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Abstract

The purpose of this Master thesis was to improve the visual experience when
coding computer generated content (CGC) using the H.264 standard. As
H.264 is designed primarily to code natural video, it exhibits weaknesses
when coding CGC at low bit rates. The thesis has focused on identifying
and modifying the components in the H.264 algorithm responsible for the
occurrence of unwanted noise artifacts.

The research method was based on performing quantitative research to
confirm or deny the hypothesis claiming that the H.264 algorithm performs
sub-optimally when coding CGC. Experiments were conducted using coders
written specifically for the thesis. The results from these experiments were
then analyzed, and conclusions were drawn based on empirical observations.

An implementation of H.264 was used to identify the noise artifacts result-
ing from coding CGC at low rates. The results indicated that H.264 indeed
performs sub-optimally when coding CGC. We learned that the reason for
this was that the characteristics of CGC led to the signal being more com-
pactly represented in the spatial domain than in the transform domain. We
therefore proposed to omit the component transform and quantize the resid-
ual signal directly. This method, called residual scalar quantization (RSQ),
was shown to outperform traditional H.264 coding for certain CGC in terms
of quantified visual quality and bit rate. However, even when outperformed,
the RSQ coder did not exhibit any of the noise artifacts present when coding
with the traditional coder. We also introduced Rate-Distortion optimiza-
tion, which allowed the coder to adaptively choose between traditional and
RSQ coding, ensuring that each block is coded optimally, independent of
the source content. This scheme was shown to outperform both stand-alone
coders for all sample content. A quantizer with representation levels tailored
specifically for the characteristics of CGC was also presented, and experi-
ments showed that it outperformed uniform quantization when coding CGC.

The results in this thesis were produced by simplified versions of the ac-
tual coders, and may not be completely accurate. However, the accumulated
results indicate that RSQ may indeed outperform traditional H.264 coding
for CGC. To confirm the theories that have been presented, the proposed
techniques should be implemented in a full-scale implementation of H.264
and the experiments repeated.

Keywords: H.264, residual scalar quantization, computer generated con-
tent, natural content, Rate-Distortion optimization
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Definitions

Here we list the definitions we have used in the thesis. Definitions marked
with a ’*’ denotes definitions that have been made by the author.

- H.264 - Video coding standard

- YCrCb - Family of color spaces. A way of encoding RGB information

- YUV - Raw video format. Used interchangeably with YCrCb

- DC - Mean value of waveform

- Isotropy - Isotropy means uniformity in all directions

- Anisotropy - Anisotropy is the property of being directionally depen-
dent

- Artificial content* - Content generated on a computer, e.g. text and
graphical objects

- Compound content* - Artificial content with embedded natural im-
ages/video

- 4:2:x - Color downsampling scheme

- CIF - 352x288 resolution

- Initial RSQ coder* - The RSQ coder using uniform quantization

- End-zone RSQ coder* - The RSQ coder using extended end-zone
quantization

- Dyadic - A dyadic number is defined as 2 to the power of a natural
number b (i.e. 2b).





Chapter 1

Introduction

H.264 /Advanced Video Coding (AVC), also referred to as MPEG-4 Part 10
is an open video coding standard, created as a joint effort by ITU-T Video
Coding Experts Group and the ISO/IEC Moving Picture Experts Group. It
is a successor to earlier standards such as MPEG-2 (commonly used in DVD
and Digital Video broadcasting) and H.263 (commonly used in videoconfer-
encing). Its use encompasses areas such as the compression of HD resolution
(most commonly 1280x720 or 1920x1080 pixel) video for Blu Ray[4], video
streaming such as Youtube (www.youtube.com) or Vimeo (www.vimeo.com),
file storage on computers, and videoconferencing. It is currently one of the
most commonly used formats for video compression.

1.1 Scope

This thesis will focus on the use of the H.264 algorithm to code computer
generated content (CGC) at low bit rates, and the noise and artifacts that is
the result of this low rate coding. In this context, CGC refers to video and
images generated on a computer. ”Coding content” refers to the process of
reducing the information or data that has to be represented or transmitted
in terms of bits, also known as data compression. Compressing information
usually involves the loss of signal accuracy, which in turn leads to reduced
visual quality. It is therefore important to compress information such that
the removed data is perceptually insignificant.

Examples of CGC includes PowerPoint presentations, remote desktop
viewing and demo recordings. As these areas of use become increasingly
important in our daily lives, the importance of being able to compress the
CGC whilst sustaining a satisfactory level of fidelity also increases. However,
there are known difficulties when compressing computer graphics using H.264
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or similar coding standards. These difficulties will be addressed in Section
1.2.

We will classify content that consists of purely computer graphics (i.e.
text and graphical objects) as artificial content. The other classifications we
will use is compound content which refers to artificial content with embedded
natural content. CGC will be used interchangeably with artificial content.

1.2 Motivation

H.264 is designed primarily to compress natural video, i.e. content generated
by video cameras [17]. This presents a problem when the source to be en-
coded consists of computer graphics, because the characteristics of computer
graphics are inherently distinct from natural video, which we will investigate
further in Section 2.3. Therefore, the result of the coding process when cod-
ing CGC will be noise and artifacts that normally are not visible, even at
equal or higher bit rates compared to the coding of natural video (see Section
3.4). We thus need to find ways to improve the coding process, such that the
quality of coded screen content does not suffer from noise, without increasing
the amount of bits (rate) needed to represent the content. Another issue we
will investigate is artificial content with embedded natural images, denoted
compound content as mentioned in the previous section, which forces us to
investigate a coding scheme that allows for optimal coding of both artificial
content and natural content in a combined manner.

1.3 Objectives

This section will identify the objectives of the thesis. As we have discussed,
the main objective will be to improve upon the H.264 coding algorithm such
that we achieve better results when coding content that is generated on a
computer. This main objective will be split into several smaller objectives to
make them more manageable. These objectives are:

1. Analyze the characteristics of natural video and CGC, and learn how
they differ from one another.

2. Learn how the H.264 coder actually performs when coding CGC at low
bit rates.

3. Classify the noise and artifacts that occurs when coding CGC using
the regular H.264 algorithm.
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4. Identify which components in the H.264 algorithm that causes the sub-
optimal performance when coding CGC.

5. Investigate how these components might be modified and improved to
better take into consideration the characteristics of the CGC.

6. Introduce a method that determines whether the source that is to be
coded consists of natural video, artificial content or a mix of the two
(compound content). Then code the content accordingly.

1.4 Methodology

As mentioned earlier, the purpose of the thesis is to modify the current H.264
algorithm such that we may improve upon the results when coding CGC. To
accomplish this, we will first need to use existing tools to encode CGC while
using a low bit rate, to ensure the occurrence of noise and artifacts. The
next step will be to identify the components that cause these artifacts. These
components must then be modified and tested to learn whether or not we
are able to perform coding of CGC without the occurrence of the previously
identified artifacts.

Different coders were written with the purpose of testing both existing
and proposed techniques and comparing their performance. The purpose of
this is to make conclusions regarding the proposed methods based on em-
pirical observations. All coders will be written in MATLAB, as MATLAB
is well suited for image and video processing. To be able to compare the
results we achieve when coding, we will use PSNR (further explained in Sec-
tion 2.4) as a visual quality metric and the amount of bits used to represent
each coded frame (i.e. the bit rate). Our desire is to achieve the best pos-
sible visual quality for the lowest possible bit rate. Hence, if the attempted
improvements are successful, we should achieve an increased PSNR value for
an equal or lower bit rate when using the proposed coder to code artificial
content compared to using the traditional H.264 algorithm.

1.5 Outline

This section will describe the outline of the thesis.

• Chapter 2 - We will start by reviewing the H.264 coding standard,
with particular focus on the Video Coding Layer. Further in this chap-
ter, we will look at the difference between natural video and artificial
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content, in addition to a metric to validate visual quality and finally
we will introduce Rate-Distortion optimization.

• Chapter 3 - This chapter contains a brief description of the tools and
parameters used to record and code the videos used for all experiments
in this thesis. Additionally, it contains a description of the content of
the example videos. Finally, it will discuss the results from coding an
example artificial content video sequence using an implementation of
the H.264 standard called the JM reference software, and compare these
results to the results obtained when coding a natural video sequence.

• Chapter 4 - In this chapter we introduce a technique designed to im-
prove upon the coding of computer graphics. It will also account for the
implementation of this method, and the results from the experiments
conducted using this technique.

• Chapter 5 - Here, we will describe the implementation of an adap-
tive coder which is designed to optimally select the best coded block.
The results from the experiments conducted using this coder are also
presented and discussed in this chapter.

• Chapter 6 - In this chapter we attempt to improve upon the quantiza-
tion method used in previous chapters. It contains a detailed account
of how the quantization is done, in addition to how and why it was
modified. It also contains a comparison between regular uniform quan-
tization and the proposed quantization method. Lastly it discusses
the results accumulated when implementing the proposed quantization
method into the adaptive coder.

• Chapter 7 - This chapter contains the conclusion.

• Chapter 8 - This chapter presents suggested future work.

• Appendix A - Here we present an overview and a short description
of all the tools used in the thesis.

• Appendix B - This appendix contains an overview of the parameters
used when coding videos with the JM reference software.

• Appendix C - Here we list and give a short description of all the
attached videos, images and coders we have used in this thesis.
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• Appendix D - Finally, we add the MATLAB code for one of the coders
that was written for this thesis. The rest of the MATLAB coders used
may be found attached with the thesis.

The structure of the thesis is such that we present the proposed tech-
niques, we then conduct experiments using the implemented techniques,
and analyze the results. Finally we present any possible further im-
provements. For instance, in Chapter 3, we look at the results when
coding CGC using the JM reference software. These results are then an-
alyzed, and the suggested improvements leads us to introducing resid-
ual scalar quantization (RSQ) in Chapter 4. Again, we conduct exper-
iments using the RSQ coder, analyze the results and suggest improve-
ments based on these. The discovery of components causing problems
when coding leads us to new improvements, like the adaptive coder
suggested in Chapter 5 and the extended end-zone quantizer presented
in Chapter 6.





Chapter 2

Background

This chapter will introduce and explain the mechanics of the H.264 coding
standard that are relevant for the thesis. For this reason, lossless coding
methods such as entropy coding will not be covered in-depth. The majority
of information presented in this section is taken from [42]. The primary
focus will be on the transform and quantization aspects of the algorithm.
The reason why we choose to provide more in-depth information about these
topics, is that they are essential to the occurrence of noisy artifacts when
coding artificial content, which is the central theme of the thesis. H.264 also
contains several different profiles which are designed to target specific classes
of applications. These will not be investigated further in the thesis. If the
reader is interested in a detailed description about profiles in H.264, this may
be found in [42].

2.1 Network Abstraction Layer

As H.264 is designed to be extensively flexible and customizable, it has incor-
porated a mechanism that allows the source content to efficiently be coded,
and then formatted into a bit stream ready for transmission. These mecha-
nisms, or layers, are known as the Network Abstraction Layer (NAL) and the
Video Coding Layer (VCL). The NAL will be briefly explained in this sec-
tion, but our main focus will be on the VCL. This is because the VCL is the
layer that performs the actual data compression, and hence is the layer that
introduces loss of information. This layer will be where we have to introduce
modifications to improve upon already existing techniques.

The NAL divides the coded data into multiple NAL units. Figure 2.1
shows how the NAL unit is structured. The first byte (NAL Unit Header) is
a header byte that indicates the type of data which is contained in the NAL
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Figure 2.1: NAL unit, taken from [13]

unit. The fields named RBSP (Raw Byte Sequence Payload) contain the
payload data indicated by the header. The emulation prevention bytes are
inserted as needed into to the payload data to prevent start code prefix data
patterns from generating, which are the patterns that prefixes each NAL
unit. Each NAL unit is classified as VCL and non-VCL NAL units. The
VCL NAL units contains the actual coded video samples, and the non-VCL
NAL units contains any additional information. This additional information
may for instance be information such as parameter sets, which is information
that is rarely expected to change. These parameter sets contain information
regarding the decoding of VCL NAL units, either sequentially coded frames
or individual frames.

Figure 2.2: NAL access unit, taken from [41]

H.264 combines the NAL units into specified structures which are denoted
access units, as depicted in Figure 2.2. The Length fields contains bytes
(usually four) that denotes the size of the frame. The Access Unit Delimiter
contains a byte sequence that is used for locating the start of the access
unit. The Supplemental Enhancement Information (SEI) contains data such
as picture timing information. The Primary Coded Picture is composed
of a set of VCL NAL units and thus contains the coded samples of the
video. The Redundant Coded Picture contains identical representations of
areas of the same video frame which was coded in the Primary Coded Picture
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block. This redundant information is attached to protect from errors and
loss of information when transmitting the data stream. All blocks except the
Primary Coded Picture block are optional and does not necessarily need to
be included in the bit stream.

2.2 Video Coding Layer

This section will explain the major features of the VCL, which is designed
to efficiently represent video content. Each picture in a video sequence is
coded by using both inter-frame prediction (prediction between subsequent
frames) to exploit temporal redundancy, as well as intra-frame prediction
(prediction between neighboring pixels/blocks within a single frame) and
transform coding of the prediction residual to exploit spatial redundancy.
Redundant information in images is a result of limitations in the human visual
system, as well as information redundancy between consecutive frames and
between neighboring pixels (temporal and spatial redundancy respectively).
The color components in an image is also subject to the limitations of human
perception and therefore also prone to be subject for data compression, which
will be explained in further detail later.

2.2.1 Chroma downsampling

The color components in an image are modeled using a color space. The most
common model is the RGB space, where the desired color is represented as a
sum of different intensities of red (R), green (G) or blue (B) color. Another
color space, most commonly used in video compression, is the YCbCr space,
also denoted YUV space, where each component is a sum of scaled R, G,
and B components. Equation 2.1 shows the process of the conversion and
are taken from [15].

Y = (0.257×R) + (0.504×G) + (0.098×B) + 16
Cr = (0.439×R) − (0.368×G) + (0.071×B) + 128
Cb = −(0.148×R) − (0.291×G) + (0.439×B) + 128

(2.1)

The inverse operation is given by:

B = 1.164× (Y − 16) + 2.018× (Cb− 128)
G = 1.164× (Y − 16) − 0.813× (Cr − 128) − 0.391× (Cb− 128)
R = 1.164× (Y − 16) + 1.596× (Cr − 128)

Component Y is called the luma component, and represents the bright-
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ness. Cr and Cb are called chroma components. Cr and Cb represents the
red-difference and the blue-difference respectively. As the human visual sys-
tem is more sensitive to the luma component than the chroma component[42],
the chroma components can be downsampled (e.g. we only transmit every
other chroma component) to reduce the bit rate without significantly harm-
ing the perceived visual quality. The most common subsampling format is
the 4:2:0 format, which is standard in H.264. With 4:2:0, both chroma com-
ponents are downsampled by a factor of two in both horizontal and vertical
directions, resulting in a total reduction in chroma components by a factor
of four compared to luma components, which are not downsampled in this
scheme. Figure 2.3 shows one variant of 4:2:0 chroma downsampling. We

Figure 2.3: 4:2:0 chroma downsampling, taken from [28]

will use the abbreviation YUV interchangeably with YCrCb throughout the
thesis. The convention for U and V will then be U = Cb and V = Cr. More
details on chroma downsampling can be found in [29] and [28].

2.2.2 Slices

H.264 uses a slice-structure, which means it divides frames into potentially
smaller fragments called slices (we say potentially as a slice may fully cover
a frame if desired), which are encoded and decoded independently of other
slices, i.e. they are self-contained. Frames may be divided into slices of any
size and shape (as long as it is within the boundaries of the frame), and may
among other things be used to support so-called region of interest (ROI)
coding, where a specific area of an image is more significant than other areas
and it is therefore desirable to code this area using a higher bit rate than
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when coding the rest of the image. These slices are coded mainly using three
different coding types, namely I, P and B -slices. I-slices are solely intra-
predicted, while P and B-slices also make use of inter-prediction in addition
to intra-prediction. P-slices may contain forward predicted (i.e. they are
predicted from preceding slices) macroblocks and B-slices may contain for-
ward and backwards (i.e. they may be predicted from slices ahead in time)
predicted macroblocks. Moreover, a new addition to H.264 compared to pre-
vious coding standards are the SP and SI slices, however, these will not be
discussed in the thesis.

Figure 2.4: Overview of the H.264 data hierarchy, taken from [38]

Figure 2.4 depicts how H.264 splits each frame into slices. Each slice is
then composed of a set of macroblocks of size 16x16 pixels. The macroblocks
are composed of a set of four sub-macroblocks of size 8x8 which again is
composed of a set of four blocks of size 4x4. These block compositions are
denoted as levels. The level on which the coder desires to operate may be
chosen independently for each macroblock.

2.2.3 Intra-prediction

Intra-prediction is the process of predicting from blocks that are contained
within the same frame. H.264 uses intra-prediction on each macroblock,
which allows us to transmit even less information, i.e. we only have to trans-
mit the residual signal of the predicted block in addition to the prediction
mode used to be able to completely reconstruct each block. The size of the
intra-prediction mode used depends on the characteristics of the area that is
to be coded. Small prediction modes with a size of 4x4 are used for areas that
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are highly detailed. Larger prediction modes, like 16x16, are used for areas
that contains less detail and are generally smoother. The intra-prediction
is done such that each block is predicted using previously encoded and re-
constructed samples from above and to the left, as depicted in Figure 2.5,
illustrated as shaded blocks. These samples must be previously encoded to be
available for use in the different prediction modes. If they are not previously
coded or they belong to another slice, they cannot be used for prediction
(as slices must be self-contained). The samples used for prediction, denoted
by P are formed from the weighted average of the adjacent pixels which are
indicated by the arrows. The Sum of Absolute Difference (SAD)1 is then cal-
culated for each mode, and the mode which achieves the lowest SAD value
is considered to be the best match.

Figure 2.5: H.264 4x4 intra-prediction modes, taken from [11].

After finding the best match, the predicted block P is set to the best
matching block. P is then subtracted from the current block, resulting in
a residual signal. This residual signal is then transmitted along with the

1SAD is a metric for measuring the similarity between blocks, by taking the absolute
difference between each pixel and summing these differences. It is commonly used because
of its simplicity, which ensures that its quick.
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prediction mode used. For 16x16 intra-prediction, there are four available
prediction modes, which are shown in Figure 2.6.

Figure 2.6: H.264 16x16 intra-prediction modes, taken from [11].

We see that the first three 16x16 prediction modes are similar to the first
three 4x4 prediction modes. The fourth mode uses a linear ”plane” function
which is fitted to the upper and left-hand samples H and V [33]. This mode
excels when used on areas with smoothly-varying luminance.

2.2.4 Inter-prediction

Inter-prediction is the process of predicting blocks between consecutive frames.
It is used to exploit temporal redundancy between neighboring frames. H.264
uses block-based motion compensation, as previous standards, but with the
addition of multiple optional block sizes and up to quarter-pixel motion
vectors[32]. The optional block sizes are defined such that the coder chooses
a size for the macroblock to be predicted, which may range from 16x16 to
4x4. The macroblock may then be sub-divided into even smaller blocks, or
partitions, down until a block size of 4x4. The prediction is then done in
a similar fashion as the intra-prediction, i.e. we compare the block to be
predicted to all blocks within a predetermined search area by calculating the
SAD for each block. The block with the lowest SAD is considered to be
the best match, and will be used to predict the current block. The coder
then subtracts the predicted block from the current block, leaving only the
residuals to be coded and transmitted along with a motion vector. The mo-
tion vector determines the displacement of the predicted block. The coder
has to code and transmit one motion-vector for each macroblock and one
for each partition of the macroblock, if any. The macroblock sizes are de-
termined based on the characteristics of the area to be coded, much like the
intra-prediction scheme discussed in the previous subsection.
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Figure 2.7: Integer and sub-pixel inter-prediction, taken from [32].

As mentioned, a new feature in H.264 compared to previous standards is
the use of quarter-pixel motion compensation. Figure 2.7 shows both integer
and sub-pixel prediction. Sub-pixel prediction outperforms integer-pixel pre-
diction in terms of compression rate, at the expense of increased complexity,
with quarter-pixel prediction outperforming half-pixel prediction. The sub-
pixel samples are generated by interpolating between neighboring pixels, i.e.
each half-pixel sample is a weighted sum of a pre-specified amount of neigh-
boring pixels. The quarter-pixel samples are then produced by interpolating
between neighboring half- or integer-pixel samples.

We will also mention a simplified inter-prediction technique called differ-
ential coding. Here, each frame is subtracted from an earlier anchor frame, to
exploit the temporal redundancy between neighboring frames. As this tech-
nique is inherently straightforward, it is easily implemented in any testing
environment, and will consequently be implemented before an implementa-
tion of a more complex motion prediction system such as the one used in
H.264. A more detailed description of motion compensation can be found in
[10].

2.2.5 Transform coding

Transform coding is a technique used to exploit the isotropic2(i.e. high spatial
correlation between neighboring pixels) nature of natural images, allowing us
to represent the information in the image in a more compact form. This is
done by decomposing the original signal to a sum of selected basis functions.
The desired effect is that as much of the energy of the image as possible will
be stored in a small amount of the transform coefficients, i.e. making the

2Isotropy means uniformity in all directions
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signal representation more compact. This is possible because of Parseval’s
relation[30], which is given as

N−1∑
n=0

|x(n)|2 =
1

2N

N−1∑
k=0

w(k)|Xc(k)|2 (2.2)

Equation 2.2 shows the energy conserving property of the 1D Discrete Cosine
Transform (DCT)[10] function, and tells us that the energy in the spatial
domain is equal to the scaled energy in the frequency domain. x(n) is the
signal in the spatial domain, Xc(k) is the signal in the frequency domain and
w(k) is a weighting function given as

w(k) =

{
1
2
, k = 0

1, k 6= 0

Equation 2.2 is easily expanded to the case of 2D-DCT or any other
transform which conserves the signal energy in the frequency domain, and
it tells us that reducing the energy in the frequency domain will result in a
reduction of energy in the spatial domain. This means that we can achieve
compression by reducing the dynamic range of coefficients or even remove
them in the frequency domain.

H.264 uses 4x4 integer transform coding, which is an approximation to the
DCT used in many previous image and video coding standards. The DCT is
avoided in H.264, as it uses irrational numbers, because this may result in a
non-perfect reconstruction. Using a 4x4 transform instead of the previously
used 8x8 transform also helps to reduce the amount of ringing artifacts,
i.e. artifacts that appear as spurious signals around sharp transitions in the
image. However, H.264 may still adaptively choose to use 8x8 blocks for the
transform, in the presence of highly correlated regions, which results in a
more efficient compression.

After the color downsampling and prediction has been done (or have been
skipped), H.264 applies the component transform on the prediction residuals
for all blocks of luma and chroma components. The 4x4 integer transform
applied is described by the following matrix:

H1 =


1 1 1 1
2 1 −1 −2
1 −1 −1 1
1 −2 2 −1

 .

These matrix coefficients are set such that a minimum amount of bits are used



18 Background

for storage, while still retaining orthogonal3 rows. If the intra-prediction used
was 16x16 as discussed in Section 2.2.3, the luma DC coefficients resulting
from the primary spatial transform undergo a 4x4 Hadamard (H2) transform
to obtain better compression in smooth areas. The H2 transform is given by:

H2 =


1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

 .

Finally, a 2x2 Hadamard transform (H3) is applied for the transform of
the 4 DC coefficients of each chroma components from the primary transform.
H3 is given as:

H3 =
1√
2

[
1 1
1 −1

]
.

The transformed coefficients are ordered horizontally and vertically, with
the frequency of the horizontal components increasing from the lowest to
the highest frequency as we move from left to right in the block, and the
frequency of the vertical components increasing from the lowest to highest
frequency as we move downwards in the block, as depicted in Figure 2.8.
Figure 2.8 shows the DCT frequency map, and not the integer transform
used in H.264. But as the integer transform is an approximation to DCT,
the frequency maps will be virtually similar.

Because of the DCT transform’s property of concentrating frequency com-
ponents to specific areas, the quantization can be done such that it removes
or minimizes coefficients that are less visually significant. For natural images,
these are typically the high-frequency components, as explained in [19].

2.2.6 Quantization

Quantization is the step in the encoding process that introduces signal loss.
This is done by reducing the range of values that must be transmitted. How-
ever, this reduction makes perfect reconstruction impossible, as quantization
is a many-to-few mapping, meaning that multiple values gets mapped to the
same representation value. This produces a trade-off between visual quality
and compression rate. An example uniform quantizer is depicted in Figure
2.9. The quantization step size (often denoted ∆) is one for this quantizer.

3Orthogonality refers to the property of being mutually perpendicular
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Figure 2.8: Two dimensional DCT frequencies, taken from [36].

Quantization is normally done by dividing the coefficients by a specified
quantization value, as equation 2.3 shows.

Xq(i, j) = sign{X(i, j)}
⌊
X(i, j) + f(Qs)

Qs

⌉
(2.3)

Here, i and j represent the row and column indices of the frame, Qs represents
the quantization step size, and f(Qs) represents the quantization width near
the origin (the dead-zone). b·e denotes the rounding function (i.e. rounding
to the closest integer), X(i, j) represent an input coefficient and Xq(i, j)
represents the quantized coefficient.

H.264 however, avoids division to reduce computational complexity. It
achieves this by using the equation given by:

Xq(i, j) = sign{X(i, j)}[(X(i, j)A(Q) + f2L) >> L].

Here, the parameter Q varies from 0 to Qmax, where Qmax is derived from
a quantization parameter (QP). The QP is manually set in the encoder and
decides the coarseness of the quantization, i.e. a large QP results in a higher
compression at the expense of reduced visual quality, whereas a low QP
results in a finer quantization, yielding increased visual quality for the recon-
structed image at the expense of a higher bit rate. ”>>” represents a binary
shift right. A(Q) is set such that the finest quantization corresponds to zero,
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Figure 2.9: Uniform scalar quantizer with 7 representation levels. It can be
viewed of as a dead-zone quantizer with a dead zone with a size of one step.
Taken from [6].

and the coarsest quantization to Qmax. f again represents the dead-zone
control parameter. 2L represents an L-bit right shift, which is equivalent to
dividing by 2L, where L is set manually. Changes in L will vary the approx-
imation error as well as the dynamic range of the reconstructed and quan-
tized signal. The reconstruction process will not be thoroughly explained
here. Suffice to say, the reconstruction of coefficients that are quantized
using equation 2.3 is done as follows:

Xr(i, j) = QsXq(i, j)

The reconstruction used in H.264 is similar, though slightly more complex.
More details about the transform coding and the quantization process can
be found in [22].

2.2.7 Deblocking filter

A common problem when using block-based coding is the occurrence of so-
called blocking artifacts, especially for low-rate coding. Figure 2.10 shows
clearly visible blocking artifacts. To counteract the occurrence of these block-
ing artifacts, H.264 introduces an in-loop deblocking filter. The filter inves-
tigates the difference between two samples near the edge of a block. Should
this difference be larger than a threshold calculated from the quantization
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Figure 2.10: Blocking artifacts resulting from low-rate coding. Taken from
[43].

parameter (QP), then it is likely that we have encountered a block artifact,
and the difference will be smoothed out. There is also an upper threshold to
reflect the fact that the edge might be a part of the actual behavior of the
image. Hence, if the difference surpasses the upper threshold, it is probably
not a block artifact, but instead a natural transition between two objects or
similar.

Because of the inherent characteristics of artificial content, i.e. large
amounts of sharp and regular edges (which will be discussed in greater detail
in Section 2.3) omitting the use of a deblocking filter when coding compound
images may result in gain in visual quality, as discussed in [16].

2.2.8 Entropy coding

This section will only briefly explain the entropy coding performed in H.264,
as it is irrelevant for the creation of noisy artifacts.

After the component transform and quantization, the coefficients undergo
a zig-zag scan, which reorders the coefficients from a 2D matrix form to vector
form. The vector is ordered such that the top-left coefficients (i.e. the low
frequency components of the signal) are listed first and the bottom-right
coefficients (i.e. the high frequency components of the signal) are listed last.
When coding natural content, the typical zig-zag coded vector will contain
large values for the low-frequency part and decreasing values for the high-
frequency part. The entropy coders used in H.264, called Context-Adaptive
Variable Length Coding (CAVLC) or Context-Adaptive Binary Arithmetic
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Coding (CABAC) will then attempt to convey this information, using as few
bits as possible based on the characteristics of the zig-zag coded block. More
information about CAVLC and CABAC may be found in [42] and [23].

Figure 2.11 shows an overview of the basic H.264 coding structure. We see
that the input video signal is split into macroblocks and divided into slices,
which are processed via intra- and inter-prediction, transforms, quantization,
a deblocking filter and finally entropy coded.

Figure 2.11: Basic H.264 coding structure. Taken from [38]

2.3 Natural video vs Computer generated con-

tent

Natural video refers to video created by recording using a video camera.
Computer generated content refers to video created by recording directly
from the screen of a computer, by using software tailored for this specific
task. Figure 2.12 shows an example of CGC and a natural image.

Technically, there are several differences between natural video and arti-
ficial content. We expect natural video to have a large correlation between
neighboring samples as we assume isotropy[16]. This correlation is then ex-
ploited using transform coding. Artificial content however, is assumed to
be strongly anisotropic4, which makes the use of transforms less efficient,

4Anisotropy is the property of being directionally dependent.
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Figure 2.12: Computer generated content (left) and natural content (right).
Taken from [26] and [3].

as is shown in Figure 2.13. We see that the resulting AC coefficients when
DCT transforming artificial content are severely larger than the AC coeffi-
cients resulting from transforming natural images, which are more compactly
represented.

In addition, artificial content blocks often consists of a limited amount of
colors, and edges are normally sharp and regular, which translates to artificial
content lending itself to be more efficiently coded in the spatial domain.

Figure 2.13: Values of AC coefficients after DCT transform, natural image
and screen content, taken from [9].

Another characteristic of artificial content is that the distortion produced
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may be more noticeable by a human observer. As the human eye has a rela-
tively high tolerance of loss in natural images, lossy compression algorithms
lend themselves well to the purpose of coding natural images. However, loss
of information in artificial content tend to be more pronounced, such as ring-
ing artifacts occurring from compressing high-frequency visual content[35].
Graphical objects in artificial content are often placed such that nearby ob-
jects are highly contrasted from each other, to be easily distinguishable for
the user. However, when compressed, the artifacts and noise emanating from
these contrasted objects will then be significantly more distinguishable com-
pared to their natural video counterparts, which are usually less protruding.

2.4 Measuring quality using PSNR

The most commonly used measure for objective quality in reconstructed
images is the peak signal-to-noise ratio (PSNR)[14]. PSNR is shown to
perform close to subjective quality measures when comparing similar video
content[12]. The PSNR is defined in Equation 2.4.

PSNR = 20 log10

MAX2

MSE
. (2.4)

Here MAX is the maximum pixel value in the image, i.e. MAX = 2B − 1,
where B is the amount of bits per pixel. MSE is the Mean Square Error,
defined as:

MSE =
1

MN

M−1∑
i=0

N−1∑
j=0

[I(i, j)−K(i, j)]2.

Here I and K represents the original and reconstructed image respectively.
M and N represents the height and width of the image. PSNR is measured in
decibels (dB). We will use the PSNR quality metric in this thesis to quantify
the resulting visual quality we achieve when encoding. By studying the
PSNR and the amount of bits used, we can get a good idea of how well our
coder performs. We may then use this information to compare our coder to
other existing coders.

However, PSNR does have its weaknesses. One problem is that PSNR
does not correlate well with subjective quality measures when measuring
across different types of video content[12]. This makes it difficult to compare
artificial content to natural videos, as the characteristics of the two distinct
video types (natural and artificial content) exhibit significant differences, as
explained in Section 2.3.
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2.5 Rate-Distortion Optimization

This section will explain Rate-Distortion optimization (RDO), and how it
may be used to optimize the coding process based on the measured visual
quality and bit rate. If we assume we have two coders, one to code natural
content and one to code artificial content, and we assume the source to be
coded contains both natural content and artificial content, i.e. compound
content. If we use only one of the tailored coders to code the compound
content, this will lead to sub-optimal performance in terms of visual quality.
Instead, we may ensure that the optimal coder is used by coding each block
in a frame with both coders, and then compare the distortion and the bit
rate per block for both coders. The best coded block is then selected for
use in the reconstructed frame. This comparison may be done by using the
Lagrange multiplier, shown in equation 2.5.

J = D + λR (2.5)

Here, D is the distortion (square error), R is the rate, and λ is a variable
set to satisfy a side-condition. In our case, our choice of λ will represent
how much we weigh the bit rate compared to the distortion. The coder that
minimizes J will be the optimal choice for the given block. More details about
using Lagrange multipliers in RDO can be found in [18]. The distortion is
denoted as the square error between the original block or frame (I) and the
reconstructed block or frame (Ĩ) as shown in Equation 2.6, where M and N
denotes the height and width of the block.

D =
N−1∑
i=0

M−1∑
j=0

(I(i, j)− Ĩ(i, j))2 (2.6)

We will also use the Lagrange multiplier as a method of comparison be-
tween reconstructed images, for an easier way to compare the results of dif-
ferent coders in terms of the distortion and the bit rate. This will be further
explained in Section 4.3.
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Tools And Methodology

This chapter will discuss the tools and methodology used to perform the
experiments done in this thesis. We will explain how we have recorded our
sample videos, how to play the .yuv files that contains the reconstructed video
after coding, and how to convert files between .avi, .264 and .yuv format.

We will also introduce an open-source implementation of the H.264 stan-
dard called the JM reference software which we will use to evaluate the
performance of the H.264 standard when coding different content. We will
investigate and explain the parameters that must be used in order for the
JM reference software to work correctly when coding both natural and ar-
tificial content. Lastly, we will analyze and discuss the results from coding
our sample videos with the JM reference software.

A complete list of all tools used to perform the experiments and where
they were downloaded from can be found in Appendix A.

3.1 Recording and playing video

CamStudio 2.0 was used to capture the artificial content used in the thesis.
This software requires the resolution, frame capture rate and codec to be
specified. For this experiment, 352x288 (CIF) resolution was chosen, a frame
capture rate of 50 ms and Microsoft Video 1 codec, which is explained in
detail in [20]. This particular codec was selected for use from a list of codecs
available on the computer used for recording. This particular codec was used
as it was the only codec in the list that worked properly with CamStudio.

CIF-resolution was chosen as the video resolution, as encoding video using
the JM reference software is highly time-consuming. Coding 50 frames while
using inter prediction may result in coding durations of more than eight
hours, even while using a relatively small resolution such as CIF, and larger
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resolutions was therefore avoided when conducting experiments using the
JM reference software. The frame capture rate is of no relevance to this
experiment and was arbitrarily set.

The captured CGC was stored in an .avi file which had to be converted
to .yuv file in order to encode/decode it using the JM reference software.
The tool used to convert the .avi files to .yuv was YUVTools 3.0. After the
conversion, the .yuv files can be properly coded and decoded using the JM
reference software.

YUVTools were also used to play all .yuv files. To play the files, YU-
VTools requires the following parameters to be properly set:

• Sampling format - The sampling format determines the type of chroma
downsampling. A more detailed explanation can be found in [29] (e.g.
YUV 4:2:0).

• Component order - The order of the color components (e.g. Y, U,
V).

• Interlaced/progressive - Interlaced/progressive determines if the frame
is drawn sequentially line by line (progressive), or every odd line and
every even line alternately (interlaced).

• Packed/planar pixels - Packed/planar determines if the Y, U, and
V components are stored in a single array, i.e. packed together in a
macropixel (packed) or stored in three separate arrays (one for each
component) which are combined to form the image (planar). Detailed
information about packed/planar pixel storage can be found in [25].

• Image resolution - The resolution of the image/video (e.g CIF or
720x480).

3.2 Experimental video content

This section introduces the videos that were used as sample videos for all
the experiments conducted throughout this thesis. We use a total of three
movies, all with unique characteristics.

• foreman cif - The ’foreman’ sequence was downloaded from [2] and
converted from .264 (file extension often used for H.264 video in RAW
format) to .yuv by using the ffmpeg software[1]. Figure 3.1 shows a
frame from the ’foreman’ sequence. The ’foreman’ sequence is classified
as natural video and will be used to determine the experimental coder’s
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efficiency when coding natural video. The resolutions of the video is
CIF resolution.

Figure 3.1: Still image from ’foreman cif.avi’.

• screen content 1 - Artificial content recorded in CIF resolution. It
is captured using CamStudio 2.0. It contains mostly text on white
background in addition to the CamStudio window which is dragged
around the screen to incorporate motion. Figure 3.2 shows a frame
from the ’screen content 1 sequence’. The video can be found attached
in .avi format.

• screen content 2 - Compound content recorded in 720x480 resolu-
tion. It is captured using CamStudio 2.0. The content consists of differ-
ent variations of computer graphics. This includes a website depicting
mostly text (en.wikipedia.org), a website containing text, embedded
natural images and various other graphical objects (www.vg.no) and a
PDF containing text in addition to graphical objects surrounding the
text. Still images from the different types of content is also shown in
Figure 3.3. The video can be found attached in .avi format.

Performing experiments while using these videos as source signals will
give us an indication of how the coder performs on different source content
such as pure natural videos, pure artificial content and compound content.
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Figure 3.2: Still image from ’screen content 1.avi’.

Figure 3.3: Still images from ’screen content 2.avi’.

3.3 Coding with the JM reference software

The JM reference software has a large list of editable parameters, but most
of these are not relevant for the thesis. For a list of the parameters that were
used, see Appendix B.

We will use the quantization parameter (QP) to adjust the rate and con-
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sequently the visual quality in our experiments. This is because the attempts
of fixing the bit rate by setting the RateControlEnable parameter to 1 and
setting the Bitrate parameter to an arbitrary value did not yield the expected
results. By this, we mean that the coder would not limit itself to the given
amount of bits, for unknown reasons. It therefore seemed more sensible to
use the quantization parameter as a control value. This also makes our com-
parisons easier, as we then compare the results for each source signal with
a set QP. The most important parameters will thus be the different quan-
tization parameters (QPISlice, QPPSlice, QPBSlice, and InitialQP) which
decides the degree of quantization (larger QP means coarser quantization)
for the various slices (I, P, and B) and the initial frame to be coded. As
mentioned in Section 2.2.6, increasing the QP will result in a reduced bit
rate, but also a decrease in visual quality (PSNR).

Other parameters that must be correctly set are:

• SourceWidth - The width of the source video.

• SourceHeight - The height of the source video.

• YUVFormat - Determines the chroma downsampling format.

• ProfileIDC - Set to match the downsampling scheme selected with
YUVFormat. In this experiment it is set to 122, to match the 4:2:2
chroma sampling that must be used in order for the YUVTools player
to play the video correctly.

• IntraPeriod - The length of the period between I-frames (Group of
Pictures(GOP)). The rest of the GOP consists of P and B frames.

• NumberBFrames - The amount of P and B frames within the GOP.
The amount of P frames in a GOP will then be equal to IntraPeriod−
NumberBFrames.

• Interleaved - Determines the use of packed or planar pixels. When
coding artificial content, we must set this parameter to ’1’ for packed
pixels, as the resulting decoded video suffers from abnormal discolored
noise artifacts when using planar pixels. These artifacts are particularly
pronounced in the upper-left corner of Figure 3.4.

We may also omit inter-prediction to shorten the encoding time by setting
IntraPeriod to 1. This will increase the bit rate, but also drastically reduce
the duration of the coding process.

The version of the JM reference software used in this thesis (17.2) uses
a multi view coding profile (MVC), which must be disabled to avoid the



32 Tools And Methodology

Figure 3.4: Discolored artifacts resulting from using the wrong parame-
ters when coding with the JM reference software. Source signal is the
’screen content 1’ video.

discolored artifacts shown in Figure 3.4. This is done by inserting an empty
string (””) in the fields InputFile2 and ReconFile2. The parameters which
were not listed in this section are set to the default value (i.e. the value used
by default in the downloaded version of the JM reference software).

3.4 Results of coding with JM reference soft-

ware

This section will discuss the resulting noise and artifacts that occur when
encoding/decoding both artificial content and natural video. For this exper-
iment, we use a QP of 40 for all frames (I and P-frames) to ensure a low
bit rate and thus ensure the occurrence of noise artifacts. In addition, the
parameters are set such that we use an IntraPeriod of eight (i.e., the GOP-
size is eight) and no B-frames (NumberBFrames = 0), to reduce the coding
duration. 50 frames of the sequence were coded. The resulting bit rate is
275.56 kbps with an average PSNR of 29.361 dB for the Y frames. The video
used was ’screen content 1’ as the sample artificial content video.

Figure 3.5 shows a comparison between a still image from the original
screen content 1 sequence (left image) and a still image from the sequence
coded with the JM reference software (right image). We see from the right
image that the text has been noticeably blurred. In addition to this, there
are ringing artifacts surrounding the text. This is especially noticeable in
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Figure 3.5: A comparison between the original (left) and reconstructed
(right) screen content 1. A QP of 40 for all frames was used. An enlarged
version of the image may be found in Appendix C.

the frame containing the CamStudio parameters. The ringing artifacts and
the blurred text are both caused by the component transform performed by
the coder before quantization. When quantizing these transformed compo-
nents using a uniform quantizer, it is analogous to truncating the transformed
signal, i.e. reducing the accuracy of the approximation of the transform, re-
sulting in Gibbs phenomenon[30]. This can also be thought of as filtering the
signal with a low-pass filter. As mentioned, Gibbs phenomenon occurs when
truncating the series expansion of the signal, which is equivalent to reduc-
ing the value of K as shown in Figure 3.6, resulting in increased oscillations
around the points of discontinuity and consequently visible ringing artifacts.
The transform used in Figure 3.6 is the Fourier transform, and not the in-
teger transform used in H.264. However, the integer transform is similar to
the Fourier transform in that the original signal is represented by a sum of
basis functions. It consequently holds true for any transform that reducing
the resolution will result in reduced accuracy for the truncated signal.

As the human visual system is less sensitive to high-frequency compo-
nents, this works well for natural video, which tends to contain mostly low-
frequency components due to the isotropic property. However, as CGC nor-
mally contains a large amount of high frequency components, i.e. sharp
edges, the standard coding process might not perform optimally when com-
pressing artificial content. The coding algorithm should therefore be modified
to take this into account. A possible modification is proposed in Chapter 4.

Figure 3.7 shows an example of natural video being coded also using
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Figure 3.6: Illustration of convergence of the Fourier transform and the Gibbs
phenomenon at the point of discontinuity. Taken from [31].

Figure 3.7: A comparison of original .yuv file (left) and coded .yuv file (right)
using a QP of 40. ’foreman’ sequence.

a quantization parameter of 40. The rest of the also parameters remain
unchanged. The resulting bit rate is 119.36 kbps, which is less than half
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Video Mean PSNR Bit rate (kbps)

foreman 30.644 119.36

screen content 1 29.361 275.56

Table 3.1: A comparison of the results obtained when encoding natural video
and artificial content using the JM reference software.

of the bit rate when coding the artificial content video, and the average
PSNR for Y frames was 30.644, which is slightly better than the artificial
content, as shown in Table 3.1. We thus see that for these two videos, the
JM reference software does a better job coding natural video compared to
artificial content, with a slightly larger PSNR for less than half the bit rate.
However, as discussed in Section 2.4, PSNR does not necessarily work well
as a visual quality metric across different source content, like natural video
and screen content. Still, it does give an indication of what to expect when
using H.264 to code the various types of content.

The results of the conducted experiments thus agrees with the statements
made in the beginning of the thesis, i.e. the sub-optimality in terms of visual
quality when coding artificial content using the H.264 coding algorithm.
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Chapter 4

Introducing Residual Scalar
Quantization

In this chapter we will introduce a method that may improve upon the al-
ready existing techniques, by taking the characteristics of artificial content
into consideration when performing the compression.

4.1 Investigating RSQ

The first method investigated in the thesis is residual scalar quantization
(RSQ)[17]1. The method is divided into two main parts. The first part is
modifying the intra-prediction scheme to better reflect the characteristics of
artificial content. We assume that the shorter the prediction distance is,
the stronger the correlation between the pixels will be. Therefore, it uses
pixel by pixel prediction, i.e. it uses each pixel within a block to predict
the neighboring pixel in direction given by the intra prediction mode. This
scheme is depicted in the right part of Figure 4.1, which shows a slightly
modified version of mode ’4’ in the current H.264 intra-prediction scheme
(the standard H.264 intra-prediction modes can be seen in Figure 2.5). In
the proposed scheme, pixel ’b’ will be predicted using pixel ’a’ instead of the
reconstructed sample ’M’, as would have been used in the standard H.264
algorithm. The left part of Figure 4.1 shows the eight possible prediction di-
rections, in addition to mode ’2’ which is the DC mode, where the prediction

1The scalar in residual scalar quantization refers to the type of quantization used.
Scalar quantization is the quantization we have used in this thesis, where each coefficient
is quantized separately. The alternative method is called vector quantization, where coef-
ficients are grouped together and then quantized, allowing for increased compression rates
at the cost of an increase in complexity.
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values are averaged from adjacent samples. These directions are equivalent
to the prediction directions used in standard H.264.

Figure 4.1: Intra prediction in RSQ mode. Taken from [17]
.

As previously mentioned, the H.264 algorithm performs a component
transform on the residual signal after performing intra- and inter-prediction.
This is followed by a quantization of the transformed components. However,
as described in Section 2.3, performing a component transform of artificial
content may actually make the signal less compact, which is undesirable.
Therefore, assuming that the signal is sparser in spatial domain than in the
transform domain, we introduce the second and most important part of the
technique. In contrast to most of the earlier video coding algorithms, we
propose to omit the component transform, and instead quantize the residual
signal directly.

4.2 Implementing the RSQ coder

A version of the H.264 coder has been written in MATLAB to compare the
techniques currently used in H.264 to the proposed techniques. The coder
is significantly simplified compared to H.264, but the coding process still
uses the same key concepts such as prediction, transform, quantization, and
entropy coding. Entropy coding will be performed to give us the ability to
measure the amount of bits required to represent the coded information.

The following open source libraries were used in the two coders:

• YUV Toolbox - For converting between color spaces, and reading/writ-
ing .yuv files.
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• Huffman - To perform Huffman coding, which will function as our
simplified version of entropy coding.

A further description of these tools may be found in Appendix A.
We use the 2D DCT for the transform coding, as the integer coding used

in H.264 is an approximation to DCT and MATLAB has a built-in 2D DCT
function called dct2(). The transform is done in a block-wise manner using
4x4 blocks, and the resulting transformed blocks are then quantized using
uniform quantization. After quantization, the coefficients are Huffman coded
to calculate the total amount of bits used with variable length coding2. The
entropy coding is done on a frame-by-frame basis instead of on a macroblock
basis, as it is done only to indicate the amount of bits used to represent the
coded sequence. We will use the term traditional coder when referring to this
coder.

A second coder was also created with the purpose of testing the proposed
RSQ technique. This coder consequently omits the component transform and
directly quantizes the signal using a uniform quantizer, effectively reducing
the value range of the output signal. This coder will be referred to as the
RSQ coder. The uniform quantization for both coders is done as follows:

Q(I) =

⌊
I

QP

⌉
,

where QP denotes the given quantization parameter, I denotes the input
signal and Q(I) denotes the quantized output signal. The reconstruction
process is given by:

Ĩ = Q(I)×QP,

where Ĩ denotes the reconstructed signal.
Both coders take in an .avi file which is first read to RGB and then con-

verted to YUV. This is a lossless operation shown in Equation 2.1. The
entropy coding is done by passing a frame or block to the norm2huff() func-
tion from the Huffman toolbox [34]. The input to the norm2huff() function
must be an unsigned 8-bit integer vector, which puts some constrains on the
input signal. Consequently, we add the absolute value of the minimum pixel
value in the block or frame to all coefficients to ensure that the minimum
value of the input signal is zero. The maximum possible value will thus be
Max = 255

QP
· 2, which will yield maximum values ≤ 255 for all QP ≥ 2,

ensuring that the input values are within the valid range. The norm2huff()

2Variable length coding refers to the use of variable bit code lengths when assigning
codewords to sample values. The alternative is to use fixed-length coding, where all sample
values are assigned equal length codewords.
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function then calculates the Huffman codewords, which may be used to gen-
erate a list of prefix-free bit codes. The most probable values in the input
block are then mapped to the shortest bit codes, as explained in [8]. An info
structure is returned for each call to norm2huff() which holds information
about the following:

- Pad - Holds information about how many bits that have been added
at the end of each bit sequence

- Huffcodes - This contains the Huffman codewords and is the param-
eter that must be passed to the huffcodes2bin() function to get the list
of Huffman bit codes

- Ratio - The compression ratio

- Length - Original data length

- Maxcodelen - Maximum codeword length

The code snippet below shows how the entropy coding process is done
in our simplified coders. The codedYFrames matrix contain the quantized
coefficients of the coded video sequence.

1 % Entropy coding
2 f o r i = 1 : nFrames
3 % The entropy coder on ly works f o r uint8 , so we add the
4 % lowes t va lue to ensure t ha t a l l v a l u e s are >= 0.
5 tempValue ( i ) = abs ( min ( min ( codedYFrames ( : , : , i ) ) ) ) ;
6 tempBlock = codedYFrames ( : , : , i ) + tempValue ( i ) ;
7 % Entropy code frames
8 [ tempCell , i n f o ] = norm2huff ( u int8 ( tempBlock ( : ) ) ) ;
9 [ k , l , hu f f ] = f i n d ( i n f o . hu f f code s ) ;

10 % Create b i t c o d e s from hu f f c ode s
11 l i s tO fB i tCodes = hu f f code s2b in ( i n f o . hu f f code s ) ;
12 % Sort f requency o f codes to match huffman b i t codes
13 % (most f r e quen t = s h o r t e s t b i t codes )
14 sortedCodes = ze ro s (1 , l ength ( hu f f ) ) ;
15 f o r j = 1 : l ength ( hu f f )
16 sortedCodes ( j ) = sum(sum( tempBlock==hu f f ( j ) ) ) ;
17 end
18 sortedCodes = s o r t ( sortedCodes , ’ descend ’ ) ;
19 bitsPerFrame = 0 ;
20 tmpBits = 0 ;
21 % Find t o t a l b i t s used by mu l t i p l y i n g the l en g t h o f
22 % the b i t codes wi th the f requency o f the codeword ,
23 % then add the va lue o f the c o e f f i c i e n t in the t r a n s l a t i o n
24 % t a b l e .
25 f o r j = 1 : l ength ( hu f f )
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26 tmpBits = length ( l i s tOfB i tCodes { j })∗ sortedCodes ( j ) ;
27 bitsPerFrame = bitsPerFrame+tmpBits+c e i l ( l og2 ( hu f f ( j ) ) ) ;
28 end
29 t o t a l B i t s = t o t a l B i t s + bitsPerFrame ;
30 in foVec to r ( : , i ) = s t r u c t 2 c e l l ( i n f o ) ;
31 huffmanCoded ( i ) = { tempCell } ;
32 end

We see that the number of bits used by each coder are calculated by
sorting the amount of values in each input-block by descending frequency of
occurrence in the sortedCodes vector (i.e. the most probable value is set to be
the first element in the list, the second most probable is the second element
etc.). The frequency of occurrence for each pixel value is then multiplied
by its corresponding codeword length (i.e. the length of the corresponding
listOfBitcodes component), which we get from passing the huffcodes field
from the info structure to the huffcodes2bin() function. Lastly, we add a
bit representation of the sample value (dlog2 xe, where x denotes the pixel-
value). This is not sufficient for a real working coder, as we have not even
considered the indices of the values, thus making reconstruction impossible.
Unfortunately the limitations of the Huffman coder which was mentioned
earlier makes it difficult to implement the coding of indices efficiently, and
we will hence continue using this simplified approach for this experiment. It
will most likely not affect the end result largely as we use the same approach
for both coders in the comparison. The number of bits for each frame is then
added together to find the total number of bits used for the entire video.

The inverse entropy coding is shown in the code snippet below.

1 % The dim va r i a b l e i s chosen such t ha t
2 % s i z e ( in foVec tor ( : , i ) , dim) == l eng t h ( f i e l d s )
3 dim = 1 ;
4 f i e l d s = f i e ldnames ( i n f o ) ;
5 % Inver se entropy coding
6 f o r i = 1 : nFrames
7 tempVector = ce l l 2mat ( huffmanCoded ( i ) ) ;
8 i n f o = c e l l 2 s t r u c t ( in foVec to r ( : , i ) , f i e l d s , dim ) ;
9 tempBlock ( : ) = huff2norm ( tempVector , i n f o ) ;

10 codedYFrames ( : , : , i ) = tempBlock − tempValue ( i ) ;
11 end

We see that the Huffman codewords returned from the norm2huff() func-
tion are passed to the huff2norm() function along with its corresponding info
structure info. If the input is kept within the accepted boundaries (unsigned
8 bit integers), the reconstruction of the Huffman coded input is done without
loss of information.

Both coders then perform inverse quantization and inverse differential
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Video
Traditional coder RSQ coder

Mean PSNR Bits used Mean PSNR Bits used

foreman cif 33.4392 9936359 29.0175 19145420

screen content 1 33.329 14402185 30.2489 10761434

screen content 2 32.1377 96858066 29.3447 76279621

Table 4.1: Comparison between traditional coder and RSQ coder. QP 32,
no prediction.

coding on the frames resulting in a reconstructed compressed series of images.
These are then converted to a yuv-video by using the yuv export() function
from the YUV toolbox [39]. The PSNR of the reconstructed video is then
calculated to give an indication of the visual quality of the reconstructed
images as well as for comparison purposes.

The full MATLAB code for the coders used in this chapter can be found
attached under the names ’trad coder no pred.m’ and ’rsq coder no pred.m’.

4.3 Results from coding with RSQ

The screen content was coded using both the traditional coder and the RSQ
coder, with a uniform quantizer with a QP of 32 for both coders. The tests
were conducted using all three example videos presented in Section 3.2. We
only focus on the Y-frames (i.e. we ignore the U and V frames) in all exper-
iments for the sake of simplicity. To isolate the issue of using a component
transform versus not using a component transform before quantization, we
avoid using any form of intra- or inter-prediction for this particular experi-
ment.

Table 4.1 contains the coding results for each sample sequence. The
results of the coding is measured in terms of total bits used and objective
visual quality (PSNR). It may be difficult to see how one coder compares
against the other just by looking at the PSNR and total amount of bits
used. To make the comparison of the results more clear, we will calculate
the Lagrange number given by Equation 2.5 as a metric for comparison. We
will use λ = 0.85 throughout the rest of this thesis as suggested in [18]. We
may now compare J for each coder, and the coder that achieves the minimum
J is the most efficient coder for this particular scenario. We calculate the
distortion inversely from the PSNR, which translates to Equation 4.1, where
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Video Traditional coder RSQ coder

foreman cif 11430000 24530000

screen content 1 15300000 15370000

screen content 2 86350000 72500000

Table 4.2: Comparison; Traditional coder and RSQ coder, no prediction.
The values from Table 4.1 have been converted to Lagrange values for an
easier comparison.

M and N denotes the height and width of the image.

D =
2552 ×M ×N

10
PSNR

10

(4.1)

Table 4.2 shows the resulting Lagrange numbers for each coder. We see
that the traditional coder slightly outperforms the RSQ coder when coding
the video ’screen content 1’.

Figure 4.2: A comparison of the two coders, traditional (left) and RSQ
(right). QP 32, no prediction was used. Source signal is screen content 1.
An enlarged version of the image may be found in Appendix C.

However, Figure 4.2 shows that the right image, which is taken from the
RSQ coded sequence, is significantly less noisy than the left image which is
taken from the traditionally coded sequence. The left image contains ringing
artifacts around areas containing text and graphics, whereas the RSQ coder
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contains few noticeable noise-artifacts. The only noticeable difference is a
shift in grayscale for some areas, i.e. some areas turn a darker shade of
gray, whereas some areas turn a lighter shade of gray which is caused by the
reduced size of the range of possible output pixel values.

Because the traditional coder achieves such a significantly larger PSNR as
shown in Table 4.1, but is still affected so severely with noise and artifacts, we
may conclude that the PSNR not necessarily correlates well with subjective
visual quality, even when coding the same source content. The RSQ coder
also uses fewer total bits, though this might not be a fair comparison given
the simplified environment of the entropy coders which are introduced to
measure the rate.

Looking at the results when coding ’screen content 2’ in Table 4.2, we see
that the resulting Lagrange numbers are smaller for the RSQ coder compared
to the traditional coder, meaning that the RSQ coder does a better job at
coding the content of this video. As we saw earlier, the PSNR reported is
not necessarily consistent with the actual achieved visual quality for the re-
constructed video sequence. Comparing the two videos ’traditional scc2.yuv’
and ’rsq scc2.yuv’ which are attached together with the thesis, we see that
the traditionally coded video suffer from the noise artifacts we have previ-
ously identified, while the RSQ coded video contains few artifacts but still
achieves a significantly lower PSNR, as can be seen in Table 4.1.

Based on the results we have seen in this section, we might conclude that
the RSQ coder indeed works well when coding our example screen content
videos. However, the simplified nature of the coders we have implemented
make it difficult to verify the accurateness of the comparison. To ensure a
fully satisfactory comparison, the optimal process would be to implement
RSQ in an already existing H.264 implementation such as the JM reference
software. This would give us a more complete idea of how the technique inter-
acts with the other components of H.264, such as inter- and inter-prediction,
quantization and entropy coding. Unfortunately, the source code for the JM
reference software proved to be too complex to effectively implement the RSQ
coder within the alloted time slot. Therefore, an alternative and simplified
method was chosen. Still, the accumulated results from the simplified coders
may still give an indication of how the proposed techniques will perform when
implemented in a full-scale H.264 implementation.

4.4 Problems with the RSQ coder

The RSQ coder is tailored for artificial content. We may therefore have
reason to suspect that it will not work as well when used together with
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natural video. Figure 4.3 shows the ’foreman’ sequence coded by using the
traditional coder (left) and the RSQ coder (right). The PSNR and total bits
used may be found in Table 4.1. Indeed, we see that the traditional coder
significantly outperforms the RSQ coder, both in terms of bits used, PSNR
and actual visual quality. This is as expected and agrees with the theory we
have discussed earlier.

Figure 4.3: Comparison of the two custom coders using a natural video
source. The left image is coded using the traditional coder. The right image
is coded using the RSQ coder.

As the RSQ coder clearly does a sub-optimal job when coding natural
content, it might present a problem if the CGC that is to be coded con-
tains natural images, i.e. compound content, as depicted in Figure 4.4. The
computer graphics are hardly subject to noise and artifacts, but the embed-
ded real image is clearly distorted. A possible solution is to implement an
adaptive coder, which selects the best possible coding option based on the
information or source that is to be coded. We will look further into this in
Chapter 5.

The reason the RSQ technique does not work well with natural video is
the reduced color resolution which was mentioned in the previous section.
As each pixel is represented by eight bits of luma information (in addition to
16 bits of chroma information, which we do not consider in this thesis), the
pixel values lie in the range [0, 255]. When we use uniform quantization and
simply divide by a given quantization parameter, as is done in our custom
coders, it is equivalent to reducing the size of the dynamic range of the output
values from [0,28] to

[
0,
⌊

28

QP

⌉]
. The result is that the RSQ coder will not

work well for frames with a large variety of colors and color nuances, which is
typical for natural video, but also for some artificial content. It will however
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Figure 4.4: Computer graphics with embedded natural image coded using
the RSQ coder from the screen content 2 video.

excel when coding areas with few colors and many graphical objects, such as
large areas with text. Our simplified quantization scheme is also sub-optimal
in the sense that using a potentially non-dyadic3 maximum value for the
dynamic range, as we need

⌈
log2

28

QP

⌉
bits to represent the value anyway. If

the QP value is non-dyadic, the result is a waste of information as we use x
bits to represent values that do not fill the range from 0 to 2x completely. A
method to improve upon this is investigated in Chapter 6.

3A dyadic number is defined as 2 to the power of a natural number b (i.e. 2b).



Chapter 5

Introducing Adaptivity

In this chapter we will introduce adaptivity to enhance coding results by
allowing the coders to select the best performing coding technique for each
block in a frame.

5.1 Implementing the adaptive coder

There may be several scenarios when the RSQ method will not be the optimal
choice. Such scenarios may include natural images or video embedded in
artificial content, which we have defined as compound content. But it may
also be the case that for some instances of artificial content, the traditional
coder will outperform the RSQ coder. We may thus use RDO, which was
introduced in Section 2.5, to ensure that the optimal coder is used for each
coded block. To use RDO, we need to calculate the distortion and bit rate
for each block. These values are then weighted and compared as previously
discussed.

The distortion is already available to us, as we just calculate the distortion
between the original block and the reconstructed block as described in Equa-
tion 2.6. However, to calculate the rate, the coder has to entropy code each
block separately, so the coder must be modified to entropy code on a block-
wise basis instead of a frame-wise basis. To be able to do this correctly, each
frame is split up into a three dimensional matrix of size [b, b, (M × N)/b2],
where b denotes the block size (four in our experiment) and M and N denotes
the height and width of the frame to be coded. Each block is then processed
independently by each of the two coders. The reconstructed frames are cre-
ated by optimally choosing the best coded block from each coder using RDO
optimization.

As previously mentioned, the entropy coding method is severely con-
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strained and only accepts inputs of 8-bit unsigned integer format. Hence,
it does not work as intended when the input blocks contain values that are
located outside of this interval. Moreover, blocks that are entirely uniform
in value will result in the norm2huff() function breaking down and returning
a value of zero. Therefore, if the content of the block is uniform, the coder
must store the actual value and transmit it as side-information so that it may
be added to the block of zero-valued coefficients that results from passing the
zero returned from the norm2huff() to the huff2norm() function.

Another issue we encounter is when we code screen content such as in
the screen content 2 video, the temporal redundancy is so large that when
we use differential encoding on two consecutive frames, the latter residual
frame will often consist of only zero-valued coefficients. As the entropy coder
cannot process a frame consisting of all zeros, we have in these cases assigned
each block one bit, for the sake of being able to properly compare the two
coders. In this coder we have also introduced prediction. As the purpose of
this experiment is to maximize the coding output and not directly comparing
the two coders, we have implemented different prediction schemes for both
coders. The reason for choosing different prediction schemes and only using
one of the two prediction schemes for each coder is that using both prediction
schemes on the same coder causes our non-robust coder to break down. We
therefore choose to use the type of prediction that maximizes the PSNR for
each coder. This was found to be differential frame-wise inter-prediction for
the traditional coder. In this differential coding scheme, we subtract the
previous I-frame (anchor frame) from each following P-frame to reduce the
size of coefficients by exploiting the large temporal redundancy occurring in
artificial content. It follows an open-loop structure, i.e. the P-frames are only
predicted from the previous I-frame. However, this is sub-optimal in terms of
prediction because of the increasing distance between the predicted frame and
the anchor (I) frame. The optimal solution would be to predict each P-frame
using the preceding P-frame, a closed-loop structure. However, because the
closed-loop structure results in increasing additive noise for each consecutive
P-frame, only resetting at every I-frame, we were forced to sacrifice the gain
in bit rate and use a open-loop structure instead for our simplified coder.

For the RSQ coder, we use a simplified version of the neighboring pixel
intra-prediction scheme discussed in Section 4.1. Our version of the intra-
prediction scheme uses column-wise differential coding, i.e. the top-left pixel
of each 4x4 block is used to differentiate all other pixels in the block in a
column-wise matter. The residual pixel values are then uniformly quantized
using a predetermined quantization parameter (QP). We will use an I-frame
frequency of six, i.e. the GOP-size is six. λ will be set to 0.85 according to
[18].
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The adaptive coder used in this section may be found attached under the
name ’adpt coder intra pred rsq.m’.

5.2 Results of adaptive coding

The adaptive coder codes each frame block-by-block using both the tradi-
tional coder and the RSQ coder, as shown in Figure 5.1.

Figure 5.1: Block diagram of the RSQ coder. Taken from [27]

It then uses rate-distortion optimization to find the most effectively coded
block, in terms of bit rate (in this coder the bit rate refers to the amount of
bits per block) and distortion. The result is a coder that outperforms both
of the standalone coders in terms of PSNR as seen in Table 5.1. The bit rate
will be slightly higher than the minimum bit rate for each frame, but the
gain in PSNR outweighs the slight increase in bit rate.

The experiment was conducted using all three videos listed in Section 3.2.
A uniform quantizer with a quantization parameter of 25 was used for all the
tests.

Figure 5.2, Figure 5.3, and Figure 5.4 shows three coded images from
the sequence ’screen content 1’ coded by the adaptive coder. Figure 5.2
is coded with the traditional coder. We see that it contains artifacts in the
shape of blurred text and ringing artifacts around text and graphical objects.
Figure 5.3 is coded by the RSQ coder. This image contains some discolored
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Figure 5.2: ’screen content 1’ video coded using the traditional coder. A QP
of 25 was used.

Figure 5.3: ’screen content 1’ video coded using the RSQ coder. A QP of 25
was used.

blocks from the intra-prediction and some of the graphical objects on top
of the screen suffers from a reduced grayscale resolution. Figure 5.4 is the
adaptively coded still image. This frame is composed of the optimally coded
blocks from the traditional coder and the RSQ coder. This image contains
less noise and artifacts than the two images on the left, which is as expected
and it shows that our adaptive coder works as intended.

Similarly to what we did in Section 4.3, we use the information in Table
5.1 to calculate the Lagrange value for each coder and each video for an easier
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Figure 5.4: Still image ’screen content 1’ video coded using the adaptive
coder. The resulting video is composed of the best coded blocks from each
coder. A QP of 25 was used.

Video
Traditional RSQ Adaptive

Mean PSNR Total bits Mean PSNR Total bits Mean PSNR Total bits

foreman cif 32.4383 12374972 29.0010 14734351 32.6751 12278923

scc1 36.2524 4070450 34.8708 2548396 37.4173 2294093

scc2 35.3048 12815549 32.8768 21071180 35.7584 11312582

Table 5.1: Results of encoding using the adaptive coder and a QP of 25
for all three test video sequences. scc1 and scc2 are abbreviations for
’screen content 1’ and ’screen content 2’ respectively.

comparison of the total performance of the coders in terms of visual quality
and bit rate. The results can be seen in Table 5.2. The best performing
coder is accordingly the coder that achieves the lowest Lagrange value.

We see from Table 5.2 that the traditional coder outperforms the RSQ
coder in terms of achieving the lowest Lagrange value (J) when coding natu-
ral video (’foreman’) and when coding compound content (’screen content 2’).
As the traditional coder was originally intended to code natural video, it
comes as no surprise that the RSQ coder is outperformed when coding the
’foreman’ sequence. However, the results from coding the ’screen content 2’
are not as easily explained, as the traditional coder outperforms the RSQ
coder. There may be several reasons for this. First, large areas of the source
video consists of natural images, which we have shown are not optimal for
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Video Traditional RSQ Adaptive

foreman cif 14279000 20821000 13998000

screen content 1 5022200 4313600 3144800

screen content 2 17518000 29498000 15583000

Table 5.2: Lagrange optimization values for each coder derived from the
results in Table 5.1. λ = 0.85

the RSQ coder. Secondly, this video contains little motion between frames
except for the abrupt transitions when switching from on web page to an-
other, as well as the opening of the PDF file towards the end of the movie.
Because of the large temporal redundancy between neighboring frames, the
traditional coder that uses differential coding between frames is well suited
and will use a small amount of bits to represent the image residuals (which
will consist of a lot of zero coefficients).

We also see from Table 5.2 that the RSQ coder outperforms the tradi-
tional coder in terms of achieving the lowest Lagrange value when coding
the video ’screen content 1’. As ’screen content 1’ consists solely of artificial
content, these results support the theory discussed in previous sections, and
it indicates that a component transforms should not be used when coding
artificial content.

Even if the RSQ coder does not perform optimally under all given cir-
cumstances (most noticeably when coding natural video), we see that the
adaptive coder outperforms both of the standalone coders, both in terms of
PSNR and total bits used, independent of video content. As the purpose of
the experiment was to see if the adaptive coder would really outperform the
standalone coder, we conclude that the implementation was successful.

This implies that if the duration of the encoding process is not an issue,
the adaptive coder should always be chosen. If the encoding is to be done in
real-time however, the issue becomes more complex, as the encoding process
may take too long. However, this is outside the scope of the thesis.

5.3 Problems with the adaptive coder

This section will briefly touch upon an important weakness of the adaptive
coder. As seen in Section 4.3, the reconstructed frame from the RSQ coder
reports a significantly lower PSNR than when coding the same artificial con-
tent using the traditional coder even when the RSQ coder contains less noise
artifacts. This clearly presents a problem when the RDO method is based
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on the same metric (the square error) as the PSNR, when the optimal block
may actually be the block achieving the largest square error. We will touch
upon this topic again in Chapter 7.





Chapter 6

A Closer Look At Quantization

In this chapter, we will look at the uniform quantization used in the coders
we have used throughout this thesis (excluding the JM reference software)
and we attempt to improve upon the quantization by considering the char-
acteristics of the source signal to be coded.

6.1 Improving the quantizer

In the experiments conducted in the previous two chapters, we have used a
simplified uniform quantizer which divides all values in a block by a prede-
termined quantization value as explained in Section 4.2.

To improve upon the already existing quantizer, we begin by implement-
ing a slightly more advanced, but still uniform quantizer. This quantizer
divides the dynamic range of the signal into N representation levels, where
N = 2B and B represents the amount of bits used in the quantizer. This
forces a dyadic amount of representation levels and thus a more effective
bit-wise representation compared to our previous quantization method, as
discussed in Section 4.4. The distance between each representation level

(quantization step size), denoted ∆, is defined as ∆ = Max−Min
N

. Min rep-
resents the minimum value of the block or frame and Max represents the
maximum value (for 24 bit images, i.e. eight bit per color component, Min
and Max are usually 0 and 255 respectively). The uniform quantizer is given
by Equation 6.1.

Q(y) = sign(y) ·∆ ·
(⌊
|y|
∆

⌋
+

1

2

)
(6.1)

Here, y represents the input coefficient and Q(y) represents the quantized
coefficient. As mentioned, the uniform quantizer is simplified in that it does
not consider the characteristics of the source signal. In our case the source
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signal will consist of mostly artificial content, which possesses some unique
characteristics as discussed in Section 2.3. One important characteristic is
that artificial content often contains areas and objects that are either white
(pixel value 255 or close to it) or black (pixel value zero or close to it). An
example is black text on white background, which is a common scenario when
referring to artificial content. Considering this, we might want to modify our
quantizer to reflect this observation, as shown in the equation:

Q(y) =


Min, (y < Min + 3

2
·∆)

Max, (y > Max− 3
2
·∆)

sign(y) ·∆ ·
(⌊
|y|
∆

⌋
+ 1

2

)
, (Min + 3

2
·∆ ≤ y ≤ Max− 3

2
·∆)

Assuming Min and Max will normally be 0 and 255 (or close), the values
that would usually be mapped to Min+ ∆

2
or Max−∆

2
according to Equation

6.1, will now be mapped to Min and Max instead, which are more probable
values in artificial content.

Figure 6.1: Uniform quantizer (top). Quantizer with extended end-zones
(bottom). The top image is taken from [5].

Figure 6.1 shows how the two different quantizers are divided with respect
to decision values (di) and representation values (rj). Both quantizers are
three bit, and we see that the only difference is the displacement of r0 and r7,
instead of being regularly spaced with a distance of ∆ from r1 and r6, they
are now placed at the Min and Max values. All values that are smaller than
d1 and larger than d7 will hence be mapped to the output values r0 (Min)
and r7 (Max) respectively. All values in between d1 and d7 will be quantized
uniformly.

This extended end-zone quantizer will not be implemented for the tradi-
tional coder. The reason for this is that mapping frequency domain values
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(which is the values that are quantized in the traditional coder) to their
maximum and minimum values do not grant any particular benefits, as the
values in the frequency domain does not directly translate to their respective
values in the spatial domain.

6.1.1 Comparison between regular and proposed quan-
tization

Figure 6.2 shows a comparison between the uniform quantizer and the quan-
tizer with extended end-zones using the video ’screen content 1’ as source
signal. We have compared the results when inputting one through seven bits
in the quantizer and we will compare the resulting PSNR for each coder. As
the amount of representation levels are the same for both coders, we will
assume equal bit rates. All parameters are equal for both coders except the
modified boundary representation levels in the extended end-zone quantizer.
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Figure 6.2: A comparison between the uniform quantizer (red line) and the
quantizer with extended end-zones (blue line). The source signal used is the
’screen content 1’ sequence.

Figure 6.3 shows a comparison between the two quantizers using the video
’screen content 2’ as source signal.
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Figure 6.3: A comparison between the uniform quantizer (red line) and the
quantizer with extended end-zones (blue line). The source signal used is the
’screen content 2’ sequence.

As we see, the uniform quantizer with end-zones at Min and Max greatly
outperforms the regular uniform quantizer for all amount of bits used in
the quantization process, with the largest difference being 6.5273 dB for
the seven bit quantizer when coding ’screen content 2’ and 6.3949 dB for
’screen content 1’, which is a significant difference. The uniform quantizer
with extended end-zones should thus be chosen over regular uniform quan-
tization as long as the source content is artificial or compound with mostly
artificial content.

6.2 Initial RSQ or end-zone RSQ

In this section we will attempt to compare the RSQ coder that was introduced
in Chapter 4 (which we will henceforth denote the initial RSQ coder) and
the RSQ coder using the quantizer with extended end-zones (which we will
henceforth denote as the end-zone RSQ coder).

Unfortunately, when implementing the quantizer with extended end-zones
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in the RSQ coder, the entropy coder which is used to calculate amount
of bits used does not work properly, resulting in the coder reporting an
unrealistically low amount of bits used. The reason for the low amount of
bits reported is that when passing the coded frame to the entropy coder, it
will seemingly randomly add ±1 to each coefficient of the vector huff, which
contains all original values in the block or frame to be coded. Hence, when
we want to learn how many appearances there are of each value from huff
in the input block to the norm2huff() function (i.e. tempBlock), as shown in
the code snippet below, it will report zero for each value, in turn leading to
the break down of our bit rate measurement.

1 f o r j = 1 : l ength ( hu f f )
2 sortedCodes ( j ) = sum(sum( tempBlock==hu f f ( j ) ) ) ;
3 end

The reason for the seemingly randomly addition of ±1 is unknown. We
will continue with the comparisons, but the bit rate will not be considered
for those experiments where the coder fails to correctly calculate the amount
of bits used. This makes a comparison between the initial RSQ coder and
the end-zone RSQ coder more difficult as we may only consider the PSNR.
However, we will assume that the dynamic range of the output values are
approximately the same, resulting in the actual bit rates being comparatively
equal. So for the following experiments, we will compare the PSNR of the
two coders and disregard the bit rate.

6.2.1 Results of comparison, without prediction

We will first start by comparing the results from the two RSQ coders when
not using any prediction, i.e. the only processing done on each frame is
quantization and entropy coding. For this experiment, all pixels will have a
value range of [0, 255] (eight bits). To ensure that the output value range
is of the same size for the two RSQ coders, we use three bits for the end-
zone RSQ coder, which equals 23 or eight representation levels. To ensure
the same amount of representation levels in the initial RSQ coder, we will
use a QP of 32 and use the floor function to limit the output value range
to
[
0,
⌊

255
32

⌋]
which equals the range [0, 7], i.e. eight representation levels.

Table 6.1 shows the result of the comparison for all three example videos.
We see that the end-zone RSQ coder outperforms the initial RSQ coder for
all types of videos. The end-zone RSQ coder performs significantly better
when coding the videos containing artificial and compound content, which
support our previous assumptions.
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Video Initial RSQ End-zone RSQ

foreman cif 22.4293 25.7560

screen content 1 24.7093 26.9117

screen content 2 22.1369 28.6530

Table 6.1: Comparison of PSNR between end-zone RSQ coder and initial
RSQ coder, no prediction.

6.2.2 Results of comparison, with prediction

We will now re-introduce prediction to see how the two coders handle a
doubling of the possible range of input values (from potentially [0, 255] to
[−255, 255]). Both the pixel-wise intra-prediction discussed in Section 4.1 and
the per-frame differential coding used in the traditional coder was attempted,
and the best results was achieved when using differential coding. We will
therefore continue using differential coding for the extended end-zone RSQ
coder for the following experiments.

Introducing prediction causes problems for the entropy coding when using
the end-zone RSQ coder. As the representation levels are divided evenly
among the the range [−255, 255], we cannot simply add the minimum value
as we have done in our previous coders, as this will cause the maximum
input value to be 2 ·Max, which as mentioned is too large for the entropy
coder we have used (8-bit maximum value). We thus modify the code to
split the signal into a positive part and a negative part by extracting all
positive indices and all negative indices from each frame with the built-in
function find(). We then create two temporary frames that contain each of
the types of values. The operation is shown in the code snippet below, where
the codedYFrames matrix contains the quantized frames:

1 p l u s I n d i c e s = f i n d ( codedYFrames ( : , : , i )>=0);
2 minusIndices = f i n d ( codedYFrames ( : , : , i )<0);
3 tempFrame = codedYFrames ( : , : , i ) ;
4 p lusValues = tempFrame ( p l u s I n d i c e s ) ;
5 minusValues = tempFrame ( minusIndices ) ;

The negative values are coded after adding the absolute value of the minimum
value in the frame, to ensure that the range is within [0, 255]. The positive
values are coded directly.

Figure 6.4, Figure 6.6 and Figure 6.5 show the comparison between the
two RSQ coders for all three of our sample videos. The initial RSQ coder uses
a QP of 32, with the value range of the predicted image being [−255, 255].
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Figure 6.4: A comparison of the initial RSQ coder and the end-zone RSQ
coder when coding the ’screen content 1’ video.

This results in a quantized value range of [−8, 8], which is equal to 17 rep-
resentation values. We will thus pass four bits to the end-zone RSQ coder,
which equals 24, i.e. 16 representation values, which is close enough for com-
parison. The I-frame frequency, i.e. the amount of frames between each
I-frame, is set to eight.

We see that the initial RSQ-coder is more stable and performs on average
well for each frame. The end-zone RSQ coder however, excels at some frames
and does a poor job on others, as we see from the spikes in the PSNR. This
is especially pronounced in Figure 6.4, where the PSNR is larger than 36 dB
for all I-frames, but drops down to ≈ 24.5dB for the intermediate (P) frames.
We see that this happens for the frames which contain motion, i.e. shifting
of the window. The end-zone quantizer does not perform well on predicted
frames, but it does an excellent job on non-differentiated (I) frames. The
reason for this kind of behavior is that the property of extended end-zones
does not work as intended when the values are predicted, i.e. differentiated
from an anchor value. If we look at the mean PSNR values in Table 6.2 we
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see that the initial RSQ coder actually performs slightly better on average
than the extended end-zone quantizer in terms of average PSNR.
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Figure 6.5: A comparison of the initial RSQ coder and the end-zone RSQ
coder when coding the ’foreman’ video.

Figure 6.5 shows that the end-zone RSQ coder does a better job for all
frames when coding natural video, even when coding P frames. The peaks in
PSNR still occur at each I-frame, because the dynamic range of P frames are
potentially [−255, 255], but for I frames it is only [0, 255], which results in
twice the amount of representation levels covering the dynamic range of the
values for the equivalent amount of bits, making the comparison somewhat
unfair in terms of the initial RSQ coder.

Figure 6.6 shows that the extended end-zone RSQ coder outperforms
the initial RSQ coder for most frames. As mentioned in Section 3.2, the
content of the ’screen content 2’ video is largely still images with transitions
between the web-pages at frames 16 and 38, and the maximizing of the
window portraying a PDF file at frame 71. We see that the there is a large
drop in PSNR for the end-zone RSQ coder during the web-page transition at
frame 38. The transition at frame 16 is largely unaffected, the reason being
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Figure 6.6: A comparison of the initial RSQ coder and the end-zone RSQ
coder when coding the ’screen content 2’ video.

that the I-frame frequency is set to eight, and any differential coding during
the transition is thus avoided.

Table 6.2 shows the mean PSNR values of each coder. As mentioned we
see that the initial RSQ coder slightly outperforms the end-zone RSQ coder
when coding the ’screen content 1 video’. For natural video (’foreman’) and
compound video (’screen content 2’) the end-zone RSQ coder outperforms
the initial RSQ coder significantly.

The end-zone RSQ coders used for comparisons can be found attached
under the names ’rsq coder ee no pred.m’ (RSQ coder without prediction)
and ’rsq dpcm ee.m’ (RSQ coder with prediction). The quantizer used can be
found under the name ’quantize rsq.m’. We select between the uniform and
extended end-zone quantizer by commenting out the code for the technique
we do not wish to use as shown in the code snippet below.
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Video Initial RSQ End-zone RSQ

foreman cif 27.2386 30.7364

screen content 1 29.3961 29.0392

screen content 2 28.0510 34.4036

Table 6.2: Comparison of PSNR between end-zone RSQ coder and initial
RSQ coder, with prediction.

1 %Find r ep r e s en t a t i on l e v e l s
2 y=ze ro s (1 , N leve l ) ;
3
4 %% Leave t h i s c e l l uncommented f o r r e gu l a r uniform quan t i z a t i on
5 % for i = 1: N l e v e l
6 % y( i )=Min + de l t a ∗(2∗ i −1)/2;
7 % end
8
9 %% Leave t h i s c e l l uncommented f o r extended end−zone quan t i z e r

10
11 % Set r e p r e s en t a t i on s l e v e l s based on d e l t a
12 f o r i = 2 : Nlevel−1
13 y ( i )=Min + d e l t a ∗(2∗ i −1)/2;
14 end
15 % The f i r s t and l a s t r e p r e s en t a t i on l e v e l s are s e t to
16 % the s i g n a l s minimum and maximum va lue r e s p e c t i v e l y .
17 y (1 ) = Min ;
18 y ( Nleve l ) = Max;

6.3 Problems with end-zone RSQ

As can be seen from the experiments done in the previous section, the end-
zone RSQ coder performs sub-optimal when coding differentially predicted
frames, i.e. frames where the range of values is increased to include negative
values of up to the same magnitude as positive values.

Even if the end-zone quantizer does not perform optimally for differen-
tially coded frames, we see from Figure 6.1 that there is a potential gain to be
obtained from tailoring the quantization representation values to better suit
the characteristics of the source signal. These characteristics might be known
or assumed beforehand, such as we did in Section 6.1 when we assumed that
the pixel values in each frame was biased towards 0 and 255. We might also
attempt to find these characteristics dynamically for each block or frame.
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This will increase the complexity of the coder, but it will also increase the
versatility, by not requiring any a priori knowledge of the source that is to
be coded. We will touch upon this topic again in Chapter 7.

6.4 Implementing end-zone RSQ in the adap-

tive coder

In this section we will attempt to implement the extended end-zone RSQ
coder into the adaptive coder to see if this improves the coding results
achieved. We will use a QP of 32 for the traditional coder, and equiva-
lently four bits for the extended end-zone quantizer in the RSQ coder to get
the same amount of representation values to cover the range of possible sam-
ple values (i.e. [−255, 255]). We used the video ’screen content 2’ as source
video, an I frame frequency of six (iFrameFreq = 6) and a block size of
four.
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Figure 6.7: Comparison of the two adaptive coders.

Table 6.3 shows that the adaptive quantizer using the end-zone RSQ coder
outperforms the initial adaptive coder which was implemented in Chapter 5,
both in terms of the mean PSNR and total amount of bits used. Figure
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Initial RSQ End-zone RSQ

Mean PSNR 33.8083 35.6933

Bit rate 10905927 10542456

Lagrange number 18620000 15019000

Table 6.3: Comparison between the adaptive coder using initial RSQ and
the adaptive coder using end-zone RSQ. λ = 0.85.

6.7 shows us the PSNR for each frame of the adaptive coder. The adaptive
coder using end-zone RSQ performs on a frame-wise basis better on nearly
all frames. Again, the drops in PSNR are caused by the poor performance
of the end-zone RSQ coder when coding differentially predicted frames. An
even better way of implementing would be to adaptively choose between the
initial and end-zone RSQ coders we have introduced in the thesis, such that
it chooses the best performing coder for each block (i.e. most likely the
end-zone RSQ coder for I-frames and the initial RSQ coder for P frames).



Chapter 7

Future work

This chapter will introduce ideas and improvements that we did not have
time to further investigate during our work on this thesis.

7.1 Further optimizing quantization

In this section we will explore some methods to improve the RSQ coder in
the presence of difficulties such as the ones mentioned in Section 4.4. In
Section 6.1 we proposed an improved quantization method that took the
characteristics of the source signal into consideration. However, as discussed
in Section 6.2, this quantization method works sub-optimally in terms of
PSNR if the signal contains values in the range of [0, 255]. A possible solution
could be to use a quantization table that is derived from a pre-set QP (similar
to H.264), but adapted to better fit each individual block. This may be
done by tailoring the quantization steps based on the distribution (e.g. a
histogram) and variance of the input signal. Adaptive quantization may
introduce gain in visual quality for the reconstructed image, but the cost will
be increased complexity as the variance and coefficient value distribution
needs to be calculated for each block or frame, increasing the time .

7.2 Base color index map

Another possible improvement when coding artificial content is a technique
referred to as base colors and index map (BCIM). This technique is more
thoroughly discussed in [17] and [9]. In essence, the idea behind the technique
is to extract a table of base colors from each block in an image. The base
colors are then index mapped to each sample, a sort of color quantization,
This is effective because the number of colors in text or graphic blocks are
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Figure 7.1: Base color table and index mapping (BCIM), taken from [9].

normally limited, resulting in the need of few bits to represent the possible
colors in a block. All pixels within an object in CGC will often contain the
exact same color, whereas for natural video this is not the case as natural
objects are rarely completely uniform in terms of color.

The process of BCIM is shown in Figure 7.1. As we see, we need only a
few colors to represent the entire 8x8 block, and the differences between the
original block and the reconstructed block are subtle.

7.3 SSIM in RDO

As discussed in Section 4.3 when coding artificial content using the RSQ
coder, the coder achieves a lower PSNR even though the coded content does
not contain any of the noise artifacts present when coding using the tradi-
tional coder when similar parameters are used. This presents a problem when
using RDO to select the best possible block. If the mean square error is not
necessarily consistent with human perception, how may we be sure that the
best possible block is chosen?

The Structured Similarity (SSIM) index is a visual quality metric designed
to be more consistent with human perception[21], compared to the MSE
which PSNR is based on, as shown in Equation 2.4. It would therefore be
an interesting experiment to use SSIM as a distortion metric instead of the
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square error when adaptively coding using RDO. Again, this would increase
the complexity of the coder, but it may improve the quality of the final
reconstructed image as the blocks that are of perceptually higher quality
is more likely to be selected. SSIM may also be preferable to PSNR when
performing comparison of reconstructed images or videos.

7.4 Deblocking filter on CGC

Experiments were attempted on the use of the deblocking filter when coding
CGC, as discussed in Section 2.2.7. We were unfortunately unable to achieve
any solid results as the deblocking filter options in the JM reference software
lack documentation.

7.5 Implementing proposed changes to H.264

All of the proposed methods introduced in this thesis have only been tested
in simplified environments. Therefore no final conclusions may be drawn on
how the proposed methods will perform when implemented in a full-scale
H.264 environment. The simplest procedure for full-scale testing would be
to implement the proposed changes in the JM reference software and then
perform the tests.





Chapter 8

Conclusion

We will make our conclusions based on the goals we set in Section 1.3. Each
objective will be discussed and analyzed, and finally we will conclude if we
have achieved our main goal, which is to improve the visual experience when
coding CGC using the H.264 algorithm.

”Analyze the characteristics of natural video and CGC, and learn
how they differ from one another.”

We have learned that CGC and natural video exhibit significant differ-
ences, and the approach when compressing content of either kind must there-
fore be tailored specifically for the content to be coded. The nature of natural
video is usually inherently isotropic with smooth transitions, thus the content
consists of mostly low-frequency components. Computer generated content
is regarded as anisotropic, with sharp and regular edges, resulting in content
consisting of higher frequency components than natural video.

”Learn how the H.264 coder actually performs when coding CGC
at low bit rates.”

The JM reference software, which is an implementation of the H.264
standard, was used to code both a sequence of natural video and a sequence
of artificial content. The resulting compressed natural video required less
than half the bit rate and achieved a better visual quality (measured in
PSNR) compared to the coded artificial content. The sequences were of
the same length and resolution and the same quantization parameter were
used for both coding processes. We thus concluded that the H.264 coding
algorithm indeed performed better for natural video than artificial content
for our sample content.
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”Classify the noise and artifacts that occurs when coding CGC
using the regular H.264 algorithm.”

We learned that quantizing in the transform domain is analogous to trun-
cating the series expansion of the component transform, thus reducing the
accuracy of the transform. This in turn leads to increased oscillations around
the points of discontinuity, commonly known as Gibbs phenomenon. This
phenomenon is visible as ringing artifacts around sharp edges and high fre-
quency components, such as text and graphical objects. Because the H.264
obtains compression through the removal/reduction of high frequency com-
ponents, we also get a slight blurring of edges and objects. The avoidance
of these noisy components is thus the main problem that must be solved for
our goal to be met.

”Identify which components in the H.264 algorithm that causes
the sub-optimal performance when coding CGC.”

H.264 uses a component transform to code natural content as the infor-
mation contained in the transformed content gets packed together allowing
for more efficient compression. However, this only works because of the
isotropic nature of natural content. Because the nature of CGC is inherently
anisotropic, performing a component transform leads to the signal becom-
ing less compact. We have therefore identified the component transform as
the main cause of the sub-optimal performance in the H.264 algorithm when
coding CGC, and we thus propose to omit the component transform and
quantize the residual signal directly.

”Investigate how these components might be modified and im-
proved to better take into consideration the characteristics of the
CGC.”

By slightly modifying the intra prediction scheme and quantizing the
residual signal directly, we were able to achieve better coding results than
when using the traditional ”transform first, quantize later” scheme of the
standard H.264 algorithm for some CGC. However, even when the tradi-
tional coding scheme performed better in terms of PSNR, none of the ar-
tifacts and noise present when coding with the traditional scheme occurred
when coding using the proposed method. A new quantization technique was
also proposed, denoted extended end-zone quantization. This technique was
tailored to better match the characteristics of the source signal that was be-
ing quantized. Experiments showed that the extended end-zone quantization
obtained better results than the regular uniform quantizer.
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”Introduce a method that determines if the source that is to be
coded consists of natural video, CGC or a mix of the two. Then
code the content accordingly.”

We introduced an adaptive scheme that coded each block in a frame
using both the traditional idea of first performing a component transform
on the signal followed by quantization, and the proposed idea of quantizing
the residual signal directly. We then perform Lagrange optimization on each
block and the block achieving the minimum Lagrange value was selected
to be used in the reconstructed frame. The results from the experiments
conducted using this scheme showed that it outperformed each of the stand-
alone coders.

Looking at each objective and the results we have achieved, we may finally
conclude that the methods proposed in this thesis may indeed improve the
performance of the H.264 algorithm when coding CGC. However, we cannot
make any definite conclusions until we implement the proposed techniques
in a full-scale H.264 implementation, to take all aspects of the H.264 algo-
rithm into consideration. Unfortunately, this proved to be too complex to
accomplish in the allotted time slot and will thus be left as a topic for future
research.





Appendix A

Tools

This section contains a list of the tools used in this thesis. A further ex-
planation of their areas of use is given when they are first introduced in the
thesis.

• Software:

– MATLAB 7.11.0 - high-level language and interactive environ-
ment. Used for all programming. Downloaded from [24].

– JM reference software 17.2 - open source H.264 reference soft-
ware. Used to encode/decode .yuv files using the H.264 standard.
Downloaded from [37].

– CamStudio 2.0 - used to record content on the computer screen.
Downloaded from [7].

– YUVTools 3.0 - used to convert between .avi and .yuv, in addition
to playing .yuv files. It can also be used to compare PSNR between
two video files. Downloaded from [40].

– ffmpeg - used to convert between .264 and .yuv. Downloaded from
[1].

• MATLAB libraries

– YUV Toolbox - For converting RGB frames to YUV frames, in
addition to exporting video to .yuv. Downloaded from [39].

– Huffman - Used to convert blocks or frames to Huffman codewords.
May also be used to create lists of bit codes. Downloaded from
[34].





Appendix B

JM Reference Software
Parameters

This appendix contains a list of the JM reference software parameters that
have been used in this thesis.

• FramesToBeEncoded - numbers of frames to be coded

• SourceWidth - Source frame width (352 for CIF)

• SourceHeight - Source frame height (288 for CIF)

• ProfileIDC - Profile IDC (66=baseline, 77=main, 88=extended; FREXT
Profiles: 100=High, 110=High 10, 122=High 4:2:2, 244=High 4:4:4,
44=CAVLC 4:4:4 Intra, 118=Multiview High Profile, 128=Stereo High
Profile)

(This must be set to match the desired color downsampling format, in
our case 100 (4:2:0) or 122 (4:2:2))

• IntraPeriod - Period of I-pictures (To skip motion compensation, this
can be set as 1)

• QPISlice - Quant. param for I Slices (This is a value between 0-51, a
higher number means coarser quantization resulting in a lower bitrate
but reduced visual quality)

• QPPSlice - Quant. param for P Slices

• QPBSlice - Quant. param for B Slices

• InitialQP - Initial Quantization Parameter for the first I frame
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• YUVFormat - YUV format (0=4:0:0, 1=4:2:0, 2=4:2:2, 3=4:4:4)

• Interleaved - 0: Planar input, 1: Packed input

• NumberBFrames - Number of B coded frames inserted in a row between
I-frames and P-frames (0=not used)
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List of attached files

This appendix contains a list of some of the material that was used in this
thesis, a long with a description of each file.

• Videos:

– screen content 1 - Experiment video, consists of purely screen con-
tent.

– screen content 2 - Experiment video, screen content with embed-
ded natural images.

– foreman - Experiment video, natural video.

– traditional scc2 - ’screen content 2’ coded using the traditional
coder. Used in Section 4.3.

– rsq scc2 - ’screen content 2’ coded using RSQ coder. Used in
Section 4.3.

• Coders:

– ’trad coder no pred.m’ - Traditional coder (2D DCT and quanti-
zation), no prediction used. Used in Section 4.3.

– ’rsq coder no pred.m’ - RSQ coder, no prediction used. Used in
Section 4.3.

– ’rsq coder ee no pred.m’ - RSQ coder, extended end-zone quan-
tizer, no prediction used. Used in Section 6.2.

– ’rsq dpcm ee.m’ - RSQ coder, extended end-zone quantizer, frame-
wise differential prediction used. Used in Section 6.2.2.

– ’adpt coder intra pred rsq.m’ - The adaptive coder used in Section
5.2.
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– ’adpt coder ee rsq.m’ - Adaptive coder using the extended end-
zone RSQ coder, used in Section 6.4.

– ’quantizer.m’ - Performs 2D DCT and uniform quantization on a
block.

– ’iQuantizer.m’ - Performs inverse quantization and inverse 2D
DCT on a block.

– ’quantize rsq.m’ - Contains the uniform and extended end-zone
quantizer.

– ’quantizerNoDCT.m’ - The quantizer for the initial RSQ coder.

– ’iQuantizerNoDCT.m’ - The inverse quantizer for the initial RSQ
coder.

– ’psnrcalc.m’ - Calculates the PSNR of the reconstructed frame.

• Images: The images listed here are all used in the thesis, however,
because of constraints on the size, they are also attached so that they
made be viewed separately in case the details of the image are difficult
to distinguish.

– ’adaptive trad comparison.jpg’ - A still image from the sequence
’screen content 1’ coded with the traditional coder using a QP of
25. The image was used in Section 5.2.

– ’adaptive rsq comparison.jpg’ - A still image from the sequence
’screen content 1’ coded with the RSQ coder using a QP of 25.
The image was used in Section 5.2.

– ’adaptive comparison.jpg’ - A still image composed of the opti-
mal blocks in terms of visual quality and measured bits from the
’adaptive trad comparison.jpg’ and ’adaptive rsq comparison.jpg’
images. The image was used in Section 5.2.

– ’comp cg qp 40 mvc.png’ - A still image coded using the JM refer-
ence software. The source signal used was ’screen content 1’. The
image was used in Section 3.4. This image is also attached in this
appendix.

– ’rsq vs trad no pred.png’ - A comparison between the traditional
coder and the RSQ coder with no use of prediction. The frame
is from the sequence ’screen content 1’. The image was used in
Section 4.3. This image is also attached in this appendix.

• Websites A .zip file containing all web sites that have referenced is also
attached, such that all sources that have been cited may be controlled.
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Appendix D

MATLAB Code

This chapter contains the MATLAB code for one of the coders created. The
coder chosen as an example is the adaptive coder using extended end-zone
RSQ coding. The reason this coder was chosen is that it is the most com-
plex and it achieved the best results, and therefore is probably the most
interesting.

1 %% Adaptive coder
2 c l c
3 c l e a r a l l
4
5 % Read av i f i l e
6 % Ava i l a b l e movies are
7 % ’ sc r e en con t en t 1 . avi ’ , 352 x288 r e so l u t i on , 73 frames
8 % ’ sc r e en con t en t 2 . avi ’ , 720 x480 r e so l u t i on , 129 frames
9 % ’ foreman c i f . avi ’ , 352 x288 r e so l u t i on , 300 frames

10 movObj = mmreader ( ’ s c r e e n c o n t e n t 1 . av i ’ ) ;
11
12 % Convert to 4D matrix wi th c o e f f i c i e n t s
13 vidFrames = read (movObj ) ;
14
15 d i s p l a y ( ’ Adaptive coding ’ )
16
17 % Find he igh t , width and number o f frames
18 s izeOfMatr ix = s i z e ( vidFrames ) ;
19 nHeight = s izeOfMatr ix ( 1 ) ;
20 nWidth = s izeOfMatr ix ( 2 ) ;
21 nFrames = s izeOfMatr ix ( 4 ) ;
22
23 % Set I−frame frequency (GOP s i z e ) and lambda ( Lagrange
24 % mu l t i p l i e r ) in add i t i on to the quan t i z a t i on parameter
25 % ( t o t a l q ) and amount o f b i t s sen t to the extended
26 % end−zone quan t i z e r .
27 t o t a l q = 32 ;
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28 quant f a c to r = 4 ;
29 iFrameFreq = 6 ;
30 lambda = 0 . 8 5 ;
31
32 % Size o f b l o c k s to be coded
33 bSize = 4 ;
34
35 % Declare v a r i a b l e s t h a t can conta in in format ion about frames
36 rFr = uint8 ( z e ro s ( nHeight , nWidth , nFrames ) ) ;
37 gFr = uint8 ( z e ro s ( nHeight , nWidth , nFrames ) ) ;
38 bFr = uint8 ( z e r o s ( nHeight , nWidth , nFrames ) ) ;
39
40 yFrames = ze ro s ( nHeight , nWidth , nFrames ) ;
41 uFr = uint8 ( z e r o s ( nHeight , nWidth , nFrames ) ) ;
42 vFr = uint8 ( z e ro s ( nHeight , nWidth , nFrames ) ) ;
43
44 yCe l l s = c e l l (1 , nFrames ) ;
45 rsqYCel l s = c e l l (1 , nFrames ) ;
46 tradYCl ls = c e l l (1 , nFrames ) ;
47 uCe l l s = c e l l (1 , nFrames ) ;
48 vCe l l s = c e l l (1 , nFrames ) ;
49
50 % Sp l i t v ideo in t o R, G and B frames
51 f o r i = 1 : nFrames
52 rFr ( : , : , i ) = vidFrames ( : , : , 1 , i ) ;
53 gFr ( : , : , i ) = vidFrames ( : , : , 2 , i ) ;
54 bFr ( : , : , i ) = vidFrames ( : , : , 3 , i ) ;
55 tmpR = rFr ( : , : , i ) ;
56 tmpG = gFr ( : , : , i ) ;
57 tmpB = bFr ( : , : , i ) ;
58 % Convert from RGB to YUV
59 [ yFrames ( : , : , i ) , uFr ( : , : , i ) , vFr ( : , : , i )]= rgb2yuv (tmpR, tmpG, tmpB ) ;
60 end
61
62 % Declare v a r i a b l e s to pre−a l l o c a t e memory
63 b locks = ze ro s ( bSize , bSize , nWidth∗nHeight /( bSize . ˆ 2 ) ) ;
64 rcTrdYFrs = ze ro s ( s i z e ( yFrames ) ) ;
65 rcRSQYFrs = ze ro s ( s i z e ( yFrames ) ) ;
66 rcYFrs = ze ro s ( s i z e ( yFrames ) ) ;
67 dpcmBlocks = ze ro s ( s i z e ( b locks ) ) ;
68 quantTradBlocks = ze ro s ( s i z e ( b locks ) ) ;
69 iQuantTradBlocks = ze ro s ( s i z e ( b locks ) ) ;
70 rcTrdBlcks = ze ro s ( s i z e ( b locks ) ) ;
71 tempBlock = ze ro s ( bSize , bS ize ) ;
72 tempBlockTrad = ze ro s ( bSize , bS ize ) ;
73 rdTrad = ze ro s (2 , l ength ( b locks ) ) ;
74 rdRSQ = ze ro s (2 , l ength ( b locks ) ) ;
75 rcTmpFrm = ze ro s ( bSize , bS ize ) ;
76
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77 % These w i l l conta in the PSNR va lue s o f the r e cons t ruc t ed frames
78 %for each coder .
79 psnrVector = ze ro s (1 , nFrames ) ;
80 rsqPSNRVector = ze ro s (1 , nFrames ) ;
81 tradPSNRVector = ze ro s (1 , nFrames ) ;
82
83 % These v a r i a b l e s conta in the t o t a l b i t s used f o r each coder .
84 totalRateRSQ = 0 ;
85 to ta l ra t eTrad = 0 ;
86 tota lRateAdapt ive = 0 ;
87
88 % I t e r a t e over a l l frames and encode each frame
89 f o r i = 1 : nFrames
90 l = 1 ;
91 j = bSize ;
92 k = bSize ;
93 % Sp l i t frames in to b l o c k s and crea t e a 3D matrix
94 % to conta in a l l b l o c k s .
95 f o r p = bSize : bS ize : nWidth∗nHeight / bSize
96 b locks ( : , : , l ) = yFrames (k−(bSize −1):k , j−(bSize −1): j , i ) ;
97 k = k + bSize ;
98 i f mod(p , nHeight ) == 0
99 j = j+bSize ;

100 k = bSize ;
101 end
102 l = l +1;
103 end
104 % D i f f e r e n t i a l coding . Skip d i f f e r e n t i a l coding f o r i n i t i a l
105 % frame and each I−frame , determined by I−frame frequency
106 % ( iFrameFreq ) .
107 i f i == 1 | | mod( i , iFrameFreq ) == 0
108 dpcmBlocks = blocks ;
109 anchorBlocks = blocks ;
110 e l s e
111 dpcmBlocks = blocks − anchorBlocks ;
112 end
113
114 rateTrad = 0 ;
115 % Trad i t i ona l coder , i t e r a t e over each b l o c k in the frame .
116 f o r p = 1 : l ength ( dpcmBlocks )
117 % 2D DCT transform and uniform quan t i z a t i on done in
118 % quan t i z e r ( b l ock s , qp ) func t i on .
119 quantTradBlocks ( : , : , p ) = quant i z e r ( dpcmBlocks ( : , : , p ) , t o t a l q ) ;
120
121 % Entropy code quan t i z ed b l o c k s
122 % Extrac t minimum va lue and add i t to the va l u e s to be
123 % entropy coded , to ensure t ha t no va l u e s are l e s s than 0 .
124 huf fBlock = quantTradBlocks ( : , : , p ) ;
125 minVal = abs ( min ( huf fB lock ( : ) ) ) ;
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126 [ t radCe l l , i n f o ]=norm2huff ( u int8 ( huf fB lock ( : )+ minVal ) ) ;
127 % We s p l i t the hu f f c ode s in t o i n d i c e s and hu f f va lues , the
128 % ind i c e s w i l l not be used .
129 [ tmpk , tmpl , hu f f ] = f i n d ( i n f o . hu f f code s ) ;
130 % We pass the hu f f c ode s to hu f f c ode s2b in to c r ea t e a l i s t
131 % of b i t codes .
132 [ l i s tOfBi tCodes , symbols ] = hu f f code s2b in ( i n f o . hu f f code s ) ;
133 sortedCodes = ze ro s (1 , l ength ( hu f f ) ) ;
134 % Sort f requency o f codes to match huffman b i t codes
135 % (most f r e quen t => s h o r t e s t b i t codes )
136 f o r j = 1 : l ength ( hu f f )
137 sortedCodes ( j ) = sum(sum( quantTradBlocks ( : , : , p)==hu f f ( j ) ) ) ;
138 end
139 sortedCodes = s o r t ( sortedCodes , ’ descend ’ ) ;
140 b i t sPrBlck = 0 ;
141 tmpBits = 0 ;
142 % Mul t i p l y the l en g t h o f b i t codes wi th the f requency o f the
143 % va lue to ge t the amount o f b i t s used . Add the
144 % bi t−r ep r e s en t a t i on o f the a c t ua l va lue .
145 f o r j = 1 : l ength ( hu f f )
146 tmpBits = length ( l i s tOfB i tCodes { j })∗ sortedCodes ( j ) ;
147 b i t sPrBlck = bit sPrBlck+tmpBits+c e i l ( l og2 ( hu f f ( j ) ) ) ;
148 end
149 i f sum( t radCe l l ( : ) ) == 0
150 % I f the sum of r s qCe l l i s 0 , a l l v a l u e s in the Huffman
151 % coded b l o c k are equa l and the Huffman coder does not
152 % work proper ly , consequen t l y we have to add the va lue
153 % (minVal ) o f the b l o c k t ha t was coded to the i n v e r s e l y
154 % entropy coded b l o c k .
155 rcTmpFrm(:)= minVal ;
156 tempTradBlock = quantTradBlocks ( : , : , p ) ;
157 % I f the uniform va lue i s non−zero , add the g iven
158 % bi t−r ep r e s en t a t i on o f the va lue to the amount
159 % of b i t s used . Otherwise add 1 b i t .
160 i f var ( tempTradBlock ( : ) ) ˜= 0
161 b i t sPrBlck=bit sPrBlck+c e i l ( l og2 ( minVal ) ) ;
162 e l s e
163 b i t sPrBlck = bit sPrBlck + 1 ;
164 end
165 e l s e
166 % Inver se entropy coding and add the minVal which was
167 % sub t r a c t e d b e f o r e the entropy coding was done .
168 rcTmpFrm ( : ) = double ( huff2norm ( tradCe l l , i n f o ))−minVal ;
169 end
170 rateTrad = rateTrad + bit sPrBlck ;
171 % Inver se quan t i z a t i on
172 iQuantTradBlocks ( : , : , p ) = iQuant i ze r (rcTmpFrm , t o t a l q ) ;
173 % Store the ra t e f o r each b l o c k
174 rdTrad (1 , p) = bi t sPrBlck ;
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175 end
176
177 rateRSQ = 0 ;
178 quantizedRSQBlocks = ze ro s ( s i z e ( b locks ) ) ;
179 iQuantRSQBlocks = ze ro s ( s i z e ( b locks ) ) ;
180 % Perform quan t i z a t i on on en t i r e frame un l e s s i t c on s i s t o f
181 % a l l 0 c o e f f i c i e n t s , which w i l l cause the coder to break down .
182 i f var ( dpcmBlocks ( : ) ˜= 0)
183 tempVector = q u a n t i z e r s q ( dpcmBlocks ( : ) , quant f a c to r ) ;
184 quantizedRSQBlocks ( : ) = tempVector ( : ) ;
185 e l s e
186 quantizedRSQBlocks ( : ) = 0 ;
187 end
188
189 % RSQ coding
190 f o r p = 1 : l ength ( quantizedRSQBlocks )
191 % Sp l i t b l o c k in t o p l u s and minus va lues , which are coded
192 % sep e r a t e l y and independen t l y .
193 p l u s I n d i c e s = f i n d ( quantizedRSQBlocks ( : , : , p)>=0);
194 minIndices = f i n d ( quantizedRSQBlocks ( : , : , p)<0);
195 tempFrame = quantizedRSQBlocks ( : , : , p ) ;
196 minVal = abs ( min ( tempFrame ( : ) ) ) ;
197 plusValues = tempFrame ( p l u s I n d i c e s ) ;
198 minVals = tempFrame ( minIndices ) ;
199 b i t sPrBlck = 0 ;
200 % Entropy code p o s i t i v e quan t i z ed va l u e s ( i f any )
201 i f ˜ isempty ( p lusValues )
202 [ r sqCe l l , i n f o ] = norm2huff ( u int8 ( p lusValues ( : ) ) ) ;
203 [ tmpk , tmpl , hu f f ] = f i n d ( i n f o . hu f f code s ) ;
204 [ l i s tOfBi tCodes , symbols ] = hu f f code s2b in ( i n f o . hu f f code s ) ;
205 sortedCodes = ze ro s (1 , l ength ( hu f f ) ) ;
206 % Sort f requency o f codes to match huffman b i t codes
207 % (most f r e quen t => s h o r t e s t b i t codes )
208 f o r j = 1 : l ength ( hu f f )
209 sortedCodes ( j ) = sum(sum( plusValues ( : , : )== hu f f ( j ) ) ) ;
210 end
211 sortedCodes = s o r t ( sortedCodes , ’ descend ’ ) ;
212 tmpBits = 0 ;
213 % Mul t i p l y the l en g t h o f b i t codes wi th the f requency o f
214 % the va lue to ge t the amount o f b i t s used . Add the
215 % bi t−r ep r e s en t a t i on o f the a c t ua l va lue .
216 f o r j = 1 : l ength ( hu f f )
217 tmpBits = length ( l i s tOfB i tCodes { j })∗ sortedCodes ( j ) ;
218 b i t sPrBlck=bit sPrBlck+tmpBits+c e i l ( l og2 ( hu f f ( j ) ) ) ;
219 end
220 end
221 % Entropy code nega t i v e quan t i z ed va l u e s ( i f any )
222 i f ˜ isempty ( minVals )
223 tempMinus = minVals + minVal ;
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224 [ minusCell , minusInfo ] = norm2huff ( u int8 ( tempMinus ( : ) ) ) ;
225 [ k2 , l2 , minHuff ] = f i n d ( minusInfo . hu f f code s ) ;
226 minListOfBitCodes = hu f f code s2b in ( minusInfo . hu f f code s ) ;
227 minSortCodes = ze ro s (1 , l ength ( minHuff ) ) ;
228 % Sort f requency o f codes to match huffman b i t codes
229 %(most f r e quen t => s h o r t e s t b i t codes )
230 f o r j = 1 : l ength ( minHuff )
231 minSortCodes ( j ) = sum(sum( tempMinus==minHuff ( j ) ) ) ;
232 end
233 minSortCodes = s o r t ( minSortCodes , ’ descend ’ ) ;
234 tmpBits = 0 ;
235 % Mul t i p l y the l en g t h o f b i t codes wi th the f requency o f
236 % the va lue to ge t the amount o f b i t s used . Add the
237 % bi t−r ep r e s en t a t i on o f the a c t ua l va lue .
238 f o r j = 1 : l ength ( minHuff )
239 tmpBits=length ( minListOfBitCodes{ j })∗minSortCodes ( j ) ;
240 b i t sPrBlck=bit sPrBlck+tmpBits+c e i l ( l og2 ( minHuff ( j ) ) ) ;
241 end
242 end
243 tempBlock = ze ro s ( bSize , bS ize ) ;
244 rcTmpFrm = ze ro s ( bSize , bS ize ) ;
245 % Inv e r s e l y entropy code even tua l p o s i t i v e va l u e s .
246 i f ˜ isempty ( p l u s I n d i c e s )
247 % I f the sum of r s qCe l l i s 0 , a l l v a l u e s in the Huffman
248 % coded b l o c k are equa l and the Huffman coder does not
249 % work proper ly , consequen t l y we have to add the va lue
250 % (minVal ) o f the b l o c k t ha t was coded .
251 i f sum( r s q C e l l ( : ) ) == 0
252 % Entire b l o c k c on s i s t s o f minVal
253 tempBlock ( : ) = double ( minVal ) ;
254 % Add one b i t f o r each 0−b l o c k f o r comparison .
255 b i t sPrBlck = bit sPrBlck + 1 ;
256 e l s e
257 % Create a b l o c k ( tmp) which ho l d s the i n v e r s e l y
258 % entropy coded va l u e s .
259 tmp = double ( huff2norm ( uint8 ( r s q C e l l ( : ) ) , i n f o ) ) ;
260 tempBlock ( 1 : l ength (tmp ) ) = double (tmp ) ;
261 end
262 % Ins e r t the p o s i t i v e va l u e s in t h e i r co r r e c t p o s i t i o n s .
263 rcTmpFrm( p l u s I n d i c e s )=tempBlock ( 1 : l ength ( p l u s I n d i c e s ) ) ;
264 end
265 % Inv e r s e l y entropy code even tua l ne ga t i v e va l u e s .
266 i f ˜ isempty ( minIndices )
267 minVals = double ( huff2norm ( uint8 ( minusCel l ( : ) ) , minusInfo ) ) ;
268 % Ins e r t nega t i v e va l u e s in t h e i r c o r r e c t p o s i t i o n s .
269 rcTmpFrm( minIndices )=minVals ( 1 : l ength ( minIndices ))−minVal ;
270 end
271 i f b i t sPrBlck == 0 % Block i s a l l z e ro s
272 b i t sPrBlck = bit sPrBlck + 1 ;
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273 end
274 rateRSQ = rateRSQ + bitsPrBlck ;
275 iQuantRSQBlocks ( : , : , p ) = rcTmpFrm ;
276 rdRSQ(1 , p) = bi t sPrBlck ;
277 end
278
279 % Inver se d i f f e r e n t i a l coding
280 i f i == 1 | | mod( i , iFrameFreq ) == 0
281 rcTrdBlcks = iQuantTradBlocks ;
282 recAnchorBlocks = iQuantTradBlocks ;
283 rcRSQBlcks = iQuantRSQBlocks ;
284 rsqAnchorBlocks = iQuantRSQBlocks ;
285 e l s e
286 rcTrdBlcks = iQuantTradBlocks + recAnchorBlocks ;
287 rcRSQBlcks = iQuantRSQBlocks + rsqAnchorBlocks ;
288 end
289
290
291 % Reconstruct frame
292 j = bSize ;
293 k = bSize ;
294 adaptiveRate = 0 ;
295 f o r p = 1 : l ength ( b locks )
296 % Ca lcu l a t e d i s t o r t i o n f o r RDO, t r a d i t i o n a l coder
297 d i s t=sum(sum( rcTrdBlcks ( : , : , p)−b locks ( : , : , p ) ) ) . ˆ 2 ;
298 rdTrad (2 , p) = d i s t ;
299 % Ca lcu l a t e d i s t o r t i o n f o r RDO, RSQ coder
300 d i s t=sum(sum( rcRSQBlcks ( : , : , p ) − b locks ( : , : , p ) ) ) . ˆ 2 ;
301 rdRSQ(2 , p) = d i s t ;
302 % Ca lcu l a t e Lagrange va l u e s
303 lagrangeRSQ = rdRSQ(2 , p)+lambda .∗ rdRSQ(1 , p ) ;
304 lagrangeTrad = rdTrad (2 , p) + lambda .∗ rdTrad (1 , p ) ;
305 % Ins e r t the b l o c k wi th the l owe s t Lagrange va lue
306 i f lagrangeRSQ < lagrangeTrad
307 rcYFrs (k−(bSize −1):k , j−(bSize −1): j , i )=rcRSQBlcks ( : , : , p ) ;
308 adaptiveRate = adaptiveRate + rdRSQ(1 , p ) ;
309 e l s e
310 rcYFrs (k−(bSize −1):k , j−(bSize −1): j , i )=rcTrdBlcks ( : , : , p ) ;
311 adaptiveRate = adaptiveRate + rdTrad (1 , p ) ;
312 end
313 % Create RSQ and t r a d i t i o n a l coder frames f o r comparison
314 % purposes .
315 rcTrdYFrs (k−(bSize −1):k , j−(bSize −1): j , i )=rcTrdBlcks ( : , : , p ) ;
316 rcRSQYFrs (k−(bSize −1):k , j−(bSize −1): j , i )=rcRSQBlcks ( : , : , p ) ;
317 k = k + bSize ;
318 i f mod(p , nHeight / bSize ) == 0
319 j = j+bSize ;
320 k = bSize ;
321 end
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322 end
323
324 % Print PSNR and b i t s used f o r each coder
325 tradPSNR = psnr ca l c ( yFrames ( : , : , i ) , rcTrdYFrs ( : , : , i ) ) ;
326 tradPSNRVector ( i ) = tradPSNR ;
327 to ta l ra t eTrad = tota l ra t eTrad + rateTrad ;
328 f p r i n t f ( ’ T rad i t i ona l coder PSNR: %d \n ’ , tradPSNR ) ;
329 f p r i n t f ( ’ T rad i t i ona l coder ra t e : %d \n ’ , rateTrad ) ;
330
331 rsqPSNR = psnr ca l c ( yFrames ( : , : , i ) , rcRSQYFrs ( : , : , i ) ) ;
332 rsqPSNRVector ( i ) = rsqPSNR ;
333 totalRateRSQ = totalRateRSQ + rateRSQ ;
334 f p r i n t f ( ’RSQ coder PSNR: %d \n ’ , rsqPSNR ) ;
335 f p r i n t f ( ’RSQ coder ra t e : %d \n ’ , rateRSQ ) ;
336
337 adaptivePSNR = psnr ca l c ( yFrames ( : , : , i ) , rcYFrs ( : , : , i ) ) ;
338 psnrVector ( i ) = adaptivePSNR ;
339 tota lRateAdapt ive = tota lRateAdapt ive + adaptiveRate ;
340 f p r i n t f ( ’ Adaptive coder PSNR: %d \n ’ , adaptivePSNR ) ;
341 f p r i n t f ( ’ Adaptive coder ra t e : %d \n ’ , adaptiveRate ) ;
342 f p r i n t f ( ’New frame\n ’ ) ;
343 end
344
345 % Create yuv f i l e
346 f o r j = 1 : nFrames
347 % Convert to c e l l s f o r yuv expor t ing
348 yCe l l s ( j ) = mat2ce l l ( rcYFrs ( : , : , j ) , nHeight , nWidth ) ;
349 rsqYCel l s ( j ) = mat2ce l l ( rcRSQYFrs ( : , : , j ) , nHeight , nWidth ) ;
350 tradYCl ls ( j ) = mat2ce l l ( rcTrdYFrs ( : , : , j ) , nHeight , nWidth ) ;
351 uCe l l s ( j ) = mat2ce l l ( uFr ( : , : , j ) , nHeight , nWidth ) ;
352 vCe l l s ( j ) = mat2ce l l ( vFr ( : , : , j ) , nHeight , nWidth ) ;
353 end
354
355 % Export to yuv f i l e
356 yuv export ( yCe l l s , uCel l s , vCe l l s , ’ output . yuv ’ , nFrames , ’w ’ ) ;
357 yuv export ( rsqYCel ls , uCel l s , vCe l l s , ’ output r sq . yuv ’ , nFrames , ’w ’ ) ;
358 yuv export ( tradYClls , uCel l s , vCe l l s , ’ output t rd . yuv ’ , nFrames , ’w ’ ) ;

The following function is the 2D DCT transform and the uniform quan-
tizer used in the traditional coder:

1 func t i on quant izedBlock = quant i z e r ( inputBlock , qp )
2 % Takes in s i g n a l to be quan t i z ed and quan t i z a t i on
3 % parameter .
4 % Returns quan t i z ed s i g n a l .
5
6 % Perform 2D DCT on the b l o c k
7 transformedBlock = dct2 ( inputBlock ) ;
8 % Quantize and round to neares t i n t e g e r



91

9 quant izedBlock = round ( transformedBlock . / qp ) ;
10 end

The following function is the inverse quantization and the inverse 2D DCT
transform used in the traditional coder:

1 func t i on recons t ruc tedBlock = iQuant i ze r ( inputBlock , qp )
2 % Takes in quan t i z ed s i g n a l and quan t i z a t i on parameter .
3 % Returns r e cons t ruc t ed s i g n a l .
4
5 % Inver se quan t i z a t i on
6 invQBlock = inputBlock .∗ qp ;
7 % Inver se transform a f t e r
8 recons t ruc tedBlock = i d c t 2 ( invQBlock ) ;
9 end

The ’quantize rsq.m’ function is the uniform quantizer/extended end-zone
quantizer used in the RSQ coder:

1 func t i on [ s i g n a l q , d e l t a ]= q u a n t i z e r s q ( s i gna l , Nbit )
2 % Takes in the s i g n a l to be quan t i z ed and the amount
3 % of b i t s used f o r quan t i z a t i on . Returns the quan t i z ed
4 % s i g n a l a long wi th d e l t a ( quan t i z a t i on s t ep s i z e ) .
5
6 % Quantize s i g n a l wi th Nbit us ing uniform quan t i z a t i on
7 % adapted to the s i g n a l dynamic range .
8 % Operates on 1 − and 2−dimensiona l s i g n a l s .
9 % For 2D s i gna l s , i t q uan t i z e s each row s e pa r a t e l y .

10
11 %Find d e l t a
12 Min=min ( min ( s i g n a l ) ) ;
13 Max=max(max( s i g n a l ) ) ;
14 Nleve l=2ˆNbit ;
15 d e l t a =(Max−Min)/ Nleve l ;
16
17 %Find r ep r e s en t a t i on l e v e l s
18 y=ze ro s (1 , N leve l ) ;
19
20 %% Uncomment c e l l f o r r e gu l a r uniform quan t i z a t i on
21 % for i = 1: N l e v e l
22 % y( i )=Min + de l t a ∗(2∗ i −1)/2;
23 % end
24
25 %% Uncomment c e l l f o r extended end−zone quan t i z e r
26
27 % Set r e p r e s en t a t i on s l e v e l s based on d e l t a
28 f o r i = 2 : Nlevel−1
29 y ( i )=Min + d e l t a ∗(2∗ i −1)/2;
30 end
31 % The f i r s t and l a s t r e p r e s en t a t i on l e v e l s are s e t to
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32 % the s i g n a l s minimum and maximum va lue r e s p e c t i v e l y .
33 y (1 ) = Min ;
34 y ( Nleve l ) = Max;
35
36
37 %%
38 [M,N]= s i z e ( s i g n a l ) ;
39 s i g n a l q=ze ro s (M,N) ;
40
41 % I t e r a t e over s i g n a l to map s i g n a l va l u e s to
42 % repr e s en t a t i on va l u e s .
43 f o r m=1:M
44 f o r n=1:N
45 index=c e i l ( ( s i g n a l (m, n)−Min)/ d e l t a ) ;
46 i f index==0
47 index =1;
48 end
49 s i g n a l q (m, n)=round ( y ( index ) ) ;
50 end
51 end

The following function calculates the PSNR between an original frame and
a reconstructed frame, if the frames are equal the function returns an error
message:

1 func t i on psnr = psnr ca l c ( origFrame , recFrame )
2 % This func t i on take s in the o r i g i n a l frame and the
3 % recons t ruc t ed frame and c a l c u l a t e s the PSNR based
4 % on the d i s t o r t i o n in the r e cons t ruc t ed frame .
5
6 % I f the frames are equal , the PSNR i s i n f i n i t e
7 i f origFrame == recFrame
8 e r r o r ( ’ Images are i d e n t i c a l : PSNR has i n f i n i t e va lue ’ )
9 end

10 psnr=10∗ l og10 (255ˆ2/(mean ( ( origFrame (:)− recFrame ( : ) ) . ˆ 2 ) ) ) ;
11 end
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