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Abstract

We explore the possibility to actively use the system geometry to search for states of minimum entropy production in a chemical
reactor. This idea is inspired by the energy-efficient mass and energy transfer that takes place in the reindeer nose thanks to its
complex geometry. A cylindrical plug-flow reactor for oxidation of sulfur dioxide is used as example, while optimal control theory
is used to formulate the problem. We hypothesize that the nasal anatomy of the reindeer has evolved to its present shape to help
reducing energy dissipation during respiration in extreme ambient temperatures.

A comparable optimal diameter-profile in the plug-flow reactor resulted in 11% reduction of the total entropy production, com-
pared to a cylindrical reference reactor. With, in addition, an optimal reactor length, the reduction is 16%. These reductions are
largely due to reductions in viscous dissipation. In practice, this translates into smaller pressure drops across the system, which
reduce the loads of upstream/downstream compressors. Moreover, the peak in the temperature profile was reduced with respect to
that obtained by controlling the temperature of the cooling medium.

With today’s technological solutions, the optimal diameter profile might be easier to realize than other optimal control strategies.
The possible gains from this first example are encouraging, and may serve as inspiration for further applications.
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1. Introduction

Over the last decades, much work has been done in the field
of entropy production minimization for various kinds of process
units [1–4]. By identifying where and how energy is dissipated
in a process, we can in turn apply measures to reduce dissipa-
tion, see Ref. [5] for a review. While systematic improvements
have yet to be carried out in practice, several studies on chem-
ical reactors have been performed demonstrating that possible
gains are significant [6, 7].

In search of new ways to improve the energy efficiency of
chemical reactors, the plug-flow reactor has often been used as
a simple model to minimize entropy production. Both exother-
mic and endothermic reactions have been studied, for instance
oxidation of sulfur dioxide (SO2) [6], ammonia production [8],
methanol synthesis [9], propane dehydrogenation [10], steam
reforming [11], and hydrogen production [12]. Different ways
of improving reactors’ energy efficiency have been explored,
such as optimal control of the cooling medium temperature [6]
and of the catalyst distribution [11], or reconfiguration of the
process flow diagrams [5]. All different approaches have pro-
vided insight on the efficient operation and design of the pro-
cess. However, such measures might be difficult to realize in
practice. As an example, Johannessen et al. noted that an opti-
mal ambient coolant temperature-profile might lead to potential
issues due to catalyst deactivation and process stability [6]. In

∗Corresponding author
Email address: elisa.magnanelli@sintef.no (Elisa Magnanelli)

the effort to reduce energy dissipation in this particular system,
other control variables may therefore be of interest.

Many interesting designs and patterns are found in nature,
which respond to principles of efficiency and functionality [13].
In arctic regions animals show remarkable adaptations to the
cold climate. An especially interesting example is the nasal
anatomy of reindeer (Rangifer tarandus), which features a com-
plex spiral structure [14]. Using a computational model, it has
been shown that the nasal geometry of the reindeer contributes
to a significant reduction in total entropy production of respi-
ration, compared to a simple cylindrical nasal geometry [15].
Despite the extreme climate, physiology allows the animal to
maintain its temperature nearly constant, and it appears that its
nasal geometry contributes to this by reducing energy and water
dissipation during respiration.

An analogy can be established between the evolution of the
reindeer nose and optimization studies on chemical reactors. In
both cases, the scope is to control the driving forces across the
system to reduce dissipation. However, the ways the two prob-
lems are solved are different. In earlier works on reactors for
SO2 oxidation, driving forces have been controlled by control-
ling the temperature of the coolant [6]. However, due to physi-
ological constraints, in the reindeer nose the temperature of the
heating medium (i.e. the reindeer blood) cannot be let free to
vary. In the reindeer nose driving forces are instead controlled
through a varying geometry.

Coppens [16] has proposed nature-inspired chemical engi-
neering as a useful discipline in a resource limited world. By
taking inspiration from the reindeer nose, in the present work
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we explore the possibility of reducing dissipation in a SO2 plug
flow reactor by optimizing its geometry. Observations on the
importance of water recovery during reindeer respiration has
already served as inspiration for a closer analysis of heat and
mass exchangers in ventilation [17], and further observations
on the complex reindeer nose structure could also have impli-
cations for reactor design. We hypothesize that it is possible to
reduce the total entropy production in the reactor by varying the
reactor geometry, while keeping the production of the reactor
constant. With technological advances in 3D printing, a geo-
metrical optimization could represent a more practical strategy
than to use the coolant temperature as a control variable. In-
deed, temperature control of the cooling medium can be prac-
tically done only in a discrete way, by using different cooling
media in different sections along the reactor [18]. Under these
premises, in the present work we will follow a “reindeer ap-
proach” in the optimization problem.

The task of finding the geometrical structure that reduces the
entropy production can be formulated by optimal control the-
ory. The general optimization procedure has been previously
described in literature [6]. The resulting reactor diameter pro-
file and the possibility of choosing a non-circular geometry of
cross-sections will be discussed, and the results will be com-
pared with those previously obtained from coolant temperature
optimization [6].

2. The system

Figure 1 depicts a schematic representation of a tubular re-
actor for oxidation of SO2, which has been earlier accurately
described [6]. A gas mixture of SO2, O2, SO3 and N2 enters the
reactor on the left side. The tubular reactor geometry is char-
acterized by the diameter, D, cross-sectional area, A, perimeter,
γ, and length, L, as illustrated in Fig. 1. As a reference case to
compare the optimization results with, we use a reactor where
the geometry is uniform along the length of the reactor (the
adopted geometrical parameters are presented in Appendix A).

The reactor is filled with a packed bed of catalytic particles.
As SO2 comes in contact with the catalyst, it is oxidized ac-
cording to the stoichiometric reaction:

SO2 + 1
2 O2 = SO3

The catalyst bed is made up by spherical particles of constant
density, ρB, and diameter, Dp, resulting in a constant void frac-
tion, ε. The overall density of catalyst in the reactor is then
given by:

ρeff = ρB (1 − ε) (1)
Since the oxidation reaction is exothermic, active cooling is
provided to the reactor by a boiling cooling medium (i.e. at
constant temperature, Tamb), which surrounds the walls of the
reactor.

In the description of the reactor, some simplifying assump-
tions are made:

• the reactive flow within the tubular reactor is described
as plug-flow, which implies that radial gradients are ne-
glected, the radial gas velocity profile is flat, and the pro-
cess is at steady state;

• heterogeneous effects due to diffusion and reactions in
the catalyst particles are neglected (pseudo-homogeneous
model [19]);

• diffusive fluxes along the axial direction are neglected, as
they are small in comparison to the convective flow;

• ideal gas law is used to describe the behaviour of the gas
mixture.

By applying these assumptions the conservation equations
which govern the behaviour of the system can be formulated
as described in Section 3.

3. Theoretical formulation

In Section 3.1, the equations that describe the system behav-
ior are presented. In Section 3.2, we define the entropy pro-
duction of the system, which is the objective function for the
optimal control problems described in Section 3.3.

3.1. Conservation equations

As the gas mixture flows through the catalytic bed, SO2 is
oxidized releasing a large amount of heat. At the same time, the
reactor exchanges heat with a cooling medium, which prevents
an excessive rise in temperature within the reactor. The energy
balance can then be written as [6]:

dT
dz

=
γ′J′q + Aρeff(−∆rH)rSO2∑

i FiCp,i
(2)

where rSO2 is the reaction rate per unit mass of catalyst, ∆rH is
the reaction enthalpy, Cp,i is the heat capacity of component i,

and γ′ = γ

√
1 + 1

4

(
dD
dz

)2
is the perimeter multiplied by a factor

that accounts for the curvature of the reactor outer surface when
integrating along the z-coordinate. The measurable heat flux
across the reactor wall, J′q, can be calculated as [20]:

J′q = U (Tamb − T ) (3)

where U is the overall heat transfer coefficient. Appendix A
contains additional information on the parameters used in Eq. 2.

The purpose of the reactor is to oxidize SO2. The conversion
of this component, ξ, can be written at any position along the
z-coordinate as:

ξ =
F0

SO2
− FSO2

F0
SO2

(4)

where F0
SO2

is the molar flow rates of SO2 at the inlet, while
FSO2 is the SO2 molar flow rate at the consider position. The
molar flow rate of component i, Fi, and the total molar flow
rate, FT , can be written in relation to the SO2 molar flow rate
as:

Fi =F0
SO2

(θi + νiξ)

FT =F0
SO2

θT + ξ
∑

i

νi

 (5)
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Figure 1: Sketch of the plug-flow reactor. Adapted from Ref. [6].

where νi, is the stoichiometric coefficient of component i in the
oxidation reaction, and θi is defined as:

θi =
F0

i

F0
SO2

θT =
F0

T

F0
SO2

(6)

Mole fractions of each component can then be determined us-
ing:

xi =
Fi

FT
=

θi + νiξ

θT + ξ
∑

i νi
(7)

The generalized mole balance for the reactive flow can be for-
mulated in terms of the conversion as [6]:

dξ
dz

=
AρeffrSO2

F0
SO2

(8)

The packed bed of particles offers a large resistance to the gas
mixture flowing through the bed. The resulting pressure drop
can be described by Ergun’s equation [19, 21]

dp
dz

= − (α + βv) v (9)

where v is the gas superficial velocity, and α and β are defined
as [21]:

α =
150µ
D2

p

(1 − ε)2

ε3 β =
1.75ρ

Dp

1 − ε
ε3 (10)

where µ is the gas viscosity, and ρ is the gas density. Since
the reactive components are dilute in inert nitrogen gas, the dif-
ference between the molar average velocity and mass average
velocity is small. The superficial gas velocity is the flow ve-
locity that the gas would have if it occupied the whole reactor
cross-section:

v =
FT

Aρ
ρ =

pMT
w

RT
(11)

where MT
w is the molecular weight of the gas mixture, and R is

the universal gas constant.

3.2. The entropy production

The local entropy production in the plug-flow reactor has
three contributions: entropy generated by heat transfer, vis-
cous dissipation, and entropy produced by the chemical reac-
tion. The entropy production per unit length of the plug-flow
reactor is given by Johannessen et al. [6] as:

σ = γ′J′q

(
1

Tamb
−

1
T

)
+ Av

(
−

1
T

dp
dz

)
+ AρeffrSO2

(
−

∆rG
T

)
(12)

where ∆rG is the reaction Gibbs energy. The total entropy pro-
duction is found by integration of the local entropy production
over the reactor length:

Σirr =

∫ L

0
σdz = Σirr,dT + Σirr,dp + Σirr,∆G (13)

Since the system is in a steady state, the total entropy produc-
tion can also be calculated from the entropy balance over the
whole reactor:

Σirr = Fout
T S out − F in

T S in + ∆S utility (14)

where ∆S utility is the entropy change of the cooling utility, and
S in and S out are the entropy of the inlet and outlet flow, respec-
tively. In calculations, the results obtained by Eq. 13 and Eq. 14
can be compared to check the consistency of the model.

The entropy change of the utility is due to the heat exchanged
with the reactor:

∆S utility = −

∫ L

0

γ′J′q
Tamb

dz (15)

3.3. The optimization problem

The purpose of the optimization procedure is to find the re-
actor geometry which minimizes the total entropy production.
Control on the geometry is done by letting the diameter of the
reactor free to vary along the reactor length.

As presented in Section 3.1, the plug-flow reactor considered
in this work is completely described by three state variables (i.e.
T , ξ, and p), each of which is governed by a conservation equa-
tion (i.e. Eq. 2, Eq. 4, and Eq. 9). According to optimal control

3



theory, the Hamiltonian for the problem may be employed in
the solution of the optimization problem [22, 23]:

H = σ + λT
γ′J′q + Aρeff(−∆rH)rSO2∑

i FiCp,i

−λp (α + βv) v + λξ
AρeffrSO2

F0
SO2

(16)

where H is the Hamiltonian of the control problem. The Hamil-
tonian consists of two contributions. The first contribution is
given by the integrand of the objective function to be minimized
(i.e. the integrand in Eq. 13). A second contribution is given by
the sum of the product of the multipliers’ functions (λT , λξ, and
λp) and the right-hand side of the governing equation of the
respective state variable [22, 23].

According to optimal control theory, the necessary condi-
tions for a minimum in the objective function are given by two
differential equations for each of the state variables, and by one
algebraic equation for each of the control variables [22, 23].
The differential equations are:

dT
dz

=
∂H
∂λT

(17)

dp
dz

=
∂H
∂λp

(18)

dξ
dz

=
∂H
∂λξ

(19)

dλT

dz
= −

∂H
∂T

(20)

dλp

dz
= −

∂H
∂p

(21)

dλξ
dz

= −
∂H
∂ξ

(22)

The algebraic conditions are derived by differentiating the
Hamiltonian with respect to the control variables [22, 23].
Thus, the algebraic conditions depend on the choice of the con-
trol variables.

In the present case, the algebraic condition is given as:

∂H
∂D

= 0 (23)

By carrying out the differentiation, Eq. 23 can be rewritten as:

∂H
∂D

=
π

2
DρeffrSO2

(
−

∆rG
T

)
+

dγ′

dD
J′q

(
1

Tamb
−

1
T

)
(24)

+λT

dγ′

dD J′q + π
2 Dρeff(−∆rH)rSO2∑

i FiCp,i

+

(
λp −

FT R
p

) (
α

2
D

v + β
4
D

v2
)

+ λξ
πDρeffrSO2

2F0
SO2

= 0

By solving Eq. 24 for D, the optimal diameter profile along the
z-coordinate can be found.

As ,n additional case interesting to explore, we consider the
system length as free to vary. According to optimal control the-
ory [22], the optimal length of the system is in this case charac-
terized by a terminal value of the Hamiltonian equal to zero:

Hz=L = 0 (25)

3.4. Constraints
Constraints are necessary for an optimization procedure to be

meaningful [6, 22]. Indeed, when no constraints are imposed,
the optimization may lead to trivial solutions (e.g. a reactor with
length equal to zero). The optimization problem is described by
six differential equations (Eqs. 17-22), and thus six constraints
are necessary. Such constraints are formulated in the form of
boundary conditions.

Since the purpose of the reactor is to produce SO3 from SO2,
we impose that the conversion at the inlet and outlet of the re-
actor is equal to that of the reference reactor with uniform ge-
ometry:

ξ0 = 0 and ξL = ξL
ref (26)

The four additional constraints are imposed on the inlet and
outlet values of pressure and temperature, as [6]:

T 0 specified or λ0
T = 0

T L specified or λL
T = 0

p0 specified or λ0
p = 0

pL specified or λL
p = 0

(27)

If a boundary condition at the reactor inlet or outlet is specified,
its value is equal to that of the reference reactor at that position.
If the state variable is free to vary at that point, its Lagrange
multiplier is instead equal to zero [6, 22]. We assume that all
pressure and temperature values at inlet and outlet are fixed,
with exception for the inlet pressure, which is let free to vary.

3.5. Investigated cases
In the present work, we consider and compare the results

from three cases:

Reference: This is the reference case; a plug-flow reactor with
uniform geometry profiles, and reactor parameters given
by Fogler [20]. No variables are optimized, and this case
gives the boundary conditions for the geometrical opti-
mization.

(D)-optimal: Optimal case, where the diameter profile, D, is
optimized to minimized entropy production. The reactor
length, L, is fixed and equal to that of the reference reactor.

(D, L)-optimal: Optimal case, where the diameter profile, D,
and the length of the reactor, L, are optimized to minimize
entropy production.

(Tamb)-optimal: Optimal case presented in Reference [6],
where the temperature profile of the utilities, Tamb, is op-
timized to minimized entropy production. The reactor
length, L, is fixed and equal to that of the reference reactor.

(Tamb, L)-optimal: Optimal case presented in Reference [6],
where the temperature profile of the utilities, Tamb, and the
length of the reactor, L, are optimized to minimize entropy
production.

The initial conditions for the reference reactor are presented in
Table 1.
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Table 1: Initial conditions used in the reference reactor calculations [20].

Value Unit
T 0 777.78 K
p0 202650 Pa
F0

T 0.2149 mol s−1

x0
SO2

0.11 -
x0

O2
0.10 -

x0
SO3

0.01 -
x0

N2
0.78 -

4. Solution procedure

For the reference case, the conservation equations (Eq. 2, 4
and 9) and the initial conditions given by Fogler (see Table
1) constitute an initial value problem (IVP). In MATLAB this
problem is numerically integrated using the function ode15s.

In the optimization problems, constrains are specified at both
ends of the system. This makes the problem a two-point bound-
ary value problem (BVP), which cannot be solved by ode15s.
The BVP can be solved numerically in MATLAB using the
function bvp4c, which employs a collocation method. In order
for the solver to converge, we must provide a reasonable guess
of the problem solution. The MATLAB function fmincon is
used to find suitable initial guesses for the state variable, con-
trol variable and Lagrange multiplier profiles. An initial guess
on a coarse grid of roughly 25-50 points is sufficient for the
solver to converge.

The algebraic relation which gives the diameter, Eq. 23, is a
non-linear function, and is solved in MATLAB using the func-
tion fsolve. Equation 23 is solved for each point along the
length of the reactor, and the resulting values of the diameter are
used in the calculation of spatial gradients of state variables and
Lagrange multipliers given in Eq. 17-22. A finite central differ-
ence scheme for MATLAB, developed by Johannessen et al., is
used to approximate spatial gradients of the Lagrange multipli-
ers [6]. To summarize, the following computational procedure
is used to solve the problem in MATLAB:

• The reference case IVP is solved using ode15s. Inlet and
outlet boundary conditions from this case are subsequently
used in the optimization.

• A numerical solution of the optimization problem is found
using fmincon. Profiles of state variables, Lagrange multi-
pliers and the control variable are used as an initial guesses
for the analytic solution.

• A preliminary analytic solution of the optimization prob-
lem, where γ′ is approximated to γ′ = γ, is found using
bvp4c and fsolve with suitable initial guesses.

• The exact analytic solution is found using bvp4c and
fsolve in combination with an iterative procedure where
the preliminary analytic solution is used to guess profiles
of state variables and geometrical parameters.

When we also attempt to optimize the reactor length we require
two more steps:

• Analytic solutions are found for different lengths, using
the previous solution as an initial guess for the next opti-
mization.

• Total entropy production and terminal value of the Hamil-
tonian may then be illustrated as a function of reactor
length, and the optimal reactor length can be found.

The consistency of the thermodynamic model was checked
by comparing the total entropy production obtained with Eq. 13,
to the value obtained from Eq. 14. The difference between the
two calculations was less than 1%, and became smaller as the
accuracy of calculations was increased. An inlet mole fraction
for SO3 of x0

SO3
= 0.01 was chosen instead of 0, to avoid prob-

lems with the numerical solution of the problem [6].

5. Results and Discussion

5.1. Entropy production
The purpose of the optimization procedures is to minimize

the entropy production of the process. The total entropy pro-
duction obtained in the considered cases is presented in Ta-
ble 2. The results show that with the control of the diameter
profile only ((D)-optimal), the total entropy production reduces
by circa 11% with respect to the reference case, while the addi-
tional optimization of the reactor length allows us to obtain an
overall entropy production reduction of 16%.

In both cases, the reduction in Σirr is due to reduction in the
entropy production due to viscous dissipation and by heat trans-
fer, while the contribution due to chemical reaction is slightly
larger than in the reference case.

The reduction in entropy production is comparable to that
obtained by Johannessen et al. [6] when optimizing the cooling
medium temperature alone ((Tamb)-optimal) or in combination
with the reactor length ((Tamb,L)-optimal. However, when Tamb
is used as control variable in the optimization, most of the re-
duction in entropy production is due to the chemical reaction
contribution, while the contribution due to viscous flow remains
approximately the same.

5.2. Temperature profile across the reactor
Figure 2 presents the temperature profile in the reactor as

a function of the normalized z-coordinate (i.e. the coordinate
value divided by the length of reactor), for the different cases.
In the reference reactor (dashed line), the temperature of the re-
acting mixture rises quickly as the gas enters the reactor, due to
the oxidation reaction being exothermic. When most of the SO2
has oxidized to SO3, the reaction rate slows down and the tem-
perature of the gas mixture starts decreasing, until it approaches
that of the cooling medium that surrounds the reactor.

For the cases (D)-optimal and (D,L)-optimal, the shape of the
temperature profile is very similar to that of the reference case.
In (D)-optimal, the maximum temperature of the gas mixture is
circa 10 K lower than in the reference case. A lower maximum
temperature and a lower temperature variation within the sys-
tem reduce thermal stresses on the reactor materials as well as
contribute to the stability of the process.
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Table 2: Total entropy production (J K−1s−1) for the reference, (D)-optimal and (D,L)-optimal. The percentage in parenthesis represent the reduction in entropy
production obtained with respect to the reference case. Results from a previous work [6] for (Tamb)-optimal and (Tamb,L)-optimal are also reported for comparison.

Reference (D)-optimal (D,L)-optimal (Tamb)-optimal (Tamb,L)-optimal
Σirr 1.4204 1.2644 1.1887 1.2555 1.0551

(-) (-11%) (-16%) (-10%) (-24%)
Σirr,dT 0.4497 0.4082 0.4396 0.3929 0.2261
Σirr,dp 0.5615 0.4181 0.3429 0.5600 0.5631
Σirr,∆G 0.4048 0.4381 0.4062 0.3026 0.2660
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Figure 2: Temperature inside the reactor as a function of the scaled position,
for the reference (dotted line), (D)-optimal (dashed thick line), (D,L)-optimal
(solid thick line). Results from a previous work [6] for (Tamb)-optimal (dashed
thin line), (Tamb,L)-optimal (solid thin line) are also reported for comparison.

On the other hand, the results obtained by control of the
cooling medium temperature carried out by Johannessen et
al. [6] show that in both (Tamb)-optimal (dashed thin line) and in
(Tamb,L)-optimal (solid thin line) a much higher maximum tem-
perature than the reference case is reached. The authors noted
that in practice such a high temperature can cause catalyst de-
activation, in addition to thermal stress to reactor materials [6].

Thus, while to optimize the cooling medium temperature
does reduce the entropy production of the process (see Table 2,
it might lead to stability problems. These problems are instead
not encountered when the diameter profile is used as control
variable.

5.3. The optimal geometry
Figure 3a shows how the perimeter of the reactor cross sec-

tion varies in the difference cases. For both (D)-optimal (dotted
line) and (D,L)-optimal (solid line), in the central part of the re-
actor the perimeter is much larger than the constant one of the
reference case (dashed line).

Variation in the reactor diameter has several effects on the
system. When the diameter is larger, contact area between the
cooling medium and the reactor is larger and, thus, heat ex-
change is enhanced. At the same time, a larger diameter leads
also to an increased volume of the reactor and catalyst, and

therefore favours eventual reactions. Finally, as the cross sec-
tion also increases with a larger diameter, the velocity of the
gas mixture decreases, leading to lower viscous dissipation. It
is therefore difficult to isolate the effect of reactor diameter vari-
ation on the different transport phenomena.

It is interesting to notice that the optimal geometrical profiles
found through the optimization procedures have some similar-
ities to that of the reindeer nose (Fig. 3b). Indeed, in both sys-
tems, the perimeter is smaller at the inlet and outlet, than it is
in the middle. Near the inlet, where driving forces are larger
for both systems, the cross-sectional area and perimeter are rel-
atively small, while the gas velocity is high. The more sym-
metrical profile of the reindeer nose can be expected due to the
fact that the air velocity changes direction during the breathing
cycle. To reverse flow is not relevant for the reactor.

5.4. The optimal reactor length

The optimal reactor length was found by evaluating the to-
tal entropy production and the terminal Hamiltonian value for
different reactor lengths. The total entropy production of the
reactor as a function of reactor lengths is shown in Fig. 4, to-
gether with individual contributions to it. A reactor length of
4.76 m gave a minimum in the total entropy production.

Similar to variation in the diameter profile, variation in the
reactor length has mainly an impact on the reduction of the vis-
cous dissipation. By optimizing the reactor length, the viscous
dissipation was further reduced by 5% compared to the optimal
case with reference reactor length (see Table 2).

The contribution to entropy production due to chemical re-
action only slightly increases, as L increases. The heat transfer
contribution has also very small variation, but it shows an op-
posite trend than that of Σirr,∆G.

An interesting advantage of the (D,L)-optimal case is that
this geometry lowers the total reactor volume with respect to
(D)-optimal. Figure 5 shows how the total volume and surface
area of the reactor vary as a function of the reactor length. Fig-
ure 5 shows that, when the diameter profile is optimized main-
taining the same reactor length as the reference case, a 47%
larger volume of catalyst is necessary than in the reference case.
However, the reactor volume decreases as the reactor length de-
creases. In (D,L)-optimal case, only 13% extra catalyst is nec-
essary with respect to the reference case.

Due to the high costs of catalyst, the increased catalyst vol-
ume is a drawback of the geometrical optimization. However,
in the present work, the catalyst density has been considered
uniform along the reactor. By introducing the catalyst density
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(a) Cross sectional perimeter of the reactor for the reference (dashed line),
(D)-optimal (dotted line) and (D,L)-optimal (solid line).
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(b) Cross sectional perimeter of the reindeer nose [14].

Figure 3: Comparison between the cross sectional perimeter as a function of scaled position in the optimized reactor and in the reindeer nose.
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Figure 4: The total entropy production, Σirr, of the reference (circle) and of
the optimal diameter reactor (solid line) a function of reactor length, L. The
different contributions to the total entropy production are also shown: Σirr,dT
(dashed line), Σirr,dp (dash-dotted line) and Σirr,∆G (dotted line).The vertical line
indicates the reactor length for which a minimum in entropy production is ob-
tained.

as an additional control variable, it might be possible to reduce
the catalyst total volume below the reference one.

The total surface area of the reactor is also an important pa-
rameter. Figure 5 shows that the surface area decreases as the
reactor length decreases. For a reactor length equal to the refer-
ence, the optimal reactor requires 19% larger surface area than
the reference case. However, for the (D,L)-optimal case, the
surface area is 7% lower than in the reference.
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Figure 5: Total volume, V , of the reference (circle) and optimal diameter re-
actor (solid line), and total surface area, S tot , of the reference (square) and of
the optimal diameter reactor (dashed line) as functions of reactor length.). The
vertical line indicates the reactor length for which a minimum in entropy pro-
duction is obtained.

5.5. Practical considerations

As seen in Section 5.1, the entropy production reduction ob-
tained through optimization of the reactor geometry, mainly
leads to a reduction in viscous dissipation.

Figure 6 shows how the pressure varies along the reactor. A
reduction in the viscous dissipation is directly related to a lower
total pressure drop across the reactor. Since we let the inlet
pressure free to vary, a lower pressure drop across the system
results in a lower inlet pressure of the reacting mixture. From
a practical point of view, a lower inlet pressure might lower
the power requirements for compressors upstream the reactor,
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leading to lower operation costs.
The practical realization of a reactor with varying diame-

ter might be difficult to accomplish. Advances in 3D printing
are however promising for the realization of such geometries.
Nonetheless, production costs might be high to justify the re-
ported increases in efficiency.

To further reduce energy dissipation, it might be interesting
to explore how additional control variables might affect the re-
sults. Density distribution of the catalyst can provide a further
way to control the chemical reaction driving forces.

5.6. Final remarks on the optimal geometry

Figure 7 shows a three dimensional representation of the op-
timized geometry.

In this work, we have optimized the diameter profile of the
reactor, while maintaining the shape of the cross section circu-
lar. The resulting geometry was able to reduce the contribu-
tions to the entropy production due to viscous dissipation and,
in smaller degree, due to heat transfer. On the other hand, the
contribution due to reaction was slightly higher.

Nonetheless, as the complex geometry of the reindeer nose
suggests, cross sectional shapes other than the circular one
might allow for further reduction of energy dissipation. The
reindeer nose is characterized by a shell-like structure [14],
which makes it possible to decouple control of the cross-
sectional area and perimeter of the nasal cavity. This allows for
a better control of the thermodynamic driving forces. To take
this into account, as a first simple example, an elliptic cross
section could be considered, and its profile along the reactor
optimized.

However, many other efficient designs can be found in na-
ture, which could also be used as an inspiration for geometrical
redesign. As an example, the complex lung airways are not
only an efficient mass exchanger, but the pressure drop in them
appears also optimally distributed [24].Thus, the fractal-like ge-

Figure 7: Three-dimensional of the reference reactor (bottom) and of the (D,L)-
optimal reactor (top).

ometry of the lung could also represent an interesting geometry
to study.

6. Conclusions and future work

The peculiar geometry of the reindeer nose was used as inspi-
ration to find the minimum entropy production of a plug-flow
reactor for SO2-oxidation. The reactor diameter was used as
control variable in the optimization procedure formulated by
optimal control theory. We found that with the control of the
diameter profile alone, the total entropy production reduces by
circa 11% with respect to the reference case, while the addi-
tional optimization of the reactor length allowed us to obtain
an overall entropy production reduction of 16%. In both cases,
the reduction in Σirr was mainly due to reduction in the entropy
production due to viscous dissipation, with a small contribution
from heat transfer.

Differently from earlier works, the results of the optimization
procedure did not lead to significant increase in the operating
temperature. Thus, a practical realization of the optimal solu-
tion would not meet stability problems. Moreover, the optimal
solution lead to a lower pressure drop across the system,

Quite interestingly, the optimal geometrical profile has some
analogies to the one of the reindeer nose, with smaller perime-
ter at the inlet and outlet of the system, and larger perimeter in
the central part. With today’s technological solutions, the op-
timal diameter profile might be easier to realize than other op-
timal control strategies, such as control of the cooling medium
temperature. The gains highlighted from this first example are
encouraging, and may serve as inspiration for further applica-
tions.

The control of additional variables might further reduce pro-
cess dissipation in future works. To separately control the
perimeter and the cross sectional area of the reactor can lead to
reduced entropy production. Moreover, the simultaneous con-
trol of geometry and distribution of catalyst may be of interest.
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Table A.3: Parameters for the tubular reactor [20]. Tamb is the cooling medium
temperature, Lref and Dref are the length and diameter of the reference reactor, ε
is the catalyst void fraction, ρB is the catalyst density, Dp is the catalyst particle
diameter, U is the overall heat transfer coefficient, and µ is the gas viscosity.

Value Unit
Tamb 702.6 K
Lref 6.096 m
Dref 0.0706 m
ε 0.45 -
ρB 984.4 kg m−3

Dp 4.572 · 10−3 m
U 56.783 J K−1 m−2 s−1

µ 3.7204 · 10−5 kg m−1s−1

Excellence funding scheme, project number 262644, Pore-
Lab, and through HighEFF, an 8-year Research Centre under
the FME-scheme (Centre for Environment-friendly Energy Re-
search, 257632/E20).

Appendix A. Thermodynamic parameters and relations

Reactor parameters and gas mixture properties are summa-
rized in Table A.3. The cooling medium temperature, void frac-
tion, catalyst density, catalyst particle diameter, and gas viscos-
ity are constant along the length of the reactor, and are the same
for the reference and the optimized reactor.

The reaction rate of SO2 is described in the literature by using
an empiric relation [20]:

rSO2 = kr

√
pSO2

pSO3

pO2 −

(
pSO3

pSO2 Kp

)2 (A.1)

where pi is the partial pressure of components, the reaction rate
coefficient, kr, is given by Fogler as [20]:

kr = 9.8692 · 10−3 exp
(
−97782

T
− 110.1 ln T + 848.1

)
(A.2)

and the equilibrium constant, Kp, is:

Kp = 3.142 · 10−3 exp
(

98359
RT

− 11.24
)

(A.3)

The heat capacity of each component in the considered temper-
ature range is approximated by the experimental relation:

Cp,i = ACp,i + BCp,i T + CCp,i T
2 (A.4)

where ACp,i , BCp,i and CCp,i are heat capacity coefficients. The
heat of reaction is given by:

∆rH =
∑

i

νi∆fHT
i (A.5)

where ∆fHT
i is the enthalpy of formation of component i at a

temperature T , which is given by:

∆fHT
i = ∆fH700

i +ACp (T−700)+
BCp

2
(T 2−7002)+

CCp

3
(T 3−7003)

(A.6)

The reference temperature for the formation enthalpy is 700
K [6, 20]. Chemical data for the relevant chemical species are
summarized in Table A.4.

The entropy of the gas stream is calculated according to:

S =
∑

i

xi

(
s0

i +

∫ T

298

Cp,i

T
dT

)
− R

∑
i

xi ln xi

− R ln
p

1.013 · 105 Pa

(A.7)

where xi is the mole fraction of component i, and s0
i is the stan-

dard entropy of component i summarized in Table A.4. If the
equilibrium constant given by Fogler is used in the calculation
of the Gibbs energy, the discrepancy between the total entropy
production and the entropy balance may be as large as 6% [6].
Instead, Johannessen et al. used the following expression for
the equilibrium constant:

Kp = exp
[
−∆rG0(T )

RT

]
(1.1013 · 105 Pa)−1/2 (A.8)

where the standard Gibbs energy, ∆rG0, is calculated using:

∆rG0 = ∆rH − T∆rS (A.9)

where ∆rH is the heat of reaction and ∆rS is the change in en-
tropy of the reaction. The reaction quotient, Qr, is calculated
from:

Qr =
∏

i

pνi
i (A.10)

where pi is the partial pressure of component i. The reaction
Gibbs energy is then [6]:

∆rG = RT ln
(

Qr

Kp

)
(A.11)
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