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We present a scattering theory of transport through noncollinear disordered magnetic insulators.
For concreteness, we study and compare the random field model (RFM) and the random anisotropy
model (RAM). The RFM and RAM are used to model random spin disorder systems and amorphous
materials, respectively. We utilize the Landauer-Büttiker formalism to compute the transmission
probability and spin conductance of one-dimensional disordered spin chains. The RFM and the
RAM both exhibit Anderson localization, which means that the transmission probability and spin
conductance decay exponentially with the system length. We define two localization lengths based on
the transmission probability and the spin conductance, respectively. Next, we numerically determine
the relationship between the localization lengths and the strength of the disorder. In the limit of
weak disorder, we find that the localization lengths obey power laws and determine the critical
exponents. Our results are expressed via the universal exchange length and are therefore expected
to be general.

I. INTRODUCTION

In magnonics [1–8], the primary focus has recently
been on the propagation of spin waves through vari-
ous types of magnetic insulators. A particular emphasis
has been on ordered systems, such as (anti)ferromagnets,
and ferrimagnets. An advantage is that the spin current
may suffer less Joule heating compared to electric cur-
rents, making insulator-magnonics applications poten-
tially much more energy efficient [3, 9]. Numerous suc-
cessful experiments have generated and manipulated spin
currents using the spin Hall effect and the inverse spin
Hall effect [10]. A common experimental setup consists
of sandwiching a magnetic insulator between two con-
ductors and using the spin Hall effect to generate a spin
current in the left conductor that propagates through the
magnetic insulator and into the right conductor. The
spin current in the right conductor is converted into a
charge current via the inverse spin-Hall effect. This pro-
vides a useful method to measure the spin current and
infer the spin-transport properties of the magnetic insu-
lator [11–25].

A class of materials that has recently attracted at-
tention in the spintronics community is disordered mag-
netic insulators [26–31]. Notably, a recent experiment
claimed that a spin current flowing through a sam-
ple of amorphous yttrium-iron-garnet could travel tens
of micrometers [32]. This distance is comparable to
the spin current propagation length in a crystalline
(anti)ferromagnet [25, 33]. More generally, it is crucial to
study disordered magnetic materials because almost all
materials contain some degree of disorder, which will af-
fect the functional properties of magnonic devices. When
the disorder is sufficiently strong, the eigenstates become
trapped in a finite spatial region, completely suppressing
the transport properties. This phenomenon is known as
Anderson localization, and the first discussion of this phe-
nomenon in magnetic systems began in the 1960s [34–42].
Furthermore, it has been shown that even with a small
onset of disorder, the transport properties change from

conductive to diffusive [29, 43], which has important con-
sequences for magnonics applications in low dimensions.

The common sources of quenched disorder in magnetic
insulators are i) randomness due to anisotropies, local
fields, and amorphous structure and ii) frustration due
to competing long-range exchange interactions. In this
paper we focus on magnetic insulators with quenched dis-
order due to i). Two models with these properties are the
random field model (RFM) and the random anisotropy
model (RAM), where the disorder is caused by the com-
petition between the exchange interaction and the cou-
pling to local random fields and anisotropies respectively.
The RFM and RAM is used to model quenched spin dis-
order and amorphous magnets respectively [44–49]. Ex-
perimental realizations of such systems are plentiful [50–
54].

Furthermore, there are two types of RFM/RAM spin
models. The first is the Ising model, where the spins are
scalars Si = ±1 and are randomly pointing either parallel
or antiparallel to each other in the ground state [55–62].
The second type is the Heisenberg model, where the spins
are vectors Si that in the ground state are pointing non-
collinearly in random directions [63–68].

Because the ground state in the RFM/RAM Ising
model is relatively simple, it can often be studied effi-
ciently with analytical methods. For example, one can
either solve the equations of motion by a transfer ma-
trix approach paralleling Anderson’s celebrated work on
disordered fermionic systems [69, 70] or one can use field-
theory methods, particularly the replica trick, replica
symmetry breaking, and mean-field theory [54, 71, 72].
Although the RFM/RAM Ising models are analytically
accessible, they are only simplified idealizations of a real
disordered magnet where the spins are noncollinear. In
this work, we wish to focus on systems with noncollinear
spins that are harder to describe analytically but exhibit
more realistic spin-wave dynamics.

Disordered magnetic insulators with a noncollinear
ground state are a notoriously difficult system to de-
scribe. Due to their complexity, it is often useful to study
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the classical spin waves of the system. Our work is re-
lated to a recent study [29, 73] in which the micromag-
netic Landau-Lifshitz-Gilbert (LLG) equation was solved
using a quasimonochromatic Gaussian wave packet as the
initial condition. They found that the width of the wave
packet increases in time until it saturates around the lo-
calization length of the system; a hallmark of Anderson
localization. In systems that exhibit Anderson localiza-
tion, the localization length decreases as the system be-
comes more disordered. However, the exact relationship
between the localization length and the strength of dis-
order is far from being well established in noncollinear
disordered magnetic insulators. In this work, we attempt
to shed some light on these issues.

The localization effect in spin models depends on
the dimensionality of the system, similar to disordered
fermionic systems [74]. For fermionic systems in one di-
mension, there is Anderson localization; in two dimen-
sions, the effect remains present but much weaker, while
in three dimensions, there is the possibility of both a lo-
calized and a delocalized phase. The same observations
have been established for disordered magnets [50, 75].
We focus on one-dimensional spin chains. With more
computational time, this method can also be applied to
two- and three-dimensional systems.

The numerical method that we develop is based on the
Landauer-Büttiker formalism [76, 77], which has proven
to be extremely useful in studying the transport proper-
ties of electronic systems. To the best of our knowledge,
such a method has not previously been applied to the
RFM/RAM Heisenberg model. In this paper, we inves-
tigate the effect of Anderson localization on the spin-
wave transport properties of a disordered magnetic in-
sulator. To this end, we first determine the relationship
between the system size and the transmission probability
for different strengths of disorder and then calculate the
spin conductance. With this knowledge, we can investi-
gate how the localization length of the system scales with
the strength of the disorder. In particular, we calculate
and compare the critical exponents of the RFM and the
RAM. These quantities provide us with direct insights
into how the transport properties of the spin waves are
affected by the localization phenomenon that is present
due to quenched disorder.

We hope that this theoretical investigation may inspire
an experimental investigation into the transport proper-
ties of disordered magnetic nanowires [78–82]. In partic-
ular, it would be interesting to compare the experimental
relationship between the localization length and strength
of disorder to the critical exponents that we determine
in this work.

The paper is organized as follows. In Sec. II, we intro-
duce the RFM and the RAM Hamiltonians and discuss
its ground state. In section III we find the linearized
equations of motion, and derive expressions for the spin
current and the spin conductance. Section IV. contains
our numerical calculations of the scattering properties of
the system. In Sec. IV we summarize our results.

II. THEORETICAL MODEL

In this section we carefully introduce the model we
are interested in studying. We start by presenting the
Hamiltonians for the RFM and the RAM, and introduce
the geometry. We conclude this section by presenting a
method to calculate the classical metastable states.

A. Hamiltonian

To investigate the transport properties of one-
dimensional disordered noncollinear spin chains, we use
the Hamiltonian

Hκ = −J
∑
i

Si · Si+1 −K
∑
i

(Si · ni)κ+1
, (1)

where κ = 0 and κ = 1 represent the RFM and the RAM,
respectively.

The dimensionless spins Si are attached to a one-
dimensional lattice with lattice spacing d. The exchange
interaction with J > 0 attempts to align the spins. The
terms proportional to K encapsulate the quenched disor-
der of the system, and we choose K > 0 without loss of
generality. Each spin Si is coupled to a local random vec-
tor ni. The competition between the exchange and the
random interactions in Eq. (1) results in a noncollinear
disordered ground state. We use the parameter K/J to
characterize the strength of disorder.

B. Geometry

We consider a one-dimensional chain with N lattice
sites. The chain is split into three regions that we call
i) the left lead, ii) the random region, and iii) the right
lead; see Fig. 1.

lex

i)Left lead ii)Random iii)Right lead
ẑ

FIG. 1: A disordered magnet (blue) is sandwiched
between two ferromagnets (red). In regions i) and iii),
ni = ẑ, while in region ii) ni, is uniformly distributed
on the unit sphere. Consequently, the spins in region ii)
point in random directions, while the spins deep inside
regions i) and iii) point in the z-direction. The spins
close to the two interfaces rotate similar to the spins in
a domain wall. The length of the domain-wall-like
region is illustrated and given by the exchange length
lex =

√
J/Kd.

In regions i) and iii), we let the number of spins be equal
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to NL and NR, respectively. In addition, we let ni point
in the ẑ-direction. In region ii), we let the number of
spins be equal to Nrand and ni to point in some random
direction uniformly distributed on the unit sphere. Note
that far away from the random region (deep inside of the
leads), the spins point in the ẑ-direction, while in the
random region, the spins are oriented randomly. In the
regions close to the interface, the spins are rotating in a
domain-wall-like fashion. The length of this domain-wall
region is given by the exchange length lex =

√
J/Kd.

The scattering problem that we are interested in study-
ing can now be realized by exciting coherent spin waves
in the left lead propagating towards the random region.
As the spin wave approaches the random region, it will be
scattered either back into the left lead (reflection) or into
the right lead (transmission). We assume semi-infinite
leads such that NL and NR −→∞.

C. The ground state

Determining the true ground state of a disordered mag-
net (collinear or noncollinear) is a very challenging prob-
lem. The primary reason is that the randomness results
in free energy with many nearly degenerate minima, sepa-
rated by high energy barriers. The problem of determin-
ing the exact ground state of disordered systems is its
own research field, and we do not wish to address that
problem here [83–94]. However, due to the high energy
barriers, the probability of tunneling between different
metastable states is small. Hence, in an experiment, the
disordered magnet becomes trapped in a state that may
differ from the exact ground state when the system is
cooled down, depending on the history. Thus, in this
paper, we study the transport properties of disordered
magnets around classical metastable states.

We can find a classical metastable state of the system
by treating the spins as classical vectors obeying the LLG
equation of the form

dSi
dt

= −γSi ×Hκi − λSi × (Si ×Hκi ) . (2)

Here, the first term with γ > 0 describes the spin Si
precessing around its instantaneous effective field Hκi =
−δHκ/δSi, while the second term describes the damp-
ing towards the direction of the instantaneous effective
field. The metastable state is then obtained by specify-
ing some arbitrary initial configuration and allowing the
spins to evolve according to this equation for sufficiently
long times t −→∞.

III. SCATTERING THEORY

In this section we outline the theoretical approach that
we will use to determine the transport properties of the
RFM and the RAM. We start by determining the lin-
earized equations of motion, and formulate the scatter-

ing problem. Finally, we derive the expressions for the
spin current and spin conductance in the linear response
regime.

A. Hamiltonian in terms of spin-wave operators

To study the transport properties of the system, we
can perform a Holstein-Primakoff expansion around one
of the metastable states. Let us at each site i define
a local coordinate system {êx(i), êy(i), êz(i)} such that
êz(i) is parallel to the spin at site i in the ground state.
The spin operator in a low-lying excited state can then
be written as

Si = êz(i)S
z
i + êx(i)Sxi + êy(i)Syi . (3)

We perform a Holstein-Primakoff transformation of the
form

Sxi ≈
√
S

2

(
ai + a†i

)
, (4a)

Syi ≈ −i
√
S

2

(
ai − a†i

)
, (4b)

Szi = S − a†iai. (4c)

In Eq. (4), we have only included the lowest-order terms
because we are not interested in studying the interactions
between the spin waves. If we substitute Eqs. (3) and
(4) into Eq. (1) and introduce the notations ê±(i) =
êx(i)±iêy(i) and n±i = nxi ±in

y
i , we obtain a Hamiltonian

of the form

Hκ =
∑
ij

Aκija
†
iaj +Bκijaiaj + h.c, (5)

where

Aκij = δi,j

{
JSêz(i)êz(i+ 1) +

1

2
Knzi

+ κ
[
KS(nzi )

2 − 1

2
KSn−i n

+
i −

1

2
Knzi

]}
− JS

2
δi,j+1ê−(i)ê+(j),

Bκij = −κKS
2

(n−i )2δi,j −
JS

2
ê−(i)ê−(i+ 1)δi,j+1.

(6)

In the following, we will study the spin waves associated
with the Hamiltonian of Eq. (5).

B. Equations of motion

The equations of motion for the spin-wave operators
can now be calculated from the Heisenberg equation

d

dt
a±i =

i

h̄

[
Hκ, a±i

]
. (7)

For clarity, we reinstate the spin operators {Sxi , S
y
i } using

Eq. (4) and cast the equation of motion in the form
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h̄
dSxj
dt

= JS
{
êz(j)

[
êz(j + 1) + êz(j − 1)

]
Syj

− êy(j − 1)êy(j)Syj−1 − êx(j − 1)êy(j)Sxj−1 − êy(j)êy(j + 1)Syj+1 − êy(j)êx(j + 1)Sxj+1

}
+KnzjS

y
j + κ

{
2KS(nzj )

2Syj − 2KS(nyj )2Syj − 2KSnxjn
y
jS

x
j −KnzjS

y
j

}
,

(8)

h̄
dSyj
dt

= JS
{
− êz(j)

[
êz(j + 1) + êz(j − 1)

]
Sxj

+ êx(j − 1)êx(j)Sxj−1 + êy(j − 1)êx(j)Syj−1 + êx(j)êx(j + 1)Sxj+1 + êx(j)êy(j + 1)Syj+1

}
−KnzjSxj − κ

{
2KS(nzj )

2Sxj − 2KS(nxj )2Syj − 2KSnxjn
y
jS

y
j +KnzjS

y
j

}
.

(9)

Eqs. (8) and (9) are identical to the linearized classical
Landau-Lifshitz equations expressed in the local coordi-
nate system {êx(j), êy(j), êz(j)}. Since we are only in-
terested in studying how the intrinsic disorder affects the
transport properties of the system, we have not included
a Gilbert damping term.

C. Scattering problem and solution ansatz

Eqs. (8) and (9) can be solved numerically in the classi-
cal regime, where we treat the spin operators as classical
vectors. The spin-wave solutions are the normal modes
of the system and precess with the same frequency ω.
Therefore, we can factorize out the time dependence of
the spin operators as e−iωt.

Deep inside the leads, the spins at neighboring sites are
pointing in the z-direction; see Fig. 1. This considerably
simplifies the equations of motions in the leads

− ih̄ωSxj = JS
(
2Syj − S

y
j−1 − S

y
j+1

)
+K (1 + κ (2S − 1))Syj ,

− ih̄ωSyj = JS
(
−2Sxj + Sxj−1 + Sxj+1

)
−K (1 + κ (2S − 1))Sxj .

(10)

The system behaves as a ferromagnet with an external
field or intrinsic anisotropy in the z-direction. The solu-
tions are therefore circularly polarized plane waves trav-
eling with a fixed wavenumber q and frequency ω. The
dispersion relation can be determined by substituting the
ansatze Sjx = eiqjd and Sjy = −ieiqjd into Eq. (10). The
result is

ε = h̄ω = 2JS (1− cos qd) +K (1 + κ (2S − 1)) . (11)

Let us now formulate the scattering problem. Deep
inside the regions i) and iii) in Fig. 1, we know that the
solution must have the form

Sxj = eiqjd + rxe
−iqjd,

Syj = −i
(
eiqjd + rye

−iqjd) , (12)

and

Sxj = txe
iqjd,

Syj = −itye−iqjd,
(13)

respectively. Inside region ii), we know that the spin
components must satisfy Eqs. (8) and (9). Using the
ansatze as boundary conditions, we have found a finite
set of algebraic equations that we can solve numerically
to determine the reflection and transmission amplitudes
{rx, ry, tx, ty} as functions of ε.

D. Spin current and conductance

Once we know the reflection and transmission ampli-
tude, we can calculate the spin conductance of the disor-
dered magnet utilizing the Landauer-Büttiker formalism
in the linear response regime. In this section, we derive
the expression for spin conductance.

In the leads, the Hamiltonian in Eq. (5) simplifies to

Hκ =
∑
i

(2JS +K (1 + κ (2S − 1))) a†iai

− JS
(
aja
†
j+1 + a†jaj+1

)
.

(14)

From the equation of motion,

d

dt
Ni =

i

h̄

[
Ni, H

κ
]

= −iJS
{(
a†j+1aj − a

†
jaj+1

)
+
(
a†j−1aj − a

†
jaj−1

)}
(15)

where Ni = a†iai is the number operator, and we can
extract the spin current from site j to j + 1 as

Ij,j+1 = iJS
(
a†j+1aj − a

†
jaj+1

)
. (16)
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Now consider the situation in Fig. 2, where two reser-
voirs in thermodynamic equilibrium are attached to two
leads with a scattering region between them. If the spin
accumulation in the left reservoir µL is greater than the
spin accumulation in the right reservoir µR, the spin cur-
rent in Eq. (16) will flow from the left to the right reser-
voir. We define the operators αL,R(q) and βL,R(q) in-
jecting and removing magnons with wavenumbers q into
the leads, respectively. The relationship between these
operators is given by the scattering matrix(

βL(q)
βR(q)

)
=

(
r t′

t r′

)(
αL(q)
αR(q)

)
, (17)

where r (r′) and t (t′) are the reflection and transmission
amplitudes, respectively, for a spin wave originating from
the left (right) lead.

αL(q)

βL(q)

αR(q)

βR(q)

µL µR

FIG. 2: A disordered magnet (blue) is sandwiched
between two ferromagnetic leads (red). The leads are
connected to two spin reservoirs (green) with spin
accumulations µL and µR. The reservoirs are in
thermodynamic equilibrium such that the magnon
population is characterized by the Bose-Einstein
distribution. A spin current is induced when there is a
nonzero spin bias δµ = µL − µR.

In the left lead, we can express aj as [95]

aj =

∫ π/d

0

dq

2π/d

[
eiqjdαL(q) + eiqjdβL(q)

]
. (18)

If we substitute Eq. (18) and its complex conjugate into
Eq. (16) and utilize that the leads are in thermal equilib-

rium with the reservoirs such that 〈α†L,R(q1)αL,R(q2)〉 =
2π
d δ(q1 − q2)fL,R(q1), we find that

〈Ij,j+1〉 =
1

2π

∫ εmax

εmin

dε T (ε) (fL(ε)− fR(ε)) . (19)

In this expression, fL,R(ε) represents the Bose-Einstein
distributions in the left and right reservoirs, respectively,
and T (ε) = |t|2. The integration limits are obtained from
Eq. (11).

Assume that the spin accumulation in the left lead is
µL = µ+ δµ and that the spin accumulation in the right
lead is µR = µ, where δµ/µ � 1. We find that in the
linear response, the spin conductance is given by

G =
1

2π

∫ ε̃max

ε̃min

dε̃ T (ε̃)

(
−df
dε̃

)
. (20)

This result can also be derived using Green’s func-
tions [96]. In Eq. (20), we are integrating over the di-
mensionless energies ε̃ = ε/J . Energies outside of the
integration interval result in the spin waves in Eqs. (12)
and (13) becoming evanescent waves that do not con-
tribute to the spin conductance.

IV. RESULTS AND DISCUSSION

For each realization of the system, we find that rx =
ry ≡ r and that tx = ty ≡ t, reflecting the fact that
inside the leads, the spin waves are circularly polarized.
Furthermore, we define R = |r|2 and T = |t|2 as the re-
flection and transmission probabilities, respectively, and
find that R + T = 1. Since R and T depend on the
realization of the system, we must perform an ensemble
average 〈. . . 〉 to obtain physically meaningful quantities.
In our calculations, we used 103 different realizations for
the random vectors ni. In Fig. 3, we plotted 〈T 〉 and
〈lnT 〉 as a function of ε̃ for different values of K/J and
a fixed system length L = Nrandd. In the remainder of
this paper we set d = 1 for convenience.

A. Transmission probability

As the system becomes more disordered, the trans-
mission probability decreases for both the RFM and the
RAM. However, Fig. 3 demonstrates that the quantita-
tive behavior of the localization is significantly different
in the two models. In both models, as K/J increases, the
maxima 〈T 〉max and 〈lnT 〉max shift towards higher ε̃, but
in the RAM, this shift is greater than that in the RFM.
In addition, the peak in the transmission probability is
wider in the RAM compared to the RFM for small K/J .
Thus, a broader range of spin waves can pass through
the RAM compared to the RFM in the limit of weak
disorder.

FIG. 3: The behaviors of 〈T 〉 and 〈lnT 〉 as a function of ε̃

and K/J .
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We can understand the difference in width from the
Hamiltonian in Eq. (1). In the RAM, the term causing

disorder is (Si · ni)2; thus, the spin Si wants to point
either parallel or antiparallel to ni. The spin is also cou-
pled to its neighbors through the exchange interaction.
Therefore, in the RAM, whether the spin Si chooses to
point parallel or antiparallel to ni depends on the neigh-
boring spins. Meanwhile, in the RFM, the term causing
disorder is Si · ni, and the spin wants to only point par-
allel to ni. The ability to select whether to point parallel
or antiparallel to ni leads to the spin chains in the RAM
being less disordered than the spin chains in the RFM,
which in turn leads to a broader peak in the transmission
probability.

B. Self-averaging

In disordered systems, certain quantities are not self-
averaging in the thermodynamic limit. This is well
known in disordered fermionic systems and is expected
to be a general feature of a broad spectrum of disor-
dered systems [97]. A test to determine whether a quan-
tity O is self-averaging is to check whether the relative
variance RVO = Var(O)/〈O〉2 vanishes (or is sufficiently
small) in the limit L −→ ∞. For the fermionic 1D An-
derson model with on-site disorder, one finds that the
transmission probability and hence the conductance are
not self-averaging [98]. In two and three dimensions, one
finds that the logarithms ln(T ), ln(G) are self-averaging
such that RVlnG ∼ L−D (D = 2, 3) [97, 99]. In one di-
mension at finite temperature, one finds that lnG is only
marginally self-averaging because RVlnG decays logarith-
mically with L [99–101].

FIG. 4: The length dependence of the relative variances

RVG, RVlnG, RVT , and RVlnT for the RFM and the RAM.

The strength of disorder is K/J = 0.4.

As expected, we find similar results in this work. Fig. 4
shows that the relative variances RVT and RVG increase

with the length of the system. In addition, the relative
variances RVlnT and RVlnG decrease with the length
of the system. Hence, as the length of the system in-
creases, the fluctuations in T and G become much greater
than the corresponding expectation values, meaning that
they are not representative variables in the thermody-
namic limit. Therefore, we use {ln(T ), ln(G)}, rather
than {T,G}, to calculate the localization lengths of the
system.

C. The localization length

In this work, it is natural to define two types of lo-
calization lengths. The first is based on the maximum
of the transmission amplitude 〈lnT 〉max in Fig. 3. The
second is based on the conductance 〈lnG〉. We refer to

these localization lengths as L̃lnT and L̃lnG, respectively.
In Fig. 5, we plotted 〈lnT 〉max and 〈lnG〉 as a function

of the system length L for a fixed K/J and temperature

T̃ = kT/J . We have performed a curve fit with the
functions

〈lnT 〉max =
L

L̃lnT

+A (21)

and

〈lnG〉 =
L

L̃lnG

+B (22)

such that the localization length can be extracted as the
gradient of the straight lines in Fig. 5. In this particu-
lar case, we found a coefficient of determination R2 with
the value R2 = 0.95 indicating a good fit. To determine

FIG. 5: The length dependence of 〈lnG〉 and 〈lnT 〉max for

the RFM can be approximated with a linear fit. The

strength of disorder is K/J = 0.4, and the temperature is

T̃ = 0.05.

the localization lengths as a function of K/J , we per-
formed straight line curve fits for graphs such as those
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found in Fig. 5 but with different K/J and T̃ . In all
cases, we found that the coefficient of determination was
in the range (0.9, 1) and that the average coefficient was
〈R2〉 = 0.95, indicating reasonably good straight-line fits.
By then calculating the gradient of these straight lines,
we can estimate the localization lengths as a function of
K/J .

1. Localization length from transmission

In Fig. 6, we plot the localization length L̃lnT and the
95%−confidence interval for the RAM and RFM, respec-
tively. In both cases, we have performed a curve fit with
the function

L̃lnT = η

(
K

J

)ν
+ ξ. (23)

The parameters (with confidence intervals) are displayed
in Table I. Similar to fermionic systems [102], we find that
the localization length decays monotonically as a power
law as we increase the strength of disorder. Our result
can be made more universal by introducing the exchange
length such that

L̃lnT = η (lex)
−2ν

+ ξ. (24)

Note that for weak disorder, the localization length is
greater in the RAM than in the RFM. This is a conse-
quence of the fact that the spin chains are less disordered
in the RAM compared to the RFM, as we discussed at
the end of section IV A.

FIG. 6: The behavior of L̃lnT as a function of K/J for the

RAM and the RFM, respectively. The line represents the

numerical fit in Eq. (23), the dashed lines represent the 95%

confidence interval, and the points with error bars represent

the localization length calculated from Eqs. (8) and (9) with

standard error.

TABLE I: The numerical values of the parameters in
Eq. (23) for the RFM and the RAM. The brackets (. . . )
give the 95% confidence interval.

RFM RAM

η 1.3 (0.7, 2.0) 0.2 (0.1, 0.3)

ν −1.2 (−1.4,−1.0) −2.2 (−2.4,−2.0)

ξ 1.1 (0.3, 1.9) 1.6 (1.0, 2.1)

2. Localization length from conductance

In Fig. (7), we plot L̃lnG as a function of K/J for

different temperatures T̃ . There is an interval K/J ≈
(0.5, 2) where the localization length increases for small

T̃ . Furthermore, for sufficiently large T̃ , this interval van-
ishes such that the localization length decays monotoni-
cally for all K/J . This nontrivial behavior arises because
there is a competition between the temperature depen-
dence of the broadening function −df/dε̃ and the disorder
dependence of the transmission probability T (ε̃) in Eq.
(20). As the temperature increases, the broadening func-
tion excites an increasing number of magnons, which in
turn leads to a greater conductance. Meanwhile, as the
system becomes more disordered, the transmission prob-

ability T (ε̃) decreases, resulting in a smaller conductance.
On the interval K/J ≈ (0.5, 2), the increase in conduc-
tance due to temperature is greater than the decrease in
conductance due to disorder, which results in an increase
in localization length. Furthermore, in this interval, the
localization length is comparable to the lattice spacing d,
which means that there may be complicated microscopic
details of the model that may further enhance this effect.

Due to the complicated temperature and disorder de-
pendence, it is numerically challenging to determine a
closed formula such as the one in Eq. (23) for the local-

ization length L̃lnG. However, in the weak-disorder limit
K/J −→ 0, it is reasonable to assume that the localization
length decays as a power law of the form

LlnG ∼
(
K

J

)γ
= (lex)

−2γ
(25)

where γ is the critical exponent. Fig. 8 shows the result
of such a curve fit for the RFM and the RAM for differ-
ent temperatures. The corresponding critical exponents
γRFM and γRAM are given in Table II.

In our simulations, we kept the temperature below the
Curie temperature T̃ = 1, where the temperature fluctua-
tions of the spins are negligible. For temperatures T̃ ≈ 1,
there will be additional temperature-induced disorder.
This issue has previously been investigated [73, 103, 104]
by including a temperature-dependent stochastic field in
the effective field Hκi in Eq. (2), and it was found that
temperature fluctuations shorten the localization length
and enhance the Anderson localization.
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FIG. 7: The temperature dependence of L̃lnG for strongly
disordered magnetic insulators.

TABLE II: The numerical values of the critical exponent
for the RFM and the RAM for different temperatures.
The brackets (. . . ) provide the 95% confidence interval.

T̃ γRFM γRAM

0.05 −3.8 (−4.3,−3.4) −1.9 (−2.3,−1.6)

0.1 −3.7 (−4.2,−3.2) −1.7 (−2.0,−1.4)

0.2 −3.6 (−4.1,−3.1) −1.3 (−1.6,−1.0)

0.5 −3.3 (−3.8,−2.8) −0.7 (−1.0,−0.4)

V. SUMMARY AND CONCLUSIONS

In this paper, we have applied the Landauer-Büttiker
formalism to noncollinear disordered magnetic insula-
tors. We have considered both amorphous magnets and
magnets with spin disorder modeled by the RAM and
the RFM respectively. We calculated the self-averaging
quantities 〈lnT 〉 and 〈lnG〉 as a function of system length
L for a broad range of disorder strengths K/J . Consis-
tent with the literature, we found evidence for Ander-
son localization such that 〈lnT 〉 and 〈lnG〉 were linear
functions of the system length L. This allowed us to de-
fine two localization lengths L̃lnG and L̃lnT based on the
conductance and the maximum transmission probability,
respectively. In the limit of weak disorder, the localiza-
tion lengths obeyed power laws, and we calculated the

FIG. 8: The temperature dependence of L̃lnG in the limit
of weak disorder K/J −→ 0.

relevant critical exponents. We expect our results to be
general because they are expressed through the universal
exchange length lex.

We found that the Anderson localization is more
prominent in the RFM than in the RAM. The reason
for this result is that the competition between the ex-
change interaction and the disorder term leads to more
disordered spin chains in the RFM than in the RAM. The
spin chains in the RAM are less disordered because the
disorder arises from a random anisotropy, where the spin
can point either parallel or antiparallel to the anisotropy
with the same energy cost. Whether the spin points par-
allel or antiparallel to the anisotropy is determined by the
neighboring spins through the exchange interaction, and
consequently, the configuration with the least disorder
will be chosen by the system.

The results obtained here are valid in the limit of
quenched disorder, i.e., T̃ � 1, where the random field
and anisotropy are temperature independent. If the tem-
perature is close to the Curie temperature of the sys-
tem, one must include temperature fluctuations in the
Landau-Lifshitz equations. Such effects have been con-
sidered in other works, and it has been shown that tem-
perature fluctuations decrease the localization length.

To experimentally verify the critical exponents ob-
tained in this paper, we propose a setup in which a dis-
ordered magnetic nanowire is sandwiched between two
normal metals. Similar setups for ordered magnets have
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been considered in other works [11–25]. By applying a
charge current in the left metal, the spin Hall effect gen-
erates a spin current through the disordered nanowire
and into the right metal. This will give rise to a spin
wave propagating through the hybrid structure and into
the right metal, where the spin current is converted into
a charge current via the inverse spin Hall effect.

Alternatively, we can instead sandwich a disordered
magnet between two ferromagnetic leads. We can ex-
cite spin waves in the left ferromagnet by applying a mi-
crowave with the ferromagnet resonance frequency. This
spin wave will then propagate through the disordered in-
sulator and into the right ferromagnet, where the result-
ing spin current can be measured. By measuring the spin

current propagating through the disordered region, one
should be able to characterize the localization length in
terms of the critical exponents of the system.
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