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Abstract

A static analysis tool that claims to cover a specific vulnerability has
an inherited level of trust to fulfill. Bringing the actual performance
and limitations of these tools into the spotlight helps to prove or dis-
prove any question about their applicability. We have analyzed the
implementation and identified limitations for three open-source static
analysis tools aimed at detecting security vulnerabilities, namely Spot-
Bugs, Find Security Bugs, and ESVD. A common pattern of strengths
and limitations emerged as a result of this analysis. The use of taint
analysis is an important technique for increased detection rates. A gen-
eralizable implementation also seems to benefit the coverage, as code
can be reused for new vulnerabilities with only minor modifications.
Incomplete collections of vulnerable sources and sinks is a limitation
with a significant impact on the detection rates of the static analysis
tools; the same applies to weak control- and data-flow analysis. The
misclassification of vulnerabilities and an inconsistent or missing confi-
dence ranking also negatively affect the tools. This master thesis serves
as an important first step into a scarcely explored part of static analysis
tools. The contributions from this master thesis are the detailed per-
formance results produced from over 20,000 vulnerability reports, in
addition to describing the implementation of the static analysis tools,
identifying limitations, the improvements to address these limitations,
and further improvement proposals.
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Sammendrag

Brukere m̊a kunne føle seg trygge p̊a at verktøy for statisk kodeanalyse
holder sitt løfte om dekningsgrad. Begrensninger, og ikke minst den
faktiske ytelsen til disse verktøyene bør gjøres kjent slik at det med
sikkerhet kan bestemmes om de er hensiktsmessig for ønsket bruk. Vi
har analysert implementasjonen og identifisert begrensninger for tre
verktøy for statisk kodeanalyse som er laget for å oppdage sikkerhet-
shull, og basert p̊a prinsippet om åpen og fritt tilgjengelig kildekode.
De tre verktøyene er SpotBugs, Find Security Bugs, og ESVD. Basert
p̊a analysen fant vi et sett med felles styrker og begrensninger. Bruken
av taint analysis er en teknikk som ofte fører til bedre oppdagelses-
rate av sikkerhetshull. I tillegg fant vi at en generaliserbar implemen-
tasjon ser ut til å p̊avirke dekningsgraden positivt, ettersom algoritmer
enkelt kan bli gjenbrukt for nye sikkerhetshull. Begrensede mengder
av kilder og sluker (eng. source og sink) p̊avirker oppdagelsesraten
svært negativt. D̊arlig control-flow og data-flow analysis er ogs̊a en
hoved̊arsak til d̊arlige oppdagelsesrater. Vi fant ogs̊a at oppdagede
sikkerhetshull noen ganger klassifiseres som helt andre typer sikkerhet-
shull. Denne masteroppgaven utfører en viktig undersøkelse av verktøy
for statisk kodeanalyse, noe som ikke tidligere har blitt gjort til en slik
grad. Bidragene fra denne masteroppgaven er detaljerte ytelsesresul-
tater basert p̊a mer enn 20 000 eksekveringer p̊a s̊arbar kode, i tillegg
til en beskrivelse av implementasjonen til verktøyene for statisk kode-
analyse, deres begrensninger, forbedringer av disse begrensningene, og
forslag til forbedringer for hele felleskapet for statisk kodeanalyse.
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Glossary

Artificial Code Code made to be intentionally vulnerable to serve as a testing platform
for static analysis tools.

Basic Block Uninterrupted blocks of code between control-flow statements.

Bug Pattern Code idiom that is likely to be an error.

Bytecode Compiled code (e.g., Java) which is interpreted by the Java Virtual Machine.
Located in .class files.

Common Weakness Enumeration (CWE) Community-developed list of software weak-
nesses. The purpose is to serve as a common standard for people working with
software security.

Completeness A static analysis tool is complete if all its reports are correct. That is,
it has no false positives, but it may have false negatives.

Constant Pool Contains compile-time constants formed from literals, and cannot be
changed after compilation.

Context-Sensitivity A context-sensitive static analysis tool takes the actual function
parameters as well as global variables into consideration when analyzing the code.
It is able to track the data between classes.

Control-Flow The order of execution in a program.

Control-Flow Analysis A static code analysis technique to analyze and thus determine
the control-flow of a program. The result is a control-flow graph.

Control-Flow Graph A directed graph consisting of nodes (basic blocks) and edges
(control-flow statements) depicting the control-flow of a program.

Control-Flow Statement A code statement that forks the control-flow. E.g., if-statements
and while-loops.

Coverage How many and which security vulnerabilities a static analysis tool detects.

Data-Flow The change in assignments of variables during the execution of a program,
i.e., what each variable is assigned to at each time.
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Data-Flow Analysis (DFA) Monitors the data-flow and how the variables are used by
utilizing a control-flow graph. At each node in the control-flow graph, data-flow
analysis collects information about what the values are for incoming and outgoing
variables.

Detector A class within a static analysis tool that is designed to detect a certain set of
vulnerabilities, e.g., an SQL injection detector.

Discrimination Rate The percentage of test cases a static analysis tool discriminates.
An SAT discriminates a vulnerability if it only reports a true positive on it, but
no false positives.

Early Detection Detecting security vulnerabilities while the user is writing the code.

False Negative (FN) Incorrect report of no vulnerability. The code contains a vulner-
ability, but no vulnerability is reported.

False Positive (FP) Incorrect detection of a vulnerability. No vulnerability exists in the
code, but a vulnerability is reported.

False Positive Rate (FPR) The percentage of detections that are false positive.

Flow Variant Variant of a test case that includes specific control-flow statements that
add complexity to the test case.

Interprocedural Analysis See Context-Sensitivity.

Java Virtual Machine (JVM) Virtual machine that runs Java bytecode.

Method Signature Identifies a method. Consists of the method name and the parameter
list.

Natural Code Source code of any application designed to be used.

Performance How well a static analysis tool performs. Consists of the performance
metrics: recall, precision, and discrimination rate.

Precision The percentage of detections that are true positives.

Recall The percentage of vulnerabilities that are detected out of the total amount.

Sanitization-Point A place in the code where untrusted data is processed and changed
into trusted data.

Sink A place in the code where untrusted data leaves the boundary of the program.

Soundness A static analysis tool is sound if it reports all bugs in the code. That is, it
has no false negatives, but it may have false positives.

Source A place in the code where external input enters the program.
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Source Variant Variant of a test case that uses a specific source.

Static Analysis Technique used to analyze the source code of an application without
executing it.

Static Analysis Tool (SAT) A tool using static analysis to detect software flaws.

Taint Analysis Analysis technique to detect vulnerable input retrieved from a source
that is used in a sink. Uses both control-flow and data-flow analysis.

Test Case File in Juliet Test Suite that includes exactly one vulnerability as well as at
least one non-flawed construct meant to represent a potential false positive.

True Negative (TN) Correct report of no vulnerability. No vulnerability exists in the
code, and no vulnerability is reported.

True Positive (TP) Correct detection of a vulnerability. The code contains a vulnera-
bility, which is correctly detected and reported.
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1. Introduction

As society gets more dependent on technology, the importance of securing information
systems increases. A solution to reduce the number of security vulnerabilities is static
analysis tools (SAT). With these tools included directly into the Integrated Development
Environment (IDE) of the user, they have never been easier to use. Unfortunately, not a
lot of research has been conducted to compare and evaluate the existing IDE-integrated
SATs, leaving the users to take the developers claims of quality for face value.

With the aim to provide more information about open-source IDE-integrated SATs,
we conducted a pre-study where we reported on their actual coverage, their performance,
and their usability. This was achieved by evaluating them using a credible framework
for test cases and commonly used performance metrics. The SATs were evaluated on
the most critical security vulnerabilities according to OWASP [2017], a reputable source
for web application security. The results showed that the existing solutions had obvi-
ous limitations and a worrying discrepancy between what they claimed and what they
actually did. Coverage was focused around vulnerabilities connected to injection and
access control, while other categories were left untouched. Several of the tools also had a
high false positive rate, a leading factor for why users do not adopt static analysis tools
[Christakis and Bird, 2016].

In this master thesis we continue our work from last year by further analyzing the
results. We select the three SATs utilizing data-flow analysis and take a detailed look at
their implementation. We will conduct an implementation analysis as well as a limita-
tion analysis to better understand why the SATs perform as they did in our pre-study.
By making modifications to the tools, we test our hypotheses about the implementation
as well as demonstrate their limitations. Our contribution comes in the form of detailed
performance results, an explanation of the SATs’ implementation, identifying limita-
tions, code modifications improving the performance results, and further improvement
proposals. It is a contribution to those who seek to adopt such tools as well as developers
who want to contribute to the field.

The results of this thesis uncover several strengths and limitations in the implemen-
tation of the SATs. Taint analysis is a technique that gives superior results, especially
a high precision. An implementation that is generalizable performs well and is acces-
sible to modifications and improvements. Incomplete collections of sources and sinks
are a recurring limitation of the SATs; the same applies to inadequate algorithms for
control-flow and data-flow analysis. Prioritized output can be a helpful feature when the
precision is imperfect, and misclassification of vulnerabilities can cause confusion and
detections to be inaccurate or overlooked.
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The thesis starts with necessary background knowledge in chapter 2 and a description
of related work in chapter 3. A summary of our pre-study is presented in chapter 4
with the complete scientific paper included in appendix A. Then, the research design
and research implementation are presented in chapter 5. That includes the research
questions. We present the results of our research questions in chapter 6, including the
implementation analysis and limitation analysis of the static analysis tools. The results
are then further discussed in chapter 7, where we also present some observations based
on the results. Finally, we conclude in chapter 8 and present some ideas of what can be
done in the future following our research.
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2. Background

2.1. Importance of Information Security

Data breaches are common occurrences in the newspapers today. As mentioned in a press
release by Facebook [2018a,b], hackers managed to gain access to 30 million Facebook
accounts. In a press release by Google [2018a,b], a security vulnerability in Google+
was exposing private data of 52.5 million users. Earlier this year, as reported by Wired
[Greenberg, 2019], a collection consisting of 2.2 billion stolen usernames and passwords
was published online. Special counsel Robert S. Mueller’s investigation into Russian
interference in the 2016 U.S. presidential election found that the GRU used simple SQL
injection in their attacks [Mueller and U.S. Department of Justice, 2019, p. 50]. More
generally, each data breach costs an average of 3.86 million US dollars [Ponemon In-
stitute, 2018], with some predicting that cybercrime will cost the world 6 trillion US
dollars annually by 2021 [Cybersecurity Ventures, 2017]. Securing information systems
is therefore an essential part when protecting important information and reducing costs.

The introduction of the General Data Protection Regulation (GDPR) in the EU has
also put information security at the top of the agenda for many companies. Heavy
fines await if the regulations are not followed, as proven for the Norwegian municipality
Bergen [IAPP, 2018] and the German company Knuddels [Tellerreport, 2018], which got
a fine of respectively 1.6 million NOK (approximately 164,000 euros) and 20,000 euros
for not encrypting user passwords.

One of the ways to secure information systems is by removing security vulnerabilities
in the software code. Carelessness, complexity, or lack of necessary knowledge can lead
to the unintended inclusion of security vulnerabilities by developers. To combat this,
some have chosen to turn their attention to static analysis tools. These tools can give
real-time feedback while the developer is writing the code, or be used on-demand by
manually running the SAT. Baca, Carlsson, and Lundberg [2008] noted that the use of
an a posteriori static analysis tool reduced the maintenance cost by an average of 17%.

2.2. Critical Security Vulnerabilities

There are many types of security vulnerabilities, some more relevant than others. Open
Web Application Security Project (OWASP) is known as a reputable source for web
application security, and the OWASP Top 10 list of security vulnerabilities is highly
regarded. The list consists of the ten most critical categories of security vulnerabilities.
The most recent report is presented below in order of importance [OWASP, 2017].
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A1 Injection Untrusted data is sent as a command or query to a vulnerable interpreter.
Examples of injection vulnerabilities include SQL injection, OS injection, LDAP
injection, etc.

A2 Broken Authentication Incorrect implementation of session or authentication man-
agement, allowing attackers access to passwords, session tokens, etc.

A3 Sensitive Data Exposure Weakly protected data can be stolen or modified, resulting
in identity fraud or other crimes. This is especially important in financial or
healthcare settings.

A4 XML External Entities Poorly configured XML processors might evaluate external
entity references when given XML documents. This can lead to remote code exe-
cution, internal port scanning, etc.

A5 Broken Access Control Attackers can exploit missing or broken access restrictions.
This allows access to unauthorized functionality and data, e.g., sensitive files.

A6 Security Misconfiguration Misconfiguration or use of insecure default configura-
tions can lead to a range of different attacks.

A7 Cross-Site Scripting Untrusted data is included into a web page without validation
or sanitization. This allows the possibility of script executions in the victim’s
browser.

A8 Insecure Deserialization Deserialization flaws can lead to remote code execution,
which again might lead to other attacks.

A9 Using Components with Known Vulnerabilities Frameworks and libraries used in
an application can lead to data loss or server takeover. These components run with
the same privileges as the application, and might undermine application defenses
and enable attacks.

A10 Insufficient Logging & Monitoring Insufficient logging and monitoring will increase
the time before a breach is detected and reacted to. This can allow attackers fur-
ther access and more time to attack systems, pivot to other systems, etc.

All of these categories include several different types of vulnerabilities, all with a unique
CWE entry. The Common Weakness Enumeration (CWE) is a community-developed
list of software weaknesses. The purpose of CWE is to serve as a common standard for
people working with software security [MITRE, 2018a]. The list consists of several CWE
entries where each entry represents a weakness. Each entry has its own number for easy
reference and can have relations to other CWE entries.
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2.2.1. Injection

Injection vulnerabilities encapsulate all vulnerabilities that are caused by improper han-
dling of an input from an outside source [MITRE, 2019b]. The input should be sanitized,
also referred to as neutralized, before it is further used by the application. In the absence
of doing so, the input can potentially alter the control-flow of the application in order
to achieve the attacker’s goal.

There are many different kinds of injection vulnerabilities. They can share several
similarities, but also differ from each other substantially.

For OS command injection, the vulnerability is caused by a constructed OS command
receiving unsanitized input [MITRE, 2019c]. The input can alter the behavior of the OS
command by using special elements. This is a severe vulnerability as it allows attackers
to execute commands directly on the OS. In addition to sanitizing the input, it is a good
idea to run the command with the lowest privileges possible.

Similarly, the vulnerabilities SQL injection, LDAP injection, and XPath injection are
also caused by a constructed command receiving input which has not been sanitized
[MITRE, 2018e,f, 2019d]. However, in these cases an SQL, LDAP, or XPath command
is respectively exploited instead of an OS command. This can lead to the attacker either
bypassing authorization, reading sensitive data, or altering the underlying database or
directory. For SQL injections, it is encouraged to use prepared statements that auto-
matically sanitize the input.

For HTTP response splitting, unvalidated data is inserted into the header of an HTTP
request [MITRE, 2018b]. By injecting CRLF into the HTTP header, the attacker can
split the HTTP response into two responses with complete control of the second response
which will be rendered in the user’s browser.

2.2.2. Use of Hard-coded Password

Software that contains a hard-coded password used for authentication is vulnerable to
misuse of this password. Not only can the password be read directly from the source
code or from decompiling the binary code, but it also increases the possibility of pass-
word guessing [MITRE, 2019a; OWASP, 2016]. Misuse of hard-coded passwords can
be difficult to detect, and if detected it can be difficult to fix. MITRE [2019a] and
OWASP [2016] both claim that if a hard-coded password is used, it is almost certain
that a malicious user will be able to access the account in question.

MITRE [2019a] describes two different types of hard-coded password usage: inbound
authentication and outbound communication. The former is used when authenticating
with the software containing the hard-coded password, and the latter is used when the
software containing the hard-coded password is authenticating with another service.

Countermeasures against such attacks can be simple but depend on the usage of the
password. If the hard-coded password is to be compared against user input, apply strong
one-way hashing to the hard-coded password and compare the hashes instead. If the
hard-coded password is to be used for an outbound connection, the password should be
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stored outside of the code in a secure and encrypted database which is protected from
unauthorized access by both local system users and outsiders.

2.2.3. Path Traversal

A path traversal attack is an attack that aims to access files outside the intended web
root folder [OWASP, 2015b]. This can be used to read files that the attacker is not
supposed to have access to, such as sensitive password files. Depending on what the
attacker is able to access, this can allow further attacks to different services on the
machine.

Path traversal can be divided into relative path traversal and absolute path traversal.
A relative path traversal attack allows the attacker to traverse the server’s file system by
using sequences that resolves into the parent directory, e.g. “../” [MITRE, 2018c]. Ab-
solute path traversal allows the attacker to traverse the server’s file system by specifying
the absolute path to a file [MITRE, 2018d].

Countermeasures include proper file system permissions and whitelisting input [OWASP,
2015a]. An example of proper file system permissions is a chroot jail, blocking the web
server from referencing anything outside the web root folder. While some countermea-
sures will work for both relative and absolute path traversal, other countermeasures
might only affect one or the other. Sanitizing the use of “../”, which is a sequence
of characters that will resolve into the parent directory, will only affect relative path
traversal.

2.2.4. Cross-Site Scripting

Cross-Site Scripting (XSS) attacks are a form of injection attacks, where an attacker
sends malicious scripts as input to web pages [OWASP, 2018a]. The malicious input is
often browser-side scripts, such as JavaScript. Through different processes, this malicious
script is sent back to an unsuspecting victim’s web browser, where it is executed. Because
the script seems to come from a trusted source, the web browser does not know it is
malicious, thereby allowing access to cookies and sensitive information.

XSS attacks can roughly be divided into two categories; stored and reflected XSS
attacks. A stored XSS attack occurs when the web page permanently stores the malicious
script on the server, e.g., in the database of a messaging service. Once another user
requests to download the message from the server, the malicious script is executed by
the browser. A reflected XSS attack, on the other hand, is a type of attack where
the server immediately reflects the malicious script. This can occur when using search
engines, where the input from the search is also shown on the search result page.

A successful XSS attack can steal another user’s cookies, including the possibility of
hijacking the user session. It can also redirect the user to another URL, or modify the
content on the current page. Due to the vast amount of attack vectors, there are many
different ways to protect yourself from XSS attacks happening in your code [OWASP,
2019]. This includes sanitizing user input, whitelisting or blacklisting allowed input, and
protecting cookies against theft.

18



3. Related Work

3.1. What is Static Analysis?

Boulanger [2011] defines static analysis as a generic term that can be applied to any
tool that analyzes an application without executing it. Two common ways to measure
static analysis tools are soundness and completeness. There are different interpretations
of these concepts, but Delaitre et al. [2018] define them as:

Soundness - a static analysis tool is sound if it reports all bugs in the code. That
is, it has no false negatives, but it may have false positives.

Completeness - a static analysis tool is complete if all its reports are correct. That
is, it has no false positives, but it may have false negatives.

According to Emanuelsson and Nilsson [2008], no static analysis tool fulfills both of
these criteria. However, when designing a static analysis tool, one has to consider the
trade-off between them and pick one to aim for. Traditionally, most static analysis tools
have aimed for soundness, but that is no longer the case. Christakis and Bird [2016]
discovered through surveys that developers do not tolerate many false positives. In fact,
most of the developers that participated only accepted a false positive rate below 15%.

Control-Flow Analysis

Most programming languages execute code in a certain order. This order is chosen by the
programmers themselves in the way they structure the code. Languages that have this
order of execution are called imperative programming languages [Van Roy and Haridi,
2004, p. 406], and the order of execution is referred to as control-flow [Aho et al., 2007,
p. 399]. The control-flow is determined by control-flow statements that fork the order
of execution into two or more paths. Two well-known examples of such statements are
if-statements and while-loops.

Control-flow analysis is a static code analysis technique to analyze and thus determine
what the control-flow of a program is. The result of control-flow analysis is a visualiza-
tion of the control-flow called a control-flow graph [Allen, 1970]. It is a directed graph
consisting of nodes and edges. The nodes represent uninterrupted blocks of code called
basic blocks, while the edges represent jumps in the control-flow. Figure 3.1 shows an
example of how an if-statement and a while-loop is depicted in a control-flow graph.
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Figure 3.1.: The control-flow graph notation for an if-then-else statement (left) and a
while loop (right).

Data-Flow Analysis

In computer programming, variables are declared and then assigned a value. An example
can be the variable x being assigned the value 1. As this is a variable, x can be assigned
a new value later in the code, e.g., 2. The change in assignments of variables during
the execution of a program is called data-flow. In other words, the data-flow consists of
what each variable is assigned to at each time. Data-flow analysis (DFA) monitors the
data-flow and how the variables are used by utilizing a control-flow graph [Aho et al.,
2007, p. 597]. At each node in the control-flow graph, DFA collects information about
incoming and outgoing assignments.

Static analysis tools that utilize control- and data-flow analysis, often use it for moni-
toring how untrusted data moves through the control-flow. Tripp et al. [2009] presented
taint analysis as a solution to vulnerabilities tied to information flow. All of these vul-
nerabilities can be described as tainted data originating from a vulnerable source moving
through the control-flow to an exploitable sink without first being sanitized. Taint anal-
ysis has since become a common technique used by many static analysis tools.

Emanuelsson and Nilsson [2008] describe static analysis tools that track the data-flow
across multiple files as context-sensitive. A context-sensitive static analysis tool takes the
actual function parameters as well as global variables into consideration when analyzing
the code. This is also known as interprocedural analysis and leads to a higher precision
and longer analysis time.

3.2. Evaluating Static Analysis Tools

An early evaluation of static analysis tools was performed by Rutar, Almazan, and
Foster [2004]. They evaluated five static analysis tools on natural code in the form of a
set of Java applications. The SATs were Bandera, ESC/Java 2, FindBugs, JLint, and
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PMD. Their results showed that all of the SATs had unique detections, and the authors
proposed to combine the tools into a single meta-tool to achieve improved results.

Oyetoyan et al. [2018] evaluated six SATs on artificial code using the Juliet Test
Suite. They evaluated FindBugs, Find Security Bugs, SonarQube, JLint, LAPSE+, and
an undisclosed commercial tool on all of the test cases present in the Juliet Test Suite.
Like Rutar, Almazan, and Foster [2004], they also concluded that a single tool was not
enough to cover all vulnerabilities. Neither the open-source nor the commercial tool
performed as well as expected. Through interviews, they also found that developers
were interested in using SATs, but that there were several obstacles to overcome.

Similarly, Charest, Rodgers, and Wu [2016] evaluated the open-source SATs CodePro
AnalytiX, JLint, FindBugs, and VisualCodeGrepper on a selected subset of the Juliet
Test Suite. By using metrics such as recall and precision, they found that the tools
performed poorly. However, the authors argued it was not too alarming as other studies
had shown similar results for commercial tools.

The Static Analysis Tool Exposition (SATE) evaluated many SATs for the languages
Java, PHP, and C. The tools were undisclosed, but were evaluated on both production
software as well as the Juliet Test Suite. The results were presented in the paper by
Delaitre et al. [2018]. In 2018, six different tools participated in the Java track. The
results of SATE are anonymized due to the participants’ wish for confidentiality. The
report showed varying results for the Java tools and that they generally struggled with
increased complexity like control- and data-flow. They also showed varying results across
the different forms of test cases.

AlBreiki and Mahmoud [2014] also tested SATs on a Software Assurance Reference
Dataset (SARD) like the Juliet Test Suite. The static analysis tools, Yasca, CAT.NET,
and FindBugs, supported both .NET and Java. The results showed that SATs could
to an extent be effective to find security holes, but were not enough to uncover all
vulnerabilities in software.

To discover how SATs performed for concurrency bugs and whether open-source or
commercial tools were superior, Al Mamun et al. [2010] evaluated four static analysis
tools. Coverity Prevent, Jtest, FindBugs, and Jlint were evaluated on programs from a
benchmark as well as selected bug patterns. They concluded that it was not possible to
clearly distinguish the commercial and open-source tools from each other.

Tripathi and Gupta [2014] evaluated the effectiveness and efficiency of the four SATs
FindBugs, CodePro AnalytiX, UCDetector, and PMD. They were evaluated on four
small Java projects with added mutant bugs. PMD proved to be the SAT that detected
the most bugs, but did not detect those of high severity. CodePro Analytix detected
bugs of every severity rank including the highest.

There also exists research that focuses on evaluating individual tools without compar-
isons such as the one by Vetro, Morisio, and Torchiano [2011]. They evaluated FindBugs
in terms of false positives and precision. This was achieved by executing FindBugs on
301 different university projects. Out of 77 FindBugs bug patterns, four were reliably
precise while 14 had negligible precision.
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3.3. Analyzing the Implementation of Static Analysis Tools

After an extensive search, we were not able to find any previous research into analyzing
the implementation of static analysis tools similarly to what we do in this master thesis.
It seems no one has tried to take it a step further by explaining the results of their
evaluation by analyzing the implementation. The closest we could find was the textbook
explanation of the implementation of the static analysis tool CodePeer by Baird et al.
[2011].

3.4. Extending and Improving Existing Static Analysis Tools

In this master thesis, we will prove our points of the implementation by modifying
the SATs. Therefore, we identify previous work performed in extending and improving
existing static analysis tools.

Ware and Fox [2008] conducted an evaluation of eight static analysis tools, one of
them being FindBugs. They discovered that a significant number of code flaws were not
detected by any of the tools. Consequently, they wrote FindBugs detectors for five of
these code flaws which were not detected in their evaluation.

It is mainly FindBugs that has received enhancement from scientific research. Both
Al-Ameen, Hasan, and Hamid [2011] and Vestola [2012] added new bug patterns for the
static analysis tool. Both did so in an effort to improve the coverage and performance
of FindBugs as they believed in its usefulness.

Shen, Zhang, et al. [2008] also extended FindBugs by adding bug patterns. These were
targeted towards AspectJ, an aspect-oriented programming extension for Java. The 17
additional bug patterns were evaluated on a set of open-source AspectJ projects, and
the authors were able to confirm seven already known bugs in addition to 257 unknown
bugs.

Shen, Fang, and Zhao [2011] continued their efforts in FindBugs by proposing a new
ranking system for it. The ranking system was based on the results of an initial analysis
as well as feedback from users in whether they considered the detection to be true or
false. The authors conducted an evaluation of three large applications and found that
their ranking system improved both recall and precision for the top 60% of reports. The
source code was posted online, but is unfortunately no longer available.
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4. Pre-Study

Prior to this master thesis, we conducted a pre-study where we evaluated five different
open-source IDE-integrated static analysis tools for Java. Our research consisted of two
contributions, a practical evaluation of coverage and performance as well as a theoretical
evaluation of usability.

The results of the pre-study have concurrently with the work on this thesis been rewrit-
ten into a scientific paper and published on its own to the Evaluation and Assessment in
Software Engineering (EASE) 2019 conference [Li, Beba, and Karlsen, 2019]. EASE is
ranked as an A-conference by both the Excellence in Research in Australia (ERA) [2010]
and Computing Research and Education Association of Australasia (CORE) [2018]. The
scientific paper is included in appendix A.

During the work on this master thesis, we discovered we had made an error during
the evaluation of ESVD for the categories A5 Broken Access Control and A7 Cross-Site
Scripting. We reported in our paper that CWE-23 Relative Path Traversal and CWE-36
Absolute Path Traversal were not detected by ESVD. However, after a new evaluation,
both of them gets reported. All of the CWE entries in A7 Cross-Site Scripting also
produced higher numbers than first reported. Our theory is that this happened because
of ESVD’s unstable behavior with repeated crashes and freezes. In addition to this, we
discovered that ESVD does in fact cover CWE-259 Hard-coded Password despite not
claiming to do so. We also discovered a bug in the behavior of Find Security Bugs for
flow variant 81 in the Juliet Test Suite. Flow variant 81 is explained in Table B.2. This
bug results in Find Security Bugs sometimes not reporting a true or false positive for
this specific flow variant, and slightly changed the results for all injection detectors, the
path traversal detectors, and the cross-site scripting detectors. All results are adjusted
accordingly, and the original results can be seen in our paper in appendix A.

4.1. Coverage and Performance Evaluation

The static analysis tools we evaluated were ASIDE, LAPSE+, SpotBugs, Find Security
Bugs, and ESVD. ASIDE was created in an effort to teach secure programming. The
idea behind the SAT is to report the vulnerabilities directly inside the IDE while the
user is typing, which was uncommon at the time. LAPSE+, on the other hand, has to
be manually executed and analyzes the whole project each time. Neither of them utilizes
data-flow analysis, which also leads to poor results.

SpotBugs is the spiritual successor to the popular bug detector FindBugs that has not
been updated since 2015 [SpotBugs, 2018]. FindBugs is the result of the academic work
of Hovemeyer and Pugh [2004] in their article “Finding Bugs is Easy.” SpotBugs detects
all sorts of bugs, not just security vulnerabilities. However, it is not a style checker and
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focuses on bugs that actually cause errors in programs. Over 400 different bug patterns
are used by SpotBugs, and they are divided into different categories [SpotBugs, 2017,
2018]. The security category has bug patterns for cross-site scripting, HTTP response
splitting, path traversal, insecure passwords, and SQL injection.

Find Security Bugs is a custom plugin for SpotBugs that extends its coverage and
improves its performance by adding more bug patterns. It is able to use all of the
methods and functionality of SpotBugs, in addition to new functionality it provides itself.
At the time of the pre-study, Find Security Bugs added 128 different bug patterns [Find
Security Bugs, 2018a]. Among these were bug patterns for injection, authentication,
broken access control, and cross-site scripting.

ESVD is an SAT in the form of a plugin for the Eclipse IDE. The motivation behind
it is to utilize early detection to warn the user of potential security vulnerabilities while
writing the code. In addition, ESVD focuses on vulnerabilities originating from user
input and claims to utilize context-sensitive data-flow analysis to track the input from
source to sink. The motivation behind this is to reduce the number of false positives.
However, as our pre-study revealed, ESVD produced poor results and did not live up to
what it claimed. A total of 11 security vulnerabilities are included, and among them are
injection vulnerabilities, cookie poisoning, cross-site scripting, log forging, path traver-
sal, and security misconfiguration.

We wanted to only evaluate the SATs for the most critical and relevant security vulner-
abilities. To achieve this, we used the OWASP Top 10 list as a reference. The list is
explained in more detail in section 2.2.

In order to measure performance we utilized the performance metrics used at the
Static Analysis Tool Exposition (SATE) [Delaitre et al., 2018] as these are commonly
used metrics that are also used in previous research such as the ones by Charest, Rodgers,
and Wu [2016] and Oyetoyan et al. [2018]. The metrics are defined as follows:

• Recall is the percentage of vulnerabilities detected.

Recall =
True Positives

True Positives + False Negatives

• Precision is the percentage of detections which are true positives. It is a good
indication of noise in the SAT’s reports.

Precision =
True Positives

True Positives + False Positives

• Discrimination Rate is the number of test cases where the SAT reports a true
positive without also reporting a false positive. It tells if the tool is able to see the
difference between a true and a false positive.

Discrimination Rate =
Number of Discriminations

Number of Test Cases
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To use these metrics, we needed a vulnerable code base to evaluate on that provided
the necessary data to calculate the metrics. Natural code, i.e., the source code of any
application, does not provide this information as one does not know how many vulner-
abilities are in the source code. However, artificial code, which is usually a framework
made intentionally vulnerable, does provide this information. With this in mind, using
artificial code was the only suitable option for us. Which metrics are applicable are
shown in Table 4.1.

Table 4.1.: The metric applicability for natural and artificial code according to Delaitre
et al. [2018]. N/A means not applicable.

Metric Natural Code Artificial Code

Coverage Limited Applicable
Recall N/A Applicable
Precision Applicable Applicable
Discrimination N/A Applicable

We selected the Juliet Test Suite v1.3 created by NSA [2012] and NIST [2017, 2018].
It is a collection of intentionally vulnerable, artificial code. Its purpose is to serve as
a testing platform for static analysis tools. It consists of over 28,000 test cases which
are categorized under 112 different CWE entries [NIST, 2017]. Each test case includes
exactly one vulnerability as well as at least one non-flawed construct meant to represent
a potential false positive. A single CWE entry can have up to thousands of test cases
spanning over simple cases, control-flow cases and data-flow cases, where the latter are
more challenging to detect. The test cases in the Juliet Test Suite have both a source
variant (functional variant) as well as a flow variant, as explained in the documentation
by NSA [2012].

4.2. Coverage and Performance Results

The results of the evaluation are presented in Table 4.3. The numbers for Find Security
Bugs does not include detections made by SpotBugs as all detectors for SpotBugs were
turned off when evaluating Find Security Bugs’ own detectors. Usually their results are
combined when using the Find Security Bugs extension for SpotBugs, but we wanted to
evaluate them individually.

A summary of the coverage is presented in Table 4.2. It shows how many categories of
vulnerabilities the SATs claimed to detect and what they actually covered. A category
was considered covered if the SAT got any true positives for it. By reading the table, it
was clear that the coverage was generally poor. Find Security Bugs was the only SAT
that had a coverage above half, with a 62% confirmed coverage. However, we would still
argue this number should have been higher for an SAT. In addition to the low percent-
ages, ESVD and LAPSE+ also had a worrying discrepancy between what they claimed
and what they actually detected. We considered this worrying as it meant these SATs
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could not be relied upon. By looking at Table 4.3, it became obvious that the cover-
age was also unevenly distributed. Certain categories, such as injection vulnerabilities,
broken access control, and cross-site scripting were vastly more covered than others.

Table 4.2.: Confirmed and claimed coverage of the IDE-integrated static analysis tools.
Full coverage corresponds to covering all 29 vulnerability categories.

Tools Confirmed Coverage Claimed Coverage

ASIDE 12 41% 12 41%
ESVD 7 24% 13 45%

LAPSE+ 8 28% 11 38%
SpotBugs 8 28% 8 28%

Find Security Bugs 18 62% 19 66%

The calculated performance metrics are presented in Table 4.4. Since ASIDE did not
categorize its detections, it was impossible to verify if the detections were relevant to
the test cases. This meant some irrelevant detections might have been included, leading
to the true and false positive numbers in our results being higher than what ASIDE
deserved. LAPSE+ required manual effort instead of having an automatic data-flow
analysis implemented. We did not conduct this manual data-flow analysis and it was
not included in the results.

Both ESVD and SpotBugs had a low recall, but a high precision. Opposite to this,
LAPSE+ had a low precision, but a high recall. This showed how SATs have to deal
with the trade-off between recall and precision, and it was clear these had chosen the
opposite. This also leads to all three having a poor discrimination rate. ASIDE per-
formed average with good results for a handful of vulnerabilities. The only SAT that
performed remarkably well was Find Security Bugs. With the highest coverage, it also
had a recall and precision close to 100% for most vulnerabilities with a few exceptions.
It even performed well for CWE-89 SQL Injection, where the other SATs struggled to
achieve a high recall while maintaining a low precision.

4.3. Usability Evaluation

The usability of the SATs were evaluated on the metrics listed in Table 4.5. All the tools
had at least one CWE entry with a much greater number of false positives than true
positives. ESVD and SpotBugs had a single high false positive number that skewed the
false positive rate (FPR) for these two SATs. Situations like these were the reason why
we used two different types of FPRs. The “averaged false positive rate” metric averaged
the FPR for each entry with equal weight. The FPR of the tools were way higher than
the 15% that half of developers accept according to Christakis and Bird [2016].

A countermeasure for a high false positive rate is prioritized output telling the user
which detections are the most critical or confident. ESVD prioritized the detections in
criticalness by using numbers, while SpotBugs and Find Security Bugs ranked them by
both criticalness and confidence using words and colors. Another countermeasure for a
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Table 4.3.: Detailed coverage data, showing the number of true and false positives. A
hyphen (-) indicates that the plugin does not claim to cover the CWE entry.
Each entry is listed with its unique ID and its total number of test cases.

CWE IDE-Integrated Static Analysis Tools

ID Name ASIDE ESVD LAPSE+ SpotBugs FindSecBugs

A1 Injection Total TP FP TP FP TP FP TP FP TP FP

78 OS Command Injection 444 185 0 49 0 444 624 - - 380 60
89 SQL Injection 2220 3a 3a 1440 2280 2220 3060 2220 3000 1900 300
90 LDAP Injection 444 185 0 0 0 0 0 - - 380 60
113 HTTP Response Splitting 1332 555 795 0 0 0 0 57 0 990 0
134 Use of Externally-Controlled Format String 666 148 212 - - - - - - 462 0
643 XPath Injection 444 185 265 0 0 444 1248 - - 380 60

A2 Broken Authentication Total TP FP TP FP TP FP TP FP TP FP

256 Unprotected Storage of Credentials 37 - - - - - - - - - -
259 Use of Hard-coded Password 111 - - 20 3 - - 15 0 48 0
321 Use of Hard-coded Cryptographic Key 37 - - - - - - - - 16 0
523 Unprotected Transport of Credentials 17 - - - - - - - - - -
549 Missing Password Field Masking 17 - - - - - - - - - -

A3 Sensitive Data Exposure Total TP FP TP FP TP FP TP FP TP FP

315 Cleartext Storage of Sensitive Information in a Cookie 37 - - - - - - - - 0 0
319 Cleartext Transmission of Sensitive Information 370 - - - - - - - - 259 369
325 Missing Required Cryptographic Step 34 - - - - - - - - - -
327 Use of a Broken or Risky Cryptographic Algorithm 34 - - - - - - - - 17 0
328 Reversible One-Way Hash 51 - - - - - - - - 51 0
329 Not Using a Random IV with CBC Mode 17 - - - - - - - - 17 0
614 Sensitive Cookie in HTTPS Session Without ’Secure’ Attribute 17 - - - - - - - - 16 0
759 Use of a One-Way Hash without a Salt 17 - - - - - - - - - -
760 Use of a One-Way Hash with a Predictable Salt 17 - - - - - - - - - -

A5 Broken Access Control Total TP FP TP FP TP FP TP FP TP FP

23 Relative Path Traversal 444 108 0 49 0 444 624 19 0 380 60
36 Absolute Path Traversal 444 108 0 49 0 444 624 16 0 380 60
566 Auth. Bypass Through User-Controlled SQL Primary Key 37 36 0 - - 37 0 - - - -

A6 Security Misconfiguration Total TP FP TP FP TP FP TP FP TP FP

395 NullPointerException Catch to Detect NULL Pointer Deference 17 - - 0 0 - - - - - -
396 Declaration of Catch for Generic Exception 34 - - 0 0 - - - - - -
397 Declaration of Throws for Generic Exception 4 - - 0 0 - - - - - -

A7 Cross-Site Scripting Total TP FP TP FP TP FP TP FP TP FP

80 Basic XSS 666 642 900 70 0 666 936 19 0 666 90
81 Improper Neutralization of Script in an Error Message 333 321 450 35 0 0 0 19 0 333 45
83 Improper Neutralization of Script in Attributes in a Web Page 333 108 0 35 0 333 468 19 0 333 45

a ASIDE generates an exception when running on these test cases.

high false positive rate is the ability to hide false positives. Both ASIDE and ESVD had
the option, but the action is irreversible.

SpotBugs and Find Security Bugs were the only SATs that provided sufficient informa-
tion about the problem. Find Security Bugs also gave examples of how the vulnerabilities
could be fixed. ASIDE and ESVD, on the other hand, provided quick fixes through a
third-party application programming interface (API). Unfortunately, the fixes were often
too general to be relevant to the vulnerability.

All the tools utilized early detection except for LAPSE+, which had to be manually
executed. SpotBugs and Find Security Bugs also provided this as an option. Only
SpotBugs and Find Security Bugs could manually analyze a single file.

All the results are shown in Table 4.5, and more details are found in our paper.
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Table 4.4.: Detailed performance data, showing recall, precision, and discrimination rate.
The names of the CWE entries are slightly shortened, see Table 4.3 for the
full names. A hyphen (-) indicates that the plugin does not cover the CWE.

CWE Tools

ID Name ASIDE ESVD LAPSE+ SpotBugs FindSecBugs

A1 Injection Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc.

78 OS Command Injection 42% 100% 42% 11% 100% 11% 100% 42% 0% - - - 86% 86% 72%
89 SQL Injection 0% 50% 0% 65% 39% 0% 100% 42% 0% 100% 43% 0% 86% 86% 72%
90 LDAP Injection 42% 100% 42% 0% N/A N/A 0% N/A N/A - - - 86% 86% 72%
113 HTTP Response Splitting 42% 41% 0% 0% N/A N/A 0% N/A N/A 4% 100% 4% 74% 100% 74%
134 Externally-Controlled Format String 22% 41% 0% - - - - - - - - - 69% 100% 69%
643 XPath Injection 42% 41% 0% 0% N/A N/A 100% 26% 0% - - - 86% 86% 72%

A2 Broken Authentication Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc.

256 Unprotected Credentials Storage - - - - - - - - - - - - - - -
259 Hard-coded Password - - - 18% 87% 16% - - - 14% 100% 14% 43% 100% 43%
321 Hard-coded Cryptographic Key - - - - - - - - - - - - 43% 100% 43%
523 Unprotected Credentials Transport - - - - - - - - - - - - - - -
549 Missing Password Field Masking - - - - - - - - - - - - - - -

A3 Sensitive Data Exposure Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc.

315 Cleartext Sensitive Info in Cookie - - - - - - - - - - - - 0% N/A N/A
319 Sensitive Cleartext Transmission - - - - - - - - - - - - 70% 41% 0%
325 Missing Required Crypto. Step - - - - - - - - - - - - - - -
327 Broken/Risky Crypto. Alg. - - - - - - - - - - - - 50% 100% 50%
328 Reversible One-Way Hash - - - - - - - - - - - - 100% 100% 100%
329 Not Random IV in CBC Mode - - - - - - - - - - - - 100% 100% 100%
614 Missing ’Secure’ in HTTPS Cookie - - - - - - - - - - - - 94% 100% 94%
759 One-Way Hash, no Salt - - - - - - - - - - - - - - -
760 One-Way Hash, Predictable Salt - - - - - - - - - - - - - - -

A5 Broken Access Control Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc.

23 Relative Path Traversal 24% 100% 24% 11% 100% 11% 100% 42% 0% 4% 100% 4% 86% 86% 72%
36 Absolute Path Traversal 24% 100% 24% 11% 100% 11% 100% 42% 0% 4% 100% 4% 86% 86% 72%
566 SQL PK Auth. Bypass 97% 100% 97% - - - 100% 100% 100% - - - - - -

A6 Security Misconfiguration Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc.

395 Catching NULL Pointer Deference - - - 0% N/A N/A - - - - - - - - -
396 Catch for Generic Exception - - - 0% N/A N/A - - - - - - - - -
397 Throws for Generic Exception - - - 0% N/A N/A - - - - - - - - -

A7 Cross-Site Scripting Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc.

80 Basic XSS 96% 42% 2% 11% 100% 11% 100% 42% 0% 3% 100% 3% 100% 88% 86%
81 Script in Error Message 32% 100% 32% 11% 100% 11% 0% N/A N/A 6% 100% 6% 100% 88% 86%
83 Script in Attributes in a Web Page 96% 42% 2% 11% 100% 11% 100% 42% 0% 6% 100% 6% 100% 88% 86%
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Table 4.5.: Summary of the usability results.

Metric ASIDE ESVD LAPSE+ SpotBugs FindSecBugs

FP rate
Averaged false positive rate 29% 9% 53% 7% 9%

False positive rate of total result 50% 57% 60% 56% 13%

Tool output

What is the problem × X X X X
Why is it a problem N/A × × X X

How to fix the problem N/A × × × X

Prioritized output × X × X X
Quick fixes X X × × ×

(E)arly or (L)ate detection E E L E/L E/L

Can suppress warnings X X × × ×
Eclipse Environment integration X X X X X

Available on Eclipse Marketplace × × × X ×
(I)mmediate or (N)egotiated interruptions N N N N N

Easily extendable × × × X ×
Possible to analyze single file only × × × X X

Possible to analyze single method only × × × × ×
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5. Research Design and Implementation

Chapter 5 explains our research approach and implementation. In section 5.1 our mo-
tivation for this research project is presented, then our three research questions are
listed in section 5.2. Our research method and design is explained in section 5.3. This
includes our research strategy, our data generation and analysis approach, and our re-
search paradigm. Finally, our research implementation is described in section 5.4.

5.1. Research Motivation

Many of the code errors today can be detected in real-time while writing the code. If a
semicolon is forgotten, you immediately get a red squiggly line below the relevant part of
the code. More advanced errors might not be immediately detected, but will not allow
the application to compile before being fixed. Even runtime errors are often detected in a
timely manner, because they occur during normal usage. Security vulnerabilities, on the
other hand, get no red squiggly line, do not cause compilation errors, and can be present
in an application for a long time without being detected through normal usage. When
researching possible solutions to this problem, the results were less than satisfactory.

Our pre-study showed us that the coverage is unevenly distributed among the vulner-
ability categories, and that the performance is lacking. The very high false positive rate
we saw would definitely scare away a good portion of the potential user base. Consid-
ering the devastating effects security vulnerabilities can have on software, we find that
quite worrisome.

When looking for literature explaining the behavior of the SATs we evaluated in
the pre-study, we found barely any related work. We found a book explaining the
implementation of a different tool for a different programming language, but this was not
in relation to the performance or results of the tool. Other related work have improved
SATs by adding new detectors, but none have improved SATs by enhancing existing
detectors. It should also be noted that neither the explanation of the implementation nor
the addition of new detectors are related to security vulnerabilities, but rather towards
general software bugs. We found this lack of related work disappointing, given the large
impact these SATs could have not only on software developers, but also the users of
software products. More details about the related work are presented in chapter 3.

Our research aims to understand the implementation of these SATs and how the
implementation relates to the results from our pre-study. This will lead to an explanation
of the limitations we found in the SATs with accompanying proofs for our claims. These
proofs come in the form of code modifications that confirm the limitations and improve
the performance. Based on our findings, we will propose recommendations for further
development of static analysis tools.

30



5.2. Research Questions

From the research motivation mentioned in section 5.1, we have formulated three research
questions that will be explored in our master thesis. The three research questions are as
follows:

RQ1. How is static analysis implemented in the SATs from the pre-study?

RQ2. How can the performance of the SATs be explained by their implementation?

RQ3. How can the limitations of the SATs be addressed through proof-of-concept
improvements?

5.3. Research Method and Design

This section will summarize the research method and design of our study. This includes
the research strategy, data generation method, and data analysis method. In addition,
this section will describe the research paradigm considered to hold true for us as the
authors of this master thesis.

5.3.1. Research Strategy

A set of static analysis tools and security vulnerabilities will be included from the pre-
study for further analysis. The SATs will be tested and analyzed on the selected vul-
nerabilities, and limitations and possible modifications will be explored. These steps are
further described in section 5.4.

Our research will be answered through experiments, as defined by Oates [2005]. The
experiments will focus on the relationships between cause and effect. We will be observ-
ing the outcome from us testing our hypotheses about why the SATs behave the way
they do. There is before and after measurements, and the factors that can affect the
results are controlled.

When explaining the SATs’ implementation, we will create hypotheses about their
behavior that we try to confirm or reject. Considering we have access to the source code
of these SATs, we will alter the code in an attempt to prove or disprove these hypotheses.
This is strongly in line with the experiments strategy described by Oates [2005].

An important aspect of good research is reproducibility. To make it easier to reproduce
the results of our master thesis, a detailed implementation description and the necessary
source code changes will be published. More about this will be described in section 5.4.

5.3.2. Data Generation and Analysis

The data generation method will partially consist of collecting the results from the SATs
being executed on vulnerable code, and partially from documents and related research
describing the design and implementation of the SATs.
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RQ1 will mainly be based on the documents produced by the authors of the SATs
themselves. The word “document” is used broadly speaking, including both design
models, research papers, and source code. The data generated from these documents
will be analyzed qualitatively.

RQ2 is partially based on the same documents as for RQ1, in addition to the results
we produce when executing the SATs on vulnerable code. The data generated from the
documents will still be analyzed qualitatively, while the data generated from executing
the SATs will be analyzed quantitatively. Quantitatively data analysis is done through
the use of mathematical approaches to calculate the coverage and performance of the
SATs.

RQ3 is only based on the results we produce when executing the SATs on vulnerable
code. Data generated from this will be analyzed qualitatively. This includes comparing
the before and after measurements, to explore any potential changes in the results caused
by the modifications to the source code.

5.3.3. Research Paradigm

In academic research, the experiment strategy is at the heart of the scientific method
and positivism [Oates, 2005]. This research assumes the world to be ordered, and in
which it can be investigated objectively. Claiming vulnerabilities in code are caused
by specific instructions can be repeated or refuted. Claiming a static analysis tool can
detect a set of vulnerable instructions can be repeated or refuted. Differences in the
before and after measurements can be used as proof of our hypotheses. This approach
to research aligns with the positivism paradigm. The research is based on facts, with
quantitative and qualitative data which is seen as objective.

5.4. Research Implementation

As part of our research, we will conduct an implementation analysis and a limitation
analysis for IDE-integrated SATs targeting security vulnerabilities. The implementation
analysis will answer RQ1 and RQ2, and will uncover limitations in the implementation.
These limitations are analyzed further in the limitation analysis that answers RQ3.

Section 5.4 explains our approach to implementing our research and gives insight into
our thought process and decisions. Section 5.4.1 covers the research and selection of the
SATs while section 5.4.2 covers the research and selection of the vulnerability categories.
We structure our presentation of the SATs’ performance similarly to how the Juliet Test
Suite is structured, which is explained in section 5.4.3. Then we present our parsers
and how they are utilized in section 5.4.4. Section 5.4.5 and 5.4.6 explain how we are
presenting and conducting our implementation analysis, before section 5.4.7 ends this
chapter by explaining how we are conducting the limitation analysis and how we are
producing the proof-of-concept improvements.

Note that this master thesis is a continuation of our pre-study, and some decisions have
already been thoroughly explained in the research paper. Although these decisions will
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be mentioned, the thorough explanation will not. The reader is referred to the pre-study
in chapter 4 or the paper in appendix A for the full explanation of these decisions.

5.4.1. Selection of the Static Analysis Tools

Criteria

Researching and analyzing static analysis tools is a time-consuming task. Thus, it is
important to balance research time with research contribution as we select the SATs
to analyze. The pre-study defines the available pool of static analysis tools, namely
ASIDE, ESVD, LAPSE+, SpotBugs, and Find Security Bugs. In order to only evaluate
the SATs where our research will produce a significant contribution, we decide on the
following criteria:

1. The SAT must be easy to find and install.

2. The SAT must work properly with recent releases of the Eclipse IDE.

3. The SAT must use state-of-the-art detection algorithms.

These specifications are the result of a long reflection process into what we want our
research contribution to be. The two first criteria are important for the user to be able
to find and use the SATs. If too much effort is needed to find or install the SAT, or the
user is forced to use an old release of Eclipse, the likelihood of use is drastically reduced.
The third criterion is important when it comes to the contribution of our research. It
is less interesting to analyze simpler detection algorithms, as they often produce worse
results than state-of-the-art detection algorithms. In other words, analyzing the best
performing detection algorithms is a greater contribution.

Selection

Only SpotBugs and ESVD are available on the Eclipse Marketplace, but ESVD seems
to be misconfigured and impossible to directly download from the marketplace. It is
possible to install ESVD by following the link present in the error message given by
Eclipse. Find Security Bugs is easy to find and download from the internet, while
LAPSE+ is somewhat harder to find. ASIDE does not have any executable available,
and the only way to install it is to compile its source code.

Four of the five SATs can run in recent versions of Eclipse. Only LAPSE+ must be
run in an older release from 2010, namely Eclipse Helios. Helios is likely to be missing
important features present in the nine years since its release, and is slightly harder to
find, download, and install than more recent editions of Eclipse.

ESVD, SpotBugs, and Find Security Bugs are the only three tools that use data-flow
analysis. ESVD is also of special interest, as it claims to use context-sensitive DFA while
producing subpar performance results. ASIDE and LAPSE+ are using older and less
capable techniques of detecting security vulnerabilities, such as pattern matching.
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It should be mentioned that ESVD frequently crashed during the pre-study. We
decided to excuse this behavior, as our interest lies in the advanced algorithms it claims
to use, and not the usability of the tool. Although this is an annoyance for us, it is
uncertain if this occurs during regular use on natural code.

Based on the criteria and explanation above, the selected static analysis tools are
ESVD, SpotBugs, and Find Security Bugs. Even though ESVD does not fulfill our first
criterion, we still believe it is worth further analysis and we see it as a better contender
than ASIDE or LAPSE+. It fulfills the third criteria which we see as more important and
assert some bold claims about context-sensitive DFA. See Table 5.1 for some additional
details and a summary about the SATs. Note that due to ESVD requiring changes to its
output-producing source code as described in the research paper in appendix A, the SAT
was acquired from its source code repository. Also note that we are using a newer version
of SpotBugs than in the pre-study. The updated version of SpotBugs has not changed
anything related to the vulnerabilities we are analyzing [SpotBugs, 2019a], which we
have also verified by producing the same results using both versions of SpotBugs.

Table 5.1.: Information about the selected static analysis tools.

SAT Downloaded From Version Version Date

ESVD
GitHub

0.4.2 Jul 2016
[Sampaio, 2016]

SpotBugs
Eclipse Marketplace

3.1.11 Jan 2019
[SpotBugs, 2019b]

FindSecBugs
Project Webpage

1.8.0 Jun 2018
[Find Security Bugs, 2019]

5.4.2. Selection of Vulnerability Categories

Criteria

The static analysis tools have different implementations for different vulnerabilities. Be-
cause of the time-consuming nature of implementation analysis, we deem it necessary to
narrow the scope from the pre-study to a smaller set of vulnerabilities. As the work from
the pre-study depends on OWASP Top 10 and the Juliet Test Suite, we will continue to
utilize them. The criteria and reasons for selecting OWASP Top 10 and the Juliet Test
Suite can be found in the pre-study in chapter 4.

To narrow the list of vulnerabilities to analyze, we define the criterion that the vul-
nerability must allow us to compare the results and implementations between multiple
static analysis tools. This criterion is based on our desire to accumulate information
that can be used to present a list of shared and individual strengths and limitations for
all of the static analysis tools. We believe it is interesting to see how the SATs approach
the same task, and if they do so differently. This information will uncover how different
solutions perform and can guide developers in the future to make educated decisions
when developing SATs.
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Table 5.2.: This table shows the selected vulnerabilities in yellow. The original table can
be seen in Table 4.4. Only vulnerabilities where at least two of the SATs
claim to cover the vulnerability are included.

CWE Tools

ID Name ESVD SpotBugs FindSecBugs

A1 Injection Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc.

78 OS Command Injection 11% 100% 11% - - - 86% 86% 72%
89 SQL Injection 65% 39% 0% 100% 43% 0% 86% 86% 72%
90 LDAP Injection 0% N/A N/A - - - 86% 86% 72%
113 HTTP Response Splitting 0% N/A N/A 4% 100% 4% 74% 100% 74%
134 Externally-Controlled Format String - - - - - - 69% 100% 69%
643 XPath Injection 0% N/A N/A - - - 86% 86% 72%

A2 Broken Authentication Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc.

256 Unprotected Credentials Storage - - - - - - - - -
259 Hard-coded Password 18% 87% 16% 14% 100% 14% 43% 100% 43%
321 Hard-coded Cryptographic Key - - - - - - 43% 100% 43%
523 Unprotected Credentials Transport - - - - - - - - -
549 Missing Password Field Masking - - - - - - - - -

A3 Sensitive Data Exposure Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc.

315 Cleartext Sensitive Info in Cookie - - - - - - 0% N/A N/A
319 Sensitive Cleartext Transmission - - - - - - 70% 41% 0%
325 Missing Required Crypto. Step - - - - - - - - -
327 Broken/Risky Crypto. Alg. - - - - - - 50% 100% 50%
328 Reversible One-Way Hash - - - - - - 100% 100% 100%
329 Not Random IV in CBC Mode - - - - - - 100% 100% 100%
614 Missing ’Secure’ in HTTPS Cookie - - - - - - 94% 100% 94%
759 One-Way Hash, no Salt - - - - - - - - -
760 One-Way Hash, Predictable Salt - - - - - - - - -

A5 Broken Access Control Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc.

23 Relative Path Traversal 11% 100% 11% 4% 100% 4% 86% 86% 72%
36 Absolute Path Traversal 11% 100% 11% 4% 100% 4% 86% 86% 72%
566 SQL PK Auth. Bypass - - - - - - - - -

A6 Security Misconfiguration Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc.

395 Catching NULL Pointer Deference 0% N/A N/A - - - - - -
396 Catch for Generic Exception 0% N/A N/A - - - - - -
397 Throws for Generic Exception 0% N/A N/A - - - - - -

A7 Cross-Site Scripting Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc.

80 Basic XSS 11% 100% 11% 3% 100% 3% 100% 88% 86%
81 Script in Error Message 11% 100% 11% 6% 100% 6% 100% 88% 86%
83 Script in Attributes in a Web Page 11% 100% 11% 6% 100% 6% 100% 88% 86%

Selection

When filtering the vulnerabilities from the pre-study for the aforementioned criterion, we
get the vulnerabilities highlighted in Table 5.2. All of these vulnerabilities are claimed to
be covered by at least two of the SATs. They are described in section 2.2. 7,215 distinct
variations of the 11 selected vulnerabilities exist in the Juliet Test Suite. Considering the
fact that we are executing three different SATs on these 7,215 test cases, this results in
20,313 different vulnerability reports, excluding the 1,332 vulnerabilities which SpotBugs
does not claim to cover.
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5.4.3. How Juliet Test Suite is Structured

When evaluating the SATs, we utilize the natural structure of Juliet Test Suite. There
are multiple test cases for each vulnerability, and each of these test cases has a unique
composition of which source is used and what control- and data-flow complexity is added.
These will be referred to as respectively source variants and flow variants.

A source variant is a variant of a test case using a specific source. The Juliet Test
Suite consists of similar cases where the only difference being what source is used. This
way, it is possible to discover if an SAT is not able to detect a specific source. Figure 5.1
and 5.2 are two examples of the source variants Connect TCP and File. These lines of
code retrieve potentially vulnerable input from respectively a TCP connection and a File.

/* SOURCE VARIANT: Read data using an outbound tcp connection */

socket = new Socket("host.example.org", 39544);

reader = new InputStreamReader(socket.getInputStream(), "UTF-8");

readerBuffered = new BufferedReader(reader);

data = readerBuffered.readLine();

Figure 5.1.: Simplified version of the Connect TCP source variant used in the Juliet Test
Suite.

/* SOURCE VARIANT: Read data from a file */

file = new File("C:\\data.txt");

stream = new FileInputStream(file);

reader = new InputStreamReader(stream, "UTF-8");

readerBuffered = new BufferedReader(reader);

data = readerBuffered.readLine();

Figure 5.2.: Simplified version of the File source variant used in the Juliet Test Suite.

A flow variant of a test case includes specific control-flow statements that add com-
plexity to the test case. Every vulnerability category include the same 37 flow variants.
The first flow variant is called the baseline and includes no added complexity. It is the
easiest of the test cases. The next group is called control-flow cases. There are 18 of
them, and they hide the source or sink within control-flow statements to make them
harder to detect. Figure 5.3 is an example of this where the source from Figure 5.1 is
wrapped inside an if-statement. Figure 5.1 represents a baseline case. The final group
is called data-flow cases. Figure 5.4 shows how the vulnerable data is retrieved from
the source in one class, and used in a sink in another class. Data-flow cases can send
the data between methods or classes, and are the most complex test cases to detect as
they require a sophisticated algorithm to track the flow of the vulnerable input. More
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information on each specific flow variant is located in appendix B.

Control-Flow Variant 02

String data;

/* CONTROL-FLOW VARIANT: If-statement with boolean literal */

if(true) {

/* SOURCE VARIANT: Read data using an outbound tcp connection */

socket = new Socket("host.example.org", 39544);

reader = new InputStreamReader(socket.getInputStream(), "UTF-8");

readerBuffered = new BufferedReader(reader);

data = readerBuffered.readLine();

}

Figure 5.3.: Simplified version of control-flow variant 02 used in the Juliet Test Suite. It is
a more complex test case than the corresponding baseline case in Figure 5.1.

Data-Flow Variant 51 - Class A

/* SOURCE VARIANT: Read data using an outbound tcp connection */

socket = new Socket("host.example.org", 39544);

reader = new InputStreamReader(socket.getInputStream(), "UTF-8");

readerBuffered = new BufferedReader(reader);

data = readerBuffered.readLine();

/* DATA-FLOW VARIANT: Send data from one class to another */

(new ClassB()).badSink(data);

Data-Flow Variant 51 - Class B

public void badSink(String data ) {

...

/* SINK: Relative Path Traversal */

File file = new File(root + data);

...

}

Figure 5.4.: Simplified version of data-flow variant 51 used in Juliet Test Suite. Class A
retrieves the input from the source and sends it to Class B where it used in
a sink. It is a more complex test case than the corresponding baseline case
in Figure 5.1 and control-flow case in Figure 5.3.
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5.4.4. How Parsers are Used to Facilitate the Analysis

Before carrying out the implementation analysis, the static analysis tools have to be
installed and the parsers must be able to understand the output of the SATs. This
process is explained in the research paper in appendix A. This section will only discuss
what is new for the master thesis. The modifications to ESVD are the same as for
the pre-study, while SpotBugs and Find Security Bugs do not require modifications to
properly function with the parsers.

In order to automate the process of testing the static analysis tools, we develop parsers
that analyze the raw output data from the SATs. Without an automated way of an-
alyzing the results, we would have to manually analyze at least 20,313 vulnerability
reports, which is not only error-prone, but also too time-consuming to be feasible for
this thesis. Considering any proof-of-concept improvements for RQ3 will result in new
vulnerability reports, this could easily total over 100,000 vulnerability reports, showing
the significance of the parsers. The parsers share some similarities with the parsers from
our pre-study, but are now capable of producing more comprehensive results. The new
and improved parsers can separate results based on source variants from the Juliet Test
Suite, merge similar categories, and present more information about available sources
and sinks. As can be seen in Figure 5.5, the parsers calculate true and false positives, as
well as false negatives, recall, precision, and the discrimination rate for each flow variant
and for each source variant.

The output from ESVD is difficult to export and automatically parse, as opposed
to the detailed output that can be exported from SpotBugs and Find Security Bugs.
We made slight modifications to how ESVD presents its output by also including more
details about its detections. We are particularly careful to only change the textual
output from the SAT, without changing any logic that could alter the detection al-
gorithm. The modified source code is available at https://github.com/Beba-and-

Karlsen/ide-plugins-modified, and is identical to the modifications used in the pre-
study.

The parsers are written in Python 3 with modularity in mind. There are two different
SAT-specific output readers, called esvd.py and spotbugs.py. As Find Security Bugs
is a plugin for SpotBugs, both output their results in the same format. These SAT-
specific output readers are necessary to interpret the reports produced by the SATs.
The two output readers then send their results to plugincommon.py that takes care of
the remaining result analysis. The parsers can be explained as executing the following
steps:

1. Read vulnerability reports - The parser runs through the file containing the
vulnerability reports, extracting relevant information such as file name, CWE ID,
vulnerability category, and in which test case it is detected.

2. Filter vulnerability reports - Then, the results are sent to plugincommon.py

that checks whether each vulnerability is a true positive, false positive, or not
relevant. It then adds it to the respective source variant list. Whether it is a
true or false positive is based on the method it is detected in. All flawed methods
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python spotbugs.py .\FindSecBugs injections\cwe643 orig\
Detailed output written to

.\FindSecBugs_injections\cwe643_orig\parser_report.csv↪→

####################

CWE643

--------------------

####### Environment, Property

Type TP FP FN rec prec disc

Baseline 0 0 1 0% 0% 0%

Control-Flow 0 0 18 0% 0% 0%

Data-Flow 5 5 13 28% 50% 0%

Total 5 5 32 14% 50% 0%

####### File, PropertiesFile, URLConnection, connect_tcp, console_readLine,

database, getCookies, getParameter, getQueryString, listen_tcp↪→

Type TP FP FN rec prec disc

Baseline 1 0 0 100% 100% 100%

Control-Flow 18 0 0 100% 100% 100%

Data-Flow 18 5 0 100% 78% 72%

Total 37 5 0 100% 88% 86%

####### Total #######

Type TP FP FN rec prec disc

Baseline 10 0 2 83% 100% 83%

Control-Flow 180 0 36 83% 100% 83%

Data-Flow 190 60 26 88% 76% 60%

Total 380 60 64 86% 86% 72%

####### Other info #######

Not relevant: 0

Total numb. of vuln. in Juliet CWE: 444

Total numb. of source var. in Juliet CWE: 12

Total numb. of sinks per source var. in Juliet CWE: 1

Figure 5.5.: An example of output from the parsers when executed on the XPath results
produced by Find Security Bugs. Calculates and divides the results into
categories of source and flow variants, and calculates the total of all source
and flow variants.

in Juliet Test Suite are named in an identifiable way. The vulnerability report
is deemed relevant if the vulnerability category corresponds to the CWE entry of
the test case. This is checked by comparing the vulnerability category to a set of
predefined categories provided by the SAT developer.

3. Calculate test results - When the filtering is completed, plugincommon.py cal-
culates the number of true positives, false positives, false negatives as well as the
recall, precision, and discrimination rate for each source and flow variant.

4. Print and log results - In the end, the parser prints the results to screen and logs
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all results to a log file. The final output of running the parser for Find Security
Bugs on the XPath test cases is shown in Figure 5.5.

The source code is available at https://github.com/Beba-and-Karlsen/ide-plugin-
parsers/tree/master/parser-for-master-thesis.

5.4.5. RQ1 and RQ2: How to Present the Implementation Analysis Results

Analyzing the implementation of large and advanced static analysis tools will generate
a vast amount of data. Therefore, it is important to create clear guidelines on how this
information should be presented. A decision on how comprehensive the implementation
explanation should be is also required. On the one hand, it is possible for us to explain
the implementation in terms that are specific to a particular SAT, requiring the reader
to have extensive and intimate knowledge of the SAT’s implementation. On the other
hand, the information can be presented in a way that requires the reader to only have
knowledge of general techniques and algorithms related to static analysis. We choose
the latter, as we want our research to be generalizable and contribute to the entire SAT
community. Thus, we will translate implementation specific expressions and names into
terms that can be understood by anyone with general knowledge about static analysis.

In addition to the textual explanation mentioned above, we will also present numerical
and quantitative results in the form of result tables. These tables will contain the
performance results of the detectors. The results are based on our findings from the
pre-study, but with a finer granularity. More detail on how the results are presented is
available in the introduction of section 6.2.

5.4.6. RQ1 and RQ2: Conducting the Implementation Analysis

Analyzing the implementation of static analysis tools is a difficult task. In addition to
reading and analyzing the source code directly, it can be useful to examine the docu-
mentation. Unfortunately the literature and documentation available are limited and
incomplete. Due to this, most of the implementation analysis is carried out by studying
the source code and executing the SATs on the vulnerable code.

Our study consists of executing the static analysis tools, parsing the output, iden-
tifying what works and fails, and ascertaining why. The SATs will analyze individual
vulnerability categories in the Juliet Test Suite, in some cases multiple times to ensure
there is no problem during execution. The detection results will then be extracted and
given to the parser which shows how the SAT performs for each source and flow variant.
The parser also outputs a readable file of all detections, including the test case identifier
where it was reported and exactly what was reported. The parser helps us see where the
SAT performs well or poorly, which serves as a starting point for what to look for in the
SAT’s implementation. Based on this, we form hypotheses about the implementation
that we later test by making modifications to the source code of the SAT. The modified
source code is compiled, and the SAT is yet again executed on the same vulnerability
as earlier. This process allows us to identify limitations and clearly see the effects of
modifications to the detection algorithms.
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Find Security Bugs has an inconsistent behavior regarding one particular test case in
the Juliet Test Suite for all of the injection detectors, in addition to the path traversal
and cross-site scripting detectors. It sometimes detects a true and a false positive,
sometimes only a true or a false positive, and sometimes nothing. We reported this
changing detection result to the Find Security Bugs community in February 2019, but it
has not been fixed so far. We choose to include any true or false positive that occurs at
least once for these test cases. Considering that this affects both true and false positives,
and that the detector’s implementation is created in such a way that it is supposed to
generate both a true and false positive on each of the test cases [Arteau, 2019], we found
this to be the fairest approach to deal with this bug.

ESVD crashes if the size of the project is too large, such as the SQL injection test
cases. We circumvented this problem by dividing the test code into smaller portions
which we tested individually. This does not change the final results, as the individual
test results are combined afterward. However, ESVD would still crash on these smaller
portions, requiring us to consistently restart the Eclipse IDE. We were careful to only
include results when ESVD completed the analysis.

5.4.7. RQ3: Conducting the Limitation Analysis and Producing
Proof-of-Concept Improvements

Analyzing the implementation in search of limitations requires some sort of verification
of the results. This verification will take the form of proof-of-concept improvements,
where modifications to the source code will be used to prove that limitations are present.
The goal of RQ3 is not the improvement itself, but rather to describe the effect of the
limitations and the feasibility of the described solutions. As such, a proof-of-concept
improvement to the source code is a well-suited tool. This approach also brings au-
thenticity to the results of RQ2, as it not only relates to limitations but also to the
implementation of the SATs.

The SATs’ source code will be downloaded from their respective code archives and
will at first be compiled without changes to ensure that the source code correctly assem-
bles into the same executable provided by the developers. This approach is especially
important considering improvements by the developers themselves may have been added
into the code archives, but not yet included into the distributed executables.

When we have ensured that the source code is capable of presenting a comparison
baseline, the code changes can take place. All changes to the source code will be saved
and uploaded to our GitHub page for reproducibility. Reproducibility is an essential
aspect of trustworthy research, which is why it is important for us to publish all of our
data generation points. All of the code modifications are available at https://github.
com/Beba-and-Karlsen/sat-limitation-proofs.

Restricting the scope of limitation proofs is important when defining how far we will
go to verify our analysis. It is not necessary to implement an advanced DFA detector
from scratch to prove that another detector does not utilize data-flow analysis. On
the other hand, claiming that missing sinks or improper taint analysis leads to reduced
detection capabilities requires a proof-of-concept code alteration. Our proof-of-concept
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improvements will be limited to existing code within the individual detectors, and will
not extend to significant re-writes of the underlying frameworks. It is important that
the improvements are limited to proving our limitation claims.

Situations may arise where limitations potentially have two conflicting improvements
which cannot be combined. An example of such a situation is cases where one improve-
ment can result in increased true and false positives, while another improvement results
in decreased true and false positives. Both of these alterations can be desirable for dif-
ferent user groups. Some users can accept a higher false positive rate in exchange for
a higher recall, while other users want to sacrifice some true positives in exchange for
better precision. In cases like this, we will present both possibilities.

To present the limitation proofs, we will show both the original results and the results
of the altered detectors. The results of the original detectors will be presented as a part
of RQ2, while the results of the improved detectors belong to RQ3. The limitations will
also be textually discussed for RQ3, as opposed to only showing numerical data of the
improvements.
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6. Research Results

This chapter will present the results of our research. Section 6.1 presents the results
of RQ1, describing how static analysis is implemented in the SATs. While the general
implementation is described in section 6.1, the implementation details specific to the
individual detectors are presented in section 6.2 which also presents the results of RQ2.
Section 6.3 answers RQ3 by addressing the implementation limitations, including proof-
of-concept improvements. Any code modifications used as a proof can be found at
https://github.com/Beba-and-Karlsen/sat-limitation-proofs.

6.1. RQ1: How is Static Analysis Implemented in the SATs
from the Pre-Study?

Section 6.1 will give insight into the implementation of the SATs covered in this the-
sis. Section 6.1.1 will explain the implementation of SpotBugs, while Find Security
Bugs is covered in section 6.1.2. Finally, the implementation of ESVD is explained in
section 6.1.3.

6.1.1. SpotBugs

SpotBugs utilizes bug patterns to discover bugs. A bug pattern is defined as “a code
idiom that is likely to be an error” by Hovemeyer and Pugh [2004]. This is done by
analyzing the Java bytecode using the Byte Code Engineering Library (BCEL).

Both control-flow and data-flow analysis is used by SpotBugs and implemented as
part of an internal framework [Hovemeyer and Pugh, 2004]. This enables the detectors
to focus on the detection aspect and eases the work of constructing new detectors.

SpotBugs categorizes each bug occurrence into a rank category and a confidence cat-
egory. The rank indicates how severe the bug is and can be of concern, troubling, scary,
or scariest in order of increased severity. The default setting of SpotBugs is to report on
all rank categories, but it is possible to modify the rank required and whether it should
be reported as an error or warning. The confidence indicates how confident SpotBugs
is in the bug’s authenticity and can be either low, medium, or high. SpotBugs does not
report vulnerabilities with low confidence by default, but it is possible to change the
confidence requirement.

How SpotBugs Utilizes Bytecode and BCEL

As Lindholm et al. [2018, ch. 1.2] explain in the specification, the Java Virtual Ma-
chine (JVM) used to execute Java programs does not understand the Java programming
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public void bad() throws Throwable {

String data;

if (true) {

data = "7e5tc4s3";

} else {

data = null;

}

Connection connection = null;

...

public void bad() throws Throwable {

String data = "7e5tc4s3";

Connection connection = null;

...

Figure 6.1.: The Java compiler removes a conditional statement that always takes one
specific branch.

language. Instead, it has its own set of instructions called Java bytecode. In order to
execute Java programs, a compiler must first generate bytecode by interpreting .java

files. The result is .class files consisting of bytecode corresponding to each compiled
.java file. Instead of working directly with the Java bytecode, it is possible to use the
Byte Code Engineering Library (BCEL) which is part of the Apache Commons project
[Apache, 2019]. It is a library that creates abstractions of the bytecode in the form of
objects and is intended to ease working with Java bytecode.

As mentioned, SpotBugs analyzes Java bytecode instead of the Java programming
language. This is done by using the abstractions provided by BCEL. An advantage
of analyzing bytecode is that the compiler will optimize parts of the code. A relevant
example is if-statements that will always be true. As mentioned, if-statements are
a type of control-flow statements that fork the order of execution. However, if an if-
statement is always true, the compiler will exclude the if-statement in the bytecode
and only include its content as shown in Figure 6.1. However, if the if-statement can
either be true or false, e.g., by using a variable, the if-statement remains in the bytecode
as in Figure 6.2. By looking at the code, it is clear the if-statement is always true as
the privateTrue variable is never changed. However, the compiler does not take this
into consideration and only considers the fact that variables are mutable, so it cannot
be certain.

In the Juliet Test Suite, a total of 8 control-flow variants are optimized by the Java
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private boolean privateTrue = true;

/* uses badsource and badsink */

public void bad() throws Throwable {

String data;

if (privateTrue) {

data = "7e5tc4s3";

} else {

data = null;

}

...

private boolean privateTrue = true;

public void bad() throws Throwable {

String data;

if (this.privateTrue) {

data = "7e5tc4s3";

} else {

data = null;

}

...

Figure 6.2.: The Java compiler does not remove a conditional statement that always
takes one specific branch due to the theoretical possibility it can take another
branch.

compiler which removes the control-flow statement. This way, these test cases will be
similar to the baseline for SpotBugs, and it will detect the vulnerability as long as it
detects the baseline. It does not need to utilize control-flow analysis. The affected flow
variants of the Juliet Test Suite are listed in Table 6.1. More information on the flow
variants of the Juliet Test Suite is located in appendix B.
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Table 6.1.: Control-flow variants for the Juliet Test Suite that are optimized by the Java
compiler and are thus at the same level of complexity as the baseline for
SpotBugs.

Flow Variant Condition of if-Statement

02 The boolean value true.

03 The equation 5==5.

04 A private static final constant set to the boolean value true.

06
An equation between a private static final constant set to 5

and the int value 5.

09
A public static final constant from another class set to the
boolean value true.

13
An equation between a public static final constant from
another class set to 5 and the int value 5.

Flow Variant Description

16
Both the bad and good source are encapsulated in
while(true)-statements that loops once.

17
The sources are not encapsulated, however, the sink is encapsulated
in a for-statement that loops once.

6.1.2. Find Security Bugs

Find Security Bugs is very similar to SpotBugs when it comes to its implementation. It
mostly consists of added vulnerability detectors based on the functionality provided by
SpotBugs. In addition to the many new detectors, it also adds techniques for detecting
new classes of vulnerabilities. Taint analysis is one of these new techniques, and is applied
by many detectors to find connections between provided sources and sinks where tainted
data is handled. There are some implementations of similar techniques in SpotBugs, but
these are highly specific to the detector using them, e.g., a taint analysis algorithm that
only works for one vulnerability. The general implementation of taint analysis in Find
Security Bugs is more capable than those found in SpotBugs and allows many different
detectors to use this algorithm.

Many of the detectors in Find Security Bugs use resource files to list their vulnerable
sources and sinks. See Figure 6.3 for an example of a resource file. Detectors will read
and use these lists when scanning the code. This makes it possible to easily add or
update the detectors without changing the detector’s code itself. A situation where this
will become useful is in cases where a new vulnerability is discovered by the security
community. In such a case, all that is needed to add the new vulnerable sink is to
append a single line to the resource file.

Test-driven development is at the core of Find Security Bugs. Every detector needs
a set of vulnerable and non-vulnerable sample code which the detector will need to
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Figure 6.3.: A resource file from Find Security Bugs used to detect hard-coded pass-
words. The file is called password-methods-all.txt and contains vulnera-
ble sinks. The sink in the first line is referencing the load(...) method of
the java.security.KeyStore class, where the load(...) method accepts
an InputStream as its first argument and a char array as its second argu-
ment. The “V” close to the end defines the sink as a void method, i.e. it
does not return anything. The “#0” at the end of the line defines that it is
the first argument (from the right) that is injectable, in this case the char

array.

detect and ignore, respectively [Find Security Bugs, 2018b]. When Find Security Bugs
is compiled, all detectors are evaluated using their sample code, and compilation will
stop if these tests do not pass. The test-driven development provides a higher code
quality that is more resistant towards bugs being introduced later in the development
process, as changes still need to pass the previously written test cases.

In addition to supporting Java code analysis, Find Security Bugs has support for
Apache Groovy, Scala, and Kotlin. These three are separate programming languages that
compile into JVM bytecode, making it possible for Find Security Bugs to utilize much
of the existing functionality of SpotBugs to detect new bug patterns in these languages.
Although Java detectors cannot be directly reused for e.g., Scala, the underlying analysis
techniques can be reused as a result of Find Security Bugs analyzing JVM bytecode as
opposed to analyzing Java source code. Find Security Bugs also supports J2EE, the
enterprise edition of Java.

The compiler optimization described in section 6.1.1 for SpotBugs has the same effect
on Find Security Bugs. This results in some control-flow variants in the Juliet Test Suite
being optimized in such a way that control-flow analysis is not required to properly
analyze the test case. See the example in Figure 6.1 and the full list of optimized
control-flow variants in Table 6.1.

Implementation of Injection Detector and Taint Analysis

The underlying logic for the injection detector in Find Security Bugs is a general taint
detector. See the data-flow and taint analysis descriptions in section 3.1 for an introduc-
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tion to taint analysis, and see Figure 6.4 for a simplified diagram of the taint analysis
implementation in Find Security Bugs. Many other detectors are based on this gen-
eral injection detector, including some of the hard-coded password detectors, the path
traversal detector, the cross-site scripting detector, and of course the detectors for all of
the different injection vulnerabilities. All of the injection detectors use this general taint
detector with only small changes, such as defining which vulnerable sinks are relevant
and some logic to determine the confidence of the detection.

Figure 6.4.: A simplified diagram of the taint analysis implementation in Find Security
Bugs.

The taint detector analyzes all of the methods in each class in the order of which they
are executed. For each method, a control-flow graph is created, and a data-flow analysis
is executed where each invoke instruction in the control-flow graph is analyzed. If the
invoke instruction matches a known dangerous sink from the configuration files, it will
look at the parameters and potentially report it as a vulnerability.

Possible tainted data is given properties using tags. There are many different reasons
a tag can be assigned to a possible taint, but in the case of SQL injection taint detection,
a tag is assigned either for saying the data has been properly sanitized or that the data
contains apostrophes which have been properly encoded to not interfere with an SQL
query’s apostrophes. As an example, take the encodeForSQL(Codec, String) method
from the OWASP Enterprise Security API [OWASP, 2018b]. This method will sanitize
the data and make it safe from SQL injections, which results in the sanitized data being
tagged as safe from SQL injections. Another similar method is the escapeSql(String)

method from Apache Commons Lang [Apache, 2018].
In addition to tags, possible tainted data has a state. The state can be either tainted,

unknown, safe, null, or invalid. A hard-coded integer will automatically be given a safe
state, while the configuration file can define that data from a list of specific methods is
tainted. An example of a method output configured to automatically be given a tainted
state is the Cookie.getName() method from the javax.servlet.http package, as a
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cookie name can be changed by a malicious user.
When all invoke instructions have been compared to the list of vulnerable sinks, and

the tags and states have been updated, the detector will choose what to report and
which confidence ranking will be assigned to the vulnerability. It is very common for
detectors based on the injection and taint analysis code to override the confidence logic.
If not overridden, the confidence will be given as follows:

• If the state is set to tainted, set the confidence to high;

• If the state is set to unknown or invalid, set the confidence to normal;

• If the state is set to safe, ignore it.

6.1.3. ESVD

The implementation of ESVD is a proof of concept and not a finished product [Sampaio
and Garcia, 2019]. This could be the reason for why it performed poorly in our pre-study,
however, we will still take a thorough look at its implementation. Unfortunately, it is
difficult for us to know whether limitations are due to poor implementation or because it
is unfinished. Be that as it may, our goal is not to judge its implementation, but rather
to discover good implementation ideas and limitations in order to contribute with ideas
to improve the state of the art.

The architecture of ESVD consists of four main components: the manager, the re-
porter, the analyzer, and verifiers. The vulnerability detection occurs in the verifiers,
and there is one for each type of security vulnerability. They are similar in function to
the detectors of SpotBugs and Find Security Bugs. However, ESVD analyzes Java code
instead of bytecode. All verifiers use the same detection algorithm based on tracking
vulnerable input from a source to a sink. However, both the verifiers for SQL injection
and security misconfiguration have additional detection methods. It is the job of the an-
alyzer to keep track of the verifiers. It represents a category of verifiers, e.g., all verifiers
detecting security vulnerabilities. The reporter takes the results from the analyzer and
reports it to the end-user within the IDE. ESVD allows for multiple different analyzers
and reporters, but the current implementation only has one of each. The manager keeps
track of the analyzer and the reporter as well as the settings chosen by the end-user. An
illustration of the architecture is shown in Figure 6.5.

ESVD utilizes context-sensitive data-flow analysis (DFA). Because of the resource
demanding nature of context-sensitive DFA, coupled with the fact that ESVD utilizes
early detection and constantly runs in the background, ESVD does not scan every file
except for the first execution. By remembering some of the information from each
scanned source code file, it only re-scans files that have been modified. This greatly
reduces the number of files that are scanned continuously in the background, thereby
reducing the resource demand of the tool.

During analysis, some source code can cause an infinite loop, resulting in the tool
crashing. To combat these cases, the ESVD algorithm contains a recursion control.
When recursion is detected, ESVD will not scan the method invocation repeatedly.
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Figure 6.5.: The relation between the verifiers (V), analyzer (A), manager (M), and
reporter (R) of ESVD as well as how a vulnerability is sent from a verifier
to the IDE of the end-user.

The way ESVD is implemented causes it to depend heavily on the Eclipse API. It uses
abstractions of code constructs provided by the Eclipse API to scan through the files.
This means ESVD only works as an Eclipse plugin.

As mentioned, ESVD has a single algorithm which detects all vulnerabilities that
it covers. This algorithm identifies sources and sinks and looks for vulnerable paths
between them. ESVD analyzes the code method-by-method. All of the code in the
method is analyzed, however, ESVD only cares about method invocations. It finds
these by step-wise narrowing down the code abstractions provided by the Eclipse API.
For example, when it analyzes an if-statement, it will narrow it down to analyze the
if-expression and the content of the if-statement.

When a method invocation is found, it is inspected. ESVD checks if it is either a
source, a sink, or a sanitization method. If the method invocation is a sink, the following
steps are executed:

1. The parameters of the method invocation are retrieved.

2. Each parameter is compared with a list of what sort of values they are allowed to
contain.

3. If a parameter has restrictions, e.g., requiring sanitization or not allowing string
concatenations, it is further inspected to check if it originates from a vulnerable
source. If the user has ignored the vulnerability by adding an annotation in the
code, the inspection does not occur.

3.1 If the parameter originates from a vulnerable source, ESVD marks the data-
flow deriving from the source as vulnerable.
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3.2 If the parameter passes through a sanitization-point, the inspection stops and
ESVD deems it as not a vulnerability.

4. If the data-flow leading up to the sink is marked as vulnerable, i.e. it originates
from a vulnerable source, the vulnerability is reported.

In order to detect sources, sinks, and sanitization-points, ESVD uses XML-files con-
taining a resource list for each one. Figure 6.6 shows the first two entries in the source
list. Sources and sanitization-points are universal for all kinds of vulnerabilities, while
sinks are unique for each type of vulnerability. When a method invocation is found as
explained above, the method signature is compared with these resource lists. These lists
include 75 sources, 141 sinks, and 52 sanitization-points [Sampaio and Garcia, 2016].

entry point.xml

<!-- javax.servlet.ServletRequest -->

<entrypoint id="01">

<qualifiedname>javax.servlet.ServletRequest</qualifiedname>

<methodname>getAttribute</methodname>

<parameters type="java.lang.String" />

</entrypoint>

<entrypoint id="02">

<qualifiedname>javax.servlet.ServletRequest</qualifiedname>

<methodname>getAttributeNames</methodname>

</entrypoint>

Figure 6.6.: The first two entries of the XML-file containing sources in ESVD. Each of
the sources are specified by package name, class name, method name, and
what parameters it has. The first source method has one parameter which is
a string, while the second source method has none. Note that ESVD refers
to a source as an entry-point.

A variable receiving input from a vulnerable source is considered tainted. By using
what is called tainted propagation, every other element in contact with this tainted
element is also marked as tainted. Elements flowing through containers, such as arrays or
lists, are automatically marked as tainted if one of the other elements in the container is
tainted. The current implementation of ESVD is not able to correctly make a distinction
between separate elements in a container, which leads to an increase in false positives.

6.2. RQ2: How can the Performance of the SATs be Explained
by Their Implementation?

In this section, we take a closer look at how the test results in the pre-study can be
explained by the detector implementations used by the SATs. Each section covers the
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implementation of a single SAT for a type or group of vulnerabilities. Sections 6.2.1
to 6.2.4 cover the SpotBugs detectors, sections 6.2.5 to 6.2.8 cover the detectors for
Find Security Bugs, while 6.2.9 to 6.2.12 cover ESVD’s detectors. The detectors are
presented in the order of injection, hard-coded password, path traversal, and then cross-
site scripting for each SAT.

RQ2 focuses on the security aspect of the implementations and does not put emphasis
on the programming approach. Thus, the description avoids the use of terms as well as
names specific to the different SATs. This is due to the fact that this is an analysis of
the static analysis tools’ ability to detect vulnerabilities, not an analysis into how they
are structured.

When presenting the results, the tables are structured as follows:

• Each table presents the results for a single SAT specified in its table description.

• Each table presents the results for one or more vulnerability categories separated
into different columns. Which vulnerability category a column represents is speci-
fied by its CWE number and name in the top two rows of the table.

• Each vulnerability category has results for recall, precision, and discrimination
rate. These are separated into three different columns.

• The table is divided by different source variants, indicated by a blue header row.
Multiple source variants are grouped together if they have identical results.

• For each group of source variants there are four rows of results. The first three are
separated into different flow variants. These are the single baseline case, the 18
control-flow cases, and the 18 data-flow cases. The fourth line is a subtotal of all
the flow variants for this group of source variants.

• Finally, the last blue header row contains the totaled results of all source variants.
These are also separated into flow variants as described above.

This structuring of the results is based on how the Juliet Test Suite divides its test
cases into groups. We find it natural to group our own results in a similar way as it
emphasizes limitations in specific source or flow variants. Detailed information on each
flow variant is available in appendix B. The only exceptions are the tables for the hard-
coded password detectors. These do not have multiple source variants, but are instead
divided into different sinks.

6.2.1. SpotBugs: Injection Vulnerabilities

SpotBugs has detectors for two of the injection vulnerabilities, namely SQL injection and
HTTP response splitting. As opposed to Find Security Bugs and ESVD, the injection
detectors in SpotBugs are not based on a common underlying framework for injection
detection. Due to the different implementations of the detectors, they will be described
individually.
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Although the SQL injection detector has a 100% recall, it has a precision of 43% and
a 0% discrimination rate. Contrarily, the HTTP response splitting detector has a 100%
precision but a very low recall of 4%. While the SQL injection detector’s poor precision
and discrimination rate are due to poor confidence ranking, the HTTP response splitting
detector’s low recall is due to missing sources.

SQL Injection

Detector Name FindSqlInjection

Files FindSqlInjection.java

Vuln. Type 1) SQL NONCONSTANT STRING PASSED TO EXECUTE

2) SQL PREPARED STATEMENT GENERATED

FROM NONCONSTANT STRING

Limitations – Reports on all use of string concatenation

in conjunction with a sink

The SpotBugs detector for SQL injection uses a combination of control-flow and data-
flow analysis to find use of non-constant strings in SQL statements. Such an approach
should, in theory, detect almost all possible forms of SQL injection, as a constant from
the constant pool cannot contain user input. The constant pool contains compile-time
constants formed from literals, and cannot be changed after compilation. The imple-
mentation in SpotBugs is having significant problems determining if data is a constant
or not, resulting in a lot of false positives. The results can be seen in Table 6.2.

First of all, the detector will identify any method that contains an SQL sink. This
information is used in later analysis steps. Then, for each class, the detector will look at
each method individually. The method analysis will first execute a data-flow analysis of
the values within the method. This is used to identify any method parameters where the
value is unchanged before being used in an SQL sink. Afterward, the method analysis
will generate a control-flow graph (CFG) and process it twice. The two CFG processing
passes can be summarized as follows:

1. First CFG pass. The detector does not take immediate action on this CFG pass,
but rather remembers what it sees so it can be used in the next CFG pass.

1.1 Identify changes to data, e.g., a new literal being pushed to the stack or a
method invocation returning a value to the stack.

• The JVM stack contains, among other things, local variables. It is anal-
ogous to the runtime stack in conventional languages such as C.

1.2 When a string literal is pushed to the stack, check if it contains a comma or
a quotation mark at the start or the end of the string.
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1.3 Look for strings being appended to other strings, check if any of these strings
are considered unsafe, look for method invocations where the method returns
a string, etc.

2. Second CFG pass. Look at how the data in the first pass - string appends, use
of quotation marks, etc. - are being used in relation to SQL injection sinks. When
a sink is found, look at the arguments sent to the sink.

2.1 If the argument is a constant string, take no action.

2.2 If the argument comes directly from the method’s parameters, without being
changed during the method, take no action. This is implemented to reduce
false positives.

• If string concatenation is used on the parameter, the SQL injection de-
tector in SpotBugs will always believe that the parameter is changed.
This is due to SpotBugs only seeing the string concatenation and not the
unchanged method parameter.

2.3 If the argument is neither a constant string nor an unchanged parameter,
evaluate where the argument was created. If it is unsafe, a vulnerability is
reported and the confidence is calculated.

SpotBugs calculates the confidence of a vulnerability by considering the content of the
data used in the SQL injection sink. The SQL injection detector will rank the confidence
of a vulnerability as low, normal, or high. Vulnerabilities with a low confidence ranking
are not shown to the user by default in SpotBugs. When a possible SQL injection has
been identified, the confidence of the detected vulnerability is calculated like this:

High confidence If an unsafe string concatenation has been used, the sink’s data is
tainted, and both an opening and a closing quotation mark is present in the SQL
query.

Normal confidence If an unsafe string concatenation has been used, the sink’s data is
not tainted, and both an opening and a closing quotation mark is present in the
SQL query.

Normal confidence If an unsafe string concatenation has been used, the sink’s data is
tainted, and a comma is present in the SQL query.

Low confidence If an unsafe string concatenation has been used, the sink’s data is not
tainted, and a comma is present in the SQL query. By default not shown to the
user.

Low confidence If string concatenation has not been used. By default not shown to the
user.

The problem with this approach is that the entire detection algorithm is dependent on
string concatenations. As an example, take a look at the following code:
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String data = "foo";

Boolean result = sqlStatement.execute("insert into users (status)

values ('updated') where name='"+data+"'");↪→

This code will concatenate three strings: "insert into ...", "foo", and "’". The
detector sees a string concatenation and it sees open and closing quotation marks. The
detector will mark the string concatenation as unsafe, because the instruction before
adding ”foo” is not considered safe. However, this code does not have any unsafe string
concatenations. The bytecode instruction before adding "foo" to the string is simply
loading the string literal onto the stack, which is not considered safe. Instead of looking at
the instruction before the concatenation, SpotBugs should be looking at the instruction
which created the value. The methods for finding the creation location of values are
actually implemented in the detector, it is just not used in this case. It is however used
later in the code, counteracting the flawed value creation locator mentioned above. Due
to all of the above, this will result in a reported vulnerability of normal confidence, even
though there is no chance of a vulnerability being present.

On the other hand, the code below will allow a malicious user to execute arbitrary
commands at the SQL database.

Socket socket = new Socket("example.org", 8081);

/* read input from socket */

InputStreamReader readerInputStream = new

InputStreamReader(socket.getInputStream(), "UTF-8");↪→

BufferedReader readerBuffered = new

BufferedReader(readerInputStream);↪→

String data = readerBuffered.readLine();

Boolean result = sqlStatement.execute(data);

This code example is highly dangerous, but not reported to the user. This is mainly due
to the code not doing any string concatenations. There are no string literals to check,
so it will find no commas or quotation marks. It correctly detects the data variable as a
taint source, but since no string concatenations are carried out, the detection of tainted
data will not affect the vulnerability confidence. Although the code above is unlikely to
ever be seen in production software, it serves as an example for the lack of care SpotBugs
has given to taint analysis. Even though the code above is very clearly feeding tainted
data to an SQL sink, this is given a low confidence and therefore not reported to the
user by the default settings in SpotBugs.

The high recall shown in Table 4.3 can be considered misleading when compared to the
actual performance of the SQL injection detector. All the test cases in the Juliet Test
Suite contain string concatenations, thereby resulting in this detector finding all of the
vulnerabilities. Similar amounts of true positives could be achieved by reporting every
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Table 6.2.: Test results of SpotBugs for the injection vulnerabilities.

CWE-89 CWE-113

SQL Injection HTTP Resp. Sp.

Connect TCP, Console ReadLine, Cookies Servlet, Database,

Environment, File, Listen TCP, Properties File,

Property, Query String Servlet, URL Connection

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 100% 50% 0% 0% 0% 0%

Control-Flow 100% 37% 0% 0% 0% 0%

Data-Flow 100% 50% 0% 0% 0% 0%

Subtotal 100% 43% 0% 0% 0% 0%

Parameter Servlet

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 100% 50% 0% 100% 100% 100%

Control-Flow 100% 37% 0% 89% 100% 89%

Data-Flow 100% 50% 0% 11% 100% 11%

Subtotal 100% 43% 0% 51% 100% 51%

Total of all Source Variants

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 100% 50% 0% 8% 100% 8%

Control-Flow 100% 37% 0% 7% 100% 7%

Data-Flow 100% 50% 0% 1% 100% 1%

Total 100% 43% 0% 4% 100% 4%

line executing SQL commands, even the safe ones, but that does not make it a good
detector. This is apparent when looking at the amounts of false positives in Table 4.3:
3000.
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HTTP Response Splitting

Detector Name CrossSiteScripting

Files CrossSiteScripting.java

Vuln. Type 1) HRS REQUEST PARAMETER TO COOKIE

2) HRS REQUEST PARAMETER TO HTTP HEADER

Strengths + Perfect precision of 100%

Limitations – Detects only 1 of 12 source variants

– Poor taint analysis

The SpotBugs detector for HTTP response splitting is looking for the most obvious cases
of the vulnerability. It shares the same detector as the one SpotBugs uses for cross-site
scripting and path traversal vulnerabilities. The detector uses taint analysis combined
with methods for detecting if tainted data reaches a small number of hard-coded sinks,
as opposed to resource files containing the sinks like Find Security Bugs and ESVD. The
sources that the detector is able to track are few and cover little of the test cases in
the Juliet Test Suite. Contrarily to the low recall of 4%, the detector achieves a 100%
precision; the HTTP response splitting detector generates no false positives. The results
can be seen in Table 6.2.

The HTTP response splitting detector works by analyzing each bytecode instruction on
the instruction stack. It compares each instruction with a hard-coded list of vulnerable
sinks. The detector then asks the underlying taint analysis if the value reaching the sink
is tainted. If the data is tainted, a vulnerability is reported.

When determining the confidence of the reported vulnerability, SpotBugs looks at the
source of the tainted data. If the source is HttpServletRequest.getParameter(), the
vulnerability is given a high confidence. All other reported vulnerabilities are given a
normal confidence.

In addition to utilizing the underlying taint analysis present in SpotBugs, the detector
also has to do some taint analysis itself. This is required for cases where the taint analysis
provided by the SpotBugs framework performs poorly and is unable to connect the data
to a source and sink.

The underlying taint analysis algorithm is implemented into a class for managing the
instruction stack - a class that is shared by many detectors in SpotBugs. This class
does not only contain shared code, but also contains many different techniques that
are specific to an individual detector. The taint analysis part of this class is only used
by this HTTP response splitting detector, and the sources that are tracked are highly
specific to HTTP response splitting, although both the taint analysis and the sources
are somewhat usable to the cross-site scripting and path traversal vulnerabilities that
are also reported by this detector. Not only is this confusing, but it breaks with many of
the design principles found in object-oriented programming. It also makes it difficult to
add or modify code belonging to this detector. This might be the reason so few sources
are detected.
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The lack of sources defined in the taint analysis is the main contributor to the bad
recall. Only three sources are defined, namely:

• HttpServletRequest.getParameter();

• HttpServletRequest.getQueryString();

• HttpServletRequest.getHeader();

Out of these three, the first two are sources that exist in the Juliet Test Suite. Only
the first source, getParameter(), gets any results. Although getQueryString() exists
in the Juliet Test Suite, the tainted value is immediately broken down into substrings,
which the taint analysis fails to track. This lack of sources is the reason SpotBugs is
unable to detect anything other than the Get Parameter Servlet source variant as seen
in Table 6.2.

The second largest contributor to the low recall of 4% is also due to the taint anal-
ysis, more specifically the low ability to track data through complex data-flow. As
mentioned above, this is the reason SpotBugs is unable to find anything using the
getQueryString() source in the Juliet Test Suite. The taint analysis is able to track
data through simple data operations such as the use of StringBuilder, but not the
more complex cases. This is the reason SpotBugs is unable to perform better for the
control-flow and data-flow variants in the Juliet Test Suite, seen in Table 6.2.

6.2.2. SpotBugs: Hard-Coded Password

Detector Name DumbMethodInvocations

Files DumbMethodInvocations.java

Vuln. Type DMI CONSTANT DB PASSWORD

Strengths + Perfect precision of 100%

Limitations – Detects only 1 of 3 sinks

– No control-flow analysis

SpotBugs’ detections are limited when it comes to hard-coded passwords. It only de-
tects hard-coded database passwords for the Java method java.sql.DriverManager

.getConnection(). The implementation is part of the detector called DumbMethod-

Invocations which detects multiple bug patterns.
First, it finds all methods that either directly or indirectly invokes the

getConnection()-sink. The code is analyzed method-by-method, and a control-flow
graph is created for each method. The basic blocks in the control-flow graph are then
examined for invoke instructions in the bytecode. Since the detector is looking for in-
vocations of the getConnection()-sink, only invoke instructions are relevant to analyze
further. If the instruction is indeed an invoke instruction, the detector then checks if
it is one of the methods that invokes getConnection(). If so, the detector checks if
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the password argument of getConnection() is hard-coded, i.e. a literal or a constant
instantiated as a literal. If it is indeed hard-coded, the detector reports the vulnerability
with normal confidence.

The test results for CWE-259 Use of Hard-coded Password in SpotBugs are shown in
Table 6.3. Note that the table is divided into different sinks instead of source variants.
This is because the source of hard-coded passwords is string literals instead of specific
methods. From the results, it is clear that SpotBugs’ implementation only detects usage
of hard-coded password in conjunction with java.sql.DriverManager. Even though
it reports 44% true positives for the control-flow variants, the detector does not utilize
control-flow analysis. The eight true positives are not due to the detector, but rather the
Java compiler optimizing the code and removing the control-flow statement as explained
in section 6.1.1. However, the six true positives for data-flow are indeed the detector’s
merit. By finding the methods that directly or indirectly invokes getConnection(),
SpotBugs is able to detect the vulnerability on the first method call even though the
data travels through several methods and classes. However, it only detects data-flow
test cases when the data is transferred as an argument, not when a method returns the
value. Nor does it detect the vulnerability if the data is hidden in a data structure such
as an array or a Map.

6.2.3. SpotBugs: Path Traversal

Detector Name CrossSiteScripting

Files CrossSiteScripting.java

Vuln. Type 1) PT ABSOLUTE PATH TRAVERSAL

2) PT RELATIVE PATH TRAVERSAL

Strengths + Perfect precision of 100%

Limitations – Detects only 1 of 12 source variants

– Poor taint analysis

– Depends on poor taint analysis to

differentiate between relative

and absolute path traversal

The SpotBugs detector for path traversal is looking for the most obvious cases of rela-
tive and absolute path traversal. The detector contains logic to detect HTTP response
splitting, path traversal, and cross-site scripting. The detection logic for the three afore-
mentioned vulnerabilities share the same taint analysis and sources, but differs in which
sinks are defined and how the confidence ranking is calculated. The taint analysis used
by this shared detector is described in section 6.2.1. Only the logic that is specific to
path traversal detection in SpotBugs will be described in this section. The sources that
the detector is able to track are few and cover little of the test cases in the Juliet Test
Suite. Although the taint analysis has problems following data from source to sink, the
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Table 6.3.: Test results of SpotBugs for CWE-259 Use of Hard-coded Password.

CWE-259

Hard-Coded Pwd

Driver Manager

Flow Variant Rec. Prec. Disc.

Baseline 100% 100% 100%

Control-Flow 44% 100% 44%

Data-Flow 33% 100% 33%

Subtotal 41% 100% 41%

Kerberos Key, Password Authentication

Flow Variant Rec. Prec. Disc.

Baseline 0% 0% 0%

Control-Flow 0% 0% 0%

Data-Flow 0% 0% 0%

Subtotal 0% 0% 0%

Total of all Sinks

Flow Variant Rec. Prec. Disc.

Baseline 33% 100% 33%

Control-Flow 15% 100% 15%

Data-Flow 11% 100% 11%

Total 14% 100% 14%

main reason for the bad recall of 4% is due to missing sources. Contrarily to the low re-
call of 4%, the detector achieves a 100% precision; the path traversal detector generates
no false positives. The results can be seen in Table 6.4.

The detector looks for sinks that accept a file or directory path. This is achieved
by comparing each bytecode instruction on the instruction stack to a list of vulnerable
sinks. If a possible vulnerable sink is located, the detector asks the underlying taint
analysis if the value reaching the sink is tainted. If the data is tainted, a vulnerability
is reported.

There are in total 21 vulnerable sinks present in the path traversal detector. They
are defined in the underlying SpotBugs framework, and are also used by other detectors.
Two examples of the included sinks are as follows:

• java.io.File(String);

• java.io.FileReader(String);
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Table 6.4.: Test results of SpotBugs for the path traversal vulnerabilities.

CWE-23 CWE-36

Relative Path Trv. Absolute Path Trv.

Parameter Servlet

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 100% 100% 100% 100% 100% 100%

Control-Flow 89% 100% 89% 50% 100% 50%

Data-Flow 11% 100% 11% 33% 100% 33%

Subtotal 51% 100% 51% 43% 100% 43%

Connect TCP, Console ReadLine, Cookies Servlet, Database,

Environment, File, Listen TCP, Properties File,

Property, Query String Servlet, URL Connection

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 0% 0% 0% 0% 0% 0%

Control-Flow 0% 0% 0% 0% 0% 0%

Data-Flow 0% 0% 0% 0% 0% 0%

Subtotal 0% 0% 0% 0% 0% 0%

Total of all Source Variants

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 8% 100% 8% 8% 100% 8%

Control-Flow 7% 100% 7% 4% 100% 4%

Data-Flow 1% 100% 1% 3% 100% 3%

Total 4% 100% 4% 4% 100% 4%

Determining if the vulnerability is an absolute or relative path traversal is based on
the source of the data. If the source is HttpServletRequest.getParameter(String),
the vulnerability is determined to be an absolute path traversal. Any other source is
determined to be a relative path traversal. This peculiar way to determine the vulnera-
bility type is at first glance difficult to understand, as any source can lead to both types
of path traversal. The reason lies in the inability of the taint analysis to track the data.
In the case of relative path traversal, a common way to combine the tainted user input
“data” and the pre-determined root path “root” is to concatenate the strings, e.g., new
File(root + data). Figure 6.7 contains one relative and one absolute path traversal
sink, where the code example on the top shows a relative path traversal with the string
concatenation. The taint analysis is unable to follow the data through string concate-
nations, therefore losing track of the data source. If the taint analysis is able to verify
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Relative Path Traversal

root = "C:\\uploads\\";

/* Sink: Relative Path Traversal */

File file = new File(root + data);

Absolute Path Traversal

/* Sink: Absolute Path Traversal */

File file = new File(data);

Figure 6.7.: Simplified versions of the sinks used in the Juliet Test Suite for relative and
absolute path traversal. The only difference is the string concatenation for
relative path traversal.

that the data entering the sink has getParameter(String) as a source, it knows that
no string concatenation has occurred, as it has not lost track of the data due to string
concatenation. Determining if the vulnerability is a relative or absolute path traversal
based on if the taint analysis loses track of the data is a limitation, as it relies on the
taint analysis to have problems tracking data.

6.2.4. SpotBugs: Cross-Site Scripting

Detector Name CrossSiteScripting

Files CrossSiteScripting.java

Vuln. Type 1) XSS REQUEST PARAMETER TO JSP WRITER

2) XSS REQUEST PARAMETER TO SERVLET WRITER

3) XSS REQUEST PARAMETER TO SEND ERROR

Strengths + Perfect precision of 100%

Limitations – Detects only 1 of 12 source variants

– Poor taint analysis

The cross-site scripting detector in SpotBugs is able to detect between 3% and 6% of
the XSS vulnerabilities in the Juliet Test Suite. The sources and taint analysis used by
the XSS detector is the same as the one SpotBugs uses for HTTP response splitting and
path traversal vulnerabilities. The difference lies in the sinks and confidence raking. The
main reasons for the bad results are, as with HTTP response splitting and path traversal,
the bad taint analysis and the few sources that are detected. The taint analysis and the
defined sources are described in section 6.2.1, while the sinks and confidence rating will
be discussed below. Using taint analysis and a few hard-coded sources and sinks, the
detector is only able to detect 57 out of 1332 possible XSS vulnerabilities in the Juliet
Test Suite. The detailed results can be seen in Table 6.5.
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Table 6.5.: Test results of SpotBugs for the cross-site scripting vulnerabilities.

CWE-80 CWE-81 CWE-83

Basic XSS XSS Error Msg. XSS Attrib.

Parameter Servlet

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 50% 100% 100% 100% 100% 100% 100% 100% 100%

Control-Flow 44% 100% 89% 89% 100% 89% 89% 100% 89%

Data-Flow 6% 100% 11% 11% 100% 11% 11% 100% 11%

Subtotal 26% 100% 51% 51% 100% 51% 51% 100% 51%

Connect TCP, Database, File, Cookies Servlet,

Query String Servlet, Listen TCP, Properties File, URL Connection

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 0% 0% 0% 0% 0% 0% 0% 0% 0%

Control-Flow 0% 0% 0% 0% 0% 0% 0% 0% 0%

Data-Flow 0% 0% 0% 0% 0% 0% 0% 0% 0%

Subtotal 0% 0% 0% 0% 0% 0% 0% 0% 0%

Total of all Source Variants

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 6% 100% 6% 11% 100% 11% 11% 100% 11%

Control-Flow 5% 100% 5% 10% 100% 10% 10% 100% 10%

Data-Flow 1% 100% 1% 1% 100% 1% 1% 100% 1%

Total 3% 100% 3% 6% 100% 6% 6% 100% 6%

There are five sinks that the XSS detector tracks. These five sinks cover all of the sink
variants used by the Juliet Test Suite. The following sinks are present in the detector,
where the last three allow variations of the sinks, visualized by writing “*” to specify
that any characters can be placed there:

• javax.servlet.http.HttpServletResponse.sendError(...)

• javax.servlet.jsp.JspWriter.write(...)

• javax.servlet.jsp.JspWriter.print*(...)

• java.io.*Writer.print*(...)

• java.io.*Writer.write*(...)

CWE-80 Basic XSS has two different ways of sending data to the sink, as can be
seen in Figure 6.8. The upper code box in Figure 6.8 shows a string concatenation of a
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literal and the data variable being sent to the PrintWriter.println(...) sink. The
code box on the bottom shows almost the same, with the exception of the data variable
being modified by a String.replaceAll(...) method. The taint analysis in the XSS
detector is able to handle the data in the upper code box, but not the lower one.

CWE80 XSS Servlet connect tcp 01.java

response.getWriter().println("<br>bad(): data = " + data);

CWE80 XSS CWE182 Servlet connect tcp 01.java

response.getWriter().println("<br>bad(): data = " +

data.replaceAll("(<script>)", ""));↪→

Figure 6.8.: Shows two different variants of sending data to the sink for CWE-80 Basic
XSS.

The string concatenation in both of the cases shown in Figure 6.8 will result in a
StringBuilder being created behind the scenes, see Figure 6.9 and 6.10. The XSS de-
tector for SpotBugs is able to follow data through a normal string concatenation, but
not through the use of String.replaceAll(...). Figure 6.10 shows the bytecode in-
structions generated from the replaceAll variant. When comparing Figure 6.9 with
Figure 6.10, note that the bytecode instructions are almost the same except for the
instructions with offset 356, 358, and 360 in Figure 6.10 which are not present in Fig-
ure 6.9. When StringBuilder.append(...) is executed on offset 363 in Figure 6.10,
the XSS detector will look at the item on the top of the stack to determine if it is
tainted or not. Since the taint analysis is unable to track data through replaceAll, the
top of the stack will be unknown, resulting in the StringBuilder not being marked as
tainted. Considering the CWE-80 Basic XSS category in the Juliet Test Suite contains
333 vulnerable test cases that pass the data through replaceAll, this results in a lower
recall for the CWE-80 category.
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CWE80 XSS Servlet connect tcp 01.java

response.getWriter().println("<br>bad(): data = " + data);

javap -p -c -constants CWE80 XSS Servlet connect tcp 01.class

// String "<br >bad (): data = "

350: ldc #88

// StringBuilder ."<init >":( LString ;)V

352: invokespecial #90

// The "data" variable

355: aload_3

// StringBuilder.append :( LString ;) LStringBuilder;

356: invokevirtual #93

// StringBuilder.toString :() LString;

359: invokevirtual #97

// PrintWriter.println :( LString ;)V

362: invokevirtual #100

Figure 6.9.: The bytecode instructions generated from one of the sinks in the Juliet Test
Suite for CWE-80 Basic XSS. See Figure 6.10 for a similar sink using a
String.replaceAll(). Some bytecode instructions have been omitted for
brevity. Some method signatures have been shortened for brevity.
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CWE80 XSS CWE182 Servlet connect tcp 01.java

response.getWriter().println("<br>bad(): data = " +

data.replaceAll("(<script>)", ""));↪→

javap -p -c -constants CWE80 XSS CWE182 Servlet connect tcp 01.class

// String "<br >bad (): data = "

350: ldc #88

// StringBuilder ."<init >":( LString ;)V

352: invokespecial #90

// The "data" variable

355: aload_3

// String "(<script >)"

356: ldc #93

// String ""

358: ldc #19

// String.replaceAll :( LString;LString ;) LString;

360: invokevirtual #95

// StringBuilder.append :( LString ;) LStringBuilder;

363: invokevirtual #101

// StringBuilder.toString :() LString;

366: invokevirtual #105

// PrintWriter.println :( LString ;)V

369: invokevirtual #108

Figure 6.10.: The bytecode instructions generated from one of the sinks in the Juliet Test
Suite for CWE-80 Basic XSS. See Figure 6.9 for a similar sink not using a
String.replaceAll(). Some bytecode instructions have been omitted for
brevity. Some method signatures have been shortened for brevity.

66



6.2.5. Find Security Bugs: Injection Vulnerabilities

Find Security Bugs has detectors for all of the injection vulnerabilities tested for in the
pre-study. All of the injection detectors are based on the injection and taint analysis
implementation described in section 6.1.2. The injection detectors use a combination of
control-flow and data-flow analysis to find tainted sources passed through to vulnerable
sinks without passing through a sanitization point. It does so quite well, with good
results for all of the injection vulnerabilities. Find Security Bugs has a high recall of
between 74% and 86%, and a high precision rate of 86% to a 100% for all of the injection
vulnerabilities in the Juliet Test Suite. Different implementations of the confidence
ranking result in slightly different recall and precision between the different injection
categories, due to some preferring zero false positives while others accept some false
positives in exchange for less false negatives. All false positives and false negatives are
exclusively located in the data-flow cases of the Juliet Test Suite.

In general, all the injection detectors suffer from Find Security Bugs’ decision to
exclude a set of vulnerable sources from its taint analysis. As can be seen in Figure 6.11,
the authors of Find Security Bugs have on purpose defined System.getenv(String)

and System.getProperty(String) as safe sources for data to enter the application.
These two sources are used to retrieve tainted data in the Juliet Test Suite’s source
variants Environment and Property, respectively. For the SQL injection category in the
Juliet Test Suite, this results in 14% false negatives. Similar numbers of false negatives
are seen in the other injection detectors because of the two missing vulnerable sources.
Both environment variables and system properties can be tampered with, either by a
user with access to the system, another application running on the same system, or by
a different vulnerability in the same application. Assuming environment variables and
system variables are safe is not based in reality. Although they might be unusual attack
vectors, they are not safe from tainted data.

Figure 6.11.: A configuration file in Find Security Bugs which defines certain data
sources as safe, resulting in reduced numbers of true positives.

The false positives and false negatives that are produced by the injection detectors
in Find Security Bugs are exclusively located in the complex data-flow test cases in
the Juliet Test Suite. There are no false positives or false negatives in the baseline or
control-flow cases, see Table 6.6 and 6.7. There are five data-flow cases where the taint
analysis in Find Security Bugs is unable to track the data. Two of the five problematic
data-flow cases are passing the value between methods using a class field. Another two
of the five data-flow cases process and wrap the data into other data structures, such
as a Java Container or by serializing and deserializing the data. The taint analysis
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framework in Find Security Bugs loses track of all four of the test cases mentioned so
far, and the tainted data is given an “unknown” state, as discussed in section 6.1.2.
The fifth and final of the problematic data-flow cases is using class-based inheritance,
where both a safe and vulnerable test case is based on the same class, making it hard
to follow which is good and which is bad. The taint analysis framework is unable to
track the data in the safe part of the class-based inheritance data-flow test case, but
not the vulnerable part of the same test case. Some of the individual injection detectors
below will report a vulnerability where data with an unknown state reaches a vulnerable
sink, resulting in these five difficult data-flow cases producing five true and five false
positives. An example of the effect of reporting the five true and five false positives can
be seen in Table 6.6 for the SQL injection detector. Even though the SQL injection
detector is unable to track the Environment and Property source variants, the SQL
injection detector still achieves a 28% recall. Since the five true and false positives are
the result of the taint analysis being unable to track the data back to its source, it does
not matter that the Environment and Property source variants are considered safe by
Find Security Bugs, as the taint analysis is unable to actually see what the data source
is. The HTTP response splitting detector will not report data with an unknown state
reaching a vulnerable sink, resulting in these five difficult data-flow cases producing zero
false positives and one true positive, as the taint analysis is able to track the vulnerable
part of the class-based inheritance test case discussed above.

OS Command Injection

Detector Name CommandInjectionDetector

Files CommandInjectionDetector.java

Vuln. Type 1) COMMAND INJECTION

2) SCALA COMMAND INJECTION

Strengths + Perfect recall of 100%

Limitations – Detects only 10 of 12 source variants

The OS command injection detector has a 100% recall for 10 of the 12 source variants
present in the Juliet Test Suite. For the Environment and Property source variants it
does not consider the sources as tainted as previously explained, resulting in a total
recall of 86% instead of 100%. The 88% precision is due to false positives in the complex
data-flow test cases in the Juliet Test Suite, with no false positives on the baseline cases
or on the control-flow cases.

As with all of the injection detectors in Find Security Bugs, very little of the underlying
injection detection algorithm is detector specific. The detector specific code only consist
of defining relevant sinks and changing the confidence ranking of detections. Specifically
for OS command injection, the confidence ranking is defined as follows:

High confidence If the state is set as tainted.
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Table 6.6.: Test results of Find Security Bugs for the injection vulnerabilities CWE-78,
CWE-89, and CWE-90.

CWE-78 CWE-89 CWE-90

OSC Injection SQL Injection LDAP Injection

Connect TCP, Console ReadLine, Cookies Servlet, Database, File, Listen TCP,

Parameter Servlet, Properties File, Query String Servlet, URL Connection

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 100% 100% 100% 100% 100% 100% 100% 100% 100%

Control-Flow 100% 100% 100% 100% 100% 100% 100% 100% 100%

Data-Flow 100% 78% 72% 100% 78% 72% 100% 78% 72%

Subtotal 100% 88% 86% 100% 88% 86% 100% 88% 86%

Environment, Property

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 0% 0% 0% 0% 0% 0% 0% 0% 0%

Control-Flow 0% 0% 0% 0% 0% 0% 0% 0% 0%

Data-Flow 28% 50% 0% 28% 50% 0% 28% 50% 0%

Subtotal 14% 50% 0% 14% 50% 0% 14% 50% 0%

Total of all Source Variants

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 83% 100% 83% 83% 100% 83% 83% 100% 83%

Control-Flow 83% 100% 83% 83% 100% 83% 83% 100% 83%

Data-Flow 88% 76% 60% 88% 76% 60% 88% 76% 60%

Total 86% 86% 72% 86% 86% 72% 86% 86% 72%

Normal confidence If the taint is not safe, i.e. the state being unknown or invalid, and
is not tagged as having sanitized the data.

As can be seen in Table 6.6, for the Environment and Property source variants, it
scores a 28% recall and 50% precision for the data-flow variants, even though it does
not recognize the sources as tainted. As mentioned above, this is due to the detector
reporting on data with an unknown state. In all other test cases, it is able to follow the
data from source to sink.
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SQL Injection

Detector Name SqlInjectionDetector

Files SqlInjectionDetector.java

Vuln. Type 1) SQL INJECTION HIBERNATE

2) SQL INJECTION JDO

3) SQL INJECTION JPA

4) SQL INJECTION JDBC

5) SQL INJECTION SPRING JDBC

6) SCALA SQL INJECTION SLICK

7) SCALA SQL INJECTION ANORM

8) SQL INJECTION TURBINE

Strengths + Perfect recall of 100%

Limitations – Detects only 10 of 12 source variants

The Find Security Bugs detector for SQL injection is very similar to the OS command
injection detector, with the only difference being how the vulnerability confidence is
calculated and which sinks are considered as potentially vulnerable. Rather than the
sinks being targeted at OS command injections, the sinks are in the SQL injection
detector targeted at SQL methods. The results can be seen in Table 6.6. The SQL
injection detector has defined the following confidence ranking:

High confidence If the state is set as tainted.

Normal confidence If the state is not safe, i.e. the state being unknown or invalid, and
the string has not encoded its apostrophes.

Low confidence If the taint is not safe, and the string has encoded its apostrophes.

LDAP Injection

Detector Name LdapInjectionDetector

Files LdapInjectionDetector.java

Vuln. Type LDAP INJECTION

Strengths + Perfect recall of 100%

Limitations – Detects only 10 of 12 source variants

The LDAP injection detector in Find Security Bugs has the exact same results as the
OS command injection detector. In fact, the implementation is the exact same as for OS
command injection, except for the vulnerable sinks being targeted at LDAP injection
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rather than OS command injection. The results for the LDAP injection detector can
be seen in Table 6.6, and since the implementation is the same as for the OS command
injection detector, the explanation of the LDAP injection detector’s implementation will
not be repeated.

HTTP Response Splitting

Detector Name HttpResponseSplittingDetector

Files HttpResponseSplittingDetector.java

Vuln. Type HTTP RESPONSE SPLITTING

Strengths + Perfect precision of 100%

Limitations – Detects only 10 of 12 source variants

Although the HTTP response splitting detector is based on the same underlying code
as the other injection detectors, it behaves differently. This leads to a total recall of
74% instead of the 86% recall that can be seen for the other detectors, but also a higher
total precision of 100% compared to 86% for the other detectors. SQL injection, LDAP
injection, and OS command injection have five data-flow cases for each source variant
where it reports a true and a false positive even though it is unable to see the data source.
The HTTP response splitting detector has a different confidence ranking for potential
vulnerabilities, resulting in it only reporting cases where it is certain that the data is
tainted. This confidence ranking results in four less true positives, and five less false
positives for each source variant. Technically, the detector does in fact report on test
cases where it is unsure if the data is tainted, but it gives them a low confidence resulting
in the vulnerability not being reported when the default configuration of SpotBugs is
used.

The HTTP response splitting detector has defined the following confidence ranking:

Normal confidence If the state is set as tainted.

Low confidence If the state is not safe, i.e. the state being unknown or invalid.

The full results can be seen in Table 6.7. All the reported vulnerabilities are given
a normal confidence, meaning that the detector is sure that the data is tainted. The
low confidence vulnerabilities are ignored in a normally configured SpotBugs and Find
Security Bugs plugin, and are not included in Table 6.7.
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Table 6.7.: Test results of Find Security Bugs for the injection vulnerabilities CWE-113
and CWE-643.

CWE-113 CWE-643

HTTP Resp. Sp. XPath Injection

Connect TCP, Console ReadLine, Cookies Servlet, Database,

File, Listen TCP, Parameter Servlet,

Properties File, Query String Servlet, URL Connection

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 100% 100% 100% 100% 100% 100%

Control-Flow 100% 100% 100% 100% 100% 100%

Data-Flow 78% 100% 78% 100% 78% 72%

Subtotal 89% 100% 89% 100% 88% 86%

Environment, Property

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 0% 0% 0% 0% 0% 0%

Control-Flow 0% 0% 0% 0% 0% 0%

Data-Flow 0% 0% 0% 28% 50% 0%

Subtotal 0% 0% 0% 14% 50% 0%

Total of all Source Variants

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 83% 100% 83% 83% 100% 83%

Control-Flow 83% 100% 83% 83% 100% 83%

Data-Flow 65% 100% 65% 88% 76% 60%

Total 74% 100% 74% 86% 86% 72%

XPath Injection

Detector Name XPathInjectionDetector

Files XPathInjectionDetector.java

Vuln. Type XPATH INJECTION

Strengths + Perfect recall of 100%

Limitations – Detects only 10 of 12 source variants

The XPath injection detector in Find Security Bugs has the exact same results and
implementation as the OS command injection and LDAP injection detectors. The only
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difference is that the vulnerable sinks are targeted towards XPath injection. The results
for the XPath injection detector can be seen in Table 6.7, and since the implementation
is the same as for the OS command injection detector, the explanation of the XPath
injection detector’s implementation will not be repeated.

6.2.6. Find Security Bugs: Hard-Coded Password

Find Security Bugs has implemented multiple detectors for finding hard-coded pass-
words. By extending the underlying detectors from SpotBugs, these cover approximately
half of the relevant test cases in the Juliet Test Suite. On its own, meaning without the
help of the detectors from SpotBugs, it finds 43% of the vulnerabilities.

There are five different detectors for finding hard-coded passwords. Some are complex
while others are much simpler. The five detectors are as follows:

• HardcodedPasswordEqualsDetector

• HardcodePasswordInMapDetector

• IntuitiveHardcodePasswordDetector

• GoogleApiKeyDetector

• ConstantPasswordDetector

Each detector will be discussed individually. Even though the only vulnerabilities
detected in the Juliet Test Suite are due to one of the detectors, it is important to
remember that all of the detectors serve a valuable purpose. The Juliet Test Suite does
not test for all possible variants of hard-coded passwords, and in its current form only
tests for cases that the ConstantPasswordDetector is able to find. We have decided
to describe the other detectors briefly without presenting strengths and limitations, as
they do not produce any measurable results when tested on the Juliet Test Suite and we
cannot verify the effects of implementation strengths and limitations.

Detecting Hard-Coded Passwords in equals()

Detector Name HardcodedPasswordEqualsDetector

Files 1) HardcodedPasswordEqualsDetector.java

2) AbstractHardcodedPasswordEqualsDetector.java

Vuln. Type HARD CODE PASSWORD

This detector’s purpose is to find code instances where a variable is compared to a string
literal, where the variable contains user input and the string contains the hard-coded
password. It will detect these two cases:

• variable.equals("string literal");

73



• "string literal".equals(variable);

The detector finds code where the equals(...) method is used, and tags these as
possible injection points. It also looks for variable names which have a meaning similar
to password. The full list of words resembling password can be seen in Figure 6.12,
where also foreign words are included. Each variable with such a name is marked as a
password variable. If a password variable is used in conjunction with a possible injection
point, the injection point is reported and given a normal confidence.

Figure 6.12.: The different words which are suspected to be used for storing passwords.
The list is shared by several detectors in Find Security Bugs.

Detecting Hard-Coded Passwords when Assigning Map Values

Detector Name HardcodePasswordInMapDetector

Files 1) HardcodePasswordInMapDetector.java

2) AbstractHardcodePasswordInMapDetector.java

Vuln. Type HARD CODE PASSWORD

The detector’s purpose is to find code instances where a hard-coded password is added to
a Map. It supports various types of Maps, such as HashMap, Hashtable, and Properties.
The following three cases will be detected:

• map.put(key, value);

• map.putIfAbsent(key, value);
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• properties.setProperty(key, value);

Any calls to the three sinks above will be marked as a potential injection point.
Similarly to the equals(...) detector above, the key must have a name from Figure 6.12
with a meaning similar to password. In this case, the key can also have the name
java.naming.security.credentials, as this is used in e.g. LDAP authentication. If
value is a string from the constant pool and key is a password word, it is reported as
an injection point and is given normal confidence.

Detecting Hard-Coded Passwords in Unknown API Calls

Detector Name IntuitiveHardcodePasswordDetector

Files IntuitiveHardcodePasswordDetector.java

Vuln. Type HARD CODE PASSWORD

The goal of this detector is to find hard-coded passwords in calls to any class or API. It
will mark all of the following as vulnerabilities, where MyCustomClient and HomeDoor

are arbitrary classes or API calls:

• MyCustomClient.setMyPwd("secret123");

• HomeDoor.password("pass123");

For every invocation instruction in the code, the detector checks if the method ar-
gument is a string from the constant pool. Then, it checks if the method name equals
one of the words in Figure 6.12. It will also trigger if the method name starts with
“set”, and contains one of the words. If the aforementioned requirements are fulfilled,
the detector will report an injection point with normal confidence.

Detecting Hard-Coded Passwords in Google Maps API Sample Code

Detector Name GoogleApiKeyDetector

Files GoogleApiKeyDetector.java

Vuln. Type HARD CODE PASSWORD

The GoogleApiKeyDetector is a very specific detector. It detects hard-coded private
keys in sample code provided by Google for a Java client library for the Google Maps
API. The sample code is very hard to find at the time of writing, as Google has updated
their API. The changes to the Google Maps API renders this code useless, and we have
decided to not describe this detector any further.
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Table 6.8.: Test results of Find Security Bugs for CWE-259 Use of Hard-coded Password.

CWE-259

Hard-Coded Pwd

Total of all Sinks

(Driver Manager, Kerberos Key,

Password Authentication)

Flow Variant Rec. Prec. Disc.

Baseline 100% 100% 100%

Control-Flow 78% 100% 78%

Data-Flow 6% 100% 6%

Total 43% 100% 43%

Detecting Hard-Coded Passwords with Data-Flow Analysis

Detector Name ConstantPasswordDetector

Files ConstantPasswordDetector.java

Vuln. Type HARD CODE PASSWORD

Strengths + Perfect precision of 100%

Limitations – DFA only works within a method

This detector is more advanced than the other hard-coded password detectors in Find
Security Bugs. It can detect hard-coded passwords through data-flow analysis contained
within a method, in addition to hard-coded passwords in class fields. It is unable to
carry out context-sensitive data-flow analysis, resulting in many false negatives for the
data-flow cases in the Juliet Test Suite. By using a resource file containing 35 vulnerable
sinks, it is able to detect multiple vulnerabilities as listed in Table 6.8. The following
vulnerable sinks are just some of what this detector will mark as a vulnerability:

• KeyStore.load(...);

• KeyManagerFactory.init(...);

• DriverManager.getConnection(...);

For each class, the detector examines static class fields being initialized. This is done
before processing the rest of the class, so that when analyzing the different methods,
it can be determined if they use a constant password assigned in a class field. The
detector then analyzes the instructions from each method, looking for string literals,
array storage, conversions into a constant array, and invocations.
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Tracking data is difficult, especially through conditional statements where the code
branches. To be able to track data through branches, the detector tags variables as
hard-coded, effectively marking them as dangerous. Hard-coded variables contain string
literals from the constant pool and cannot be changed by user input. The tracking
through conditional statements works as follows:

• If all reachable paths in a conditional statement assign a hard-coded value to the
same variable, the variable is tagged as hard-coded.

• If at least one of the reachable paths assign a value that is not hard-coded, the
variable is not tracked. The reasoning behind not marking it as hard-coded is to
reduce false positives. On the other hand, it can potentially increase false negatives.

Two cases will result in a vulnerability being reported by this detector. The first
case is when a class field has a suspicious name, defined by the regular expression in
Figure 6.13. If such a suspicious name is detected in a field name, it will report it
with normal confidence. This behavior can detect hard-coded passwords in fields, even
though the detector is unable to execute context-sensitive analysis of the usage of these
fields. Reporting suspicious field names without checking if the value ever reaches a sink
might lead to false positives, but the Juliet Test Suite does not contain test cases for
this behavior. The second case is when a vulnerable sink is reached by a variable tagged
as hard-coded. This will result in the vulnerability being reported with high confidence.

private static final String PASSWORD_NAMES =

".*(pass|pwd|psw|secret|key|cipher|crypt|des|aes|mac|private|sign|cert).*";

Figure 6.13.: The different strings which are suspected to be used for storing passwords
in the data-flow detector in Find Security Bugs.

6.2.7. Find Security Bugs: Path Traversal

Detector Name PathTraversalDetector

Files PathTraversalDetector.java

Vuln. Type 1) PATH TRAVERSAL IN

2) PATH TRAVERSAL OUT

3) SCALA PATH TRAVERSAL IN

Strengths + Perfect recall of 100%

Limitations – Detects only 10 of 12 source variants

– Cannot differentiate between relative

and absolute path traversal
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Table 6.9.: Test results of Find Security Bugs for the path traversal vulnerabilities.

CWE-23 CWE-36

Relative Path Trv. Absolute Path Trv.

Connect TCP, Console ReadLine, Cookies Servlet, Database,

File, Listen TCP, Parameter Servlet,

Properties File, Query String Servlet, URL Connection

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 100% 100% 100% 100% 100% 100%

Control-Flow 100% 100% 100% 100% 100% 100%

Data-Flow 100% 78% 72% 100% 78% 72%

Subtotal 100% 88% 86% 100% 88% 86%

Environment, Property

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 0% 0% 0% 0% 0% 0%

Control-Flow 0% 0% 0% 0% 0% 0%

Data-Flow 28% 50% 0% 28% 50% 0%

Subtotal 14% 50% 0% 14% 50% 0%

Total of all Source Variants

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 83% 100% 83% 83% 100% 83%

Control-Flow 83% 100% 83% 83% 100% 83%

Data-Flow 88% 76% 60% 88% 76% 60%

Total 86% 86% 72% 86% 86% 72%

The path traversal detector in Find Security Bugs has a total recall and precision of
86%, and a discrimination rate of 72%, see Table 6.9. The implementation is based
on the same taint analysis found in the injection detectors in section 6.2.5, and will
therefore not be repeated here. With the exception of different sinks and a slightly
modified confidence ranking algorithm, the implementation is identical to those found
in the injection detectors of Find Security Bugs. The detector does not detect if the
vulnerability is a relative or absolute path traversal vulnerability, but rather reports all
vulnerabilities as simply path traversal vulnerabilities.

Find Security Bugs does not consider the Environment and Property source variants
used in the Juliet Test Suite as vulnerable. This is discussed in section 6.2.5, but also
affects the path traversal detector. The ten other source variants are detected, and all
vulnerabilities are found in addition to a few false positives. The reason for these false
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Table 6.10.: Test results of Find Security Bugs for the cross-site scripting vulnerabilities.

CWE-80 CWE-81 CWE-83

Basic XSS XSS Error Msg. XSS Attrib.

Total of all Source Variants

(Connect TCP, Database, File, Cookies Servlet, Query String Servlet,

Listen TCP, Parameter Servlet, Properties File, URL Connection)

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 100% 100% 100% 100% 100% 100% 100% 100% 100%

Control-Flow 100% 100% 100% 100% 100% 100% 100% 100% 100%

Data-Flow 100% 78% 72% 100% 78% 72% 100% 78% 72%

Total 100% 88% 86% 100% 88% 86% 100% 88% 86%

positives are the same as for the injection detectors: when the taint analysis loses track
of the data source, but the data enters a vulnerable sink, a vulnerability is reported
with a medium confidence. When the taint analysis is able to track the data source, and
the data enters a vulnerable sink without sanitization, a vulnerability is reported with
a high confidence.

The path traversal detector makes no effort to differentiate between relative and ab-
solute path traversal. Generally, both relative and absolute path traversal use the same
sinks, making it harder to separate these two vulnerabilities. The taint analysis in Find
Security Bugs does not provide any techniques for separating between the vulnerabilities
either.

6.2.8. Find Security Bugs: Cross-Site Scripting

Find Security Bugs contains three different cross-site scripting detectors. The cross-
site scripting detectors for Java servlet and JavaServer Pages are based on the same
taint analysis framework as the injection detectors described in section 6.2.5. Although
the implementation specific to these two path traversal detectors will be explained, the
details of the underlying taint analysis algorithm will not be repeated. The third XSS
detector is not aimed at detecting cross-site scripting vulnerabilities, but rather weak
or improper prevention against XSS. Out of the three XSS detectors, only the detector
aimed at Java servlet XSS vulnerabilities is relevant for the vulnerabilities present in the
Juliet Test Suite. The two other detectors cannot be evaluated on the Juliet Test Suite,
and for that reason, we will not present their strengths and limitations as we cannot
verify their effect.
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Cross-Site Scripting in Java Servlet

Detector Name XssServletDetector

Files XssServletDetector.java

Vuln. Type XSS SERVLET

Strengths + Perfect recall of 100%

+ Detects all source variants

Limitations – Uncertain detections are

still reported

The XSS detector for Java servlet is based on the same taint analysis framework as the
injection detectors in Find Security Bugs. As can be seen in Table 6.10, a few false
positives are produced for the data-flow cases, resulting in a 88% precision. This is due
to the taint analysis losing track of the data source. When a variable with an unknown
value reaches a vulnerable sink, the XSS detector chooses to report a vulnerability.

A problem with the injection detectors in section 6.2.5 was two missing source variants,
namely Environment and Property. These two source variants are not present in the
Juliet Test Suite XSS test cases, and for that reason do not affect the results of the XSS
detector in Find Security Bugs.

The following confidence rating is given to XSS vulnerabilities by this detector:

High confidence If the state is set as tainted.

Normal confidence If the state is not safe, i.e. the state being unknown or invalid, and
the string has not encoded its apostrophes, quotation marks, or less than signs.

Low confidence If the taint is not safe, and the string has encoded its apostrophes or
quotation marks, in addition to encoding less than signs.

To not interfere with the XSS detector for JavaServer Pages, the XSS detector for
Java servlet will ignore sinks which are to be detected by the JavaServer Pages detector,
and vice versa.

Cross-Site Scripting in JavaServer Pages

Detector Name XssJspDetector

Files XssJspDetector.java

Vuln. Type XSS JSP PRINT

The cross-site scripting detector for finding vulnerabilities in JavaServer Pages is almost
identical to the XSS detector for Java servlet. The only difference is the sinks. None of
these sinks are present in the Juliet Test Suite, and therefore produce no results.
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Use of Weak Cross-Site Scripting Prevention

Detector Name XSSRequestWrapperDetector

Files XSSRequestWrapperDetector.java

Vuln. Type XSS REQUEST WRAPPER

The last cross-site scripting detector in Find Security Bugs is not looking for XSS vul-
nerabilities, but rather improper attempts at sanitizing XSS vulnerabilities. According
to the author of this detector, an XSS filter published by Ricardo Zuasti around 2012 is
easy to bypass [Find Security Bugs, 2012] and therefore unsafe to use.

By looking at some properties that are isolated to the specific XSS filter published by
Zuasti, the detector is able to identify when the weak XSS filter is in use. The detector
specifically looks for classes that extend the HttpServletRequestWrapper class, and
contain a method named stripXSS(...). No data-flow or taint analysis is needed, as
this detector simply executes something similar to pattern matching in an attempt to
locate the use of this XSS filter.

6.2.9. ESVD: Injection Vulnerabilities

Out of the six injection vulnerabilities covered in our pre-study, ESVD claims to cover all
of them except for use of externally-controlled format string. However, as the pre-study
results reveal in Table 4.3, ESVD does in fact only cover OS command injection and
SQL injection. All of LDAP injection, HTTP response splitting, and XPath injection
get zero true and false positives. This is despite the fact that all of the detectors in
ESVD use the same underlying algorithm as explained in section 6.1.3.

OS Command Injection

Detector Name VerifierCommandInjection

Files VerifierCommandInjection.java

Vuln. Type Command Injection

Strengths + Perfect precision of 100%

Limitations – Detects only 7 of 12 source variants

– Does not track data through if- and

switch-statements

– No context-sensitive data-flow analysis

The results in Table 6.11 show that the OS command injection detector only detects
7 out of the 12 source variants used by the Juliet Test Suite. For the seven detected
source variants, only 19% of the vulnerabilities are reported. It is especially the control-
flow and data-flow cases the detector is struggling to detect with a recall of respectively
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11% and 22%. However, the detector maintains a perfect precision of 100%, meaning it
detects no false positives.

Table 6.11.: Test results of ESVD for the injection vulnerabilities.

CWE-78 CWE-89

OSC Injection SQL Injection

Cookies Servlet, Database, Environment, Parameter Servlet,

Properties File, Property, Query String Servlet

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 100% 100% 100% 100% 50% 0%

Control-Flow 11% 100% 11% 94% 35% 0%

Data-Flow 22% 100% 22% 33% 50% 0%

Subtotal 19% 100% 19% 65% 39% 0%

Connect TCP, Console ReadLine, File, Listen TCP, URL Connection

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 0% 0% 0% 100% 50% 0%

Control-Flow 0% 0% 0% 94% 35% 0%

Data-Flow 0% 0% 0% 33% 50% 0%

Subtotal 0% 0% 0% 65% 39% 0%

Total of all Source Variants

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 58% 100% 58% 100% 35% 0%

Control-Flow 6% 100% 6% 94% 65% 0%

Data-Flow 13% 100% 13% 33% 50% 0%

Total 11% 100% 11% 65% 39% 0%

The five source variants not detected by the OS command injection detector are Con-
nect TCP, Console ReadLine, File, Listen TCP, and URL Connection. When inspecting
the implementation of the detector, we discover that none of the sources are included in
ESVD’s resource lists. As mentioned in section 6.1.3, ESVD has a shared list of sources
that every detector utilizes. If a source is not included in the list, the source will not
be detected by any of the detectors. Consequently, these source variants will not be
detected by any of the other detectors in ESVD either.

The control-flow variants detected by the OS command injection detector use a while-
loop and a for-loop. It turns out that the underlying algorithm of ESVD is able to track
the data through these two control-flow statements, but struggles with if-statements
and switch-statements where it detects nothing. Since most of the control-flow variants
in the Juliet Test Suite include if-statements, the detector only detects 11% of the
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control-flow variants.
The OS command injection detector detects data-flow variants where data is sent

between methods within the same class. However, when the data moves between classes,
i.e. context-sensitive data-flow analysis, the detector is not able to detect anything.
This results in only a 22% recall for the data-flow variants. This is especially surprising
as utilizing context-sensitive data-flow analysis was the biggest selling point of ESVD
[Sampaio and Garcia, 2016].

When inspecting the implementation to determine why the detector performs poorly
for the more complex flow variants, we discovered that the cause lies in the underlying
algorithm of ESVD. In other words, it is not a limitation of only the OS command
injection detector, but it affects all of the detectors in ESVD. Therefore, we should
expect to see similar results produced by the detectors for the other vulnerabilities
covered in this thesis.

SQL Injection

Detector Name VerifierSQLInjection

Files VerifierSQLInjection.java

Vuln. Type Sql Injection

Limitations – Reports on all use of string concat-

enation in conjunction with a sink

– Uses pattern matching, instead of

data-flow analysis

The second injection vulnerability covered by ESVD is SQL injection. The results of the
SQL injection detector in Table 6.11 seem at first glance far better than the results for
the OS command injection detector. All twelve source variants are covered, and it has
a 65% recall. However, there is also a significant amount of false positives which leads
to a precision of merely 39%.

As mentioned in section 6.1.3, the SQL injection detector is one of two detectors in
ESVD that has a unique detection algorithm. The SQL injection detector still uses the
underlying algorithm of ESVD, but has a different approach to when a vulnerability is
reported. Instead of reporting a vulnerability when tainted data from a source reaches a
sink, the SQL injection detector reports on all cases where a concatenated string is used
in conjunction with a sink. The only criterion is that the concatenated string stems from
string variables and not literals, i.e., a string originating from user input. The detector
does not look at the content of the string variable and whether it originates from a
vulnerable source. Thus, the detector does not actually utilize data-flow analysis and is
more similar to basic pattern matching. This results in many true and false positives
being reported. The discrimination rate of 0% is an indication that the detector is not
able to differ true positives from false positives and does not use data-flow analysis.
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An interesting observation is that all of the false positives are detected in test cases
consisting of a safe source and an exploitable sink. This is because all detectors in ESVD
only report a vulnerability when it finds an exploitable sink. A vulnerable source on its
own triggers nothing.

LDAP Injection

Detector Name VerifierLDAPInjection

Files VerifierLDAPInjection.java

Vuln. Type LDAP Injection

Limitations – Detects nothing because of

missing sink

The LDAP injection detector is not able to detect any vulnerabilities in the Juliet Test
Suite. Examining the implementation reveals that the sink used in the Juliet Test Suite
is not included in ESVD’s resource lists. The method signature of the missing sink
showed in Figure 6.14 is the method InitialDirContext.search(String, String,

SearchControls). Without including this method signature in the resource list of LDAP
injection sinks, the detector will not be able to detect any of the test cases for LDAP
injection in the Juliet Test Suite.

CWE90 LDAP Injection connect tcp 01.java

directoryContext = new InitialDirContext(environmentHashTable);

/* POTENTIAL FLAW: data concatenated into LDAP search, which could

result in LDAP Injection */

String search = "(cn=" + data + ")";

answer = directoryContext.search("", search, null);

Figure 6.14.: Simplified version of the LDAP injection sink used in the Juliet Test Suite.

HTTP Response Splitting

Detector Name VerifierHTTPResponseSplitting

Files VerifierHTTPResponseSplitting.java

Vuln. Type HTTP Response Splitting

Limitations – Detects nothing because of missing sink

The HTTP response splitting detector in ESVD detects no vulnerabilities. Similarly to
the detector for LDAP injection, this is because the sinks used in the Juliet Test Suite
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are not included in the resource list. The test cases for HTTP response splitting in the
Juliet Test Suite uses three different sinks called addCookie, addHeader, and setHeader.
There are three times as many test cases for HTTP response splitting as opposed to,
e.g., LDAP injection, as each source variant is repeated three times, once for each sink.
The three sinks used in the Juliet Test Suite are shown in Figure 6.15.

CWE113 HTTP Response Splitting connect tcp addCookieServlet 01.java

Cookie cookieSink = new Cookie("lang", data);

/* POTENTIAL FLAW: Input not verified before inclusion in the cookie */

response.addCookie(cookieSink);

CWE113 HTTP Response Splitting connect tcp addHeaderServlet 01.java

/* POTENTIAL FLAW: Input from file not verified */

response.addHeader("Location", "/author.jsp?lang=" + data);

CWE113 HTTP Response Splitting connect tcp setHeaderServlet 01.java

/* POTENTIAL FLAW: Input not verified before inclusion in header */

response.setHeader("Location", "/author.jsp?lang=" + data);

Figure 6.15.: Simplified version of the HTTP Response Splitting sinks used in the Juliet
Test Suite.

XPath Injection

Detector Name VerifierXPathInjection

Files VerifierXPathInjection.java

Vuln. Type XPath Injection

Limitations – Detects nothing despite

including the sink

The detector for XPath injection is not able to detect any vulnerabilities. However,
contrary to the LDAP injection and HTTP response splitting detectors, the sink is
indeed included in the resource list for XPath injection. Nonetheless, the detector is still
not able to detect the vulnerability. This is odd as all detectors use the same underlying
algorithm which should lead to identical results as long as the sinks are included.

We hypothesize that the XPath injection detector fails to track the data through the
natural complexity of the test cases in the Juliet Test Suite. As shown in Figure 6.16,
even the baseline test case for XPath injection sends the data through additional control-
flow statements and string operations before it reaches the sink xPath.evaluate(...).
Since ESVD struggles with if-statements as mentioned earlier, this might explain why
the XPath injection detector detects nothing.
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CWE643 Xpath Injection connect tcp 01.java

...

if (data != null) {

String [] tokens = data.split("||");

if (tokens.length < 2) {

return;

}

String username = tokens[0];

String password = tokens[1];

XPath xPath = XPathFactory.newInstance().newXPath();

InputSource inputXml = new InputSource(xmlFile);

/* POTENTIAL FLAW: user input is used without validate */

String query = "//users/user[name/text()='" + username +

"' and pass/text()='" + password + "']" +

"/secret/text()";

String secret = (String)xPath.evaluate(query, inputXml,

XPathConstants.STRING);↪→

}

Figure 6.16.: The baseline test case for XPath injection in the Juliet Test Suite. The sink
xPath.evaluate(...) is encapsulated within an if-statement, while the
data is processed by several string operations. This additional complexity
might be the cause for why the XPath injection detector is not able to
detect any vulnerabilities.

6.2.10. ESVD: Hard-Coded Password

Detector Name VerifierSecurityMisconfiguration

Files VerifierSecurityMisconfiguration.java

Vuln. Type Security Misconfiguration

Strengths + Detects 89% of the control-flow variants

+ Good precision of 87%

Limitations – Mislabeled as Security Misconfiguration

– Detects only 1 of 3 sinks

– Inconsistent behavior in the CFA and DFA

algorithms when using literals instead of sources

Despite not stating it anywhere in its documentation, ESVD is able to detect hard-coded
passwords. When analyzing the source code to identify why it is reported, we discover
that instead of being labeled as hard-coded password, it is labeled as security miscon-
figuration. This also caused confusion during our pre-study as described in chapter 4.
We reported that ESVD did not cover the vulnerability as can be seen in the research
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paper in appendix A.
Just as the SQL injection detector, the hard-coded password detector of ESVD has a

unique detection algorithm. It is still partly based on the underlying algorithm of ESVD,
but instead of tracking data from source to sink, the detector reports when literals are
used as a hard-coded password. This means the detector does not use the resource list
for sources, but it does use a unique resource list for sinks. Since a password variable
can be assigned a literal value and later be used in a sink, the detector still needs to
utilize data-flow analysis.

Table 6.12.: Test results of ESVD for CWE-259 Use of Hard-coded Password.

CWE-259

Hard-Coded Pwd

Driver Manager

Flow Variant Rec. Prec. Disc.

Baseline 100% 100% 100%

Control-Flow 89% 89% 83%

Data-Flow 17% 75% 11%

Subtotal 54% 87% 49%

Kerberos Key, Password Authentication

Flow Variant Rec. Prec. Disc.

Baseline 0% 0% 0%

Control-Flow 0% 0% 0%

Data-Flow 0% 0% 0%

Subtotal 0% 0% 0%

Total of all Sinks

Flow Variant Rec. Prec. Disc.

Baseline 33% 100% 33%

Control-Flow 30% 89% 28%

Data-Flow 6% 75% 4%

Total 18% 87% 16%

As can be seen in Table 6.12, the only sink included is Driver Manager. The other
two sinks, namely Kerberos Key and Password Authentication, are not included in the
resource lists. Contrary to the OS command injection detector, the detector for hard-
coded passwords reports more true and false positives. It detects additional control-flow
variants and misses one data-flow variant which the OS command injection detector
successfully detect. By examining the source code of the hard-coded password detector,
we found that nothing in the detector warrants this change in behavior. The detector has
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its own way to deal with literals instead of sources, but does not change the underlying
control- and data-flow algorithms. The cause of the difference in the results is due to an
inconsistent behaviour by the control- and data-flow algorithms when detecting literals
instead of sources.

Additionally, the detector also detects hard-coded usernames as well as when user-
names and passwords are set to null. Since this is not part of CWE-259 Use of Hard-
coded Password, we have decided to not include these in our results. We do not count
them as false positives, as they are not wrong detections, but rather irrelevant detec-
tions.

6.2.11. ESVD: Path Traversal

Detector Name VerifierPathTraversal

Files VerifierPathTraversal.java

Vuln. Type Path Traversal

Strengths + Perfect precision of 100%

Limitations – Detects only 7 of 12 source variants

– Does not track data through if- and

switch-statements

– No context-sensitive data-flow analysis

– Does not differentiate between relative

and absolute path traversal

In the pre-study, we reported that ESVD did not detect a single path traversal vulner-
ability. During the work on this master thesis, we discovered that it does in fact detect
something. As mentioned in chapter 4, we believe this error was caused by ESVD’s
unstable behaviour with constant freezes and crashes.

Contrarily to the SQL injection detector and the hard-coded password detector, the
path traversal detector does not have a unique detection algorithm. Instead, it uses the
same underlying algorithm in ESVD as the OS command injection detector. Conse-
quently, the results in Table 6.13 are identical to the results of OS command injection
in Table 6.11 with the same source and flow variants detected. The explanation of the
implementation for the OS command injection detector in section 6.2.9 is valid for the
path traversal detector as well.

The difference between the test cases for relative and absolute path traversal in the
Juliet Test Suite is whether the input retrieved from the source is a relative path or
an absolute path. However, the path traversal detector in ESVD does not separate
between relative and absolute path traversal, and they are both labeled as merely “Path
Traversal”. An interesting detail with the sinks used by the Juliet Test Suite for path
traversal is that they are not ordinary methods, but rather object instantiations as shown
in Figure 6.7. However, ESVD only uses methods for sinks and not classes. ESVD solves
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Table 6.13.: Test results of ESVD for the path traversal vulnerabilities.

CWE-23 CWE-36

Relative Path Trv. Absolute Path Trv.

Cookies Servlet, Database, Environment, Parameter Servlet,

Properties File, Property, Query String Servlet

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 100% 100% 100% 100% 100% 100%

Control-Flow 11% 100% 11% 11% 100% 11%

Data-Flow 22% 100% 22% 22% 100% 22%

Subtotal 19% 100% 19% 19% 100% 19%

Connect TCP, Console ReadLine, File, Listen TCP, URL Connection

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 0% 0% 0% 0% 0% 0%

Control-Flow 0% 0% 0% 0% 0% 0%

Data-Flow 0% 0% 0% 0% 0% 0%

Subtotal 0% 0% 0% 0% 0% 0%

Total of all Source Variants

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 58% 100% 58% 58% 100% 58%

Control-Flow 6% 100% 6% 6% 100% 6%

Data-Flow 13% 100% 13% 13% 100% 13%

Total 11% 100% 11% 11% 100% 11%

this by including the method signature of the constructor for the class. This shows ESVD
is quite versatile in what it considers a sink which is a strength of the implementation.
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6.2.12. ESVD: Cross-Site Scripting

Detector Name VerifierCrossSiteScripting

Files VerifierCrossSiteScripting.java

Vuln. Type Cross-Site Scripting (XSS)

Strengths + Perfect precision of 100%

+ Detects both sinks of CWE-80 Basic XSS

Limitations – Detects only 5 of 9 source variants

– Does not track data through if- and

switch-statements

– No context-sensitive data-flow analysis

The cross-site scripting detector of ESVD uses the same implementation as the OS
command detector and the path traversal detector. This means the cross-site scripting
detector detects the same source and flow variants as the other two. The results in
Table 6.14 are identical to the results for OS command injection in Table 6.11 and path
traversal in Table 6.13. The explanation given for the OS command injection detector
in section 6.2.9 is valid for the cross-site scripting detector as well.
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Table 6.14.: Test results of ESVD for the cross-site scripting vulnerabilities.

CWE-80 CWE-81 CWE-83

Basic XSS XSS Error Msg. XSS Attrib.

Cookies Servlet, Database, Parameter Servlet, Properties File, Query String Servlet

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 100% 100% 100% 100% 100% 100% 100% 100% 100%

Control-Flow 11% 100% 11% 11% 100% 11% 11% 100% 11%

Data-Flow 22% 100% 22% 22% 100% 22% 22% 100% 22%

Subtotal 19% 100% 19% 19% 100% 19% 19% 100% 19%

Connect TCP, File, Listen TCP, URL Connection

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 0% 0% 0% 0% 0% 0% 0% 0% 0%

Control-Flow 0% 0% 0% 0% 0% 0% 0% 0% 0%

Data-Flow 0% 0% 0% 0% 0% 0% 0% 0% 0%

Subtotal 0% 0% 0% 0% 0% 0% 0% 0% 0%

Total of all Source Variants

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 56% 100% 56% 56% 100% 56% 56% 100% 56%

Control-Flow 6% 100% 6% 6% 100% 6% 6% 100% 6%

Data-Flow 12% 100% 12% 12% 100% 12% 12% 100% 12%

Total 11% 100% 11% 11% 100% 11% 11% 100% 11%

6.3. RQ3: How can the Limitations of the SATs be Addressed
Through Proof-of-Concept Improvements?

Section 6.3 presents the proof-of-concept improvements for addressing the limitations of
SpotBugs, Find Security Bugs, and ESVD. By modifying the source code of the SATs
we will confirm or deny hypotheses about what causes the limitations uncovered in
section 6.2.

In section 6.3.1 we address the limitations in SpotBugs, presenting proof-of-concept
improvements and measuring the difference these improvements produce. We do the
same in section 6.3.2 and section 6.3.3 for Find Security Bugs and ESVD respectively.

Proof-of-concept improvements will be given by testing modifications to the detectors’
source code. The code changes are published for transparency and replicability on our
GitHub repository, https://github.com/Beba-and-Karlsen/sat-limitation-proofs.

Similarly to how the results are presented in section 6.2 for RQ2, we will use the
Juliet Test Suite to measure changes in the detectors’ capabilities. These results can
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then easily be compared to the results from section 6.2. At the bottom of each result
table, we will add the results from the same detector in RQ2. This additional row will
be useful when comparing the performance of the modified source code.

6.3.1. Addressing the Limitations in SpotBugs

We have been able to address the limitations for the SQL injection, HTTP response split-
ting, path traversal, and cross-site scripting detectors in SpotBugs. The improvements
will be described below. The hard-coded password detector in SpotBugs is specifically
aimed at a narrow part of the possible hard-coded password vulnerabilities that exist,
and cannot easily be extended to detect other types of hard-coded password.

Removing the Reliance on String Concatenations in the SQL Injection Detector

The main limitation of the SQL injection detector is the calculation of vulnerability
confidence, which often results in a detection having a confidence too low to be reported
by SpotBugs. The requirement of string concatenations being present before any vul-
nerability can be reported is the most obvious limiting factor. It is unclear why such a
requirement was implemented. A string concatenation can combine multiple safe con-
stant strings into a non-constant string, and it is counter-intuitive that such a series
of instructions are the driving factor of what is reported as a vulnerability. A tainted
source can be successfully detected, but is completely ignored if the code does not also
have a string concatenation somewhere.

Additionally, the algorithm for identifying if an unchanged parameter is used by an
SQL injection sink is flawed. This check often fails, resulting in increased false positives,
but also increased true positives. The problem is due to SpotBugs seeing the SQL query
input as originating from a string concatenation, and not the possibly tainted method
parameter that is part of the string concatenation.

To prove better results are achievable, we suggest a different post-processing of the
data collected during analysis. However, without a larger re-write that includes context-
sensitive data-flow analysis, the detector will continue to struggle with the data-flow
variants. The improved post-processing calculates if a taint has been seen, if string ap-
pends and possibly unsafe string appends has been seen, and if open and close quotation
marks both have been seen. Then, this confidence rating is used:

High confidence If tainted data, unsafe append, and open and closing quotation marks
have been seen.

Normal confidence If tainted data has been seen, in addition to either an unsafe append
or open and closing quotation marks.

Low confidence If an unsafe append and open and closing quotation marks have been
seen, but no tainted data.

This will result in 360 fewer true positives, but 2220 fewer false positives, an increase
in precision from 43% to 70% and an increase in the discrimination rate from 0% to 49%.
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Table 6.15.: Test results of SpotBugs for the injection vulnerabilities. The CWE-89 de-
tector has an altered prioritization algorithm, while the CWE-113 detector
has six additional sources added. The original results can be seen in Ta-
ble 6.2.

CWE-89 CWE-113

SQL Injection HTTP RS

Connect TCP, Console ReadLine, Cookies Servlet, Database,

Environment, File, Listen TCP, Properties File,

Property, Parameter Servlet, URL Connection

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 100% 100% 100% 100% 100% 100%

Control-Flow 100% 90% 89% 89% 100% 89%

Data-Flow 67% 52% 6% 11% 100% 11%

Subtotal 84% 70% 49% 51% 100% 51%

Query String Servlet

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 100% 100% 100% 0% 0% 0%

Control-Flow 100% 90% 89% 0% 0% 0%

Data-Flow 67% 52% 6% 0% 0% 0%

Subtotal 84% 70% 49% 0% 0% 0%

Total of all Source Variants

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 100% 100% 100% 92% 100% 92%

Control-Flow 100% 90% 89% 81% 100% 81%

Data-Flow 67% 52% 6% 10% 100% 10%

Total 84% 70% 49% 47% 100% 47%

RQ2 Total (Table 6.2) 100% 43% 0% 4% 100% 4%

It is possible for a normal user to change the lowest confidence that will be reported in
the SpotBugs UI. This is by default set to normal confidence, but if changed to low
confidence the user will get the same number of true and false positives as the original
detector. We believe this to be the best of both worlds; a default configuration will
sacrifice some true positives to seriously reduce the number of false positives, while a
user with very high security requirements still can find all the vulnerabilities while having
to filter through many false positives. The results of the improved detector can be seen
in Table 6.15, showing only the vulnerabilities with medium and high confidence.
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Adding Sources for HTTP Response Splitting, Path Traversal, and Cross-Site
Scripting

The main limitations for the HTTP response splitting, path traversal, and cross-site
scripting detector, except for the weak taint analysis, is the lack of sources that are
detected. We have analyzed possible additional sources that can be added to the three
detectors detector. The following additional sources are able to positively change the
results on the Juliet Test Suite:

• javax.servlet.http.Cookie.getValue()

• java.lang.System.getenv(...)

• java.util.Properties.getProperty(...)

• java.lang.System.getProperty(...)

• java.sql.ResultSet.getString(...)

• java.io.BufferedReader.readLine(...)

The added sources result in improved results for all three vulnerability categories,
but to some varying degrees. For the HTTP response splitting vulnerability, the true
positives increased from 57 to 627 TP, increasing the recall and discrimination rate from
4% to 47%. The results can be seen in Table 6.15. For the path traversal vulnerability,
only the relative path traversal category saw improvements. The logic for differentiating
between relative and absolute path traversal has a limitation that will be discussed later,
but when that limitation is addressed the same results will be seen for absolute path
traversal too. For now, only the relative path traversal vulnerability saw an increase in
true positives from 19 to 209, increasing the recall and discrimination rate from 4% to
47%. The improvements to the relative path traversal category can be seen in Table 6.16,
but note that the results for absolute path traversal shown in Table 6.16 are after the
improvements to how relative and absolute path traversal are differentiated from each
other which is described later. Improvements are also seen for the cross-site scripting
vulnerability, where we see a sharp increase in the recall and discrimination rate. For
CWE-80 Basic XSS the recall and discrimination rate increase from 3% to 23%, while
CWE-81 and CWE-83 increased from 6% to 46%. This increase clearly shows that the
missing sources in the taint analysis is a large contributor to the poor results. The
slightly lower improvements seen for CWE-80 Basic XSS compared to the other two
XSS categories are due to the subpar taint analysis capabilities of SpotBugs, and will
be addressed later in this section. Table 6.17 shows the improved results for the cross-
site scripting vulnerabilities, but note that the results for CWE-80 Basic XSS include
improvements to the taint analysis that will be presented later.

For the HTTP response splitting, path traversal, and cross-site scripting vulnerabil-
ities, no false positives are added. Half of the improved detection capabilities are the
result of the first five sources in the list above, while the other half of the increase is
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the result of the last source. The last source, BufferedReader, although mostly used to
read possibly tainted data, can be used in such a way that it contains untainted data.
This choice is further discussed in section 7.3.

OpCodeStack.java

if (seen == Const.INVOKEVIRTUAL && "getValue".equals(methodName)

&& "javax/servlet/http/Cookie".equals(clsName)) {

pop();

Item result = new Item("Ljava/lang/String;");

result.setServletParameterTainted();

result.source = XFactory.createReferencedXMethod(dbc);

result.setPC(dbc.getPC());

push(result);

return;

}

Figure 6.17.: One of the five sources added to SpotBugs. Finds usages of
Cookie.getValue(), and marks the returned value as tainted. This in-
cludes popping the item off the instruction stack, altering it, then pushing
it back onto the instruction stack.

Manual, and to some extent difficult, changes to the source code had to be made when
adding the six additional sources listed above. Items had to be popped off the instruction
stack, altered, then pushed back onto the instruction stack. Binary JVM bytecode had to
be decompiled and analyzed to understand which instructions to detect. See Figure 6.17
for one of the five sources that was added. The algorithm to detect vulnerable sources
is only used by the combined HTTP response splitting, path traversal, and cross-site
scripting detector, as opposed to being shared by many detectors. Making it difficult to
add additional sources might result in less maintenance and improvement. Not sharing
the algorithm for detecting vulnerable sources lead to improvements for one detector
not benefiting other detectors. An improved storage repository for sources, combined
with a generalizable taint analysis framework, would be beneficial to all the detectors in
SpotBugs.

The limited ability to perform data-flow analysis is the reason for why the combined
HTTP response splitting, path traversal, and cross-site scripting detector does not go
above a 47% recall. As can be seen in Table 6.15, the detector performs poorly on control-
flow and data-flow variants for HTTP response splitting. The same results are seen for
path traversal and cross-site scripting as well. When the detector is unable to follow
the data from source to sink, which is harder for the data-flow variants compared to the
control-flow variants, it is unable to identify the data as tainted. When the data cannot
be identified as tainted, no vulnerability is reported. The limited data-flow capabilities
also result in one of the source variants, Query String Servlet, having a zero percent
recall, see Table 6.15, 6.16, and 6.17. Not all vulnerable sources can be directly used as
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a string value - some values must be converted from other data types. One example of
data being converted and otherwise processed is the use of string tokenization in Query
String Servlet. In Java, a string tokenization is used to separate a string into sub-strings
based on a delimiter. The detector does not understand that the data from the string
tokenization originates from the tainted string, but rather see the data originating from
the tokenizer itself. This is problematic, as the string tokenizer source can be something
innocent and safe. This is one of the reasons for the recall not being higher.

Separating Between Relative and Absolute Path Traversal

Although the relative path traversal detector saw large improvements when adding vul-
nerable sources as described above, the absolute path traversal detector did not produce
improved results. This is due to how the path traversal detector differentiates between
relative and absolute path traversal. The taint analysis is unable to properly track
tainted data for the relative path traversal vulnerability due to string concatenations, as
discussed in section 6.2.3. Not only is the poor taint analysis a limitation, but the way
in which the detector decides if it has lost track of the tainted data is also a limitation.
The detector compares the data source to a hard-coded source. If the data source does
not match the hard-coded source, it concludes that the data could not be tracked and
reports a relative path traversal. By altering the detector in such a way that it verifies
if the data source is actually lost, the absolute path traversal also improves drastically.
See the code modifications in Figure 6.18. This results in an increase in recall and dis-
crimination rate from 4% to 40%. See Table 6.16 for the full results for both relative
and absolute path traversal.

CrossSiteScripting.java

String bugPattern = (path != null && path.getReturnValueOf() != null ) ?

"PT_ABSOLUTE_PATH_TRAVERSAL" : "PT_RELATIVE_PATH_TRAVERSAL";↪→

Figure 6.18.: The changes to the path traversal detector in SpotBugs to determine if the
taint analysis has lost track of data.

Improving the Tracking Capabilities of the Taint Analysis

The cross-site scripting detector in SpotBugs has a recall and discrimination rate of
between 3% and 6%, but a precision of 100%. This is mainly due to two factors: few
detected sources and a taint analysis that is struggling to follow data. Adding vulnerable
sources has been carried out above, while this section will make improvements to the
taint analysis.

The taint analysis capabilities of the XSS detector in SpotBugs severely limits its abil-
ity to track data from source to sink. While this holds true for all three of the XSS CWEs,
it especially affects the CWE-80 Basic XSS test cases in the Juliet Test Suite. As de-
scribed in section 6.2.4, half of the CWE-80 test cases executes a String.replaceAll()
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Table 6.16.: Test results of SpotBugs for the path traversal vulnerabilities with additional
tainted sources added and changes to taint analysis. The original results can
be seen in Table 6.4.

CWE-23 CWE-36

Relative Path Trv. Absolute Path Trv.

Connect TCP, Console ReadLine, Cookies Servlet, Database,

Environment, File, Listen TCP, Properties File,

Property, Parameter Servlet, URL Connection

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 100% 100% 100% 100% 100% 100%

Control-Flow 89% 100% 89% 50% 100% 50%

Data-Flow 11% 100% 11% 33% 100% 33%

Subtotal 51% 100% 51% 43% 100% 43%

Query String Servlet

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 0% 0% 0% 0% 0% 0%

Control-Flow 0% 0% 0% 0% 0% 0%

Data-Flow 0% 0% 0% 0% 0% 0%

Subtotal 0% 0% 0% 0% 0% 0%

Total of all Source Variants

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 92% 100% 92% 92% 100% 92%

Control-Flow 81% 100% 81% 46% 100% 46%

Data-Flow 10% 100% 10% 31% 100% 31%

Total 47% 100% 47% 40% 100% 40%

RQ2 Total (Table 6.4) 4% 100% 4% 4% 100% 4%

on the data before it is sent to the sink. The data tracking capabilities in the XSS
detector is unable to understand that the output of the replaceAll method is tainted,
resulting in half of the test cases not being detected. The taint analysis can be modified
to track data through e.g. a replaceAll method, which we have shown by altering the
taint analysis algorithm for the XSS detector. An excerpt of the changes carried out on
the taint analysis algorithm can be seen in Figure 6.19. This change results in 152 new
true positives.

In total, the added sources and the improved taint analysis algorithm increased the
true positives from 19 to 304 for the CWE-80 test cases and from 19 to 152 for each
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Table 6.17.: Test results of SpotBugs for the cross-site scripting vulnerabilities with ad-
ditional tainted sources added and changes to tracking capabilities of taint
analysis. The original results can be seen in Table 6.5.

CWE-80 CWE-81 CWE-83

Basic XSS XSS Error Msg. XSS Attrib.

Connect TCP, Database, File, Cookies Servlet,

Parameter Servlet, Listen TCP, Properties File, URL Connection

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 100% 100% 100% 100% 100% 100% 100% 100% 100%

Control-Flow 89% 100% 89% 89% 100% 89% 89% 100% 89%

Data-Flow 11% 100% 11% 11% 100% 11% 11% 100% 11%

Subtotal 51% 100% 51% 51% 100% 51% 51% 100% 51%

Query String Servlet

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 0% 0% 0% 0% 0% 0% 0% 0% 0%

Control-Flow 0% 0% 0% 0% 0% 0% 0% 0% 0%

Data-Flow 0% 0% 0% 0% 0% 0% 0% 0% 0%

Subtotal 0% 0% 0% 0% 0% 0% 0% 0% 0%

Total of all Source Variants

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 89% 100% 89% 89% 100% 89% 89% 100% 89%

Control-Flow 79% 100% 79% 79% 100% 79% 79% 100% 79%

Data-Flow 10% 100% 10% 10% 100% 10% 10% 100% 10%

Total 46% 100% 46% 46% 100% 46% 46% 100% 46%

RQ2 (Tab. 6.5) 3% 100% 3% 6% 100% 6% 6% 100% 6%

of the CWE-81 and CWE-83 test cases. No false positives were added, resulting in the
precision remaining at 100%. The detailed results after the improvement can be seen in
Table 6.17.
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OpCodeStack.java

if (

"java/lang/String".equals(clsName) && "replaceAll".equals(methodName) &&

"(Ljava/lang/String;Ljava/lang/String;)Ljava/lang/String;".equals(signature)

&& getStackDepth() >= 3) {

// first.replaceAll(second, third)

Item third = getStackItem(0);

Item second = getStackItem(1);

Item first = getStackItem(2);

if (first.isServletParameterTainted() ||

second.isServletParameterTainted() ||

third.isServletParameterTainted()) {

servletRequestParameterTainted = true;

}

}

Figure 6.19.: Excerpt from added tracking capabilities in SpotBugs. Finds usages of
String.replaceAll(...), checks if any of the possible values are tainted,
and marks the resulting stack item accordingly.

6.3.2. Addressing the Limitations in Find Security Bugs

We have been able to address the limitations for all of the five injection detectors, in
addition to the path traversal and cross-site scripting detectors in Find Security Bugs.
The limitations that are addressed below are the inconsistent vulnerability confidence
ranking and missing sources.

As discussed in section 6.2.6, there are five hard-coded password detectors in Find
Security Bugs. The collection of detectors for hard-coded passwords in Find Security
Bugs mostly consists of simple logic to accomplish a simple goal, with the exception of
the more advanced data-flow analysis detector. The simple detectors are detecting what
is expected of them, and their only limitations would be the narrow amount of vulnerable
code patterns they detect. The data-flow analysis detector is trying to accomplish more,
and while also detecting more than the others, still lacks logic for detecting many control-
and data-flow cases. The hard-coded password detector that utilizes data-flow analysis
is missing the ability to track data through multiple methods or classes, and adding that
functionality would require a complete re-write of the detector.

While the path traversal detector is able to reliably identify path traversal vulner-
abilities, the detector is not able to separate the identified vulnerabilities into relative
or absolute path traversal. The ability to separate them can be useful when trying to
identify countermeasures that can be implemented in the code, although some counter-
measures such as whitelisting input is the same for both types of path traversal. The
sinks for both types of path traversal are the same, and trying to separate the two path
traversal types would not allow the detector to keep using the taint analysis framework
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that is provided by Find Security Bugs, as this framework does not contain any helpful
data to classify the path traversal type. For these reasons, the ability to identify if the
vulnerability is a relative or absolute path traversal would require a complete re-write
of the detector.

Table 6.18.: Test results of Find Security Bugs for the injection vulnerabilities with ad-
ditional tainted sources added. The original results can be seen in Table 6.6.
This table aims for perfect recall, while Table 6.20 aims for perfect precision.

CWE-78 CWE-89 CWE-90

OSC Injection SQL Injection LDAP Injection

Total of all Source Variants

(Connect TCP, Console ReadLine, Cookies Servlet, Database,

Environment, File, Listen TCP, Parameter Servlet, Property,

Properties File, Query String Servlet, URL Connection)

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 100% 100% 100% 100% 100% 100% 100% 100% 100%

Control-Flow 100% 100% 100% 100% 100% 100% 100% 100% 100%

Data-Flow 100% 78% 72% 100% 78% 72% 100% 78% 72%

Total 100% 88% 86% 100% 88% 86% 100% 88% 86%

RQ2 (Tab. 6.6) 86% 86% 72% 86% 86% 72% 86% 86% 72%

Alternative Vulnerability Confidence Ranking

The injection, path traversal and cross-site scripting detectors in Find Security Bugs
take two different approaches when it comes to prioritizing soundness or completeness.
There is no definitive answer to which is the correct approach. Some users want less false
positives and are willing to sacrifice some true positives for that possibility [Christakis
and Bird, 2016]. On the other hand there might be users dealing with very sensitive
data that are willing to look through a lot of false positives in exchange for the analysis
to detect all of the vulnerabilities. This is an example of the trade-off between soundness
and completeness described in section 3.1. We have made code changes demonstrating
both of these approaches. The HTTP response splitting detector already has zero false
positives but with less true positives, so for this detector we have shown that it can
be changed to detect all of the vulnerabilities if it allows some false positives. For the
other four injection detectors, in addition to the path traversal and cross-site script-
ing detectors, we have done the opposite. These six detectors already find all of the
vulnerabilities but also include some false positives. With our code changes they can
eliminate all of the false positives, but they have to sacrifice some of the true positives.
The code modifications are changing the confidence ranking algorithm to favor either
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Table 6.19.: Test results of Find Security Bugs for the injection vulnerabilities with ad-
ditional tainted sources added and confidence ranking changes to CWE-113.
The original results can be seen in Table 6.7. This table aims for perfect
recall, while Table 6.21 aims for perfect precision.

CWE-113 CWE-643

HTTP RS XPath Injection

Total of all Source Variants

(Connect TCP, Console ReadLine, Cookies Servlet, Database,

Environment, File, Listen TCP, Parameter Servlet, Property,

Properties File, Query String Servlet, URL Connection)

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 100% 100% 100% 100% 100% 100%

Control-Flow 100% 100% 100% 100% 100% 100%

Data-Flow 100% 78% 72% 100% 78% 72%

Total 100% 88% 86% 100% 88% 86%

RQ2 Total (Table 6.7) 74% 100% 74% 86% 86% 72%

Table 6.20.: Test results of Find Security Bugs for the injection vulnerabilities with ad-
ditional tainted sources added and confidence ranking changes. The original
results can be seen in Table 6.6. This table aims for perfect precision, while
Table 6.18 aims for perfect recall.

CWE-78 CWE-89 CWE-90

OSC Injection SQL Injection LDAP Injection

Total of all Source Variants

(Connect TCP, Console ReadLine, Cookies Servlet, Database,

Environment, File, Listen TCP, Parameter Servlet, Property,

Properties File, Query String Servlet, URL Connection)

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 100% 100% 100% 100% 100% 100% 100% 100% 100%

Control-Flow 100% 100% 100% 100% 100% 100% 100% 100% 100%

Data-Flow 78% 100% 72% 78% 100% 72% 78% 100% 72%

Total 89% 100% 86% 89% 100% 86% 89% 100% 86%

RQ2 (Tab. 6.6) 86% 86% 72% 86% 86% 72% 86% 86% 72%
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Table 6.21.: Test results of Find Security Bugs for the injection vulnerabilities with ad-
ditional tainted sources added and confidence ranking changes to CWE-643.
The original results can be seen in Table 6.7. This table aims for perfect
precision, while Table 6.19 aims for perfect recall.

CWE-113 CWE-643

HTTP RS XPath Injection

Total of all Source Variants

(Connect TCP, Console ReadLine, Cookies Servlet, Database,

Environment, File, Listen TCP, Parameter Servlet, Property,

Properties File, Query String Servlet, URL Connection)

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 100% 100% 100% 100% 100% 100%

Control-Flow 100% 100% 100% 100% 100% 100%

Data-Flow 78% 100% 72% 78% 100% 72%

Total 89% 100% 86% 89% 100% 86%

RQ2 Total (Table 6.7) 74% 100% 74% 86% 86% 72%

recall or precision by specifying if data with an unknown state reaching a vulnerable
sink should be reported or not. By reporting data with an unknown state, recall is
favored, and vice versa. When recall is favored, the results for the injection detectors
are as shown in Table 6.18 and 6.19. If precision is favored, the results for the injection
detectors are as shown in Table 6.20 and 6.21. Note that Table 6.18, 6.19, 6.20, and
6.21 also include the two additional sources that are added in the next section. The
results for the path traversal and XSS detectors are, after similar code modifications,
the exact same as the injection detectors, and will not be repeated in their own tables.
For both the path traversal and XSS detectors, modifications to the confidence ranking
increases the precision from 88% to 100%, while slightly reducing the recall from 100%
to 89%. It is up to the developers of Find Security Bugs to choose which approach to
take, which is why we have demonstrated that both are possible. In our opinion, the
default behavior of Find Security Bugs should be to have zero false positives, as this
is favored by most users [Christakis and Bird, 2016; Johnson et al., 2013]. If the user
wants to see all of the uncertain true and false positives, they can lower the threshold
for showing possible vulnerabilities. This option is also included in our code changes,
as the uncertain detections are reported with a low confidence, which by default is not
shown to the user unless explicitly chosen in the settings.

The modifications of the confidence ranking are slightly different between all the detec-
tors. The main difference is that the modifications that favor recall reports a vulnerabil-
ity when data with an unknown state reaches a vulnerable sink, while the modifications
favoring precision only reports a vulnerability if the state of the data is set as tainted.
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The confidence ranking for the modifications to favor recall can be summarized as fol-
lows:

High confidence If the state is set as tainted.

Normal confidence If the state is not safe, i.e. the state being unknown or invalid.

The confidence ranking for the modifications to favor precision can be summarized as
follows:

Normal confidence If the state is set as tainted.

Low confidence If the state is not safe, i.e. the state being unknown or invalid. Low
confidence vulnerabilities are not shown by default, but can be enabled in the
settings.

The different confidence that the injection, path traversal, and cross-site scripting
detectors report is a problem in other ways too. While the HTTP response splitting
detector reports its most certain detections as medium and uncertain detections as low
confidence, the other detectors report their most certain detections as high and uncertain
detections as medium confidence. There is no developer guidelines that say which is the
correct approach, although an advanced user guide states that the latter is how the
injection detectors should behave [Find Security Bugs, 2017]. While missing developer
guidelines is a limitation, the fact that the detectors use a different confidence ranking
is also a limitation. If the user adjusts the plugin settings to hide false positives for the
SQL injection detector - that is hiding both low and medium confidence detections - it
will also hide every single detection from the HTTP response splitting detector, as even
the certain detections are only given a medium confidence. A consistent behavior should
be expected.

Adding Missing Sources

The two missing sources are System.getenv() and System.getProperty(). As dis-
cussed in section 6.2.5, these are considered safe by choice by the developers. Although
there is no documentation of the following workaround, it is possible to enable these two
missing sources as possible tainted data. By adding a special system variable into your
system of choice, both sources will be considered unsafe. See Figure 6.20 for a visual-
ization of how to enable this functionality. This greatly improves the number of true
positives detected by the injection and path traversal detectors, without affecting the
precision. The results for the improved injection detectors can be seen in Table 6.18 and
6.19, while the results for the improved path traversal detector can be seen in Table 6.22.
It is unclear why this is an opt-in feature rather than an opt-out one.

Adding the two missing sources has no effect on the results of the XSS detector in
Find Security Bugs, as the cross-site scripting test cases in the Juliet Test Suite do not
use the Environment and Property source variants. If the Environment and Property
source variants were used by the XSS test cases, it would result in equal improvements
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of the results for the cross-site scripting detector, as the XSS detector is also missing
these two sources.

Figure 6.20.: The Microsoft Windows setting to define system variables, which in this
case is used to define the data sources in Figure 6.11 as tainted. To be
easier to use in environments where system variables cannot use periods,
it is possible to use underscores instead.
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Table 6.22.: Test results of Find Security Bugs for the path traversal vulnerabilities with
additional tainted sources added. The original results can be seen in Ta-
ble 6.9.

CWE-23 CWE-36

Relative Path Trv. Absolute Path Trv.

Total of all Source Variants

(Connect TCP, Console ReadLine, Cookies Servlet, Database,

Environment, File, Listen TCP, Parameter Servlet, Properties File

Property, Query String Servlet, URL Connection)

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 100% 100% 100% 100% 100% 100%

Control-Flow 100% 100% 100% 100% 100% 100%

Data-Flow 100% 78% 72% 100% 78% 72%

Total 100% 88% 86% 100% 88% 86%

RQ2 Total (Table 6.9) 86% 86% 72% 86% 86% 72%
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6.3.3. Addressing the Limitations in ESVD

In section 6.2.9, we created hypotheses about what caused the poor results for ESVD.
Our hypotheses are that the algorithm for detecting SQL injection through string con-
catenations is faulty, the XPath detector struggling with the natural complexity of the
test cases, as well as the resource lists of ESVD missing sources and sinks. In this
section, we will attempt to prove these claims by modifying the source code of ESVD
and reevaluating the tool. We are able to address all of the limitations except for the
struggling XPath detector and the missing sinks for the hard-coded password detector.

Removing String Concatenation Detection from the SQL Injection Detector

As mentioned in section 6.2.9, ESVD produces many true and false positives for SQL
injection. This is because the SQL injection detector reports on all cases of string
concatenation used in conjunction with SQL injection sinks.

When removing this unique detection method for SQL injection, the SQL injection
detector uses the underlying algorithm of ESVD instead. The results in Table 6.23 are
more similar to the results of the OS command injection detector, which is logical as
they now use the same implementation. However, there is an exception in control-flow
variant 21 which is detected for SQL injection, but not for OS command injection. This
is very curious as the two detectors use the same algorithm with the only difference
being which sinks are used. This points to inconsistencies in the control-flow analysis of
ESVD. It is likely that this is the result of ESVD being a proof of concept instead of a
finished product.

Adding Sinks for LDAP Injection and HTTP Response Splitting

ESVD did not detect any vulnerabilities for LDAP injection or HTTP response splitting.
As explained in section 6.2.9, this is because ESVD lacks the sinks used by the test cases
in the Juliet Test Suite.

By adding the missing sinks, the LDAP injection and HTTP response splitting detec-
tors are able to detect some occurrences of the vulnerabilities as shown in Table 6.24.
The results for LDAP injection are identical to OS command injection, while the results
for HTTP response splitting are identical to SQL injection when detection of string
concatenation is removed.

When executing the HTTP response splitting detector with standard settings in
ESVD, the detector will only report on one of the three sinks used in the Juliet Test
Suite. It reports on addCookie, but not on addHeader or setHeader. This is strange
as all sinks have now been added. By manually inspecting the test cases, we discover
that ESVD reports cross-site scripting on addHeader and setHeader. By altering the
settings and turning off the cross-site scripting detector, ESVD reports HTTP response
splitting on these instead. This exposes a critical limitation in ESVD’s implementation
as it does not report multiple vulnerabilities on a single line of code. If a false positive is
first reported, in this case cross-site scripting, then a true positive may not be reported
as in this case with HTTP response splitting.
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Table 6.23.: Test results of ESVD for CWE-89 SQL Injection when removing the detec-
tion algorithm for use of string concatenation in conjunction with a sink.
The original results can be seen in Table 6.11.

CWE-89

SQL Injection

Cookies Servlet, Database, Environment, Parameter

Servlet, Properties File, Property, Query String Servlet

Flow Variant Rec. Prec. Disc.

Baseline 100% 100% 100%

Control-Flow 17% 100% 17%

Data-Flow 22% 100% 22%

Subtotal 22% 100% 22%

Connect TCP, Console ReadLine, File,

Listen TCP, URL Connection

Flow Variant Rec. Prec. Disc.

Baseline 0% 0% 0%

Control-Flow 0% 0% 0%

Data-Flow 0% 0% 0%

Subtotal 0% 0% 0%

Total of all Source Variants

Flow Variant Rec. Prec. Disc.

Baseline 58% 100% 58%

Control-Flow 10% 100% 10%

Data-Flow 13% 100% 13%

Total 13% 100% 13%

RQ2 Total (Table 6.11) 65% 39% 0%
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Table 6.24.: Test results of ESVD for CWE-90 LDAP Injection and CWE-113 HTTP
Response Splitting when adding the missing sinks. The original results
were 0% recall, precision, and discrimination rate for both of CWE-90 and
CWE-113.

CWE-90 CWE-113

LDAP Injection HTTP Resp. Sp.

Cookies Servlet, Database, Environment, Parameter Servlet,

Properties File, Property, Query String Servlet

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 100% 100% 100% 100% 100% 100%

Control-Flow 11% 100% 11% 17% 100% 17%

Data-Flow 22% 100% 22% 22% 100% 22%

Subtotal 19% 100% 19% 22% 100% 22%

Connect TCP, Console ReadLine, File, Listen TCP, URL Connection

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 0% 0% 0% 0% 0% 0%

Control-Flow 0% 0% 0% 0% 0% 0%

Data-Flow 0% 0% 0% 0% 0% 0%

Subtotal 0% 0% 0% 0% 0% 0%

Total of all Source Variants

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 58% 100% 58% 58% 100% 58%

Control-Flow 6% 100% 6% 10% 100% 10%

Data-Flow 13% 100% 13% 13% 100% 13%

Total 11% 100% 11% 13% 100% 13%

RQ2 Total 0% 0% 0% 0% 0% 0%
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Adding Sinks for Hard-Coded Password

By adding the two missing sinks for hard-coded passwords as discussed in section 6.2.10,
namely Kerberos Key and Password Authentication, one would believe these test cases
should be detected. However, the hard-coded password detector is still not able to detect
the vulnerabilities, even after adding the sinks to the resource list. Both of the sinks use
a char array as a parameter, and the String input must be converted into a char array
before injected into the sinks. Unfortunately, the hard-coded password detector is not
able to track the input through the conversion from String to char which leads to no
vulnerabilities detected.

We changed one of the test cases for both sinks to use a hard-coded char array instead,
as shown in Figure 6.21, and ESVD was able to detect it. This experiment confirms that
it is the String to char conversion that the detector is not able to track and prevents
ESVD from detecting the vulnerabilities.

String data = "7e5tc4s3";

/* POTENTIAL FLAW: data used as password in KerberosKey() */

KerberosKey key = new KerberosKey(principal, data.toCharArray(), null);

char[] array = { '7', 'e', '5', 't', 'c', '4', 's', '3' };

/* POTENTIAL FLAW: data used as password in KerberosKey() */

KerberosKey key = new KerberosKey(principal, array, null);

Figure 6.21.: Simplified version of the test case for the Kerberos Key sink. Changing the
hard-coded variable from a String to a char array makes ESVD detect
the vulnerability.

Removing Complexity of Baseline Case for XPath Injection

As mentioned in section 6.3.3, we hypothesize that the reason for why the XPath injection
detector is not able to detect any of the vulnerabilities is the natural complexity of the
test cases in the Juliet Test Suite. To test this hypothesis, we modify one of the baseline
test cases and remove unnecessary statements as shown in Figure 6.22. We remove the
if-statement encapsulating the sink as well as the string operations altering the data

variable containing the vulnerable input. However, even with these changes the XPath
injection detector does not work, indicating that the implementation of ESVD is the
cause for this and not the Juliet Test Suite.
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CWE643 Xpath Injection connect tcp 01.java

...

if (data != null) {

String [] tokens = data.split("||");

if (tokens.length < 2) {

return;

}

String username = tokens[0];

String password = tokens[1];

XPath xPath = XPathFactory.newInstance().newXPath();

InputSource inputXml = new InputSource(xmlFile);

/* POTENTIAL FLAW: user input is used without validate */

String query = "//users/user[name/text()='" + username +

"' and pass/text()='" + password + "']" +

"/secret/text()";

String secret = (String)xPath.evaluate(query, inputXml,

XPathConstants.STRING);↪→

}

CWE643 Xpath Injection connect tcp 01.java (modified)

...

XPath xPath = XPathFactory.newInstance().newXPath();

InputSource inputXml = new InputSource(xmlFile);

/* POTENTIAL FLAW: user input is used without validate */

String secret = (String)xPath.evaluate(data, inputXml,

XPathConstants.STRING);↪→

Figure 6.22.: Removing the complexity from the baseline test case for XPath injection.

Adding Sources for all Detectors

As mentioned in sections 6.2.9, 6.2.11, and 6.2.12, there are five source variants none of
the detectors in ESVD detect any vulnerabilities for. These are Connect TCP, Console
ReadLine, File, Listen TCP, and URL Connection. However, ESVD is easy to extend as
it uses a general algorithm which retrieves sources and sinks from resource lists stored
in XML-files.

The resource lists consist of method signatures. Thus, a source must be in the form of
a method in order for ESVD to recognize it. All of Connect TCP, Listen TCP, and URL
Connection use a method called getInputStream(), however, from two different classes.
By adding these two method signatures to the resource list as shown in Figure 6.23, all
of the detectors in ESVD should be able to detect these source variants as well.

The test cases for the Console ReadLine and File source variants do not use a method
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entry-point.xml

<!-- java.net.URLConnection -->

<entrypoint id="82">

<qualifiedname>java.net.URLConnection</qualifiedname>

<methodname>getInputStream</methodname>

</entrypoint>

<!-- java.net.Socket -->

<entrypoint id="83">

<qualifiedname>java.net.Socket</qualifiedname>

<methodname>getInputStream</methodname>

</entrypoint>

Figure 6.23.: The method signatures added to the XML-file including the resource list for
sources in ESVD. The method signatures correspond to the source variants:
Connect TCP, Listen TCP, and URL Connection.

entry-point.xml

<!-- java.io.File -->

<entrypoint id="84">

<qualifiedname>java.io.File</qualifiedname>

<methodname>File</methodname>

<parameters type="java.lang.String" />

</entrypoint>

Figure 6.24.: The method signature added to the XML-file including the resource list
for sources in ESVD. The method signature corresponds to the File source
variant.

as a source, but rather object instantiations. As mentioned in section 6.2.11, ESVD
is capable of using an instantiation as a sink, and it turns out it works just as well
with a source. The File source variant in the Juliet Test Suite uses instantiations of
java.io.File. By adding the constructor for this class to the lists of sources as shown
in Figure 6.24, ESVD detects the File source variant as well.

In the test cases for the File source variant, the java.io.File object is always sub-
sequently used in a FileInputStream object as shown in Figure 6.25. This causes
an issue for the path traversal detector which has FileInputStream listed as a sink,
and consequently produces a lot of false positives when Java.io.File is added as
a source. The sink included in ESVD for path traversal has the method signature
java.io.FileInputStream(Object). However, the parameter should be a String since
the vulnerability is caused by receiving a tainted path variable originating from user in-
put. With Object as the parameter, ESVD will report on all cases of FileInputStream
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String data = "";

file = new File("C:\\data.txt");

stream = new FileInputStream(file);

reader = new InputStreamReader(stream, "UTF-8");

readerBuffered = new BufferedReader(reader);

Figure 6.25.: Simplified version of the File source variant used in the Juliet Test Suite.
The File always passes through the FileInputStream which causes a false
positive for the path traversal detector.

no matter the datatype of the argument since every class in Java inherits the Object

class. Changing the method signature to java.io.FileInputStream(String) should
solve this problem. However, when reevaluating ESVD after these changes, it reports
absolutely nothing for path traversal. This repeated erratic behavior of ESVD as dis-
cussed throughout section 6.2 and 6.3 indicates that ESVD is further from a finished
product than it seemed like initially.

In the case of the source variant Console ReadLine, the source is the instantiation
of InputStreamReader(System.in, "UTF-8") where System.in specifies to read from
the console. By adding its constructor to the resource list of sources, ESVD detects
this as well. An InputStreamReader converts byte streams to character streams, and is
technically not a vulnerable source in itself. It is by passing System.in as an argument
that it becomes insecure. Unfortunately, ESVD can not use a class field as a source, so it
cannot mark System.in as a source, and the only option is to use InputStreamReader.
We will discuss this further in section 7.3.

The results after adding these sources in addition to the previously discussed proof-of-
concept improvements are presented in Table 6.26, 6.25, and 6.27. For the path traversal
detector, we have used java.io.InputStreamReader as the source for the File source
variant instead of java.io.File because of the issues presented above. In total, this
shows that ESVD is capable of producing significantly better results if all sources and
sinks are included. However, the recall of ESVD is only between 18% and 22% for the
different vulnerabilities. This can not compare to Find Security Bugs which has a recall
between 89% and 100% for all vulnerabilities except for hard-coded password which has
43%.
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Table 6.25.: Test results of ESVD for the path traversal vulnerabilities when adding the
missing sources. The original results can be seen in Table 6.13.

CWE-23 CWE-36

Relative Path Trv. Absolute Path Trv.

Total of all Source Variants

(Connect TCP, Console ReadLine, Cookies Servlet, Database,

Environment, File, Listen TCP, Parameter Servlet, Properties File,

Property, Query String Servlet, URL Connection)

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 100% 100% 100% 100% 100% 100%

Control-Flow 11% 100% 11% 11% 100% 11%

Data-Flow 22% 100% 22% 22% 100% 22%

Total 19% 100% 19% 19% 100% 19%

RQ2 Total (Table 6.13) 11% 100% 11% 11% 100% 11%

Table 6.26.: Test results of ESVD for the injection vulnerabilities when adding the miss-
ing sources as well as keeping changes previously discussed in section 6.3.3.
The original results can be seen in Table 6.11, and the results of previous
changes can be seen in Table 6.23 and Table 6.24.

CWE-78 CWE-89 CWE-90 CWE-113

OSC Injection SQL Injection LDAP Injection HTTP Resp. Sp.

Total of all Source Variants

(Connect TCP, Console ReadLine, Cookies Servlet, Database, Environment, File, Listen TCP,

Parameter Servlet, Properties File, Property, Query String Servlet, URL Connection)

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc. Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Control-Flow 11% 100% 11% 17% 100% 17% 11% 100% 11% 17% 100% 17%

Data-Flow 22% 100% 22% 22% 100% 22% 22% 100% 22% 22% 100% 22%

Total 19% 100% 19% 22% 100% 22% 19% 100% 19% 22% 100% 22%

RQ2 (Tab. 6.11) 11% 100% 11% 65% 39% 0% 0% 0% 0% 0% 0% 0%
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Table 6.27.: Test results of ESVD for the cross-site scripting vulnerabilities when adding
the missing sources. The original results can be seen in Table 6.14

CWE-80 CWE-81 CWE-83

Basic XSS XSS Error Msg. XSS Attrib.

Total of all Source Variants

(Connect TCP, Console ReadLine, Cookies Servlet, Database,

Environment, File, Listen TCP, Parameter Servlet, Properties File,

Property, Query String Servlet, URL Connection)

Flow Variant Rec. Prec. Disc. Rec. Prec. Disc. Rec. Prec. Disc.

Baseline 100% 100% 100% 100% 100% 100% 100% 100% 100%

Control-Flow 11% 100% 11% 11% 100% 11% 11% 100% 11%

Data-Flow 22% 100% 22% 22% 100% 22% 22% 100% 22%

Total 19% 100% 19% 19% 100% 19% 19% 100% 19%

RQ2 (Tab. 6.14) 11% 100% 11% 11% 100% 11% 11% 100% 11%

114



6.4. Summary

In this section, we will present summarized results from sections 6.2 and 6.3. When an-
alyzing the implementations of the SATs, we discovered both strengths and limitations.
To give a concise summary of our findings, we present them in Table 6.28 and 6.29,
where strengths are indicated by + and limitations by –.

This summary table is divided into general implementation as well as detector-specific
strengths and limitations. The general implementation corresponds to all detectors used
by the SAT, while the detector-specific ones are divided into the same vulnerability
categories used for the results in sections 6.2 and 6.3. Be aware that some categories
share the same algorithm, and consequently share the same limitations and strengths as
well. This is the case for Find Security Bugs, where all the injection vulnerabilities are
combined in the table.

Table 6.30 presents all of the changes in the performance results from section 6.2
and 6.3. This table demonstrates how the proof-of-concept improvements affected the
SATs’ performance. Improved results are written in green, while reduced performance
is written in red.
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Table 6.28.: General strengths and limitations of the detectors as well as specifics for
injection vulnerabilities.

SpotBugs Find Security Bugs ESVD

General
Implementation

– No guidelines for
confidence.

+ Shared list for sources
between vulnerabilities.

– No guidelines for
confidence.

+ Uses a general algorithm
for all detectors.

+ Taint analysis gives fewer
false positives.

+ Shared list for sources
between vulnerabilities.

– Detects only 7 of 12 source
variants.

– Does not track data
through if- and
switch-statements.

– No context-sensitive DFA.

– Cannot report multiple
vulnerabilities on the same
line of code.

Injection Vulnerabilities

CWE-78
OS Cmd Injection

Not covered by any
detectors.

+ Taint analysis gives fewer
false positives.

– Detects only 10 of 12
source variants.

– Loses track of data in
advanced data-flow
variants.

– Inconsistent confidence
ranking where the HTTP
response splitting detector
targets precision, while the
other detectors target
recall.

No detector-specific

strengths or limitations.

CWE-89
SQL Injection

– Reports on all use of string
concatenation in
conjunction with a sink.

– Reports on all use of string
concatenation in
conjunction with a sink.

– Uses pattern matching
instead of DFA

CWE-90
LDAP Injection

Not covered by any
detectors.

– Detects nothing because of
missing sink.

CWE-113
HTTP Resp. Split.

– Detects only 1 of 12 source
variants.

– Poor taint analysis.

– Detects nothing because of
missing sink.

CWE-643
XPath Injection

Not covered by any
detectors.

– Detects nothing despite
including the sink.
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Table 6.29.: Strengths and limitations of the detectors for hard-coded passwords, path
traversal and cross-site scripting.

SpotBugs Find Security Bugs ESVD
Hard-Coded Password

CWE-259
Hard-coded Pwd

– Only detects database
passwords.

– No control-flow analysis.

+ Shared list of common
names for password
variables.

– DFA only works within a
method.

– Mislabeled as Security
Misconfiguration.

– Only detects database
passwords.

– Inconsistent behavior in
the CFA and DFA
algorithms when using
literals instead of sources.

Path Traversal

CWE-23
Rel. Path Trav. – Detects only 1 of 12 source

variants.

– Poor taint analysis.

– Depends on poor taint
anaylsis to differentiate
between relative and
absolute path traversal

+ Taint analysis gives fewer
false positives.

– Detects only 10 of 12
source variants.

– Loses track of data in
advanced data-flow
variants.

– Cannot differentiate
between relative and
absolute path traversal.

– Cannot differentiate
between relative and
absolute path traversal.

CWE-36
Abs. Path Trav.

Cross-Site Scripting

CWE-80
Basic XSS

– Detects only 1 of 9 source
variants.

– Poor taint analysis.

– Does not detect
replaceAll sink.

+ Taint analysis gives fewer
false positives.

+ Detects all source variants.

+ Detects both the regular
and the replaceAll sink.

– Loses track of data in
advanced data-flow
variants.

+ Detects both the regular
and the replaceAll sink.

CWE-81
XSS Error Msg.

CWE-83
XSS Attributes
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Table 6.30.: The total results for ESVD, SpotBugs, and Find Security Bugs for all vul-
nerabilities. The results of both RQ2 and RQ3 are included to demonstrate
the performance improvement of the modifications made in RQ3. Green
numbers indicate increased performance, while red numbers indicate de-
creased performance. For Find Security Bugs, we have included the results
that prioritize precision over recall.

ESVD SpotBugs FindSecBugs

Injection

Rec. Prec. Disc. Rec. Prec. Disc. Rec. Prec. Disc.

CWE-78
OS Cmd Inj.

RQ2 11% 100% 11% 0% 0% 0% 86% 86% 72%

RQ3 19% 100% 19% 0% 0% 0% 89% 100% 86%

CWE-89
SQL Inj.

RQ2 65% 39% 0% 100% 43% 0% 86% 86% 72%

RQ3 22% 100% 22% 84% 70% 49% 89% 100% 86%

CWE-90
LDAP Inj.

RQ2 0% 0% 0% 0% 0% 0% 86% 86% 72%

RQ3 19% 100% 19% 0% 0% 0% 89% 100% 86%

CWE-113
HTTP R.S.

RQ2 0% 0% 0% 4% 100% 4% 74% 100% 74%

RQ3 19% 100% 19% 47% 100% 47% 89% 100% 86%

CWE-643
XPath Inj.

RQ2 0% 0% 0% 0% 0% 0% 86% 86% 72%

RQ3 0% 0% 0% 0% 0% 0% 89% 100% 86%

Broken Authentication

Rec. Prec. Disc. Rec. Prec. Disc. Rec. Prec. Disc.

CWE-259
Hard-Coded

RQ2 18% 87% 16% 14% 100% 14% 43% 100% 43%

RQ3 18% 87% 16% 14% 100% 14% 43% 100% 43%

Broken Access Control - Path Traversal

Rec. Prec. Disc. Rec. Prec. Disc. Rec. Prec. Disc.

CWE-23
Rel. Path T.

RQ2 11% 100% 11% 4% 100% 4% 86% 86% 72%

RQ3 19% 100% 19% 47% 100% 47% 100% 88% 86%

CWE-36
Abs. Path T.

RQ2 11% 100% 11% 4% 100% 4% 86% 86% 72%

RQ3 19% 100% 19% 40% 100% 40% 100% 88% 86%

Cross-Site Scripting

Rec. Prec. Disc. Rec. Prec. Disc. Rec. Prec. Disc.

CWE-80
Basic XSS

RQ2 11% 100% 11% 3% 100% 3% 100% 88% 86%

RQ3 19% 100% 19% 46% 100% 46% 89% 100% 86%

CWE-81
XSS Error

RQ2 11% 100% 11% 6% 100% 6% 100% 88% 86%

RQ3 19% 100% 19% 46% 100% 46% 89% 100% 86%

CWE-83
XSS Attrib.

RQ2 11% 100% 11% 6% 100% 6% 100% 88% 86%

RQ3 19% 100% 19% 46% 100% 46% 89% 100% 86%
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7. Discussion

The discussion chapter will describe the contribution of the findings from chapter 6 and
explain new insights that emerged as a result of our research. In section 7.1, we discuss
the benefits of taint analysis, while section 7.2 explores the benefits of a generalizable
implementation. One of the most recurring limitations we found was missing sources or
sinks, which is discussed in section 7.3. The state and limitations of the control- and
data-flow analysis present in the SATs are explained in section 7.4. Section 7.5 talks
about the benefits of a prioritized output, and the different ways we have seen this being
implemented in the three SATs. One of the problems we discovered is misclassification
of vulnerabilities, which we discuss further in section 7.6. We compare our research with
related work in section 7.7, and the limitations of the Juliet Test Suite are discussed in
section 7.8. The last section of this chapter presents possible threats to validity, both
internal and external, in section 7.9.

7.1. Use of Taint Analysis

A common technique used by static analysis tools is taint analysis, tracking user input
from a vulnerable source to an exploitable sink. Find Security Bugs uses it for many
of its detectors, while ESVD is fundamentally built around it. SpotBugs also has some
detectors utilizing taint analysis, but not to the extent as the other two.

The big advantage of taint analysis is that it produces fewer false positives. By utilizing
data-flow analysis to keep track of the movement of inputs, taint analysis will not report
on cases where input is not used by an exploitable sink. This way, false positives are
avoided. A low false positive rate is important for developers as described by Christakis
and Bird [2016], and taint analysis is a good technique to achieve this.

In section 6.3.2 we proved that Find Security Bugs’ injection detectors are able to
have a perfect recall or precision depending on which confidence ranking is used. This is
achieved while still performing generally well with a high discrimination rate. By looking
at the results in Table 6.18, 6.19, 6.20, and 6.21, the strengths of taint analysis are clear.
Find Security Bugs is able to achieve 100% recall while still having a precision of 88%.
Similarly, it can also achieve a perfect precision with a 89% recall. Identical results are
also achieved by the detectors for path traversal and cross-site scripting.

ESVD uses taint analysis for all of its detectors. In section 6.3.3 we made changes
to the detectors’ implementation in order to detect all vulnerabilities and all source
variants. However, as the results in Table 6.25, 6.26, and 6.27 show, ESVD is not able
to replicate the results of Find Security Bugs despite both utilizing taint analysis. This
is due to a lacking implementation for control- and data-flow analysis.
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SpotBugs uses taint analysis in its detectors for SQL injection, HTTP response split-
ting, path traversal, and XSS. Similarly to ESVD, this implementation cannot compare
to that of Find Security Bugs either. The SQL injection detector does not rely solely
on taint analysis, but rather on detecting string concatenation. Taint analysis for the
HTTP response splitting, path traversal, and XSS detectors does not properly track the
data. All of this leads to poor results for SpotBugs as is evident in Table 6.15, 6.16, and
6.17. The implementation for taint analysis in SpotBugs is also detector-specific, which
both Find Security Bugs and ESVD have showed is not needed. Taint analysis is a gen-
eralizable technique that can be utilized by detectors for many kinds of vulnerabilities.
This is a strength that will be further discussed in section 7.2.

7.2. Generalizable Implementation

Section 6.3 showed us how a generalizable implementation can make it easier to change
an SAT. As mentioned in section 6.1.1, SpotBugs provides a framework for static analysis
on bytecode. This framework is used by all of its detectors, and makes it easy to develop
new detectors that expand SpotBugs’ capabilities. By using an implementation for static
analysis that is generalizable, SpotBugs encourages people to contribute to the project
through accessibility. There are several examples of contributions such as the ones by
Shen, Zhang, et al. [2008], Shen, Fang, and Zhao [2011], Ware and Fox [2008], Al-Ameen,
Hasan, and Hamid [2011], and Vestola [2012].

ESVD also has a generalizable implementation, but has taken it one step further. All
of the detectors use the same detection algorithm. The algorithm uses taint analysis and
the only difference between detectors is which sinks are used. This means that every
detector reaps the benefits of improvements to the algorithm. As shown in our proof in
section 6.3.3, it was easy to extend ESVD to detect new sources. Every source was only
added once, but used by all of the detectors. This is because all of the detectors share
the resource lists for sources as well as sanitization methods.

The taint analysis algorithm of Find Security Bugs is also shared by several detectors
and is similar in design to that of ESVD. However, Find Security Bugs also have detector-
specific implementations. It has a different take on shared implementation than ESVD.
Instead of only having a single algorithm that is shared, Find Security Bugs has different
algorithms for taint analysis, control-flow analysis, and data-flow analysis that a detector
can opt in to use. Find Security Bugs also has other shared resources such as the
password names in Figure 6.12.

7.3. Incomplete Collections of Sources and Sinks

Taint analysis, as discussed in section 7.1, uses lists of sources and sinks in its detec-
tion algorithm. Therefore, taint analysis is highly dependent on these resource lists to
detect vulnerabilities. If these lists are missing a source or a sink, a vulnerability will
consequently be missed as well.
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One of the recurring modifications we carried out when answering RQ3 in section 6.3
was adding missing sources and sinks. While all of the SATs had extensive lists, all of
them missed some sources and sinks as well. As we believe taint analysis is a powerful
tool to detect security vulnerabilities, we propose a mutual effort between developers to
construct complete lists of sources, sinks, and sanitization methods. We believe such
an effort would be beneficial for the SAT community as a whole as well as the software
security community.

When composing such a list, one will have to make decisions on what should be con-
sidered a safe or vulnerable source. As mentioned in section 6.2.5, the developers of Find
Security Bugs consider the sources System.getenv() and System.getProperty() to be
safe, while we show in 6.3.2 that they should be considered vulnerable as they are possible
to exploit. Similarly, we encountered the dilemma of whether methods and classes such
as BufferedReader.readLine() and InputStreamReader should be considered vulner-
able sources. On the one hand, they are generally used to handle input. On the other
hand, there is nothing inherently vulnerable about them. BufferedReader.readLine()
is not technically a source as it is not a method that retrieves data from outside the
application, but rather a method that input usually passes through. When adding them
as sources, they contribute to a higher recall since new source variants are detected, and
as long as the SATs use a strong taint analysis algorithm, they will avoid extra false
positives as they will only be reported when the data also reaches a sink.

The resource lists for ESVD are composed of method signatures. However, ESVD can
use an object instantiation as a source by using the signature of the class constructor.
This became apparent when evaluating the source variants Console ReadLine and File
as these use an object instantiation as a source. Using a class constructor as a source
produce the same results as a method with no more false positives or fewer true posi-
tives. The taint analysis framework in Find Security Bugs is similarly able to have class
constructors as sources.

7.4. Control- and Data-flow Analysis Limitations

A powerful detection algorithm will increase recall and precision. Few real-life vulner-
abilities have a source and sink right next to each other. Related sources and sinks in
natural code can be separated by anything from a few lines of code to being spread
over different files. Control- and data-flow analysis are vital techniques for detecting
and tracking what flows from source to sink. The problem with CFA and DFA is the
complexity of implementing them. Many of the false negatives we see in SpotBugs, Find
Security Bugs, and ESVD, are due to a badly implemented CFA or DFA.

Missing detections for the control- and data-flow variants in the Juliet Test Suite
are the result of badly implemented analysis techniques. In some cases, the analysis
algorithms are not even capable of processing the simplest control-flow variants, which
is the case for the hard-coded password detector in SpotBugs. ESVD also struggles
with control-flow, in particular if-statements and switch-statements. When considering
how vital and common if-statements are to the Java programming language, this is
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problematic.
The CFA and DFA algorithms implemented in the taint analysis in Find Security

Bugs are working well, but the hard-coded password detector cannot use it. While the
data sources in injection vulnerabilities stem from the return values of methods, the data
source in hard-coded password vulnerabilities stem from string literals directly coded into
the source code. The taint analysis framework in Find Security Bugs is built to only
allow methods as sources and sinks, meaning that the hard-coded password detector
cannot use the underlying taint analysis framework that is available. This results in
the hard-coded password detector having to do most of this analysis using differently
implemented CFA and DFA techniques. ESVD has solved this problem by modifying the
hard-coded password detector to detect literals instead of sources while still utilizing the
rest of the underlying taint analysis algorithm. This shows that even SATs with great
analysis capabilities, such as Find Security Bugs, can struggle with data-flow when these
algorithms cannot be utilized by all detectors.

Another limitation with the detection algorithms is the ability to track data across
multiple Java classes. Context-sensitive data-flow analysis is not something we find
in SpotBugs and ESVD. The Find Security Bugs detector for identifying hard-coded
passwords perform some actions to compensate for this lack of interprocedural analysis,
such as looking at the use of hard-coded class fields, but there is no analysis related to
tracking changes to this class field before being used in a vulnerable sink. ESVD is able
to track data through multiple methods within the same class, but does not track data
across multiple classes, i.e., context-sensitive data-flow analysis. On the other hand,
the injection detectors in Find Security Bugs are able to perform context-sensitive DFA
to some extent. The most difficult data-flow case in the Juliet Test Suite uses code
inheritance spread throughout multiple classes. The other difficult data-flow cases in
the Juliet Test Suite are similarly complicated. Not even the injection detectors in Find
Security Bugs are able to completely follow the interprocedural data-flow between these
classes.

7.5. Prioritized Output

Prioritizing detections is an important tool to control the trade-off between soundness
and completeness. According to Emanuelsson and Nilsson [2008], no static analysis tool
are both sound and complete. Christakis and Bird [2016] discovered through surveys
that most developers want a false positive rate below 15%. In many cases, it is hard to
reduce the false positive rate while maintaining a high recall, which is why prioritization
can make an important difference. Uncertain detections can be given a lower priority
or confidence, while certain detections are presented with a higher confidence. This ap-
proach allows the user to decide between recall and precision by adjusting the confidence
threshold.

From our analysis of SpotBugs, Find Security Bugs, and ESVD, only SpotBugs and
Find Security Bugs use a confidence ranking as described above. ESVD has a hard-coded
priority ranking based on which vulnerability the SAT regards as the most severe. A
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cross-site scripting vulnerability will have the highest priority no matter how confident
the detection is. In fact, no attempt is made at determining the confidence based on the
available information during the static analysis. On the other had, SpotBugs and Find
Security Bugs calculates a confidence based on how certain the SAT is regarding the
detection. There might be many suspicious circumstances that indicates a vulnerability
even though the origin of the suspicious data is unknown. SpotBugs and Find Security
Bugs will in most cases report these detection with a lower priority. We have seen
that a change to the confidence calculation can result in thousands of false positives
disappearing, as for SpotBugs in section 6.3.1.

The problem with the confidence ranking in SpotBugs and Find Security Bugs is the
inconsistencies when deciding which ranking to give. There are no developer guidelines
for how certain a detection must be to gain a high confidence. The same goes for the
other confidence rankings. This is especially apparent in the injection detectors in Find
Security Bugs. These injection detectors are almost completely similar in implementa-
tion, except for sinks and confidence ranking. If the user adjusts the minimum visible
confidence ranking so that only high confidence rankings are shown, no detections will
be reported for HTTP response splitting. The HTTP response splitting detector reports
confident detections with a medium confidence ranking, while the other four injection de-
tectors in Find Security Bugs report confident detections with a high confidence ranking.
Similarly to this, the other four detectors report uncertain detections with a medium
confidence, while the HTTP response splitting detector reports them with a low confi-
dence. This inconsistent behavior is everywhere in SpotBugs and Find Security Bugs,
and strongly reduces the users’ ability to adjust for recall or precision.

Shen, Fang, and Zhao [2011] implemented a new ranking system for FindBugs. This
ranking system is initially based on the likelihood of the bug or vulnerability, but later
changes based on user input. We believe that such an adaptive ranking system would
be effective, especially when the detectors in SpotBugs and Find Security Bugs produce
so diverse confidence rankings. An extension to this idea might involve the user de-
ciding which detections are true and false positives, resulting in the confidence ranking
threshold automatically adjusting to hide false positives. Although developer guidelines
for deciding confidence will have a larger impact on those who do not want to train the
adaptive confidence ranking, there is always the possibility of joining developer guidelines
with an adaptive confidence calculation.

7.6. Vulnerability Misclassification

Misclassification of vulnerabilities can lead to confusion and problems when identifying
possible countermeasures against a specific vulnerability. All three of the static analysis
tools we have looked at incorrectly classifies at least one vulnerability category each. A
serious security risk might be overlooked because it is believed to be a trivial vulnera-
bility. In a worst case scenario, this might lead to the vulnerability not being fixed.

ESVD is able to detect 18% of the hard-coded passwords in the Juliet Test Suite.
Early detection of hard-coded passwords can save a lot of time and resources later down
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the road, as both MITRE [2019a] and OWASP [2016] claim that it is almost certain a
malicious user will be able to access an account where the password is hard-coded into
the source code. It is therefore unfortunate that the hard-coded passwords detected by
ESVD is classified as a security misconfiguration. Hard-coding passwords into source
code is not a misconfiguration, but rather an authentication problem. It is also confusing
to security experts familiar with the OWASP Top 10 list, as one of the ten categories is
named Security Misconfiguration, but shares few similarities with the intended meaning
of ESVD’s use of the phrase.

All of the three SATs have problems with the classification of path traversal vulnera-
bilities. Path traversal is further divided into relative and absolute path traversal, and
it is differentiating between these that all of the detectors struggle with. SpotBugs has
a tendency to classify all path traversals as relative path traversal, due to a peculiar
algorithmic choice. We showed that it is possible to improve this part of the SpotBugs
algorithm in section 6.3.1. Find Security Bugs and ESVD have no ability to separate
the different path traversal vulnerabilities into their correct subcategories, as the taint
analysis framework is unable to separate relative and absolute path traversal when both
of the path traversal categories utilize the same sources and sinks. As discussed in
section 2.2.3, the two different categories of path traversal vulnerabilities might have
somewhat different countermeasures, resulting in it being difficult to properly sanitize
the user data. In general, it could also be possible to apply a countermeasure that only
works for one of the path traversal vulnerabilities, but still tricks the static analysis
tool into thinking the data has been sanitized for the other category of path traversal
vulnerabilities. For that reason, misclassifications of vulnerabilities can be dangerous.

7.7. Comparison to Related Work

In chapter 3, we presented the related work of our master thesis. Many have evaluated
static analysis tools before, such as Charest, Rodgers, and Wu [2016] who evaluated four
static analysis tools on test cases from the Juliet Test Suite. Oyetoyan et al. [2018] also
evaluated several static analysis tools on the Juliet Test Suite, including SATs such as
FindBugs, Find Security Bugs, and LAPSE+. Both Charest, Rodgers, and Wu [2016]
and Oyetoyan et al. [2018] have similarities to our research, but also differences. We
have focused on vulnerabilities that the OWASP Top 10 list considers the most critical,
while they have respectively only selected a few vulnerabilities or evaluated on the whole
test suite. What differentiates our research the most is our implementation analysis. We
found no research that has gone beyond just presenting the numbers by analyzing the
source code like we have.

We have also made modifications to the source code of the SATs in order to prove
our hypotheses with proof-of-concept improvements. These changes made to the imple-
mentation of the SATs lead to improved performance results. Al-Ameen, Hasan, and
Hamid [2011] as well as Ware and Fox [2008] both added new detectors to FindBugs
to enhance the SAT’s coverage. FindBugs is the only SAT we could find that have
received improvements in related work. Shen, Zhang, et al. [2008] and Vestola [2012]
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also added new detectors to FindBugs as part of their research. However, none have
modified existing detectors to improve the performance of multiple SATs like we did in
section 6.3.

7.8. Limitations of the Juliet Test Suite

The limitations of the Juliet Test Suite might have affected the results of this master
thesis. There are three main limitations of the Juliet Test Suite: missing vulnerabil-
ity categories, missing sources and sinks within a vulnerability category, and missing
variations of data being passed to a sink. All three limitations will be discussed below.

Although the Juliet Test Suite has been a valuable resource when attempting to un-
derstand why an SAT performs poorly, this master thesis has mostly focused on the
implementation and limitations of the SATs. The Juliet Test Suite is not necessary to
understand the implementation and limitations, but rather a tool to help us understand
where to start looking and a tool that is helpful for explaining to the reader how and
where the SATs fail and prosper. That being said, it is difficult for us to guarantee that
every nuance of the SATs implementation have been understood without also testing on
other source code, be it natural code or another test framework. It is also difficult for us
to guarantee that every limitation has been identified. As we have seen for ESVD, it has
a tendency to crash and stop working on the Juliet Test Suite, which is a problem we
have not seen for SpotBugs or Find Security Bugs. This does not mean that SpotBugs
and Find Security Bugs are stable though, only that the two are stable when working
on the Juliet Test Suite. Similarly, Find Security Bugs performs very well on the test
cases in the Juliet Test Suite, but there is no guarantee that it will perform well on any
other vulnerable source code.

The Juliet Test Suite does not have test cases for all vulnerabilities, and does not
have test cases for every variation within the vulnerability categories. As seen in the
pre-study, some of the vulnerability categories from OWASP Top 10 are not covered by
the Juliet Test Suite, making it impossible for us to test any potential detector on these
vulnerabilities. It is also possible that the sources and sinks in the Juliet Test Suite
unfairly favor one of the SATs. Although the Juliet Test Suite contains many sources
and sinks, there is always room for more. As seen in the SQL injection test cases in the
Juliet Test Suite, all the test cases include a string concatenation when the data is sent
to the sink. Since the SQL injection detector in SpotBugs always reports a vulnerability
when it sees a string concatenation reaching a vulnerable sink, this structure of the SQL
injection test cases favor SpotBugs. Test cases with other variations of data being passed
to sink than the ones used in the Juliet Test Suite could have quickly demonstrated this
SpotBugs limitation, and possibly many more.

7.9. Threats to Validity

Threats to internal validity include selection bias and experimenter bias. The selection
of static analysis tools is based on the available tools from our pre-study, in addition to
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the capabilities and techniques found in these SATs. It is possible to rely on erroneous
information in a selection process, which is why we described our selection criteria in
detail in section 5.4, and based our knowledge of the tools on information provided by the
SAT authors themselves. In addition to the SATs, we also selected a list of vulnerabilities
to analyze. Ranking vulnerabilities ourselves based on impact and importance is error
prone, which is why we decided to rely on a trustworthy and well-established list of
vulnerabilities, namely the OWASP Top 10.

There is also a possibility of experimenter bias. In our case, the experimenter bias
would relate to non-consciously changing our approach to testing and analyzing the
SATs. ESVD is very unstable, and it is vital to verify that none of the results are
missed due to a crash. Find Security Bugs produce inconsistent results for one of the
flow variants in the Juliet Test Suite. To reduce the experimenter bias threat, it is
important to create a list of criteria and steps describing the approach to be taken. Such
a description can be seen in section 5.4, where our approach to testing and analyzing
the SATs are described in detail.

Threats to external validity include the generalizability and replicability of the results.
The best performing static analysis tools from our pre-study are selected, where our
pre-study contains the five most popular free and open-source SATs related to detecting
security vulnerabilities. Only three SATs are included in this master thesis, which at
first might question the generalizability of our results. By looking at the limitations
presented in section 6.3 and 6.4, it is apparant that the SATs share a lot of similar
limitations. There are a limited number of SATs that fit the criteria set for this master
thesis, making the three SATs representative. However, it is not possible to generalize
the results to commercial static analysis tools as these are in a completely different
category regarding development and research funding.

Replicating qualitatively data analysis can in some cases be difficult. We have to the
best of our abilities described and planned the approach, see section 5.4. The results
are also described in detail, with quantitative proofs provided on our GitHub page.
The necessary source code for parsers and SAT modifications are available for free to
encourage replicability.

Using the Juliet Test Suite is, to an extent, both an internal and external threat.
Regarding the internal validity, it might be difficult to fully explore the causality when
implementation defects are compared to the Juliet Test Suite results. Regarding the
external validity, an SAT might be designed to detect the Juliet Test Suite and nothing
else, decreasing the generalizability of the research. Although we have not seen any
attempts at customizing the SATs to only detect the test cases in the Juliet Test Suite,
there is still a possibility that other test suites might lead to different results. Where
necessary, we have temporarily modified test cases in the Juliet Test Suite to explore if
specific code structures in the test cases are the reason for missing results.
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8. Conclusion and Future Work

We have analyzed the implementation and identified limitations for three open-source
static analysis tools aimed at detecting security vulnerabilities, namely SpotBugs, Find
Security Bugs, and ESVD. A common pattern of strengths and limitations emerged as
a result of this analysis. A generalizable implementation and the use of taint analysis
are important techniques for increased detection rates. Incomplete collections of sources
and sinks is a limitation with a large impact on the detection rates of the static analysis
tools; the same applies to weak control- and data-flow analysis. The misclassification of
vulnerabilities and an inconsistent or missing confidence ranking also negatively affect
the SATs.

A static analysis tool that claims to cover a specific vulnerability has an inherited
level of trust to fulfill. Bringing the actual performance and limitations of these tools
into the spotlight helps to prove or disprove any question about their applicability.
This master thesis, in conjunction with the paper published to EASE 2019, serves to
bridge the gap between how well the SATs claim to perform, and how well they actually
perform. To produce the performance results presented in this master thesis, at least
20,000 vulnerability reports were analyzed, based on 7,215 distinct test cases spanning
11 vulnerabilities.

We have shown that some of the techniques used by the analyzed detectors seem to
be highly beneficial to the coverage and correctness of detections. The detectors that
use taint analysis produce fewer false positives than those who do not. This reduction
of false positives mainly results from not reporting cases where vulnerable input does
not reach an exploitable sink. We also found the detectors based on a generalizable and
shared implementation performed much better than the detectors that tried to create
their own algorithms of data tracking and vulnerability detection. When a generalizable
and shared detection algorithm is used, we found it easier to extend and correct the
implementation. Improving or otherwise modifying an individual detector will not lead
to improvements for other detectors, but that is not the case for improvements made to
a shared algorithm.

We have also identified common limitations that are damaging to the detectors’ results.
Missing sources and sinks account for a large portion of the false negatives produced by
the SATs. We propose a collective effort to compose lists of potentially vulnerable
sources and sinks, as we have often experienced that sources or sinks missing from one
SAT is present in another. A collective list would benefit all participating static analysis
tools. We also identified that many of the false positives and negatives are the result
of limited control- and data-flow analysis capabilities. It is rarely the case in natural
code that a vulnerable source and sink come right after each other. It is much more
common that vulnerable sources and sinks are separated by methods or classes, requiring
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a well-performing context-sensitive data-flow analysis. We believe the detectors that
perform the best on more complex test cases from the Juliet Test Suite are likely to also
perform well on natural code. In addition to badly performing DFA and missing sources
and sinks, we saw inconsistent confidence ranking and vulnerability misclassifications.
The inconsistent confidence ranking make it difficult to balance the trade-off between
soundness and completeness, while the misclassification of vulnerabilities can lead to the
vulnerability being ignored or create confusion about which countermeasure to apply.

There exists no similar research where the implementation and limitations of open-
source static analysis tools for detecting security vulnerabilities have been analyzed. This
master thesis serves as an important first step into analyzing how these static analysis
tools are able to perform the way they do. Although it is possible to feel a sense of
frustration when looking at the identified limitations, we are left with a bright outlook
on the future of these SATs. It is our opinion that the development effort invested,
and the performance of these SATs are impressive when considering the development
is fueled by volunteers working without pay. Although much work is left before any of
them will be completely sound and correct, all three tools have made great strides in
the field of static analysis.

It is possible to extend our implementation and limitation analysis to other static anal-
ysis tools, and to cover other security vulnerabilities or software bugs. Especially the
relationship between open-source and commercial SATs is interesting, although it might
be challenging to receive permission to publish detailed implementation descriptions of
commercial tools.

One of the criteria in our research implementation limits the selected vulnerabilities
to those where we could compare the SATs’ implementations and limitations. If this
criterion is removed, there are additional detectors from our pre-study which can be
analyzed. The detectors do not necessarily have to be geared at security vulnerabilities
from the OWASP Top 10 either, but can look at different security vulnerabilities or
software bugs.

Another interesting variation of our research is to change or improve the test suite.
Although the Juliet Test Suite contains many different source and flow variants, it is
not exhaustive. As we have seen for the hard-coded password detectors in Find Security
Bugs, many of the detectors are aimed at vulnerabilities not present in the Juliet Test
Suite. It is possible to use another test suite, to combine multiple of them, or to extend
the Juliet Test Suite with new test cases. It is even possible to test on natural code. All
of these possibilities can help identifying different strengths and limitations in the SATs.

This master thesis has analyzed the implementation of open-source static analysis tools
for detecting security vulnerabilities, something no one has previously carried out. There
are many potential paths for future work, and this master thesis presents important
building blocks that future work can build upon. The new information contributed by
our research comes in the form of thorough explanations of the SATs’ implementation in
section 6.1, granular and detailed performance results in section 6.2, identifying limita-
tions and applying code modifications to improve the performance results in section 6.3,
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and the improvement proposals presented in chapter 7. The proposed improvements are
not only relevant to SpotBugs, Find Security Bugs, and ESVD, but also to other existing
and future SATs. It is necessary to understand the inner workings of the static analysis
tools that help achieve secure software, and we believe our master thesis has completed
this important first step of the process.
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Appendix A.

Scientific Paper of our Pre-Study

This appendix contains the published scientific paper of our pre-study. In its origi-
nal form, our pre-study was our specialization project as part of the TDT4501 course
at NTNU. It was concurrently with the work on this master thesis published on its
own to the Evaluation and Assessment in Software Engineering (EASE) 2019 confer-
ence. EASE is ranked as an A-conference by both the Excellence in Research in Aus-
tralia (ERA) [2010] and Computing Research and Education Association of Australasia
(CORE) [2018].

During the work on this master thesis, we discovered we had made an error during
the evaluation of ESVD for the categories A5 Broken Access Control and A7 Cross-Site
Scripting. We reported in our paper that CWE-23 Relative Path Traversal and CWE-36
Absolute Path Traversal were not detected by ESVD. However, after a new evaluation,
both of them gets reported. All of the CWE entries in A7 Cross-Site Scripting also
produced higher numbers than first reported. Our theory is that this happened because
of ESVD’s unstable behavior with repeated crashes and freezes. In addition to this, we
discovered that ESVD does in fact cover CWE-259 Hard-coded Password despite not
claiming to do so. We also found that some of the results for Find Security Bugs were
slightly incorrect due to a bug in the SAT itself. All results in our master thesis are
adjusted accordingly, and the original results are kept in this scientific paper.
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ABSTRACT
Securing information systems has become a high priority as our
reliance on them increases. Global multi-billion dollar companies
have their critical information regularly exposed, costing them
money and impairing their users’ privacy. To defend against secu-
rity breaches, IDE-integrated plugins to detect and remove security
vulnerabilities in the �rst place are being used more frequently.
More information about these plugins is needed in order to im-
prove the state of the art within the �eld. Five open-source IDE
plugins which can identify and report vulnerabilities are evaluated.
We evaluate and compare how many categories of vulnerabilities
the plugins can detect, how well the plugins detect the vulnera-
bilities, and how user-friendly the output of the plugin is to the
developers. Our results show that certain vulnerabilities such as
injection and broken access control are vastly covered by most
plugins, while others have been completely ignored. A discrepancy
between the claimed and actually con�rmed coverage of the plugins
is discovered, underlining the importance of this research. High
false positive rate and obvious limitations in usability show that
more work is needed before these plugins can be widely used and
relied upon in a corporate setting.
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1 INTRODUCTION
As society gets more dependent on technology, the importance
of securing information systems increases. A solution to reduce
the number of security vulnerabilities is static analysis tools. With
these tools included directly into the Integrated Development En-
vironment (IDE) of the developer, they have never been easier to
use. Unfortunately, not a lot of research has been made to compare
and evaluate the existing IDE plugins, leaving the users to blindly
accept the developer’s claims of quality.

In this study, we aim to provide information about the state-of-
the-art open-source IDE plugins. We report on their actual coverage
of vulnerabilities, their performance, and their usability. This is
achieved by evaluating them using a credible framework, i.e., Juliet
Test Suite [12], for test cases and commonly used performance
metrics, e.g., recall, precision, and discrimination rate. We select
and evaluate �ve open-source plugins, namely ASIDE [14, 27, 28],
ESVD [23, 24], LAPSE+ [2, 15], SpotBugs [8, 25], and Find Security
Bugs (FindSecBugs) [6]. The plugins are evaluated on the most
critical security vulnerabilities according to OWASP Top 10 [16],
a reputable source for web application security. The evaluation
looks for limitations of the existing plugins and is conducted with
reproducibility in mind.

Our contribution comes in the form of two evaluations, i.e., a
practical evaluation focused on coverage and performance as well as
a theoretical evaluation of usability. Our results show that the eval-
uated plug-ins have clear limitations and a worrying discrepancy
between what they claim and what they do. Coverage is focused
around vulnerabilities connected to injection and access control,
while other categories are left untouched. Several of the plugins
also have a high false positive rate, which Christakis and Bird [4]
identi�ed as a leading cause of disuse. Many of the features, such as
quick �xes, are not implemented adequately in the plugins. Insights
we get from this study can help guide the open-source communities
to improve their plugins further. For users of the plugins, our results
can help them to understand better the strengths and weaknesses
of the plugins they intend to use.

The rest of the paper is organized as follows. We introduce related
studies in Section 2, and explain the design of the study in Section
3. Section 4 presents our evaluation results. We compare our results
with related work in Section 5, and conclude our paper and discuss
possible future work in Section 6.

2 RELATED WORK
Johnson et al. [9] looked at why static analysis tools, despite their
bene�ts, are not widely used by developers. Through interviews
with 20 software developers, they look at how current tools can
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be improved. Results show that reasons for developers using static
analysis tools are mainly because they automatically �nd bugs, they
are already a part of the development environment, or for raising
awareness of potential problems in a team setting. A reason for
not wanting to use static analysis tools is poorly presented output.
Another reason is large quantities of false positives, sometimes
outweighing the true positives in volume.

Christakis and Bird [4] looked at what makes a static program
analyzer attractive to developers through a broad survey of 375
Microsoft employees. They found that bad warning messages and
slow speeds are reported pain points. It is interesting to note that
while too many false positives is a largely reported pain point, too
many false negatives is not. 90% of the participants are willing
to accept a 5% false positive rate, while 47% of developers accept
up to a 15% false positive rate. When forced to pick more bugs or
fewer false positives, they typically choose fewer false positives.
Developers also want the possibility of analyzing only part of the
code, such as a �le. Another feature that is often used and often
requested is the possibility of suppressing warnings, preferably
through code annotations.

Baset and Denning [1] collected information about available IDE
plugins and compared them based on information provided by de-
velopers or manufacturers. They compared factors such as IDEs and
languages supported, availability, scope of feedback, vulnerabilities
covered and plugin uptake. The goal of their work was to synthesize
the available information for future work within the �eld. In total,
they gathered information about 17 di�erent IDE plugins. Among
them were both free and commercial tools as well as closed- and
open-source. The vulnerability coverage comparison focused on
nine input-validation related vulnerabilities. Of the nine vulner-
abilities in question, only ESVD, FindBugs and LAPSE+ claimed
to check for six or more. In addition, only ASIDE and Codepro
AnalytiX provided quick �xes when reporting on vulnerabilities.
Baset and Denning did not evaluate the plugins themselves, and all
the information they collected came from other sources.

Oyetoyan et al. [19] looked into the capabilities of the freely
available, open-source static analysis tools FindBugs, FindSecBugs,
SonarQube, JLint, LAPSE+, and an undisclosed commercial tool.
They tested the tools on all of the test cases in the Juliet Test Suite.
Their results showed that FindSecBugs and LAPSE+ had the most
true positives, and that FindSecBugs also had the highest recall and
precision. FindSecBugs also had a good discrimination rate, while
LAPSE+ was poor. The commercial tool ranked third of all the tools
and had a poor precision. In addition to evaluating the e�ciency,
Oyetoyan et al. also interviewed six developers on their experience
with using static analysis tools. They discovered developers had
a generally positive attitude towards them, but that there were
several barriers that stood in the way such as the need for multiple
tools as well as poor performance.

There are multiple other related works. Charest et al. [3] com-
pared the accuracy and precision of CodePro AnalytiX, JLint, Find-
Bugs, and VisualCodeGrepper. The results were generally low, but
Charest et al. argued that it was not too alarming as other studies
had shown similar recall and precision for other tools, both open-
source and commercial. Sadowski et al. [22] present a static analysis
platform developed at Google and a philosophy on how such a plat-
form should be created. Google’s philosophy on program analysis

is to have no false positives, allow the users to contribute with their
own detections, reducing confusing tool output by accepting user
feedback, and that the program should be analyzed while the user
is changing or compiling the code.

3 RESEARCH DESIGN AND
IMPLEMENTATION

Existing comparisons of vulnerability detection plugins lack vig-
orous testing on Java code for many of the free and open-source
plugins. Some plugins claim to be developing new detection meth-
ods that would be superior to previous tools, but do not con�rm this
through testing afterwards. Not knowing what vulnerabilities each
plugin covers, and its accuracy and performance when scanning
for security vulnerabilities, can result in reduced usage or misuse of
such tools. The focus on comparing existing free and open-source
static analysis tools in regards to usability is non-existent. Consid-
ering the usability aspect of such tools plays a signi�cant role in
how many developers may choose to use these tools. The lacking
amount of comparisons is problematic.

Our research aims to evaluate the vulnerability coverage, perfor-
mance, and usability of current free and open-source IDE plugins
utilizing static analysis on Java applications. For a large amount of
free and open-source IDE plugins, such an evaluation does not exist
today. We believe that an evaluation like this could bring useful
information to developers without deep �nancial pockets, where
buying expensive vulnerability scanners is too costly.

We formulate the following four criteria for selecting the plugins:

(1) The IDE plugins must detect security vulnerabilities, not just
code bugs.

(2) The IDE plugins must be freely available and open-source.
(3) The IDE plugins must report detected vulnerabilities inside

the IDE without the need for external software.
(4) The IDE plugins must detect vulnerabilities in Java code.

We want to evaluate plugins that are able to mitigate security
vulnerabilities in code and can be used by both individuals, de-
velopment teams, and large corporations. In order to lessen the
work it is to adopt a static analysis tool, we want to contribute
with information on how to improve an IDE plugin that requires
minimal e�ort to install, learn, and use on a daily basis. This is the
reasoning for the �rst three speci�cations listed above. To limit the
study scope, we focus only on plugins analyzing Java code, as Java
is the most used programming language according to TIOBE [26].

3.1 Research Questions
Based on the criteria presented, we formulate three research ques-
tions. For current open-source IDE plugins used to identify security
vulnerabilities in Java using static code analysis:

RQ1 What is the coverage?
RQ2 How good is the performance?
RQ3 How good is the usability?
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3.2 Plugins to be Tested and Test Cases
Based on information in [1], we decide upon the plugins in Table 1.
All the plugins are available for the Eclipse IDE, and Eclipse is used
for the evaluation. SpotBugs is not covered in [1], but its spiritual
predecessor FindBugs is. We decide to focus on SpotBugs instead of
FindBugs since SpotBugs is still actively worked on, while FindBugs
has not been updated in years. FindSecBugs is not an IDE plugin
in the same sense as the others. Instead, it is a plugin for SpotBugs
(and FindBugs). That means it requires SpotBugs to run and its
purpose is to expand the capabilities of SpotBugs further.

Plugins that are the result of academic work are especially in-
teresting to us as they have more documentation and give more
insights into their implementation. Both ASIDE and LAPSE+ are
included due to this fact even though they are no longer being
supported. Of the �ve plugins we have selected, only FindBugs
(SpotBugs) frequently occurs in previous studies, such as [3], which
compare static analysis tools. In other words, this evaluation will
also provide new useful information about their coverage, perfor-
mance, and usability.

Table 1: Information about the selected plugins.

IDE Plugin Downloaded From Version Date
ASIDE GitHub [28] 1.0.0 Feb 2013
ESVD GitHub [23] 0.4.2 Jul 2016

LAPSE+ GitHub [2] 2.8.1 Jun 2013
SpotBugs Eclipse Marketplace [25] 3.1.11 Jan 2019

FindSecBugs Project Webpage [6] 1.8.0 Jun 2018

ASIDE is created with early detection in mind and with the goal
to educate the user in secure programming. However, the static anal-
ysis tool does not o�er any control- or data-�ow analysis. Neither
does LAPSE+, but it gives the user the opportunity to track vari-
ables manually through its provenance tracker. ESVD is inspired by
ASIDE’s focus on early detection and improves upon it by including
data-�ow analysis. It also claims to use inter-procedural analysis.
SpotBugs and FindSecBugs analyze the Java bytecode instead of the
raw source code like the others. Both of them utilize control-�ow,
data-�ow, and inter-procedural analysis.

In order to test the IDE plugins in Table 1, we need test cases
containing security vulnerabilities. Many comparisons of static
analysis tools, such as the one by Rutar et al. [21], test the tools
on the source code of actual software which can be referred to as
natural code. As explained by NSA [13], this has both advantages
and drawbacks. Two major issues are:

• Identifying false negatives. In natural code, it is often prob-
lematic to know how many vulnerabilities there are in the
code. Without knowing this, it is impossible to calculate the
number of false negatives.

• It is also problematic to know which types of security vulner-
abilities are present. Thus, natural code cannot con�dently
prove which vulnerabilities an IDE plugin covers.

Delaitre et al. [5] also compared di�erent types of test cases and
which performance metrics they were applicable to test for. Table 2

shows the applicability of natural and arti�cial code as according
to [5].

Table 2: Metric applicability for natural and arti�cial code
according to Delaitre et al. [5].

Metric Natural Code Arti�cial Code
Coverage Limited Applicable
Recall Not applicable Applicable
Precision Applicable Applicable
Discrimination Not applicable Applicable

Given the purpose of our evaluation, it is apparent that using
arti�cial code is bene�cial to get the most accurate results. To choose
the arti�cial code to compare the plugins, we consider four possible
frameworks with vulnerabilities deliberately inserted: WebGoat
[18], SecuriBench Micro [10], OWASP Benchmark [17], and Juliet
Test Suite [12, 13]. We conclude that WebGoat is not suitable to test
static analysis tools and that both SecuriBench Micro and OWASP
Benchmark did not have test cases for enough vulnerabilities. Juliet
Test Suite, on the other hand, ful�lls both of these criteria.

Juliet Test Suite is a collection of intentionally vulnerable arti-
�cial code. Its purpose is to serve as a testing platform for static
analysis tools. It consists of over 28,000 test cases which are catego-
rized into 112 di�erent CWE entries [12]. Each test case includes
exactly one vulnerability as well as at least one non-�awed con-
struct meant to represent a potential false positive. A single CWE
entry can have thousands of test cases spanning over simple cases,
control-�ow cases and data-�ow cases, where the later cases are
more di�cult to detect. All of this is intuitively incorporated in
the naming of the test cases and its containing methods, which are
further explained in its documentation [13]. It is still maintained
and also used in previous research such as [3] and [19].

3.3 Measurement Metrics
We collect both quantitative and qualitative data to answer our
research questions. For RQ1, we need to decide what test case cov-
erage we want. Test case coverage is here de�ned as which security
vulnerabilities we will test for. We decide to cover the vulnerabili-
ties in OWASP Top 10 [16] because it is a reputable source for the
most common and important web application vulnerabilities.

For RQ2, we use the performance metrics de�ned by Delaitre
et al. [5]. The metrics are: 1) Recall, which is the percentage of
vulnerabilities detected out of the total amount; 2) Precision, which
is the percentage of alleged vulnerabilities the plugin reports that
are indeed true vulnerabilities; 3) Discrimination Rate, which is
the percentage of test cases the plugin discriminates. A plugin
discriminates a vulnerability if it only reports a true positive on it,
but no false positives.

Discrimination Rate = Number of Discriminations
Number of Test Cases

For RQ3, we decide to perform a qualitative evaluation. The
usability metrics are taken from [4], [9], and [22]. In detail, we
compare:

• Tool Output. Johnson et al. [9] and Sadowski et al. [22]
found that poorly and confusing presented analysis output
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was a largely reported problem when trying to �gure out
why software developers do not use static analysis tools.
Developers want to know what the problem is, why it is
a problem, and what should be done di�erently [9]. The
tool output will be analyzed qualitatively. The satisfaction
requirements are listed below, and must be present for a
large portion of the vulnerabilities:

What is the problem? The output clearly states where the
problem is in the form of line number and �le name. The
output also clearly states the vulnerability category of the
problem.

Why is it a problem? The output clearly states why the
reported vulnerability is a problem through text or an
example. This must include the consequences of the vul-
nerability being in the code.

How to �x the problem? The output clearly states how
to �x the problem through text or an example. Quick �xes
also satisfy the requirement if all presented quick �xes
are valid solutions to the problem, but not in the case
where the tool does not try to make a distinction between
relevant and irrelevant quick �xes.

• False Positive Rate. Christakis and Bird [4] found that over
half the participants in their study do not accept a false
positive rate above 15%. To present the false positive rate
as clearly as possible, we will use two di�erent methods to
generate the percentage. The �rst method is calculating the
false positive rate for each CWE, and then averaging the
rate into what we call averaged false positive rate. The other
method is adding all the true and false positives for each
CWE into a total true positives and total false positives, and
then calculating the false positive rate of the total, which we
call false positive rate of total result.

• Prioritized Output. A high false positive rate might be
counteracted by a prioritized output [7]. This metric will
look at if the reported vulnerabilities are sorted by priority.

• Quick Fixes. Johnson et al. [9] and Sadowski et al. [22]
discuss the need for quick �xes which can automatically �x
the vulnerability. For each plugin, we investigate if quick
�xes are presented to the user in a way that allows it to be
automatically applied.

• Early or Late Detection. When looking at what the devel-
opers preferred, Johnson et al. [9] found that there was little
agreement. Some developers preferred the tool to run in the
background and immediately notify them of any bugs. Oth-
ers preferred to integrate it with the compiler or sometimes
later in the work�ow. We look at whether the plugins utilize
either early detection, late detection, or both.

• Warning Suppression. We check whether the plugin pro-
vides features to suppress the warnings. Both Johnson et al.
[9] and Christakis and Bird [4] found that developers wanted
the possibility of suppressing speci�c warnings, preferably
through code annotation.

• Environment Integration. Developers are more likely to
use the static analysis tool if it is already part of the devel-
opment environment [9]. Sadowski et al. [22] found that
the use of static analysis tools dropped when the developer
was forced to run the analyzer as a stand-alone binary. This
metric will be two binary results of whether the tool can
integrate with the Eclipse IDE, and whether the plugin is
available through the Eclipse Marketplace.

• Immediate or Negotiated Interruptions. Robertson et al.
[20] describe the di�erent styles of alerting mechanisms to
investigate the impact of di�erent interruption styles on the
user. Negotiated-style interruptions are interruptions that in-
form the user of a pending alert without forcing them to
acknowledge it at once. Immediate-style interruptions are
alerts that immediately require the attention of users. Only
negotiated-style interruptions were shown to have advan-
tages [20].

• Extendability. The extendability metric will look at if the
tools can be legally modi�ed or extended. We will consider
a tool to be legally modi�able if the source code is freely
available, and under a software license where the code can
freely and without cost be modi�ed and redistributed. We
will consider a tool easily extendable if it has a free API that
allows any developer to modify and extend the original tool.

• Granularity of Analysis. When Christakis and Bird [4]
asked to what level of granularity the developers would like
to direct a program analyzer, �le level (35%) or method level
(46%) were chosen by the majority of participants. We will
check if any of the tools support either �le or method level
granularity.

3.4 Research Implementation
Before conducting the evaluation, we need to assure ourselves that
each IDE plugin is available and function properly. This proved not
to be the case for ASIDE as the web page dedicated to the ASIDE
project consists of mostly dead links to the plugin. This means we
have to download the source code and build the plugin ourselves.
We also have to change a couple of lines of code to correctly import
external libraries as these are sets with an absolute path to the
developer’s computer. In addition, all plugins run in the newest
version of Eclipse at the time, Eclipse Photon, except for LAPSE+
which we only manage to run in the older Eclipse Helios.

In order to automate the process of testing the IDE plugins, we
create parsers that take the raw output data of the IDE plugins and
transform it into the �nished results of true positives, false posi-
tives, false negatives, and our performance metrics. This requires
us to change the code that outputs the results of ASIDE, ESVD, and
LAPSE+ as the information they provide is not adequate. We are par-
ticularly careful to only change the textual output from the plugins,
without changing any logic that could alter the detection algorithms.
The parsers are written in Python and with modularity in mind.
The modi�ed source code of the plugins and the source code of
the parsers are available at https://github.com/Beba-and-Karlsen/.
There are four di�erent versions of the parsers, namely aside.py,
esvd.py, lapseplus.py and spotbugs.py. As FindSecBugs is a plugin for
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SpotBugs, they use the same version. All of these versions include
the plugin-speci�c code for interpreting the bug reports. Then, they
send the results to plugincommon.py that does the rest. In other
words, they are similar in function, but with some implementation
di�erences. They can all be explained as executing the following
steps:

(1) Read bug report - The parser runs through the �le contain-
ing the bug reports, extracting relevant information such as
�le name, CWE ID, vulnerability category, and in which test
case it is detected.

(2) Filter bug report - The results are sent to plugincommon.py
that checks whether each vulnerability is a true positive,
false positive, or irrelevant. It then adds it to the respective
list. Whether it is a true or false positive is based on the
method it is detected in. All �awed methods in the Juliet Test
Suite are named in a particular way. It is deemed relevant if
the vulnerability category corresponds to the CWE entry of
the test case. The output of the parsers is compared with the
vulnerability categories provided by the plugin developers
or documents.

(3) Calculate test results - With the �ltering done, the parser
then calculates the number of true positives, false positives,
false negatives, recall, precision, and discrimination rate.

(4) Print and log results - In the end, the parser prints the
results to screen and logs all results to a log �le.

Juliet Test Suite v1.3 covers over 28,000 test cases spanning 112
di�erent CWE entries. To run the plugins directly on the whole
project would be very time-consuming and memory demanding.
Because of this, we manually pick out the CWE entries we intend
to test. Doing this manually is made easier by the fact that each
test case in the Juliet Test Suite is categorized and sorted under its
corresponding CWE entry. Selecting these CWE entries are based
on the external references in OWASP Top 10 [16] and the CWE-
1000 Research Concepts [11]. With the help of these resources, we
are able to select the relevant CWE entries for each vulnerability
category in OWASP Top 10.

However, not all CWE entries have a test case in the Juliet Test
Suite. The 14 relevant CWE entries not included are listed in Table 3.
In Table 5, all selected CWE entries that are included in the Juliet
Test Suite are listed. In total, the plugins are tested on 8,675 test
cases. As shown in Table 3, the Juliet Test Suite has no test cases
for the CWE entries from categories A4 XML External Entities
(XXE), A8 Insecure Deserialization, or A10 Insu�cient Logging &
Monitoring. In addition, no CWE entry at all matches A9 Using
Components with Known Vulnerabilities. This is because this is
a category that is more abstract, and is not a concrete weakness.
This cannot be tested for by static analysis tools.

4 RESEARCH RESULTS
4.1 RQ1: What is the coverage?
For RQ1, the coverage is de�ned by which and how many vulnera-
bilities the IDE plugin can detect. To answer what the coverage is
of current plugins, we can look at both what they claim to detect
and what our evaluation con�rms they detect. We are looking at
coverage for vulnerabilities in OWASP Top 10 included in the Juliet

Table 3: The relevant CWE entries missing from the Juliet
Test Suite.

OWASP CWE Entries not in Juliet Test Suite
Category ID Name

A1 564 Hibernate Injection
917 Expression Language Injection

A2 384 Session Fixation

A3
220 Exposure of sens. info through data queries
326 Weak Encryption
359 Exposure of Private Information

A4 611 Improper Restriction of XXE

A5 284 Improper Access Control (Authorization)
285 Improper Authorization

A6 2 Environmental Security Flaws
16 Con�guration

A8 502 Deserialization of Untrusted Data

A10 223 Omission of Security-relevant Information
778 Insu�cient Logging

Test Suite. The results of our evaluation are shown in Table 4 and 5.
The data in Table 5 show the number of true positives and false pos-
itives for each plugin divided into groups by CWEs. The hyphens
(-) indicate that the CWE is not claimed to be covered by the plugin.
The CWE is listed with its unique ID, name and its total amount
of test cases. Based on the results of Table 5, we made a summary
of the con�rmed and claimed coverage for each plugin, which is
shown in Table 4. The percentages correspond to the number of
covered CWE entries covered by the plugins divided by the total
number of all the vulnerabilities included in the Juliet Test Suite,
which has 29 vulnerability categories.

Note that the results from FindSecBugs do not include the de-
tections from SpotBugs, as we would like the coverage and perfor-
mance of FindSecBugs to speak for itself. This allows us to evaluate
the techniques of FindSecBugs independent from those of SpotBugs.
In a typical use case, SpotBugs would by default be concurrently
running when using the FindSecBugs extension.

Table 4: Con�rmed and claimed coverage of the IDE plug-
ins. Full coverage corresponds to covering all 29 vulnerabil-
ity categories.

Tools Con�rmed Coverage Claimed Coverage
ASIDE 12 41% 12 41%
ESVD 5 17% 13 45%

LAPSE+ 8 28% 11 38%
SpotBugs 8 28% 8 28%

FindSecBugs 18 62% 19 66%

The results in Table 4 and 5 show that the claimed coverage of
the plugins is not great, with FindSecBugs being the only one with
a claimed coverage higher than 50%. The con�rmed coverage of
our evaluation is even worse. Especially ESVD and LAPSE+ have
several vulnerabilities they claim to cover, where our evaluation
has shown that they in fact do not. It is worth noting that this could
be due to the fact that the plugin does not detect the particular
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Table 5: Detailed coverage data, showing the number of true and false positives. A hyphen (-) indicates that the plugin does
not cover the CWE. The CWE is listed with its unique ID and its total number of test cases.

CWE IDE-Integrated Static Analysis Tools
ID Name ASIDE ESVD LAPSE+ SpotBugs FindSecBugs
A1 Injection Total TP FP TP FP TP FP TP FP TP FP
78 OS Command Injection 444 185 0 49 0 444 624 - - 378 50
89 SQL Injection 2220 3a 3a 1440 2280 2220 3060 2220 3000 1900 300
90 LDAP Injection 444 185 0 0 0 0 0 - - 379 50
113 HTTP Response Splitting 1332 555 795 0 0 0 0 57 0 989 0
134 Use of Externally-Controlled Format String 666 148 212 - - - - - - 462 0
643 Xpath Injection 444 185 265 0 0 444 1248 - - 379 49
A2 Broken Authentication Total TP FP TP FP TP FP TP FP TP FP
256 Unprotected Storage of Credentials 37 - - - - - - - - - -
259 Use of Hard-coded Password 111 - - - - - - 15 0 48 0
321 Use of Hard-coded Cryptographic Key 37 - - - - - - - - 16 0
523 Unprotected Transport of Credentials 17 - - - - - - - - - -
549 Missing Password Field Masking 17 - - - - - - - - - -
A3 Sensitive Data Exposure Total TP FP TP FP TP FP TP FP TP FP
315 Cleartext Storage of Sensitive Information in a Cookie 37 - - - - - - - - 0 0
319 Cleartext Transmission of Sensitive Information 370 - - - - - - - - 259 369
325 Missing Required Cryptographic Step 34 - - - - - - - - - -
327 Use of a Broken or Risky Cryptographic Algorithm 34 - - - - - - - - 17 0
328 Reversible One-Way Hash 51 - - - - - - - - 51 0
329 Not Using a Random IV with CBC Mode 17 - - - - - - - - 17 0
614 Sensitive Cookie in HTTPS Session Without ’Secure’ Attribute 17 - - - - - - - - 16 0
759 Use of a One-Way Hash without a Salt 17 - - - - - - - - - -
760 Use of a One-Way Hash with a Predictable Salt 17 - - - - - - - - - -
A5 Broken Access Control Total TP FP TP FP TP FP TP FP TP FP
23 Relative Path Traversal 444 108 0 0 0 444 624 19 0 378 52
36 Absolute Path Traversal 444 108 0 0 0 444 624 16 0 378 49
566 Auth. Bypass Through User-Controlled SQL Primary Key 37 36 0 - - 37 0 - - - -
A6 Security Miscon�guration Total TP FP TP FP TP FP TP FP TP FP
395 NullPointerException Catch to Detect NULL Pointer Deference 17 - - 0 0 - - - - - -
396 Declaration of Catch for Generic Exception 34 - - 0 0 - - - - - -
397 Declaration of Throws for Generic Exception 4 - - 0 0 - - - - - -
A7 Cross-Site Scripting Total TP FP TP FP TP FP TP FP TP FP
80 Basic XSS 666 642 900 28 0 666 936 19 0 666 76
81 Improper Neutralization of Script in an Error Message 333 321 450 14 0 0 0 19 0 333 38
83 Improper Neutralization of Script in Attributes in a Web Page 333 108 0 14 0 333 468 19 0 333 38
a ASIDE generates an exception when running on these test cases.

case that Juliet Test Suite has implemented while detecting others.
However, it is still a �aw in the plugin implementation. We �nd
this discrepancy rather alarming. It gives a false sense of security
to the user and discredits the integrity of the plugins. It is also
worth noting that the distribution of coverage over the di�erent
categories is uneven. Injection vulnerabilities, broken access control,
and cross-site scripting are heavily covered, while the others are
less represented in the plugins’ coverage.

4.2 RQ2: How good is the performance?
The calculations of recall, precision, and discrimination rates are
based on the results of true positives and false positives shown
in Table 5. The calculated performance metrics are presented in
Table 6. There are two important notes about the evaluation that
may have a�ected the results:

(1) Because of imprecise detection classi�cation, ASIDE’s true
positives might be higher than what it actually deserves.
It uses only two vulnerability categories which are very
general, input validation vulnerability and output encoding
vulnerability. This means we cannot implement proper rele-
vant category checking for ASIDE. In other words, we cannot
be con�dent whether reported vulnerabilities by ASIDE are
relevant or not.

(2) LAPSE+ is supposed to be used with a substantial amount
of manual e�ort to complete backward propagation on each
result, which cannot be automated. It reports both sources
and sinks and requires the user to check whether the data
was sanitized between these points. Our results are based on
only the automatic results without the manual e�ort after.
This might be the cause of the high amount of false positives
LAPSE+ reports.
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Table 6: Detailed performance metrics data, showing recall, precision, and discrimination rate. CWE names are slightly short-
ened, see Table 5 for the full names. A hyphen (-) indicates that the plugin does not cover the CWE.

CWE Tools
ID Name ASIDE ESVD LAPSE+ SpotBugs FindSecBugs
A1 Injection Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc.
78 OS Command Injection 42% 100% 42% 11% 100% 11% 100% 42% 0% - - - 85% 88% 74%
89 SQL Injection 0% 50% 0% 65% 39% 0% 100% 42% 0% 100% 43% 0% 86% 86% 72%
90 LDAP Injection 42% 100% 42% 0% N/A N/A 0% N/A N/A - - - 85% 88% 74%
113 HTTP Response Splitting 42% 41% 0% 0% N/A N/A 0% N/A N/A 4% 100% 4% 74% 100% 74%
134 Externally-Controlled Format String 22% 41% 0% - - - - - - - - - 69% 100% 69%
643 Xpath Injection 42% 41% 0% 0% N/A N/A 100% 26% 0% - - - 85% 89% 74%
A2 Broken Authentication Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc.
256 Unprotected Credentials Storage - - - - - - - - - - - - - - -
259 Hard-coded Password - - - - - - - - - 14% 100% 14% 43% 100% 43%
321 Hard-coded Cryptographic Key - - - - - - - - - - - - 43% 100% 43%
523 Unprotected Credentials Transport - - - - - - - - - - - - - - -
549 Missing Password Field Masking - - - - - - - - - - - - - - -
A3 Sensitive Data Exposure Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc.
315 Cleartext Sensitive Info in Cookie - - - - - - - - - - - - 0% N/A N/A
319 Sensitive Cleartext Transmission - - - - - - - - - - - - 70% 41% 0%
325 Missing Required Crypto. Step - - - - - - - - - - - - - - -
327 Broken/Risky Crypto. Alg. - - - - - - - - - - - - 50% 100% 50%
328 Reversible One-Way Hash - - - - - - - - - - - - 100% 100% 100%
329 Not Random IV in CBC Mode - - - - - - - - - - - - 100% 100% 100%
614 Missing ’Secure’ in HTTPS Cookie - - - - - - - - - - - - 94% 100% 94%
759 One-Way Hash, no Salt - - - - - - - - - - - - - - -
760 One-Way Hash, Predictable Salt - - - - - - - - - - - - - - -
A5 Broken Access Control Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc.
23 Relative Path Traversal 24% 100% 24% 0% N/A N/A 100% 42% 0% 4% 100% 4% 85% 88% 74%
36 Absolute Path Traversal 24% 100% 24% 0% N/A N/A 100% 42% 0% 4% 100% 4% 85% 89% 74%
566 SQL PK Auth. Bypass 97% 100% 97% - - - 100% 100% 100% - - - - - -
A6 Security Miscon�guration Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc.
395 Catching NULL Pointer Deference - - - 0% N/A N/A - - - - - - - - -
396 Catch for Generic Exception - - - 0% N/A N/A - - - - - - - - -
397 Throws for Generic Exception - - - 0% N/A N/A - - - - - - - - -
A7 Cross-Site Scripting Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc.
80 Basic XSS 96% 42% 2% 4% 100% 4% 100% 42% 0% 3% 100% 3% 100% 90% 89%
81 Script in Error Message 32% 100% 32% 4% 100% 4% 0% N/A N/A 6% 100% 6% 100% 90% 89%
83 Script in Attributes in a Web Page 96% 42% 2% 4% 100% 4% 100% 42% 0% 6% 100% 6% 100% 90% 89%

The calculation of recall shows that both ESVD and SpotBugs
have poor results when it comes to recall with their respective
highest score except for CWE-89 SQL Injection being 65% and 100%.
The low scores mean ESVD and SpotBugs cannot reliably �nd
all vulnerabilities in a piece of code, which is a severe limitation.
ASIDE has generally low scores as well, but with some exceptions
where it is close to full score. LAPSE+ reports all vulnerabilities
for a number of CWE entries, but with some exceptions where
it reports none. This binary behavior of LAPSE+ may point to it
generally performing very well, but it might not cover all that it
claims. FindSecBugs, which had the highest coverage, also show
very good results, with most CWE entries over 50% and some with
full score.

Contrary to their poor results for recall, ESVD and SpotBugs
have a high precision. This might be due to their implementation
as static analysis tools which always have to deal with a trade-o�
between recall and precision. Another example of this trade-o�
is LAPSE+ which has a great recall, but has very low precision.
FindSecBugs has a precision over 85% for all but one.

Discrimination rate combines recall and precision and will
always be a number between zero and the respective recall. Due to
this, ESVD, LAPSE+, and SpotBugs all have a low discrimination
rate. ESVD and SpotBugs’ low discrimination rates are due to their
low recall, and LAPSE+ because of its poor precision. ASIDE is
not convincing either and only does well on CWE-566, i.e., Au-
thorization Bypass Through User-Controlled SQL Primary Key.
FindSecBugs, which has both a good recall and precision, also has a
high discrimination rate and proves to be the best solution of these
�ve IDE plugins.

The performance results are varying with clear signs of trade-
o�s between recall and precision. ESVD and SpotBugs prioritize
precision, while LAPSE+ prioritizes recall. This leads to a low dis-
crimination rate for all of the mentioned plugins. Only FindSecBugs
has good results for all three performance metrics.

4.3 RQ3: How good is the usability?
All the plugins have one or more CWEs where the number of false
positives far outnumbers the number of true positives. As can be
seen in Table 7, some tools produce a surprising amount of false
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Table 7: Summary of the usability results.

ASIDE ESVD LAPSE+ SpotBugs FindSecBugs

FP rate Averaged false positive rate 29% 12% 53% 7% 9%
False positive rate of total result 50% 60% 60% 56% 13%

Detailed
information

What is the problem ⇥ X X X X
Why is it a problem N/A ⇥ ⇥ X X

How to �x the problem N/A ⇥ ⇥ ⇥ X
Prioritized output ⇥ X ⇥ X X

Quick �xes X X ⇥ ⇥ ⇥
(E)arly or (L)ate detection E E L E/L E/L

Can suppress warnings X X ⇥ ⇥ ⇥
Eclipse Environment integration X X X X X
Available on Eclipse Marketplace ⇥ ⇥ ⇥ X ⇥

(I)mmediate or (N)egotiated interruptions N N N N N
Easily extendable ⇥ ⇥ ⇥ X ⇥

Possible to analyze single �le only ⇥ ⇥ ⇥ X X
Possible to analyze single method only ⇥ ⇥ ⇥ ⇥ ⇥

positives. Looking closer at the false positive rates of individual
CWE categories, all tools have some cases where the rate is close
to 60%. The highest false positive rate by all is the one produced by
LAPSE+ for the CWE-643 vulnerability class, which is 74%. These
numbers are not within the acceptable range of false positives.
These high rates can lead to developers not wanting to use such
tools in their work. It is important to notice that some tools’ false
positive rate is generally low except for a few CWEs. SpotBugs has
a false positive rate of zero percent with the exception of CWE-
89, where it has a false positive rate of 58%. This also shows the
importance of the two di�erent measurements of a false positive
rate presented in this paper, where one of them tries to balance out
this e�ect by also averaging the false positive rate of each CWE.

The quality of the detection output varies. ASIDE gives no in-
formation, and when trying to get more information, it opens a
web page where the domain no longer exists. ESVD and LAPSE+
provides a description of what the problem is, but never explains
why it is a problem nor how to �x it. SpotBugs and FindSecBugs
clearly tell the user why the detected vulnerability is a problem, and
FindSecBugs also provides examples of how such vulnerabilities
can be �xed.

ESVD, SpotBugs, and FindSecBugs all allow their output to be
sorted by priority. ESVD ranks each detected vulnerability based
on a number. SpotBugs and FindSecBugs use words, symbols, and
colors to show the vulnerability priority. They use words like “scary”
with a red bug icon for high priority, and “troubling” with a yellow
bug icon next to it for medium priority.

The only two tools that provide quick �xes are ASIDE and ESVD.
Both of these give the option of multiple quick �xes, where some of
them are not relevant to the current vulnerability at all. Examples
of these are “HTML Encoder”, “JavaScript Encoder”, and “CSS En-
coder”. Both ASIDE and ESVD seem to produce the exact same quick
�xes. These are very simple quick �xes which surround the code
with methods from the OWASP Enterprise Security API (ESAPI).

ASIDE and ESVD utilizes early detection by continuously mon-
itoring the workspace for changes. The static code analysis is ex-
ecuted incrementally on small parts of the code while it is being
written to ensure quick feedback to the developers. LAPSE+ is using
late detection by de�nition, as it does not automatically scan code.
The user has to execute the vulnerability search manually. LAPSE+
will scan each �le as if it was the �rst time, without remembering
previous results. SpotBugs, and therefore also the SpotBugs plugin
FindSecBugs, utilizes early detection by allowing the user to scan
�les when they are saved automatically. This can also be turned
o� so that scans have to be manually executed. That means that
SpotBugs supports both early and late detection. SpotBugs can
also be integrated into other tools than Eclipse, so that such scans
can happen very late if the developer wants that, e.g., right before
committing the code to the code repository.

ASIDE and ESVD are the only two tools that can suppress warn-
ings in our evaluation. The result is that the vulnerability warning
disappears, with no way of getting it back. This might be a negative
experience for the developer if the vulnerability is suppressed by
accident.

All of the static analysis tools integrates into the Eclipse IDE.
However, the e�ort to integrate the tools into Eclipse varies. ASIDE
is neither in the Eclipse Marketplace nor has any executable ready
to be installed in Eclipse. It had to be compiled from source code.
ESVD is available on the Eclipse Marketplace, but an error prevents
us from downloading it. It seems that the Marketplace is attempting
to download the executable from one of the ESVD authors’ web-
page without success. Therefore the plugin needs to be manually
installed into Eclipse. LAPSE+ is not available through the Eclipse
Marketplace either, but has an executable that can be downloaded
and manually installed. SpotBugs is easily installed through Eclipse
Marketplace, i.e., a few clicks are all that is needed. Adding the
SpotBugs plugin FindSecBugs requires the user to download the
executable from the developer’s website. It is then added through
the settings of the SpotBugs plugin.
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Every tool uses negotiated-style interruptions. None of the tools
gives the option of immediate-style interruptions.

All the tools are open-source. This makes it possible for anyone to
look at the code. All of the software licenses allow for modi�cation
and redistribution of the code. Although all the tools can legally
be changed and redistributed, it is di�cult to change for most of
them. SpotBugs is the only tool that allows other plugins to directly
extend the functionality of itself. This can be done through the
public SpotBugs API.

SpotBugs and FindSecBugs are the only two tools that allow
developers to analyze a single �le at a time. ASIDE, ESVD, and
LAPSE+ only allow the user to scan the entire project. A �ner
granularity than �le-level analysis is not supported by any of the
plugins. Table 7 shows a summary of the usability evaluation results.

5 DISCUSSION
5.1 Comparison with Related Work
The discrepancy we found between claimed and con�rmed coverage
proves why it is important to test the capabilities of the plugins
ourselves and not rely solely on the information provided by the
developer. A possible horror situation could be a company which
uses an IDE plugin to detect vulnerabilities in their developed code.
Being con�dent in the capabilities of the plugin, they believe they
ship software without any severe security vulnerability. However,
the plugin does not detect all of the vulnerabilities it claims and
the software is shipped with vulnerabilities that cause a security
breach and cost the company a lot of money.

Baset and Denning [1] compare the plugins at a purely informa-
tional level and use the claimed coverage. Our research contributes
with useful and new information about the actual coverage of the
plugins that can assist the users in knowing which plugin to use
and what to expect from it. While Charest et al. [3] look at coverage
for the plugins they compared, they only look for coverage on four
di�erent vulnerabilities. In contrast, we look at 29 di�erent CWE
entries. Oyetoyan et al. [19] look at all of the 112 CWE entries in
the Juliet Test suite, but they did not report the results per CWE
entry. Instead, they aggregated the results into categories making
it impossible to know which plugin covers which vulnerability. In
addition, we tested plugins that have not been covered a lot in previ-
ous research. This makes the results of ASIDE, ESVD, LAPSE+, and
SpotBugs especially interesting as it is a new contribution to the
�eld. Oyetoyan et al. [19] perform their comparison on all of the 112
CWE entries in the Juliet Test Suite. While it gives their research
a wider approach and provides more information, our narrower
approach also has an advantage. By narrowing our evaluation down
to only vulnerabilities found in OWASP Top 10, we make sure that
all of the results are relevant. We only test on vulnerabilities that are
considered more important. By testing on all test cases, Oyetoyan
et al. [19] may open up for uncommon vulnerabilities to skew their
�nal results. A plugin that does well for uncommon vulnerabilities,
but cannot detect common ones, may not be a useful plugin even
though it might be overall performing well.

By utilizing the performance metrics used in [5], we generate
results that can be compared with other research as we consider
these performance metrics the closest to an industry standard. The
test cases of Juliet Test Suite are created by the National Security

Agency (NSA) and the National Institute of Standards and Tech-
nology (NIST) which are trustworthy sources and we believe this
enhances the credibility of our results. However, Juliet Test Suite
consists of only arti�cial code. This is not necessarily a negative
thing, but it does limit our research. The results indicate how the
plugins perform on generated code which is a good indication of
what it detects objectively, but it does not say anything about their
performance in a real-life setting. Detecting vulnerabilities in natu-
ral code is a di�erent matter and the distribution of occurrences by
vulnerabilities are very di�erent.

No existing papers are evaluating the usability of multiple static
analysis plugins related to detecting security vulnerabilities in the
way we did. Some of the plugins have themselves conducted usabil-
ity evaluations of their tools. Xie et al. [27] conducted a usability
evaluation of ASIDE with nine students, where each student used
three hours to write code using the plugin. The ASIDE usability
evaluation was aimed at evaluating functionality surrounding the
plugin itself, without comparisons to other similar tools. Sampaio
and Garcia [24] have also evaluated some usability aspects of their
own plugin. They conducted an experiment looking at the di�er-
ence early versus late detection does to a developer’s motivation to
address reported vulnerabilities. The experiment does not compare
ESVD to any other similar tools. Christakis and Bird [4] look at
what developers want and need from static analysis tools. Johnson
et al. [9] look at why the number of developers using static analysis
tools is so low. Sadowski et al. [22] present the guiding philosophy
of Google regarding how static analysis tools should behave usabil-
ity wise. Studies [4], [9], and [22] have all been used as a basis for
our usability evaluation, but no direct comparison can be made,
because these papers do not compare the usability of di�erent static
analysis tools. Given the lack of similar work in existing literature,
our evaluation brings forth new information which developers will
�nd useful when deciding which static analysis tool to choose for
their own project. In addition, our evaluation gives insights into
what existing static analysis tools for detecting security vulnerabil-
ities o�er, which in turn can help new tools develop features that
existing tools do not currently have.

5.2 Threats to Validity
The main threat to internal validity is selection bias. The selection
bias comes from which plugins, vulnerabilities, and metrics that
were chosen. To reduce selection bias threat, we have done extensive
research into each one in order to make the most sensible decision.
We have looked at highly-cited literature and based our decisions on
credible sources. Another threat to internal validity is experimenter
bias related to the qualitative data analysis of some of the usability
metrics. To reduce experimenter bias, the satisfaction requirements
are taken from relevant literature regarding the usability of similar
tools.

The main threat to external validity is generalizability. The most
popular free and open-source static analysis tools were chosen for
this evaluation. The limited number of tools that �t our selection
criteria make these �ve tools representative. However, it is not pos-
sible to generalize the results to commercial static analysis tools as
these are in a completely di�erent category regarding development
and research funding.
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6 CONCLUSION AND FUTURE WORK
One possible approach to reduce software vulnerabilities is through
IDE plugins which alert the developer whenever vulnerable code is
written. This allows the vulnerability to be removed at once. There
are several open-source vulnerability detection plugins available
today. This study presents a coverage, performance, and usability
evaluation of �ve plugins on vulnerability test cases from arti�cial
code. The results of the study show that there are still many cate-
gories of vulnerabilities that are not covered by any of the plugins
we evaluated. The coverage information published in the plugins’
documentation may be misleading. Most plugins have a high false
positive rate and are not user-friendly for developers.

To improve the plugins, we can focus on improving all those
three aspects evaluated in this study. We believe that improving
the coverage of the vulnerabilities, improving performance, and
making the plugins more user-friendly will all contribute to more
and better use of the plugins and will therefore reduce the number
of vulnerabilities in the software code.
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Appendix B.

Flow Variants in the Juliet Test Suite

The flow variant indicates whether a test case uses control-flow, data-flow, or neither.
Each flow variant has an associated number [NSA, 2012]. Variant 01 is called the baseline
and uses neither data-flow nor control-flow. It is the simplest form of the vulnerability.
Variants 02 through 22 uses control-flow in different variations. An if-statement encap-
sulates the bad source for variants 02 through 14 and the condition for the if-statements
are listed in Table B.1. The good source is usually encapsulated in an if-statement with
the condition opposite of the bad source unless otherwise stated. The rest of the control-
flow variants are listed in Table B.1 while the data-flow variants are listed in Table B.2.
All of the descriptions are based on the documentation provided by NSA [2012].
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Table B.1.: Control-Flow Variants in the Juliet Test Suite

Flow Variant Condition

02 The boolean value true.

03 The equation 5==5.

04 A private static final constant set to the boolean value true.

05 A private variable set to the boolean value true.

06
An equation between a private static final constant set to 5

and the int value 5.

07
An equation between a private variable set to 5 and the int value
5.

08 A private method that returns the boolean value true.

09
A public static final constant from another class set to the
boolean value true.

10
A public static variable from another class set to the boolean

value true.

11
A public static method from another class that returns the
boolean value true.

12
A public static method from another class that returns one of
the boolean values true or false. In this case the if-statement
encapsulating the good source has the same condition.

13
An equation between a public static final constant from
another class set to 5 and the int value 5.

14
An equation between a public static variable from another class
set to 5 and the int value 5.

15
The bad source is encapsulated in a switch-statements where the
control variable is the int 5 and the case is also the int 5.

16
Both the bad and good source are encapsulated in
while(true)-statements that loops once.

17
The sources are not encapsulated, however, the sink is encapsulated
in a for-statement that loops once.

21

The bad source is located in a different method within the same
class. The control-flow of this method is controlled by an
if-statement where the condition is a private variable which is set
in the first method to the boolean value true.

22

The bad source is located in a different method in a different class.
The control-flow of this method is controlled by an if-statement
where the condition is a public static variable which is set in the
first method to the boolean value true.
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Table B.2.: Data-Flow Variants in the Juliet Test Suite

Flow Variant Description

31 Data is copied within the same method.

41
Data is passed as an argument from one method to another in the
same class.

42 Data is returned from one method to another in the same class.

45
Data is passed as a private class member variable from one method
to another in the same class.

51
Data is passed as an argument from one method to another in
different classes in the same package.

52
Data is passed as an argument from one method to another to
another in three different classes in the same package.

53
Data is passed as an argument from one method through two others
to a fourth; all four methods are in different classes in the same
package.

54
Data is passed as an argument from one method through three
others to a fifth; all five methods are in different classes in the same
package.

61
Data is returned from one method to another in different classes in
the same package.

66
Data is passed in an array from one method to another in different
classes in the same package.

67
Data is passed in a class from one method to another in different
classes in the same package.

68
Data is passed as a member variable in a class from one method to
another in different classes in the same package.

71
Data is passed as an Object reference argument from one method to
another in different classes in the same package.

72
Data is passed in a Vector from one method to another in different
classes in the same package.

73
Data is passed in a LinkedList from one method to another in
different classes in the same package.

74
Data is passed in a HashMap from one method to another in
different classes in the same package.

75
Data is passed in a serialized object from one method to another in
different classes in the same package.

81
Data is passed in an argument to an abstract method called via a
reference.
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