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ABSTRACT

In this paper we propose a genie-aided strategy to optimize the use
of renewable energy (RE) in a community of households with shared
access to storage and RE generation facilities. The households are
spread over a limited geographical area, and are subject to differ-
ent time-varying power consumption profiles, and energy prices. We
consider a finite number of RE generators and energy storage devices
(ESDs), which are deployed in specific locations. The proposed
strategy seeks to minimize the energy cost incurred by the partici-
pating households by optimizing the rate at which RE is consumed
over time. Our model takes into account the power loss incurred in
the transmission of energy from the generators to the loads. The op-
timization problem is cast as a non-convex quadratically constrained
quadratic program, which is simplified in order to derive an approx-
imate solution. Numerical results show that transmission losses and
differences across price and load can significantly affect the optimal
RE allocation among the households. The proposed strategy offers
valuable insights for energy planning purposes and can be used to
devise real-time RE management algorithms by incorporating the
necessary forecasting techniques.

Index Terms— Renewable energy management, quadratic pro-
gramming, transmission losses.

1. INTRODUCTION

The sharing of RE generation and storage facilities is becoming an
attractive alternative for households with space limitations. Commu-
nity solar (CS), for example, is an energy development model that is
gaining popularity in the United States [1]. CS encompasses various
models in which households cooperate to meet their energy require-
ments at lower economical and environmental costs.

Among the various CS models, one that has attracted consid-
erable attention is Shared Solar, which consists of deploying solar
PV panels at designated locations to power a number of households
in their vicinities [2]. This configuration is attractive to households
with restricted rooftop space or to the ones who prefer sharing capi-
tal investment.

In this paper we develop a mathematical model for energy man-
agement in a Shared Solar environment. Our framework can be
used to optimize the rate at which the households consume energy
from each RE production and storage center (REPSC). We take
into account the power loss incurred by the wires connecting the
REPSCs and the households. The power lines are modeled as real
impedances, and the loss incurred in the transmission of power is
modeled by using Ohm’s law. With these considerations, we formu-
late a non-convex quadratically constrained quadratic programming
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problem, for which we propose a simplification. The proposed sim-
plification shrinks the original feasible space, and hence, the solution
obtained satisfies all the constraints of the original formulation.

The proposed model leads to an RE management strategy, which
can be used for energy planning purposes and to derive real-time en-
ergy management algorithms. Specifically, our framework allows
us to devise clustering1 schemes to reduce capital investment by
deploying a smaller number of connections between REPSCs and
households. Moreover, in a real-time setting, the proposed strategy
can be used to recompute the RE consumption schedules in response
to updated estimates of future RE production and load. Thus, fore-
casting techniques can be incorporated in our framework to imple-
ment the optimization strategy in real time.

To the best of our knowledge, there are no works in the literature
proposing energy management strategies for households in a Shared
Solar environment, which are also aware of time-varying electric-
ity prices, and power loss dissipated through ESDs and connecting
wires. Related works in the literature include [3–6], where greedy
RE management strategies are proposed at an individual level. Co-
operative RE management strategies have been proposed in [7–22].
However, most of these strategies do not take into consideration elec-
tricity price variations across time and location, as well as the energy
loss incurred by power lines connecting RE generators and loads.

Unlike existing works, we take into consideration the power loss
incurred by the ESDs, and the wires connecting the REPSCs and the
loads (households). As shown by our numerical results, the power
loss incurred in the energy transmission can be used as a criterion
for the households to choose some REPSCs over others. This re-
sult motivates the clustering of households to avoid the deployment
of some of the connecting wires in the network. Transmission line
power losses have been accounted for in works such as [11] and [23].
However, these works either disregard the time-varying nature of the
electricity prices, or do not account for the losses incurred in the
operation of ESDs charged with RE.

2. SYSTEM MODEL

2.1. Loads, Planning Horizon, and RE Consumption Schedules

We consider a set of M households connected to the same power
grid, and deployed across a finite area, as shown in Fig. 1. The plan-
ning horizon is [0, S] where S > 0 is an arbitrary positive real num-
ber. The power consumed by the mth household at time τ ∈ [0, S],
with S > 0, is denoted by Lm(τ) : [0, S] → [0, Lmax], where
Lmax denotes the maximum power that the household can consume.
We consider a set of N REPSCs, each one with an RE generator
and ESD. The REPSCs are deployed across different locations. The

1For example, nearby households can be grouped to share different REP-
SCs, avoiding the need for fully-connected configurations.
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Fig. 1: Shared Solar environment with N = 2 RE generators and
M = 3 households.

power drawn by the mth household from the nth RE generator is
Dm,n(τ) : [0, S]→ [0, Lm(τ)].

2.2. Transmission Losses, Electricity Prices, and Objective

The power transmission losses derive from the resistance of the con-
necting wires. Let ρ denote the resistance of the wires per unit
length, hence the resistance of the wire connecting the mth house-
hold and the nth RE generator is ρdism,n, where dism,n is the cor-
responding distance between the two points. The current flowing
through the wire is Dm,n(τ)

V
, where V is the operating voltage, as-

sumed constant for simplicity.
The objective of the proposed algorithm is to minimize the cost

incurred by all the participating households over the specified plan-
ning horizon. To achieve this, we define the objective function as the
total cost spent by the households in [0, S]. That is,

(1)

ξ =

M∑
m=1

∫ S

0

Pm(t)

[
Lm(t)

−
N∑
n=1

[
Dm,n(t)− ρdism,n

(
Dm,n(t)

V

)2
]]

dt,

where Pm(τ) denotes the prices offered to themth household. Price
variations across location are considered to ensure generality. Our
optimization framework thus seeks to reduce the cost function by
designing the Dm,n(τ)’s.

2.3. Energy Storage Devices

All the ESDs in the system are characterized by:

2.3.1. Charging/discharging losses

The charging/discharging losses are proportional to the power
charged to or discharged from the ESD. The charging/discharging
efficiency rates of the nth ESD are respectively αn and βn, which
satisfy 0 < αn ≤ 1 and 0 < βn ≤ 1. A lossless charging
(discharging) operation happens when αn = 1 (βn = 1).

2.3.2. ESD dynamics

The energy available at the nth ESD is denoted by Jn(τ), and
evolves according to:

Jn(τ) = Jn(0) +

∫ τ

0

[
αnRn(t)− 1

βn

M∑
m=1

Dm,n(t)

]
dt, (2)

where Jn(0) ≥ 0 is the energy initially available in the battery, and
Rn(τ) is the renewable power charged to the ESD, which is assumed
to be within the ESD’s allowed charging rate.

2.3.3. Limited storage capacity

The capacity of the nth ESD is denoted by Ψn ∈ R+. Therefore,
the Dm,n(τ)’s must be such that 0 ≤ Jn(τ) ≤ Ψn,∀ τ .

2.3.4. Limited discharging rates

Each ESD has a limited discharging rate, expressed as the maximum
amount of energy that can be drawn from the ESD in each time slot.
The maximum discharging rate that the nth ESD can handle is qD,n
power units. Therefore,

M∑
m=1

Dm,n(τ) ≤ qD,n, ∀ τ, ∀ n. (3)

3. PROBLEM STATEMENT

3.1. Decision Variables and Constraints

The decision variables are the discharging schedulesDm,n(τ) which
will determine the optimal RE consumption patterns. There are thus
two kinds of constraints that need to be satisfied in the formulated
optimization problem. The first set of constraints derives from the
bounded storage capacities of the ESDs and the causality condition,
according to which only RE readily available in the ESDs can be dis-
patched. These constraints can be stated mathematically as follows:

0 ≤ Jn(0) +

τ∫
0

[
αnRn(t)− 1

βn

M∑
m=1

Dm,n(t)

]
dt ≤ Ψn, ∀ τ, ∀ n,

(4)
where Ψn denotes the storage capacity of the ESD at the nth REPSC.
Constraints (4) were obtained by using the definition of Jn(τ), pre-
sented in (2), and are introduced to enforce that each Jn(τ) is within
the range [0,Ψn]. A second type of constraints arises if we assume
that distributed RE generation needs to be used only locally,2 which
means that the consumption of RE is upper bounded by the load in
each household:

N∑
n=1

[
Dm,n(τ)− ρdism,n

(
Dm,n(τ)

V

)2
]
≤ Lm(τ), ∀ τ, ∀m.

(5)
The left-hand side of (5) represents the effective power drawn from
the mth household from all the N REPSCs, i.e., the power obtained
after transmission losses. The right-hand side of (5) denotes the
power required by the mth household at time τ .

3.2. Formulation and Considerations

We formulate a mathematical problem to optimize the discharging
schedules as follows:

P0: min
Dm,n(τ), m∈{1,...,M}, n∈{1,...,N}

ξ

s.t. (3), (4), and (5).

2This constraint follows when no RE can be injected into the grid. In a
net metering scenario, this constraint can be updated to include subscriber
limits.



P0 is a very challenging problem because of the following reasons:
Its objective is not a function, but a sum of functionals. Its decision
variables are not scalar or vectors, but trajectories (functions defined
in continuous time). Equations (4) and (5) represent and infinite
number of constraints, which must hold in all the realizations of the
stochastic processes L1(τ), . . . , LM (τ) and R1(τ), . . . , RN (τ).

3.3. Genie-Aided Solution

We propose a method to solve P0 by assuming full3 knowledge of the
loads and RE generation profiles across time. This genie-aided solu-
tion can be used to benchmark online strategies, and to devise real-
time RE management algorithms based on forecasts. For tractability,
we will introduce discretization, and determine the optimalDm,n(τ)
only at a finite number of points. After introducing discretization,
the problem can be cast as a quadratically constrained quadratic pro-
gramming problem as will be shown next.

We sample the functions Pm(τ), Dm,n(τ), Lm(τ) and Rn(τ),
∀ m, ∀ n, at T > 1 equally-spaced points, and thus divide the
planning horizon into T − 1 subintervals. Let ∆t denote the sam-
pling interval, t ∈ {1, . . . , T} be the slot index, and x ∈ RMNT

denote the MNT variables to optimize over the entire planning
horizon stacked as follows: x = [x1,x2, . . . ,xM ]T , where
xm = [ym,1, . . . ,ym,T ] and ym,t = [Dm,1(t∆t), Dm,2(t∆t),
. . .,Dm,N (t∆t)]. Moreover, we denote the pricing vectors obtained
after the sampling by pm, i.e., pm(t) = Pm(t∆t), and simplify no-
tation by introducing the following definitions Km,n , ρdism,n

1
V

and km = 1T ⊗ [Km,1,Km,2, . . . ,Km,N ]. Then, the objective
function can be written as the following quadratic form:

ξ ≈ ∆t

11,M

 pT1 `1
...

pTM`M

− 11,MPx + xTQKx

 , (6)

with P, Q and K written as follows:

P = dg ((p1 ⊗ 1N ) , (p2 ⊗ 1N ) , . . . , (pM ⊗ 1N )) ,

Q = dg (dg (p1 ⊗ 1N ) , dg (p2 ⊗ 1N ) , . . . , dg (pM ⊗ 1N )) ,

K = dg ([k1,k2, . . . ,kM ]) ,

where dg(v) denotes a matrix with vector v in its main diagonal,
and zeros elsewhere. Constraints (3) and (4) can be written in terms
of x as follows:

M1x � v1, M2x � v2, M3x � v3, (7)

for matrices M1, M2 and M3, and vectors v1, v2 and v3, which
can be derived from (3) and (4), respectively. Constraints (5) can be
written using the following quadratic form

1MUm,tx− xTVm,tx ≤ Lm(t∆t), ∀m, ∀ t, (8)

for appropriate matrices Um,t and Vm,t. A discrete-time version of
P0 can then be written as:

P1: max
x

1MPx− xTQKx

s.t. (7) and (8).

In P1 we have removed the term ∆t
∑M
m=1

∑T
t=1 pm(t)`m(t), be-

cause it does not depend on the design variable x. Similarly, for

3This assumption does not limit the application of the proposed strategy,
as forecasts can be used to replace information unavailable in a practical set-
ting.

simplicity, the constant ∆t has been removed from the objective
function, as it does not affect the result of the optimization. By
solving P1 we can determine the optimal discharging schedules at
equally-spaced time instants. The higher the sampling rate, the more
information about the optimal solution can be obtained through the
discrete-time formulation.

Remark: P1 is a quadratically constrained quadratic program-
ming problem in which we want to maximize a concave function of
x. However, P1 is not a convex optimization problem because the
matrices Vm,t are positive definite and preceded by a negative sign
in constraints (8). To show that Vm,t is a positive definite matrix,
we note that it is a diagonal matrix, since no cross-terms appear in
(8), and it only has non-negative numbers because the coefficients
of the quadratic terms [Dm,n(t)]2 are all positive, i.e., the resistance
per unit length ρ, the distance between the generators and the house-
holds dism,n, and the voltage V, are all non-negative quantities.

3.4. Simplification

To tackle P1, we propose the following simplified formulation:

P2: max
x

1MPx− xTQKx

s.t. (7) and

1MUm,tx ≤ Lm(t∆t), ∀m, ∀ t, (9)

which replaces (8). Note that (9) is a more stringent constraint than
the original (8). As a result, this simplification will shrink the fea-
sible space, and hence, the solution obtained for P2 will satisfy the
original constraint (8).

Proposition 1. P2 can be written as a convex optimization problem.

Proof. The quadratic form 1MPx − xTQKx is concave in x be-
cause QK is positive semi-definite. In P2 we thus seek to maximize
a concave function. Moreover, the constraints (7) and (9) are all
affine. Therefore P2 can be written as a convex optimization problem
simply by expressing it as a minimization problem by multiplying its
objective function by -1. �

4. NUMERICAL RESULTS

We provide numerical results to analyze the proposed strategy. Sev-
eral simulation scenarios (load, RE generation profiles and prices)
are considered in this section in order to illustrate the characteristics
of the proposed strategy. System parameters that are used throughout
this section are presented in Table 1. The optimization problems are
solved by using CVX on Matlab. Throughout this section, storage
capacity is measured in energy units [EU] and energy expenditure
in monetary units [MU]. To simplify notation, let Dm(t) denote the
total renewable power drawn by the mth household at time t, i.e.,
Dm(t) =

∑N
n=1Dm,n(t), ∀ t.

Table 1: System Parameters

Parameter Value
{T, ∆t, M, N} {20, 1, 3, 2}
qD,n ∆t

∑T
t=1 rn(t), ∀ n

{αn, βn, Ψn, Jn(0)} {1, 1, ∆t
∑T
t=1 rn(t), 0, ∀ n}

We start by illustrating the characteristics of the RE consump-
tion schedule. We thus consider time-varying prices and loads, and



fixed resistances across connecting wires of equal length. Specif-
ically, we assume the price and load profiles illustrated in Fig. 2,
and let K1,1 = K1,2 = 0.01, K2,1 = K2,2 = 0.01, and K3,1 =
K3,2 = 0.01. In Fig. 2 we can see that, when the wires connecting
the households and the RE generators have the same characteristics
(length and resistance), the RE consumption rate is only influenced
by the price variations across time and the load. When the load is
above the RE generation at all times, then the optimal schedule only
responds to price variations across time. When the load is below the
RE generation at all times, then the optimal schedule is determined
by the loads, since the consumption of RE is upper bounded by the
load in each household.
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Fig. 2: Time-variation of RE consumption rate. Top: Influenced by
price, when the load is above the RE generation at all times.

We now investigate the effect of the power loss factor in the RE
use pattern. We thus consider constant prices, loads and RE genera-
tion profiles, but varying distances and wire resistances. Specifically,
we assume the price, load and RE generation profiles illustrated in
Fig. 3, and let K1,1 = K1,2 = 0.005, K2,1 = K2,2 = 0.008,
and K3,1 = K3,2 = 0.01. In Fig. 3 we illustrate both, the RE
consumption rates across time, and the result of the RE allocation
strategy. As seen, the RE consumption rates are nearly constant. In-
terestingly, since Km,1 = Km,2, ∀ m, in this scenario the share of
RE that goes to the mth household from the nth generator is given

by the ratio
1

Kn,m∑N
j=1

1
Kj,m

.
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Fig. 3: Effect of power loss in RE allocation across households.

Share of RE is given by
1

Kn,m∑N
j=1

1
Kj,m

. More RE is allocated to the

households with better connecting power lines.

When the power loss is high, e.g., when K11 = K12 = K21 =
K22 = K31 = K32 = 0.02, prices will have a reduced impact on
the RE allocation policy. As seen in Fig. 4, all households get the
same share of RE use, despite the price differences across locations.
This result follows because the load is above the RE generation at all
times, the wires connecting households and RE generators have the

same characteristics (length and resistance), and the quadratic term
dominates the objective function in P0.

As expected, prices will dominate the RE allocation policy when
households and RE generators have similar characteristics, and when
the power loss is not as dominant as in the scenario considered in
Fig. 4. This can be seen in Fig. 5, where we considered a scenario
in which prices vary across locations and connecting lines offer less
than significant resistance, i.e., K11 = K12 = K21 = K22 =
K31 = K32 = 0.002.
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Fig. 4: Despite price differences accross households, the RE alloca-
tion is even, following poor power connecting lines.
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Fig. 5: With highly efficient connecting lines, the RE allocation pol-
icy is mainly determined by the price differences across households.

5. CONCLUSIONS

We have proposed an energy management strategy which seeks to
minimize the cost incurred by a cooperating group of households
over a finite planning horizon. The households share access to a
group of RE generators and ESDs. In our framework we have con-
sidered the distance-dependent power loss incurred when transmit-
ting energy from the RE generators to the loads. We have cast
the optimization problem as a non-convex quadratically constrained
quadratic programming problem and proposed a solution through
discretization and relaxation. We have presented numerical results
to illustrate the characteristics of the proposed solution. Through
simulations, we have shown that the RE consumption rate depends
on the price variations across time, the loads, and the characteristics
of the power lines connecting the households and the RE generators.
The proposed strategy can be used for energy planning purposes and
to benchmark and devise real-time energy management algorithms
by incorporating forecasting techniques to estimate future RE gen-
eration and power consumption. It can also be used for establishing
energy cooperation clusters of households so as to reduce capital ex-
penditure, i.e., the cost incurred in the deployment of transmission
lines and RE production centers.
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