
Master of Science in Communication Technology
June 2011
Yuming Jiang, ITEM
Atef Abdelkefi, ITEM

Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Anomaly Detection and Identification in
Feature Based Systems: An Empirical
Evaluation

Magnus Bjørnar Røgeberg Ask
Helge Skrautvol

Problem description
Intrusion detection is an important technique in computer network security. Senatus
is a concept recently proposed in order to detect intrusions in a fashion of traffic
classification and identification.

There are two main tasks:

I. Understand network attacks and their simulation tools then generate the at-
tacks. Then simulate attacks in real backbone network, collect the data of the
form Netflow/Qflow and prepare it to the analysis.

II. Senatus performance analysis investigation.

Abstract

Network anomalies can range from network outages and flash crowds, to malicious

attacks such as denial of service attacks and port scans. Identifying the anomalies

you are dealing with is paramount to take proper counter measures. In a world where

more and more mission critical equipment are connected to the Internet, protection

against an increasing number of professional cyber criminals are more important

than ever. In addition to this, large firms cannot afford long down times due to

benign anomalies that could have been detected and avoided.

The aim of our thesis is to compare three different implementations of feature-based

detection systems. Our dataset is based on traffic recorded over several months on

the Norwegian backbone network of Uninett. We will compare the newly proposed

anomaly detection system SENATUS with histogram-based detection – represented

by Apriori – and Entropy based detection. Our evaluation is based on two tech-

niques: root cause analysis and a novel technique based on the results of other

anomaly detectors. We find that the newly proposed detection system SENATUS

performs very well for detecting denial of service attacks and scans. It has a high

detection rate and an exceptional identification rate. We find that identifying the root

cause of an anomaly is drastically less time consuming with SENATUS compared

to the other methods.

i

Preface

This thesis is submitted to the Norwegian University of Science and Technology

(NTNU) for partial fulfilment of the requirements for the degree of master of sci-

ence.

This work has been performed at the Department of Telematics, NTNU, Trondheim,

with Yuming Jiang as professor and with Atef Abdelkefi as supervisor.

We thank our supervisor Atef Abdelkefi for his astonishing effort at helping us get

the best results. Rune Ask for giving us valuable feedback on earlier drafts. Arne

Øslebø at Uninett for letting us use the equipment and infrastructure, and for all his

helpful advice. And finally, we would like to thank our professor Yuming Jiang.

iii

List of Tables

2.1 A list of traffic feature distributions (TFDs) affected by anomalous
events. 12

2.2 Anomalies defined by packet size and the number of flows. 17
2.3 A list of traffic features and their impact on anomaly detection.

(Source [17]) . 25

3.1 Nmap options and their descriptions. 39
3.2 Nfdump options and corresponding description. 40
3.3 Frequent item sets computed with Apriori algorithm (minimum sup-

port: 10000, #flows: 197000) . 48

4.1 A sample of scans made with Nmap 56
4.2 The intensity of anomalous traffic needed to be detected by entropy

metrics . 57
4.3 The output of SENATUS . 57
4.4 The output of HD + Apriori . 59

5.1 Identification rates for both SENATUS and histogram-based detection
(HD). 63

5.2 Anomalies detected in our dataset by SENATUS and HD. 63
5.3 Identification rates for both SENATUS and HD. 64
5.4 Time bins discovered by the different detection methods based on

our methodology . 65
5.5 The detection rate of each method based on our ground truth 66
5.6 Detection intensities for SENATUS. 67
5.7 Parameter settings SENATUS. 68

v

List of Figures

1.1 General concepts behind detection and identification schemes. . . . 2
1.2 Network data is captured by a NetFlow capture daemon in oslo-

gw.uninett.no and stored at iou1.uninett.no. 4
1.3 Network topology in UNINETT’s network [30] between Oslo and

Trondheim. 5

2.1 The number of packets per flow set up against the number of anoma-
lous flows . 13

2.2 Packet size set up against the number of anomalous flows 13
2.3 Illustration of the possible outcome of an anomaly identification pro-

cess. 18
2.4 Histograms illustrating destination ports and their corresponding flows

during a 5 minute interval. In the lower plot features are grouped for
every 100th value. 22

2.5 Histograms illustrating destination port with corresponding flows of
the same time bin in five consecutive days 22

2.6 The Kullback-Leibler distance and first difference (with correspond-
ing threshold seen as a dashed line) of two consecutive days in our
dataset (March 25th and 26th). 28

2.7 Illustration of the creation of candidate flows resulting in a smaller
(pre-filtered) dataset. 29

2.8 Apriori algorithm applied to a small problem. Only possible 3-item
set is {2, 3, 4}, but it has a fequency < 3 (minsupport). 31

2.9 Illustration of the increase in number of flows with an corresponding
increase in the number of feature values. 33

3.1 A typical view of a random time bin using nfdump 42
3.2 Possibly a DDoS attack. 42
3.3 Possibly a DDoS attack. 43
3.4 Netflow data extracted for further analysis in HD. 45
3.5 Application of Kullback-Leibler (KL) in HD to detect anomalies in

the dataset. 46

vii

3.6 Candidate flow creation in HD: Combining the suspicious features
into canditate flows for further filtering and data mining. 46

3.7 Filtering of NetFlow data based on the combination of suspicious
features and time bins in HD. 47

3.8 Application of Apriori to create item sets based on pre-filtered and
formatted flows as input data. 47

3.9 Anomaly selection and data extraction in SENATUS. 49
3.10 Final output of the initial extraction of SENATUS. 49
3.11 Application of RPCA and generation of suspicious flows in SENA-

TUS. 50
3.12 Final extraction and verification in SENATUS - based on the com-

bination of suspicious flows. 50
3.13 Calculation of Entropy based on feature distributions. 51

4.1 The percentage of anomalous flows set up against the number of
anomalous flows . 55

4.2 The anomaly from Table 4.3 viewed in Nfdump 58

5.1 A Venn diagram showing the relationship between which time bins
were detected by the different methods 66

5.2 False positive rate as a function of weight in robust principal com-
ponent analysis. 69

5.3 Proportinal relationship between the amount of detected anomalies
for two different values of weight. 69

viii

Abbreviations

FSD flow size distribution

DoS denial of service

DDoS distributed denial of service

TP true positive

TN true negative

FP false positive

FN false negative

BASH Bourne-again shell

SED Stream editor

RPCA robust principal component analysis

KL Kullback-Leibler

PCA principal component analysis

GB gigabyte

TB terabyte

PPS packets per second

BPS bytes per second

BPP bytes per packet

IP Internet Protocol

TFD traffic feature distribution

AS Autonomous System

ED entropy-based detection

HD histogram-based detection

AR Association rule

Nfcapd NetFlow capture daemon

ix

RFC Request for Comments

IDS intrusion detection system

CPU Central Processing Unit

x

Contents

Abstract i

Preface iii

List of Tables v

List of Figures viii

Abbreviation ix

Contents xii

1 Introduction 1
1.1 Detection and Identification Schemes 2
1.2 Equipment and Infrastructure . 3
1.3 Problem Outline . 5
1.4 Outline of the Thesis . 6

2 Background 9
2.1 Feature Versus Volume-based . 11
2.2 Anomalies . 12

2.2.1 Denial of Service Attacks 13
2.2.2 Scans . 15

2.3 An Alternative Way of Defining Anomalies 16
2.4 Detection and Identification Metrics 17
2.5 Entropy-based Detection . 19

2.5.1 Limitations . 20
2.6 Histogram-based Detection . 21

2.6.1 Kullback-Leibler Distance 26
2.6.2 Flow Pre-filtering . 28
2.6.3 Association Rule Mining 29
2.6.4 Limitations . 31

2.7 SENATUS . 32

xi

2.7.1 Limitations . 35

3 Tools and Implementation 37
3.1 Nmap . 38
3.2 Nfdump . 39
3.3 Unix Tools . 41
3.4 Implementation . 44

3.4.1 Histogram-based Detection 44
3.4.2 SENATUS . 48
3.4.3 Entropy-based Detection 50

4 Ground Truth 53
4.1 Injection Based Ground Truth . 55
4.2 Analysis of Root Cause Based Ground Truth 57
4.3 Comparison Based Ground Truth 59

5 Results 61
5.1 Results From Root Cause Based Ground Truth 62
5.2 Results From Comparison Based Ground Truth 65
5.3 Overview of SENATUS . 67
5.4 Evaluation and Discussion . 70

6 Conclusion 73
6.1 Future Work . 74

References 75

A Code 81
A.1 histogram-based detection . 81

A.1.1 anoflows.m . 81
A.1.2 mining.sh . 85
A.1.3 formatting.awk . 87

B Identification rates for HD and SENATUS 89

xii

1
Introduction

Detecting and identifying network anomalies are becoming an important factor to

consider when taking care of network security, uptime and performance of ISPs and

large scale networks. An anomaly is defined as a "Deviation or departure from the

normal or common order, form, or rule"[28]. When studying anomalies affecting

computer networks, we consider events that differ from normal network behavior,

such as use of new protocols, significantly increased traffic and malicious attacks.

The foremost challenge in detecting and identifying anomalies, is the fact that they

can be caused by a vast set of events. These range from anomalies like flash crowds1

1An unusually high amount of traffic destined to one destination from a set of IPs. A situation
that can happen if a high number people access the same website simultaneously.

1

Chapter 1. Introduction 2

and network outages, which have no ill intent behind them to malicious attacks such

as denial of service (DoS) attacks and port scans (see Section 2.2). Since there are

a high number of anomalies posing different levels of threat to systems, being able

to quickly assess what anomalies are present is paramount in keeping a network

healthy.

1.1 Detection and Identification Schemes

During our thesis we aim to compare three different approaches for anomaly detec-

tion and identification. All techniques are based on traffic features derived from data

captured in a packet switched backbone network. The first scheme (entropy-based

detection (ED)) apply entropy as its main feature to detect anomalies. The sec-

ond (histogram-based detection (HD)) is a histogram-based detection scheme which

uses Kullback-Leibler distance and Apriori in order to detect and identify anomalies.

SENATUS is the last scheme, and it uses a robust version of principal component

analysis for detection and identification.

Figure 1.1 is a high-level illustration of the general concepts applied in each scheme.

The first and the second step are applied to all schemes, while the third is only

applied to HD and SENATUS.

Data
extraction

Anomaly
Detection Identification

Input data (NetFlow)

1 2 3

Traffic features Anomalous flow
sets

Figure 1.1: General concepts behind detection and identification schemes.

3 1.2. Equipment and Infrastructure

All the aforementioned schemes will be explained, evaluated and discussed in this

thesis.

1.2 Equipment and Infrastructure

To be able to conduct experiments in a reliable and convincing way UNINETT[31]

has provided access to data and infrastructure in the Norwegian research network.

The network connects well over 200 Norwegian educational and research institu-

tions with over 300 000 users and further on links them to international research

networks.

The analysis is performed based on data in the NetFlow export format by Cisco,

which is fully described in Request for Comments (RFC) 3954 [14]. An Internet

Protocol (IP) flow, in the NetFlow format, is defined as a set of IP packets passing

an Observation Point in the network during a certain time interval. All packets in a

particular flow have a set of common traffic features derived from the data contained

in the IP packet and from the packet treatment at the observation point.

Throughout the network UNINETT has deployed several NetFlow capture daemons

(Nfcapds). Nfcapd is a program within the nfdump tool suite (see Section 3.2),

and it reads traffic data from the network and stores it into files. The output file

is automatically rotated and renamed every 5 minutes, hence one day is divided

into 288 five minute intervals according to the timestamp ”YYYYMMddhhmm”.2

The Nfcapd of our interest resides within the Oslo gateway (oslo-gw.uninett.no) and

forwards the captured data to its final destination on iou1.uninett.no (Figure 1.2).

2e.g. nfcapd.201011050845 contains the data from November 5th 2010 08:45 and onward.

Chapter 1. Introduction 4

iou1.uninett.no

oslo-gw.uninett.no

netflow data

0101010101

Figure 1.2: Network data is captured by a NetFlow capture daemon in oslo-
gw.uninett.no and stored at iou1.uninett.no.

Topology

Figure 1.3 shows a compact view of the topology of interest.3 Most of the analysis

is conducted on the same server as where the captured data resides, namely the iou1

server.4 At the other end – ytelse2 is used for injection of anomalies, such as port

and network scans. We make sure that all the injected traffic traverse the oslo-gw

and thereby get captured by Nfcapd for further studies.

Sampling

Because of the huge amount of traffic traversing the oslo-gw, it is not feasible to

capture every packet – this is simply too much data for the gateway to cope with. To

bypass this problem, the traffic is captured by random sampling at a rate of 1:1000,

meaning that Nfcapd randomly chooses to include 1 out of 1000 packets. The fact

that the traffic is subject to sampling might affect the results depending on the de-

tection technique. Brauckhoff et. al. empirically evaluated the impact of packet

sampling on anomaly detection methods [11]. While byte and packet count is rather

unaffected, packet sampling produces inaccurate estimates of flow count. As a con-

3Map source: http://www.map-of-norway.com/
4The iou1 server runs on a dual-core Intel(R) Xeon(R) E5430 CPU with 32 GB system memory

and 4 TB disk space dedicated for our use.

5 1.3. Problem Outline

Oslo

Trondheim

oslo-gw4

ytelse2

oslo-gw

oslo-gw3

uninett-gw

uio1

trd-gw1

teknobyen-gw

Figure 1.3: Network topology in UNINETT’s network [30] between Oslo and
Trondheim.

sequence, single packet flows are entirely missed, and volume-based techniques are

unable to detect anomalies such as worms. However, feature-based techniques (such

as ED, HD and SENATUS) proves to withstand high sampling ratios, thus are still

able to detect anomalies.

1.3 Problem Outline

Our work is focused on comparing the recently proposed anomaly detection sys-

tem SENATUS with other detection methods consisting of ED and HD[citation].

The goal of our work is discover how high the detection and identification rate of

SENATUS is, compared to the other methods. Evaluating and comparing anomaly

detectors is not an easy task. There are mainly two approaches we will use when

evaluating SENATUS with regard to other anomaly detectors. The first method is

to inject attacks in the network and then evaluate the performance of each anomaly

Chapter 1. Introduction 6

detector, based on the known attacks. By implementing working versions of the

two aforementioned techniques, we aim to extract the injected anomalies from our

dataset with the intent of constructing an artificial ground truth (see Section 4.1).

The second method is using the results from ED and HD as a reference point. By

running SENATUS on the union of time bins flagged as suspicious by the other two

techniques, we can be reasonably confident that any anomalies SENATUS detect

are not false positives. The reasoning behind constructing this ground truth, is that

one can never be sure whether an anomaly flagged by one of either programs should

have been flagged as such. With both anomaly detection programs marking a time

bin as suspicious, we can be reasonably sure that there is an anomaly there.

1.4 Outline of the Thesis

The thesis is structured as follows:

Chapter 2 reviews the general concepts behind an anomaly detection system and

their evaluation metrics. It classifies two types of anomalies, DoSs and scans,

and describes their characteristics. We present the motivation and techniques

involved in three feature-based detection systems, more specifically entropy-

based detection, histogram-based detection and SENATUS.

Chapter 3 will guide you through the implementation of three anomaly detection

schemes. Moreover, we will explain in detail the work flow of every scheme as

well as the tools used in order to realise them. This chapter also presents the

tools used to inject attacks, and for analysis.

Chapter 4 describes the methodology and criteria used in order to produce our

results.

Chapter 5 presents the results of our analysis. We evaluate and compare the three

detection schemes presented in Chapter 3

7 1.4. Outline of the Thesis

Chapter 6 summarizes the contributions of this thesis and further more identifies

open problems that might be worth investigating in the future.

2
Background

Anomaly detection in backbone (large-scale) and mid-sized computer networks has

been a field of research for several years. From a high level view point, anomaly

detection is generally divided into three categories (schemes) [7]:

I. Supervised

II. Semi-supervised

III. Unsupervised

Supervised refers to detection techniques that learn to classify anomalies by know-

ing the pattern of both normal and anomalous traffic. In general, these techniques

9

Chapter 2. Background 10

consists of two phases, (i) a learning phase and (ii) the actual detection phase. In the

learning phase one needs to collect and label data traces to generate network behav-

ior models. Based on these models, the system later detects traffic and classifies it

to be either normal or anomalous. Supervised detection techniques fail to recognize

behavior that is not previously modeled, thus it lacks the ability to classify unknown

or emerging anomalies.

Semi-supervised detection systems require knowledge of normal traffic traces; that

is traces without any anomalies present. The typical approach is to create models

based on the non-anomalous traffic traces, and then generate an alert whenever it

detects a deviation from this model. A significant drawback in semi-supervised

detection is the confrontation with previously unseen, yet legitimate traffic. The

traffic is flagged as anomalous and increases the possibility of a high false positive

(FP) rate.

In unsupervised detection, it is assumed that anomalies are very rare compared to

normal data. Thus, the main principle in an unsupervised detection system is to

compare the current interval to either the previous interval or a reference interval,

in order to detect abnormal behavior. If there is no, or little ”difference” between

the two compared intervals, the current interval is perceived as non-anomalous. The

”difference” can be detected with a wide range of techniques, where relative entropy,

Kullback-Leibler (KL) distance and clustering are three such techniques.

The modeling, often referred to as baseline, can be done in several ways for both

supervised and semi-supervised detection techniques. Since the traffic pattern in

a network fluctuates, not only with the time of the day and the day of the week,

but also with the week of the month and sometimes time of the year, one typically

creates separate baselines for different intervals. The challenge of determining the

number of models is a trade-off between complexity and accuracy. Creating a model

for each time bin during a week (288 × 7 = 2016 models) will increase the detec-

11 2.1. Feature Versus Volume-based

tion accuracy, but will also have a tremendous effect on the complexity. Whereas

only creating one model spanning a whole week will decrease the complexity, but

anomalous behavior in one day might correspond to normal behavior another day,

hence it will also decrease the accuracy of the detection.

2.1 Feature Versus Volume-based

Further classification divides the techniques described in literature into two groups,

namely (i) volume-based and (ii) feature-based anomaly detection. Implementa-

tions of (i) and (ii) can adopt all three aforementioned schemes (supervised, semi-

supervised, and unsupervised detection) depending on the techniques used for de-

tection and whether or not the system must undergo a learning phase.

Volume-based detection models the traffic with respect to the number of flows, pack-

ets, bytes, and other volume metrics. A wide range of mathematical techniques can

then be applied on volume metrics in order to detect deviations in the traffic pat-

tern. The easiest approach is to extract volume metrics and simply visualize them

in terms of a plot over time (e.g. #flows per time bin during a day), an approach

that needs a relatively small amount of pre-processing. Other, more complicated ap-

proaches, involve wavelets to distinguish between predictable and anomalous traf-

fic [8]. Volume-based techniques prove to be efficient in detecting deviations in

network-wide traffic. However, anomalies that do not introduce a notable change in

any volume metrics (e.g. scan anomalies) pass by unnoticed, a break-in to a network

may therefore go undetected.

Feature-based techniques are different from volume-based techniques with respect

to the measurement metric. The metrics used in a feature-based system is ex-

tracted from packet header fields (referred to as traffic features), and commonly

includes [IP/AS(s+d), Port(s+d), Protocols, Packet size, Flow duration] (where s =

Chapter 2. Background 12

source, d = destination). The motivation behind this approach is to use traffic feature

distributions (TFDs) created by capturing each traffic feature during a time interval,

which has proved to detect a wider range of anomalies compared to volume-based

techniques [18]. A common denominator for most feature-based detection systems

is the use of information theory to compare differences between TFDs, e.g. entropy,

KL distance and principal component analysis (PCA).

2.2 Anomalies

As mentioned in the introduction, anomalies do not necessarily originate from mali-

cious events. A surge of traffic due to a popular link being shared on a social media

website can have the same effect on a server as a distributed denial of service (DDoS)

would have – leading to the site becoming unavailable. Table 2.1 shows how the dif-

ferent traffic feature distributions are affected by a number of anomalies according

to Lakhina et. al.[18].

Anomaly Definition TFDs affected
Flash Crowd Unusual burst of traffic to Destination address

single destination, from a Destination port
typical distribution of sources

Alpha Flows Unusually large volume Source address
point to point flow Destination address

DDoS Large amount of traffic to one Destination address
destination from several sources Source address

Port Scan Probes to many destination Destination address
ports on a small set of Destination port
destination addresses

Port Sweeps Scanning by worms for Destination address
vulnerable hosts Destination port

Table 2.1: A list of traffic feature distributions (TFDs) affected by anomalous events.

The following sections will describe the two anomalies we will focus on in our work:

denial of service attacks and scans.

13 2.2. Anomalies

10
0

10
1

10
2

10
3

10
4

0

1

2

Number of anomalous flows

N
um

be
r

of
 p

ac
ke

ts
 p

er
 fl

ow

T5,T4 and T3 port scans
T2 and T1 port scans
T5 and T4 port sweeps
T3 port sweeps
T2 port sweeps

Figure 2.1: The number of packets per flow set up against the number of anomalous
flows

25 30 35 40 45 50
0.1

1

10

100

1000

Packet size (bytes)

N
um

be
r

of
 p

ac
ke

ts
 p

er
 fl

ow

Our injected Port scans
 and Port Sweeps
Our injected DDoS
External Port Sweeps
and Port Scans
External DDoS
ICMP DDoS 1
ICMP DDoS 2

Figure 2.2: Packet size set up against the number of anomalous flows

2.2.1 Denial of Service Attacks

A denial of service attack is an attempt by one or more persons to take a computer

resource out of service. In the case where there are several computers involved in the

attack, it is known as a distributed denial of service attack. A denial of service attack

can be achieved with different techniques, but a common method is to saturate one

or several servers with a stream of requests for service. By keeping the server busy

Chapter 2. Background 14

with bogus requests, it will not be able to respond to legitimate users in a reasonable

time.

A number of DDoS attacks originate from botnets 1 – a collection of infected com-

puters where an attacker has exploited security vulnerabilities found on legitimate

users’ computers. A user may unknowingly join a computer to a botnet, if he or she

downloads a bot agent (e.g. from an email attachment or through clicking a mali-

cious link). The agent will then install programs to open up for remote control by

the intruder[15].

Another form of DDoS attacks, one which has risen in prominence during the last

years due to the advent of social networks, is a voluntary and cooperative form of

attacks. People from all around the world can now, out of their own free will, join

in on planned attacks against data centers or websites with the help of open source

programs like LOIC [27]. The hacker group Anonymous [32] has been known to

use, LOIC for attacks in this category. By spreading information (i.e. the IP address

and a time window) about the attack through websites like 4chan and reddit, millions

of potential users can join in. This has happened to both Visa and Mastercard after

they closed down Julian Assange’s account during the Wikileaks incident [12].

A denial of service attack can be perpetrated in a number of ways. The syn flood

attack is based on a host sending a stream of TCP/SYN packets, often with incor-

rect IP addresses, in an attempt to flood the server. Each packet sent to the server

is handled like a connection request, which has the effect that all resources used to

establish a TCP connection are occupied [20]. An ICMP flood, is a type of DoS

attack that sends large amounts of (or over sized) ICMP2 packets in an attempt to

crash the TCP/IP stack. A smurf attack is a variant of this that floods a vulnerable

network with a number of spoofed ICMP echo request messages (ping) to the broad-

1Also known as zombie networks
2Short for Internet Control Message Protocol, it is one of the core protocols of the Internet Proto-

col Suite

15 2.2. Anomalies

cast address. If the router is not configured correctly, faking the source IP to appear

to be the address of the victim will have the effect that most of the hosts will send an

echo reply. With many hosts replying, this will multiply the traffic on the network,

and cause legitimate traffic to be lost.

Figure 3.2 and 3.3 gives an example of how a DDoS attack appears when studying

the NetFlow data with nfdump. As we can see, different source addresses all trans-

mit to the same destination address (the target of the attack). In this case, the source

port is fluctuating randomly (common with TCP/UDP DDoS attacks), which leads

NetFlow to treat each packet as an individual flow.

A DDoS with ICMP packets is a bit of a special case. NetFlow will divide packets

into flows based on protocol, src/dst IP and src/dst port. ICMP traffic does not have

port numbers, so NetFlow will set the src port to 0, and the dst port to ICMP type

and code. In other words, all the ICMP packets sent from the same IP address will

be in the same flow, and the more intensive the attack is, the higher the number of

packets per flow will be. This means that the number of packets per flow in an ICMP

echo req DDoS attack scales with the intensity.

2.2.2 Scans

A large number of attacks start with a reconnaissance phase, where an attacker

scans a large number of ports in order to expose vulnerabilities in his targets ar-

mor. RFC2828 [24] defines a port scan as "An attack that sends client requests to a

range of server port addresses on a host, with the goal of finding an active port and

exploiting a known vulnerability of that service". If a port with a known vulnerabil-

ity is discovered to be open and listening, a hacker can exploit this.

Another variant of port scans are known as port sweeps – or worm scans, where an

attacker scans a range of hosts for a single vulnerable port. This type of attack is

Chapter 2. Background 16

common among worms, who may employ the technique in exploiting a vulnerability

inherent to a program listening for connections on a certain port. The amount of data

sent out by Nmap differs slightly for the two types of scans. As can be seen on the

anomaly spectrum in Figure 2.1, port scans have a slight increase in the number of

packets sent out in the high intensity segment3. Note that this can differ for other

types of scanners.

The anomaly spectrum in Figure 2.2 shows the difference in packet sizes between

a scan and a DDoS. As we can see, the packet sizes are fairly small, with sizes

ranging from 29 to 46 bytes. ICMP DDoS 1 and 2 represent the increasing number

of packets per flow for ICMP attacks that scales with the intensity of the attack.

The principal challenge for an intrusion detection system with detecting scans, is

finding an algorithm that can distinguish between a legitimate request and a mali-

cious scan (e.g. a perpetrator trying to discover all the HTTP servers in a network).

Another challenge in detecting scans compared to attacks like DDoS, is the fact the

amount of data transmitted are orders of magnitudes smaller. If an attacker wishes

to keep the scans hidden, it will be virtually impossible for an intrusion detection

system (IDS) to detect it. As shown in [26], the amount of data needed for a detection

scheme like entropy to detect a port scan, surpasses 7% of the total data. The same

amount of data needed to detect a port sweep is as high as 15%.

2.3 An Alternative Way of Defining Anomalies

Based on studying the anomalies with Nfdump (see 3.2), we find that we can define

scans and DoS attacks with another method than by looking at what traffic distribu-

tions are affected, as described by A. Lakhina et al. [18]. By the nature of what it

attempts to do – discover if a port is open, a scan has no need for large packet sizes.

3For the port scanner Nmap, a T5 scan is the highest intensity, and T0 is the lowest intensity.

17 2.4. Detection and Identification Metrics

By studying the traffic from both our injected scans, and the external scans found,

we find that close to every packet sent, is under 50 bytes. In addition to this, since a

scan is based around either scanning various hosts for one port, or various ports of

one or more hosts, a scan will always contain one packet per flow (unless congestion

control or a similar mechanisms make it send the same packet more than once).

In the case of DoS attacks, all the external attacks we discover have packet sizes of

29 bytes, and our injected attacks (done in [26]) are between 28 and 46 bytes per

packet. As described earlier, certain DoS attacks (e.g. some forms of ICMP floods)

have packet sizes which are large, and have several packets per flow. However,

attacks based on IP broadcasts, such as ICMP floods and smurf attacks, are easy to

block[19], and although there are likely to be a few attacks in this category, we do

not regard them to be a big factor to consider. Based on the attacks we discover, and

descriptions of attacks found in [21], we make an assumption that most DoS attacks

will have smaller packet sizes than 100, and are most likely to have one packet per

flow. Table 2.2 describes the alternative way of defining the anomalies.

Anomaly Defined by packet size and number of flows
DoS Small packet sizes, usually < 100 bytes.

Often only one packet per flow.
Port Scans & Small packet sizes, often < 55 bytes.
Port Sweeps Often one packet per flow.

Table 2.2: Anomalies defined by packet size and the number of flows.

2.4 Detection and Identification Metrics

There is a vast range of metrics defined for evaluating the detection and identification

performance in a detection system. The metrics used are based on the assumption

that malicious activity (e.g. scan or DoS) is a subset of all the anomalous events

that are detected. When identifying an anomalous event it will be classified as either

Chapter 2. Background 18

a true positive (TP) or a false negative (FN). The former means that the anomaly

was due to a malicious activity, whereas the latter corresponds to a malicious event

that did not trigger an alarm. Events that are not malicious are often referred to as

benign activities. A benign event is either classified as a true negative (TN) or a false

positive (FP). A TN is when a benign event do not trigger an alarm, whereas benign

activity that generates an alarm is classified as a FP. An illustration of this concept

is shown in Figure 2.3.

No alert FNMaliscious
traffic

Benign
traffic

All traffic

Normal

Alert

Alert

No alert

FP

TP

TN

Figure 2.3: Illustration of the possible outcome of an anomaly identification process.

Detection and identification rate are two approaches in evaluating a detection sys-

tem. Detection simply refers to the anomalies discovered by a detection system,

whereas identification is the act of verifying whether a flagged anomaly is a true or

false positive. To compare detection systems one typically computes the detection

and identification rates. The detection rate is the number of detected anomalies by

one system, divided by the union of the detected anomalies (i.e. one rate for each

system). The identification rate for a specific system is the number of identified

anomalies (TP+FP) divided by the number of identified anomalies + the number of

unidentified anomalies.

The evaluation metrics used in this thesis is further explained in chapter 4.3.

19 2.5. Entropy-based Detection

2.5 Entropy-based Detection

Traffic feature distributions are highly dimensional objects, and it can prove chal-

lenging for classical time series techniques to extract useful information from such

distributions. Entropy based metrics provide a more fine-grained insight into the

distributions than volume based detection can provide, and gives a fairly compact

representation of the traffic features. If a time series of entropy values (e.g. for

source ports) are plotted in a graph, one can by visual inspection see the change in

entropy, and unusual patterns in the traffic spectrum may be revealed. A. Lakhina et

al. [18] shows that by looking at the changes in the distribution of traffic features, it

is possible to discover a broad spectrum of anomalies. Compared to volume based

techniques, entropy can also detect anomalies that do not introduce large changes in

the amount of traffic [18] [21].

Entropy Formula

Let X denote a random variable representing the distribution of values of a specific

traffic feature. Each X can take n outcomes {xi : i = 1, .., n}. Entropy, a measure

of uncertainty, is defined as [33]:

H(X) = −
N∑
i=1

p(xi)log(p(xi)) (2.1)

To be able to quantitatively compare entropy values across time, one might follow

the same pattern as suggested by Nychis[21], and compute the normalized entropy:

Hn(X) = H(X)/log(N0) (2.2)

Where log(N0) is the upper limit for the entropy, and is achieved if every element in

Chapter 2. Background 20

X appears exactly once.

Detection and Identification

An abrupt decrease in entropy values corresponds to a concentration of that partic-

ular feature’s value in the traffic spectrum. On the other hand, an abrupt increase

corresponds to a dispersion in the distribution of feature values. For a DDoS attack

this would imply a dispersion in the distribution of source ports, and a concentration

in both destination port and address (depending of the configuration of the DDoS).

The aforementioned behavior leads us to another feature of entropy-based detection,

namely the ability to classify the anomalies by their respective entropy values. This

is achieved by evaluating the entropy values of traffic features, and search for irreg-

ularities in the same time interval across the different distributions. For example,

during time interval t, one can see an abrupt decrease in entropy values for both

destination ports and destination IPs. Firstly, this indicates that there is as anomaly

present, but one can also see that the anomaly has the same nature as a DoS attack.

If we in the same time interval experience an increase in source IP entropy values,

the sum of all observations strongly indicates that the anomaly is a DDoS attack.

2.5.1 Limitations

Even though entropy-based detection can identify and classify anomalies, the tech-

nique lacks the ability to output specific feature values. Moreover, if the time series

of entropy values for each traffic feature suggest the presence of a DDoS attack, we

are still not able to extract the exact feature values which cause the alarm.

Previous work on entropy-based detection [26] concludes with the fact that anoma-

lous traffic (e.g. scans or DDoS) must occupy a certain ratio of the total traffic in

21 2.6. Histogram-based Detection

the current time interval in order to be detected. The ratio of a ”normal” scan in a

large backbone network is typically lower than the suggested threshold and therefore

entropy-based detection is not able to detect nor classify a small scan attack.

2.6 Histogram-based Detection

A histogram is a distribution of flows, bytes, or packets with respect to the different

values of traffic features. The most commonly used traffic features encompass IP

address, Autonomous System (AS) number and port, for both source and destina-

tion. The main idea behind this approach is that (i) histograms capture regular traffic

patterns that reflect the behavior of a network; and (ii) during an anomaly the traffic

patterns get distorted, hence it will be visible in the histograms.

Figure 2.4 illustrates two histograms of the destination and source port feature, based

on data obtained during night-time on the 26th of January 2010. Each of the his-

tograms represent the distribution of feature values in that particular time bin. The

upper plot is the typical way of viewing it, one bar corresponding to one feature

value (one-to-one). While in the lower plot, each bar corresponds to a number of

different feature values. So instead of designating a bar to only one feature value, it

can represent a range of values (e.g. one bar corresponds to port number 1-100) or

even a combination of different features (e.g. a single port number with a range of

IP addresses).

By generating histograms for each of the time bins, one will be able to see irregulari-

ties in the traffic pattern. Figure 2.5 is an overview of the destination port histograms

taken from four consecutive days in January 2011. The time bin corresponds to the

0505-0510 (A.M.) interval, and we can observe the following: The histograms have

more or less the same pattern, that is a set of ports that appear more frequent than

the rest (i.e. [21,22,80,110,443,546-47]). However, in the upper right histogram one

Chapter 2. Background 22

0 100 200 300 400 500 600 700 800 900 1000

10
2

10
4

destination port

n
u

m
b

e
r

o
f

fl
o

w
s

0−1 1−2 2−3 3−4 4−5 5−6 6−7 7−8 8−9 9−10

10
2

10
4

destination port

n
u

m
b

e
r

o
f

fl
o

w
s

x 100

Figure 2.4: Histograms illustrating destination ports and their corresponding flows
during a 5 minute interval. In the lower plot features are grouped for every 100th
value.

can see that certain ports appear more frequently in the range from 600-800. The

consequence is a distortion of the normal pattern and might be flagged as suspicious

and detected depending on the detection technique.

0 200 400 600 800 1000

10
2

10
4

destination port

n
u

m
b

e
r

o
f

fl
o

w
s

0 200 400 600 800 1000

10
2

10
4

0 200 400 600 800 1000

10
2

10
4

0 200 400 600 800 1000

10
2

10
4

Figure 2.5: Histograms illustrating destination port with corresponding flows of the
same time bin in five consecutive days

23 2.6. Histogram-based Detection

Histogram-based detection is a technique proposed by several authors in the past

years for detecting different kinds of anomalies based on traffic features. Kind et.

al. [17] propose a method that can be classified as semi-supervised, but can also

be implemented as an unsupervised detection technique. The method contains the

following four steps:

I. Select features and construct histograms.

II. Map into metric space.

III. Cluster and extract models.

IV. Classification

The first step consists of selecting the appropriate traffic features for further extrac-

tion and evaluation. The number of features and the features themselves decide to

some extent the performance of the detection algorithm, both the time and resources

utilized (i.e. memory usage and processing overhead) and the types of anomalies

that will be detectable.

Table 2.3 gives a summary of the most commonly used features and the types of

anomalies that are directly related to each of them. Generally, the more features one

includes in a system, the more likely one is to detect and identify anomalies, this

does however also increase complexity.

The next step is mapping training histograms for each feature into a metric space.

The objective for such an approach is to (1) place similar histograms close to each

other and (2) to keep dissimilar histograms apart. There are several distance tech-

niques that can address such a problem, but is is desirable to utilize one that captures

variance characteristics of a dataset. For example, a component t1 that varies a lot

should not be weighted equally to a component t2 with lower variance, thus a change

in t1 should not be as suspicious as a change in t2. [17] utilizes the Mahalanobis

distance to detect patterns of common behaviour to quantify similarities between

Chapter 2. Background 24

histograms and PCA for dimensionality reduction. The latter is important in order

to reduce the complexity of the derived models, hence maintaining the quality and

the scalability of the classification.

Clustering is another step of the training process, and is needed in order to identify

and model patterns of normal behavior. The problem lies within finding the clusters

that best describes the data, and distinguishing between clusters that represents nor-

mal and anomalous data. The filtering of anomalies is done by removing clusters

that correspond to a small fraction of the total observations. Kind et al. suggests

to remove clusters that has fewer points than 5% of the total number of histograms.

The final set of clusters models the normal network behavior and is refereed to as a

baseline.

Finally, the network is monitored and for each traffic feature during an interval a

vector is generated. Each vector is then compared to a model to see how the network

behavior differs. If the network behavior falls inside one of the existing clusters, it is

considered normal, and anomalous otherwise. An alarm is initiated if a vector falls

more than 3σ (three standard-deviations) away from a cluster.

D. Brauckhoff et. al. [11] propose another system that relates to histogram-based

detection. This can be classified as an unsupervised approach and is summarized in

the following four steps:

I. Histogram cloning and detection.

II. Voting and meta-data generation

III. Flow pre-filtering

IV. Association rule (AR) mining

Histogram cloning is a promising technique applied to HD. The motivation behind

it is to maintain multiple randomized histograms (of the same feature), hence it will

obtain additional views of network traffic. This technique is realized in [11] by cre-

25 2.6. Histogram-based Detection

Feature Possible scenarios

Src IP
◦ one-to-many addresses associated with more flows than

usual, e.g. due to worms, botnet, or spoofing.
◦ outages that might remove certain servers, hosts, or ASs

from a network.

Dst IP
◦ DoS attacks, both single and distributed creates a concen-

tration of the addresses in use.
◦ dispersion in the destination addresses due to scans.

Src Port
◦ DoS attacks originating from a single port
◦ flow to a specific port reflected from an attack, e.g. scans

for vulnerable ports.

Dst Port
◦ attacks in general to a specific port, e.g. network scans or

worms.

Protocol number
◦ use of unsolicited transport protocols
◦ sudden increase in ICMP packets due to ICMP-based

scans.

Packet size
◦ high density of small packet sizes due to DoS attacks or

scans.
◦ packets whose size are incrementing by a certain size, e.g.

SYN flooding

Flow duration
◦ abrupt changes or concentrations of specific duration pat-

terns

Table 2.3: A list of traffic features and their impact on anomaly detection. (Source
[17])

ating n histogram-based detectors corresponding to n different traffic features. For

each of the n features there are m bins per time interval, and by applying a hash

function to each of the clones, one makes sure that each feature value is placed ran-

domly into one of the m bins. This differs from classical binning, which tends to

place adjacent feature values (e.g. source ports) next to each other in a histogram.

For histogram detection, KL distance (see Section 2.6.1) is computed between ev-

ery newly created distribution and a reference distribution, more specifically the

distribution from the previous measurement interval.

If a KL distance exceeds a given threshold (3× σ) the algorithm generates an alarm

on the set of time bins (Bk) and the corresponding set of feature values (Vk) within

Chapter 2. Background 26

each timebin. Meta-data generation depends on a voting strategy between each

histogram clone for a specific feature. If a clone generates an alarm on a histogram

bin it will undergo an iterative process that removes suspicious flows until no alarm

is generated. When the iteration completes the set of anomalous feature values, Vk

is identified by maintaining a map between values and corresponding timebins. The

voting scheme is introduced at this point, and if a sufficient amount of histogram

clones generates an alarm on the same feature value it will be included in the meta-

data for further pre-filtering.

D. Brauchoff et. al. apply the Apriori algorithm, authored by R. Argawal et. al.

[6], as the final stage of their detection system (AR mining). Apriori iterates over

a pre-filtered dataset containing traffic flows and outputs the most frequent item sets

based on a minimum support parameter.

Section 2.6.1, 2.6.2 and 2.6.3 describe in detail some of the techniques used by [11],

which are the techniques we have chosen to adopt in our histogram-based detection

scheme.

2.6.1 Kullback-Leibler Distance

KL distance (or divergence) is a mathematical technique that measures the differ-

ence between two probability distributions Q and P [34]. The technique is widely

applied to information theory with the purpose of measuring the expected number of

additional bits required to represent samples from distribution P based on code from

Q, rather than P . In HD, distribution P represents the reference distribution, which

is typically the ”true” distribution of data (observations), whereas Q represents the

distribution of the current time interval (i.e. a model or approximation of P).

27 2.6. Histogram-based Detection

The KL distance is defined as:

DKL(P ||Q) = −
m∑
i=1

pilog(
pi
qi
), where DKL ≥ 0 (2.3)

The KL distance is zero if both distributions are identical, while deviations in the

distributions imply larger KL values. An event (e.g. a denial of service) that has an

impact on the traffic pattern will be seen as a spike in the KL distance. If the event

spans multiple time bins, a spike will be seen both at the beginning and the end of

the total interval.

A KL time series for destination AS is shown in Figure 2.6, with data based on

two successive days in March 2010. The graphs to the left show the KL distance

for all 288 time bins during a day, while the graphs on the right illustrate the first

difference.4 The dashed line corresponds to the alarm threshold for the current time

interval – an alarm is initiated for all KL values greater than the threshold.

Threshold Value

The threshold value T used in our work, similarly to the threshold in [9], is defined

as:

T = 3 ∗ σKL, where σKL =
√
E[(Xkl − µkl)2] (2.4)

The vector KL corresponds to the KL values during one day of measurement data,

thus a new threshold is calculated for each day. The value is based on observations

stating that the first difference is approximately normally distributed with zero mean

and standard deviation σKL.

4First difference is the first answer to a multi part equation (i.e. first of many time bins)

Chapter 2. Background 28

0 100 200 300
0

1

2

3

4

5

6
x 10

−3

K
L

 d
is

ta
n

c
e

5−minute intervals

0 100 200 300
−5

0

5
x 10

−3

K
L

 d
is

ta
n

c
e

5−minute intervals

0 100 200 300
0

1

2

3

4

5

6

7

8
x 10

−3

K
L

 d
is

ta
n

c
e

5−minute intervals

0 100 200 300
−8

−6

−4

−2

0

2

4

6
x 10

−3

K
L

 d
is

ta
n

c
e

5−minute intervals

Figure 2.6: The Kullback-Leibler distance and first difference (with corresponding
threshold seen as a dashed line) of two consecutive days in our dataset (March 25th
and 26th).

2.6.2 Flow Pre-filtering

Before the application of AR mining one wants to filter the dataset based on the

set of candidate flows. Each flow record in the candidate flows consists of at least

two feature values, and at most four, e.g. [source AS, destination AS, source port,

destination port]. The motivation behind this is to filter only the flows that match

the union of a flow record in the set of all flows, hence generating a smaller dataset.

A smaller dataset will lead to a decrease in the processing time of the remaining

steps. Another, and even more important reason for pre-filtering is the impact on

the detection rate. If one include all flows without any filtering, it will most likely

29 2.6. Histogram-based Detection

result in a higher rate of FP item sets generated by the association rule mining (see

sec 2.6.3). Therefore, it is desirable to only apply the Apriori algorithm to a dataset

containing a small amount of ”normal” flows.

The basic idea of the candidate flows and pre-filtering is depicted in Figure 2.7.

With a set of candidate flows, the size and dimensionality of a pre-filtered dataset

may potentially be several orders of magnitude smaller than the original dataset.

All flows

Pre-filtered dataset

Original dataset

Candidate flows

Figure 2.7: Illustration of the creation of candidate flows resulting in a smaller (pre-
filtered) dataset.

2.6.3 Association Rule Mining

Association rule mining (also known as learning) is a data mining technique that

grew rapidly in popularity partly due to an article authored by R. Agrawal et. al [5].

The technique was originally proposed to find relations between products in a large

scale database consisting of customer transactions. The association rules could fur-

ther on be employed as a tool to increase profit, in particular how to design coupons

and what to put on sale. For example, a rule might say that 80% of customers pur-

chasing beer also purchase potato chips. This particular fact may be exploited by

placing both products next to each other on the shelves, and will most likely lead to

an increase in sales.

Chapter 2. Background 30

Agrawal et al. defines the problem of AR mining as follows:

Let I = i1, i2, ..., in be a set of n binary attributes called items. LetD = t1, t2, ..., tm

be a set of transactions (i.e. the database). Each transaction D has a unique transac-

tion ID and contains a subset of the items I . A rule is defined as an implication of

the form X ⇒ Y where X, Y ⊆ I and X ∩ Y = ∅ [6].

The problem of discovering association rules can be decomposed into two sub-

problems; (1) find all combination of items (from now on called item sets) that has a

support above a user specified minimum support parameter (referred to as minsup-

port) resulting in zero-to-many large item sets, and (2) derive association rules for

the given large item sets.

The technique of AR mining is indeed applicable to the anomaly extraction prob-

lem. An anomaly will typically result in many flows that exhibit the same structural

pattern, e.g. same source addresses, and destination ports, because they have a com-

mon root-cause (such as a DoS attack). In the anomaly extraction domain, each

transaction D corresponds to a flow record, and the items I = i1, .., i7 to the follow-

ing traffic features: {source IP, destination IP, source port, destination port, protocol,

#packets, #bytes}.

Apriori

Apriori is an AR algorithm proposed by R. Agrawal et al. It has received attention

due to its high performance, and according to [5] it outperforms other algorithms by

factors ranging from 3 (on small problems) to approximately an order of magnitude

for large problems.

Apriori requires as stated earlier the minsupport as an input parameter. If the pa-

rameter is selected to be too small, Apriori will potentially produce many item sets

consisting of non-anomalous flows (FP). On the other hand, selecting a parameter

31 2.6. Histogram-based Detection

value that is too large, can cause Apriori to ignore anomalous flows, and lead to an

increase of FNs.

In the first round, Apriori iterates over the dataset to identify the support for all

candidate 1-item sets. At the end of the iteration, Apriori selects the 1-item sets with

frequency above the minsupport parameter. The item sets created in round one is

then used in round two to create 2-item sets. If Apriori makes at most h iterations

and l = 1, 2, ..., h, then Apriori will stop when no item sets that contain (l+1) items

meet the minsupport requirement. In the final step, Apriori outputs all the unique

item sets found to have a frequency ≥ minsupport.

A simple illustration of the iterative process of Apriori is depicted in Figure 2.8 and

an example of the final output is given in Table 3.3 in chapter 3.

1: 1-itemsets

1,2,3transactions:
minsupport:

1,22,3,4,5
3

2,3,4 3,42,3

item sup
2 5
3 5
4 3

2: 2-itemsets
item sup
{2,3} 4
{3,4} 3

3: 3-itemsets
item sup

None

Figure 2.8: Apriori algorithm applied to a small problem. Only possible 3-item set
is {2, 3, 4}, but it has a fequency < 3 (minsupport).

2.6.4 Limitations

HD based detection encompass many techniques and different algorithms for data

extraction, detection, and identification. These relatively resource intensive steps

can result in a large computational overhead, and make it hard to obtain results for

real-time detection systems. Thus, such a system must be highly optimized and

equipped with strong computational power in order to offer scalability. Both with

Chapter 2. Background 32

respect to the size of the dataset, and the number of features included in the detection

scheme.

Another limitation is the need for manual verification of the suspicious item sets

created by Apriori. Whereas some item sets clearly indicate an anomaly, there are

often item sets that do not appear suspicious to the same extent and further analysis

is desirable. The analysis often involves manual inspection of the traffic, thus a very

time consuming process.

2.7 SENATUS

SENATUS is a recently proposed detection system developed by A. Abdelkefi. Sim-

ilarly to other detection techniques, SENATUS is divided into a number of steps to

aid in the detection and identification process:

I. Election

II. Voting

III. Decision

The idea behind SENATUS stems from the concept of a senate, which means the

assembly of the eldest and wisest members of the society. These members, called

senators, make decisions (e.g. concerning legislation) which represent the opinion

of the society.

In SENATUS, the senators correspond to the top-n feature values in the election

phase. These feature values are elected based on prior knowledge of how malicious

anomalies behave. In general, SENATUS applies two filters in order to capture

the feature values that are most likely involved in either a scan or a DoS anomaly.

Moreover, the data is either filtered to contain feature values with small packet sizes

(for DoS anomalies) or feature values with small amounts of packets per flow and

33 2.7. SENATUS

small packet sizes (for scans).

The motivation behind selecting only a few feature values to represent the whole

dataset is due to the curse of dimensionality. [4] finds that a feature histogram, when

ordered, follows a power-law distribution, which implies a high compressibility of

the histogram. While a dataset in reality needs all feature values f (where f>>n)

to represent it completely, a relatively small amount can be included and still accu-

rately represent the whole set. Figure 2.9 gives a clear picture of the dimensionality

problem, and one can observe that a relatively small amount of traffic features carry

most of the flows. The ratio of which an added feature value provides a better repre-

sentation of the set, decreases significantly above a certain threshold. On the other

hand, each selected feature value will proportionally add the same amount of dimen-

sionality.

0 50 100 150 200 250 300 350 400 450 500
10

3

10
4

10
5

C
u

m
u

la
ti
v
e

 n
u

m
b

e
r

o
f

fl
o

w
s

Number of features

Source AS

Destination AS

Source port

Destination port

Top−23 AS‘s

Top−20 Ports

Figure 2.9: Illustration of the increase in number of flows with an corresponding
increase in the number of feature values.

After selecting the top-n feature values (senators), SENATUS initiates the voting

procedure to identify whether there is a problem or not. The voting is based on the

detection of abrupt variations in the amount of flows for the top-n feature values per

time bin. Abrupt variations are detected by applying Principal Component Pursuit

(PCP), which is a robust version of the statistical technique; PCA (described later in

this section).

Chapter 2. Background 34

When PCP has identified suspicious feature values they are further used to generate

the set of candidate flows. All feature values are significant within each time bin

when creating a candidate flow. For example, if only three out of the four traffic

features are flagged as malicious, they will not be included in the set of candidate

flows for that particular time bin.

Principal Component Persuit

PCA has proven to be very effective when applied in data analysis and for dimen-

sionality reduction, however it has a known sensitivity issue occurring due to outliers

in the data. In some scenarios these outliers may be removed prior to the application

of PCA, but in anomaly detection, the outliers are not known beforehand. There

have been several studies on the performance of PCA, and it is found that it suf-

fers from inability to capture temporal correlations [10] (referred to as poisoning).

However, several techniques have been proposed to counter the drawback of PCA,

generally called robust principal component analysis (RPCA).

Atef et at. [3] have shown that Principal Component Pursuit is resistant to the prob-

lem of poisoning. In general, the idea is to apply weights to the data objects based

on their estimated relevancy. By applying the inexact version of the Augmented

Lagrange Multiplier (ALM) solver, [3] also find that a satisfying performance is

achieved when setting the tuning parameter to a fixed value – making the detection

free of tuning parameters.

In SENATUS, the tuning parameter λ is set to:

λ =
weight√

(max(n,m))
(2.5)

SENATUS’ default parameter forweight is 2.5, and n,m are the dimensions of each

traffic feature matrix.

35 2.7. SENATUS

2.7.1 Limitations

SENATUS is optimized to detect anomalies that match certain criteria, where one

of them is to only capture feature values with low overall bytes per packet (BPP)

(< 55−100). This might exclude other types of anomalies, such as network outages.

In other words, the detection scheme of SENATUS lack the same generic approach

as adopted by both ED and HD.

SENATUS works on whole days of data, and in its first iteration it captures a feature

value if it resides within the top-n set. Further more it has to capture all flows that

relate to the captured feature values. This implies iteration over the same datasets

two times, a process proved to be very time consuming, hence a drawback with

respect to runtime.

3
Tools and Implementation

For data mining of NetFlow data and for aid with the different detection techniques,

we utilize a set of Unix based tools, namely nfdump, Bourne-again shell (BASH)

[13], Stream editor (SED) [16] and AWK [2]. Nmap is used for injecting var-

ious forms of scans. In addition to the aforementioned tools, we have also im-

plemented data manipulation and calculation in Matlab R© (v. R2010b, The Math-

Works). This chapter contains an explanation of these tools and in what way they

are utilized in our masters thesis. We will also give an detailed explanation of the

workflow in the three detection systems – entropy-based detection, histogram-based

detection+Apriori and SENATUS.

37

Chapter 3. Tools and Implementation 38

3.1 Nmap

Nmap, which stands for Network Mapper, is a free and open source tool for discov-

ering available hosts on a network. It can list the status of a host’s ports, operating

system, running services, what firewalls are in use and other information that might

be of use to both a systems administrator, and people with more malicious intents.

What makes Nmap such a powerful tool, is the possibility of micro managing the

scanner to behave exactly as you want it to. One example of this is how NTNU’s

network do not accept host discovery requests1. By using Nmap’s -Pn argument,

which turns of pinging (i.e. telling Nmap to not discover which hosts are online),

we circumvent this problem and are still able to discover which ports are open on

the IT systems connected to the network.

We will use a sample Nmap command to explain some of the most important argu-

ments used and how they work:

nmap -T5 -A -Pn -v -p 100-6400 158.38.178.0/24

-T5 is an argument designating the intensity of the scan, it ranges from -T0 to

-T5, with -T5 being the most intensive. If a stealthy scan is of essence, lowering

the intensity of the scan reduces the probability of being detected by an intrusion

detection system. Scanning with a very high intensity can also lower the accuracy

of the scan[1]. The reason for this is the possibility that packets are deleted by

congestion control or collision detection. In the case of an UDP scan, deleted packets

will confuse the scanner, as an absence of response leads Nmap to the conclusion

that the port is open.

-p 100-6400 instructs Nmap to only scan port 100 to 6400. By default Nmap

scans the first 1000 ports of a host. This option will be used when doing port sweeps,

1If no host discovery options are given to Nmap, it will by default send an ICMP echo request, a
TCP SYN packet to port 443 and a TCP ACK packet to port 80

39 3.2. Nfdump

where an attacker is interested in the status of certain high profile ports (e.g. port

1433 which is used by Microsoft SQL server).

The last argument in the command string is the IP scanned.

Table 3.1 explains in more detail the different commands and their effects.

Options Description
-T<number> Sets the intensity of the scan.

These range from 0 (low) to 5 (high)
--min-rate <number> Intensity is not lower than <number> per second

(if physical equipment allows this)
--max-rate <number> Intensity is no faster than <number> per second
-A Turn on OS detection and traceroute
-v Turn on verbose. Scan gives a more detailed report
-p Sets the interval of ports Nmap will scan,

-p 1000-6222 means that only port 1000 through 6222
will be scanned

-sU Enables UDP scanning
-PE Enable ICMP pinging for host discovery
-Pn Turn off pinging (no host discovery)

Table 3.1: Nmap options and their descriptions.

3.2 Nfdump

Nfdump is a tool for extracting information from network data captured in NetFlow

format by the NetFlow capture daemon – nfcapd. It supports a rich set of tools

that enables the user to extract specific traffic data with fine-grained precision. We

use nfdump in our scripts to extract data with any particular property we might be

looking for. Table 3.2 contains an overview of the most frequently used commands

in our scripts. Nfdump has four fixed output formats, and the default output format

is given in the following format:

Date D u r a t i o n Src IP : P o r t Dst IP : P o r t P a c k e t s By tes Flows

Chapter 3. Tools and Implementation 40

Options Description
-R </dir/first-file:lastfile> Reads data from a sequence of files found

in the directory dir
-o "fmt:<format>" Specify output format by element tags

(%fl for flows)
-a Aggregation on srcip, dstip, srcport and dstport.
-A <v9 field> Aggregation on specified v9 fields

(proto for IP protocol)
’<filter>’ Filter NetFlow data based on feature values

Table 3.2: Nfdump options and corresponding description.

It is possible to specify and customize any desired output format, and depending on

what traffic feature we are currently analyzing, the output format will differ.

As an example; when calculating source address entropy, we will need the source

address and the number of flows. A complete nfdump command to extract these data

would be in the form of:

nfdump -r /any/dir -o "fmt: %sa %fl %pkt"

In certain cases we can use nfdump manually as an anomaly detector, and in some

cases even as an anomaly identifier. By visually inspecting the plethora of informa-

tion contained in a five minute time bin, it is possible – all though time consuming –

to discover anomalies like scans or DDoS attacks. Without narrowing down the re-

sults from nfdump, the data returned is likely to look like Figure 3.1. As can be seen,

there are many different sources sending data with differing packet sizes to various

destinations, and it is difficult to draw any conclusions based on observations of this

data.

When creating an anomaly spectrum as seen in Figures 2.1 and 2.2, we need to

find the number of anomalous flows hidden in the traffic. In the case of HD and

SENATUS, potentially anomalous time bins are flagged with source and destination

AS and port, but without a specific IP address. Based on the information we have

41 3.3. Unix Tools

from HD or SENATUS (e.g. Source and destination AS), we can create commands

to only extract traffic going between these addresses.

nfdump -r

/data/netflow/oslo_gw/2010/10/04/nfcapd.201010040445

’(src as 1299 or src as 11427 or src as 14929 or src as

31375 or src as 23974 or src as 47205 or src as 5650)

and dst as 224’ | more

This command tells nfdump to extract data from the five minute interval during

04:45 - 04:50, 4th October 2010 containing packets with one of the source AS’ (e.g.

source as 1299 or 11427) headed to destination AS 224.

Figures 3.2 and 3.3 show the observable anomaly when we narrow down the results

with the aforementioned command. As can be seen, several different source IPs send

small packets in large numbers to the same host – a typical case in DDoS attacks.

This method of detecting anomalies with nfdump can be utilized for deciding whether

a flagged anomaly is a false or true positive.

3.3 Unix Tools

Matlab is a high-level computing language and an interactive system designed to

solve mathematical problems in an efficient manner, e.g. matrix and vector com-

putation. It includes a vast library of highly optimized mathematical functions, and

is comparable to c, c++ and the like in terms of performance. In our work, Matlab

is used for matrix and vector manipulation, candidate flow creation, as well as the

application of mathematical detection techniques (KL and RPCA).

BASH is a command interpreter and a high-level programming language, in a GNU

Chapter 3. Tools and Implementation 42

Figure 3.1: A typical view of a random time bin using nfdump

Figure 3.2: Possibly a DDoS attack.

operating system2. It is the user interface to a rich set of GNU utilities, such as SED,

2In our case a GNU/Linux operating system which is a combination of both.

43 3.3. Unix Tools

Figure 3.3: Possibly a DDoS attack.

AWK. The shell is simply a macro processor able to execute predefined commands,

and like any other language it has variables and control flow commands (e.g. iter-

ation using while and if statements). We utilize the shell primarily non-interactive,

which means that the shell executes commands from a file. The files (also called

shell scripts) in our work are listed in appendix A. Basically, our shell scripts is

called with zero-to-many parameters, depending on the detection scheme, and ex-

ecutes commands in a top-down sequential manner. BASH is utilized in all three

detection techniques, and primarily works as the framework for data extraction.

SED is a non-interactive feature, frequently used inside our shell scripts. SEDs main

feature is to perform basic text transformations on an input stream, normally from

standard input (stdin), but also from one or multiple files. SED applies transforma-

tion to each line, writes to a buffer and sends the output to standart output (stdout).

We utilize it in a piped structure (input stream from stdin) with the intention to re-

Chapter 3. Tools and Implementation 44

move unwanted information produced by nfdump (data extraction).3

AWK is a programming language.4 It is developed as a text-processing language –

it has simple syntax to match lines of patterns, separate out the fields and operate

on them. We utilize AWK both to aid the entropy and histogram based detection.

In ED the actual entropy calculation and filtering/thinning is performed by AWK,

while HD uses it for formatting prior to the application of Apriori.

3.4 Implementation

The implementation has an important role when evaluating the performance of the

different techniques and also when considering resource usage and execution time.

However, our priority is centered around the actual detection (all three techniques)

and identification (Histogram-based detection and SENATUS), and does not con-

sider other performance metrics to the same extent. Considering this, Sections 3.4.1,

3.4.2 and 3.4.3 describe the implementation of the three different techniques in de-

tail. In entropy and histogram-based detection detection, parts of the implementation

are based on related works, while most of it is developed during the past four months

of our work. SENATUS which is the last detection scheme, is fully developed by A.

Abdelkefi; supervisor and Ph.d. candidate.

3.4.1 Histogram-based Detection

The first step is depicted in figure 3.4 and consists of extracting desirable data

from NetFlow records. In this case we want to extract statistics based on different

traffic features, namely source AS/port and destination AS/port. Further more, the

statistics is piped to SED and AWK for removal of unwanted information. The sole

3Unwanted information is typically auto-generated summarization of flows and redundant flow
information.

4AWK was developed in 1977 by Alfred Aho, Peter Weinberger, and Brian Kernighan.

45 3.4. Implementation

reason for the filtering is to decrease the execution time and not having to deal with

unnecessary data at a later stage. The output is simply one file for each feature for

every time bin during one day. All in all it produces 288 × 4 = 1152 files per day,

and increases linearly with the number of selected days from our dataset (Section 4).

nfcapd

tim
eb

ins

input:
- feature
- day
- month

collectmtimes.sh

nfdump sed awk

output:
feature files,
1 per timebin,
288 per day.

Figure 3.4: Netflow data extracted for further analysis in HD.

The second step in the work flow we apply the actual anomaly detection algorithm,

Histogram-based detection (Section 2.6). The scripts reads the output from the first

step and creates a TFD for each file. Further on, the KL-divergence between the dis-

tributions for each of the features is calculated. The KL-divergence is then evaluated

(see Listing 3.1), and based on a threshold the current time bin is either flagged as

anomalous or discarded.5 The next step is to locate anomalous feature values that

resides within each of the anomalous time bins. For example, if time bin 100 is

flagged as anomalous, we need to flag the feature(s) that causes the time bin to get

flagged. When this is done we end up with two vectors as the output, one for the

anomalous time bins and one for the suspicious features within the anomalous time

bins.

The third step processes the previous output to; (1) create the union of time bins

flagged by each of the feature values and (2) to create the suspicious flows based on

all combinations of flagged traffic features. For example, if the set [224,64514] is

flagged as suspicious source and destination ASs and the set [6667,443] is flagged
5For an explanation of the threshold see equation 2.4

Chapter 3. Tools and Implementation 46

Listing 3.1: A code snippet to illustrate how timebins are flagged as anomalous.
1 k=1
2 for i=1:288 % For every timebin/day
3 if (kl(i)>3*std(kl)) % Check if the kl divergence betweeen ←↩

→ two
4 % distributions is > 3 x standard ←↩

→ deviations
5 % of kl(:)
6 anomalousbin(k)=i; % If it is, flag the timebin as ←↩

→ anomalous.
7 k=k+1; % Go to the next timebin..
8 end
9 end

input:
feature files

apriori.m
KL

divergence >
3σ ?distribution (N-1)

distribution N
true:
flagged

false:
not flagged

output:
2 x matrices
- anomalous
timebins
- suspicious
feature values

Figure 3.5: Application of KL in HD to detect anomalies in the dataset.

as suspicious source and destination port, then the 4-tuple [224,64514,6667,443]

makes up a flow. These 4-tuples are further used in the next step to aid the data

mining process. An overview of this step can be seen in Figure 3.6

anoflows.m

extract features
within anomalous

timebins

output:
2 text files
- combination of
features
- anomalous
timebins

anomalous
timebins

suspicious
features

create
combination of

features

Figure 3.6: Candidate flow creation in HD: Combining the suspicious features into
canditate flows for further filtering and data mining.

47 3.4. Implementation

In the fourth step we apply the most important filtering, which is generally called

flow pre-filtering. The combination of flows obtained in step tree is used to filter the

NetFlow data. The filtering is only applied to the time bins which is already flagged

as suspicious.6 The step is depicted in Figure 3.7, and a detailed explanation and

motivation behind the fourth step is described in Section 2.6.3.

mining.sh

nfdump

output:
filtered flow
data

sed

anomalous
timebins

flow-
combination

nfcapd

awk

Figure 3.7: Filtering of NetFlow data based on the combination of suspicious fea-
tures and time bins in HD.

The fifth and final step in our HD system is the application of Apriori [6] (Figure

3.8). It iterates over a preformatted set of candidate flows (the output from step

four) and locates item sets based on their frequency (detailed explanation in Section

2.6.3). An example of the output is listed in Table 3.3 – each column corresponds to

the traffic features and each row corresponds to an item set, where the first column

is the weight of each item set.

apriori5.py

iterate input data
place it into 7-
tuple arrays

output:
All (1-n)-itemsets,
Pot. anomaliescreate

(1+n)-itemsets

prefiltered
flows,
formatted
for apriori

Figure 3.8: Application of Apriori to create item sets based on pre-filtered and for-
matted flows as input data.

6In our case the time bins that is marked by both entropy and histogram-based detection.

Chapter 3. Tools and Implementation 48

srcAS dstAS srcPort dstPort #packets #bytes duration support
1 * * * * 2 * 0.100 15998
2 224 * * * 1 * 0.300 12297
- - - - - - - - -
2 * * 80 * 1 * 0.100 11292
5 * 224 1024 6667 1 48 0.200 12492
5 * 224 3072 6667 1 48 0.100 12382

Table 3.3: Frequent item sets computed with Apriori algorithm (minimum support:
10000, #flows: 197000)

3.4.2 SENATUS

SENATUS is implemented mainly by utilizing the same tools as described in Section

3, with a small part implemented in Perl [22].7 Perl is a programming language ideal

for text manipulation, it is widely used in resource intensive applications such as

bio-informatics, because of its ability to handle large data-sets [29].

SENATUS is applied one day at a time, and the input parameters are hard coded, thus

different instances of the same code base are executed depending on the anomaly

one wants to detect (that is scan or DoS anomalies.). The same set of traffic fea-

tures are utilized both for scan and DoS anomalies, namely source AS and port, and

destination AS and port.

The first step in SENATUS involves anomaly selection and data extraction based on

feature values and is depicted in Figure 3.9. If the code base for scans is executed, the

script produces a summary of the top-n feature values (with BPP< 55 and #packets-

per-flow < 4) during a specific day.8 The summary is formatted to only contain a

sorted list of the specific feature values. SENATUS initiates further extraction and

creates several vectors containing the total amount of flows related to the feature

values within each interval (time bin). For example, the first element in vector
−−→
dp80

corresponds to the number of flows with destination port 80 within the first time bin

7Perl is authored in 1987 by Larry Wall.
8Scans typically generate packets with a size less than 55 BPP

49 3.4. Implementation

during a specific day. There are a total of 288 time bins per day, hence the number

of elements in each feature vector is 288.

extraction.sh (dos)

extraction.sh (scan)

extract top-n feature
values for each traffic

feature

extract #flows for
each traffic feature

value

nfcapd

- top-n feature
values

srcport

srcas dstas

dstport

output:

Figure 3.9: Anomaly selection and data extraction in SENATUS.

The final output of the feature value extraction is 4 matrices per day – one for each

traffic feature. Each matrix consists of all the feature value vectors for the respective

traffic features, e.g the matrix for destination ports during a day is dstportday1 =

[dp80,dp110,] (see Figure 3.10). In addition, the extraction step outputs the sum-

mary of the most frequent (top-n) unique feature values for each traffic feature.

timebin

fe
at

ur
e

va
lu

es

tra
ffic

 fe
atu

res

Figure 3.10: Final output of the initial extraction of SENATUS.

The output from the first step is then processed by a matlab script, which applies

RPCA to the four matrices (figure 3.11). The index of each entry (ix and iy) in

the output of RPCA corresponds to a traffic feature value (ix) and a time bin (iy)

respectively. If the entry value ix,y is greater than zero, the corresponding feature

value and time bin will be kept for further processing. After this the script initiates

the voting between flagged feature values within each time bin. If all traffic features

Chapter 3. Tools and Implementation 50

have flagged a set of feature values for a specific time bin, they will be used to

generate combinations of suspicious flows, referred to as candidate flow.

senatus.m

apply RPCA on each
feature matrix

locate corresponding
feature values and

generate flow
combinations

- top-n feature
values

srcport

srcas dstas

dstport

input:

output:
suspicious
flows

Figure 3.11: Application of RPCA and generation of suspicious flows in SENATUS.

In the final step, SENATUS will verify the various candidate flows by applying them

as a filter in nfdump and attempt to extract NetFlow data for each time bin (figure

3.12). If none of these filters produce any matches, there are no anomalies found in

that time bin. The output of SENATUS consist of sets with suspicious feature values,

e.g. [4314, 224, 6000, 1433, 180] which corresponds to [Source AS, Destination AS,

Source Port, Destination Port, Time bin].

senatusfilter.sh

nfdump

output:
detected
anomalies

flow-
combination

nfcapd

Figure 3.12: Final extraction and verification in SENATUS - based on the combina-
tion of suspicious flows.

3.4.3 Entropy-based Detection

The work on entropy-based detection was conducted during [26], and the same work

flow is adopted in the this paper. The implementation consists of several scripts, one

for each of the five traffic features studied.9

9Destination IP/port, source IP/port and the flow size distribution (FSD).

51 3.4. Implementation

The basic function of the script is depicted in Figure 3.13. Firstly, the detection

is initiated with three input parameters, namely day, month and the feature. Based

on the input, the script extracts desirable information from NetFlow records using

nfdump. The output from nfdump is then formatted and filtered for unwanted in-

formation before we, in the last step, apply thinning and compute the normalized

entropy.

Thinning works by specifying a feature value (e.g. destination IP as 123.123.123.123)

and a threshold (i.e. a number between 0 and 1). The feature value decides which

flow records to keep. This is useful when filtering on anomalies where none of the

feature values are known prior to the entropy-based detection. A threshold value

decides at which rate to discard the non-anomalous flow records, which in the end

implies that the ratio between non-anomalous and anomalous flow records increases

with an increase in the threshold. However, no thinning is applied when empirically

comparing entropy against SENATUS and histogram based detection. The reason

is simply that malicious feature values are not known prior to the detection – it is a

tool to help entropy detect what it previously could not.

Finally, the adjacent entropy values, one for each NetFlow time bin, are evaluated

to verify if the anomaly had an impact on the traffic pattern or not. An impact can

either be seen manually by making a plot of entropy time series or by identifying

clear deviations in the entropy values.

nfcapd

tim
eb

ins

input:
- feature
- day
- month

entropy.sh

nfdump sed awk

output:
entropy distribution
for each feature
per day

calculation

thinning

Figure 3.13: Calculation of Entropy based on feature distributions.

4
Ground Truth

Evaluating anomaly detectors are by the nature of their mechanics no easy task.

Their job is to extract anomalous traffic out of an enormous amount of normal traffic

– which is like finding a needle in a haystack. An important decision to make is

what approach to take when evaluating SENATUS. According to [25], there are

mainly two approaches the research community view as viable alternatives. One is

based on root cause analysis, where each anomaly flagged is inspected to pinpoint

its cause [21]. The second approach is injecting artificial anomalies into the network

we are studying. There are a couple of advantages with the second method; the

first being the ability to test the anomaly detector for different types of anomalies

53

Chapter 4. Ground Truth 54

of your choosing with varying intensities and durations. The second advantage is

the ability to accurately find false negatives (see chapter 2.4). If you do not inject

anomalies, it is difficult to know if there are potential anomalies you have not found.

The drawback is the need for powerful equipment to inject them. As shown in

the previous work [26], the level needed to be surpassed for an anomaly detector

based on entropy metrics is high (see Table 4.2). There is also the fact that most

network administrators do not view it kindly that one inject destructive anomalies

in their networks. We will in this thesis set the ground rules for and attempt a third

method for evaluating anomaly detectors. This method is based on the intuition that

the union of the time bins flagged by all detectors, gives a fair representation of

the number of anomalies in the set of time bins. This method will be explained in

Section 4.3.

Dataset

The methodologies described in Section 4.2 and 4.3 are based on the dataset from

March, November and December. While we have analyzed the whole dataset, we

will present detailed analysis of 11 days of data captured at the Oslo gateway in

Uninett’s backbone network. The selection of days is as follows:

November 2010 1st,2nd,12th & 14th

December 2010 12th,18th & 21th

March 2011 1st, 25th,26th & 28th

The dataset consists of nearly two months of sampled NetFlow data captured in

UNINETT backbone network and are thus very large in terms of data volume and

multidimensional in terms of traffic features that can be measured and evaluated.

The traffic crossing the Oslo Gateway in UNINETT on an average day consists of

roughly 800 gigabyte (GB) data and 200 million flows. The days in our data set

range from the 1st-15th of November 2010, 12th-21th of December 2010 and the

55 4.1. Injection Based Ground Truth

1st-31th of March 2011.

4.1 Injection Based Ground Truth

Our initial attempt at constructing a ground truth was based on the approach of in-

jecting anomalous traffic into the network. With the approval of the network admin-

istrators at NTNU, we were authorized to scan their network with Nmap. Table 4.1

contains a sample of the injected attacks1. We use these attacks to create Figure 4.1,

which shows the effect the port sweeps and port scans have on the traffic spectrum.

The reason we can not see port sweeps with the -T1 intensity is in all likelihood due

to the fact that NetFlow samples packets with a rate of 1 packet per 1000. In essence

this means that the rate is on average less than 1000 packets per five minute interval

for the -T1 intensity. As can be seen, the percentage of anomalous traffic is not high

enough to be detected by entropy based metrics.

10
−2

10
0

10
2

10
4

10
−4

10
−3

10
−2

10
−1

10
0

Number of anomalous flows

P
er

ce
nt

ag
e

of
 a

no
m

al
ou

s
tr

af
fic

T5 scans
T4 scans
T3 scans
T2 scans
T1 scans

Port Scans
Port Sweeps

Figure 4.1: The percentage of anomalous flows set up against the number of anoma-
lous flows

1See the appendix for an exhaustive list of our injected attacks

Chapter 4. Ground Truth 56

Date & time Command
Port Sweeps
June 23rd, 2010
20:33 sudo nmap -Pn -T5 129.241.0.0/16 -p 1433
20:50 sudo nmap -Pn -T4 129.241.0.0/16 -p 1433
21:20 sudo nmap -Pn -T3 129.241.0.0/16 -p 1433
22:00 sudo nmap -Pn -T2 129.241.0.0/16 -p 1433
22:37 sudo nmap -Pn -T1 129.241.0.0/16 -p 1433
Port Scans
March 28th, 2011
15:05 nmap -T5 -Pn 129.241.50.0-254 -p 1-50000
May 16th, 2011
11:36 nmap -T4 -Pn 129.241.50.0-254 -p 1-50000
14:06 nmap -T3 -Pn 129.241.50.0-254 -p 1-50000
May 19th, 2011
14:00 nmap -T2 -Pn 129.241.50.0-254 -p 1-50000
May 20th, 2011
13:52 nmap -T1 -Pn 129.241.50.0-254 -p 1-50000

Table 4.1: A sample of scans made with Nmap

57 4.2. Analysis of Root Cause Based Ground Truth

Running SENATUS on the days with injected attacks did not provide adequate re-

sults either. By studying the flagged anomalies reported by SENATUS with Nfdump

(i.e. by looking for the source IP of the computer doing the scans), we found that

none of the anomalies found originated from our injected attacks. After discovering

that injecting attacks did not prove to be a viable option for us, we had to use another

approach.

Anomaly Ratio
Port Scan ≈ 7%
DDoS ≈ 8%
Port Sweep ≈ 15%

Table 4.2: The intensity of anomalous traffic needed to be detected by entropy met-
rics

4.2 Analysis of Root Cause Based Ground Truth

SENATUS

To gain precise knowledge of the number of true and false positives, we manually

inspect each of the time bins SENATUS flag in the dataset. The manual inspection is

done with Nfdump. Table 4.3 shows the output from SENATUS of a single flagged

time bin.

Source AS 4134 CHINANET-BACKBONE
Source Port 6000
Destination AS 64536
Destination Port 1433
Time bin 33
Hour 2
Minutes 40

Table 4.3: The output of SENATUS

The time bin from Figure 4.3 is an example of an identifiable anomaly. Source As,

Chapter 4. Ground Truth 58

source port and destination port all give clues pointing in the direction of malicious

activity. The first thing to notice is the source AS which is Chinese. A large percent-

age of the traffic coming from China to Norway is port scans or port sweeps. The

source port gives a fair indication of what type of anomaly we are dealing with. Out

of 106 port scans and port sweeps found in our dataset, 55 had the source port set

as 6000. The final clue is the destination port, which is set to 1433. This strongly

indicates that the packets are sent from a host infected with the MS-SQL worm [18].

One should note that although SENATUS outputs 4 traffic features, it is possible

that one of them, e.g. the destination port in the case of a port scan, varies. If this

is the case, the anomaly in Table 4.3 could in reality be a port scan. To verify the

anomaly, we manually inspect it with Nfdump; the results are shown in Figure 4.2.

The results from Nfdump show that the discovered anomaly is a port sweep done by

a single host. A single IP is sending a large number or packets to different hosts, all

with the destination port set as 1433. We also note that every packet has a size of

40 bytes per packet, and only one packet per flow – both signs of a port scan or port

sweep. To verify that we are not dealing with a port scan, we set Nfdump to show all

packets coming from source AS 4134 and source port 6000, but with an undefined

destination port. If the results are the same, we are dealing with a port sweep.

Figure 4.2: The anomaly from Table 4.3 viewed in Nfdump

59 4.3. Comparison Based Ground Truth

HD + Apriori

The methodology for identifying anomalies in HD + Apriori is very similar to that of

SENATUS. The main difference is understanding the output of each method. Table

4.4 shows the output of HD + Apriori, which shows a number of item sets contained

in one day. We already know which time bins we ran HD + Apriori on, so we do not

need this information from the output. By plotting the information from each line

of the item set in Nfdump, we find that every row represents a DoS attack against a

single IP contained in source AS 224. This combined effort by several hosts sending

an enormous amount of packets to a single host means we have found a DDoS.

Item Sets SrcAS DstAS SrcPort DstPort Pkts. per flow Bytes per pkt
5 23974 224 50720 * 1 29
5 47205 224 51771 * 1 29
5 1299 224 47652 * 1 29
5 14929 224 41463 * 1 29
5 31375 224 54763 * 1 29

Table 4.4: The output of HD + Apriori

4.3 Comparison Based Ground Truth

As a third approach in evaluating the anomaly detectors, we will attempt to find the

detection rate for each method, based on what the other methods detect. The ground

truth we will construct is based on the idea that other anomaly detectors will flag time

bins as anomalous, where SENATUS might not. E.g. from SENATUS’ viewpoint,

the time bins that both Entropy and HD detect that SENATUS does not detect are

false negatives. This is a fair assumption to make, since no single anomaly detector

is perfect, but a time bin flagged by two detectors is likely to contain an anomaly.

For HD, we have an exception if all the four traffic features are flagged as suspicious.

In this case, we deem it likely that the time bin contains an anomaly, even though no

other anomaly detector has flagged it.

Chapter 4. Ground Truth 60

We define the rules for marking a time bin as detected as follows:

• For histogram-based detection, mark time bin as detected if

I. flagged by all traffic features

II. also detected by Entropy-based detection

III. also detected by SENATUS

• For entropy-based detection, mark time bin as detected if

I. also detected by Histogram-based detection

II. also detected by SENATUS

• For SENATUS, mark time bin as detected if

I. the time bin is, by manual inspection, found to be anomalous

To evaluate the detection rate DR for each detection scheme let dx where x ∈

{SENATUS, HD, ED} represent the number of detected anomalies for a system,

then for each system the detection rate DRx can be calculated as follows:

DRx =
dx

(ds ∪ dh ∪ de)
where x =


s, for SENATUS

h, for HD

e, for ED

(4.1)

5
Results

This chapter will present and evaluate the results obtained based on the different

approaches described in Chapter 4. Detection rates are solely evaluated based on

comparison between the three different detection schemes, while evaluation of iden-

tification rates only focus on SENATUS and HD + Apriori (for simplicity now re-

ferred to as HD).

61

Chapter 5. Results 62

5.1 Results From Root Cause Based Ground Truth

Identifying the root cause can only be done in SENATUS or HD. The implementa-

tion of ED lacks the ability to keep a mapping between anomalous entropy values

and their respective feature values.

According to a Gartner report from 2006 [23], root cause analysis takes on average

up to an hour per flagged alert. In our experience, this holds true for HD if the

number of item sets are less than three. In the case of SENATUS, we see drastic

improvements in the time needed to identify an anomaly. On average, we were able

to identify whether an anomaly was a false or true positive in less than a minute.

As stated earlier, identification is the ability of a network administrator to classify

the root cause of the anomaly. In our case the output is labeled either ”<attack

type>”, ”normal traffic”, or ”unidentified”.

By manual inspection of the output from each detection system (listed in appendix

B) we find their respective identification rates (see table 5.1). For the identification

rate Ix let ix be the number of identified anomalies and fx represent the number of

flagged anomalies where x ∈ {SENATUS, HD + Apriori}. The identification rate

for each system can be expressed as:

Ix =
ix
fx

(5.1)

As we can see, there is a significant difference in the identification rate across the two

systems. With SENATUS (S), we are able to identify 98.1% of all feature value sets,

whereas HD has a 65.5% identification rate. Because SENATUS outputs all feature

values and their respective time bins, the amount of flows matching those values are

relatively few, thus easily identified. Whereas identifying item sets (generated by

HD) with three or less items, which typically match hundreds of thousands of flows,

63 5.1. Results From Root Cause Based Ground Truth

proves to be a very challenging task.

Detection method Identification rate
SENATUS 98.1%
HD 65.5%

Table 5.1: Identification rates for both SENATUS and HD.

Anomaly SENATUS HD
Port scan 15 1
Port sweep 91 11
DoS 18 18
Normal traffic 32 37
Unidentified 3 33
Total 159 100

Table 5.2: Anomalies detected in our dataset by SENATUS and HD.

Table 5.2 gives an overview of the malicious anomalies we are able to precisely

identify. Overall, SENATUS identifies 124 malicious anomalies, 94 more than we

manage to identify with the output from HD. As table 5.2 shows, SENATUS is

much more likely to identify certain anomalies compared to HD. Out of the 15 port

scans SENATUS detect, HD is only able to detect one. The results are fairly similar

for port sweeps – while SENATUS detects 91, HD detects 11. Interestingly, we are

able to identify the same amount of DoS attacks with both techniques, with the main

reason being the nature of the attack. All DoS attacks identified spans several time

bins, consist of 50-60 thousand flows each and with 5 feature values fixed, making it

a 5-item set in the output of HD. The three anomalies we are not able to identify with

SENATUS, could most likely be identified by an experienced network administrator.

Two of the flagged time bins consist of several packets originating and terminating in

port 110, which is used in POP3, the Post Office Protocol Version 3. Mail clients use

this protocol to collect mail off server. It is possible that the traffic is non-malicious,

however we do not have enough experience with the protocol, and are not able to

verify this. The last unidentified anomaly has the characteristics of several hosts

Chapter 5. Results 64

replying a port scanner, but it can just as well be normal traffic. In HD there were as

many as 33 anomalies we were unable to detect.

Based on the information found in Table 5.2, we find that the ratio of true positives

against false positives is:

TPR =
Anomalies

Anomalies + # Identified normal traffic
(5.2)

This ratio is shown in Table 5.3.

Detection method Ratio of true positives
SENATUS 79%
HD 45%

Table 5.3: Identification rates for both SENATUS and HD.

65 5.2. Results From Comparison Based Ground Truth

5.2 Results From Comparison Based Ground Truth

Table 5.4 shows the number of respective time bins the different detection methods

discover in our dataset, based on our methodology defined in Section 4.3. We calcu-

late the intersection between SENATUS and the two other methods, the intersection

between HD and ED, as well as the intersection of all the methods. We also calcu-

late the intersection between anomalies found by SENATUS and anomalies found

by the two other methods and finally the union of all the detected time bins. Based

on the information in Table 5.4, we can visualize which time bins are discovered by

each method with a Venn diagram as shown in Figure 5.1.

Detection method sets Detected time bins
SENATUS (S) 104
HD 78
ED 64
S ∩ HD 15
S ∩ ED 13
HD ∩ ED 55
S ∩ HD ∩ ED 4
S ∩ (ED ∪ HD) 24
S ∪ HD ∪ ED 167

Table 5.4: Time bins discovered by the different detection methods based on our
methodology

We observe that SENATUS has the highest discovery rate of the sets, but as we can

see, the overlap between SENATUS and the other anomaly detectors is relatively

small. This means that SENATUS discovers a largely separate set of anomalies

compared to the other detection techniques. By calculation, we find that the per-

centage of anomalies SENATUS detects that are not detected by any of the other

techniques is high:
S − (S ∩ (ED ∪HD))

S
= 81% (5.3)

Chapter 5. Results 66

SENATUS

ED

HD

Figure 5.1: A Venn diagram showing the relationship between which time bins were
detected by the different methods

Within our dataset, Entropy does not detect any anomalies that are not also detected

by either SENATUS or HD. Our findings are that HD and Entropy discover many

of the same anomalies; as many as 86% of the anomalies flagged by Entropy based

metrics are also flagged by HD, compared to 20% for SENATUS. Table 5.5 gives a

summarization of the detection rates for the different techniques.

Detection method Detection rate
SENATUS 62%
HD 47%
ED 38%

Table 5.5: The detection rate of each method based on our ground truth

67 5.3. Overview of SENATUS

5.3 Overview of SENATUS

SENATUS detects a wide range of anomalies with relatively small intensities. Table

5.6 is a guideline illustrating at what intensities SENATUS is able to detect and

identify malicious anomalies. The intensity I is derived from the following formula:

I =
#malicious flows

#total flows
(5.4)

Anomaly Intensity (%)

Port sweep
minimum 0.01
average 0.48

Port scan
minimum 0.03
average 0.75

DoS
minimum 8.56
average 13.71

Table 5.6: Detection intensities for SENATUS.

Note that these values may not represent the lowest intensity of which SENATUS

can detect malicious traffic. Moreover, the feature values of a malicious anomaly

do not have to reside within the top-n set during its corresponding time interval –

it is sufficient that they are listed at some point during the day. This is because the

second phase of the initial extraction will iterate over the same data again, based on

the union of all top-n sets, and therefore expose anomalies that do not have all their

respective feature values within the top-n set. However, this also explains the reason

why our initial attempt at creating an artificial ground truth was unsuccessful. When

manually evaluating the injected attacks, we discovered that the source port value

altered between 35675 and 35676. Since none of these values generated enough

flows to be in the top-n set any time during that day, they simply got discarded in the

first extraction phase.

Chapter 5. Results 68

For a wide range of malicious traffic detected and identified, it is possible that SEN-

ATUS only outputs a part of the attack. For example, letA = [4314, 224, 6000, 1433]

be a set in the output of SENATUS consisting of 42 flows. At the first glance this

might appear to be a port sweep, but further investigation through manual inspection

can sometimes reveal that this is just a part of a larger port scan, with a number of

flows ranging in the order of hundreds.

SENATUS can be further tuned, both in the first extraction phase by varying the

top-n features and by adjusting weight in the robust principal component analysis

(Equation 2.5). By adjusting these parameters for the same days in November, we

have found by manual inspection of the dataset that SENATUS performs very sat-

isfying with the parameters given in Table 5.7. As suggested by [4], we achieve at

most a 20% approximation error by choosing the top 23 and 20 feature values for

[Source port, Destination port] and [Source address, Destination address] respec-

tively. So by eliminating a large ratio of the feature values, we will still represent

the behaviour of the data set with at least 80% accuracy.

Figure 5.2 shows the relation between weight and the false positive ratio, while fig-

ure 5.3 illustrates a proportional relationship between the amount of detected anoma-

lies for two different values of weight. As expected, we observe that the amount of

detected anomalies increases for lower values of lambda, however this also implies a

higher amount of false positives. By setting the tuning parameter to 3, the sensitivity

to abrupt variations of RPCA decreases, and SENATUS achieves a 90-100% ratio

of true positives.

Parameter Value
weight 3
SrcPort, DstPort top-20
SrcAS, DstAS top-23

Table 5.7: Parameter settings SENATUS.

69 5.3. Overview of SENATUS

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
0

0.1

0.2

0.3

0.4

weight

fa
ls

e
 p

o
s
it
iv

e
 r

a
te

Figure 5.2: False positive rate as a function of weight in robust principal component
analysis.

Figure 5.3: Proportinal relationship between the amount of detected anomalies for
two different values of weight.

Chapter 5. Results 70

5.4 Evaluation and Discussion

While the results based on our ground truth gives a fairly accurate view of the detec-

tion metrics, we can never completely verify the authenticity without a thoroughly

known baseline. When not knowing the total number of anomalies that resides

within our dataset the need for alternative ways of evaluation rise. Having a suf-

ficient amount of data is also important to give a statistically correct measurement.

While having a relative big amount of data, we observed that there were fluctuations

in our results across the different months.

HD

When evaluating the implementation of histogram-based detection, we found it chal-

lenging to identify the root cause of the anomalous time bins. This difficulty was

mainly introduced in the process of generating meta-data for further pre-filtering. At

certain days, the majority of all feature values were flagged as anomalous (poten-

tially 65535 ports and ASs, both source and destination) and we found it infeasible to

create the combination of all flagged feature values in terms of computing power. In

general we observed that the overall runtime increased significantly when the num-

ber of flagged feature values increased substantially. Sometimes the run times could

become so long that it was not practically feasible to perform the calculations. E.g.

we had four traffic feature vectors, each containingN elements. To make the permu-

tation of these elements we needed four for-loops. If N = 100, the corresponding

number of iterations is 1004. As can be seen the number of iterations grows expo-

nentially, and eventually becomes too high for our setup to run in a reasonable time

frame.

The aforementioned problem lead to another challenge of using HD, which appeared

when manually inspecting the output of Apriori. The challenge was to properly

71 5.4. Evaluation and Discussion

identify whether an item set represented a malicious activity or not. We experienced

that most of the item sets could be classified as normal activity or as unidentified.

The latter because the number of items contained in each set was too low to draw

any conclusions (typically l-item sets where l < 3). A better approach might have

been to adjust the implementation of HD to accept IP addresses instead of ASs. This

would have made the identification process smoother. However, capturing IPs would

have led to a tremendous increase in the dimensionality.

SENATUS

SENATUS has a very good identification rate since it always lists a full set of feature

values and their respective time bin.

SENATUS can potentially ignore anomalies due to their nature. This can occur e.g.

when a DoS has a BPP > 100, which can be the case for an ICMP flood. If this is

the case for many anomalies, the detection rate for SENATUS will drop. Another

limitation in the current version of SENATUS is cross detection of anomalies. An

example of this is DoS backscatter, where the victim of the DoS attack sends reply

packets to the attacker. This backscatter has a signature that can very easily be

falsely identified as a scan. In fact, the scan detector part of SENATUS has a higher

detection rate of DoS attacks than the DoS detector. For the purpose of this report,

we have not considered cross detection as misidentification – we look upon each

part of SENATUS as a whole.

6
Conclusion

It is not an easy task to evaluate and compare different anomaly detection systems.

The main challenge in our work was to establish a well defined baseline for further

analysis and comparison. Our first attempt at evaluating SENATUS, was based on

injecting anomalies through the backbone network of Uninett. When analyzing the

results, we discovered that the anomalies did not produce enough flows to be prop-

erly detected by SENATUS. This was due to both the configuration of the anomaly

injector and the maximum intensity – which was too low.

The second approach was root cause analysis of alarms generated by the anomaly

detectors. Root cause analysis does not include possible false negatives – anomalies

73

Chapter 6. Conclusion 74

that should have been detected, but were not. To attempt to rectify this problem, we

developed a third method to further prove the validity of our results. This approach

was based on a comparison between SENATUS and the other detection methods.

Time bins which were flagged by the other detection methods, but not by SENATUS,

were viewed as false negatives. Our results were based on the last two methods: the

root-cause analysis based ground truth and the comparison based ground truth.

Based on the comparison based ground truth, we have seen that the detection perfor-

mance of SENATUS is highly satisfying compared to both histogram-based detection

(HD) and entropy-based detection (ED). SENATUS had a 62% detection rate, while

HD and ED had a detection rate of 47% and 38% respectively. ED and HD detected

mostly the same anomalies, while we found that SENATUS detected a largely sepa-

rate set of anomalies.

When evaluating the performance of SENATUS and HD with the root cause analy-

sis, we found that we could identify 98.1% of the anomalies flagged by SENATUS.

Histogram-based detection had an identification rate of 65.5%. Among the anoma-

lies identified by each system, SENATUS achieved a ratio of 79% true positives

(TP), while HD had a ratio of 45%.

We found that identifying whether an anomaly is benign or malicious, took drasti-

cally less time with SENATUS compared to the other detection methods.

6.1 Future Work

Future work should involve optimization of the different detection schemes, prefer-

ably an implementation in a low-level programming language with highly developed

mathematical facilities such as c, Matlab, or Fortran. This will lead to great im-

provements in terms of execution time, thus obtaining more results and increasing

the accuracy of the performance metrics, e.g. detection and identification rate.

To obtain more accurate results in terms of statistics, a larger data set should be used.

A labeled dataset where we have the knowledge of all present anomalies, gives us

the possibility to take into account false negatives – true anomalies that were not

detected by any method.

Another very interesting topic open for further research is the deployment of pre-

configured extraction methods in gateway routers. The implementation of all three

detection methods in this paper involves an initial extraction phase of NetFlow data.

This is a time consuming process due to the huge amount of information and dimen-

sionality in the dataset. A pre-configured extraction method for a detection scheme

could potentially avoid most of the initial extraction, hence decrease the overall run-

time significantly.

75

Bibliography

[1] Nmap reference guide. http://nmap.org/book/man.html, June,
2011. Accessed June 26, 2011.

[2] A. D. Robbins. GAWK: Effective AWK Programming. http://www.gnu.
org/software/gawk/manual/gawk.pdf, April, 2009. Free Software
Foundation, Inc. Accessed June 12, 2011.

[3] A. Abdelkefi and Y. Jiang. "Robust Traffic Anomaly Detection with Principal
Component Pursuit". ACM CoNEXT Student Workshop, November, 2011.

[4] A. Abdelkefi and Y. Jiang. "Compressible Traffic Features". ACM SIG-
COMM’11, August, 2011.

[5] R. Agrawal, T. Imielinski, and A. Swami. "Mining Association Rules Be-
tween Sets of Items in Large Databases". pages 207–216, SIGMOD Confer-
ence 1993.

[6] R. Agrawal and R. Sirkant. "Fast Algorithms for Mining Association Rules".
pages 487–499, Proceedings of 20th International Conference on Very Large
Data Bases, Santiago, Chile, September 12-15, 1994.

[7] A. Banerhee, V. Chandola, V. Kumar, and J Srivastava. Anomaly Detection: A
Tutorial [Power Point presentation]. www.siam.org/meetings/sdm08/
TS2.ppt, SIAN conference on Data Mining, April 2008. Accessed May 28,
2011.

[8] P. Barford, J. Kline, D. Plonka, and A. Ron. "A Signal Analysis of Network
Traffic Anomalies". Proceedings of ACM SIGCOMM Internet Measurement
Workshop, Nov, 2002.

[9] D. Brauckhoff, X. Dimitripoulos, K. Salamatian, and A. Wagner. "Anomaly
Extraction in Backbone Networks using Association Rules". IMC’09, Novem-
ber, 2009.

[10] D. Brauckhoff, K. Salamatian, and Martin May. "Applying PCA for Traffic
Anomaly Detection:Problems and Solutions". IEEE INFOCOM, April, 2011.

77

http://nmap.org/book/man.html
http://www.gnu.org/software/gawk/manual/gawk.pdf
http://www.gnu.org/software/gawk/manual/gawk.pdf
www.siam.org/meetings/sdm08/TS2.ppt
www.siam.org/meetings/sdm08/TS2.ppt

[11] D. Brauckhoff, B. Tellenbach, A. Wagner, M. May, and A. Lakhina. "Impact
of Packet Sampling on Anomaly Detection Metrics". IMC’06, October 25-27,
2006.

[12] John F. Burns and Ravi Somaya. "Hackers Attack Those Seen as Wik-
iLeaks Enemies". http://www.nytimes.com/2010/12/09/world/
09wiki.html?_r=1, December, 2010. Accessed June 8, 2011.

[13] C. Ramey, and B. Fox. Bash Reference Manual. http://www.gnu.org/
software/bash/manual/bash.pdf, December, 2009. Free Software
Foundation, Inc. Accessed May 26, 2011.

[14] E. B. Claise. Cisco systems netflow services export version 9. RFC 3954,
Cisco Systems, 2004. http://www.ietf.org/rfc/rfc3954.txt.
Accessed May 21, 2011.

[15] David Dittrich. "The stacheldraht distributed denial of service at-
tack tool". http://staff.washington.edu/dittrich/misc/
stacheldraht.analysis.txt, December, 1999. Accessed June 8,
2011.

[16] Free Software Foundation. Sed, a stream editor. http://www.gnu.org/
software/sed/manual/sed.html, August, 2010. Free Software Foun-
dation, Inc. Accessed May 26, 2011.

[17] A. Kind, M. Stoecklin, and X. Dimitropoulos. "Histogram-Based Traffic
Anomaly Detection". IEEE Transactions on Network and Service Manage-
ment, vol. 6, no. 2, June 2009.

[18] A. Lakhina, M. Crovella, and C. Diot. "Mining Anomalies using Traffic Fea-
ture Distributions". ACM SIGCOMM’05, August, 2005.

[19] F. Lau, S.H. Rubin, M.H. Smith, and L. Trajkovic. "Distributed denial of
service attacks". Systems, Man, and Cybernetics, 2000 IEEE International
Conference, August, 2002. Accessed June 25, 2011.

[20] Jonathan Lemon. "Resisting SYN flood DoS attacks with a SYN cache".
http://people.freebsd.org/~jlemon/papers/syncache.
pdf, December, 2001. Accessed June 9, 2011.

[21] G. Nychis. "An Empirical Evaluation of Entropy-based Anomaly Detection",
May, 2007.

[22] Perl.com. The Perl Programming Language. http://www.perl.com/,
May, 2011. Accessed May 17, 2011.

[23] P. E. Proctor. "Marketscope for Network Behaviour Analysis". Gartner Re-
search Report G00144358, Gartner Inc., November, 2009.

78

http://www.nytimes.com/2010/12/09/world/09wiki.html?_r=1
http://www.nytimes.com/2010/12/09/world/09wiki.html?_r=1
http://www.gnu.org/software/bash/manual/bash.pdf
http://www.gnu.org/software/bash/manual/bash.pdf
http://www.ietf.org/rfc/rfc3954.txt
http://staff.washington.edu/dittrich/misc/stacheldraht.analysis.txt
http://staff.washington.edu/dittrich/misc/stacheldraht.analysis.txt
http://www.gnu.org/software/sed/manual/sed.html
http://www.gnu.org/software/sed/manual/sed.html
http://people.freebsd.org/~jlemon/papers/syncache.pdf
http://people.freebsd.org/~jlemon/papers/syncache.pdf
http://www.perl.com/

[24] RFC2828. Internet Security Glossary. http://tools.ietf.org/
html/rfc2828, May, 2000. Accessed June 12, 2011.

[25] F. Silveira, C. Diot, N. Taft, and R. Govindan. "ASTUTE: Detecting a Different
Class of Traffic Anomalies", August, 2010.

[26] H. Skrautvol and M. Ask. "Internet Attack Simulation - Empirical evaluation
of the entropy boundaries for network anomaly detection". Technical report,
The Norwegian University of Science and Technology, January, 2010.

[27] Praetox Technologies. "LOIC, low orbit ion cannon". http://
sourceforge.net/projects/loic/, June, 2011. Accessed June 8,
2011.

[28] TheFreeDictionary.com. Definition of anomaly. http://www.
thefreedictionary.com/anomaly. Accessed June 27, 2011.

[29] J. D. Tisdall. Beginning Bioinformatics. http://www.perl.com/pub/
2002/01/02/bioinf.html, January, 2002. Accessed May 17, 2011.

[30] UNINETT AS. Drift Uninett - Status for nett og tjenester. http://drift.
uninett.no/kartg/last/uninett/norge/geo/nuh, May, 2011.
Accessed May 15, 2011.

[31] UNINETT AS. Om UNINETT. http://www.uninett.no/, May, 2011.
Accessed May 15, 2011.

[32] Wikipedia. "The anonymous hacker group". http://en.wikipedia.
org/wiki/Anonymous_(group), June, 2011. Accessed June 8, 2011.

[33] Wikipedia, the free encyclopedia. Entropy (information theory). http://
en.wikipedia.org/wiki/Entropy_(information_theory),
June, 2011. Accessed May 24, 2011.

[34] Wikipedia, the free encyclopedia. Kullback-Leibler divergence. http:
//en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_
divergence, April, 2011. Accessed May 20, 2011.

79

http://tools.ietf.org/html/rfc2828
http://tools.ietf.org/html/rfc2828
http://sourceforge.net/projects/loic/
http://sourceforge.net/projects/loic/
http://www.thefreedictionary.com/anomaly
http://www.thefreedictionary.com/anomaly
http://www.perl.com/pub/2002/01/02/bioinf.html
http://www.perl.com/pub/2002/01/02/bioinf.html
http://drift.uninett.no/kartg/last/uninett/norge/geo/nuh
http://drift.uninett.no/kartg/last/uninett/norge/geo/nuh
http://www.uninett.no/
http://en.wikipedia.org/wiki/Anonymous_(group)
http://en.wikipedia.org/wiki/Anonymous_(group)
http://en.wikipedia.org/wiki/Entropy_(information_theory)
http://en.wikipedia.org/wiki/Entropy_(information_theory)
http://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
http://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
http://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence

A
Code

This appendix contain parts of our implementation of histogram-based detection.

A.1 histogram-based detection

The following scripts is our contribution to the implementation of the histogram-
based detection scheme.

A.1.1 anoflows.m

Anoflows.m is used to identify the time bins flagged by all traffic feature, and then
to aid in the creation of candidate flows.

1 function [] = anoflows(day,month, year)
2 % This script does the following:
3 %
4 % 1.Creating suspicious flows by
5 % combining all the different features
6 % during one day.
7 % 2.Create the union of anomalous timebins
8 % foe each feature.
9

10 clc;

81

11 clearvars -except s day month year;
12

13 % Add a zero if day or month is less than 10
14 if(day<10)
15 day=strcat(’0’,num2str(day));
16 else
17 day=num2str(day);
18 end
19 if(month<10)
20 month=strcat(’0’,num2str(month));
21 else
22 month=num2str(month);
23 end
24

25 year=num2str(year);
26

27 % Load anomalous time bins.
28 mat = ’anomalousbin.mat’;
29 sas = [’Mat/’ year ’/’ day month ’/srcas/’ mat];
30 das = [’Mat/’ year ’/’ day month ’/dstas/’ mat];
31 srcp = [’Mat/’ year ’/’ day month ’/srcport/’ mat];
32 dstp = [’Mat/’ year ’/’ day month ’/dstport/’ mat];
33

34 srctime = importdata(sas);
35 dsttime = importdata(das);
36 srcporttime = importdata(srcp);
37 dstporttime = importdata(dstp);
38

39

40 % Generate the union of timebins and put it into a cell ←↩

→ array.
41

42 intersectmat = union(union(union(srctime,dsttime), ←↩

→ srcporttime),dstporttime);
43

44 for j=1:size(intersectmat,2)
45 pre = floor((intersectmat(j)*5)/60);
46 post = mod(intersectmat(j)*5, 60);
47

48 if(post==0)
49 post = 55;
50 pre = pre-1;
51 else
52 post = post-5;

82

53 end
54

55 if(pre<10)
56 pre=strcat(’0’,num2str(pre));
57 else
58 pre=num2str(pre);
59 end
60 if(post<10)
61 post=strcat(’0’,num2str(post));
62 else
63 post=num2str(post);
64 end
65

66 time = strcat(num2str(pre), num2str(post));
67 uniontimebin(j) = {time};
68 end
69

70 % Load suspicious features
71 mat = ’suspicious.mat’;
72 sas = [’Mat/’ year ’/’ day month ’/srcas/’ mat];
73 das = [’Mat/’ year ’/’ day month ’/dstas/’ mat];
74 srcp = [’Mat/’ year ’/’ day month ’/srcport/’ mat];
75 dstp = [’Mat/’ year ’/’ day month ’/dstport/’ mat];
76

77 srcas = importdata(sas);
78 dstas = importdata(das);
79 srcport = importdata (srcp);
80 dstport = importdata (dstp);
81

82 % Check if the feature is present in the union of timebins, ←↩

→ if it is
83 % we want to keep it.
84 n1=1;
85 n2=1;
86 n3=1;
87 n4=1;
88 for j=1:size(intersectmat,2)
89 for i1=1:size(srcas,2)
90 if (srcas(2,i1)==intersectmat(j))
91 srcasf(1,n1)=srcas(1,i1);
92 srcasf(2,n1)=intersectmat(j);
93 n1=n1+1;
94 end
95 end

83

96 for i2=1:size(dstas,2)
97 if (dstas(2,i2)==intersectmat(j))
98 dstasf(1,n2)=dstas(1,i2);
99 dstasf(2,n2)=intersectmat(j);

100 n2=n2+1;
101 end
102 end
103 for i3=1:size(srcport,2)
104 if (srcport(2,i3)==intersectmat(j))
105 srcportf(1,n3)=srcport(1,i3);
106 srcportf(2,n3)=intersectmat(j);
107 n3=n3+1;
108 end
109 end
110 for i4=1:size(dstport,2)
111 if (dstport(2,i4)==intersectmat(j))
112 dstportf(1,n4)=dstport(1,i4);
113 dstportf(2,n4)=intersectmat(j);
114 n4=n4+1;
115 end
116 end
117 end
118

119 srcasf = unique(srcasf);
120 dstasf = unique(dstasf);
121 srcportf = unique(srcportf);
122 dstportf = unique(dstportf);
123

124 % Generate all the combinations of traffic features based ←↩

→ on the intersection of
125 % timebins.
126 n=1;
127 size(srcasf,1)
128 for j=1:size(srcasf,1)
129 for k=1:size(dstasf,1)
130 for l=1:size(srcportf,2)
131 for m=1:size(dstportf,2)
132 if (flows(:,n-1)~=[srcasf(j) dstasf(k) ←↩

→ srcportf(l) dstportf(j)])
133 flow(:,n)= [srcasf(j,1) dstasf(k,1) ←↩

→ srcportf(1,l) dstportf(1,m)];
134 n=n+1;
135

136 end

84

137 end
138 end
139 end
140 end
141

142 flow = uniqueCols(flow);
143

144 % Write out potentially anomalous flows
145 save = [’Text/’ year ’/’ day month ’/entapflows2.txt’];
146 dlmwrite(save,flow,’delimiter’,’\t’);
147

148 % ...and the union of suspicios timebins to .txt file
149 save = [’Text/’ year ’/’ day month ’/aptimebin.txt’];
150 fid = fopen(save, ’wt’);
151 fprintf(fid, ’%s\t’, uniontimebin{:});
152 fclose(fid);
153 end

A.1.2 mining.sh

Mining.sh processes the candidate flows and extract flows that matches the feature
values from the original data set.

1 #!/bin/bash
2

3 # INPUT VARIABLES
4 day=$2
5 month=$1
6 year=$3
7 file="$year$month$day"
8 dir1="$HOME/master/anomalydetection/Text/$year/$day$month"
9

10 echo $dir1
11

12 # OUTPUT VARIABLES
13 dir2="$HOME/master/anomalydetection/apriori/$year/ ←↩

→ daymonth"
14 output="entap_suspicious.txt"
15

16 # NFDUMP & APRIORI VARIABLES
17 format="fmt: %sas %das %sp %dp %pr %pkt %byt %ts %td"
18 gawk="gawk -f $HOME/master/formatting.awk"
19 sed=’sed /S/d;’
20

85

21 if [-e $dir1]
22 then
23

24 no=‘cat $dir1/entap.txt | awk ’END{print NF}’‘
25

26 for ((i=1;i<=$no;i+=1))
27 do
28

29 timebin=‘cat $dir1/entap.txt | awk ’{print $’$i’}’‘
30 echo $timebin
31

32 features=‘gawk ’END{print NF}’ $dir1/entapflows.txt‘
33 echo $features
34

35 y=100
36 cnt=1
37 while [$cnt -le $features]
38 do
39

40 if [$cnt -eq $y]
41 then
42 echo "Cnt: "$cnt
43 let y=$y+100
44 fi
45

46 cd $dir1
47

48 srcas=‘gawk ’{if(NR==1) print $’$cnt’}’ entapflows.txt‘
49 dstas=‘gawk ’{if(NR==2) print $’$cnt’}’ entapflows.txt‘
50

51 cd /data/netflow/oslo_gw/$year/$month/$day/
52

53 nfdump -r nfcapd.$file$timebin -o "$format" ’src as ’$srcas ←↩

→ ’ and dst as ’$dstas’’ | $sed | $gawk >> $dir2/ ←↩

→ ap_suspiciousdaymonth.txt
54

55 let cnt++
56

57 done
58 done
59 fi

86

A.1.3 formatting.awk

Formatting.awk is applied to the output from the mining process to make it comatible
with Apriori.

1 #Script to convert timeformat to POSIX and to align the ←↩

→ values the preferable format.
2 BEGIN{
3 OFS=","
4 FS=" "
5 }
6

7 function toposix(d,t){
8 split(d, dates, "-")
9 split(t, times, ":")

10 return mktime(dates[1]" "dates[2]" " dates[3]" " times[1]" ←↩

→ " times[2]" "times[3])
11 }
12

13 {
14

15 if ($5 ~ /TCP/){
16 print $1,$2,$3,$4,"6",$6,$7,toposix($8,$9),$10
17 }
18

19 if ($5 ~ /UDP/){
20 print $1,$2,$3,$4,"17",$6,$7,toposix($8,$9),$10
21 }
22

23 if ($5 ~ /ICMP/){
24 print $1,$2,$3,$4,"1",$6,$7,toposix($8,$9),$10
25 }
26

27 if ($5 ~ /GRE/){
28 print $1,$2,$3,$4,"47",$6,$7,toposix($8,$9),$10
29 }
30

31 if ($5 ~ /IPv6/){
32 print $1,$2,$3,$4,"41",$6,$7,toposix($8,$9),$10
33 }
34 }
35

36 END{
37 }

87

B
Identification rates for HD and

SENATUS

The following 7 pages list the output for both detection schemes. Page 88-92 is the
output from SENATUS and page 93-94 is the output from HD + Apriori. The output
has been used for identification and root cause analysis.

89

11/1/2010
445 740154 DoS 29 97634 13.19% 1 0

DoS 29 99667 13.47% 1 0
DoS 29 63383 8.56% 1 0
DoS 29 80940 10.94% 1 0

450 1168271 DoS 29 116711 9.99% 1 0
DoS 29 209232 17.91% 1 0
DoS 29 205328 17.58% 1 0
DoS 29 131906 11.29% 1 0
DoS 29 162185 13.88% 1 0

455 1166945 DoS 29 208473 17.86% 1 0
DoS 29 204712 17.54% 1 0
DoS 29 130888 11.22% 1 0
DoS 29 162055 13.89% 1 0

500 1134591 DoS 29 114391 10.08% 1 0
DoS 29 206572 18.21% 1 0
DoS 29 204343 18.01% 1 0
DoS 29 103129 9.09% 1 0
DoS 29 160252 14.12% 1 0

1045 1269425 Port sweep 47 909 0.07% 1 0

1235 1342635 Port sweep 47 894 0.07% 1 0

1555 1169256 Port sweep 47 1880 0.16% 1 0

1800 1064741 Port sweep 47 583 0.05% 1 0

1850 1066061 POP3 45 4070 0.38% 0

1900
normal
HTTPS/SSL traffic 146 1 1

1905 1037947 Port sweep 40 934 0.09% 1 0

2000 976905 Port sweep 47 535 0.05% 1 0

2105 992800 POP3 45 1442 0.15% 0

11/2/2010
5 749995 Port scan 40 377 0.05% 1 0

240 436561 Port sweep 40 42 0.01% 1 0

1100 1291805 Port sweep 40 527 0.04% 1 0

1135 745707 Normal SSL traffic 1 1

1140 Normal traffic 1 1

1330 1328863 Port sweep 40 518 0.04% 1 0

1405 1297121 Port sweep 40 427 0.03% 1 0
Port sweep 40 1506 0.12% 1 0

1435 1331311 Port sweep 48 554 0.04% 1 0

1825 1056754 Port sweep 40 562 0.05% 1 0

1840 1109792 Port sweep 40 594 0.05% 1 0

1850
normal ICMP
traffic 1 1

1855
No clear
anomalous pattern 1 1

1900 773748 Port Sweep 40 490 0.06% 1 0

2110
Gaming (XBOX
live ++) 1 1

Day Timebin Flows (total) Event BPP Flows (anomaly) % Identification False positive

11/12/2010
625 345577 Port sweep 48 637 0.18% 1 0

630 341894 Port sweep 48 1938 0.57% 1 0

850 Random traffic 1 1

855 Random traffic 1 1

1335 1207997 FP 83 1 1

1440 1166679 Port scan 40 737 0.06% 1 0

1555 1064469 Port scan 40 9262 0.87% 1 0

1825 915361 Port scan 44 1314 0.14% 1 0
Random traffic 1 1

1835 903375 Port scan 44 709 0.08% 1 0

1850 912427 Port scan 44 3187 0.35% 1 0

1900 907999 Port scan 44 3053 0.34% 1 0

1935 882901 Port sweep 40 2457 0.28% 1 0

2025 850759 Port sweep 40 637 0.07% 1 0

2135 840105 Port sweep 40 646 0.08% 1 0

2345 758524 Port sweep 47 656 0.09% 1 0

12/12/2010
200 868023 Port sweep 48 1938 0.22% 1 0

535 718357 Port scan 40 668 0.09% 1 0

1110 999965
Gaming (Brother in
Arms +) 0.00% 1 1

1135 1067878 Port sweep 48 3244 0.30% 1 0

1140 1072468 Port sweep 40 3235 0.30% 1 0

1255 ICMP req/ack 1 1

1405 1161915 Port sweep 40 2021 0.17% 1 0

1740 Random traffic 1 1

1750 Random traffic 1 1

1800 1205250 Port sweep 48 1600 0.13% 1 0

1835 Random Traffic 1 1

1840 Random Traffic 1 1

11/14/2010
125 646028 Port sweep 48 2527 0.39% 1 0

350 417728 SSH bruteforce 84 3578 0.86% 1 0

740 299041 Port sweep 40 963 0.32% 1 0

750 299814 Port sweep 40 973 0.32% 1 0

1100 613538 Port sweep 40 661 0.11% 1 0

1440 943247 Port sweep 40 574 0.06% 1 0

1655 Random Traffic 85 1 1

1805 Random Traffic 94 1 1

1835 Random Traffic 96 1 1

Day Timebin Flows (total) Event BPP Flows (anomaly) % Identification False positive

1845 Random Traffic 264 1 1

1850 Random Traffic 170 1 1

1900 Random Traffic 96 1 1

1940 1050601 Port sweep 40 1937 0.18% 1 0

2040 1025786 ICMP req/ack 155 1 1

2130 1052698 Port sweep 40 1154 0.11% 1 0

12/18/2010
155 433820 Port sweep 40 649 0.15% 1 0

210 410520 Port sweep 40 1072 0.26% 1 0

220 399264 Port sweep 40 1907 0.48% 1 0

230 389529 Port sweep 40 1165 0.30% 1 0
Port sweep 40 678 0.17% 1 0

340 324827 Port sweep 40 1053 0.32% 1 0

425 299168 Port sweep 47 1970 0.66% 1 0
Port scan 40 331 0.11% 1 0

430 299630 Port sweep 40 2117 0.71% 1 0

525 274330 Port sweep 40 1097 0.40% 1 0

850 322784 Port sweep 40 2443 0.76% 1 0
Port sweep 40 516 0.16% 1 0

1155 574986 Port sweep 40 1132 0.20% 1 0

1200 589714 Port scan 40 65 0.01% 1 0

1220 600258

Possible
backscatter from a
previous port
sweep. Not very
recognisable 179 584 0.10% 0

1315 623311 Port sweep 47 417 0.07% 1 0

1405 656448 Port sweep 48 2611 0.40% 1 0
Port sweep 48 570 0.09% 1 0

1455 676810 Port sweep 40 1004 0.15% 1 0

1610 685496 Port sweep 40 992 0.14% 1 0

1615 684208 Port sweep 40 604 0.09% 1 0
Port sweep 40 1593 0.23% 1 0

1625 695192 Port sweep 40 1005 0.14% 1 0
Random traffic 264 1 1

1710 Random traffic 398 1 1

1820 686921 Port sweep 40 1057 0.15% 1 0

1825 Random Traffic 215 1

2020 693056 Port sweep 40 1087 0.16% 1 0

2145 685444 Port sweep 40 717 0.10% 1 0

12/21/2010
25 Random Traffic 540 1 1

155 338724 Port sweep 40 515 0.15% 1 0

250 312033 Port sweep 48 21039 6.74% 1 0

Day Timebin Flows (total) Event BPP Flows (anomaly) % Identification False positive

250 312033 Port sweep 48 21039 6.74% 1 0

255 309286 Port sweep 48 22056 7.13% 1 0

300 314573 Port sweep 47 22167 7.05% 1 0

305 310715 Port sweep 47 22024 7.09% 1 0

310 299115 Port sweep 48 21418 7.16% 1 0

315 294292 Port sweep 48 21418 7.28% 1 0

555 226598 Port sweep 40 3507 1.55% 1 0

600 230102 Port sweep 40 2917 1.27% 1 0

605 222749 Port sweep 40 3849 1.73% 1 0

755 353397 Port sweep 40 561 0.16% 1 0

935 622203 Port scan 40 8109 1.30% 1 0

940 622662 Port scan 40 9514 1.53% 1 0

1050 Random traffic 1 1

1305 Random Traffic 1 1
Random Traffic 1 1

1345 730410 Port sweep 40 545 0.07% 1 0

1525 668097 Port sweep 40 1458 0.22% 1 0

1655 541561 Port sweep 47 692 0.13% 1 0

1700 542459 Port sweep 47 2102 0.39% 1 0

1745 523577 Port sweep 47 667 0.13% 1 0

1750 524168 Port sweep 47 2014 0.38% 1 0

1935 521171 Port sweep 48 2619 0.50% 1 0
Port sweep 48 2263 0.43% 1 0

2050 523456 Port sweep 40 599 0.11% 1 0

2230 518478 Port sweep 48 624 0.12% 1 0

2240 513160 Port sweep 48 647 0.13% 1 0

2300 486119 Port sweep 40 1198 0.25% 1 0

3/1/2011 2125 Random traffic 1 1

3/25/2011
45 121764 Port sweep 40 110 0.09% 1 0

830 121764 Port sweep 40 340 0.28% 1 0

1635 158855 Port sweep 64 204 0.13% 1 0

1705 153513 Port sweep 40 119 0.08% 1 0

3/26/2011
705 50255 Port sweep 40 57 0.11% 1 0

1850 155158 Port sweep 40 95 0.06% 1 0

1925 161392 Port sweep 84 2176 1.35% 1 0

1935 159503

Port Sweep (Looks
like a port sweep,
but the packet
sizes are pretty
random) 84 2957 1.85% 1 0

1945 Random traffic 484 1

Day Timebin Flows (total) Event BPP Flows (anomaly) % Identification False positive

2155 145258 Port sweep 40 206 0.14% 1 0

2310 131057 Port sweep 40 262 0.20% 1 0

3/28/2011
1545 220964 Port scan 40 2202 1.00% 1 0

1550 217892 Port scan 40 2258 1.04% 1 0

1705 197522 Portsweep 48 168 0.09% 1 0

2035 196523 Port scan 40 315 0.16% 1 0

Intensity(min) Intensity(avg) Identification
Port scan 88 0.01% 0.48%
Port
sweep 15 0.03% 0.75%

Time bins
identified 154

DoS 18 8.56% 13.71%
Time bins not
identified 3
Identification rate 98.09%

TOTAL 121

Day Timebin Flows (total) Event BPP Flows (anomaly) % Identification False positive

28-Mar-2011
0515, 0600,
0650, 0720,
0725 70232 Port sweep 56 610 0.87% 1 0

Random traffic 1 1

25-Mar-2011
0230,0245 66,619 Random traffic 1 1

Random traffic 1 1
Not feasible to verify 0
Random traffic 1 1
Not feasible to verify 0
Random traffic 1 1
Random traffic 1 1
Random traffic 1 1
Random traffic 1 1
Port sweep 40 645 0.97% 1 0
Random traffic 1 1
Random traffic 1 1
Random traffic 1 1

26-Mar-2011
0200,0205,
0800,0820 73,951 Port scan 29 1050 1.42% 1 0

Random traffic 1 1
Port sweep 46 790 1.07% 1 0
Random traffic 1 1
Random traffic 1 1
Not feasible to verify 0
Random traffic 1 1
Port sweep 47 740 1.00% 1 1

1-Mar-2011
1300,1305,
1420,1425 70,000 Not feasible to verify 1 0

Random traffic 1 1

12-Dec-2010
0720,0735,
0740 691,649 Random traffic 1 1

Port sweep 46 3500 0.51% 1 0
Random traffic 1 1
ICMP traffic 1 1
Random traffic 1 1
Not feasible to verify 0
Not feasible to verify 0
Not feasible to verify 0
Port sweep 47 2400 1 0

21-Dec-2010
0040,0250,
0255,0300 935,892 Port sweep 48 15,055 1.61% 1 0

Port sweep 41 8833 0.94% 1 0
Random traffic 1 1
Not feasible to verify 0
Not feasible to verify 0
Random traffic 1 1
Not feasible to verify 0
Not feasible to verify 0
Not feasible to verify 0
Not feasible to verify 0

1-Nov-2010
0445,0450,
0505,0500 950,053 DoS 29 83,433 8.78% 1 0

DoS 29 108,908 11.46% 1 0
DoS 29 83,088 8.75% 1 0
DoS 29 87512 9.21% 1 0

Day Timebins Flows (avg) Event BPP Flows (anomaly) % Identification False positive

DoS 29 87512 9.21% 1 0

DoS 29 86,987 9.16% 1 0
Random traffic 1 1
Random traffic 1 1
Random traffic 1 1
Not feasible to verify 0

18-Dec-2010
0030,0035,
0700,0720,
0800 Not feasible to verify 0

ICMP traffic 1 1
ICMP traffic 1 1
Random traffic 1 1
Random traffic 1 1
Random traffic 1 1
Random traffic 1 1

2-Nov-2010
1135,1140,
1905,1920 Random traffic 1 1

Not feasible to verify 0
Not feasible to verify 0
Not feasible to verify 0
Not feasible to verify 0
Not feasible to verify 0
Random traffic 1 1
Random traffic 1 1
Random traffic 1 1
Random traffic 1 1
Random traffic 1 1
Not feasible to verify 0
Not feasible to verify 0
Not feasible to verify 0
Not feasible to verify 0
Not feasible to verify 0

14-Nov-2010
0755,0810,
0900,0910 330,198 Port sweep 4,705 1.42% 1 0

Random traffic 1 1
Port sweep 6,640 2.01% 1 0
Random traffic 1 1
Port sweep 3,649 1.11% 1 0

12-Nov-2010
0645,0650,
0705,0700 Not feasible to verify 0

Not feasible to verify 0
Not feasible to verify 0
Not feasible to verify 0
Not feasible to verify 0
Not feasible to verify 0
Not feasible to verify 0
Not feasible to verify 0
Random traffic 1 1

#
Intensity
(min) Intensity(avg) Identification

Port sweep 11 0.51% 1.15% 58
Port scan 1 1.42% 1.42% 32
DoS 18 0.64444444444444
TOTAL 30

Unidentified 33 TP 17
Normal traffic 37 FP 41

TPR 0.29
TOTAL 100

Day Timebins Flows (avg) Event BPP Flows (anomaly) % Identification False positive

	Title Page
	Abstract
	Preface
	List of Tables
	List of Figures
	Abbreviation
	Contents
	Introduction
	Detection and Identification Schemes
	Equipment and Infrastructure
	Problem Outline
	Outline of the Thesis

	Background
	Feature Versus Volume-based
	Anomalies
	Denial of Service Attacks
	Scans

	An Alternative Way of Defining Anomalies
	Detection and Identification Metrics
	Entropy-based Detection
	Limitations

	Histogram-based Detection
	Kullback-Leibler Distance
	Flow Pre-filtering
	Association Rule Mining
	Limitations

	SENATUS
	Limitations

	Tools and Implementation
	Nmap
	Nfdump
	Unix Tools
	Implementation
	Histogram-based Detection
	SENATUS
	Entropy-based Detection

	Ground Truth
	Injection Based Ground Truth
	Analysis of Root Cause Based Ground Truth
	Comparison Based Ground Truth

	Results
	Results From Root Cause Based Ground Truth
	Results From Comparison Based Ground Truth
	Overview of SENATUS
	Evaluation and Discussion

	Conclusion
	Future Work

	References
	Code
	histogram-based detection
	anoflows.m
	mining.sh
	formatting.awk

	Identification rates for HD and SENATUS

