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Approximating the electron repulsion integrals using an inner projection method,

such as Cholesky decomposition, is a well established approach to reduce the com-

putational demands of electronic structure calculations. Here we present a two-step

Cholesky decomposition algorithm where only the elements of the Cholesky basis (the

pivots) are determined in the pivoting procedure. This allows for improved screening,

significantly reducing memory usage and computational cost. After the pivots have

been determined, the Cholesky vectors are constructed using the inner projection for-

mulation. We also propose a partitioned decomposition approach where the Cholesky

basis is chosen from a reduced set generated by decomposing diagonal blocks of the

matrix. The algorithm extends the application range of the methodology and is well

suited for multilevel methods. We apply the algorithm to systems with up to 80000

atomic orbitals.
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I. INTRODUCTION

The Beebe-Linderberg1 algorithm for the Cholesky decomposition of the electron repul-

sion integral matrix was developed in the 1970s. Beebe and Linderberg observed that, given

the rank-deficiency of the matrix, significant computational savings are obtainable through

decomposition. Furthermore, they identified the approach as an inner projection in the sense

introduced by Löwdin.2,3 The algorithm was later modified to include screening by Røeggen

and Wisløff-Nilssen,4 who also demonstrated that the numerical rank is proportional to the

number of atomic orbitals, as had already been suggested.1 An algorithm suited for large-

scale applications was first proposed in 2003 by Koch, Sánchez de Merás and Pedersen.5 This

algorithm was implemented in Dalton6 and subsequently included in the Molcas program.7,8

A number of applications based on the Cholesky decomposition of the integrals have since

been published.9–12

The resolution of identity (RI) method, also called density fitting,13 is an inner projection

technique introduced by Vahtras, Almlöf and Feyereisen.14 In RI, the inner projection is onto

the space spanned by an auxiliary basis. The use of prefitted auxiliary basis sets in this

projection has gained much popularity.15,16 Cholesky decomposition and RI are equivalent

if the auxiliary basis is chosen to be the Cholesky basis. With a Cholesky basis, the error

introduced by inner projection is rigorously controlled by the decomposition threshold. This

property is not shared by prefitted basis sets.

One advantage of preoptimized auxiliary bases is that they are usually one-centered,

making the integrals at most three-centered and therefore computationally cheaper. A

Cholesky basis, on the other hand, typically includes many two-center functions. Pedersen

and coworkers have advocated the atomic (aCD) and one-center (1C-CD) decomposition

methods, where the Cholesky basis is restricted to one-center functions.17 These methods

necessarily imply a certain loss of accuracy. Nevertheless, the auxiliary basis sets of aCD

and 1C-CD are, unlike prefitted bases, not biased toward any method or specific quantity

while retaining the advantages of preoptimized RI.17,18

Alternatively, the computational cost of a Cholesky decomposition may be reduced by

controlling the error in method specific quantities, such as the Coulomb or exchange en-

ergies, rather than the electron repulsion integrals. This type of method specific Cholesky

decomposition has been shown to substantially reduce the size of the auxiliary basis with no
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added loss of accuracy in the target quantities.19 The approach is well suited for multilevel

methods, where only subsets of integrals are needed in the correlated treatments.20–22

To be generally applicable, an integral approximation scheme must have analytic geomet-

ric derivatives. Such derivatives are easily derived for RI using prefitted auxiliary bases.23

Although not apparent in the early discussion of gradients by O’neal and Simons,24 the

equivalence of RI and Cholesky decomposition implies that analogous gradient expressions

exist for Cholesky decomposed integrals. Recently, this was exploited to formulate and

implement analytic gradients by Aquilante, Lindh and Pedersen.25

In this contribution, we propose a two-step algorithm where only the elements of the

auxiliary basis are determined in the pivoting procedure (step I). Once the basis has been

identified, the Cholesky vectors are constructed using the RI formulation of Cholesky de-

composition (step II). As a consequence, both the columns and rows of the integral matrix

may be screened in step I, giving a reduction in both memory usage and computational cost.

The idea of a two-step algorithm, where the basis is determined in step I, was proposed in

Ref. 12. Here we present an efficient implementation of the first step, fully exploiting the

available screening, and introduce the RI-approach to construct the Cholesky vectors in the

second step.

By restricting the set of Cholesky basis elements and/or changing the screening criterion

in the algorithm, a number of decomposition approaches are readily obtained. To illustrate

this flexibility, we have, in addition to the regular decomposition of the electron repulsion

integrals, implemented 1C-CD17 and a Cholesky decomposition for multilevel calculations.

We also present a Cholesky decomposition where, initially, diagonal blocks of the matrix are

decomposed separately in order to qualify elements for the Cholesky basis. This partitioned

Cholesky decomposition (PCD) offers significant computational and memory savings.

II. THEORY

The electron repulsion integral matrix M is symmetric positive semidefinite and may

therefore be Cholesky decomposed,

Mαβ,γδ = (αβ|γδ) =
∑
J

LJαβL
J
γδ = (LLT )αβ,γδ, (1)
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FIG. 1. While determining the basis B, we screen out elements of M and L that are no longer

needed. This means that we consider Mpq and LJp for p, q ∈ D and J ∈ B. Only L is kept in

memory throughout the decomposition procedure.

where α, β, . . . denote the real atomic orbitals (AOs) {χα(r)}α. Alternatively, M may be

expressed as an inner projection,

Mαβ,γδ =
∑
JK

(αβ|ρJ)(S−1)JK(ρK |γδ), (2)

where SJK = (ρJ |ρK). The auxiliary functions {ρJ(r)}J form a basis for the space spanned

by {χγ(r)χδ(r)}γδ. Since S = QQT, where Q is the Cholesky factor of S, we may identify

the Cholesky vectors as

LJαβ =
∑
K

(αβ|ρK)Q−TKJ . (3)

That is, a Cholesky decomposition is equivalent to an RI approximation.1,14

The simplicity of the Cholesky decomposition approach is most easily seen from the full-

pivoting algorithm, where one first selects the largest diagonal element MJJ as the pivot.

Then, the corresponding Cholesky vector

LJp =
MpJ√
MJJ

(4)

is constructed. Finally, M is updated according to

Mpq ←Mpq − LJpLJq . (5)

These steps are repeated until all diagonal elements of M are below a given threshold τ > 0.

From the Cauchy-Schwarz inequality,

M2
pq ≤MppMqq, (6)
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all elements of M will then be smaller than τ in absolute value. We may thus conclude that

Mpq ≈
∑
J

LJpL
J
q , (7)

where the error in Mpq is less than τ . However, the full-pivoting algorithm is not well

suited to decompose the integral matrix. As the electron repulsion integrals are computed

in batches of shell quartets, and as the matrix is generally to large to store, specialized

algorithms are necessary.

We propose an algorithm where only the pivot indices B = {J}J are determined in the

pivoting procedure. As contributions from new vectors are subtracted from M , its diagonal

elements decrease monotonously. Consequently, a diagonal Dp = Mpp below τ will never

be selected as a pivot element. Since we only determine the pivots, we may screen out

elements Mpq for which at least one of the corresponding diagonals, Dp or Dq, is below τ ,

thus applying the same screening on the rows and columns of M . In algorithms where the

Cholesky vectors are constructed during the pivoting procedure, screening on the rows of M

must instead be with respect to the Cauchy-Schwarz inequality.5

Below we outline the procedure to determine B (step I):

1. Define a set D0 of initial diagonals from which elements in B are to be selected.

2. Set B = {}.

3. Determine the significant diagonal indices D. The standard criterion is that p ∈ D if

p ∈ D0 and Dp ≥ τ . For J ∈ B, only keep LJp for p ∈ D. See Fig. 1. If there are no

elements in D, stop. Otherwise, move on to step 4.

4. Find Dmax = maxp∈DDp and determine the set of qualified diagonal indices Q,

Q = {p ∈ D : Dp ≥ σDmax}, (8)

such that the number of elements in Q does not exceed a user-specified maximum.

The parameter σ, which ensures that qualified diagonals are not too small, is called

the span factor.

5. For each q ∈ Q compute Mpq for all p ∈ D. If there are any previous Cholesky vectors,

subtract their contributions to M :

M̃pq = Mpq −
∑
J∈B

LJpL
J
q , p ∈ D, q ∈ Q. (9)
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6. Let C be the set of qualified indices for which the associated Cholesky vector has been

constructed. Initially, C = {}. As long as there is a significant diagonal in Q, select

q ∈ Q such that Dq = maxp∈QDp, construct the Cholesky vector

Lqp =
M̃pq −

∑
J∈C L

J
pL

J
q√

M̃qq

, p ∈ D, q ∈ Q, (10)

update Q and C,

Q = Q \ {q}, C = C ∪ {q}, (11)

and the diagonal elements,

Dp = Dp − (Lqp)
2, p ∈ D. (12)

7. Finally, update the pivots B,

B = B ∪ C, (13)

and return to step 3.

The memory needed for the Cholesky vectors reaches a maximum during the pivoting

procedure and then drops off due to the reduction in the number of elements in D; we only

keep LJp for p ∈ D. When B has been determined, D is empty, and the memory requirement

has therefore dropped to zero.

Having determined B (step I), we need to construct the Cholesky vectors (step II). When

M is the electron repulsion integral matrix, each pivot J = γδ ∈ B defines a Cholesky basis

function ρJ(r) = χγ(r)χδ(r). The RI expression,

LJαβ =
∑
K∈B

(αβ|K)Q−TKJ , J ∈ B, (14)

may then be used to construct the Cholesky vectors. We decompose S and then invert Q.

Note, however, that Q may be inverted while S is decomposed.26 To construct LJαβ, we use

the Cauchy-Schwarz screening

(αβ|K)2 ≤ (αβ|αβ) ·max
γδ

Dγδ ≤
(
min(τ, 10−8)

)2
, (15)

meaning that we set LJαβ = 0 if αβ satisfies the criterion in Eq. (15).
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From the RI formulation, an integral-direct approach is available. By storing Q−1 and B,

the Cholesky vector LJαβ may be constructed on-the-fly from Eq. (14). This may be useful

for systems where L cannot be stored—the memory required would be proportional to N2
AO

rather than N3
AO.

We use the Libint integral package,27 in which (αβ|γδ) is computed together with all

the integrals in the shell quadruple (AB|CD), where α ∈ A, β ∈ B, γ ∈ C, and δ ∈ D.

Therefore, the screening and qualification steps are modified such that shell pairs are treated

instead of AO pairs. For instance, αβ ∈ D if at least one diagonal in AB exceeds τ . There is

also a trade-off between numerical stability and efficiency: we want to both qualify diagonal

indices (add AO pairs to Q) in descending order and compute as few integrals as possible.

Shell pairs AB are therefore ordered with respect to their maximal diagonal element

DAB
max = max

αβ∈AB
Dαβ. (16)

Diagonals are then qualified from the AB with the largest diagonal before the next shell

pair in the ordered list is considered. To ensure that selected diagonals are not too small,

we use σ = 10−2. In this way, Q may involve relatively few shell pairs while also containing

potential basis elements J = αβ associated with large diagonals Dαβ.5 Similarly, when the

Cholesky vectors are constructed from Eq. (14), the screening in Eq. (15) is with respect to

shell pairs, not individual AO pairs.

The procedure described thus far reproduces the integral matrix to within the decomposi-

tion threshold τ . However, the framework easily allows for method specific approximations

that further reduce the number of elements in B. We have implemented an active space

screening where the target quantities are the molecular orbital (MO) integrals in a selected

active space. First, the occupied and virtual AO densities, Do and Dv = S−1 −Do, are

Cholesky decomposed with the restriction that pivot elements are centered on active atoms.

This results in the active occupied density,

(Do
a)αβ =

∑
i

Ca
αiC

a
βi, (17)

and the active virtual density,

(Dv
a)αβ =

∑
a

Ca
αaC

a
βa. (18)
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The inactive densities are defined as Do
i = Do−Do

a and Dv
i = Dv

a−Dv.28,29 To generate the

active orbital space, we have adopted the multilevel Hartree-Fock approach of Sæther and

coworkers;22 they use, as Do, a superposition of atomic densities30 guess that has been made

idempotent by a single Fock matrix diagonalization. We define the active space screening

by replacing the requirements on the diagonals (in steps 2, 3, and 5) with

D = {αβ : (αβ|αβ)vαvβ ≥ τ}, (19)

where

vα = max
p

(Ca
αp)

2. (20)

The accuracy of the active MO integrals, rather than the AO integrals, is then controlled

by the decomposition threshold τ . The reader is referred to Boman et al.19 for more details

on the method specific decomposition approach.

Similarly, only a minor modification of the algorithm is needed to obtain the one-center

approximation 1C-CD. In 1C-CD, the J = γδ are selected such that χγ(r) and χδ(r) are

centered on the same atom.17 To implement 1C-CD, we altered the initial screening to

exclude all γδ from D that do not satisfy the one-center requirement.

III. RESULTS AND DISCUSSION

The algorithm was implemented in eT, a coupled cluster program currently under devel-

opment by the authors and collaborators. To demonstrate its performance, we report wall

time comparisons to the OpenMolcas program7 on the formaldehyde-water system in Fig. 2.

In these calculations, we use the Dunning basis sets aug-cc-pVXZ, X ∈ {D,T,Q, 5}.34 The

results are summarized in Table I. Compared to OpenMolcas, the total decomposition time

T is reduced by about an order of magnitude. Consequently, as the number of AOs increase,

T rapidly becomes negligible compared to the time spent converging the Hartree-Fock equa-

tions. For all decompositions in Table I using eT, we computed the maximum error on the

diagonal of the approximated integral matrix LLT . As M − LLT is positive semidefinite,

it follows from the Cauchy-Schwarz inequality that the element with the largest error is on

the diagonal. For all basis sets, we found that the largest error in LLT was less than τ .

The memory required to hold L varies as expected, see Fig. 3. It increases to a maximum

during the decomposition and then drops off to zero, giving a large reduction in memory
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FIG. 2. Formaldehyde surrounded by ten water molecules.

usage compared to the previous algorithms.5 However, to reduce the memory requirements

further, the following partitioned matrix algorithm may be used. First, the significant

diagonal is partitioned, D = D1 ∪ D2 ∪ ... ∪ DK , and each diagonal batch decomposed

separately, resulting in B1,B2, . . . , and BK . A final decomposition is then performed using

D = B1 ∪ B2 ∪ . . . ∪ BK . With this approach, the decomposition threshold τ is not an

upper bound on the error. However, we have found that the error is controlled by τ in

practice. The error may be lowered by decreasing τ in all decompositions or only in the

final decomposition. We present calculations on the formaldehyde-water system using the

aug-cc-pV5Z basis for a set of K values, see Table II. The peak memory usage is significantly

reduced for all K considered, and the time to determine B and Q−1 is reduced by up to a

factor of two.
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FIG. 3. Memory required to hold the Cholesky vectors L in each iteration of the decomposition

for formaldehyde surrounded by ten water molecules.

Method specific screenings may also be used to treat large systems. Here we apply a

multilevel screening, where regions of the system are chosen to be active and the target

quantities are the active space MO integrals. We consider an active formaldehyde molecule

surrounded by 10–200 water molecules. In Fig. 4, we show the number of vectors obtained

with the standard and active space screenings defined in Eqs. (??) and (19). With the

standard screening, the number of Cholesky vectors increases linearly with system size,

whereas it flattens out with the active space screening. We construct the active orbitals

as follows. The active occupied orbitals are generated from Do by restricting the number

of pivots to equal half the number of electrons on the active atoms. In the general case,

one pivot is added if an active atom is bound to an inactive atom, effectively adding an

orbital to the active occupied space. Similarly, the number of pivots used to decompose Dv
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TABLE I. Wall time comparisons between eT and OpenMolcas7 for formaldehyde surrounded by

ten water molecules. The total decomposition time is T = T1 + T2, where T1 and T2 is time to

determine B and Q−1 and to construct the Cholesky vectors, respectively. Also given is the time

to converge the Hartree-Fock equations in QChem,31 TSCF. Time is in minutes unless other units

are specified. In all calculations, τ = 10−8. Timings were made on an Intel Xeon E5-2699 v4 with

1.5TB shared memory using 22 threads.

OpenMolcas eT QChema

NAO NJ T NJ T T1 T2 TSCF

aug-cc-pVDZ 474 5481 7 5374 63 s 35s 28s 94 s

aug-cc-pVTZ 1058 11184 70 11212 11 5 6 25

aug-cc-pVQZ 1972 19336 589 19297 79 34 45 249

aug-cc-pV5Z 3284 30635 5534 30950 498 186 312 7985

a Version 5.0.2.

is restricted such that one obtains the same fraction of virtual to occupied orbitals as in the

entire set of orbitals. Alternatively, a decomposition threshold may be used to determine

the number of pivots in the decomposition of Do and Dv.22

The algorithm may be used to decompose the integral matrix of systems with more than

ten thousand basis functions. With the method specific and one-center approaches, the

applicability of the algorithm is further extended. To show that the algorithm can tackle

large systems, we determine B and Q−1 for the DNA fragment in Fig. 5. The time T1

to determine B and Q−1, and NJ , are given in Table III. Decompositions using active

space screening and the one-center approximation are also listed. For the active space

calculations, a single thymine is active. Furthermore, we present full, active space, and

one-center calculations on retinal bound to rhodopsin, see Fig 6. Retinal is active in the

active space calculations. The number of Cholesky vectors is given in Table IV.

Finally, coupled cluster singles and doubles (CCSD)35 calculations were performed on the

formaldehyde-water system in Figure 2 using approximated integrals (pq|rs) =
∑NJ

J=1 L
J
pqL

J
rs.

The Cholesky-based CCSD calculations were performed using our spin adapted singlet CCSD

implementation in the eT program. In Table V we list CCSD correlation energies for different
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TABLE II. Cholesky decomposition with K diagonal batches on formaldehyde surrounded by ten

water molecules using the aug-cc-pV5Z basis. Here, NJ is the number of Cholesky vectors, T1 the

time to determine B and Q−1, and ε is the maximal error in the matrix M . Also given is the peak

memory requirement to hold the Cholesky vectors. In all calculations, τ = 10−8.

K NJ T1 [min] Memory [GB] ε

1 30950 186 134 < τ

2 30313 158 56 15τ

4 30374 123 22 17τ

6 30486 106 22 15τ

8 30450 90 24 19τ

10 30459 102 25 13τ

12 30407 103 28 16τ

τ using the CD and PCD decomposition methods. The results are compared to an RI-CCSD

calculation, using Psi4,32 and a calculation with exact electron repulsion integrals obtained

with the DALTON software.6 In Table VI, the lowest singlet excitation energy for different

τ is given and compared to the calculation using exact electron repulsion integrals.

As expected, the error in the correlation energy and excitation energy is proportional to

τ , reflecting the improved accuracy of the approximated integrals with decreasing τ . This

trend is observed for both the CD and PCD methods. Considering the RI-CCSD calculation,

we note that the error (1.4 · 10−3 Eh) is comparable to that of CD and PCD for τ = 10−3

(1.1 · 10−3 Eh and 1.2 · 10−3 Eh, respectively). However, the size of the RI auxiliary basis is

16% larger than the CD and PCD bases obtained with τ = 10−3. As the cost in non-integral-

direct post-HF methods depend on the number of auxiliary functions, CD and PCD is in

this case superior to prefitted RI. In the case of integral-direct implementations, however,

one must take into account that integrals involving the two-center functions of the Cholesky

bases are more expensive. We should mention that if an accuracy of < 1 mEh in ω is desired,

CD with τ = 10−2 is sufficient in this case.
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TABLE III. Full, active space and one-center Cholesky decompositions for the DNA fragment.

Here, NAO is the number of AOs, τ the decomposition threshold, NJ the number of Cholesky

vectors, and T1 is the wall time to determine B and Q−1.

Method Basis NAO τ NJ T1 [min]

Full decomposition aug-cc-pVDZ 15064

10−2 24591 49a

10−4 53742 532b

10−6 95403 1854b

10−8 158811 5506b

Active space decomposition
cc-pVDZ/aug-cc-pVTZ 9447 10−8 19375 20c

aug-cc-pVDZ/aug-cc-pVTZ 15341 10−8 90551 1389b

One-center decomposition aug-cc-pVDZ 15064
10−4 49533 54c

10−8 89489 802c

a Intel Xeon Gold 6152 and 1.5TB shared memory. Calculation on 44 threads.
b Intel Xeon Gold 6132 and 6TB shared memory. Calculation on 140 threads.
c Intel Xeon E5-2699 v4 and 1.5TB shared memory. Calculation on 22 threads.

TABLE IV. Full, active space and one-center Cholesky decompositions for the retinal-rhodopsin

system. Here, NAO is the number of AOs , τ is the decomposition threshold, and NJ is the number

of Cholesky vectors.

Method Basis NAO τ NJ

Full decomposition aug-cc-pVDZ 36787 10−4 124632

Active space decomposition cc-pVDZ/aug-cc-pVTZ 23134 10−8 77719

One-center decomposition

cc-pVDZ 21840 10−8 119357

aug-cc-pVDZ 36787 10−8 202935

aug-cc-pVDZ 36787 10−4 112592

aug-cc-pVTZ 79420 10−4 257198

IV. CONCLUDING REMARKS

In recent decades, the Cholesky decomposition of the electron repulsion integrals has

been implemented in popular quantum chemistry programs. While the technique allows
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FIG. 4. The number of Cholesky vectors NJ , in full decomposition and active space decomposition,

for formaldehyde (F) surrounded by 10–200 water (W) molecules.

for complete control of the error, a drawback has been its computational cost compared

to prefitted RI. With this contribution, the application range of Cholesky decomposition

is extended, and its competitiveness with other inner-projection methods improved. We

have already performed full decompositions for systems with tens of thousands of atomic

orbitals, yet we expect that the partitioned diagonal approach may be applied to much larger

systems. While useful in its own right, the Cholesky decomposition may also be used as an

accurate starting point for the development of other integral approximations, such as the

reduced-scaling tensor hypercontraction schemes.36
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FIG. 5. DNA fragment with active thymine.
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FIG. 6. Retinal bound to rhodopsin with active retinal.
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11F. Aquilante, P.-Å. Malmqvist, T. B. Pedersen, A. Ghosh, and B. O. Roos, J. Chem. The-

ory Comput. 4, 694 (2008).

12F. Aquilante, L. Boman, J. Boström, H. Koch, R. Lindh, A. S. de Merás, and T. B.

Pedersen, “Cholesky decomposition techniques in electronic structure theory,” in Linear-

Scaling Techniques in Computational Chemistry and Physics: Methods and Applications ,

edited by R. Zalesny, M. G. Papadopoulos, P. G. Mezey, and J. Leszczynski (Springer

Netherlands, Dordrecht, 2011) pp. 301–343.

13P. Merlot, T. Kjærgaard, H. Trygve, R. Lindh, F. Aquilante, S. Reine, and T. B. Pedersen,

J. Comput. Chem. 34, 1486 (2013).
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