@ NTNU

Norwegian University of
Science and Technology

Securing Information Flow in Loosely-
Coupled Systems

Linas Zvirblis

Master in Security and Mobile Computing
Submission date: June 2011
Supervisor: Danilo Gligoroski, ITEM

Norwegian University of Science and Technology
Department of Telematics

Problem description

Linas Zvirblis

Information-flow control is an important element in computer system security, and
there has been significant work done in the field by Denning, Volpano, and oth-
ers. However, most of the work deals with information-flow control inside a single
monolithic application. Wide adoption of the Web service architecture and related
technologies effectively solved the problem of universal standard of interconnection
of independent systems into larger scale system, but largely ignored the problem
of information-flow control. This thesis suggests an approach, which allows for
information-flow control techniques of the decentralised label model to be applied
to distributed loosely-coupled systems based on Web services. The resulting sys-
tem design is compatible with existing Web service-based systems, and allows for
integration of components that do not natively support information-flow control.

The goal of this thesis is to design and demonstrate a secure information-flow control-
aware distributed loosely-coupled system built on service-oriented architecture. Web
services are used as a basis for the implementation because of clear definition of
interfaces for interaction between system components. The goal is achieved by
integrating secure information-flow model in a Web service orchestration language
in order to be able to perform static analysis on information flow. This should
allow for a fairly transparent implementation that would allow for interconnection
of existing Web services, and provide required security properties with minimal
overhead.

Assignment given: 15.02.2011
Supervisor: Danilo Gligoroski

Problem description

Abstract

Information-flow control is an important element in computer system security, and
there has been significant work done in the field by Denning, Volpano, and oth-
ers. However, most of the work deals with information-flow control inside a single
monolithic application. Wide adoption of the Web service architecture and related
technologies effectively solved the problem of universal standard of interconnection
of independent systems into larger scale system, but largely ignored the problem
of information-flow control. This thesis suggests an approach, which allows for
information-flow control techniques of the decentralised label model to be applied
to distributed loosely-coupled systems based on Web services. The resulting sys-
tem design is compatible with existing Web service-based systems, and allows for
integration of components that do not natively support information-flow control.

iv

Contents

Problem description
Abstract
1 Introduction

2 Challenge

2.1 Imformation-flow control oo
2.2 Enforcing information-flow control policy

Background

3.1 Information-flow control model
3.1.1 Decentralised label model
3.1.2 Staticanalysiso
3.1.3 Jif security-type language

3.2 Loosely-coupled systems oL
3.2.1 Definition of a loosely-coupled system
322 Webservices.
3.2.3 Business Process Execution Language

3.3 Related work
3.3.1 SIF framework
3.3.2 Swift framework o

Case study

4.1 Online shop system

4.2 Web service-based implementation

4.3 Jif-based implementation L.

4.4 Datatypes e
4.4.1 Data types used by Company Service
4.4.2 Data types used by Postal Service
4.4.3 Data types used by client
4.4.4 Data types used by Shop Service

vi CONTENTS
4.5 Results 25

5 Design and implementation 27
5.1 Decentralised label model in loosely-coupled systems 27
5.2 Adding information-flow control meta-data 28
5.2.1 Adding meta-data at run-time 28

5.2.2 Adding meta-data at compile-time 31

5.2.3 Adding meta-data in implementation-independent way 34

5.3 Information-flow control inside a BPEL process 35
5.4 Mapping between Jif and XML-based languages 38
5.4.1 Mapping between Jif and BPEL 38

5.4.2 Mapping between Jif and XSDo 41

5.5 Policy validator 44
5.6 Implementing the system o0 46

6 Evaluation and discussion 49
6.1 Hooking directly into the internal Jif APT 49
6.2 Run-time policy validation o0 50
6.3 Client-side policy enforcement 51
6.4 Propagation of the meta-data 52

7 Conclusions 55
A XML code 57
A1 Business process. Y
A.1.1 BPEL definitiono 57

A.1.2 BPEL extension definition 62

A.2 Definitions of Shop Service L. 63
A.2.1 WSDL definitions of Shop Service 63

A.2.2 XSD definitions of Shop Service 64

B Jif code 69
B.1 Business process. 69
B.2 Mainclass 72
B.3 Beanobject 74

C Experimental code 77

C.1 Annotation processor 7

CHAPTER 1

Introduction

Information-flow control is an important element in computer system security, and
there has been significant work done in the field by Denning [11], Volpano [34], and
others. Most of the work deals with information-flow control inside a single mono-
lithic application. However, nowadays a concept of a single independent application
is fading away in favour of distributed loosely-coupled systems. In such systems sep-
arate components have little to no knowledge about each other. Such components
can be created using different technologies by different vendors, and be under con-
trol of separate independent entities. In fact, this is often the case because systems
using services, provided by entities such as Amazon [36], Facebook [23], Google [24],
and others, as an integral part of the system functionality, are in no way a rarity.
This makes the definition of a system component by itself rather fuzzy.

Wide adoption of the Web service architecture [5] and related technologies effectively
solved the problem of universal standard of interconnection of independent systems
into larger scale systems, but largely ignored the problem of information-flow con-
trol. In real-world old-school monolithic systems information-flow control is often
overlooked and is not really considered a necessity. Which is true up to a point, be-
cause in monolithic systems information never leaves the boundaries of the system,
and is controlled by the same entity. Proper use of object-oriented programming
paradigm also tends to cover most of information-flow control use-cases by employ-
ing encapsulation. Software developers are usually not even aware that they are
dealing with information-flow control when they declare fields in classes as being
public, private, protected, etc. And in special cases, specialized information-flow
control technologies, such as Jif (Java and information-flow) [32] can be employed.
The problem is that this does not translate to the Web service architecture.

2 Introduction

Technologies such as Java API for XML Web Services (JAX-WS) [6] allow for almost
completely transparent development and integration of Web service-based systems
by providing a bridge between standard programming language constructs and Web
services. While this makes development of such systems considerably easier, it does
mask certain implications of doing so. It is important to realize that data leaving the
system through a Web service does not retain expected information-flow properties.
Even if the receiving part is willing to maintain these properties, it is by no means
a straightforward task, because the Web service architecture provides no standard
means to transfer information-flow control rules to a client.

This thesis suggests an approach which allows information-flow control techniques
to be used in distributed loosely-coupled systems, composed of semi-independent
components. Information-flow control meta-data is exported via standard Web ser-
vice interfaces. A secure information-flow control-aware distributed system built on
Web service architecture is demonstrated, and problems involved in development are
identified. Web services are used as a basis for the implementation because of clear
definition of interfaces for interaction between system components. It is achieved
by integrating secure information-flow control model in a Web service orchestration
language in order to be able to perform static analysis on information flow.

Claim is made that such an approach is sufficient to ensure secure data flow inside
a Web service-based system without requiring invasive changes to the Web service
architecture, and that this would allow for a fairly transparent implementation that
would allow for interconnection of existing web services, and provide required secu-
rity properties with minimal overhead.

CHAPTER 2

Challenge

2.1 Information-flow control

We will use a very simplified model of an online shop as an example. The Shop
sells products manufactured by the Company and delivers them to customers to the
address of their residence. The system is composed of a Shop Service that provides
an interface for the customer to order desired products, a Company Service that
keeps a database of all customers and their related data, and a Postal Service that
keeps a database of all people, and their addresses.

To produce useful results, the three entities have to cooperate and exchange data.
The client only interacts with the Shop Service, and as far as the client is aware,

Client

Shop
Service

"
'
’
Shop
Company Postal K - Service .
Service Service *
\

.
.
' \
' 1
Company Postal
Service Service

Figure 2.1: World awareness and information flow in the system

4 Challenge

that is the only entity in the system it will be exchanging data with. But that
point of view is misleading, because once the data reaches the Shop Service, it is
being exchanged with two more entities, namely the Company Service and the Postal
Service, without the client being aware of this. As the transaction between the Shop
Service and the client may involve sensitive data, such as credit card data or social
security number, it may be undesirable for the client that this data is exchanged
with other entities without its consent. The question is, how can this information
be controlled, and data leaks prevented?

The standard answer would be to employ information-flow control technologies. The
problem is that information-flow can only be enforced in a monolithic system where
all system components are under control of the same entity. This does not hold in
loosely-coupled systems that may be composed of diverse components under control
of independent entities. There are several challenges involved here.

Let us assume that the entities are willing to cooperate in enforcing information-
flow control. Here we run into a problem that separate entities may implement their
system components in different technologies, such as Java and .NET just to name
two of the most popular ones. Some, or even all, of the technologies in use may not
even have any support for information-flow control.

Now let us relax our assumptions, and say that all components run on systems that
do support information-flow control, and actively employ it. Even then we run into a
problem of how to exchange information between system components under control
of different entities? It is very likely that the entities in question are exchanging
information by some means of remote procedure calls or remote method invocation.
It is also very likely that the technology in question does not provide means to
exchange the information-flow meta-data associated with the data exchanged. This
could possibly be hand-coded and exchanged as data, but may also require invasive
changes to the system, which is generally not desirable.

It quickly becomes evident that such a solution may require too extensive changes
to existing system components to be acceptable. It must also not be platform-
dependant, because that would defeat the purpose of having distributed loosely-
coupled systems. This is only possible if the solution can be constructed in such
a way that would allow for interconnection of information-flow control-aware and
unaware systems in a fairly generic way. Another important issue arising from the
previous statement is that if the system can be composed of components not sup-
porting information-flow control, where is an information-flow policy being enforced?

Here we demonstrate an approach that can be applied to existing system components
without the need to modify them, or even be aware of information-flow control
being in place. It also supports heterogeneous classification levels within messages
exchanged, allowing for fine-grained classification policies.

2.2 Enforcing information-flow control policy 5

2.2 Enforcing information-flow control policy

A key problem in implementing such a system is identifying the point of policy
enforcement, assuming that at least some system components are not aware of
information-flow control. Taking a closer look at the information flow in our ex-
ample system reveals that only the Shop Service is a component communicating,
and aware of all other components in the system. As this is a central component,
through which all information is flowing, it makes for a good starting point for
investigating information-flow control enforcement.

This property gives us two possibilities. First, we assume that the Shop Service is
the only component aware of the information-flow control in the system, and it is
solely up to it to enforce the policy. Second, we assume that system components
are running their own information-flow control implementations and we want to
bridge the implementations by allowing information-flow meta-data exchange. In
this section both approaches are discussed.

If the assumption is that there is only one component in the system that is aware of
information-flow control, it is clear that information-flow meta-data cannot originate
from other components, and must be self-contained within the enforcing component.
The fact that the information-flow meta-data cannot be coming from outside means
that all meta-data must be present beforehand for validation. Since system compo-
nents do not implement any information-flow control, it is not possible to perform
information-flow control at run-time inside them. It would still be possible to per-
form run-time checks inside the enforcing component, but because the information-
flow meta-data can be considered to be static, it is much more efficient to perform
the checks at compile-time. This suggests static validation as means to enforce the
policy.

Another case is if we assume that the system components are in fact running their
own implementations of information-flow control. In order for them to be able to
exchange the information-flow control meta-data, a format of the meta-data and a
protocol of meta-data exchange need to be defined. This also implies that the system
components should be running their own implementations of the same information-
flow control model. This is necessary because all system components have to be able
to parse the meta-data in order to perform useful work.

In theory it is possible that the system components may be using incompatible
information-flow control models, and employing conversion mechanism to export the
meta-data in an appropriate format. This is a very platform-specific approach, and
would likely to be too cumbersome to implement, but it is not explicitly forbidden.
We just assume that any component exporting the meta-data in a required format
is allowed to be part of the system, regardless of how this meta-data is generated.

6 Challenge

An obvious question to ask is how the separate components within a loosely-coupled
system can be trusted to enforce their own information-flow control policy? And a
short answer is that they cannot. It is therefore crucial to prevent the components
from obtaining sensitive information in the first place, or if this is not possible,
just assume that the information can be leaked, and design the system accordingly.
Assuring mutual trust between system components is a problem of an approach
known as design by contract or programming by contract [15], but here the concept
of mutual distrust is employed instead.

This thesis describes a hybrid solution that allows for both information-flow control-
aware and unaware components to be integrated into a loosely-coupled system. It
is based on the decentralised label model [32] and the concept of mutual distrust,
rather than mutual trust.

CHAPTER 3

Background

In this chapter we discuss existing technologies and means, and how they can be
used to achieve our goals. Namely, we look into what an information-flow control
model is, how it works, and how can it be used. Also we discuss the concept of a
loosely-coupled system, and look at specific implementations. We also familiarize
ourselves with related work in the field of information-flow control-aware systems.

3.1 Information-flow control model

An information-flow control model is a mathematical model that allows for tracking
and verifying the flow of information within a system. It is similar in concept to
traditional access control models. There are several information-flow control models
available, but many are too limited or too restrictive to be used in practice [29].
The decentralised label model addresses these limitations, and aims to be usable in
actual implementations [32].

3.1.1 Decentralised label model

The decentralized label model, is a label model for control of information flow in
systems with mutual distrust and decentralized authority. The model allows users to
declassify information in a decentralized way, and provides support for fine-grained

8 Background

data sharing. It supports static program analysis of information flow, so that pro-
grams can be certified to permit only acceptable information flows, while largely
avoiding the overhead of run-time checking [32].

The model is based on a notion of labels that allow individual owners of information
to express their own policies. A reader policy allows the owner of the policy to specify
which principals the owner permits to read a given piece of information. A reader
policy is written o — r, where the principal o is the owner of the policy, and the
principal r is the specified reader [8]. A reader policy expresses privacy requirements.
A writer policy written o <— w allows the owner to specify which principals may have
influenced (“written”) the value of a given piece of information [8]. A writer policy
expresses integrity requirements. Owners themselves are also principals: identifiers
representing users and other authority entities such as groups or roles [31].

The model allows principals to control the flow of their information, and declassify
their own data without requiring a mutually-trusted entity to perform declassifica-
tion. However, a principal is only allowed to weaken the policies that it has itself
provided, and thus may not endanger the data that it does not own [32].

These properties allow for the model to be implemented in distributed systems,
where security policies cannot be decided by any central authority. Instead, individ-
ual participants in the system must be able to define and control their own security
policies. The system will then enforce behaviour that is in accordance with all of the
security policies that have been defined [32], resulting in a behaviour that resembles
collaboration much more than traditional mandatory access control models [3].

3.1.2 Static analysis

Static program analysis offers static compile-time techniques for predicting safe and
computable approximations to the set of values or behaviours arising dynamically
at run-time when executing a program on a computer [33]. Traditionally, the main
application of these techniques is in optimizing compilers in order to avoid redundant
computations, and check validity of the code. More recent applications are validation
of software for absence of malicious behaviour, and information-flow control. There
is no single technique that is the program analysis technique, but rather it is a wide
range of different techniques that take similar approach to solve these problems.

Static analysis is a sister approach to model checking, because they both are used
to achieve the same goals. The difference is that model checking requires running
code, while static analysis just requires to compile it. Model checking also requires
a working model of the environment, and environments are often messy and hard
to specify [12]. Whereas static analysis operates directly on the code, making it

3.1 Information-flow control model 9

somewhat more versatile approach. However, it is not uncommon to combine both
approaches.

The biggest strength of static analysis is that it does not require any changes to the
checked code (that being either source code, bytecode, or even binaries), and can be
used to validate programs, written in “unsafe” languages such as C or assembly, for
desired properties without imposing any limitation on run-time environments, thus
eliminating run-time check overhead.

The previous property can be employed in order to add transparent information-flow
control to systems that do not provide any information-flow control support. Mini-
mizing the amount of required modifications to existing systems is a big advantage
in deploying new technologies in the real world.

3.1.3 Jif security-type language

Jif [32] is an implementation of a security-typed language know as JFlow [30]. It
is an extension of Java programming language to support information-flow control
by adding the decentralised label model as an integral part of the language. It
adds static analysis of information flow for improved security assurance. The pri-
mary goal is to prevent confidential and/or untrusted information from being used
improperly [8].

An important difference between Jif and other work on static checking of information
flow is the focus on a usable programming model. Despite a long history, static
information flow analysis has not been widely accepted as a security technique. One
major reason is that previous models of static flow analysis were too limited or too
restrictive to be used in practice [29].

Jif aims to overcome these limitations allowing real-world applications to be writ-
ten to incorporate information-flow control. It extends Java by adding labels that
express restrictions on how information may be used [8] by putting the definition
of statically-checked properties of the program inside the program itself. This may
appear to contradict the definition of static analysis by requiring support inside the
language itself, but it is important to realize that information-flow control policy
is something that matters to people, not computers, and thus cannot be inferred
automatically. There is no “correct” policy if the goals are not defined.

Labels are specified in a similar way to scope and type parameters of a variable, and
resemble Java annotations, which should be reasonably familiar to Java program-
mers.

10 Background

Jif Jif Java Java
program compiler source compiler
Label Class file i

.....

annotations | (bytecode)

Figure 3.1: Jif compiler [30]

private int {Alice \rightarrow Bob} x;
Listing 3.1: Example of a label in Jif

Method declarations are also labelled in a familiar fashion. In the following example
we can see that method dummyMethod returns a boolean value labelled Alice < T,
takes two parameters labelled Alice <— T, and begin label is also Alice <— T. This
means that principal Alice is the sole owner of the data, as the writer set consists of
a single top principal. There is no reason why the labels cannot be heterogeneous,
and may in fact differ depending on the actual goals of a global information-flow
control policy within the system.

public boolean{$Alice \leftarrow \top$} validate{$Alice \leftarrow \

top$}(String{$Alice \leftarrow \top$} parl, int{$Alice \leftarrow \

top$} par2) {
return true;

}
Listing 3.2: Example of a method annotated with labels in Jif

If a Jif program type-checks, the compiler translates it into Java code that can be
compiled with a standard Java compiler. The program can then be executed with
a standard Java virtual machine. Although enforcement is mostly done at compile-
time, Jif does also allow for some enforcement to take place at run-time. Therefore,
Jif programs in general require the Jif runtime library [8].

Jif supports various kinds of polymorphism to make it possible to write reusable
code that is not tied to any specific security policy [8]. For example, polymorphic
labels for method parameters are supported. It also treats labels and principals as
first-class objects, allowing for use of dynamic run-time labels and principals.

Jif does not support the Java thread model for concurrent programming in order to
avoid leaking data trough timing channels [8]. Unfortunately this means that it only
supports single-threaded applications. Jif also does not deal with covert channels,
because detecting those is a difficult problem that is yet to be solved.

3.2 Loosely-coupled systems 11

Despite several limitations imposed over traditional Java programming model, Jif
provides a large subset of features found in Java, and is definitely suitable for im-
plementing many real-world applications while taking advantage of information-flow
control features of the decentralised label model.

3.2 Loosely-coupled systems

A system is defined as “a whole compounded of several parts or members” [28].
Traditionally many computer software systems were monolithic systems, as in com-
posed of components that can only produce useful work when composed together.
Such systems are called tightly-coupled systems. However, nowadays many systems
are being designed based on completely different concepts, and resemble a collec-
tion of independent systems more than a single unit. They are called distributed
loosely-coupled systems.

3.2.1 Definition of a loosely-coupled system

An important remark that needs to be made here is that terms loosely-coupled
system and distributed system are synonymous, but do not mean exactly the same.
According to the Web services glossary [21], coupling is the dependency between
interacting systems. This dependency can be decomposed into real a dependency
and an artificial dependency:

1. A real dependency is the set of features or services that a system consumes
from other systems. The real dependency always exists and cannot be reduced.

2. An artificial dependency is the set of factors that a system has to comply with
in order to consume the features or services provided by other systems. Typical
artificial dependency factors are language dependency, platform dependency,
API dependency, etc. Artificial dependency always exists, but it or its cost
can be reduced.

Loose coupling describes the configuration in which artificial dependency has been
reduced to the minimum [21]. Whereas Sun Microsystems defines the term dis-
tributed computing (remote object invocation, etc.) to refer to programs that make
calls to other address spaces, possibly on another machine [37] without discussing
the coupling. In his book on Web services and loose-coupling Doug Kaye [27] pro-
vides a brief summary of properties of tightly and loosely coupled systems. As can

12

Background

Tightly-coupled

Loosely-coupled

Interaction Synchronous Asynchronous
Messaging style RPC Document
Message paths Hard coded Routed
Technology mix Homogeneous Heterogeneous

Data types Dependent Independent

Syntactic definition | By convention | Published schema
Bindings Fixed and early Delayed

Semantic adaptation

By re-coding

Via transformation

Software objective

Reuse, efficiency

Broad applicability

Consequences

Anticipated

Unexpected

Table 3.1: Tight versus loose coupling [27]

be seen in the table 3.1, tightly-coupled and loosely-coupled systems differ in both
technologies and goals.

Here we will say that all loosely-coupled systems are distributed, but distributed
systems can be both loosely-coupled and tightly-coupled. For example, systems
based on Java RMI [40] are distributed tightly-coupled systems, and systems based
on Web services [5] are distributed loosely-coupled systems. This distinction is
very important when talking about information-flow control in distributed systems,
because tight coupling implies much more centralised system design model, which
is much closer to monolithic system design than that of loosely-coupled systems.
It has been proven that information-flow control is possible in distributed tightly-
coupled systems by f.ex. implementing information-flow control-aware distributed
poker game [2], while information-flow control in loosely-coupled systems remains
an ongoing problem.

3.2.2 Web services

Web services provide standard means of interoperating between different software
applications, running on a variety of platforms and/or frameworks [5]. Unlike other
RPC or remote-invocation architectures, Web services provide a universal, platform
independent way of exchanging data between loosely-coupled system components.
The official definition of a Web service according to W3C is as follows:

A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface de-
scribed in a machine-processable format (specifically WSDL). Other sys-
tems interact with the Web service in a manner prescribed by its de-

3.2 Loosely-coupled systems 13

scription using SOAP messages, typically conveyed using HTTP with an
XML serialization in conjunction with other Web-related standards [5].

Web service architecture was the first truly implementation-agnostic architecture for
message exchange over the network. Because of vendor-agnostic nature, it gained
popularity among major I'T software infrastructure vendors, and quickly gained lead
in competition with other remote-invocation technologies that were tied either to
a vendor, platform, operating system, or were simply too complex to implement.
Nowadays Web services undoubtedly have the leading position among similar tech-
nologies.

While Web service architecture essentially solved the problem of interconnection of
distributed system components, it does not have any built-in support for information-
flow control. However, extensible nature of underlying XML-based technologies
make it possible to adapt the architecture to accommodate the new goals without
breaking compatibility with existing implementations.

3.2.3 Business Process Execution Language

Business Process Execution Language (BPEL), short for Web Services Business Pro-
cess Execution Language (WS-BPEL) is an OASIS standard language for specifying
business process behaviour based on Web services [26]. BPEL is an orchestration
language, not a choreography language. It means that it does not define a protocol
for peer-to-peer interaction, but rather only specifies message exchange sequence
between system components.

The basic concepts of BPEL can be applied in one of two ways, abstract or executable.
A BPEL Abstract Process is a partially specified process that is not intended to be
executed and that must be explicitly declared as “abstract”. Whereas Executable
Processes are fully specified and thus can be executed [26]. The difference is that
an Abstract Process may hide some of the specific details of operations, removing
information required for execution, but essentially remains human-readable, and can
be used as a template for implementation, or to describe observable behaviour of
Executable Processes [26].

BPEL is XML-based language, and while it does not by itself specify any graphical
representation of the process, there exists a mapping between BPEL and Business
Process Model and Notation (BPMN), which is a graphical representation for speci-
fying business processes [39]. BPMN has become the de facto standard in graphically
representing BPEL processes, and is widely used by many BPEL designer tools and
implementation such as OpenESB [13] and their NetBeans-based BPEL designer, or
BPEL Designer for Eclipse [18], and many others. This provides a way to present

14 Background

BPEL process in human-readable form, and aids in integration of large and complex
systems. It is therefore BPEL is often used as a glue technology in integration of
loosely-coupled systems based on Web services.

BPEL supports extensibility by allowing namespace-qualified attributes to appear
on any BPEL element and by allowing elements from other namespaces to appear
within BPEL defined elements. This is allowed in the XML Schema specifications
for BPEL [26]. This means that it can be extended to include additional features
not present in the standard. Extensions are either mandatory or optional. In the
case of mandatory extensions not being supported by a BPEL implementation, the
process definition must be rejected. Optional extensions not supported by a BPEL
implementation must be ignored [26].

This gives us two possibilities in extending BPEL to provide support for information-
flow control. First is to make extension mandatory and to make them an integral
part of the business process. However, this requires modification to the implementing
runtime environment, and may be undesirable, as the BPEL document becomes
implementation-specific. Another option is to make extensions optional and to add
information-flow control meta-data transparently. This allows it to be parsed by
supporting tools, but does not interfere with normal execution of the process on
unmodified runtime.

3.3 Related work

Despite a relative unpopularity of information-flow control-aware systems in real-
world deployments, there exist several frameworks for Web application development
that support the decentralised label model.

3.3.1 SIF framework

SIF (Servlet Information Flow) is a software framework for building web applica-
tions, using language-based information-flow control to enforce security [9]. SIF is
built using the Java Servlet framework, much like Apache Struts [17] or Spring by
SpringSource (a division of VMware) [1]. But SIF applications are written in Jif
language, and the user interface of a web application is presented as HTML with
forms as a way for a user to provide input [9]. SIF provides a way to include cas-
cading style sheets (CSS), and static JavaScript code in the output HTML, allowing
for rich user interfaces with only small limitations on how this can be achieved.

SIF' is based on the assumption that web applications are insecure, and possibly

3.3 Related work 15

buggy, so the information-flow control is enforced on server-side [9]. SIF does not
deal with network attacks such as man-in-the-middle, eavesdropping, and does not
involve cryptography. It also does not provide any security against denial-of-service
attacks.

All principles of programming in Jif also apply in SIF, but it is presented in a web
application-oriented fashion. SIF requires each input field on a page to have an
associated security label to be enforced on the input when submitted [9]. However,
SIF does not protect against the user copying sensitive information from the output
web page, and pasting into a non-sensitive input field, which is not possible in
general, so the user should be prevented from seeing information they are not trusted
to see [9].

SIF is a promising technology that has real potential to bring information-flow con-
trol to web applications. However, it aims to solve a different problem, that does
not involve distributed loosely-coupled systems. It is still important as a proof that
Java servet API can be extended to support information-flow control, because Java
Web service implementation is also based on servlets. Therefore it can be claimed
that Web services can also be implemented in an information-flow control-aware
technology.

3.3.2 Swift framework

Swift is also a framework for development of web applications based on Jif, much like
SIF, but takes a different approach, which is referred to as secure by construction by
the authors [7]. However, it is a more high-level framework somewhat comparable
to Ruby on Rails [22].

One of the major problems in designing web applications is deciding how much code,
and what functionality is to be implemented on client-side, and what on server-side.
Usually this is an offset between responsiveness and security. Running more code on
the client-side increases responsiveness of the application, and reduces the load on a
server, but may also have security implications if a client is trusted with too much
functionality. On the other hand, verifying every possible step on the server-side
will most likely lead to the application appearing to be highly unresponsive, or slow
as perceived by the user.

Swift abstracts many details that a programmer usually has to deal with in tradi-
tional web application frameworks. It aims to automatically partition application
code to client-side code and server-side code while providing assurance that the
resulting placement is secure and efficient [7]. Tt also hides the complexity of under-
lying HT'TP message exchanges from an application developer, allowing for more

16 Background

focus on the functionality of the application, and more rapid application develop-
ment.

Swift applications are written in Jif. Jif code is then compiled to client-side Java
code, and server-side Java code through and intermediate representation known as
WeblIL [7]. Google Web Toolkit (GWT) is then used to compile the client-side Java
code to JavaScript that can be run in a browser on the client.

It is slightly incorrect to say that Swift is a web application framework, because it
offers more functionality than that usually associated with web application frame-
works. It offers a complete platform for developing applications where client-side
code and client-side GUI code are treated as integral part of a single application. It
is not really designed to interoperate with other systems, and thus not designed to be
used in loosely-coupled systems. However, making it self-sustaining and independent
on external components does make it attractive when implementing tightly-coupled
applications that do run on the web.

CHAPTER 4

Case study

The goal of this case study is to investigate if and how existing technologies can
be utilised to create a new type of system. In other words, we want to see if
desired properties of existing information-flow control-aware systems can be applied
to Web service-based systems. Here we take an evolutionary approach where the
same system is re-implemented in different technologies while trying to to keep
them as consistent and close in functionality as possible. It is important that the
implementations do not diverge too much, because otherwise it may not be possible
to conclude that information-flow control can actually be applied to existing systems
without changing their behaviour. If this is in fact the case, it would seriously limit
applicability of the solution, and would make deployment of such systems difficult
in loosely-coupled environments when it is not always possible to modify behaviour
of all system components, most likely because not all of them are under control of
the same entity.

The first implementation is done in plain Java with no information-flow control in

Add information-flow Port information
'
....... S
N
Hybrid

control meta-data flow control
Jitbased | . _....
implementation
! implementation !
'
IS aeeeeet
WS-based | ... U
implementation
Convert to Use as base for

Web services implementation

Java-based
implementation

Figure 4.1: Evolutionary approach to the final implementation

18 Case study

place. It is used as a reference when checking consistency of the behaviour and
the results produced by different implementations. Later, the Java implementa-
tion is transformed into two other implementations. It is converted to Jif code to
add information-flow control capabilities, and Web service-based implementation to
produce a loosely-coupled system with separated components. The final goal is to
merge these two implementations in order to produce an information-flow control-
aware loosely-coupled system.

4.1 Online shop system

Let us return to the online shop example discussed earlier. It is a pretty trivial
system that only involves several entities, but at the same time it represents many
real-world systems rather well. We will make an assumption that if a concept can
be applied to our small example system, it can also be applied to a real-world
solution. Of course it is true that this assumption cannot always hold, so any
possible limitations are discussed separately.

To summarize the design of the system we say that the Shop sells products man-
ufactured by the Company and delivers them to customers to the address of their
residence, which is verified with the Post. The system is composed of a Shop Ser-
vice that provides an interface for a client to order desired products in the Shop, a
Company Service that keeps a database of all customers of the Company and their
related data, and a Postal Service that allows access to a database of the Post which
contains addresses of all people.

As can be seen in figure 4.2, a client initiates the process by placing an order for a
desired product in the Shop via the Shop Service. We trust the client to provide his
identity as part of the request made. The Shop Service relays personal information
of the client to the Company via the Company Service in order to verify if the
client is actually a customer in the Company. The Shop Service also relays this
information to the Postal Service in order to verify if the address supplied by the
client is valid. If both succeed, and actual order is placed via the Company Service
and a receipt is delivered to the client.

In order to simulate a real-world system, we make an assumption that the compo-
nents (or the services) of the system may not have been designed as integral part of
the final system, so they are not using homogeneous data types. However, we make
sure that the data types are compatible, so that we could avoid data conversions in
the system. Data conversions can be seen as data exchange with yet another system
component, and does not add any additional value to the example system.

Actual information flow in the system is described in figure 4.3. The borders around

19

4.1 Online shop system

Postal Service

Shop Service
Company Service

Client
Receive product order

Ordgid;ct
Client &
Order
Validate f I e S . Validate
customer customer
. Customer Q
' '
HRRRPRRUN AR R H
TRUE or FALSE
Validate [M°°°°" ""D """""""""""" T Validate
address Address & address
A Person Q
' '
A (R S I I :
TRUE or FALSE
Yes No

Are Customer and
Address valid?
""D """ o Sell
product

Buy
product Product
Q

éq D TRUE or FALSE
Send receipt

Receipt

Receive receipt

Figure 4.2: Business process of the online shop system

20 Case study

()
Client
ettt et ettt EN
-- -
e eeeeeeneeneneas -
[
()
Shop Service v :
'
'
Pl
Company Service Postal Service H :
Customer Person E E
‘—e--: -------- [=1--I™ Personal ID{, Personal ID E H
‘—e ------- ==F-1% First name +_ “«_ First name w_ "~ H E
ACEEEEEE [-1--F»> Last name ~:‘~,~‘ . Last name v_’"\ AN E H
RN . .| Client) E
*| Receipt "~] personat D} H
*.| 4 Personal ID 4] First name -+ i
~|| 4 First name “+ Last name=-=-=---| L
A Last name .- City
City ®=====--- -~ 7]~ street
Street % =--=--- -,: e Lo '_ +*|.- street number
Order Product Street number y_ \: ~.| Address . ’
Product ===f---N-- --}-4% Name----4---N-----} -{% Product N ~,: s city €----1--N ",
Price ========--- -f=o--f» Price------"7--- -==d--|» Price “1s] 7 street «--== -}
*+ Street numberA”
A J
A J

Figure 4.3: Information flow inside the system

the services are not “transparent”, meaning that the client is only aware of the Shop
Service, but not of the Company Service or the Postal Service. Data objects within
the borders signify that they “belong” to the system component. In reality such
separation is a bit artificial, because the Shop Service basically has to be aware
of all the data objects, because it communicates with every entity in the system.
Therefore the “origin” of a data object is somewhat irrelevant concept, it is the
origin of the data that matters here.

4.2 Web service-based implementation

Web service-based implementation is a very straightforward port of the plain Java
implementation, because in Java creating a Web service is just a matter of annotating
appropriate class as a Web service, and its methods as Web service methods. It then
auto-generates all of the boilerplate code needed to export the methods through Web
service interfaces, and generates WSDL definitions and related XSD type definitions.

We do this for several reasons. First of all, auto-generation provides the closest
possible mapping between the Java code and WSDL and XSD definitions. Keeping
implementations consistent is important for reasons stated earlier. Secondly, we

4.3 Jif-based implementation 21

convert a tightly-coupled monolithic system into a loosely-coupled system, which is
otherwise identical in its functionality and in the results it produces.

It has been shown that information-flow control can be added to existing mono-
lithic tightly-coupled systems, so having an equivalent implementation of a loosely-
coupled system is important, because results produced by both systems have to be
comparable in order to make any conclusions about the success or failure to add
information-flow control to an existing loosely-coupled system.

4.3 Jif-based implementation

Because Jif is basically a superset of Java language, any Java application should be
possible to port to Jif. This is not a completely true statement, because Jif does
have some limitations, such as being single-threaded, and does not have nearly as
rich of a class library as Java. We ignore such limitations for now, and claim that
it does not affect our example implementation, because Jif is the closest thing Java
code can be mapped to. In fact, we demonstrate that addition of information-flow
control labels is the largest change to Java code required to convert it to proper Jif
code, and that it can be done in a quite straightforward way.

To get an initial system running in Jif, we simply label everything with the same la-
bel. In other words, we only have one principal, and that principal is owner of all the
data in the system. Of course, this is equivalent to not having any information-flow
control at all, and serves simply as a way to familiarize oneself with the speciali-
ties of Jif. For example, Jif handles exceptions slightly differently than Java. In Jif,
run-time exceptions such as NullPointerEzxception and IndexQOutOfBoundsFException
must be caught and handled [29], because run-time exceptions can possibly leak in-
formation and can be used as covert channels. Other than the addition of labels,
and other minor differences, Jif code is basically Java, as can be seen in the code
example 4.1.

The biggest challenge is actually getting the information-flow control policy right.
This is because there is no “right” policy for the system, as it highly depends on
the set goal. As discussed earlier, the simplest form of policy is labelling all data as
owned by a single principal, which by itself is a perfectly valid policy, but achieves
absolutely nothing.

In our example we want to protect personal data of a client by defining a policy that
only allows data, that is absolutely necessary to perform useful work, to be disclosed
to particular services. We achieve this by defining two principals in the system: Post
and Company, each used for labelling data originating from the Postal Service and
the Company Service respectively. There is no principal for either the Shop Service

0 O U W N+

10
11

22 Case study

public class CompanyService {
public boolean validateCustomer (Customer customer) {
return true;
}
}
public class CompanyService {
public boolean{Company<—x*} validateCustomer {Company<—=}(Customer{
Company<—#} customer) {
return true;
}
}

Listing 4.1: Plain Java code (1-5) and equivalent Jif code (7-11) with labels

or the client, because data flowing trough the Shop Service and reaching the client
has to have integrity of both Post and Company. In other words, the process needs
to be started with permissions of both Post and Company principals. It is not
possible to define principals that have permissions of other principals, therefore the
concept of Shop or Client principals is redundant, even though it may seem not
obvious at the first look.

The information that needs to be exposed to both the Company Service and the
Postal Service, it assigned a label of {Company < T Post < T}. The information
that is only to be exposed to one of them, is labelled either {Company < T} or
{Post <— T}. Data types and labels are discussed in detail in the following section.

4.4 Data types

This section lists definitions of the data types in the system, and their labels accord-
ing to the decentralised label model. The definitions are purely fictional and may
not reflect real world very closely. They are used only for demonstration purposes.

The data formats are not homogeneous, as in every entity uses its own classes, but
the contained information is intentionally compatible, so it can be mapped between
classes without running into a format conversion overhead. Definitions are provided
in a syntax that resembles that of Jif.

4.4 Data types 23

4.4.1 Data types used by Company Service

Customer data type is used by the Company to store the data of its customers. It
consists of a unique personal ID, a first name, and a last name.

e String {Company < T} personal ID;
e String {Company < T} first name;

e String {Company < T} last name;

Product data type is used by the Company to store the data of the products it sells.
It consists of a product name and a price.

e String {Company < T} name;

e [Integer {Company < T} price;

4.4.2 Data types used by Postal Service

Person is a data type used to uniquely identify any particular person. It consists of
a unique personal ID, a first name, and a last name.

e String {Post <— T} personal ID;
e String {Post < T} first name;

e String {Post < T} last name;

Address is a data type defining a postal address. It consists of a city of residence, a
street name, and a number.

o String {Post <— T} city;
e String {Post < T} street;

e [nteger {Post < T} street number;

24 Case study

4.4.3 Data types used by client

Client contains data identifying a particular client in the system. It is how the client
identifies himself in the system. In a real system, this may contain some sort of proof
of identity like a cryptographic key, but for the sake of simplicity, it just contains a
unique personal ID, a first name, a last name, a city, a street, and a street number.

String {Company < T M Post < T} personal 1D;

String {Company < T M Post < T} first name;

String {Company < T M Post < T} last name;

String {Post < T} city;

String {Post < T} street;

Integer {Post < T} street number;

Order is how the client places an order in the Shop. It consists of a product name,
and a price, that the client is willing to pay.

e String {Company < T} product;

e [nteger {Company < T} price;

4.4.4 Data types used by Shop Service

Receipt defines an object returned to the client upon successful completion of an
order. It consists of a unique personal ID, a first name, a last name, a city of
residence, a street name, a number, a product name, and a price. In other words, it
is an aggregations of all previously described types. It does not matter if the data
is labelled as owned by Company or Post, because the client runs with the integrity
of both, and can thus access it.

String {Company < T} personal ID;

String {Company < T} first name;

String {Company < T} last name;

String {Post < T} city;

4.5 Results 25

String {Post < T} street;

Integer {Post <— T} street number;

String {Company < T} product;

Integer {Company <+ T} price;

4.5 Results

During this case study an example online shop system was designed and imple-
mented in three different technologies: plain Java without any information-flow
control, Jif with information-flow control, and Java-based Web services without in-
formation flow control. It was shown that information-flow control can be applied
to existing solutions, and that monolithic tightly-coupled systems can be converted
to distributed loosely-coupled systems in a straightforward manner, while retaining
identical functionality.

It is important to have a reference implementation when designing a new type of
system to be able to verify the correctness of a new design and implementation in
a similar fashion as it is done with unit testing. It is a well known fact that unit
testing is not a definite answer for verifying correctness of an implementation, but
it is a time-tested well understood approach that proves to be “good enough” in
most real-world applications. So we claim that taking a unit testing-like approach
to designing a new type of system is as reliable as unit testing itself.

In the next chapter we discuss the design and implementation of the hybrid so-
lution of a distributed loosely-coupled information-flow control-aware system, and
how reference implementation can be used to check validity of the design and im-
plementation.

26

Case study

CHAPTER 5

Design and implementation

In this chapter we discuss the design and implementation of an information-flow
control-aware distributed loosely-coupled system. We discuss how the decentralised
label model can be applied to Web service-based systems, and the challenges in-
volved.

5.1 Decentralised label model in loosely-coupled
systems

Jif is an extension of Java language to support the decentralised label model. But
unlike many theoretical proposals, it actually provides a usable implementation of
a complete software development kit, consisting of the language itself, a compiler,
and a runtime environment. This means that real-world applications can be written
in Jif to take advantage of information-flow control based on the decentralised label
model. Moreover, due to similarity to Java, existing programs often can be ported
to Jif, as it was demonstrated in the case study.

In this section information-flow control meta-data usually means Jif labels, but the
more general, although longer, term is preferred, because it is not always the case.
In a more general sense, it may also include additional data structures, and language
constructs such as declassification or endorsement operations.

We treat the Jif language and the example system implemented in Jif as references
for all proposals and solutions discussed in this chapter. This is often expressed as

28 Design and implementation

direct mapping between Jif and the implementing technology and language, and the
other way round. Because an implementation of the decentralised label model in
loosely-coupled systems does not yet exist, being able to perform such a mapping
between Jif and other technologies is important when verifying the solution and
comparing it to Jif itself.

5.2 Adding information-flow control meta-data

To be able to perform information-flow control in a system, the data has to carry
information-flow control meta-data. This section discusses different approaches con-
sidered for adding meta-data to the data, their advantages, disadvantages, and the
final solution.

5.2.1 Adding meta-data at run-time

Web services do not provide a standard way to exchange meta-data associated with
messages, but there is no limitation as to what kind of data can be exchanged.
This means that bean classes can be extended to include whatever required meta-
data within the exchanged information itself. Doing this by hand is a laborious
task because it would require redesigning and reimplementing the way program
handles data. However, the impact of the changes may be marginalised by employing
automatic code generation. While this is may not significantly reduce the amount
of work by absolute value, it does shift the focus to one specific entity — the code
generator — rather than scattering the changes all over the code. This allows for a
fairly generic solution that would allow to extend and modify the application at a
later point without spending a considerable amount of time implementing meta-data
exchange in new components to be consistent with the rest of the application. This
section describes how this could be achieved in a Java-based implementation. The
meta-data is assumed to be in Jif label format.

Since Java version 1.5, it provides support for annotations. Annotation types are
specialized interfaces used to annotate declarations such as packages, variables,
methods, classes, etc. Such annotations are not permitted to affect the semantics
of programs in the Java programming language in any way. However, they provide
useful input to various tools [20], and can be seen as code pre-processor directives.

One of the most commonly used annotation in Java is the @Qverride annotation.
It informs the compiler that the method in question is meant to override a method
declared in a superclass, or in an interface that the class is implementing. The an-
notation is generally not required, but it helps preventing errors when an overriding

5.2 Adding information-flow control meta-data 29

' '

' '

: D :

; armc:cftt:t?;n : @WebService Web

: : processor service
: processor :

Java code E Generated
' Java code

Figure 5.1: Plugging into Java Web service annotation processing

method fails to correctly override a method in a superclass.

1 @Override
2 public boolean overridingMethod () {
3 return true;

4}

Listing 5.1: Example of an anotation in Java

A more interesting example is the @ WebService annotation, which is used to expose
a plain Java class as a Web service, and the @WebMethod annotation to expose a
particular method as a method of the Web service. As can be seen in the example,
there is nothing unusual about the code except for the annotations. While in fact
all of the boilerplate code required to expose it as a Web service is auto-generated.

@WebService ()
public class HelloWorld {

@WebMethod ()
public String helloWorld () {
return ”Hello, World!”;

}
}

0O Ui Wi+

Listing 5.2: Example of a Web service in Java

The annotations are processed by the Annotation Processing Tool, which is available
as a command-line tool since Java 1.5 and as part of standard Java distribution
since 1.6. It provides hooks for plugging into the processing process and also allows
implementing custom annotations. We employ this property to customize the way
Web services are generated in Java to add information-flow meta-data.

The goal can be achieved using a relatively simple trick. To be able to customize the
code before it is processed by the standard Java Web service annotation processor,
we create clones of @WebService and @WebMethod annotations and add additional
parameters, in this case — information-flow control labels.

This allows for a simple substitution of standard annotations with custom ones, like

0 O U W N+

el e el el el e
N O U W R OO

O~ O U= W N+~

30 Design and implementation

@Retention (value = RetentionPolicy .RUNTIME)
@Target (value = {ElementType.TYPE})
public @interface LabelledWebService {

// Original fields from @WebService annotation.

// Additional field for information—flow control label.
public String label() default "{}”;

}

@Retention (value = RetentionPolicy .RUNTIME)
@QTarget (value = {ElementType .METHOD})
public @interface LabelledWebMethod {

// Original fields from @WebMethod annotation .

// Additional field for information—flow control label.
public String label() default 7{}”;

}

Listing 5.3: Defining custom annotations in Java

in the following example. Please note that the example is just a proof of concept
and is not supposed to follow any information-control model in particular.

@LabelledWebService(label = ”{Hello <— x}7)
public class HelloWorld {

@LabelledWebMethod (label = ”{Hello <— *}”)
public String helloWorld () {

return " Hello, World!”;
}

}

Listing 5.4: Replacing standard annotations with custom ones

In this way, the class will not be picked up by the standard processor, but rather
our own custom processor that will in turn generate modified code with proper Web
service annotations, that in turn will be processed into a Web service.

The idea is that an additional parameter is added to the Web service methods,
which is used to pass the information-flow control meta-data. The original code is
not overwritten, but is reused. The generated code acts as a wrapper of the original
code, which checks the labels, and if the checks succeed, it call the original method.

This is a fairly powerful approach that allows for flexible solutions with minimal
changes to the Java classes themselves. In fact, the initial conversion of the code
is just a search-and-replace operation followed by manually adding the labels. The
latter cannot be automated anyway, because it depends on particular policy that we
want to enforce. Moreover, the code generator can be updated without modifying

1
2
3

0~ O U

Nej

11
12
13
14
15
16

5.2 Adding information-flow control meta-data 31

@WebService ()
public class LabelledHelloWorld {

@WebMethod ()
public String labelledHelloWorld (AccessCredentials ac) {

// Check if labels satisfy the policy.
if (ac.compatibleWith(”{Hello <— %}”7)) {
// If yes, call the original method.
return HelloWorld. helloWorld () ;

} else {
// If not, throw exception .
throw new LabellingException();

}
}
}

Listing 5.5: Generated code with standard annotations

the rest of the static (non-generated) code. Unfortunately this approach also has
strong disadvantages.

First of all, it changes the signatures (and possibly names) of classes and methods.
This breaks the client, and may require extensive re-writes for system to continue
functioning. It essentially puts the burden of implementation on the client. This is
bad because there is likely to be more than one client, and each one of them has to
implement a compatible information-flow control system. This is a laborious task
and involves a lot of duplicated effort on each client.

Secondly, it relies on run-time checks. It means that it involves run-time overhead,
which is likely not be a big problem taking in mind the computing power available
nowadays. However it also means that the checks are being performed during in-
formation exchange, so failure in policy checks may lead to information leaks. The
leaks can be hard to debug and fix, because the code that performs label validation
is auto-generated, and the code generator may propagate bugs to entire system.

5.2.2 Adding meta-data at compile-time

The original goal is to allow the interconnection of system components that sup-
port information-flow control and the ones that do not. We also want to do it in
a platform-agnostic way to take advantage of interoperability offered by the Web
service architecture. Previously described approach goes against these principles,
and therefore it is of limited use in this case.

Since programmatic run-time check-based approach proves to be inadequate, the

32

Design and implementation

Java construct

WSDL and XML construct

Service Endpoint

Interface wsdl:portType

Method wsdl:operation

Parameters wsdl:input, wsdl:message, wsdl:part
Return wsdl:output, wsdl:message, wsdl:part
Throws wsdl:fault, wsdl:message, wsdl:part
Primitive types xsd and soapenc simple types

Java beans xsd:complexType

Java bean properties Nested xsd:elements of xsd:complexType
Arrays JAX-RPC defined array xsd:complexType

User defined exceptions | xsd:complexType

Table 5.1: Mapping from Java to WSDL and XML constructs [25]

question is if the meta-data can be added statically, and preferably avoiding changes
to the code? And the answer is yes, it can be included in WSDL definition, or
more specifically the XML schema inside WSDL. W3C recommendation for XML
schema [14] [35] [4] specifies a way to add a documentation element to elements
defined in XSD, which consists of human-readable and machine-readable sections.
The appinfo element can be used to provide information for tools, style-sheets and
other applications [14]. We use this to add information-flow meta-data to type and
method definitions.

But before adding labels, we need to investigate how Web-service interfaces are
exported via WSDL and XSD definitions. Web service architecture is platform-
independent, so every programming technology, that supports Web services, must
provide means to map program code to WSDL and XSD constructs. Let us take a
look at how it is done in Java.

As can be seen in table 5.1, the mapping is not straightforward. For example,
not all Java classes and constructs have mappings to WSDL and some Java classes
and constructs have multiple mappings to WSDL [25]. However, all Java types are
mapped to XSD elements in one way or another. Moreover, methods are messages,
which are also elements defined in XSD. This means that both methods and types
can be labelled inside XSD definitions in a consistent manner.

The only requirement for the appinfo element is that its contents are valid XML [35].
Unfortunately Jif labels can contain characters that may interfere with XML val-
idation. Therefore we define a simple mapping between Jif labels and their XML
equivalents as shown in table 5.2.

Hooking into generation of WSDL and XSD definitions has several strong advan-
tages. It allows for a fairly transparent implementation that would not require

1
2
3
4
)
6
7

5.2 Adding information-flow control meta-data 33

<xs:element name="elementName” type="tns:typeName”>
<xs:annotation>
<xs:appinfo>
<label>...</label>
</xs:appinfo>
</xs:annotation>
</xs:element>

Listing 5.6: Any element can be annotated with appinfo

Symbol Jif syntax XML equivalent

T * top

L - bottom

p,q P4 p.q

00— 0T Or 0->T o reader r

0w o<-T o writer w

o—rlot —rt | o->rl->rl o reader r join ol reader rl

04+ wlo! + w! | o<-wiol<-wl o writer w join ol writer wl

o—rifol —r! o->1 meet ol->rl o reader r meet ol reader rl
04+ wlo' + w' | o<-w meet ol<-wl | o writer w meet ol writer wl
{c;d} {c;d} <label>c;d</label>
authority (c,d) <authority>c;d< /authority>

Table 5.2: Mapping Jif labels [8] to XML equivalents

changes to the client in order to continue functioning. It also exports all the
information-flow control meta-data at compile-time, so it does not introduce run-
time overhead, and also makes all the meta-data available for static checking before
any information exchange is actually performed.

One shortcoming is that while Java runtime does provide hooks for plugging into
WSDL generation, it does not cover all aspects of it. For example, it is not possible
to hook into generation of XSD. Meaning that it is not possible to add meta-data to
type definitions. Working around this may require changes to internal classes of Java
runtime, which would make the solution completely not portable, and would likely
break existing applications. It may also rely on obscure solutions like parsing SOAP
message at run-time in order to add the required meta-data, which may introduce
significant run-time bottle-necks. Both of these hacks are obscure enough for them
to be unacceptable in many real-world applications.

34 Design and implementation

5.2.3 Adding meta-data in implementation-independent way

So far we have discussed ways of adding the information-flow control meta-data to
Java-based systems, but the original goal is to enable this functionality indepen-
dently of the platform of the implementation. We also want to be able to integrate
components that do not support information-flow control. This is not possible if the
solution relies on platform-specific features, such as code generation in Java.

This does not contradict the approach, based on adding the meta-data to WSDL
and XSD definitions, discussed earlier, but it has to be extended to cover both cases:
when a system component supports information-flow control and want to export the
meta-data via Web services, and when it does not provide such support.

The first case is covered by the compile-time, and partially run-time code gener-
ation, approach discussed earlier. It may prove challenging in that it is likely to
require some work-arounds, but assuming that the component already implements
information-flow control, exporting this information in a specific format is definitely
a reasonably doable task.

The second case is more problematic because if the component in question does not
support information-flow control, it cannot supply the required meta-data. Imple-
menting such support in the component itself is likely to require major rewrites or
even reimplementation in a different technology to be possible. This is not desirable
in absolute majority of cases.

However, the fact that the meta-data can be added to standard WSDL and XSD
definitions, lets us exploit one interesting feature of the Web service architecture:
the WSDL and XSD definitions used by the consuming entity do not have to be
the same definitions that are exported by a service. Rather, they just have to be
compatible, meaning that they map to the same methods and data types. This
property is actually utilised in pretty much every Web service-based system, where
WSDL definitions are cached on the consuming side, instead of reading them from
the service every time a remote method call is performed.

What this means to us, is that the information-flow control meta-data can be added
on the consuming side, because annotating the type definitions with the appinfo
element cannot invalidate the WSDL or XSD definitions [35]. As can be seen in
figure 5.2, adding the meta-data on the consuming component or using the meta-
data exported by the web service itself produces equivalent results. In both cases
the meta data is made available for checking and is cached locally at the consuming
component.

This Web service-consuming component could be the client itself, but it is rarely
the case that a client would communicate directly with all the components in the

5.3 Information-flow control inside a BPEL process 35

0" "Q
'y meta-data S
Consume

Export

service 1

Policy-enforcing |.=="" "+ ~, Xsb
entity Add .
meta-data

Web
service 2

Consume

Export
WSDL &
XSD

Figure 5.2: Adding meta-data to WSDL and XSD definitions

system. It is more often that the client communicates with a single intermediate
component that in turn executes a complex business process to deliver a result.
We assume that all information is in fact performed though such an intermediate
component, and designate it as the policy-enforcing component.

This intermediate component in our example is the Shop Service, and we know that
the previous assumption does hold in the example system. In that case, the Shop
Service has to be the only component in the system that does support information-
flow control. This is because it can enforce the policy without requiring cooperation
from the other system components.

Let us look at a simple example. In our example system the Company Service is not
intended to receive the city of residence of the customer. However, this information
could be passed on in a field meant for the name of the customer, because both
are string data, and in traditional systems that would succeed. However, in an
information-flow control-aware system, this would conflict with the policy and would
fail. Since the assignment is performed at the policy-enforcing component, and can
be verified statically before the actual exchange takes place, the data leak would be
detected and the process would not be allowed to run. The receiver of the data (the
Company Service) would not be aware of any of this, because it would never receive
any data that is not policy-compliant.

5.3 Information-flow control inside a BPEL pro-
cess

Web Service Business Process Execution Language (WS-BPEL or BPEL) is an
XML-based Web service orchestration language. XML-based languages are not
widely widespread among application developers as their main implementation lan-

O O U= W N+

36 Design and implementation

guage, but BPEL does not even try to be one. It has a very specific goal, which
is to allow defining business processes in Web service-based systems, and does it
well. Therefore is often used as a technology for integrating Web service-based
components into a system.

Being an XML-based language is an advantage is our case, because this allows for
direct use of the information-flow control meta-data exported via WSDL interfaces,
and for a consistent representation of the meta-data across BPEL, WSDL, and XSD
definitions. It also means that a policy validator can extract all the required meta-
data just by parsing the linked XML files.

BPEL does not natively support any sort of information-flow control, so the required
constructs are also missing in the language, but because BPEL is an extensible
language the missing constructs can be added [26]. Any element that can be defined
in XSD can be used as an extension element in BPEL.

The extension elements can be defined to be treated by the BPEL parser in two ways:
either require support in the BPEL runtime, or simply ignore them. Requiring run-
time support is needed when extension elements are an integral part of the process,
and make the process non-executable on standard runtime. If they are merely used
as meta-data for an external tool, then requiring run-time support is not necessary.

BPEL also provides a way to extend some of the standard constructs with additional
elements. For example the assign operation defines an extensionAssignOperation
element that can contain any custom-defined extension element. We use this to
allow for declassification and endorsement of the labels during assign operations.
See the example on how a custom element can be defined in an external XSD
file, and used inside an assign operation. Elements for endorse and declassify are
equivalent in definition, but differ in meaning.

<xsd:complexType name="endorse”>
<xsd:sequence>
<xsd:element name="fromLabel” type="xsd:string”’></xsd:element>
<xsd:element name="toLabel” type="tns:string”’></xsd:element>
</xsd:sequence>
</xsd:complexType>

<xsd:element name="endorse” type="tns:endorse”’></xsd:element>

Listing 5.7: Defining a custom endorse element

A limitation of this approach is that in BPEL a single assign operation can have
multiple copy operations. This cannot be done here, because it would require a way
to track which copy element corresponds to which endorse or declassify element.
This would considerably complicate the task, and would not be consistent with Jif.
Instead, we say that if an assign operation involves endorsement or declassification,

1
2
3
4
)
6
7
8

9
10
11
12

1

1

3

5.3 Information-flow control inside a BPEL process 37

<assign name="AssingWithEndorse”>
<copy>
<from variable="varl” />
<to variable="var2” />
</copy>
<extensionAssignOperation>
<b4j:endorse>
<b4j:fromLabel>C writer top</b4j:fromLabel>
<b4j:toLabel>C writer top meet P writer top</b4j:toLabel>
</b4j:endorse>
</extensionAssignOperation>
</assign>

Listing 5.8: Endorsement as part of assignment

it can only operate on a single pair of variables. If this is not the case, the policy
validator has to treat this situation as an error. In practise this should not be a
problem, because assign operations with multiple copy elements can be split into
separate assign operations, without any difference in functionality, except that such
assignments can only be performed in sequence, not in parallel. If the system has
to perform a large enough amount of declassifications or endorsements, for it to
be a problem, it may indicate a larger problem in the design of a system or the
information-flow control policy.

Another more missing piece is assigning labels to variables. There is no explicitly
defined way to extend a variable definition, but a variable element can contain any
XML data, most commonly used for the documentation element. Because documen-
tation is a rarely used in variable definitions, we replace it with our label extension
element.

<xsd:element name="1label” type="xsd:string”’></xsd:element>

Listing 5.9: Defining a label extension element

2

<variable name="varl” xmlns:tns="...” messageType="tns:varType”’>
<b4j:label>Company writer top</b4j:label>
</variable>

Listing 5.10: Assigning a label to a variable in BPEL

The described approach has one strong advantage — it does not interfere with the
execution of the process, and does not change its meaning. It can still be executed
on standard a runtime, and produces the same results. The alternative of replacing
elements, rather then extending them, would give a stronger control over the pro-
cess and would allow for simpler syntax validation, but it would inevitably break
the process on a standard runtime. Requiring a custom runtime is not a portable
approach, and would likely impair the adoption of the solution quite a bit.

38 Design and implementation

BPEL exports the client-facing interfaces via WSDL definitions as Web services, so
the same approach of assigning information-flow control labels to WSDL and XSD
definitions, as discussed earlier, can also be used here, thus completing the tool-kit
with labelled methods and data types.

5.4 Mapping between Jif and XML-based languages

It is important to have a reference when designing a new type of a system, but it
only makes sense if they are comparable. To be able to compare XML-based and
Jif-based implementations we need to define how equivalent functionality is mapped
between them.

5.4.1 Mapping between Jif and BPEL

Mapping between different programming languages is a fairly difficult task that
is best illustrated by an example of a compiler. A compiler translates high-level
program code to assembly commands. A good compiler does not change the meaning
of the program, but it is a fact that different compilers, or even the same compiler
with different options, produce different set of assembly commands given the same
input.

Mapping between two high-level programming languages is a very similar, but possi-
bly even more challenging task. It deals with the same problems of mapping between
different ways to express the same thing, but must also take into account that not
all high-level programming languages support the same subset of expressions. This
means that what is a single statement in one programming language may have to
be mapped to a sequence of statements in another. The opposite is even more diffi-
cult, because a converter has to locate these possible sequences among all possible
combinations of statements.

However, we need to be able to map between Jif and BPEL, because that is how
the information-flow control concepts of Jif can be applied to BPEL. As can be seen
in table 5.3, not all BPEL constructs can be mapped directly to Jif, and not all Jif
constructs can be mapped to BPEL. We solve the problem of mapping information-
flow control-specific constructs by adding custom extension elements to BPEL, but
that does not affect the problem in any significant way.

One of the biggest limitations of Jif is that it is single-threaded, whereas BPEL is
heavily multi-threaded. Therefore it is not possible to map the parallel-acting BPEL
constructs directly. One possible solution is to perform the actions sequentially in

5.4 Mapping between Jif and XML-based languages

39

BPEL contruct ‘

Jif construct

Actions

Empty Empty statement

Invoke Call method

Receive Method being called

Reply Return statement

Assign Assignments to variables
Validate N/A

Control

If If statement

Pick If statement or case statement
While While statement

For Each For statement

Repeat Until Do while statement

Wait N/A or Thread sleep in Java
Sequence N/A

Scope N/A or Declassification
Flow N/A or Threads in Java
Faults

Exit System exit

Throw Throw statement

Rethrow Throw statement
Compensate N/A or Complex exception handling

Information-flow co

ntrol

N/A or Extension | Declassify
N/A or Extension | Endorse
N/A or Extension | Labels

Table 5.3: Mapping BPEL to Jif

40 Design and implementation

Jif, but that is likely to be very complex, especially when dealing with timeouts,
and message listeners.

Another problem is that types are handled differently in BPEL (and Web services in
general) than they are in Jif and Java. For example what is defined as two separate
types in Jif or Java, can be mapped to a single message type definition in WSDL.
This is a general problem encountered by all platforms that provide support for
Web service architecture. In fact, there are solutions such as Java Architecture for
XML Binding (JAXB) that do exactly that. It is largely a solved problem, and
adding Jif support to existing XML binding frameworks is definitely a doable task.
Unfortunately, these XML binding frameworks do nothing about mapping between
different programming languages.

As a rule, each implementation of BPEL runtime provides their own BPEL parser
and compiler. For example, Apache ODE (Orchestration Director Engine) [16]
project provides BOM (BPEL Object Model) parser and compiler; Petals Link pro-
vides EasiestDemo [38] — an open source BPEL to Java generator; Eclipse hosts B2J
(BPEL to Java) [19] sub-project in very early stages of development; and probably
many others. However, all these project deal with an inherently different problem.
Their goal is to allow execution of BPEL processes, either by compiling them to
executables directly, or producing executable Java code, which is far from just be-
ing a map of language constructs. Adapting any of these solution is no easier than
writing one form scratch, which would involve a tremendous amounts of effort.

The problem is further complicated by the fact that BPEL allows for writing ex-
pressions not only in XPath, but basically any scripting language including, but not
limited to JavaScript. Mapping these expression requires parsing or interpreting
them, which can be particularly problematic if they return data based on runtime
criteria.

We claim that this problem is far too complex to be solved in a generic way. Instead,
we limit the constructs we want to map to a very specific subset that is enough
to demonstrate the concept. We discard any constructs that cannot be mapped,
and also the ones that are not used in the example system. This leaves invoke,
receive, reply, assign, if, declassify, endorse, and labels. BPEL construct sequence is
present in every BPEL process, but because we omit all parallel-acting constructs,
the sequence element has no meaning beyond being a generic container for other
elements.

=~ W

0O Ui Wi+

—_ ==
N = OO

5.4 Mapping between Jif and XML-based languages 41

5.4.2 Mapping between Jif and XSD

Earlier we discussed how Jif labels can be represented in XML-based language, and
how these labels can be included in XSD. This section explains how exactly the
labels are mapped. Let us take a look at a simple Web service class as it would be
defined in Java. We have a single method that takes a parameter, and returns a
boolean value. All these components are assigned an information-flow control label.

public class CompanyService {
public boolean{returnLabel} validateCustomer{beginLabel}(Customer{
parameterLabel} customer) : {endLabel} {
return true;
}
}

Listing 5.11: A simple Web service class with Jif labels

What we refer to as returnLabel is a label that will be assigned to an object returned
by the method. The beginLabel is an upper bound on the program-counter label of
the caller, which is associated with very statement in the code, and a lower bound on
the side effects of the method [8]. The endLabel specifies the program-counter label
at the point of termination of the method, and is an upper bound on the information
that may be learned by observing whether the method terminates normally [8]. And
parameterLabel is a label assigned to the method parameter. Most commonly all of
these labels are the same, but that is not a requirement. The requirement is that
they are consistent in a way that they do not make the information flow impossible.

public class Customer {
private String{dataLabel} personalld;

public String{dataLabel} getPersonalld() {
return personalld;

}

public void setPersonalld{dataLabel}(String{dataLabel} personalld) {
this.personalld = personalld;

}
}

Listing 5.12: A simple bean class with Jif labels

The same applies to bean classes that will be used in information exchanges. We as-
sign the same dataLabel to fields, getters, and setters, because they are just syntactic
sugar. In theory it is possible to have different labels, because getters and setters
are just regular methods that may perform some additional operations. These, how-
ever, would not map to Web services, because Web services do not have a notion of
a getter or setter, so any additional code contained within them would be lost.

42 Design and implementation

Now let us take a look at how the code maps to WSDL and XSD definitions.
WSDL definition is the same as it would appear in Java-based systems, because
all information-flow control meta-data is contained within the imported XSD type
definitions. It is possible to have the meta-data inside XSD, because in Web ser-
vices everything is a message and every message has a type definition. For example
validateCustomer is a method name and does not have a type by itself, whereas in
Web services it is a message, just like everything else. We use this property to con-
sistently assign labels to everything within XSD. The equivalent labels are marked
the same, so it is pretty self-explanatory. Please refer to listing 5.14 for an example.

1 <?xml version="1.0" encoding="UTF-8" 7>

2 <definitions name=" CompanyService” ...>

3 <types>...</types>

4 <message name="validateCustomer”>

5 <part name="parameters”

6 element="tns:validateCustomer” />

7 </message>

8 <message name="validateCustomerResponse”>

9 <part name="parameters”

10 element="tns:validateCustomerResponse” />

11 </message>

12 <portType name="Company” >

13 <operation name="validateCustomer”>

14 <input message="tns:validateCustomer” />

15 <output message="tns:validateCustomerResponse” />
16 </operation>

17 </portType>

18 <binding name="CompanyPortBinding” type="tns:Company”>
19 <soap:binding transport=... style="document” />

20 <operation name="validateCustomer”>...</operation>
21 </binding>

22 <service name=" CompanyService”>...</service>

23

</definitions>
Listing 5.13: A simple Web service defined in WSDL

Element validateCustomerResponse has no equivalent in Jif or Java, because it is
not the same as the returned object. The returned object is referenced by wvalidate-
CustomerResponse type, and there we can see that it is actually a simple boolean
type. The end-label is assigned to the response element simply as a convenience,
because there is no other place where the end-label could be assigned in a consistent
manner, and there is also no other label that would make sense to be assigned to
the response element.

5.4 Mapping between Jif and XML-based languages

43

1 <?xml version="1.0" encoding="UTF-8” 7>

2 <xs:schema ...>

3 <xs:element name="validateCustomer”

4 type="tns:validateCustomer”>

) <xs:annotation>

6 <xs:appinfo>

7 <label>beginLabel</label>

8 </xs:appinfo>

9 </xs:annotation>

10 </xs:element>

11 <xs:element name="validateCustomerResponse”

12 type="tns:validateCustomerResponse”>

13 <xs:annotation>

14 <xs:appinfo>

15 <label>endLabel</label>

16 </xs:appinfo>

17 </xs:annotation>

18 </xs:element>

19 <xs:complexType name="validateCustomer”>

20 <xs:sequence>

21 <xs:element name="customer” type="tns:customer”>
22 <xs:annotation>

23 <xs:appinfo>

24 <label>parameterLabel</label>
25 </xs:appinfo>

26 </xs:annotation>

27 </xs:element>

28 </xs:sequence>

29 </xs:complexType>

30 <xs:complexType name="validateCustomerResponse”>
31 <xs:sequence>

32 <xs:element name="return” type="xs:boolean”>
33 <xs:annotation>

34 <xs:appinfo>

35 <label>returnLabel</label>
36 </xs:appinfo>

37 </xs:annotation>

38 </xs:element>

39 </xs:sequence>

40 </xs:complexType>

41 <xs:complexType name="customer”>

42 <xs:sequence>

43 <xs:element name="personalld” type="xs:string”>
44 <xs:annotation>

45 <xs:appinfo>

46 <label>dataLabel</label>

47 </xs:appinfo>

48 </xs:annotation>

49 </xs:element>

50 </xs:sequence>

51 </xs:complexType>

52 </xs:schema>

Listing 5.14: XSD type definitions with Jif labels

44 Design and implementation

5.5 Policy validator

In the previous sections we discussed ways to add the information-flow control meta-
data to WSDL and XSD definitions, how to integrate system components by employ-
ing BPEL, how to add information-flow policy control-aware constructs to BPEL
language, and how to map between BPEL and Jif. The only thing missing is the pol-
icy validator itself. This section describes how information-flow control is actually
performed, and architecture of the validator.

The basic idea is that the validator should be able to statically verify the information-
flow control policy before a system is deployed, effectively preventing information
leaks by preventing systems with policy violations from running at all. This ap-
proach also avoids requiring support in the runtime environment, what greatly
increases portability of the solution, and is likely to make it more acceptable in
real-world applications.

Implementing a validator for the decentralised label model is definitely a doable
task, proven by the fact that such an implementation already exists in Jif, but it
is hardly an easy task. Therefore it would be nice if it would be possible to simply
plug an existing policy-validating tool into the validator, and let it do the job. And
looking at the only implementation of the decentralised model is a good starting
point. The problem is that the validator for the decentralised label model, as found
in Jif compiler, expects Jif code as input. So to be able to utilize it, we must first
find a way to express the information-flow control-related in Jif language. For this
we need a Jif code generator.

The idea behind such a Jif code generator is that it should be able to extract relevant
information-flow control-related data from a BPEL process, and express this data in
Jif language. For reasons discussed earlier, it is not an easy task to accurately map
between different programming technologies, so a slightly different approach has to
be taken here. Instead we treat the generated code as a model of the system, and
the code generator as a modelling tool. And we also need to accept the limitations
of a modelling approach, because the accuracy of the results is highly dependent on
how well the model represents reality.

An obvious issue with this approach is that not all required code can be auto-
generated. The most obvious part being the client code — the initiator of the process.
However, the client-facing interfaces are exported via Web services by the BPEL
runtime, so a large portion of the client code can actually be generated, as it is
the case with many Web service-base systems. The missing part — actual logic —
needs to be treated as if it was a unit test. That is, calling every method of the
service with mock objects, instead of the actual data. This could be automated for
primitive and simple types such as integer or string by sending random values. In

5.5 Policy validator 45

B

ient code

Mock objects

Code Jif
generator compiler
J

..............................

Jif meta-data

runtime

Figure 5.3: Architecture of information-flow policy validator

other cases null values could be sent. However, this gets more complicated with
more complicated data structures, so we just assume the code is manually written,
as it is the case with unit testing nowadays.

The same approach is used for modelling the called services, such as the Company
Service and the Postal Service in our example. The difference is that the server
side code also needs to be generated in addition to client code. Yet again, it can be
modelled without actually knowing what manipulations are made on the data inside
the component. As long as pre-conditions (begin label) and post-conditions (end
label) are satisfied, mock objects can be used, because the policy is content-agnostic.

Even though we are talking about generating Jif code, it does not imply that the
client does in fact support information-flow control. It could very well be imple-
mented in plain Java and contain no support for the decentralised label model. The
process would still run, because of the previously described approach that allows
connecting system components that do not natively support any information-flow
control. This also includes the client.

All client-related data types and method definitions of the service are labelled in
accordance to the scheme described earlier, and serve the same purpose as if they
were originating form the client itself. This approach does not allow the client to set
its own information-flow control policy, but since it is available to the client before
engaging in actual data exchange, it can be verified, and if it does not meet the
policy set by the client, avoid performing the data exchange.

During the validation stage, the model of the system, in a form of Jif code, is
compiled by Jif compiler, which includes verification of the information flow within
the system. We claim that if the model of the system passes the validation, so
should the system itself. This claim is extremely difficult to prove, because only one
counter-example is needed to disprove it. Any mismatch between the model and the

ST W N

46 Design and implementation

actual system may result in information leaks, or other policy violations. Probability
of this happening can be reduced by improving quality of the code generator, and
reducing the need to perform manual modifications to the generated code.

5.6 Implementing the system

In theory any Java applications could be converted to Jif application, but there are
some challenges. Understanding the way information flows trough the application is
an important first step that is hard to make. It introduces new concepts to object-
oriented programming that may seem counter-intuitive, and makes one rethink his
or her programming habits.

One such concept is the program-counter label — a label associated with every state-
ment of the code. It takes time to get accustomed with the effects of it, because it
is an “invisible” label — it is not assigned by a developer, but is always there.

boolean{P<—x%} varl = false;
boolean{Q<—x*} var2 = false;

if (varl) {
var2 = true;

}
Listing 5.15: This code is invalid in Jif

Let us take a look at an example. If we ignore the labels, it is a perfectly valid
Java code. But it is not valid in Jif, because of how the program-counter works.
When the execution reaches the if statement, the program-counter label for the
entire block becomes that of the var! variable. This makes the assignment to the
varl variable impossible, because the labels of var! and var2 are not compatible.
This gets more complicated with more nested blocks.

Another difference is that input and output streams are also affected by the program-
counter. For example the equivalent of Java System.out output stream cannot be
referenced directly, but needs to be obtained form a Runtime class, and is only
writeable by a special caller principal, which corresponds to a current user running
the application.

Luckily Jif provides means to explicitly declassify information via declassify and
endorse operations. However, a high number of declassifications within a system
may indicate that the system is not really compatible with the idea of information-
flow control. Porting such an application to Jif may require big changes in its

5.6 Implementing the system 47

architecture, meaning that the more complex the system is, the less likely it is to
be ported to Jif because of exponentially increasing amount of work required.

The Jif implementation of the example system was not a straightforward port from
Java, but rather a circular process. In the first design the main information flow was
from the leaf services towards the client. This version of the system proved to be
largely incompatible with Jif due to numerous declassifications required to run the
application, and was abandoned in favour of a simpler design, which changed the
direction of information flows within the system, making data flow from the client
towards the leaf services.

The new design greatly reduced the amount of declassifications up to a point that
conflicting operations had to be introduced intentionally just to demonstrate the
concept. A properly designed Jif application differs form an equivalent Java appli-
cation quite minimally, in a sense that explicitly setting the labels and performing
declassifications becomes redundant, and can be omitted in many cases.

Applying information-flow control principles in Web service-based systems is by any
means not a straightforward task, and especially so if compatibility with existing
systems is to be maintained. The task consists of several related problems: adding
information-flow control meta-data, exchanging it among the system components,
and verifying the information-flow control policy. Several different approaches were
tried for adding the meta-data, and it was shown that it can be done in a fairly
universal way without relying on complex run-time solutions, and retaining com-
patibility with existing Web service-based systems.

Verifying the information-flow is a more complicated problem. Systems supporting
information-flow control, such as Jif, are often based on static analysis of the code
to verify that the actual flow matches the one defined by the policy. This is not
possible in loosely-coupled system, so an alternative approach needs to be found.
The proposed approach involves producing a model of a system, and verifying the
model, instead of the system itself. This is a viable approach, but testing its ef-
fectiveness would require implementing a more complete tool-kit, and performing
extensive testing. Neither of the two are small tasks.

48

Design and implementation

CHAPTER 6

Evaluation and discussion

In this chapter we discuss the process and the results of this thesis with focus on
challenges encountered, and limitations of the solution. We suggest several alterna-
tive approaches, and set guidelines for future work.

6.1 Hooking directly into the internal Jif API

The current approach involves a code generation step. In reality it is more useful
for demonstrating the concept than anything else. The generated code is human-
readable, and is also a valid Jif application that can be compiled and executed,
allowing a developer to verify its correctness. However, it adds little to no value to
automatic information-flow validation.

The idea behind the code generator is that it converts the information-flow control
meta-data to a format, that is accepted by our validator — the Jif compiler. But
the compiler also converts the code into its internal representation prior to perform-
ing any useful work. By hooking up directly into Jif compiler APT [8] we could
completely omit the code generation step, and call validator methods directly.

By reducing the number of unnecessary intermediate representations we can improve
reliability, because generating a human-readable code is error-prone, as there is no
type-checking — all output is just text. Just putting a semicolon in a wrong place,
for example because some data that was assumed to be there was actually null,
would render the code invalid. This is much more reliable when dealing with object

50 Evaluation and discussion

representation of the code tokens, because it eliminates simple mistakes such as
putting textual data, where integer is required, and similar. This would allow for
detection of mistakes earlier.

Code generation also has a disadvantage that output of the generator needs to be
fed to the validator by means of pipes, sockets, or whatever other inter-process com-
munication technology, which unavoidably adds a layer of complexity and another
point of failure.

We must also remember that such inter-process communication is by itself prone
to information leaks, unless it is done with proper information-flow control-aware
technologies. It makes it hard to claim that the system is secure in regard to
information flow if the subsystem that performs the validation is itself not secure.
It is therefore excluding any error-prone unnecessary steps from the system is a good
idea.

6.2 Run-time policy validation

In our approach we do not require run-time support for information-flow control in
any of the system components. And this is a very optimistic approach, because some
policy violations can only be detected at run-time. For example NullPointerExcep-
tion or InderOutOfBoundsException occurring in the system can leak information
via covert channels. These have to be caught and handled in Jif, so such leaks are
prevented. But if the actual run-time does not perform such checks, these leaks
cannot be prevented.

The only way to avoid this problem is actually implementing information-flow con-
trol in Web service-based systems. Here SIF, a web application framework based on
Jif, shows a lot of potential. Since the implementation of Web services in Java and
SIF are largely built on servlets, in theory it is possible to implement a Web service
framework in a similar manner to that of SIF.

Such framework would inevitably face a problem of interoperability with existing
implementations. Not being able to communicate with other Web service implemen-
tations would greatly reduce the possibility of the solution being widely adopted,
and would make it only usable for very specific tasks.

Moreover, this approach does not involve BPEL, so it does not allow taking advan-
tage of XML-based technologies to full potential. In reality it is not a problem of
functionality, because all that can be done in BPEL can also be done in a tradi-
tional programming language such as Java. However, we do lose the consistency of
information-flow control meta-data definitions, and we lose the ability to visualise

6.3 Client-side policy enforcement 51

complex systems, like it is possible with BPEL to BPMN mapping. This is espe-
cially useful when dealing with information-flow control, because a developer always
has to have information flow in mind, and a visual reference can greatly increase
productivity, and reduce possibility of mistakes.

Another reason why BPEL is sometimes preferred as an integration technology in
large loosely-coupled systems is that doing system integration in a programming
language such as Java makes it tempting to add additional logic, such as format
conversion, to the integrating component which complicates the architecture of the
solution, and makes it difficult to update the system. Whereas with BPEL it may
be just a matter of reconnecting the lines in an editor, if talking very generally.

It is important to also be able to use BPEL in information-flow control-aware loosely-
coupled Web service-based system, because it is complex enterprise systems that
would benefit the most from information-flow control, and it is the same complex
enterprise systems that are also very likely to be taking advantage of BPEL. Un-
fortunately, adding this functionality to BPEL runtime may have a disadvantage of
reduced portability of BPEL code, and is not a small task.

6.3 Client-side policy enforcement

When talking about information-flow validation, we designated a specific component
for this purpose. In our example system it is the component that the client com-
municates directly with. The client has to trust this component to actually enforce
the information-flow control policy.

There are different methods of establishing trust, such as digital signatures or cer-
tificates. However, none of them can actually ensure that the implementation is
actually correct, so the client has absolutely no reason to trust this particular com-
ponent any more than another. In reality the client can only trust itself.

In ideal case it is the client itself that should be able to verify the information flow.
However, this is not a straightforward task, because the client would essentially need
to have the source code (or compiled code) of the system component to be able to
verify its functionality. This is most often not the case in Web service-based systems.

Requiring the source code of all system components is definitely not an option.
From a functionality point of view it is a valid approach. Client would be able to
verify the components, and establish trust. But this is only going to work where
all applications are open-source. The reality is that many vendors would find it
unacceptable to distribute the source code of their applications because of legal,
political, and business considerations.

52 Evaluation and discussion

\ s
' '
J J
"~ . " S v"
' H
. .
.) B
Sel Location i
. Service
.
\
'
.
'

..........
\
N
e
' '
. S . A
. R R
' H .
. .
. B
*«.4f Customer) .- Shop
Service K Service .
g
v
" '
. .
| .
. K
. e
~«._af Company Postal .-
Service Service

Figure 6.1: Complex system with long chain of components

Requiring the compiled code is a bit more realistic, because it is difficult enough to
reverse-engineer a compiled binary that the vendors would be willing to provide it to
the client. And compiled code does not really prevent the client from verifying it by
means of static analysis. However, this also only works in a perfect world. It makes
no sense to think of a system component as a single compiled binary. In reality they
are likely to be complex compilations of binaries, configuration files, bytecode files,
etc. Moreover, not all technologies even have a concept of compiled code.

What is needed here is a way to propagate all information-flow meta-data to the
client along with a proof that the received meta-data matches the actual behaviour
of the component. In our case propagating meta-data is just a matter of allowing
the client to download all labelled WSDL and XSD definitions from all system
components. But providing a proof of validity is a complex cryptographic task that
is likely to involve some sort of code signing technique and may require development
of a new cryptographic protocol.

6.4 Propagation of the meta-data

Previously discussed meta-data propagation problem is actually more important
than it may appear at the first glance. In our example system we have a chain of
client, validation/integration service, and leaf services. The central component is
able to enforce the information-flow control policy in the system because it is in a
crossroad between all information flows. But in reality the leaf services may be not
leaf at all. They may be exchanging information with any number of entities, and
those in turn can be doing the same.

In this case our designated validator component is no longer a central component,
and can only influence the data flowing through it. It is completely unaware of other

6.4 Propagation of the meta-data 53

components in the system, that it does not communicate with. Here we run into
the same problem as with meta-data propagation to the client, but on larger scale.
Therefore it can be claimed that solving one of them is equivalent to solving both
of them.

One possible approach here is to pass on the meta-data from leaf components via
intermediate ones while adding their meta-data to the set, repeating the procedure
as it travels through all the intermediate nodes. This would also require adding
verifiable identity information to the meta-data. Integrity of such a solution would
need to be verifiable by cryptographic means, which is commonly addressed problem
in internet protocols.

Another option is to aggregate all the meta-data directly at the validator component.
Meaning that the validator has to be aware of all the system components, even
those it does not communicate directly, and obtain the meta-data directly from
every one of them. Technologies such as UDDI (Universal Description Discovery
and Integration) [10] could be utilised in discovery of the components, even though
UDDI in particular has not been widely adopted and has since been abandoned by
it designers.

Either option is viable and may be preferred in certain situations. But it is clear
that the issue needs to be resolved for the approach to be considered complete, and
become acceptable in real-world applications. It is an important part of the system
design, and cannot be considered implementation detail. This is one of the most
important issues identified, as it may benefit not only our approach, but in a more
general sense could be applied to any similar system, where integrity and trust are
essential.

54

Evaluation and discussion

CHAPTER 7

Conclusions

This thesis aims to tackle a large problem of applying information-flow control tech-
niques to distributed loosely-coupled Web service-based systems. The problem is
actually a complex combination of more or less closely related problems, that need
to be addressed individually before the general problem can be resolved. These can
broken into the following:

o Adding information-flow control meta-data to Web service-based systems. It
was show that it can be done in a fairly universal manner while retaining com-
patibility with existing implementations of Web services. Some platforms may
allow to do this easier than others, but it can be considered to be implemen-
tation detail, and left to platform-specific implementation.

e Fxchanging information-flow control meta-data. We have shown that making
the meta-data available to other system components is not a complex task,
and can be achieved with existing technologies. Verifying that the meta-data
actually corresponds to actual behaviour of the application is a much more
complex problem that involves cryptographic means, such as digital signatures
or similar. No universal solution was proposed.

o Validating information-flow control policy. This is a complex problem consist-
ing of identifying the point of policy enforcement, and actually enforcing it.
We have shown that the most sensible point of policy enforcement is at the
point where all information flows trough. Unfortunately it is not always pos-
sible to identify such a point, because even though all system components are
known, they themselves may be composed of other components, including ex-
ternal ones. It is also desirable that the policy enforcement could be possible at

56

Conclusions

the client-side, because it is usually the client that is concerned about privacy
and integrity of its data. We have proposed an approach where a model of a
system is verified instead of the actual system. This is a viable approach, but
testing its effectiveness would require implementing a more complete tool-kit,
and performing extensive testing. Neither of the two are small tasks.

Run-time policy validation. It became evident that static compile-time policy
validation approach is too limiting in some cases, and run-time validation needs
to be implemented to overcome these limitations. However, this requires major
changes to nearly all run-time components of such a system, and may greatly
reduce portability of the solution by making it platform-specific. It is also a
major task in sense of effort required to implement it.

Even though the thesis did not resolve all of the problems, identifying them is a first
step towards an actual implementation of a distributed loosely-coupled information-
flow control-aware system. There are some principle problems, like protocols for
information-flow control meta-data exchange, that need to be resolved. But often
it is more of a problem of providing a usable implementation rather than defining
what needs to be implemented.

In conclusion, information-flow control-aware systems such as Jif, SIF, and Swift
provide good confidence that an implementation of an information-flow control-
aware distributed loosely-coupled system is definitely doable, and provide a base
for more complex and usable systems, that hopefully will become the norm in the
future.

1
2
3
4

5

APPENDIX A

XML code

This appendix contains the source code of the example system as it is implemented in
BPEL. WSDL and XSD definitions are also included, because they are integral part
of a BPEL implementation. Files contained here are the versions with information-
flow control extensions.

WSDL and XSD definitions of only the Shop Service (and not Company service and
Postal Service), because they all are defined following the same principals, and are
equivalent in every way.

A.1 Business process

A.1.1 BPEL definition

This is the business process definition in BPEL with information-flow control ex-
tensions. Variables are assigned empty labels for demonstration purposes only. En-
dorsement is performed as part of assign operation.

<?xml version="1.0" encoding="UTF-8" 7>
<process
name="ShopBpelModule”
targetNamespace="http://enterprise.netbeans.org/bpel/ShopBpelModule
/shopBpelModule”
xmlns:tns="http://enterprise.netbeans.org/bpel/ShopBpelModule/
shopBpelModule”

S © 00O

12

13

14
15

16
17

18

19

20

21

22
23

24

25

26
27
28

29
30
31

32

33
34

35

58 XML code
xmlns:xs="http://www.w3.org /2001 /XMLSchema”
xmlns:xsd="http://www.w3.org /2001 /XMLSchema”
xmlns:xsi="http://www.w3.org /2001 /XMLSchema—instance”
xmlns="http://docs.oasis—open.org/wsbpel/2.0/process/executable”
xmlns:sxt="http://www.sun.com/wsbpel /2.0/process/executable/

SUNExtension /Trace”
xmlns:sxed="http://www.sun.com/wsbpel/2.0/process/executable/
SUNExtension /Editor”
xmlns:sxeh="http://www.sun.com/wsbpel/2.0/process/executable/
SUNExtension /ErrorHandling”
xmlns:sxed2="http://www.sun.com/wsbpel /2.0/process/executable/
SUNExtension /Editor2”
xmlns:b4j="http://bpeldjif.bpel.s094758.dtu.dk/”
xsi:schemaLocation="http://bpeldjif.bpel.s094758.dtu.dk/ BPEL4Jif.
xsd”>
<extensions>
<extension namespace="http://bpeldjif.bpel.s094758.dtu.dk/”
mustUnderstand="no” />
</extensions>
<import namespace="http://shopservice.shop.s094758.dtu.dk/”
location="ShopService .wsdl” importType="http://schemas.xmlsoap .
org/wsdl/” />
<import namespace="http://postalservice.postal.s094758.dtu.dk/”
location="PostalService.wsdl” importType="http://schemas.
xmlsoap .org/wsdl/” />
<import namespace="http://companyservice.company.s094758.dtu.dk/”
location="CompanyService.wsdl” importType="http://schemas.
xmlsoap.org/wsdl/” />
<partnerLinks>
<partnerLink name="PostalPartnerLink” xmlns:tns="http://
postalservice . postal.s094758.dtu.dk/” partnerLinkType="
tns:PostalService” partnerRole="PostalRole” />
<partnerLink name="CompanyPartnerLink” xmlns:tns="http://
companyservice.company.s094758 .dtu.dk/” partnerLinkType="
tns:CompanyService” partnerRole="CompanyRole” />
<partnerLink name="ShopPartnerLink” xmlns:tns="http://
shopservice.shop.s094758.dtu.dk/” partnerLinkType="
tns:ShopService” myRole="ShopRole” />
</partnerLinks>
<variables>
<variable name="didBuyProduct” xmlns:tns="http://companyservice
.company .s094758 . dtu.dk/” messageType="
tns:buyProductResponse”>
<b4j:label></b4j:label>
</variable>
<variable name="Product” xmlns:tns="http://companyservice.
company .s094758 . dtu.dk/” messageType="tns:buyProduct”>
<b4j:label></b4j:label>
</variable>
<variable name="isValidAddress” xmlns:tns="http://postalservice
.postal.s094758 .dtu.dk/” messageType="
tns:validateAddressResponse”>
<b4j:label></b4j:label>

36
37

38
39
40

41
42
43

44
45
46

47
48
49

50
o1
52

53
o4
95

56
o7
58
59
60

61
62
63

64
65
66
67
68
69
70
71

A.1 Business process 59

</variable>

<variable name="AddressAndPerson” xmlns:tns="http://
postalservice . postal.s094758 .dtu.dk/” messageType="
tns:validateAddress”>
<b4j:label></b4j:label>

</variable>

<variable name="isValidCustomer” xmlns:tns="http://
companyservice.company.s094758 .dtu.dk/” messageType="
tns:validateCustomerResponse”>
<b4j:label></b4j:label>

</variable>

<variable name="Customer” xmlns:tns="http://companyservice.
company .s094758 .dtu.dk/” messageType="tns:validateCustomer”
>
<b4j:label></b4j:label>

</variable>

<variable name="Receipt” xmlns:tns="http://shopservice.shop.
s094758 . dtu.dk/” messageType="tns:orderProductResponse”>
<b4j:label></b4dj:label>

</variable>

<variable name="ClientAndOrder” xmlns:tns="http://shopservice.
shop.s094758 .dtu.dk/” messageType="tns:orderProduct”>
<b4j:label></b4dj:label>

</variable>

<variable name="isValidCustomer2” xmlns:tns="http://enterprise.
netbeans.org/bpel /ShopBpelModule/shopBpelModule” type="
xsd:boolean”>
<b4j:label></b4j:label>

</variable>

<variable name="isValidAddress2” xmlns:tns="http://enterprise.
netbeans.org/bpel /ShopBpelModule/shopBpelModule” type="
xsd:boolean”>
<b4j:label></b4j:label>

</variable>

</variables>
<sequence>

<receive name="ReceiveProductOrder” createlnstance="yes”
partnerLink="ShopPartnerLink” operation="orderProduct”
xmlns:tns="http://shopservice.shop.s094758.dtu.dk/”
portType="tns:Shop” variable="ClientAndOrder” />

<assign name=" AssignClientToCustomer”>

<copy>
<from>$ClientAndOrder . parameters/client /firstName</from
>
<to>$Customer . parameters/customer/firstName</to>
</copy>
<copy>

<from>$ClientAndOrder . parameters/client /lastName</from>
<to>$Customer. parameters/customer/lastName</to>
</copy>
<copy>
<from>$ClientAndOrder . parameters/client /personalld</
from>

72
73
74
75

76
7
78

79
80
81
82
83
84
85
86

87
88
89
90
91
92
93
94

95

96
97
98
99
100
101
102

103
104
105
106
107
108
109
110
111
112

XML code

<to>$Customer . parameters/customer/personalld</to>

</copy>
</assign>

<invoke name="ValidateCustomer” partnerLink="CompanyPartnerLink

2

operation="validateCustomer” xmlns:tns="http://

companyservice.company.s094758 .dtu.dk/” portType="
tns:Company” inputVariable=" Customer” outputVariable="

isValidCustomer” />

<assign name=" AssignClientToAddressAndPerson”>

<copy>

<from>$ClientAndOrder .

>

<to>$AddressAndPerson .

</copy>
<copy>

<from>$ClientAndOrder .
<to>$AddressAndPerson .

</copy>
<copy>

<from>$ClientAndOrder .

from>

<to>$AddressAndPerson .

</copy>
<copy>

<from>$ClientAndOrder .
<to>$AddressAndPerson .

</copy>
<copy>

<from>$ClientAndOrder .

from>

<to>$AddressAndPerson .

to>
</copy>
<copy>

<from>$ClientAndOrder .
<to>$AddressAndPerson .

</copy>
</assign>

<invoke name="ValidateAddress”

parameters/client /firstName</from

parameters/person/firstName</to>

parameters/client /lastName</from>
parameters/person/lastName</to>

parameters/client /personalld</

parameters/person/personalld</to>

parameters/client /street</from>
parameters/address/street</to>

parameters/client /streetNumber</

parameters/address/streetNumber</

parameters/client /city</from>
parameters/address/city</to>

partnerLink="PostalPartnerLink”

operation="validateAddress” xmlns:tns="http://postalservice
.postal.s094758 .dtu.dk/” portType="tns:Postal”
inputVariable=" AddressAndPerson” outputVariable="

isValidAddress” />

<assign name="AssignOrderToProduct”>

<copy>

<from>$ClientAndOrder .

parameters/order/price</from>

<to>$Product.parameters/product/price</to>

</copy>
<copy>

<from>$ClientAndOrder .

parameters/order /product</from>

<to>$Product . parameters/product /name</to>

</copy>
</assign>

113
114
115
116
117
118
119
120
121

122
123
124
125
126
127
128
129
130
131
132
133

134
135
136
137
138

139

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

A.1 Business process 61

<assign name="EndorselsValidAddress”>
<copy>
<from>$isValidAddress . parameters/return</from>
<to variable="isValidAddress2” />
</copy>
<extensionAssignOperation>
<b4j:endorse>
<b4j:fromLabel>Company writer top</b4j:fromLabel>
<b4j:toLabel>Company writer top meet Post writer
top</b4j:toLabel>
</b4j:endorse>
</extensionAssignOperation>
</assign>
<assign name="EndorselsValidCustomer”>
<copy>
<from>$isValidCustomer.parameters/return</from>
<to variable="isValidCustomer2” />
</copy>
<extensionAssignOperation>
<b4j:endorse>
<b4j:fromLabel>Company writer top</b4j:fromLabel>
<b4j:toLabel>Company writer top meet Post writer
top</b4j:toLabel>
</b4j:endorse>
</extensionAssignOperation>
</assign>
<if name="IfValidAddressAndCustomer”>
<condition>$isValidCustomer2 and $isValidAddress2</
condition>
<invoke name="BuyProduct” partnerLink="CompanyPartnerLink”
operation="buyProduct” xmlns:tns="http://companyservice
.company .s094758 . dtu.dk/” portType="tns:Company”
inputVariable="Product” outputVariable="didBuyProduct”/

>
</if>
<assign name="PopulateReceipt”>
<copy>
<from>$Product.parameters/product /name</from>
<to>$Receipt . parameters/return /product</to>
</copy>
<copy>
<from>$Product.parameters/product/price</from>
<to>$Receipt . parameters/return/price</to>
</copy>
<copy>
<from>$Customer . parameters/customer/firstName</from>
<to>$Receipt.parameters/return /firstName</to>
</copy>
<copy>

<from>$Customer . parameters/customer/lastName</from>
<to>$Receipt . parameters/return /lastName</to>
</copy>
<copy>

159
160
161
162
163
164
165
166
167

168
169
170
171

172
173
174
175

176
177

O © 00O U= W

12
13
14
15
16
17

62

XML code

<from>$Customer . parameters/customer/personalld</from>
<to>$Receipt . parameters/return/personalld</to>

</copy>

<copy>
<from>$AddressAndPerson . parameters/address/city</from>
<to>$Receipt .parameters/return/city</to>

</copy>

<copy>
<from>$AddressAndPerson . parameters/address/street</from

>

<to>$Receipt.parameters/return/street</to>

</copy>

<copy>
<from>$AddressAndPerson.parameters/address/streetNumber

</from>

<to>$Receipt .parameters/return/streetNumber</to>

</copy>

</assign>
<reply name="SendReceipt” partnerLink="ShopPartnerLink”
operation="orderProduct” xmlns:tns="http://shopservice.shop
.8094758 . dtu.dk/” portType="tns:Shop” variable="Receipt” />
</sequence>
</process>

Listing A.1: Business process in BPEL with information-flow control extensions

A.1.2 BPEL extension definition

This XSD file defines the extension elements used in the BPEL process. Any element
that can be defined in XSD can be used as an extension in BPEL.

<?xml version="1.0" encoding="UTF-8" 7>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema”

targetNamespace="http://bpeldjif.bpel.s094758.dtu.dk/”
xmlns:tns="http://bpeldjif.bpel.s094758.dtu.dk/”
elementFormDefault="qualified”>

<xsd:complexType name=" declassify”>
<xsd:sequence>
<xsd:element name="fromLabel” type="xsd:string”></
xsd:element>
<xsd:element name="toLabel” type="tns:string”’></xsd:element
>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="endorse”>
<xsd:sequence>
<xsd:element name="fromLabel” type="xsd:string”></
xsd:element>

18

19
20
21
22
23
24

A.2 Definitions of Shop Service 63

<xsd:element name="toLabel” type="tns:string”’></xsd:element
>
</xsd:sequence>
</xsd:complexType>

<xsd:element name="declassify” type="tns:declassify”’></xsd:element>
<xsd:element name="endorse” type="tns:endorse”’></xsd:element>
<xsd:element name="label” type="xsd:string”></xsd:element>

25 </xsd:schema>

Listing A.2: Definitions of BPEL extension elements

A.2 Definitions of Shop Service

A.2.1 WSDL definitions of Shop Service

This WSDL file is used to expose the Shop Service implemented in BPEL to the
client. It is a standard WSDL file, except for the addition of partner link definitions
needed for BPEL, because the information-flow control meta-data resides in an
imported XSD file.

1 <?xml version="1.0" encoding="UTF-8"7>
2 <definitions

3

14
15
16
17
18
19
20
21
22
23
24
25

xmlns:wsu="http://docs.oasis—open.org/wss/2004/01/o0asis —200401 —wss—
wssecurity—utility —1.0.xsd”
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:tns="http://shopservice.shop.s094758.dtu.dk/”
xmlns:xsd="http://www.w3.org /2001 /XMLSchema”
xmlns:plnk="http://docs.oasis—open.org/wsbpel /2.0/plnktype”
xmlns="http://schemas.xmlsoap.org/wsdl/”
targetNamespace="http://shopservice.shop.s094758.dtu.dk/”
name="ShopService”>
<types>
<xsd:schema>
<xsd:import namespace="http://shopservice.shop.s094758.dtu.
dk/” schemaLocation="ShopService .xsd” />
</xsd:schema>
</types>
<message name="orderProduct”>
<part name="parameters” element="tns:orderProduct” />
</message>
<message name="orderProductResponse”>
<part name="parameters” element="tns:orderProductResponse” />
</message>
<portType name="Shop”>
<operation name="orderProduct”>
<input message="tns:orderProduct” />
<output message="tns:orderProductResponse” />

64

XML code

26
27
28
29

30
31
32
33
34
35
36
37
38
39
40
41
42

43
44
45
46
47

</operation>
</portType>
<binding name=" ShopPortBinding” type="tns:Shop”>
<soap:binding transport="http://schemas.xmlsoap.org/soap/http”
style="document” />
<operation name="orderProduct”>
<soap:operation soapAction=""/>
<input>
<soap:body use="literal” />
</input>
<output>
<soap:body use="literal” />
</output>
</operation>
</binding>
<service name="ShopService”>
<port name="ShopPort” binding="tns:ShopPortBinding”>
<soap:address location="http://localhost:8282/ShopService/
ShopService” />
</port>
</service>
<plnk:partnerLinkType name="ShopService”>
<plnk:role name="ShopRole” portType="tns:Shop” />
</plnk:partnerLinkType>

48 </definitions>

Listing A.3: WSDL definitions of the Shop Service

A.2.2 XSD definitions of Shop Service

This XSD defines types used in the Shop Service. This is where the information-
flow control meta-data resides. Elements that correspond to methods calls contain
a begin label of a method and response element contains an end label of a method.

Please note that the end label and the label of a returned element are not the
same. The orderProductResponse element contains the end label, and orderPro-
ductResponse type refers to a return element that contains the label of a returned
object.

1 <?xml version="1.0" encoding="UTF-8" 7>
2 <xs:schema

3

O © 00~ O O

xmlns:tns="http://shopservice.shop.s094758.dtu.dk/”
xmlns:xs="http://www.w3.org/2001/XMLSchema”

version="1.0"
targetNamespace="http://shopservice.shop.s094758.dtu.dk/”">

<xs:element name="orderProduct” type="tns:orderProduct”>
<xs:annotation>
<xs:appinfo>

11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30

31
32
33
34
35
36
37

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

54
95
o6

o7
58

A.2 Definitions of Shop Service 65

<label>Company writer top meet Post writer top</label>
<authority>Company, Post</authority>
</xs:appinfo>
</xs:annotation>
</xs:element>

<xs:element name="orderProductResponse” type="
tns:orderProductResponse”>
<xs:annotation>
<xs:appinfo>
<label>Company writer top meet Post writer top</label>
</xs:appinfo>
</xs:annotation>
</xs:element>

<xs:complexType name="orderProduct”>
<xs:sequence>
<xs:element name="client” type="tns:client” minOccurs="0">
<xs:annotation>
<xs:appinfo>
<label>Company writer top meet Post writer top<
/label>
</xs:appinfo>
</xs:annotation>
</xs:element>
<xs:element name="order” type="tns:order” minOccurs="0">
<xs:annotation>
<xs:appinfo>
<label>Company writer top meet Post writer top<
/label>
</xs:appinfo>
</xs:annotation>
</xs:element>
</xs:sequence>
</xs:complexType>

<xs:complexType name="client”>
<xs:sequence>
<xs:element name="city” type="xs:string” minOccurs="0">
<xs:annotation>
<xs:appinfo>
<label>Post writer top</label>
</xs:appinfo>
</xs:annotation>
</xs:element>
<xs:element name="firstName” type="xs:string” minOccurs="0"
>
<xs:annotation>
<xs:appinfo>
<label>Company writer top meet Post writer top<
/label>
</xs:appinfo>
</xs:annotation>

59
60
61
62
63

64
65
66
67

68
69
70

71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

66

XML code

</xs:element>
<xs:element name="lastName” type="xs:string” minOccurs="0">
<xs:annotation>
<xs:appinfo>
<label>Company writer top meet Post writer top<
/label>
</xs:appinfo>
</xs:annotation>
</xs:element>
<xs:element name="personalld” type="xs:string” minOccurs="0
7>
<xs:annotation>
<xs:appinfo>
<label>Company writer top meet Post writer top<
/label>
</xs:appinfo>
</xs:annotation>
</xs:element>
<xs:element name="street” type="xs:string” minOccurs="0">
<xs:annotation>
<xs:appinfo>
<label>Post writer top</label>
</xs:appinfo>
</xs:annotation>
</xs:element>
<xs:element name="streetNumber” type="xs:int”>
<xs:annotation>
<xs:appinfo>
<label>Post writer top</label>
</xs:appinfo>
</xs:annotation>
</xs:element>
</xs:sequence>
</xs:complexType>

<xs:complexType name="order”>
<xs:sequence>
<xs:element name="price” type="xs:int”>
<xs:annotation>
<xs:appinfo>
<label>Company writer top</label>
</xs:appinfo>
</xs:annotation>
</xs:element>
<xs:element name="product” type="xs:string” minOccurs="0">
<xs:annotation>
<xs:appinfo>
<label>Company writer top</label>
</xs:appinfo>
</xs:annotation>
</xs:element>
</xs:sequence>
</xs:complexType>

A.2 Definitions of Shop Service 67

109

110 <xs:complexType name="orderProductResponse”>

111 <xs:sequence>

112 <xs:element name="return” type="tns:receipt” minOccurs="0">

113 <xs:annotation>

114 <xs:appinfo>

115 <label>Company writer top</label>

116 </xs:appinfo>

117 </xs:annotation>

118 </xs:element>

119 </xs:sequence>

120 </xs:complexType>

121

122 <xs:complexType name="receipt”>

123 <xs:sequence>

124 <xs:element name="city” type="xs:string” minOccurs="0">

125 <xs:annotation>

126 <xs:appinfo>

127 <label>Post writer top</label>

128 </xs:appinfo>

129 </xs:annotation>

130 </xs:element>

131 <xs:element name="firstName” type="xs:string” minOccurs="0"
>

132 <xs:annotation>

133 <xs:appinfo>

134 <label>Company writer top</label>

135 </xs:appinfo>

136 </xs:annotation>

137 </xs:element>

138 <xs:element name="lastName” type="xs:string” minOccurs="0">

139 <xs:annotation>

140 <xs:appinfo>

141 <label>Company writer top</label>

142 </xs:appinfo>

143 </xs:annotation>

144 </xs:element>

145 <xs:element name="personalld” type="xs:string” minOccurs="0
7>

146 <xs:annotation>

147 <xs:appinfo>

148 <label>Company writer top</label>

149 </xs:appinfo>

150 </xs:annotation>

151 </xs:element>

152 <xs:element name="price” type="xs:int”>

153 <xs:annotation>

154 <xs:appinfo>

155 <label>Company writer top</label>

156 </xs:appinfo>

157 </xs:annotation>

158 </xs:element>

159 <xs:element name="product” type="xs:string” minOccurs="0">

68 XML code

160 <xs:annotation>

161 <xs:appinfo>

162 <label>Company writer top</label>
163 </xs:appinfo>

164 </xs:annotation>

165 </xs:element>

166 <xs:element name="street” type="xs:string” minOccurs="0">
167 <xs:annotation>

168 <xs:appinfo>

169 <label>Post writer top</label>
170 </xs:appinfo>

171 </xs:annotation>

172 </xs:element>

173 <xs:element name="streetNumber” type="xs:int”>
174 <xs:annotation>

175 <xs:appinfo>

176 <label>Post writer top</label>
177 </xs:appinfo>

178 </xs:annotation>

179 </xs:element>

180 </xs:sequence>

181 </xs:complexType>

182 </xs:schema>
Listing A.4: XSD type definitions of the Shop Service with labels

0 O Ui Wi

— =
_ O O

12

13
14
15
16

APPENDIX B

Jif code

This appendix contains Jif code of the example system. This implementation is
used as a reference. Please note that stripping any information-flow control-related
information from Jif code produces valid Java code.

B.1 Business process

This is a reference implementation of the business process written in Jif.

package dk.dtu.s094758 .shop;

import
import
import
import
import
import

public

dk.
dk.
dk.
dk.
dk.
dk.

dtu.
.s094758
dtu.
dtu.
dtu.
dtu.

dtu

s094758

s094758

.company . CompanyService ;
.company . Customer ;
.company . Product;
s094758 .
s094758 .
s094758 .

postal. PostalService;
postal. Address;
postal.Person;

class ShopService authority (Company, Post) {

public Receipt{Company<—s# meet Post<—x} orderProduct{Company<—sx
meet Post<—x}(Client {Company<—+ meet Post<—x} client , Order{
Company<—s* meet Post<—%} order) where authority (Company, Post)

{

CompanyService companyService = new CompanyService () ;

Customer customer = new Customer () ;

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
o4
95
56
57
58
59
60
61
62
63
64
65
66
67
68

70

Jif code

String customerPersonalld = null;

String customerFirstName = null;

String customerLastName = null;

try {
customerPersonalld = client.getPersonalld();
customerFirstName = client .getFirstName () ;
customerLastName = client .getLastName() ;

} catch (NullPointerException ex) {

}

try {
customer . setPersonalld (customerPersonalld) ;
customer.setFirstName(customerFirstName) ;
customer . setLastName (customerLastName) ;

} catch (NullPointerException ex) {

}

boolean isValidCustomer = companyService. validateCustomer (
customer) ;

PostalService postalService = new PostalService();
Address address = new Address () ;

String addressCity = null;
String addressStreet = null;
int addressStreetNumber = —1;

try {
addressCity = client .getCity();

addressStreet = client.getStreet ();
addressStreetNumber = client .getStreetNumber () ;
} catch (NullPointerException ex) {

}

try {
address.setCity (addressCity) ;

address.setStreet (addressStreet) ;
address.setStreetNumber (addressStreetNumber) ;
} catch (NullPointerException ex) {

}

Person person = new Person();

String personFirstName = null;
String personLastName = null;
String personPersonalld = null;

try {
personFirstName = client .getFirstName /() ;
personLastName = client .getLastName() ;

B.1 Business process 71

69 personPersonalld = client .getPersonalld() ;

70 } catch (NullPointerException ex) {

71 }

72

73 try {

74 person.setFirstName (personFirstName) ;

75 person .setLastName (personLastName) ;

76 person.setPersonalld (personPersonalld) ;

7 } catch (NullPointerException ex) {

78 }

79

80 boolean isValidAddress = postalService.validateAddress(address,
person) ;

81

82 Product product = new Product () ;

83

84 String productName = null;

85 int price = —1;

86

87 try {

88 productName = order.getProduct();

89 price = order.getPrice();

90 } catch (NullPointerException ex) {

91 }

92

93 try {

94 product .setName (productName) ;

95 product .setPrice (price);

96 } catch (NullPointerException ex) {

97 }

98

99 boolean boughtProduct = false;

100

101 boolean isValidAddress2 = endorse (isValidAddress, {Company<—sx
meet Post<—x});

102 boolean isValidCustomer2 = endorse (isValidCustomer , {Company<—s
meet Post<—sx});

103

104 if (isValidAddress2 && isValidCustomer2) {

105 boughtProduct = companyService.buyProduct (product);

106 }

107

108 Receipt receipt = new Receipt () ;

109

110 String receiptPersonalld = null;

111 String receiptFirstName = null;

112 String receiptLastName = null;

113

114 String receiptCity = null;

115 String receiptStreet = null;

116 int receiptStreetNumber = —1;

117

118 String receiptProduct = null;

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

1

72 Jif code

int receiptPrice = —1;

try {
receiptPersonalld = customer. getPersonalld() ;
receiptFirstName = customer.getFirstName () ;
receiptLastName = customer.getLastName() ;

receiptCity = address.getCity () ;
receiptStreet = address. getStreet ();
receiptStreetNumber = address.getStreetNumber () ;

receiptProduct = product.getName() ;
receiptPrice = product.getPrice () ;
} catch (NullPointerException ex) {

}

try {
receipt .setPersonalld (receiptPersonalld);

receipt .setFirstName(receiptFirstName) ;
receipt .setLastName (receiptLastName) ;

receipt.setCity (receiptCity);
receipt.setStreet (receiptStreet);
receipt .setStreetNumber (receiptStreetNumber) ;

receipt.setProduct (receiptProduct);
receipt.setPrice(receiptPrice);
} catch (NullPointerException ex) {

}

return receipt;

}

Listing B.1: Business process as implemented in Jif

B.2 Main class

The role of a client in Jif-based implementation is performed by the main class,
which initiates the process. The process needs to be started with the authority of
both Company and Post principals.

There is also a caller principal p defined, which is the principal that corresponds
to the user that runs the application. It is a system principal, which is a default
owner of runtime-related objects such as output stream, so it needs to be taken into
account when, for example, outputting to the user interface.

package dk.dtu.s094758;

19
20
21
22
23
24
25
26
27
28

29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

B.2 Main class 73

import java.io.PrintStream ;

import jif.runtime.Runtime;

import dk.dtu.s094758.shop. Client ;

import dk.dtu.s094758.shop.Order;

import dk.dtu.s094758.company.CompanyService ;
import dk.dtu.s094758.company.Customer ;
import dk.dtu.s094758.company. Product;
import dk.dtu.s094758.shop.ShopService;
import dk.dtu.s094758.shop. Receipt ;

import dk.dtu.s094758.postal.PostalService;
import dk.dtu.s094758.postal.Person;

import dk.dtu.s094758.postal. Address;

public class App authority (Company, Post) {
public static final void main{Company<—x meet Post<—x meet p<—sx}(
principal{} p, String[] args) : {Company<—s* meet Post<—x}
throws (SecurityException, IllegalArgumentException) where

authority (Company, Post), caller(p) {

PrintStream [{}] out = null;

try {
Runtime [p] runtime = Runtime [p]. getRuntime/() ;
out = runtime=—null?null:runtime.stdout (new label {});

} catch (SecurityException ex) {

}

PrintStream [{}] outl = endorse (out, {p—>x} to {p—>*;Company<—sx
meet Post<—x meet p<—x});
PrintStream [{}] out2 = declassify (outl, {Company<—+ meet Post

<—x});

ShopService shopService = new ShopService () ;
Client client = new Client () ;
String clientPersonalld = ”jens123”;
String clientCity = ”Koebenhavn” ;
String clientStreet = "Terrasserne”;
int clientStreetNumber = 8;
String clientFirstName = ”Jens”;
String clientLastName = ” Jensen”;

client .setPersonalld (clientPersonalld) ;
client .setCity (clientCity);

client .setStreet (clientStreet);

client .setStreetNumber (clientStreetNumber) ;
client .setFirstName(clientFirstName) ;
client .setLastName (clientLastName) ;

Order order = new Order();

50
o1
52
93
54
55
56
o7
o8
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78

79
80
81
82
83
84
85
86
87
88
89

74 Jif code
order.setProduct ("ProductXXL"”) ;
order.setPrice (1200);

Receipt receipt = shopService.orderProduct(client , order);

String personalld = null;

String firstName = null;

String lastName = null;

String city = null;

String street = null;

int streetNumber = —1;

String name = null;

int price = —1;

try {
personalld = receipt.getPersonalld();
firstName = receipt.getFirstName () ;
lastName = receipt .getLastName () ;
city = receipt.getCity ();
street = receipt.getStreet ();
streetNumber = receipt.getStreetNumber () ;
name = receipt.getProduct();
price = receipt.getPrice () ;

} catch (NullPointerException ex) {

¥

if (out2 = null) throw new IllegalArgumentException(” Null
output”) ;

out2.println (personalld);

out2.println (firstName) ;

out2.println (lastName) ;

out2.println (city);

out2.println (street);

out2.println (streetNumber) ;

out2. println (name) ;

out2.println (price) ;

}
}

Listing B.2: Main class

B.3 Bean object

This is a bean class that contains the data of a client. It illustrates how labels are
assigned to data types that are used in information exchanges. Please note that
some data is labelled as accessible only to the Post principal, and some to both

1
2
3

0~ O U

11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32

33
34
35
36
37
38
39
40

41
42
43
44
45
46
47
48

B.3 Bean object 75

the Post and the Company principles. Any mix of labels is allowed as long as it is
usable in the context of an application.

package dk.dtu.s094758.shop;
public class Client {

private String{Company<—s# meet Post<—x} personalld;
private String{Company<—s# meet Post<—x} firstName ;
private String{Company<—+ meet Post<—x} lastName;
private String{Post<—x} city;

private String{Post<—x} street;

private int{Post<—x} streetNumber;

public String{Post<—x} getCity () {
return city;
}

public void setCity{Post<—x}(String{Post<—x} city) {
this.city = city;
}

public String{Company<—+ meet Post<—x} getFirstName () {
return firstName ;
}

public void setFirstName{Company<—+ meet Post<—x}(String{Company<—sx
meet Post<—x} firstName) {
this. firstName = firstName ;

}

public String{Company<—+ meet Post<—*} getLastName() {
return lastName;
}

public void setLastName{Company<—s# meet Post<—x}(String{Company<—sx
meet Post<—x} lastName) {
this.lastName = lastName;

}

public String{Company<—s# meet Post<—x} getPersonalld() {
return personalld;
}

public void setPersonalld {Company<—+ meet Post<—x}(String{Company
<—% meet Post<—x} personalld) {
this. personalld = personalld;

}

public String{Post<—x*} getStreet () {
return street ;
}

public void setStreet {Post<—x}(String{Post<—x} street) {

76 Jif code

49 this.street = street;

50 }

51

52 public int{Post<—*} getStreetNumber () {
53 return streetNumber;

54 }

55

56 public void setStreetNumber {Post<—x}(int{Post<—x} streetNumber) {
57 this.streetNumber = streetNumber;
58 }

59 }

Listing B.3: Labelled bean class

0O Ui Wi

el e
=W N = OO

APPENDIX C

Experimental code

This appendix contains experimental code that was written as proof-of-concept, but
is not part of the final solution.

C.1 Annotation processor

This is a Java annotation processor that parses a custom-annotated Web service
class, and generated additional code according to annotations. It uses Java reflection
API to extract the information from original code; the source code is never parsed.

It is a proof-of-concept of how meta-data could be exchanged via Web services in a
fairly transparent way form the point of view of a developer.

package dk.dtu.s094758.1ib.processor;

import
import
import
import
import
import
import
import
import
import
import
import

dk.
dk.
dk.
dk.
dk.
dk.
dk.
java .
java .
java .
java .
java .

dtu.

dtu

dtu.
dtu.
dtu.
dtu.

dtu

s094758 .
.s094758 .
s094758 .
s094758 .
s094758 .
s094758 .
.s094758 .
io.IOException;

io. Writer;

lang . reflect . InvocationTargetException;
lang . reflect . Method ;

util . Iterator ;

lib .

lib

lib
lib

exception . ClassificationException ;

.credentials . ClassificationLevel;
lib .
lib .
lib .

credentials . AccessCredentials;
annotation. Classified WebMethod;
annotation. ClassifiedWebService;

.model. ClassifiedVariable;
.ws.SupportsClassification;

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49
50

o1
52
93
54
55
56
o7
o8
59
60
61
62
63
64
65

78

Experimental code

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

/%%
*

java .
java .
java .
java .
java .
java .
javax .
javax .
javax .
javax .
javax .
javax .
javax .
javax .
javax .
javax .

util .
util
util
util .
util .
util .

javax.lang

javax.lang .
.model .

javax.lang
javax.lang
javax.lang
javax.lang

javax.lang .
.model .

javax.lang
javax.lang
javax.lang
javax.lang

javax.

* @author linas

*/

List;

.Map;
.Map. Entry ;

Set ;

logging . Level;
logging . Logger;

annotation.
annotation.
annotation.
annotation.
annotation.
annotation.
annotation.
annotation.
jws . WebMethod ;

jws . WebService;
.model .
.element . Element ;

model

.model .
.model .
.model .
.element . TypeElement ;

model

.model .
.model .
.model .
tools.JavaFileObject;

Generated ;

processing. AbstractProcessor ;
processing. Filer ;

processing. Messager;

processing. ProcessingEnvironment;
processing.RoundEnvironment;
processing.SupportedAnnotationTypes;
processing. SupportedSourceVersion;

SourceVersion ;

element . ExecutableElement ;
element . Modifier ;

element . Name;

element . PackageElement;

element . VariableElement;
type. TypeMirror;

util . ElementFilter ;

util . Elements ;

@SupportedAnnotationTypes(value = {"dk.dtu.s094758.1ib . annotation.
ClassifiedWebService” })

@SupportedSourceVersion (SourceVersion .RELEASE . 6)

public class WebServiceClassificationProcessor extends
AbstractProcessor {

private Filer
private Messager messager;
private Elements elementUtils;

@Override
public void init (ProcessingEnvironment processingEnv) {
super. init (processingEnv) ;

filer = processingEnv.getFiler ();

= processingEnv . getMessager () ;

filer ;

messager
elementUtils =

}

@Override

processingEnv . getElementUtils () ;

public boolean process(Set<? extends TypeElement> annotations ,

C.1 Annotation processor 79

RoundEnvironment roundEnvironment) {

66

67 System .out.println (” Processing classification annotations...”);

68

69 Set<? extends Element> annotatedWebServices = roundEnvironment .

getElementsAnnotatedWith (ClassifiedWebService. class) ;

70

71 for (Element annotatedWebService : annotatedWebServices) {

72

73 PackageElement packageElement = elementUtils.getPackageOf(

annotatedWebService) ;

74

75 Name packageName = packageElement.getQualifiedName () ;

76 String classifiedPackageName = packageName + 7 .classified”;

7

78 Name className = annotatedWebService. getSimpleName () ;

79 Element fullClassName = annotatedWebService;

80

81 JavaFileObject javaFile = null;

82 try {

83 javaFile = filer.createSourceFile(classifiedPackageName
+ 7.7 4+ className) ;

84 } catch (IOException ex) {

85 Logger.getLogger (WebServiceClassificationProcessor.
class.getName()).log(Level .SEVERE, null, ex);

86 }

87

88 Writer writer = null;

89 try {

90 writer = javaFile.openWriter () ;

91

92 writer.write (" package 7 4+ classifiedPackageName + 7 ;\n”
) ;

93 writer.write(”\n”);

94

95 ClassifiedWebService classifiedWebService =
annotatedWebService. getAnnotation (
ClassifiedWebService. class) ;

96 String targetNamespace = classifiedWebService.
targetNamespace () ;

97 String serviceName = classifiedWebService.serviceName ()

98 String portName = classifiedWebService.portName () ;

99 String wsdlLocation = classifiedWebService.wsdlLocation
0N

100

101 writer. write (@ + Generated.class.getName() + 7 (\”” +
packageName + 7.7 4 className + 7\”)\n”);

102 writer.write (7@’ + SupportsClassification.class.getName
O +70\n");

103 writer.write (7@ + WebService. class.getName() + 7 (
targetNamespace = \”” + targetNamespace + 7\7,

serviceName = \””7 + serviceName + ”7\”, portName =

104

105
106
107

108
109
110
111
112

113

114

115

116

117

118

119

120

121

122

123

124
125

126
127
128

129
130
131

Experimental code

writer.write(” public class 7 + className + 7 extends

\”?” + portName + ”\”, wsdlLocation = \”” +
wsdlLocation + ”\”)\n”);

”

+ fullClassName + 7 {\n”);

writer.write(”\n”);

for (ExecutableElement method : ElementFilter . methodsIn

(annotatedWebService. getEnclosedElements ())) {

Name methodName = method.getSimpleName () ;
TypeMirror returnType = method.getReturnType() ;

String modifiersString = buildModifiersString (
method. getModifiers());

String methodParametersString =
buildMethodParametersString(method.
getParameters());

String callParametersString =
buildCallParametersString(method. getParameters

0));

ClassifiedWebMethod classifiedWebMethod = method.
getAnnotation (Classified WebMethod. class) ;

String operationName = classifiedWebMethod .
operationName () ;

String action = classifiedWebMethod.action () ;

Boolean exclude = classifiedWebMethod . exclude () ;

ClassificationLevel classificationLevel =
classifiedWebMethod . classificationLevel () ;

writer.write (” @’ + Generated.class.getName() +
7 (\”” + packageName + 7.7 + className + 7.7 +
methodName + 7 ()\”)\n");

writer.write (” @” + WebMethod. class . getName () +
” (operationName = \”” + operationName + "\”,
action = \”” + action + 7\”, exclude =7 +

exclude + 7)\n”);

writer. write(” ” + modifiersString + 7 7 +
returnType + 7 7 + methodName + 7 (7 +
methodParametersString + ”) throws ” +
ClassificationException . class.getName() + 7 {\n
77);

writer.write (”\n”);

writer.write (” 7 4+ ClassificationLevel.class
.getName() + 7 classificationLevel =
accessCredentials. getClassificationLevel ();\n”)

)
writer. write(”\n”);

writer. write(” if (classificationLevel.
getNumericValue () < 7 + ClassificationLevel.

C.1 Annotation processor 81

7 7

class.getName() + + classificationLevel.
toString () + 7 .getNumericValue ()) {\n”);

132 writer.write (” throw new 7 +
ClassificationException . class.getName() + 7 ();)\
n”);

133 writer.write (” N\n”);

134 writer. write(”\n”);

135

136 writer. write (” ? 4+ returnType + 7 returnData

= super.” + methodName + 7 (7 +
callParametersString + 7);\n”);

137 writer.write (”\n”);

138

139 writer.write (” Class <? extends 7 +
returnType + 7> returnClass = returnData .
getClass ();\n”);

140 writer.write (” ” + Method. class .getName() +
7 [] methods = returnClass.getMethods();\n”);

141 writer. write (” 7 + Map. class.getName() + 7"<”
+ String.class.getName() + 7, 7 +
ClassifiedVariable.class.getName() + 7>
classifiedVariableMap = 7 +

WebServiceClassificationUtils . class.getName() +
7 .buildClassifiedVariableMap (methods) ;\n”) ;

142 writer. write(”\n”);

143 writer.write (” for (7 + Iterator.class.
getName () + ”<” 4+ Entry.class.getCanonicalName
() + ”<” + String.class.getName() + 7, 7 +

ClassifiedVariable.class.getName() + ">>
iterator = classifiedVariableMap.entrySet ().
iterator (); iterator.hasNext();) {\n”);

144 writer.write(”7\n");

145 writer.write (” ” + Entry.class.
getCanonicalName () + "<” + String.class.getName
() + 7, 7 4+ ClassifiedVariable. class.getName()
+ 7> entry = iterator.next();\n”);

146 writer.write (” 7 + ClassifiedVariable.
class.getName() + 7 classifiedVariable = entry.
getValue ();\n”);

147 writer. write(”\n”);

148 writer.write (” if (classifiedVariable.

getClassifiedGetter (). getClassificationLevel ().
getNumericValue ()\n”);

149 writer.write (” >
classifiedVariable.getClassifiedSetter ().
getClassificationLevel ().getNumericValue ()) {\n
")

150 writer.write (”\n”);

151 writer.write (” throw new 7 +
ClassificationException . class.getName() + 7 ();)\
n”);

152 writer.write (” \n”);

153 writer.write (”\n”);

154

155

156
157

158

159
160
161

162

163

164

165

166

167

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

184

82

Experimental code

}

writer.write(” if (classifiedVariable.
getClassifiedGetter (). getClassificationLevel ().
getNumericValue ()\n”) ;

writer.write (” > 7 +
ClassificationLevel.class.getName() + 7.7 +
classificationLevel.toString () + 7.
getNumericValue ()) {\n”);

writer. write(”\n”);

writer. write(” ” + Method. class.
getName () + 7 method = classifiedVariable.
getClassifiedSetter () .getMethod();\n”);

writer.write (” ” + Object.class.
getName() + 7 nullObject = null;\n”);

writer. write(”\n”);

writer.write (” try {\n”);

writer.write(” method . invoke (
returnData, nullObject);\n”);

writer. write(” } catch (7 +

”

IllegalAccessException.class.getName() +
{\n”);

writer.write (” throw new 7 +
ClassificationException . class.getName() + 7 () ;)\
n”);

writer. write(” } catch (7 +
IllegalArgumentException. class.getName() + 7 ex
) {\n”);

writer.write (” throw new 7 +
ClassificationException . class.getName() + 7 ();\
n”);

writer. write(” } catch (7 +
InvocationTargetException. class.getName() +
ex) {\n"):;

writer.write (” throw new 7 +
ClassificationException . class.getName() + 7 ();\
n”);

writer. write(” \n”);

writer.write(” N\n”);

writer.write(” N\n”);

writer. write(”\n”);

ex)

2

writer. write(” return returnData;\n”);
writer.write(” N\n”);

writer. write(” }\n”);

writer. flush () ;
writer.close () ;

} catch (IOException ex) {
Logger.getLogger (WebServiceClassificationProcessor.

class.getName()).log(Level .SEVERE, null, ex);

C.1 Annotation processor 83

185 }

186

187 return true;

188 }

189

190 private String buildModifiersString (Set<Modifier> modifiers) {

191

192 StringBuilder modifierStringBuilder = new StringBuilder () ;

193

194 if (!modifiers.isEmpty()) {

195

196 for (Modifier modifier : modifiers) {

197 modifierStringBuilder.append (modifier.toString ());

198 modifierStringBuilder.append(” 7);

199 }

200

201 modifierStringBuilder.deleteCharAt(modifierStringBuilder.

length () — 1);

202 }

203

204 return modifierStringBuilder.toString () ;

205 }

206

207 private String buildMethodParametersString(List <? extends

VariableElement> parameters) {

208

209 StringBuilder parameterStringBuilder = new StringBuilder () ;

210

211 if (!parameters.isEmpty()) {

212

213 for (VariableElement parameter : parameters) {

214

215 String parameterName = parameter.getSimpleName () .

toString () ;

216 String parameterType = parameter.asType().toString () ;

217

218 parameterStringBuilder . append (parameterType) ;

219 parameterStringBuilder .append (” 7);

220 parameterStringBuilder . append (parameterName) ;

221 parameterStringBuilder .append (7, 7);

222 }

223 }

224

225 parameterStringBuilder . append (AccessCredentials. class.getName ()
)

226 parameterStringBuilder .append (” 7);

227 parameterStringBuilder . append (” accessCredentials”) ;

228

229 return parameterStringBuilder .toString () ;

230 }

231

232 private String buildCallParametersString(List <? extends

VariableElement> parameters) {

84 Experimental code

233

234 StringBuilder parameterStringBuilder = new StringBuilder () ;

235

236 if (!parameters.isEmpty()) {

237

238 for (VariableElement parameter : parameters) {

239

240 String parameterName = parameter.getSimpleName () .

toString () ;

241

242 parameterStringBuilder . append (parameterName) ;

243 parameterStringBuilder .append (”, 7);

244 }

245

246 parameterStringBuilder . delete (parameterStringBuilder . length
() — 2, parameterStringBuilder .length ());

247 }

248

249 return parameterStringBuilder . toString () ;

250 }

251 }

Listing C.1: Annotation processor

Bibliography

1]

2]

SpringSource a division of VMware. FEnterprise Java development tools.
http://www.springsource.com/developer /spring.

Aslan Askarov and Andrei Sabelfeld. Secure implementation of cryptographic
protocols: A case study of mutual distrust. In In ESORICS. Springer-Verlag,
2005.

David E Bell and Leonard LaPadula. Secure computer system: Unified expo-
sition and multics interpretation. Technical Report, 44(5):134, 1976.

Paul V. Biron and Ashok Malhotra. XML schema part 2: Datatypes, W3C
recommendation. http://www.w3.org/TR/xmlschema-2/, October 2004.

David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael Champion,
Chris Ferris, and David Orchard. Web services architecture, W3C working
group note 11. http://www.w3.org/TR/ws-arch/, February 2004.

Roberto Chinnici, Marc Hadley, and Rajiv Mordani. The Java API for XML-
Based Web Services (JAX-WS) 2.0. Sun Microsystems Inc., 4150 Network
Circle Santa Clara, CA 95054 USA, final release edition, April 2006.

Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. Vikram, Lantian Zheng,
and Xin Zheng. Secure web applications via automatic partitioning. SIGOPS
Oper. Syst. Rev., 41:31-44, October 2007.

Stephen Chong, Andrew C. Myers, K. Vikram, and Lantian Zheng. Jif refer-
ence manual. http://www.cs.cornell.edu/jif/doc/jif-3.3.0 /manual.html, Febru-
ary 2009.

Stephen Chong, K. Vikram, and Andrew C. Myers. Sif: enforcing confidentiality
and integrity in web applications. In Proceedings of 16th USENIX Security
Symposium on USENIX Security Symposium, pages 1:1-1:16, Berkeley, CA,
USA, 2007. USENIX Association.

86

BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[23]

[24]
[25]

Luc Clement, Andrew Hately, Claus von Riegen, Tony Rogers, Tom Bellwood,
Steve Capell, Luc Clement, John Colgrave, Matthew J. Dovey, Daniel Fey-
gin, Andrew Hately, Rob Kochman, Paul Macias, Mirek Novotny, Massimo
Paolucci, Claus von Riegen, Tony Rogers, Katia Sycara, Pete Wenzeland, and
Zhe Wu. UDDI Version 3.0.2, UDDI Spec Technical Committee Draft. UDDI
Spec TC, OASIS, 10 2004.

Dorothy E. Denning and Peter J. Denning. Certification of programs for secure
information flow. Commun. ACM, 20:504-513, July 1977.

Dawson Engler. Static analysis versus model checking for bug finding, pages
1-1. Springer-Verlag, London, UK, 2005.

eZ Systems AS. OpenESB community. http://openesb-community.org/.

David C. Fallside and Priscilla Walmsley. XML schema part 0: Primer, W3C
recommendation. http://www.w3.org/TR/xmlschema-0/, October 2004.

Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order func-
tions. SIGPLAN Not., 37:48-59, September 2002.

The Apache Software Foundation. Apache ode (orchestration director engine).
http://ode. apache.org/.

The Apache Software Foundation. Apache struts. http://struts. apache.org/.

The Eclipse Foundation. BPEL designer project. http://www.eclipse.
org/bpel/.

The Eclipse Foundation. BPEL to Java (B2J) subproject.
http://www.eclipse.org/stp/b2j/.

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language
Specification, Third Edition. Addison-Wesley Longman, Amsterdam, 3 edition,
June 2005.

Hugo Haas and Allen Brown. Web services glossary, W3C working group note
11. http://www.w3.org/TR/ws-gloss/, February 2004.

David Heinemeier Hansson and Rails core team. Ruby on rails.
http://rubyonrails.org/.

Facebook Inc. Facebook developers documentation. http://developers. face-
book.com/docs/.

Google Inc. Google code apis & tools. http://code.google.com/more/.

IBM iSeries Information Center. FEserver iSeries, Web services, WebSphere
Application Server - Express Version 5.1. IBM, 2 edition, August 2005.

BIBLIOGRAPHY 87

[26]

28]

[29]

[30]

[31]

32]

Diane Jordan, John Evdemon, Alexandre Alves, Assaf Arkin, Sid Askary,
Charlton Barreto, Ben Bloch, Francisco Curbera, Mark Ford, Yaron Goland,
Alejandro Guizar, Neelakantan Kartha, Canyang Kevin Liu, Rania Khalaf, Di-
eter Konig, Mike Marin, Vinkesh Mehta, Satish Thatte, Danny van der Rijn,
Prasad Yendluri, and Alex Yiu. Web Services Business Process Execution Lan-
guage Version 2.0, OASIS Standard. OASIS Web Services Business Process
Execution Language (WSBPEL) Technical Committee, April 2007.

D. Kaye. Loosely Coupled: The Missing Pieces of Web Services. RDS Press,
2003.

Henry George Liddell and Robert Scott. A Greek-English Lexicon. Clarendon
Press, Oxford, 1940.

Andrew C. Myers. JFlow: practical mostly-static information flow control. In
Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL 99, pages 228241, New York, NY, USA, 1999.
ACM.

Andrew C. Myers. Mostly-Static Decentralized Information Flow Control. PhD
thesis, Massachusetts Institute of Technology, January 1999.

Andrew C. Myers and Barbara Liskov. Complete, safe information flow with
decentralized labels. In 19th IEEE Symposium on Research in Security and
Privacy (RSP), Oakland, California, May 1998.

Andrew C. Myers and Barbara Liskov. Protecting privacy using the decen-
tralized label model. ACM Trans. Softw. Eng. Methodol., 9:410-442, October
2000.

Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program
Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

Geoffrey Smith and Dennis Volpano. Secure information flow in a multi-
threaded imperative language. In IN PROC. ACM SYMP. ON PRINCIPLES
OF PROGRAMMING LANGUAGES, pages 355-364, 1998.

Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendel-
sohn. XML schema part 1: Structures, W3C recommendation.
http://www.w3.org/TR/xmlschema-1/, October 2004.

Jinesh Varia. Overview of amazon web services, December 2010.

Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall. A note on dis-
tributed computing. Technical report, Sun Microsystems Laboratories, 2550
Garcia Avenue Mountain View, CA 94043, 1994.

Petals Link (EBM Websourcing). EasiestDemo - open source BPEL to Java
generator. http://research.petalslink.org/display /easiestdemo/.

88 BIBLIOGRAPHY

[39] Stephen A. White. Using BPMN to Model a BPEL Process. IBM Corp., United
States of America, April 2005.

[40] Ann Wollrath, Roger Riggs, and Jim Waldo. Distributed object model for
the Java system. In Proceedings of the USENIX 1996 Conference on Object-
Oriented Technologies, Toronto, Ontario, Canada, June 1996. Sun Microsys-
tems, Inc.

	Title Page
	thesis.dvi

