 $mac s ignatures { $ s r c i d }{ bcn cnt}++;

301 my $ i s u s i n g p s p o l l = $mac s ignatures { $ s r c i d }{
u s e p s p o l l } ;

my $ l i s t e n i n t e r v a l = $mac s ignatures { $ s r c i d }{
l i s t e n i n t e r v a l } ;

303 my $bcn cnt = $mac s ignatures { $ s r c i d }{ bcn cnt } ;

305 i f ( $ i s u s i n g p s p o l l == 1 && $bcn cnt > $ l i s t e n i n t e r v a l

) {
print ”MAC: $ s r c i d went from us ing PS−Po l l to NOT

us ing i t ( count : $bcn cnt ) ! l s t n i n t e r v a l :

$ l i s t e n i n t e r v a l \n” ;

307 $mac s ignatures { $ s r c i d }{ u s e p s p o l l } = −1;

}
309 }

}
311 }

313 i f ( $ frametype == CTRL && $subtype == PSPOLL) {
my $cnt = $mac s ignatures { $ s r c i d }{ bcn cnt } ;

315 #p r i n t ”PS−P o l l in use , ( s r c i d : $ s r c i d ) count was : $cnt \n ” ;

i f ( $mac s ignatures { $ s r c i d }{ u s e p s p o l l } == −1){
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317 print ”MAC: $ s r c i d went from not us ing to us ing PS−p o l l \n”

;

}
319 $mac s ignatures { $ s r c i d }{ u s e p s p o l l } = 1 ;

$mac s ignatures { $ s r c i d }{ bcn cnt } = 0 ; # Reset beacon count

a f t e r PS−P o l l

321 #p r i n t ”PS−P o l l in use\n ” ;

}
323

}
325

sub t e s t 2 u s e k e e p a l i v e { # Check i f STA sends keep a l i v e

Nul l data a f t e r a s i l e n t per iod o f ca 10 sec (9>x<11>)

327

my( $ frametype , $subtype , $ s r c i d , $t imestamp s ) = @ ;

329

i f ( ! $mac s ignatures { $ s r c i d }{ l a s t p k t t s }) { $mac s ignatures { $ s r c i d

}{ l a s t p k t t s } = $t imestamp s ;} #UnngÃ¥ undef ined f Ã¸r s t e gang

331

my $ l a s t p k t t s = $mac s ignatures { $ s r c i d }{ l a s t p k t t s } ;

333 my $ t ime de l t a = ( $t imestamp s − $ l a s t p k t t s ) ;

$mac s ignatures { $ s r c i d }{ l a s t p k t t s } = $t imestamp s ; #update

l a s t pk t t imes tap

335 $mac s ignatures { $ s r c i d }{ t i m e d e l t a } = $ t ime de l t a ;

337 my $u s e k e e p a l i v e = $mac s ignatures { $ s r c i d }{ u s e k e e p a l i v e } ;

339 i f ( (9 <= $ t ime de l t a && $ t ime de l t a <= 11) && isNul lData ( $ frametype

, $subtype ) ) {

341 i f ( $u s e k e e p a l i v e == −1){print ”MAC: $ s r c i d went from not

us ing keep a l i v e to us ing i t ! , d e l t a : $ t ime de l t a \n” ;}
$mac s ignatures { $ s r c i d }{ u s e k e e p a l i v e } = 1 ;

343

print ”Time d e l t a : $ t ime de l t a − us ing keep a l i v e mac : $ s r c i d \
n” ;

345

} e l s i f ( $ t ime de l t a > 11 && defined ( $u s e k e e p a l i v e ) ) { # && d e f i n e d

ensures t h a t the AP i s ignored as i t has not been i n i t i a l i z e d (

ass req )

347 i f ( $u s e k e e p a l i v e == 1) {print ”MAC: $ s r c i d went from us ing

keep a l i v e to NOT us ing i t ! , d e l t a : $ t ime de l t a \n” ;}
$mac s ignatures { $ s r c i d }{ u s e k e e p a l i v e } = −1; # Does not use

keep a l i v e

349

print ”Time d e l t a : $ t ime de l t a − not us ing keep a l i v e mac :

$ s r c i d \n” ;
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351 }
}

353

sub t e s t 3 b n u l l b e f o r e p r o b e {
355

my( $ frametype , $subtype , $ s r c i d , $t imestamp s ) = @ ;

357

my $ l a s t t y p e = $mac s ignatures { $ s r c i d }{ l a s t t y p e } ;

359 my $ l a s t s u b t y p e = $mac s ignatures { $ s r c i d }{ l a s t s u b t y p e } ;

361 i f ( $ frametype == MGT && $subtype == PROBE REQ) {
i f ( i sNul lData ( $ l a s t t yp e , $ l a s t s u b t y p e ) ) {

363 $mac s ignatures { $ s r c i d }{ n u l l p r o b e t r u e c o u n t }++;

print ” Nul l b e f o r e Probe ( $mac s ignatures { $ s r c i d }{
n u l l p r o b e t r u e c o u n t }) \n” ;

365

} e l s i f ( ! ( $ l a s t t y p e == MGT && $ l a s t s u b t y p e == PROBE REQ) ) {
367 print ”NOT us ing n u l l b e f o r e Probe\n” ;

$mac s ignatures { $ s r c i d }{ n u l l p r o b e f a l s e c o u n t }++;

369 }
}

371

i f ( $mac s ignatures { $ s r c i d }{ n u l l p r o b e t r u e c o u n t } == 30) {
373 print ”Using n u l l b e f o r e probe (30) \n” ;

$mac s ignatures { $ s r c i d }{ n u l l p r o b e t r u e c o u n t } = 0 ;

375 }

377 i f ( $mac s ignatures { $ s r c i d }{ n u l l p r o b e f a l s e c o u n t } == 30) {
print ”NOT Using n u l l b e f o r e probe (30) \n” ;

379 $mac s ignatures { $ s r c i d }{ n u l l p r o b e f a l s e c o u n t } = 0 ;

}
381

$mac s ignatures { $ s r c i d }{ l a s t t y p e } = $ frametype ;

383 $mac s ignatures { $ s r c i d }{ l a s t s u b t y p e } = $subtype ;

385 }

387 sub t e s t 3 u s e s t a t e c h n g n u l l {

389 my( $ frametype , $subtype , $ s r c i d , $pwr mgt ) = @ ;

my $ t ime de l t a = $mac s ignatures { $ s r c i d }{ t i m e d e l t a } ;

391

pwr s ta te based on bns ( $ frametype , $subtype , $ s r c i d ) ;

393

my $u s e s t a t e c h n g n u l l = −1;

395

my $ s e t s i z e = 20 ;
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397 my $ h i t f r a c t i o n = 0 . 8 5 ;

399 i f ( $mac s ignatures { $ s r c i d }{must chk next pkt }) {
# Know t h a t l a s t packe t was Nul l Data wi th P = 0 , changing

s t a t e from P = 1

401

i f ( ! i sNul lData ( $ frametype , $subtype ) && $ frametype == DATA) {
403 $u s e s t a t e c h n g n u l l = 1 ;

$mac s ignatures { $ s r c i d }{ us ing s ta t e chng }++;

405 $mac s ignatures { $ s r c i d }{ s t a t e chng cnt}++;

407 } else {
# Packet a f t e r Nul l t h a t changed s t a t e i s another Nul l or MGT/

CTRL

409 # Ignore as we are only i n t e r e s t e d to know i f the STA sends

Nul l when i t have data b u f f e r e d

}
411

$mac s ignatures { $ s r c i d }{must chk next pkt } = 0 ;

413

} else {
415 i f ( $mac s ignatures { $ s r c i d }{ pwr state }) { # in s l e e p mode

b e f o r e current packe t

i f ( i sNul lData ( $ frametype , $subtype ) && $pwr mgt == 0) {
417 $mac s ignatures { $ s r c i d }{must chk next pkt } = 1 ;

} e l s i f ( $ frametype == MGT | | $ frametype == CTRL) {
419 # Ignorere MGT og CTRL

} e l s i f ( $ frametype == DATA && $pwr mgt == 0) { # Use data

packets , not Nu l l to change s t a t e

421 $u s e s t a t e c h n g n u l l = 0 ;

$mac s ignatures { $ s r c i d }{ s t a t e chng cnt}++;

423 }
}

425 }

427 i f ( $u s e s t a t e c h n g n u l l != −1){ #i f i t i s −1 we need to wai t f o r

next packe t b e f o r e we can conc lude

429 my $ c u r r e n t f p v a l u e ;

i f ( ! defined ( $mac s ignatures { $ s r c i d }{ u s e s t a t e c h n g n u l l }) ) {
$ c u r r e n t f p v a l u e = $u s e s t a t e c h n g n u l l ;}

431 else { $ c u r r e n t f p v a l u e = $mac s ignatures { $ s r c i d }{
u s e s t a t e c h n g n u l l } ;}

433 $mac s ignatures { $ s r c i d }{ u s e s t a t e c h n g n u l l } =

$u s e s t a t e c h n g n u l l ;
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435 i f ( $ c u r r e n t f p v a l u e != $u s e s t a t e c h n g n u l l ) {
$mac s ignatures { $ s r c i d }{ t m p t e l l e r 3 }++;

437 #p r i n t ”MAC $ s r c i d went from $ c u r r e n t f p v a l u e to

$u s e s t a t e c h n g n u l l in us ing s t a t e chng n u l l data \n ” ;

#p r i n t ” changes : $mac s ignatures { $ s r c i d }{ t m p t e l l e r 3 }\n ” ;

439 }
}

441

$mac s ignatures { $ s r c i d }{ pwr state } = $pwr mgt ;

443

i f ( ! defined ( $mac s ignatures { $ s r c i d }{ s t a t e chng cnt }) ) {
$mac s ignatures { $ s r c i d }{ s t a t e chng cnt } = 0;}

445

i f ( $mac s ignatures { $ s r c i d }{ s t a t e chng cnt } == $ s e t s i z e ) {
447

my $ i s u s i n g = ( $mac s ignatures { $ s r c i d }{ us ing s ta t e chng } >=

$ s e t s i z e * $ h i t f r a c t i o n ) ;

449 i f ( $ i s u s i n g ) {print ”Use s t a t e changing nul l , $mac s ignatures {
$ s r c i d }{ us ing s ta t e chng } o f $ s e t s i z e changes \n” ;}

else {print ”Does NOT use s t a t e changing nul l , $mac s ignatures {
$ s r c i d }{ us ing s ta t e chng } o f $ s e t s i z e changes \n” ;}

451

$mac s ignatures { $ s r c i d }{ s t a t e chng cnt } = 0 ;

453 $mac s ignatures { $ s r c i d }{ notus ing s ta t e chng } = 0 ;

$mac s ignatures { $ s r c i d }{ us ing s ta t e chng } = 0 ;

455 }

457 }

459 sub t e s t 4 u s e f i x e d i n t e r v a l {

461 my( $ frametype , $subtype , $ s r c i d , $pwr mgt , $t imestamp s ) = @ ;

463 my $b u f f e r = 0 . 2 ;

my $ s e t s i z e = 20 ;

465 my $ h i t f r a c t i o n = 0 . 8 5 ;

467 i f ( ! defined ( $mac s ignatures { $ s r c i d }{ l a s t n u l l p w r }) ) {
$mac s ignatures { $ s r c i d }{ l a s t n u l l p w r } = $pwr mgt ;}

469 i f ( i sNul lData ( $ frametype , $subtype ) ) {

471 i f ( ! defined ( $mac s ignatures { $ s r c i d }{ l a s t n u l l t s }) ) {
$mac s ignatures { $ s r c i d }{ l a s t n u l l t s } = $t imestamp s ;}

473 my $timestamp = $mac s ignatures { $ s r c i d }{ l a s t n u l l t s } ;

my $ t ime de l t a = $t imestamp s − $timestamp ;
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475 my $n u l l c n t = $mac s ignatures { $ s r c i d }{ n u l l c n t } ;

477 i f ( $pwr mgt == 0 && $mac s ignatures { $ s r c i d }{ l a s t n u l l p w r } ==

1) {
# Only i n t e r e s t e d in a P=0 when P was 1 l a s t time

479

i f ( $n u l l c n t == 10) {
481 my $average = $mac s ignatures { $ s r c i d }{ average } ;

my $min = $average * (1 − $b u f f e r ) ;

483 my $max = $average * (1 + $b u f f e r ) ;

485 i f ( $mac s ignatures { $ s r c i d }{ pa i r count } != $ s e t s i z e ) {

487 i f ( ( $min < $ t ime de l t a ) && ( $ t ime de l t a < $max) ) {
$mac s ignatures { $ s r c i d }{ pa i r ok}++;

489 }
} else {

491 my $pa i r ok = $mac s ignatures { $ s r c i d }{ pa i r ok } ;

my $o k f r a c t i o n = $pa i r ok / $ s e t s i z e ;

493 i f ( $o k f r a c t i o n >= $ h i t f r a c t i o n ) {print ”Use f i x e d

i n t e r v a l , $pa i r ok o f $ s e t s i z e par OK\n” ;}
else {print ”Does NOT use f i x e d i n t e r v a l , $pa i r ok

o f $ s e t s i z e par OK\n” ;}
495 $mac s ignatures { $ s r c i d }{ pa i r count } = 0 ;

$mac s ignatures { $ s r c i d }{ pa i r ok } = 0 ;

497 }

499 $mac s ignatures { $ s r c i d }{ pa i r count}++;

501 } else {
$mac s ignatures { $ s r c i d }{ delta sum } += $ t ime de l t a ;

503 $mac s ignatures { $ s r c i d }{ n u l l c n t }++;

#p r i n t ” Del ta t i l average : $ t i m e d e l t a \n ” ;

505

i f ( $mac s ignatures { $ s r c i d }{ n u l l c n t } == 10) {
507 $mac s ignatures { $ s r c i d }{ average } = $mac s ignatures

{ $ s r c i d }{ delta sum } / 10 ;

$mac s ignatures { $ s r c i d }{ pa i r count } = 0 ;

509 $mac s ignatures { $ s r c i d }{ pa i r ok } = 0 ;

}
511 }

}
513

$mac s ignatures { $ s r c i d }{ l a s t n u l l t s } = $t imestamp s ;

515 $mac s ignatures { $ s r c i d }{ l a s t n u l l p w r } = $pwr mgt ;

}
517
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}
519

sub pwr s ta te based on bns {
521

my( $ frametype , $subtype , $ s r c i d ) = @ ;

523

i f ( $ frametype == MGT && $subtype == BEACON) {
525 for my $ id ( keys %mac s ignatures ) {

527 $mac s ignatures { $ id }{ b c n s s i n c e d a t a }++;

529 i f (defined ( $mac s ignatures { $ id }{ l i s t e n i n t e r v a l }) ) {
i f ( $mac s ignatures { $ id }{ b c n s s i n c e d a t a } >

$mac s ignatures { $ id }{ l i s t e n i n t e r v a l }) {
531 $mac s ignatures { $ id }{ pwr state } = 0 ;

#p r i n t ”Power s t a t e s e t to 0 due to beacons

exceed ing l i s t e n i n t e r v a l id : $ id \n ” ;

533 }
}

535 }
}

537 $mac s ignatures { $ s r c i d }{ b c n s s i n c e d a t a } = 0 ;

}
539

sub i sNul lData {
541

my( $ frametype , $subtype ) = @ ;

543

i f ( $ frametype == DATA && ( $subtype == NULL | | $subtype == QOS NULL)

) {
545 return 1 ;

} else {
547 return 0 ;

}
549

}

FPP.pl
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