
Master of Science in Communication Technology
June 2011
Svein Johan Knapskog, ITEM
Åsmund Ahlmann Nyre, SINTEF ICT
Karin Bernsmed, SINTEF ICT

Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Privacy services for mobile devices

Solvår Bø
Stian Rene Pedersen

Problem Description

Smartphones with third-party applications are becoming increasingly popular. Re-
cently, they have received attention for quietly monitoring and transferring personal
information without users’ knowledge. Therefore, it is virtually impossible, even for
privacy-conscious users, to properly protect their privacy.

The objective of this thesis is to help users to protect their privacy by increas-
ing their consciousness on how personal information is collected and distributed.

The tasks foreseen in this assignment include:

1. Review existing work concerning privacy on mobile devices.

2. Sketch a design that meets the above objective.

3. Implement selected parts of the design to demonstrate its functionality.

Assignment Given: 24th of January 2011

Supervisor: Karin Bernsmed and Åsmund A. Nyre
Professor: Svein J. Knapskog

Abstract

Recent studies have shown that privacy on mobile devices is not properly ensured.
Due to a heavy increase of smartphones in the market, in addition to a variety of
third-party applications, a demand for improved solutions concerning privacy has
arisen. Our objective is to extend users’ ability to control applications’ access to
resources at run-time. We investigate whether such a solution is adequate or not,
in order to properly maintain privacy.

We propose a design that provides a higher degree of control by allowing users
to set preferences that determines what personal information to share. Previous
efforts only give users a binary choice on whether to fake personal information or
not. We offer a more flexible solution that allows users to set preferences with a
higher degree of granularity. We implement selected parts from our design, in order
to evaluate whether this solution serves as a utility or not. Further evaluation is a
necessity in order to fully accept or reject the idea. However, our initial results are
promising.

i

Preface

This report serves as a master thesis in Information Security in the 10th semester of
the Master’s Program in Communication Technology at The Norwegian University
of Science and Technology, NTNU. SINTEF ICT gave the assignment.

We would like to give our supervisors, Karin Bernsmed and Åsmund Ahlmann Nyre,
a generous reward for their irreproachable input and weekly feedback. We appreciate
their continuously ongoing enthusiasm throughout this project. Their contributions
and insightful ideas have also been of great value to us. We would also like to give
gratitude to Professor Svein J. Knapskog for guidance throughout this thesis.

Trondheim, June 10, 2011
Stian Pedersen and Solv̊ar Bø

iii

Abbreviations

3G 3rd generation mobile telecommunications

ADT Android Development Tool

AP Access Permission

API Application Program Interface

apk Android Package file format

Apps Application programs

CVS Current Versions System

DVM Dalvik Virtual Machine

EDGE Enhanced Data rates for GSM Evolution

FGPS Fine (GPS) Location

FIA Full Internet Access

GPS Global Positioning System

GPRS General Packet Radio Service

GSM Global System for Mobile Communications(Groupe Spécial Mobile)

GSMA GSM Association

GUI Graphical User Interface

IDE Integrated Development Environments

iOS iPhone Operating System

J2ME Java 2 Micro Edition

JDK Java Development Kit

JVM Java Virtual Machine

MMS Multimedia Messaging Service

v

OS Operating System

PC Personal Computer

RCA Read Contact Data

SD card Secure Digital Memory Card

SDK Software Development Kit

SMS Short Message Service

SQLite Light version of Structured Query Language

SWAAID Show Widget and Allow After Input and Delay

UI User Interface

URL Uniform Resource Locator

Wi-Fi Trademark of the Wi-Fi Alliance (Wireless Fidelity)

XML Extensible Markup Language

Contents

Abstract i

Preface iii

Abbreviations v

1 Introduction 1

1.1 Privacy on mobile devices . 1

1.2 Motivation . 2

1.3 Objective . 3

1.3.1 Main objective . 3

1.3.2 Research Questions . 3

1.4 Research method . 4

1.5 Outline . 5

2 Background 7

2.1 Introduction to Android . 7

2.2 Android Architecture . 9

2.3 Privacy and Security . 11

3 Related work 13

3.1 The MockDroid Project . 13

3.2 The TaintDroid Project . 14

3.3 Automating Privacy Testing of Smartphone Applications. 15

3.4 What You See is What They Get . 15

3.5 The TightLip Project . 16

3.6 Results from the literature study . 16

4 Design 17

4.1 User scenarios . 17

4.1.1 Introduction . 17

4.1.2 Scenario 1 . 17

4.1.3 Scenario 2 . 18

4.2 Functional requirements . 19

4.3 Our design . 19

vii

5 Implementation 25
5.1 Environment . 25
5.2 Implementation Tools . 25
5.3 Privacy Application . 26

5.3.1 The Manifest File . 26
5.3.2 Privacy Application’s Activities 27
5.3.3 Saving Activity State . 29
5.3.4 Sharing of private data . 30

5.4 Privacy Service . 32
5.5 Test Application . 33

6 Evaluation 35
6.1 Functionality test . 35

6.1.1 Preparations . 35
6.1.2 Scenarios . 35
6.1.3 Result . 36

6.2 Usability test . 38
6.2.1 Preparation . 38
6.2.2 Result . 40

7 Discussion 43
7.1 Limitations and assumptions . 43
7.2 Middleware . 44
7.3 Simplicity, control and flexibility . 45
7.4 Security . 46
7.5 Usability . 46
7.6 Usefulness . 47

8 Future work 49
8.1 Functionality . 49
8.2 Performance . 49
8.3 Privacy Application . 50
8.4 Privacy Service . 50
8.5 User interface . 50
8.6 Testing . 52

9 Conclusion 53

References 55

Web References 57

Appendices 61

A User Interface design 61

B The Manifest file for Privacy Service Middleware 69

C The Manifest file for the test application 71

D Test procedure for the usability test 73

List of Figures

2.1 The Android software stack. 8
2.2 The Android architecture. 9
2.3 Two Android applications which resides within its own sandbox. . . . 10
2.4 Two Android applications assigned with the same user ID. 11

4.1 Android Software Stack including the middleware. 20
4.2 Communication between the Android activities and the database. . . 22
4.3 Communication between Privacy Service and a third party application. 23

5.1 Two activities from the Privacy Application. 27
5.2 The ‘settings’ Interface showing coarseness of GPS location. 29
5.3 The User Interface for Location Finder when the location is exact. . . 34

8.1 Textual description of a access permission. 51

xi

List of Tables

2.1 Android application classifications. 10

4.1 The proposed data separation options in our design. 21

5.1 Different approaches to store data in Android. 29
5.2 Structure of our Content Provider. 30

xiii

Chapter 1

Introduction

Mobile phones have become a central part of our lives and we bring them wherever
we go. Today, the smartphone is a fully-fledged computer and it carries a lot of per-
sonal data like call logs, emails, SMS and address book. The phone is also used to
store and carry documents, and to access corporate networks. This makes the smart-
phone even more vulnerable to privacy invasions than traditional computers[Bon10].

Third-party applications for smartphones have become very popular in the last cou-
ple of years. These applications, often referred to as ‘apps’, are software packages
made by a independent third-party developers. The user may purchase and down-
load apps from online markets. Apps make use of the phone’s resources to provide
different functionalities and services to the user. By resources we mean the GPS,
Internet access, contact list, calendar, phone- status and information storage, email
accounts and camera, among others.

Lately, third party applications have received some attention in media with regards
to their lack of privacy[23]. An extensive survey done by the Wall Street Journal[24]
revealed that approximately 50% of the top 100 applications for Iphone and Android
collect information about the users and their habits, without the users’ consent.

1.1 Privacy on mobile devices

Vendors of smartphone Operating System(OS)1 are aware of the potential privacy
risks related to third party applications. There are different techniques to reduce this
risk. Nokia and Apple use a technique called Application Vetting. The developers
submit the application to a trusted party for testing, and the application has to
be approved in order to be published. The goal of this process is to filter out
applications with malicious behavior, but this technique has suffered from problems
with both false accept and false reject.

1Examples of vendors of smartphone OS are Google, Apple and Microsoft

1

CHAPTER 1. INTRODUCTION

Android and the J2ME platform use an alternative approach to vetting, which is
mandatory access control. With mandatory access control the application devel-
opers have to present a list of requested access permissions to the resources the
application intend to use. These permissions will then be presented to the user
upon installation. With Android, the user must either accept or reject the entire
set of permissions. This means that the user cannot reject some of the permissions
and accept others. If the list of requested permissions is rejected, the application
will not be installed [BRSS11].

1.2 Motivation

In an effort to meet the discovered privacy risk in relation to third party applications,
GSMA has published Mobile Privacy Principles[21]. The principles describe how the
user’s privacy should be respected and protected by applications that have access
to personal information. Amongst others, three of the principles state that:

• Users shall be given opportunities to exercise meaningful choice, and control
over their personal information.

• Users should be provided with information about, and an easy means to exer-
cise, their rights over the use of their personal information.

• Users should be provided with information about privacy and security issues
and ways to manage and protect their privacy.

These principles are concerned with providing users with sufficient information
regarding their privacy. In addition, developers should provide users with proper
tools in order to manage their personal information. In a press release in relation
to the privacy principles[25], GSMA stated that ‘the key challenge is to find new
and mobile-friendly methods to help consumers make informed decisions about their
privacy’. This challenge, together with the three principles stated above, forms the
basis for our motivation.

The main problem with Android’s mandatory access control is that the user has
to give permissions upon installation. The user has no control of when and why the
application needs access, or how the application intends to use the collected data.
Also, some of the listed access permissions may be difficult to understand. In web
services, the intended use of the personal collected data has to be listed in a pri-
vacy policy defined by the service-provider. In many cases, before users can install
software or register with a service, the users have to read and accept these policies.
Even though this practice also has some limitations, it still explains the intended
use of collected data. This practice is not mandatory for developers of smartphone
applications. Some of the application developers for mobile devices have a privacy
policy, but the users have to search the web on their own initiative in order to find it.

2

1.3. OBJECTIVE

The mandatory access control in Android is the only implemented privacy feature
with regards to third-party applications, as far as we are concerned. Once installed,
the application can access the requested resources at any time, without the users
knowledge [BRSS11].

Our intention is to provide a solution that give users the ability to control and
modify these access permissions after the application is installed.

1.3 Objective

1.3.1 Main objective

The main objective in this thesis is to help users protect their privacy by increasing
their consciousness on how personal information is collected and distributed.

This will be done by a software-tool with the ability to control and modify access
permissions after an application has been installed.

Privacy concerns arise whenever personal information is collected and stored. In
order to meet these concerns, we will focus on how to control the collection of per-
sonal information. Other aspect of privacy, such as anonymity, would not be covered
to the same extent.

1.3.2 Research Questions

Based on the main objective we identified two research questions:

• How can we give users an increased consciousness on how personal information
is collected and distributed from their mobile devices?

• Can we propose a software-design that would help users protect their privacy?

3

CHAPTER 1. INTRODUCTION

1.4 Research method

In order to answer the research questions, we will undertake the tasks given in the
problem description:

• Review existing work concerning privacy on mobile devices.

• Sketch a design that meets the main objective in this thesis.

• Implement selected parts of the design to demonstrate its functionality.

This master thesis is based on the research method design science. In design sci-
ence the fundamental question to answer is ‘What utility does the artifact provide,
and what demonstrates the utility?’[HMPR04]. In our context, Hevner defines an
artifact as ‘constructs (vocabulary and symbols), models (abstractions and repre-
sentations), methods (algorithms and practices), and instantiations (implemented
and prototype systems)’[HMPR04].

Design science research requires the creation of an innovative and purposeful ar-
tifact for a specific problem domain. In our approach, the artifact would be a design
model. We would implement and evaluate selected parts of the design to demon-
strate its utility, and whether it is a contribution to the area of privacy on mobile
devices or not.

We have chosen Android as our preferred development platform. The reason for
choosing Android instead of other competitive platforms, such as iOS (iPhone),
Symbian (Nokia) or Windows Mobile, was due to the increasing popularity and ex-
tensive documentation available for Android developers.

To evaluate the functionality of the implemented parts, we would perform a descrip-
tive test based on a set of scenarios. Further, to evaluate the usability and usefulness
of the solution, an experimental test on a group of test participants would be carried
out.

4

1.5. OUTLINE

1.5 Outline

Chapter 2 gives an overview of the Android platform, along with a brief description
of how privacy and security is maintained in the Android Operating System. If the
reader in advance feels confident on how Android is compounded, the reader is urged
to continue to Chapter 3.

An overview of relevant research is given in Chapter 3.

Chapter 4 continues with a description of our proposed design.

In Chapter 5, we describe the implementation of selected parts of our design.

Chapter 6 covers our evaluation of the prototype and design, done by a functionality
test and a usability test.

In Chapter 7, we first discuss various limitations and assumptions attached to our
prototype and design in general. Next, we discuss some challenges and advantages,
and compare our solution to related work.

Future work is covered in Chapter 8. In this chapter, we focus the attention to-
wards potential improvements to the scope of our project that can be made in the
future.

Chapter 9 wraps up our project in a conclusion.

5

Chapter 2

Background

This chapter first give a brief historical introduction to Android. Further, we touch
upon the main components that combined make up the Android architecture. Next,
the security model incorporated is also described. This model is inherited from
Linux, which is the operating system Android is solely based on. In addition, a
core and critical component of every Android application is introduced, namely the
manifest file.

2.1 Introduction to Android

The mobile operating system Android was established in the spring of 2005. The
creator, Andy Rubin, had a vision of a free, open-source platform that allowed for
any coder to contribute[13]. He invented the Android software stack, consisting of
an operating system and key mobile applications. After the coalition with Google
in 2005, Android has gained a solid foothold in the market. A study conducted by
Canalys1 reported that Android was the best-selling smartphone operating system
in the fourth quarter of 2010[18].

Android is licensed under the Apache License[17], which makes it open-source and
therefore able to incorporate new technologies as they emerge. By allowing the
community to contribute to a common pool of apps, serves as an enrichment and
extends the functionality of the mobile devices. Apps are created using the Java
programming language, and they can either be distributed through Android Mar-
ket [20], or be downloaded directly from third-party sites. The operating system is
based on a customized Linux kernel, and is built to be open and accessible. The
operating system does not differentiate between applications created by third-party
developers, and the devices’ core applications. In turn, this allows developers to fully
utilize the hardware and allow for users to tailor the phone to suit their interests
and needs[16].

1Canalys is an independent analyst house focusing on technology. http://www.canalys.com

7

CHAPTER 2. BACKGROUND

Android offers a variety of connectivity options such as WiFi, Bluetooth and wireless
data over cellular networks (GPRS, EDGE and 3G). In addition of being highly
connected to its surroundings, Android also offer the utilization of location-based
services (such as GPS), accelerometers and camera. A simplified view of the software
stack in Android is shown in Figure 2.1.

Figure 2.1: The Android software stack. [15]

A good reason for adopting Android as the development platform of choice is because
of the ease-of-access to the underlying hardware of an Android device. Historically,
the lack of access to the underlying hardware have been frustrating for mobile devel-
opers. However, since the Android platform is open source, anyone can access them.
The number of available resources is obviously dependent on the device. They can
easily be combined to perform different tasks, such as monitoring the environment
and even sending email about it.

8

2.2. ANDROID ARCHITECTURE

2.2 Android Architecture

As previously mentioned, the Android software stack is based on a customized Linux
kernel. Linux processes are running within the kernel, and applications run in a vir-
tual environment within the process. Software developed with Java is usually ran in a
Java Virtual Machine (JVM). Even though software developed for Android is coded
in Java, it is executed in the open-source Dalvik Virtual Machine (DVM), which is
fully in accordance with the open-source nature of Android. Applications developed
for Android is referred to as packages. Applications interact with hardware resources
through the Android API [12]. The application architecture is illustrated in Figure
2.2.

Figure 2.2: The Android architecture.[15]

Applications are built up from multiple components, where each component provides
different functionality. As a consequence, these components have the need to com-
municate with each other. Components are able to interact by sending messages,
called intents, to each other. The different component classifications are listed in
Table 2.1.

9

CHAPTER 2. BACKGROUND

Classification Description
Activity When the application is started from either the home screen

or through the application manager, an activity is launched.
Service A service component typically performs background process-

ing such as WiFi monitoring, calculating etc. Descriptive for
applications that need to persist for a long time.

Content
Providers

Content providers are helping with data storage and retrieval
facilities, such as providing access to persisted data.

Broadcast Re-
ceivers

Responsible of receiving messages from other applications.

Table 2.1: Android application classifications.[6]

Linux is known to assign a user ID to a specific user of the system, serving as the
identification. The analogy is the same to Android, except that user IDs are used
to identify applications and not individuals. Applications running on Android are
isolated from one another and ran in individual sandboxes, as illustrated in Figure
2.3.

Figure 2.3: Two Android applications which resides within its own sandbox.[14]

10

2.3. PRIVACY AND SECURITY

2.3 Privacy and Security

Running each application in a sandbox enforces inter-application separation. In
addition, applications have individual permissions to either allow or deny access to
the device’s resources. By default, each application does not have any permissions
granted. This prevents applications from accessing resources. There are two ways
of requesting access to the system or resources. One way is to assign the same user
ID to two different applications[11], as shown in Figure 2.4.

Figure 2.4: Two Android applications assigned with the same user ID. [14]

A different, and more common, way of doing it is to request permission to resources
through the application’s manifest file[10]. The manifest file is a XML file that
contains essential information about the application. The Android OS have to know
this information before it can execute the application. As mentioned in Chapter 1,
this set of requested access permissions, listed in the manifest file, is presented to
the user upon application installation. The user then has to accept all of the listed
permissions to be able to install the application. It is worth mentioning that all
applications must have a manifest file present in order to work.

11

Chapter 3

Related work

In this Chapter, we describe some of the previous research efforts, which are most
relevant to the scope of our project. Some of the projects, such as MockDroid and
TaintDroid, are similar to our approach, because they focus on the topic related to
privacy for mobile devices. Others, like TightLip, do not mainly focus on mobile
devices, but some of the ideas and findings in these approaches are still interesting.
The most relevant work is described first.

3.1 The MockDroid Project

MockDroid is defined as ‘a modified version of the Android operating system which
allows a user to ‘mock’ an application’s access to a resource.’ [BRSS11] The user is
still able to use the application, though with the lack of some functionality that is
dependent on mocked data. One of the most important modifications is that the set
of access permissions is duplicated so that each permission has both one real and
one mocked version. Even if MockDroid is a development project, it still provide
support to mock the coarse and fine-grained location, Internet connection, SMS,
MMS, calendar, contacts, device ID and broadcast intents.

According to the creators of MockDroid, some of the benefits of using fake or
mocked data are:

• Control over optional features.

• No unwanted sharing of personal data.

• Rather than providing the precise location of the phone to an application
that shares such data with friends, the user might provide the location of the
nearest city.

• Controlling expensive operations: E.g. preventing applications that constantly
connect to the Internet (giving the user high 3G data connection costs) by
denying the application Internet access.

13

CHAPTER 3. RELATED WORK

By default, when an application is installed, there are no mocked permissions and
all the permissions are granted as presented in the manifest file. To deny some of the
access permissions an application has, the user have to use the MockDroid software
called Mocker[BRSS11].

By using MockDroid, the user would be able to control the collection and distri-
bution of personal data, which is a great contribution to privacy on mobile devices.
However, as the title implies, by providing mocked data the applications may loose
important functionality. For most users, it might be a problematic decision to sac-
rifice functionality to obtain privacy.

3.2 The TaintDroid Project

TaintDroid is an extension to the Android platform that assumes that downloaded
third-party applications are not to be trusted. A tracking system monitors how
these applications access and manipulate users’ personal data in real-time. By la-
beling data from privacy-sensitive sources, TaintDroid detects when sensitive data
leaves the system. If this labeled data is transmitted over the network, TaintDroid
registers its label, which application it came from and the destination.

By utilizing TaintDroid in a test of randomly chosen Android applications, the find-
ings revealed that two-thirds of the applications used sensitive data suspiciously.
For instance, the test revealed that half of the studied applications exposed location
data to advertisement servers without users awareness.[EGC+10]

TaintDroid is a great solution to understand how, and when, personal informa-
tion is collected by third-party applications. However, it does not offer a solution
on what the user ought to do about it. With respect to applications with malicious
behavior, TaintDroid may have an impact on whether or not a user should un-install
application. A disadvantage with TaintDroid is that even though applications are
not acting suspiciously, they may have ‘too much’ access, and may continue to collect
and distribute information.

14

3.3. AUTOMATING PRIVACY TESTING OF SMARTPHONE
APPLICATIONS.

3.3 Automating Privacy Testing of Smartphone

Applications.

The authors aim to give the users increased control and understanding of their pri-
vacy on mobile devices. The AppInspector is a tool for testing apps to figure out if
they are malicious or not. The tool gives users a warning if the application is suspi-
cious prior to downloading it. In contrast to the other approaches mentioned in this
chapter, the function of AppInspector is not to handle the privacy for installed ap-
plications on a mobile device. Instead, it should help users to better understand how
these applications handle their privacy-sensitive information in advance. The inten-
tion is to allow for the user to make informed decisions about which applications to
install or not. The challenge is then to get a good diagnostic of the malicious appli-
cations to be able to present correct and informative feedback to the user [GgCCJ11].

This is a good solution when it comes to understanding how malicious applications
collect and distribute personal data. As mentioned in Chapter 1, the survey done
by Wall Street Journal revealed that about 50% of the most popular applications
collects and distributes information in ways that might be suspicious. The question
is whether AppInspector would give a warning for every other application a user
want to download. If that is the case, the warnings would soon enough turn out to
be annoying, and not very striking. On the other hand, if AppInspector only give a
warning for applications with malicious intentions, it would not cope with privacy
concerns related to ‘well intended’ applications that have access to more resources
than necessary.

3.4 What You See is What They Get

This paper introduces a Graphical User Interface (GUI) called the sensor-access
widget. This widget shows an animation of how personal data is being collected
from different sensors. The widget also has a feature for granting or denying ap-
plications’ access to different sensors. It works in real-time, and will appear at the
users desktop if an application try to gain access to either the Camera, location,
microphone, accelerometer or thermometer.

The widget provides the policy Show Widget and Allow After Input and Delay(SWAAID).
This means that the user will notice a countdown timer, and will be given the choice
to deny the application access during this countdown. If not, the application is
granted access [HS10].

In the evaluation of this proposal the authors discusses different aspects of the
widget. One important disadvantage is the impact on usability. This widget will,
especially on mobile devices, consume a considerable portion of the screen. It might
also be quite distracting for the user if the widget appears every time they try to
use an application.

15

CHAPTER 3. RELATED WORK

3.5 The TightLip Project

In [YMC07],TightLip is introduced. This is defined as ‘a privacy management sys-
tem that helps users define what data is sensitive and who is trusted to see it rather
than forcing them to understand or predict how the interactions of their software
packages can leak data.’ This approach is concerned with data sharing in public
spaces.

The intention of TightLip is to allow users to better manage their shared files and
spaces. This is done by helping them define what data is important, and who to
trust to access this data. The research consisted of three main challenges. First
to define sensitive data and trusted hosts. Second, how to track the data through
the system to identify potential leak of data from the system. Finally, developing
policies to deal with the potential leaks.

In TightLip they used a mechanism called doppelgangers. Doppelgangers are sand-
boxed copy processes that inherit most, but not all, of the state of an original process.
In TightLip the doppelgangers are created when a process accesses sensitive data.
These doppelgangers follow the original processes through the system. If the process
tries to leave the system, TightLip enables a policy module that handles the poten-
tial breaches. One solution is to swap the original process with the doppelganger.
The process that leaves the system will then not include the sensitive information
because the doppelgangers consist of scrubbed data. By scrubbed data, the authors
claim that an amount of information has been removed (scrubbed away) from the
original data, returning data free of sensitive information.

The use of doppelgangers is obviously dependent on a secure solution for scrub-
bing the data. If a part of the sensitive data still resides within the doppelganger,
the intention for using TightLip fades away.

3.6 Results from the literature study

The literature studied conducted in this project have given us both ideas and inspi-
ration, as well as a wider perspective regarding shortcomings in this area of research.
The MockDroid project turned out to be most relevant for the development of our
design and prototype. The findings in the MockDroid project is therefore used as
the basis of our design, with the intention to go beyond the state of the art, and
provide the user with a higher degree of flexibility compared to MockDroid’s ‘all or
nothing’ solution.

16

Chapter 4

Design

We have proposed a design based on both the motivation found in Chapter 1.2, and
an analysis of the related work, as described in Chapter 3. In order to find a set of
reasonable requirements for the design, we first thought of a couple of user-scenarios,
as described in Chapter 4.1. The functional requirements for the design are coped
with in Chapter 4.2. Finally, Chapter 4.3 includes a description of our design.

4.1 User scenarios

4.1.1 Introduction

To demonstrate the intention of our design, as well as identifying requirements,
we have created a couple of scenarios with our main character Bob. Bob uses an
Android smartphone in both business-related matters, as well as private. He uses
his phone a lot, and he frequently downloads new content from Android Market[20].
Lately, Bob has become increasingly concerned with privacy on his phone. The
newspapers have turned their attention to issues related to third-party applications.
Bob felt he lost somewhat control over his phone, and found help by downloading
the Android middleware named Privacy Service. This service includes a functional
application named the Privacy Application.

4.1.2 Scenario 1

After Bob has installed and started the Privacy Application, he is met with a screen
listing all of the installed applications on the device. He navigates through the list
and chooses one of his favorite games, namely MyTetris. A new window is brought to
the foreground, and a list of all the access permissions granted to MyTetris appears.
These permissions were granted upon installation of MyTetris. A relatively simple
game like MyTetris should be able to work just fine without any access permissions.
However, MyTetris has been granted access to the fine (GPS) location, access to
modify and delete content of his SD-card and full Internet access. Bob does not
want the application to access his location nor the Internet, and clicks on a checkbox
found next to the listing of these permissions.

17

CHAPTER 4. DESIGN

Because Bob is engaged with his highscores, he leaves the checkbox next to ‘SD
Card’ unchecked. Next time MyTetris requests access to resources, it would receive
a fake location and no Internet connection.

Bob is playing the game for a while without noticing anything different. But when
he reaches a higher score than ever before, he suddenly realizes he is not able to
share his high score with his friends. Bob opens the Privacy Application to grant
MyTetris access to the Internet. After he has shared the high score with his friends,
he turns off the Internet access again.

The advantage of using the middleware, in this scenario, is that Bob is able to
choose if and when an application may be granted access to a resource.

4.1.3 Scenario 2

Once more, Bob opens the Privacy Application, but this time he chooses an appli-
cation named MyDailyNews. MyDailyNews feeds him with fresh news every day.
From the list of its requested access permissions, Bob sees that MyDailyNews has
access to his fine (GPS) location, in addition to unrestricted Internet access. He
does not want to grant any access to this application, so he clicks on both of the
checkboxes within the Privacy Application.

When Bob opens MyDailyNews again, he is met with an error message stating that
the application would not work without access to the Internet. He goes back into
the Privacy Application, and unchecks the checkbox next to ‘full Internet access’.
When he opens MyDailyNews the next time, the expected list of news is empty, and
a message tells him to check whether his GPS is turned on or not.

Bob realize that he has to share his location to be able to use MyDailyNews, but he
does not want to share his exact location. A compromise has to be made. Within
Privacy Application, he decides to click on ‘fine (GPS) location’ to get further op-
tions. A new window reveals itself, and present Bob with detailed information
about the ‘fine (GPS) location’ permission. He finally understands whatÕs meant
with ‘fine (GPS) location’. He suddenly understands the risks arisen from sharing
his location. He clicks a ‘settings’ button located at the bottom of the screen to get
more options to handle his situation.

A new window appears, and he sees a list of options from where he can chose the
granularity of his GPS location. He figures that he hardly ever read the local news.
His interests are in the regional and national news. He decides that MyDailyNews
only needs to know which state, and country, he is resident in. He clicks the check-
box next to the ‘state’ option. When he now opens the MyDailyNews application,
he does not receive local news.

18

4.2. FUNCTIONAL REQUIREMENTS

There are two main advantages of using the middleware. First, the information
window gives Bob a better understanding of the requested access permissions. Sec-
ondly, by navigating to the settings menu, he gets the flexibility to share ‘some’
information, compared to choosing ‘all or nothing’.

4.2 Functional requirements

The main functional requirements to our middleware are to:

1. Allow users to control the sharing of personal information by having the ability
to override access permissions granted to the application upon installation.

2. Extend the granularity of the permissions to include ‘some’ information, in
addition to ‘all or nothing’.

3. Give users an explanation of the consequences from granting an access per-
mission.

4.3 Our design

Our design is based on a middleware solution, as illustrated in Figure 4.1. The
middleware includes both an application and a service, named Privacy Application
and Privacy Service, respectively. The Privacy Application is interacting with input
from a user, while the Privacy Service performs tasks silently in the background.
The relation between the Privacy Application and the Privacy Service is through a
shared database. The middleware is place between the applications and the APIs in
the software stack. Calls either from or to the API will be handled by the middleware
by introducing this scheme.

19

CHAPTER 4. DESIGN

Figure 4.1: Android Software Stack including the middleware.

When Privacy Application is started, a list of all the applications installed at the
phone is presented to choose from. When an application is selected from the list, a
new list of all the access permissions granted to that specific application is given to
the user. In addition, the user can observe a checkbox corresponding to each access
permission. The listed access permissions serves as hyper-links the user may click
on in order to proceed to the settings menu.

The idea is that users easily can click on the checkboxes next to those permissions
irrelevant to the selected application. If one of the access permissions is checked,
the response from the related API call would be faked. As a consequence, an ‘all
or nothingÕ choice has been made by the user. The benefit of using this approach
is that users easily can navigate through the list of access permissions, and chose
to either fully accept or reject them. However, the ‘all or nothing’ approach can
introduce a ultimatum to the user; either at the expense of functionality or privacy.

20

4.3. OUR DESIGN

Resources Description of the
access permission

Data Separation options

Location Allows an application
to access coarse (e.g.,
Cell-ID, WiFi) loca-
tion and fine (e.g.
GPS) location.

Give the user the opportunity to
choose the accuracy of the loca-
tion. The user can choose be-
tween; exact, city, state, country
and no location at all.

Internet Allows applications to
open network sockets.

Open a limited Internet access
through a filter. In addition, the
user should also be able to pre-
vent the application from con-
necting to the Internet when the
application is not being used.

Calendar Allows an application
to read the user’s cal-
endar data.

The user can choose what events
to share (e.g. Share only public
events).

Contacts Allows an application
to read the user’s con-
tact data.

The user can mark which contacts
to share, and which to hide.

Accounts Allows access to the
list of accounts in the
Accounts Service

The ability to choose which ac-
counts that should be visible for
the application.

Storage Allows an application
to write to external
storage.

Define a new folder inside the ex-
ternal storage, and then give the
application read, write and delete
options inside this folder.

Table 4.1: The proposed data separation options in our design.

The main difference between our design and the design of MockDroid[22], is the
usage of data separation. For some applications, as an alternative to the ‘all or
nothing’ approach, it might be useful to be able to give access to a subset of data,
or to control the quality and accuracy of the provided data. The ability to provide
‘some’ data means that the user does not have to trade functionality for a good
privacy. An example is location-based services. Instead of giving an application
permission to access the phone’s GPS, which may introduce a privacy risk, the user
can share the location of e.g. the nearest city. The user would be able to use ser-
vices such as ‘show me the nearest hospital’ without giving away the device’s exact
location. To start, we have proposed solutions to accomplish data separation for the
six resources listed in Table 4.1. Table 4.1 briefly describe which access permissions
are related to each resource, along with the proposed data separation options. The
designed user interfaces based on the different data separation options described in
Table 4.1, are presented in Appendix A.

21

CHAPTER 4. DESIGN

Figure 4.2: Communication between the Android activities and the database. See
Appendix A for full size version of the Graphical User Interfaces (GUI).

22

4.3. OUR DESIGN

Figure 4.2 shows the information flow between three different user interfaces and
the database, after the user has clicked on the access permission fine (GPS) lo-
cation. The hyper-link would open a new window that holds a short description
of the chosen access permission (GUI 2). The reason for having this interface is
to give the user a better understanding of a particular access permission, and the
privacy risk related to it. The ‘settings’ button would lead the user to a setting
menu. The settings menu (GUI 3) presents a list the possible granularities of the
location. If some of the options are to be checked, they will be saved in the database.

By querying the database, the Privacy Service can keep track of what data to re-
turn upon a request from an application. Figure 4.3 illustrates the information
flow between the Privacy Service and an application requesting the GPS. When the
application sends a request to the middleware, the Privacy Service checks with its
corresponding records in the database, and return coordinates in accordance to the
specified granularity.

Figure 4.3: Communication between Privacy Service and a third party application.

23

Chapter 5

Implementation

This Chapter holds a detailed description of the development of our prototype. First,
we give an overview of the lab setup and tools used for our implementation. The
use of proper tools is essential to ease the work, and to get an thorough overview of
the development. Second, we describe how we developed the Privacy Application,
the Privacy Service and the test application. For the reader to get a good visual un-
derstanding, we have included screen shots from the most important user interfaces
in our prototype.

5.1 Environment

The laboratory used during this project consisted of two identical workstations to
implement parts of the design described in Chapter 4.3, and a mobile handset in
order for the prototype to be tested properly. Both workstations ran unmodified
versions of the Windows 7 Professional 32-bit operating system, with Intel Core2
2.12 GHz processors and 4 Gigabytes of memory. The mobile was a LG-P500 [3]
touch-screen smartphone, better known as the LG Optimus One. The LG handset
was running its original Android 2.2 Froyo software stack without modifications.

5.2 Implementation Tools

The prototype in this project was developed using a clean install of Eclipse 3.6.2.
Eclipse is an excellent development platform that includes a variety of built-in func-
tionality for both debugging purposes and opportunities to run and test applications.
Eclipse is highly extensible and customizable because it is built on a plug-in archi-
tecture.

The classic Eclipse 3.6.2, better known as Eclipse Helios, include a Java Integrated
Development Environments (IDE), a CVS client for version control and a XML ed-
itor. A Java editor alone is not sufficient to develop Java applications. In addition,
the Java Development Kit (JDK) was installed.

25

CHAPTER 5. IMPLEMENTATION

JDK is essentially a Java Platform, consisting of the Application Program Interface
(API), a Java compiler and the Java Virtual Machine (JVM) interpreter. Please
note again that Android applications do not run in the JVM, even though they are
created in Java, but in a custom Dalvik Virtual Machine (DVM) that is optimized
for the Android platform (see Chapter 2).

After installing the core Java development components, the Software Development
Kit (SDK) package was installed. The SDK is a kit used for developing applica-
tions for the Android platform. SDK include an Android emulator and essential
libraries to build Android applications. To integrate SDK with Eclipse, the Android
Development Tools (ADT) were installed. The ADT is a custom plug-in for the
Eclipse IDE, and extends the capabilities of Eclipse to allow creation of Android
applications1.

5.3 Privacy Application

In Chapter 2.2 we briefly discussed the main components that, either separate or
combined, make up an application. Activities are User Interface (UI) windows that
contain one or more views, and each view contains some information that is presented
to the user. A view can consist of simple text, a gallery of pictures or a list of items,
to name a few. ‘Privacy Application’ is one of the applications that make up our
prototype. This is the application where users can set their preferences with regards
to each individual application installed on the device. By preferences we mean the
ability users have to override the requested permissions to access resources on the
device, which is specified in the manifest file of the application.

5.3.1 The Manifest File

In Chapter 2.3 we briefly mentioned the manifest file. Android requires this file to be
present in the root directory of the applications’ Android Package. The application
will not run if the manifest file is not included. In addition to the required existence
of the file, it has to be precisely named ‘AndroidManifest.xml’. The ‘AndroidMan-
ifest.xml’ file is automatically generated by the Eclipse IDE, so we did not have to
create it manually. Among other things, the manifest file does the following[10];

• Register components of the application - activities, services, broadcast re-
ceivers and content providers the application is composed of.

• Declares which permissions the application must have to access certain parts
of the API (such as sensors) and how to interact with other applications.

• Declares permissions other applications must have granted in order to access
the application’s components.

1Complete installing instructions for JDK, SDK and ADT can be found at http://developer.
android.com/sdk/installing.html

26

http://developer.android.com/sdk/installing.html
http://developer.android.com/sdk/installing.html

5.3. PRIVACY APPLICATION

As seen in Appendix B, our manifest file include an intent-filter for the activity,
that basically launches and brings the Privacy Application to the foreground of the
screen whenever itÕs installed. Recall at this point that intents are the messages sent
between applications within the operating system. It also specifies a reference to all
of the activities and services, in addition to a ‘provider’ that is broadcasted system-
wide on the device. The provider is a Content provider, and is further explained in
Chapter 5.3.4.

5.3.2 Privacy Application’s Activities

In Chapter 2.2 we introduced different classifications that make up an Android appli-
cation. The user interface of an application is displayed on the screen of the device
through an Activity. Each activity represents a unique screen in the application,
and internally there exists a stack of activities. When moving from one screen to
another, the new activity is pushed to the top of the stack and becomes visible to
the user. If the user pushes the back button on the device, the current activity is
popped from the stack and the previous activity is resumed.

(a) Listing of all installed applications. (b) Listing permissions requested in Lo-
cation Finder’s manifest.

Figure 5.1: Two activities from the Privacy Application.

27

CHAPTER 5. IMPLEMENTATION

One part of our prototype, which is an application named ‘Privacy Application’,
consists of four activities. The first activity of our ‘Privacy Application’, is simply a
list of all installed applications on the device, as seen in Figure 5.1a. The Android
API offers ways of fetching META data from packages (.apk’s) installed on a device.
By utilizing the API PackageManager, we simply inflated our activity with rows of
each package name and its associated icon. An ‘onListItemClick’ listener is activated
when one of the package names in the list is clicked. An intent is created, and the
name of the chosen package name from the list is added to it. A startActivity(intent)
function within the listener is responsible of pushing the activity shown in Figure
5.1b to the top of the activity-stack.

Figure 5.1b shows the requested permissions for the chosen application, in this case
‘Location finder’. Please recall at this point that requests to access resources on the
device must be stated in the manifest file of the application. Because permissions
are defined as meta data, they can easily be pulled from the PackageManager. Each
row consists of the textual meta data description of the requested permissions for
the application. In addition, we implemented a checkbox associated with each per-
mission. To check the current state of the checkbox, we make a call to our Content
Provider to check whether the modified access-tag have been set previously or not.
Exactly how the state of the activity is saved, and organized, is explained further in
Chapter 5.3.3.

There are two listeners associated with each row in the activity shown in Figure
5.1b. One for the requested permission, and one for the checkbox. The listener
connected to the textual description is starting a new activity that simply gives the
user a more thorough description of that permission. In addition to a thorough ex-
planation, the activity also have a ‘settings’ button who starts yet another activity.
The ‘settings’ activity allows the user to define the coarseness of the location, as
shown in Figure 5.2. The state of each checkbox in this activity is also fetched from
our Content Provider, explained in Chapter 5.3.3.

28

5.3. PRIVACY APPLICATION

Figure 5.2: The ‘settings’ Interface showing coarseness of GPS location.

5.3.3 Saving Activity State

An important issue we had to overcome was how to share the preferences saved in
‘Privacy Application’ to the middleware service. Remember that by preferences we
mean the ability users have to override the requested permissions to access different
resources on the device. In addition, we would like to keep the state of activities in
our ‘Privacy Application’. The obvious reason for this is that choices, or preferences,
made earlier should be reflected in the UI. Be it whenever the application is paused
and restored, or when the application/device is restarted. Android provide several
options for saving persistent application data. Table 5.1 gives an overview of the
different options.

Option Description
Shared Preferences Store private primitive data in key-value pairs
Internal Storage Store private data on the device memory
External Storage Store public data on the shared external storage
SQLite Databases Store structured data in a private database
Network Connection Store data on the web with your own network server

Table 5.1: Different approaches to store data in Android.[9]

29

CHAPTER 5. IMPLEMENTATION

The solution of choice is obviously dependent on the specific needs. Whether the
data should be private to your application only or not, or whether it should be
accessible to other applications or not. The space requirements of the data are also
an important factor.

We decided to use a SQLite database in order to save activity state in our pro-
totype. In fact, we utilized a Content Provider, whom is described in Chapter 5.3.4.
By using this approach, the data becomes accessible to both the ‘Privacy Applica-
tion’ and to the ‘Privacy Service’, as described in Chapter 5.4.

5.3.4 Sharing of private data

In Chapter 2.3 we briefly described the security architecture in Android. By using
a Content Provider we can overcome any issues related to sharing of private data.
A Content Provider exposes read and/or write access to any private data of an ap-
plication, dependent on whatever restrictions one want to impose for it.

A Content Provider is basically a lightweight database that is broadcasted to the
system by the application that created it. Common data types, such as audio, video
and images etc., are stored by Content Providers already shipped with Android.
This is how developers are able to utilize commonly shared data in their applica-
tions. While the Content Providers are responsible for saving data, querying is done
by Content Resolver objects. These objects are described in greater detail in Chap-
ter 5.4.

In our prototype, none of the Content Providers already shipped with Android were
suitable. That is why we decided to design and implement our own. Our Content
Provider is created by the middleware, and thereby broadcasted by it. How data
is actually stored is up to its designer. All content providers implement a common
interface for querying and returning results - as well as for adding, changing and
deleting data[8].

ID AP FAKE FAKE SETTING
1 F GPS 1 4
2 RCA 0 0
3 FIA 0 0
...
...

Table 5.2: Structure of our Content Provider.

30

5.3. PRIVACY APPLICATION

The simple structure of our Content Provider database can be seen in Table 5.2.The
database in the Content Provider consists of four identifiers. ID is a standard
automatically incrementing identifier of each row. AP is an acronym for Access Per-
mission. Some of these can be seen in Figure 5.1b, where F GPS identifies the ‘fine
(GPS) location’, RCA corresponds to ‘read contact data’ and FIA to ‘full Internet
access’, and so on. The FAKE column simply identifies whether the Modified Access
checkbox have been checked or not. An Integer value of either 1 or 0 is stored in the
database, where 0 indicates that the checkbox should be unchecked, and the other
way around for 1.

The last column, FAKE SETTING, indicates ‘coarseness’ of the returned value given
from our middleware. Figure 5.2 illustrates this for an applications requesting the
GPS location. The FAKE SETTING column may hold any Integer value from 0 to
5 (for the location accuracy), where 0 indicates that none of the options are chosen.
A value of 1 indicates the Exact Location, 2 indicates City, and so on.

The Content Resolver we implemented also serves as a great tool to save the state
of the activity. Since the current settings for each Access Permission is saved in our
Content Provider database, it is an easy task to query this database to maintain the
previous state of the activities in our ‘Privacy Application’.

31

CHAPTER 5. IMPLEMENTATION

5.4 Privacy Service

In our prototype we introduce a Service for the interaction between the Privacy
Application and other applications. A Service is an Android component that can
run long-time processes silently in the background [Mei08]. An additional advan-
tage is that a Service does not need direct user interaction. Because we wanted our
middleware to constantly listen for requests, we implemented a service instead of
using an activity.

Our Service, referred to as the Privacy Service, is triggered by an intent message.
An intent-filter in the manifest-file defines which intents the Privacy Service should
listen for. The manifest-file of our Privacy Service can be found in Appendix B. The
Service should not only listen for intents sent internally in the middleware, but also
catch intents sent from other applications. In this prototype, Privacy Service is only
triggered by two types of actions. The action ‘START SERVICE’ would obviously
start the Privacy Service. The action ‘LOCFINDER GPS REQ’, sent from the Lo-
cation Finder 2, will trigger the Privacy Service to obtain, and return, a location to
the requesting application. In order for the communication between applications to
work properly based on intents, it is important that both the sending and receiving
application use the same unique actions.

When Privacy Service is started from an intent, the middleware should request the
devices’ current location from the GPS. In our prototype, the coordinates are set
statically to [63.419444,10.4025]. These coordinates are the exact location of our lab.

To obtain the user preferences defined in Privacy Application, Privacy Service use
a Content Resolver to fetch this data. A Content Resolver is an Android class that
provides access to the Content Provider implemented in Chapter 5.3.4[7]. First we
query the Content Resolver to obtain the ID of the access permission fine (GPS)
location. This ID is further used to get the FAKE SETTING for fine (GPS) loca-
tion. If FAKE SETTING is zero or one, the coordinates will be set to the exact
location. If the setting is 5, the coordinates will be set to [0.00,0.00]. If the setting
is two, three or four, the Privacy Service would call a method named getFromLoca-
tion(double lat, double lon, int maxResults). This method makes a call to Google
Maps[1] to find the address, City, State and Country corresponding to the provided
coordinates. Dependent on the accuracy defined in the Privacy Application, the Pri-
vacy Service would run a new method named getFromLocationName(String name,
int maxResults). This method makes yet a new call to Google Maps and returns the
center-coordinates for the provided City, State or Country.

2Location Finder is an application implemented for testing and demonstration purposes only. More
details about the Location Finder can be found in Chapter 5.5.

32

5.5. TEST APPLICATION

Finally, the Privacy Service has obtained the proper coordinates based on the coarse-
ness specified in the Privacy Application. The results are broadcasted system-wide
by an intent with the action ‘LOCFINDER GPS LOC’, and will be received by the
Location Finder. We would explain the role of the Broadcast Receiver in chapter
5.5.

5.5 Test Application

To test our prototype we needed an application that could interact with our mid-
dleware. For this reason, we implemented a simple application named ‘Location
Finder’. Location Finder returns a list of URLs to some newspapers based on the
device’s GPS location.

Instead of sending a request to the API directly, the Location Finder requests the
GPS coordinates from the Privacy Service. When Location Finder is started, an
intent with the action ‘LOCFINDER GPS REQ’ is sent to the Privacy Service. In
order for the Location Finder to obtain the returned coordinates from the Privacy
Service, a Broadcast Receiver is needed. Broadcast Receiver is an Android Ab-
stract class created to receive broadcast messages [6]. In addition to implementing
a Broadcast Receiver in Location Finder, a reciever tag would have to be included
in its Manifest file. When the Privacy Service broadcasts the intent including the
action ‘LOCFINDER GPS LOC’, the Broadcast Receiver in Location Finder is able
to obtain the coordinates. The Manifest file for Location Finder is included in Ap-
pendix C.

The User Interface in Location Finder is illustrated in Figure 5.3. It consists of a
button, one text field including a list of newspapers, and a second text field showing
the current location. When the ‘Newspaper’ button is pressed, a method named up-
dateWithNewLocation() would execute. This method finds the address, City, State
and Country, related to the coordinates from Google Maps. This information is
further used to print the list of newspapers. Since the Location Finder application
is made for testing and demonstration purposes only, the list of newspapers is gener-
ated from a some predefined newspapers. Based on the location, the corresponding
newspaper would be presenter, whether it is a local, regional or national newspaper.

33

CHAPTER 5. IMPLEMENTATION

Figure 5.3: The User Interface for Location Finder when the location is exact.

34

Chapter 6

Evaluation

In this Chapter we evaluate the design and prototype. First, we perform a descriptive
test based on three scenarios to evaluate the functionality of our prototype. Second,
we perform a controlled experimental test, where we study the proposed solution in
a controlled environment to evaluate the usability and usefulness.

6.1 Functionality test

6.1.1 Preparations

We have tested our prototype with the test application described in Chapter 5.5.
The test is based on three different scenarios. The purpose of the functionality test
was to find out whether the prototype worked as intended or not.

To be able to test the prototype on a real device, we exported the middleware
(Privacy Application and Privacy Service) and Location Finder, and stored them
at the devices’ SD-card. To install the applications, we used an application named
AppInstaller[20].

6.1.2 Scenarios

We used a scenario for each feature we wanted to test the functionality for:

1. There is not specified any user preferences for Location Finder, and the appli-
cation should work as if Privacy Application does not exist.

2. The box next to fine (GPS) location is checked.

3. The Accuracy is set to: Exact Location, City, State, Country and Fake Loca-
tion.

35

CHAPTER 6. EVALUATION

6.1.3 Result

We tested each scenario several times to make sure we got the expected result every
time. During the test we discovered a performance delay in the prototype. We
had to push the ‘Newspaper’ button in Location Finder a couple of time before the
changes were updated in the activity.

6.1.3.1 Scenario 1

The first time Privacy Application was opened, we expected the Fine (GPS) loca-
tion box to be unchecked, and the location accuracy to be exact. To test this, we
ran Location Finder before opening Privacy Application the first time. The result
was not as expected. The result from Location Finder was with the accuracy of the
‘State’. When we opened Privacy Application, we discovered that even though the
checkbox next to fine (GPS) location was unmarked, the option State was marked
in the settings menu. We unchecked the checkbox next to State and ran Location
Finder once more. This time Location Finder showed the exact location, and news-
papers from Trondheim, Tr¿ndelag and Norway were listed (As shown in Figure 5.3
in Chapter 5.5).

This test revealed that there is a bug in the prototype, which lead to the unex-
pected result in Scenario 1. To fix this, we would have to debug our code and make
sure this problem would not occur in later versions of the prototype.

6.1.3.2 Scenario 2

When the checkbox next to Fine (GPS) Location was checked, the expected accuracy
of the location is a fake location with the coordinates [0.0,0.0]. When running tests
based on this scenario, Location Finder stated that no news were available because
the application could not obtain any coordinates. Since the result of the test based
on this scenario was as expected, we concluded that the test was successful.

6.1.3.3 Scenario 3

In this scenario we ran several tests, with different preferences, to see if the function-
ality of the accuracy settings worked as intended (See Figure 5.2 in Chapter 5.3.2,
for graphical illustration of the accuracy settings).

• Exact location:
When the accuracy was set to Exact Location, we got the same results as in
scenario 1.

36

6.1. FUNCTIONALITY TEST

• City:
When the accuracy was set to City, we got the same newspapers listed as when
the location was exact. However, when the location was exact, the address in
Location Finder was H¿yskoleringen 1, which is correct. When the accuracy
of the location was set to City, the address was Kongens gate 16-18. This is,
according to Google Maps, the address of the center coordinates of Trondheim
City.

• State:
When the accuracy was set to State, we got a list of newspapers from Tr¿ndelag
and Norway. When the location was the center of S¿r-Tr¿ndelag, Location
Finder did not find the address and the name of the city. This is because the
information in relation to the coordinates obtained from Google Maps is lim-
ited. Some coordinates have more information stored in relation to them than
others. But since the accuracy was State, and the results from Location Finder
returned both the state and the country, this was enough for the application
to list the expected newspapers.

• Country:
When the accuracy was set to Country, we got a list of two newspapers from
Norway and a newspaper from Buskerud. For the same reason as with State,
Location Finder did not find the address and the name of the city, when the
accuracy was set to Country. In this case, the state was Buskerud, even though
we were located in S¿r-Tr¿ndelag. The reason for this is because the center
coordinates of Norway, according to Google Maps, is in the state of Buskerud.
This did not affect the result, because the accuracy was Country, and Location
Finder returned the expected Norwegian newspapers.

• Fake:
When the accuracy was set to Fake Location, we got the same results as in
scenario 2.

All these results was exactly what we expected and we concluded that the test based
on Scenario 3 was successful.

37

CHAPTER 6. EVALUATION

6.2 Usability test

The purpose of usability testing is, according to Bevan and Macleod, ‘to ensure
that the delivered product reaches a minimum required level of usability, to provide
feedback during the design on the extent to which the objectives are being met, and
to identify potential usability defects in the product’[Bm94].

The goal of this user test was to get some advice and ideas on how to improve
our design. The focus was on both usability and usefulness. The reason for testing
the usability, is to discover, at an early stage, if there are some parts of the design
the users do not understand. By getting a second opinion, we hope to figure out if
there are parts of the solution that would be better using a different design.

6.2.1 Preparation

Before we could run the test we had to find out who the test participants should be,
and what parts of the prototype we wanted to test. We developed a set of tasks to
be performed during the test, and some questions to answer afterwards. When the
test procedure was ready, we performed a pilot-test to see if the test procedure and
tasks worked as intended. Based on this pilot, and the functional test, we hoped
that potential bugs and misunderstanding were discovered. Luckily, we were aware
of the performance delay, and discovered a bug that is described in Chapter 6.1.
Therefore, we were able to make sure that these discovered factors would not affect
the tasks performed in the test.

We used a 10 step procedure for usability testing as a guide for carrying out the test
[Tog91]. See Appendix D for detailed information about the test procedure.

6.2.1.1 Test group

Due to the complexity of the test and the limited time available, we decided to
use a small group of five participants with a good general knowledge of Android,
privacy and computer science. This group consisted of four males and one female,
all in their twenties. All the participants were students at the university. The
participants tested the prototype individually, with no information of each otherÕs
results. One of the main reasons for using a group of experts, besides the time
schedule, was because we wanted to test the usefulness. Since this prototype is at
an early stage, without much functionality implemented, we believed it would be
easier for experienced users to give valuable feedback. In addition, if our group,
assuming that they have an interest in privacy and security above average, does
not think the design is useful, probably no one else would either. We understand
that we have to perform a test with a larger group of regular users, before we can
conclude that our design is generally useful and usable.

38

6.2. USABILITY TEST

6.2.1.2 Test exercises

These are the tasks the participants had to complete during the test:

• Task 1
Open Location Finder to get a basic understanding on how it works. Set the
access permissions Fine (GPS) Location, for Location Finder, to ‘fake’. Run
Location Finder again to test if the location is faked.

• Task 2.
Set the accuracy of the location for Location Finder to your city. Run Location
Finder to test if the location is as you intended.

• Task 3.
Set the accuracy of the location for Location Finder to your state. Run Loca-
tion Finder to test if the location is as you intended.

• Task 4.
Set the accuracy of the location for Location Finder to your country. Run
Location Finder to test if the location is as you intended.

• Task 5.
Once more, set the permissions for Location Finder to ‘fake’. Run Location
Finder to test if the location if faked. If not, try once more.

The reason for running the last task twice (1 and 5 are similar), was to see
if the participants understood that the location could be set to ‘fake’ in both
the activity listing the access permissions (Figure 5.1b), and the activity list-
ing the accuracy of the location (Figure 5.2). Hopefully the user would either
discover this when performing task 1, or discover it throughout the test. This
would also reveal which one of those two choices the participants would prefer.

• Task 6.

Please answer these three questions:

1. On a scale from 1 to 5, how difficult was it to understand how the appli-
cation worked?

2. Would you prefer this solution, or a simpler application were you only
had to choose between exact and fake location?

3. On a scale from 1 to 5, how useful do you think this application is?

4. Would you have downloaded an application like this if it was available at
the market?

39

CHAPTER 6. EVALUATION

6.2.2 Result

6.2.2.1 Task 1

The test group had no problem understanding how the Location Finder worked.
However, two of the participants found it difficult to navigate from Location Finder
to the ‘settings menu’ in Privacy Application. When Privacy Application is opened,
the first activity is the list of applications. In relation to this list, there is no title-
or information bar, telling the user ‘choose an application from the list to continue’.
This made some of the participants confused, because it was not intuitive how to
continue to the next activity.

All the test participants had some problems understanding the activity where the
access permissions were listed (Figure 5.1b). Three of the participants immediately
continued to the settings menu and sat the location to fake. They did not under-
stand that the checkbox ‘modified access’ next to ‘fine (GPS) location’ would set
the location to fake in a more efficient way than navigating to the settings menu.

The other two had problems understanding the meaning of ‘fake’, and how to set the
location to fake. As opposed to the other participants, it was not intuitive for these
two that the access permissions also worked as a link to get to the settings menu.
One of them asked if fake and modified access meant the same. Both ended up with
checking the box next to ‘fine (GPS) location’, but they were not sure whether that
was correct or not.

Based on the results from Task 1, we discovered that our prototype would need
some GUI improvements to be more intuitive and user friendly. The list of appli-
cations the users are faced with when the Privacy Application is opened, need a
title or information bar explicitly telling the user where they are and what to do.
Also, another name rather than ‘modified access’ should be used in relation to the
checkboxes next to the listed access permissions.

6.2.2.2 Task 2, 3 and 4

Two of the participants, the same two that used the ‘modified access’ checkbox to
set the location to fake in Task 1, had to use a couple of seconds to understand how
to set the location to city. Both did not discover the textual guidance at the bottom
of the activity right away. When they both had oriented themselves with the screen,
both understood how to navigate further to the settings menu. Both commented
that they never read information located at the bottom of a screen.

40

6.2. USABILITY TEST

Some of the participants were a little confused after they sat the location to city.
They guessed that the setting was saved when it was checked, but they were not
entirely sure. One of the participants commented that he missed a setting is saved
confirmation. Another was confused regarding the use of checkboxes. Normally
checkboxes indicates that more than one option can be marked at the same time,
and the participant were unsure on what would happen if both city and state were
checked.

Based on these tasks, we have discovered three parts that need improvements. First,
the textual information located at the bottom of activities should be located else-
where. Second, to make sure the user is confident that the settings is being saved,
some kind of confirmation should be given in the settings menu. Third, in the set-
tings menu, it would be more reasonable and intuitive to use radio buttons instead
of checkboxes, to indicate that only one setting can be checked at time.

6.2.2.3 Task 5

Only one of the participants used ‘modified access’ in Task 1 and ‘fake location’
in Task 5. The others solved this task the same way as they did in Task 1. After
the test, we asked whether they understood what the checkboxes ‘modified access’
meant or not. Only one had almost figured it out. He thought that the checkbox
indicated that either the location was ‘exact’ or ‘modified’, and ‘modified’ was de-
pendent on the accuracy setting in the settings menu. This is partly correct, but he
did not understand that if he had marked the checkbox in task 1, it would be sat
to ‘fake’. The other participants did not understand the meaning of the ‘modified
access’ checkboxes, and could not figure out the link between ‘modified access’ and
the settings menu.

As discovered in Task 1, a more intuitive solution instead of the ‘modified access’
checkboxes is needed.

6.2.2.4 Task 6

The answers we were given regarding the questions in Task 6 were:

• On a scale from 1 to 5, how difficult was it to understand how the
application worked?

The average score was 3. This is not a sufficient result, and improvements
would have to be made, to make the application easier to understand.

41

CHAPTER 6. EVALUATION

• Would you prefer this solution, or an simpler application were you
only had to choose between exact and fake location?

All the participants preferred a solution like our prototype instead of an ‘all
or nothing’ approach. In most cases they would only vary between ‘exact’ and
‘fake’, so it is important to implement shortcuts for these settings. However, in
some cases, they would like to have the ability to customize their preferences.

• On a scale from 1 to 5, how useful do you think this application is?

The average score is a solid 3. They all thought the solution was useful, but
they did not think the privacy risk was sufficient at the moment.

• Would you have downloaded an application like this if it was avail-
able at the market?

Three of the participants would not download it at the moment, because they
are not concerned about the privacy risk related to their smart-phones. How-
ever, both would have considered it, if it suddenly got more attention in the
media, or they heard of a ‘disaster’ related to privacy on mobile phones.

Some of the participants would be skeptical to installing a middleware like
ours, simply because of the risks imposed by granting access to all of the re-
sources. But if the middleware solution for instance were to be a part of the
OS, they would most certainly use it.

42

Chapter 7

Discussion

In this Chapter we discuss the advantages, problems and challenges with our design
and prototype. First, we summarize some of the limitations and assumptions in our
solution. Finally, we discuss our solution based on the findings in Chapter 6, and
compare the advantages and disadvantages from our design with related work.

7.1 Limitations and assumptions

The prototype created in this study has a series of limitations and assumptions
attached to it. We wanted to determine whether the utility value of the design
was sufficient to be further implemented. For this particular reason, we decided to
implemented a prototype supporting only a location-based service. By using this
approach, it would be easier to abandon the project at an earlier stage, and possibly
focus on other solutions.

As mentioned in Chapter 5.4, we chose to set positions statically instead of us-
ing our mobile device’s embedded GPS. There are several guides on how to obtain
the location from the device’s GPS, and it should not be faced with any major prob-
lems with implementing this functionality. Even though emulators can simulate a
real GPS module, positions still have to be statically sat in the emulator. We faced
numerous problems when we tried to set the locations statically in the emulator,
and as a consequence we chose to statically save the locations in the application. To
the scope of our project, it is irrelevant how the Privacy Service obtains the GPS
locations. The importance of having positions is far more important than how they
are obtained.

Another problem we had to face with the emulator was to resolve the address of
the location in correspondence to the GPS coordinates. The Android API includes
a feature named Geocoder [4], which combines maps with locations. By utilizing
the Geocoder, it is possible to convert back and forth between the coordinates and
the address [Mei08]. Unfortunately, we were not able to get the Geocoder to work
properly. It turned out that the emulator in Android 2.2 throws an unexpected
exception [2]. As a consequence, we decided to use Google’s map service instead.

43

CHAPTER 7. DISCUSSION

Google’s Map service returns a set of ‘center’ coordinates when the accuracy is sat
to either ‘City’, ‘State’ or ‘Country’, as the test results from Chapter 6.1 shows. It
does not really matter whether these coordinates are the ‘exact’ center, or just some
coordinates defined as ‘center’ by Google.

Besides the fact that the prototype only handles different granularities of the GPS
location, it only handles applications that settings are set in the Privacy Applica-
tion. That is, if application X is installed on the device, and never accessed through
the Privacy Application, there will not exist any database entry for it in the Con-
tent Provider. As a consequence, the Privacy Service is not aware of its presence.
If application X dispatches a request for the GPS, the Privacy Service will not find
any record for that application.

We discovered a significant performance delay during the functionality-test, as men-
tioned in Chapter 6.1. We believe the reason is because the source code is not fully
optimized to handle the rapid change between different accuracy settings. Conse-
quently, users may be confused if this delay was not to be minimized. An example
would be a user who change the preferences for an application, and are presented
with previous settings if the application were to be started right after. In reality the
user would, most likely, not change the preferences as often and rapidly as we did
during our tests. The problem may therefore have been amplified during our tests
compared to a real-world scenario.

Finally, itÕs important to note the fact that this prototype only has sufficient
functionality implemented to support one application. By this, we mean that the
database resident within the Content Provider described in Chapter 5.3.3 only is
optimized to handle our test application described in Chapter 5.4. The Content
Provider is easily extensible in order to handle multiple application, but this was
omitted from our implementation, and is regarded as future work.

7.2 Middleware

With regards to our problem description, one of the objectives was to implement a
prototype of the design proposed in Chapter 4. Our goal was to apply certain mod-
ifications to the Android operating system in order to gain control of application’s
access to resources. The idea of revoking access to particular resources at run-time
was first published in [BRSS11]. In addition to a scientific paper, the authors of
MockDroid also published the source code. The MockDroid project consists of both
a series of files that is applied to the Android operating system, known as patches,
and the Java code of the Mocker application itself.

We wanted to apply MockDroid to a mobile device provided to us. Unfortu-
nately, the MockDroid project was developed and optimized for the HTC Nexus
One handset[26]. Since MockDroid is a development system, there are no guaran-
tees that it will work correctly even if we had a Nexus One device at hand.

44

7.3. SIMPLICITY, CONTROL AND FLEXIBILITY

Mobile device manufacturers utilize different hardware in their devices, and thereby
require different drivers for the operating system to interact properly with the hard-
ware. Because of this, we were not able to apply MockDroid to our LG-P500 handset.
Unfortunately, we were not able to successfully apply the necessary drivers without
any errors. Taken the risks of installing customized versions of an operating system
into consideration, we decided not to jeopardize the warranty of the LG-P500 hand-
set. In addition, we did not want to risk that our handset would suffer from a major
failure and not being able to recover or re-boot. This could have had significant
impact on our project since we would loose the opportunity to try different software
implementations on our handset.

Applications on the other hand, except from some very rare occasions, do not cause
devastating deflections on the hardware. If they crash, the OS is able to recover
and continue its operation. This makes applications less harmful than changing the
behavior of its surroundings. For these reasons, we decided not to continue with
our approach to customize a version of the OS. It’s less likely that a user would
have second thoughts on installing a third-party application compared to installing
patches that modifies the core components of the OS. Based on the fact that users
in general only are interested in a seamless ‘plug-and-play’ experience, the use of a
middleware application seems to be a more valid approach. From a technical point of
view, forcing changes to applications by modifying the environment where they re-
side may seem to be the better solution. Both approaches have their pro’s and con’s.

If the middleware solution turns out to be the preferred solution, the question of how
to enforce application to interact with a middleware arises. Our prototype solution
is based on the assumption that the application that request access sends its request
to the middleware, and not to the resource directly. Our paper does not attempt to
solve this issue.

7.3 Simplicity, control and flexibility

In relation to MockDroid, our solution gives the users a higher degree of flexibility
in cases where it may hard to choose between real and mocked data. The user-test
described in Chapter 6.2, we asked the participants if they would prefer a simple
solution with the ability to choose between ‘mocked’ or ‘real’ data, or a more flexible
solution with the opportunity for data separation. The test revealed the importance
of keeping the application as simple as possible. Users urged to have the ability to
choose to share ‘some’ data, instead of just ‘mocked’ or ‘real’ data. In addition, it
is important to allow for the user to set their preferences in a efficient manner, by
extending the solution with more well-defined shortcuts. In our opinion we have
accomplished to extend the flexibility, but we think there is a potential to further
extending the solution, and will be regarded as future work.

45

CHAPTER 7. DISCUSSION

7.4 Security

In general, when developing an application like the middleware solution, it is very
important to maintain security. The middleware is responsible for major amounts of
sensitive data. The users should be confident that the personal information accessi-
ble to the middleware is secured. If the middleware can not uphold the protection
of the sensitive information, the user would be exposed to higher risks by using the
middleware compared to not using it.

Since our prototype only may be regarded as a proof of concept, we have not taken
specific measures to ensure the security of the middleware. It is important to note
that our proposed design does not introduce obvious breach to security. With that
being said, we see some potential security problems with our implementation. In
Chapter 5.4, we described the concept of broadcasting intents to exchange messages
between the middleware and third-party applications. Since the intents may include
personal data, it is important that the broadcasted message is only received by the
intended recipient. An possible way to make broadcasting intents more secure, is
to require recipients to have a Receiver Permission in their manifest file[19]. If the
Privacy Service broadcasts an intent meant for the Location Finder, it can make
sure that only the Location Finder has the required permission to receive it.

Even though the use of receiver permissions would make broadcasting more secure,
it may still not be sufficient. As far as we are concerned, there might be other, and
better, solutions in order to make communication more secure. Security issues are
utterly important to address in future development.

7.5 Usability

Based on the low average score in the usability-test conducted in Chapter 6.2, we
suggest some adjustments to the design and implementation. The results from the
tasks performed in the test, revealed some parts of the user interface that were not
intuitively adequate. Task 1 and 5 from Chapter 6.2.2 showed that a more intuitive
solution with regards to the ‘modified access’ checkboxes is needed. A possible so-
lution proposed by one of the test participants, is to implement three columns of
checkboxes. One column to indicate no access, one for granting full access and the
last one to modified access. The ‘modified access’ checkbox should link the user to
the settings menu directly. This is an interesting discovery that will contribute to a
more intuitive user-interface.

Another discovery we made from the user-tests was related to the positioning of
textual guidance on how to operate the current activity window. To place infor-
mation/guidance at the bottom of a window turned out to be a bad idea, because
information in general is processed from top-to-bottom. Another possible improve-
ment would be to include an information header at the top of every activity, clearly
stating which activity the user is resident in.

46

7.6. USEFULNESS

In addition, it could be useful to have some guidance on how to proceed in some
of the activities. However, it is important to keep a fine line of how much, or
little, guidance and information to present to the user. We hope that by improving
the discovered problems revealed in the user-tests, the scores on usability would be
higher in future tests.

7.6 Usefulness

One of the things we wanted to investigate from the user-test conducted in Chapter
6.2, was whether the participants found the solution useful or not. Based on the
level of knowledge within the test group, the results surprised us. We expected the
participants to be more concerned with privacy risks with relation to third-party
applications. Even though the participants found the middleware solution useful,
several of them did not really care on what kind of data the applications would
gather. The general opinion was that a major breach in privacy had to occur before
they would care to take actions. This behavior is most likely shared among other
users as well. However, we still think the middleware is useful. If a ‘catastrophic’
incident would occur, the issues with regards to privacy would all of a sudden receive
a lot of attention. In such a scenario, a precautionary solution like ours would be
required.

47

Chapter 8

Future work

This chapter gathers some of the loose ends left out throughout the report, and
points out some improvements that need to be done in future development.

8.1 Functionality

When we implement a prototype of the design proposed in Chapter 4.3, we decided
to omit some of the functionality described. First of all, we decided to only imple-
ment sufficient functionality in order to demonstrate different granularities based on
the location. Functionality that copes with the variety of possible resources has to
be included in the future. In addition, further implementations should be able to
handle the diversity of possible access permissions, as we only decided to handle the
GPS.

Finally, but not least, since our prototype only support settings for one applica-
tion, the ability to support multiple applications have to be implemented in the
future.

8.2 Performance

Some adjustments and modifications have to be made with regard to performance.
Users are not supposed to feel a significant delay when using the Privacy Appli-
cation. The middleware solution should not introduce any delayed responses from
applications in general. From the user-test conducted in Chapter 6.2, we found that
some participants were somewhat annoyed by the delay. Optimization of the source
code should be conducted in the future. Extensive performance improvements have
to be conducted in order to uphold a seamless end-user experience.

49

CHAPTER 8. FUTURE WORK

8.3 Privacy Application

A possible extension to our prototype is to offer a set of predefined application pref-
erences. The idea is based on the fact that many applications within different genres
may, but are not restricted to, request the same resources. However, it is hard to
define what kind of accesses a genre of applications, such as games, would request.
But one can assume, for instance, that games in general should be granted access to
the Internet, for whatever reason. Social networking applications may be granted
access to your GPS regardless, and so on. This is one possible approach to ease the
workload on users in the future.

In our prototype, the Content Provider was unaware of the presence of a specific
application until it was chosen from the list within our Privacy Application. This
problem should be coped with by the middleware in the future. Awareness, and
a corresponding database record, should be made as soon as a new application is
installed on the device.

8.4 Privacy Service

To be able to test the middleware for different locations, the Privacy Service should
use real GPS coordinates. For future implementation, the Privacy Service should
obtain the coordinates from the Location Manager[5], instead of the static coordi-
nates used in this prototype. Since GeoCoder[4] is an Android class, it is probably a
more reliable solution for coordinate-to-address mapping. It should be investigated
whether Google Maps or Android’s GeoCoder should be used in future implemen-
tations of the prototype.

As mentioned in Chapter 7.4, future implementations of Privacy Service should
be more well-equipped to handle potential security threats regarding to the commu-
nication between the Privacy Service and applications in general. To do so, reliable
and thoroughly tested solutions for communication should be used.

8.5 User interface

There are a lot of improvements that can be made in general to the user interfaces.
Figure 8.1 shows the activity that presents a detailed textual description of the
currently chosen access permission. This is a part of our solution that has not re-
ceived too much attention. The textual description is Android Market’s description
of the permission[20]. Later solutions should preferably have more customized de-
scriptions, and the focus is on the risks related to granting access to that particular
resource.

50

8.5. USER INTERFACE

Figure 8.1: Textual description of a access permission.

One of the results we found from the user-test in Chapter 6.2, revealed that some
users were confused by what activity they were faced with. Future implementations
should take this into consideration, and make the interfaces easier to understand
and navigate through.

Some of our test participants were also somewhat confused by whether their se-
lected settings were saved or not. This issue can easily be solved by providing the
user with a pop-up window confirming their selection.

51

CHAPTER 8. FUTURE WORK

8.6 Testing

A series of tests should be carried out on both this and future versions of the
prototype. Time and cost analysis should be done to evaluate the performance
of the solution. To figure out if the solution is too resource demanding with a larger
amount of application requests, the middleware should be tried out with more than
one test application. In addition, if more than one test application is implemented, a
descriptive test based on security scenarios should be carried out to determine if the
security is maintained. To evaluate how well our solution scales, scalability testing
should also be carried out. Functional black-box testing should be done to test for
special cases, inconsistencies etc. And obviously, to complement the usability test
performed in this thesis, an extensive usability test on a larger group of participants
should done.

52

Chapter 9

Conclusion

In order to meet the problem description, we first reviewed existing work concerning
privacy on mobile devices. Second, based on the findings from the literary study,
we were able to sketch a design. Our third task was to implement selected parts of
the proposed design in order to demonstrate its functionality. Finally, based on our
findings we were able to answer the research questions in this thesis.

Our first research question was: How can we give users an increased consciousness
on how personal information is collected and distributed from their mobile devices?

We have proposed a tool that allows users to control what kind of personal informa-
tion applications should be able to access. By controlling the amount of information
to share, users should get an increased consciousness on how personal information
is collected and distributed.

Our second research question was: Can we propose a software-design that would
help users protect their privacy?

After conducting a literature study, we found a few project relevant to the scope
of our project. We found one project of particular interest, namely the MockDroid
project. Based on the knowledge we gained from that project, we came up with a
design based on a middleware solution. The idea is a shared and centralized appli-
cation that would monitor and control requests to internal resources, sent on behalf
of an application. In addition, we managed to successfully implement a prototype
with the functionality for location-based services.

Our main objective was to help users protect their privacy by increasing their con-
sciousness on how personal information is collected and distributed. Even though
our solution is not complete, we believe that the results obtained from our study
serve as a contribution to this main objective.

53

References

[Bm94] Nigel Bevan and Miles macleod. Usability measurement in context. Be-
haviour and Information Technology, Chapter 13, Page 132-145, 1994.

[Bon10] Marco Bonetti. Mobile privacy: Tor on the iphone and other unusual
devices. DEFCON 18, May, 2010.

[BRSS11] Alastair R. Beresford, Andrew Rice, Nicholas Skehin, and Ripduman
Sohan. Mockdroid: trading privacy for application functionality on
smartphones. HotMobile ’11, Phoenix, AZ, USA, March, 2011.

[EGC+10] William Enck, Peter Gilbert, Byunggon Chun, Landon P. Cox, Jaeyeon
Jung, Patrick McDaniel, and Anmol N. Sheth. What you see is what
they get: Protecting users from unwanted use of microphones, cameras,
and other sensors. The USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI),Vancouver, October, 2010.

[GgCCJ11] Peter Gilbert, Byung gon Chun, Landon P. Cox, and Jaeyeon Jung. Au-
tomating privacy testing of smartphone applications. Duke University,
Technical Report CS-2011-02, February, 2011.

[HMPR04] Alan R Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram.
Design science in information system research. Mis Quarterly vol.28
No.1, pp.75-105, March 2004.

[HS10] Jon Howell and Stuart Schechter. What you see is what they get: Pro-
tecting users from unwanted use of microphones, cameras, and other
sensors. W2SP 2010: Web 2.0 Security and Privacy 2010, May, 2010.

[Mei08] Reto Meier. Professional Android Application Development. Wrox Press
Ltd., 2008.

[Tog91] Bruce Tognazzini. Tog on interface. Addison-Wesley Professional, 1991.

[YMC07] Aydan Yumerefendi, Benjamin Mickle, and Landon P. Cox. Tightlip:
Keeping applications from spilling the beans. NSDI 2007, 4th USENIX
Symposium on Networked System Design and Implementation, Cam-
bridge, MA, April, 2007.

55

Web References

[1] Google. Google Maps. maps.google.com, last accessed June 3, 2011.
maps.google.com.

[2] Android discussion group. Issue 8816: Android - Service not available.
code.google.com, last accessed June 1, 2011.
http://code.google.com/p/android/issues/detail?id=8816.

[3] LG Electronics Norway. LG P500 mobile handset. www.lg.com/no/, last ac-
cessed May 31, 2011.
http://www.lg.com/no/mobiltelefoner/mobiltelefoner/LG-P500.jsp.

[4] Android Developers. GeoCoder. developer.android.com, last accessed June 6,
2011.
http://developer.android.com/reference/android/location/Geocoder.

html.

[5] Android Developers. LocationManager. developer.android.com, last accessed
June 1, 2011.
http://developer.android.com/reference/android/location/

LocationManager.html.

[6] Android Developers. Application Fundamentals. developer.android.com, last
accessed June 1, 2011.
http://developer.android.com/guide/topics/fundamentals.html.

[7] Android Developers. ContentResolver. developer.android.com, last accessed
June 1, 2011.
http://developer.android.com/reference/android/content/

ContentResolver.html.

[8] Android Developers. Content Providers. developer.android.com, last accessed
May 19, 2011.
http://developer.android.com/guide/topics/providers/

content-providers.html.

[9] Android Developers. Data Storage in Android. developer.android.com, last
accessed May 19, 2011.
http://developer.android.com/guide/topics/data/data-storage.html.

57

maps.google.com
http://code.google.com/p/android/issues/detail?id=8816
http://developer.android.com/reference/android/location/Geocoder.html
http://developer.android.com/reference/android/location/Geocoder.html
http://developer.android.com/reference/android/location/LocationManager.html
http://developer.android.com/reference/android/location/LocationManager.html
http://developer.android.com/guide/topics/fundamentals.html
http://developer.android.com/reference/android/content/ContentResolver.html
http://developer.android.com/reference/android/content/ContentResolver.html
http://developer.android.com/guide/topics/providers/content-providers.html
http://developer.android.com/guide/topics/providers/content-providers.html
http://developer.android.com/guide/topics/data/data-storage.html

WEB REFERENCES

[10] Android Developers. The AndroidManifest.xml File. developer.android.com,
last accessed May 19, 2011.
http://developer.android.com/guide/topics/manifest/

manifest-intro.html.

[11] Android Developers. Android Security and Permissions. developer.android.com,
last accessed May 19, 2011.
http://developer.android.com/guide/topics/security/security.html.

[12] Android Developers. Android API Package Index. developer.android.com, last
accessed May 19, 2011.
http://developer.android.com/reference/packages.html.

[13] Wired Magazine. Google‘s Open Source Android OS Will Free the Wireless
Web. www.wired.com, last accessed March 4, 2011.
http://www.wired.com/techbiz/media/magazine/16-07/ff_android?

currentPage=all.

[14] IBM. Understanding security on Android. www.ibm.com, last accessed May
19, 2011.
http://www.ibm.com/developerworks/opensource/library/

x-androidsecurity/.

[15] IBM. Introduction to Android development. www.ibm.com, last accessed May
19, 2011.
http://www.ibm.com/developerworks/opensource/library/

os-android-devel/index.html.

[16] Open Handset Alliance. Android Overview. www.openhandsetalliance.com, last
accessed April 28, 2011.
http://www.openhandsetalliance.com/android_overview.html.

[17] Android. Android Open Source Project licence. source.android.com, last ac-
cessed May 19, 2011.
http://source.android.com/source/licenses.html.

[18] Canalys. Android becomes the world‘s leading smart phone platform.
www.canalys.com, last accessed May 19, 2011.
http://www.canalys.com/pr/2011/r2011013.html.

[19] Android Developers. Receiver Permission. developer.android.com, last accessed
June 8, 2011.
http://developer.android.com/guide/topics/manifest/

receiver-element.html.

[20] Android. Android Market. market.android.com/, last accessed May 18, 2011.
https://market.android.com.

58

http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/security/security.html
http://developer.android.com/reference/packages.html
http://www.wired.com/techbiz/media/magazine/16-07/ff_android?currentPage=all
http://www.wired.com/techbiz/media/magazine/16-07/ff_android?currentPage=all
http://www.ibm.com/developerworks/opensource/library/x-androidsecurity/
http://www.ibm.com/developerworks/opensource/library/x-androidsecurity/
http://www.ibm.com/developerworks/opensource/library/os-android-devel/index.html
http://www.ibm.com/developerworks/opensource/library/os-android-devel/index.html
http://www.openhandsetalliance.com/android_overview.html
http://source.android.com/source/licenses.html
http://www.canalys.com/pr/2011/r2011013.html
http://developer.android.com/guide/topics/manifest/receiver-element.html
http://developer.android.com/guide/topics/manifest/receiver-element.html
https://market.android.com

WEB REFERENCES

[21] GSMA Mobile Privacy. Mobile Privacy Principles. gsmworld.com, last accessed
April 26, 2011.
http://www.gsmworld.com/our-work/public-policy/mobile_privacy.

htm.

[22] Digital Technology Group, University of Cambridge. MockDroid.
www.cl.cam.ac.uk , last accessed April 26, 2011.
http://www.cl.cam.ac.uk/research/dtg/android/mock/.

[23] TV2 Nyhetene. ‘Angry Birds’ tapper telefonen for info og selger den..
www.tv2nyhetene.no, last accessed May 10, 2011.
http://www.tv2nyhetene.no/innenriks/forbruker/

angry-birds-tapper-telefonen-for-info-og-selger-den-3383899.

html.

[24] Wall Street Journal. Your Apps are watching you.. www.wsj.com, last accessed
April 26, 2011.
http://online.wsj.com/article/SB10001424052748704694004576020083703574602.

html.

[25] GSM World. Press release: GSMA Publishes Mobile Privacy Principles.
www.gsmworld.com, last accessed April 26, 2011.
http://www.gsmworld.com/newsroom/press-releases/2011/5992.htm.

[26] Wikipedia The Free Encyclopedia. Nexus One. en.wikipedia.org, last accessed
March 27, 2011.
http://en.wikipedia.org/wiki/Nexus_One.

59

http://www.gsmworld.com/our-work/public-policy/mobile_privacy.htm
http://www.gsmworld.com/our-work/public-policy/mobile_privacy.htm
http://www.cl.cam.ac.uk/research/dtg/android/mock/
http://www.tv2nyhetene.no/innenriks/forbruker/angry-birds-tapper-telefonen-for-info-og-selger-den-3383899.html
http://www.tv2nyhetene.no/innenriks/forbruker/angry-birds-tapper-telefonen-for-info-og-selger-den-3383899.html
http://www.tv2nyhetene.no/innenriks/forbruker/angry-birds-tapper-telefonen-for-info-og-selger-den-3383899.html
http://online.wsj.com/article/SB10001424052748704694004576020083703574602.html
http://online.wsj.com/article/SB10001424052748704694004576020083703574602.html
http://www.gsmworld.com/newsroom/press-releases/2011/5992.htm
http://en.wikipedia.org/wiki/Nexus_One

Appendix A

User Interface design

This Appendix contains graphical illustration of the User interface proposals for all
the Access Permissions that is part of our design.

61

Full Internet Access

Read Contact Data

Take pictures and videos

Fine-grained (GPS) location

MyApplication

Fake or modified access

Tap on one of the access permissions for more information and modification settings.

Access Permissions for MyApplication

Modify/delete SD card contents

Read calendar events

Manage the accounts list

fine (GPS) location

full Internet access

read contact data

MyApplication

Click on an Access Permission for more options.

Access Permissions for MyApplication Mock?

manage the account list

read calendar events

modify/delete SD card
contents

User Interfaces

MyApplication has access to your
location:

Where avalible, the application
will access fine location sources
such as the Global Positioning
System (GPS) on the device.

Malicious applications can use this
information to determine where

you are, and may consume
additional battery power.

To change location accuracy, go
to the Settings menu.

Fine (GPS) location

Settings

Location accuracy

City

State

Country

MyApplication would access
the most nearby city.

MyApplication would access
the most nearby state.

MyApplication would access
the most nearby country.

Fake
MyApplication would not get
access to your fine (GPS)
location.

Exact
MyApplication would access
your fine (GPS) location.

Interface of the data seperation services concerning the location.

MyApplication has full access to
Internet:

This access permission allows an
application to create network
sockets and connect to the

Internet.

To change the settings for your
Internet, go to the Settings

menu.

Full Internet Access

Settings

Internet Settings

Limited

Full

MyApplication will get full
internet access.

Interface of the data seperation services concerning the Internet.

MyApplication may establish
an Internet connection when :

The application is in use

The amount of information
sent over the Internet
connection is maximum

MB.

The internet stream does not
include:
Telephone ID
Telephone numbers
Contact information

5

MyApplication has access to your
personal information:

This access permission allows an
application to read all of the

contact (address) data stored on
your device. Malicious

applications can use this to send
your data to other people.

To change the extention of
personal information to share,

go to the Settings menu.

Read Contact Data

Settings

 Contact Data Settings

All Contacts

MyApplication would get access
to all of your contacts.

No Contacts

MyApplication would not get
access to any of your contacts.

Marked Contacts

Check the contacts you wish to give
MyApplication access to:

 Anders Larsen

Anne Hansen

Arne Jacobsen

Bente Olsen

Christian Larsen

Interface of the data seperation services concerning the contacts.

MyApplication has access to your
Storage:

This access permission allows an
application to write to the

phone’s SD card.

To change the amount of
storage to share, go to the

Settings menu.

Modify/delete SD card
contents

Settings

Amount of storage to
share

No Storage

Predefined folder

MyApplication would not get
access to your storage

Define a folder to be used
together with MyApplication.
The folder would be used by
this application only, and the
application would be able to
modify/delete it’s content.

Entire SD Card
MyApplication would get
access to write to your SD card.

Folder Name Save

Interface of the data seperation services concerning the storage.

MyApplication has access to your
personal information:

This access permission allows an
application to read all of the

calendar events stored on your
device. Malicious applications can

use this to send your calendar
events to other people.

To change the extention of
personal information to share,

go to the Settings menu.

Read Calendar Events

Settings

Read Calendar Events

No Events

Marked Folders

The application would not get access to your
calendar.

Define a folder to be used together with this App

All Events

The application would get access to all the events in
your calender

Interface of the data seperation services concerning the calendar.

Calendar Settings

Share all events
MyApplication would get
access to all the events in
your calendar.

Share no events
MyApplication would not get
access to your calendar.

Share marked events
Check the events you wish to
grant MyApplication access to:

Public

Private

Shared

APPENDIX A. USER INTERFACE DESIGN

68

Appendix B

The Manifest file for Privacy
Service Middleware

This Appendix contains the file ‘AndroidManifest.xml’ for Privacy Application and
Privacy Service.

69

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="no.ntnu.stianren.applist"
 android:versionCode="1"
 android:versionName="1.0">

 <uses-permission android:name="android.permission.INTERNET"/>
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>

 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name=".AppList" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name=".SelectedApp" />
 <activity android:name=".InfoPage" />
 <activity android:name=".ShowSettings" />

 <provider android:name="no.ntnu.stianren.applist.SettingsProvider"
 android:authorities="no.ntnu.provider.settings" />
 <service android:enabled="true"
 android:name="no.ntnu.stianren.applist.PrivacyService">

 <intent-filter>
 <action

 android:name="com.location.finder.action.LOCFINDER_GPS_REQ">
</action>

 <action
android:name="no.ntnu.stianren.applist.action.START_SERVICE">
</action>

</intent-filter>
 </service>
 </application>

</manifest>

Appendix C

The Manifest file for the test
application

This Appendix contains the ‘AndroidManifest.xml’ file for the test application Lo-
cationFinder.

71

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.location.finder"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
 <uses-permission android:name="android.permission.INTERNET"/>
 <uses-permission android:name="android.permission.READ_CONTACTS"/>
 <uses-permission android:name="android.permission.MANAGE_ACCOUNTS"/>
 <uses-permission android:name="android.permission.READ_CALENDAR"/>
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

 <application android:icon="@drawable/icon" android:label="@string/app_name"
android:debuggable="false">

 <activity android:name=".LocationFinder"
 android:label="@string/app_name">

 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <receiver android:name=".MyBroadcastReciever" android:enabled="true">

 <intent-filter>
 <action
 android:name=
 "no.ntnu.stianren.applist.action.LOCFINDER_GPS_LOC">
 </action>

 </intent-filter>
 </receiver>

 </application>
</manifest>

Appendix D

Test procedure for the usability
test

This Appendix contains a 10 step procedure for usability testing.

1. Introduce yourselves.

2. Describe the purpose of the test.
In this test we aimed to figure out how usable our solution is. We were inter-
ested in feedback from the test participants on the usability of the product,
together with a feedback on the usefulness of the design.

3. Inform the participants that they may break off the test at any time.

4. Describe the equipment of the lab environment and explain the lim-
itations of the prototype.
We explained to the participants that the test would be carried out on a sta-
tionary computer based in our lab, and an emulator would simulate the mobile
device. We also explained the participants that the prototype only includes
the functionality for location based services, and that the prototype tends to
have a small performance lag. They were told that if this lag seemed to affects
the test they would be informed.

5. Learn the participants how to tell everything they think out load
throughout the test.

6. Explain the user why you cannot help during the test.
The reason for this is because the goal were to get hold of the thoughts from
the participants, not to explain them our thoughts and intention of the design.

7. Describe the tasks foreseen for the participants, and introduce the
prototype.
We started by handing out an introduction to privacy, the objective of our

73

APPENDIX D. TEST PROCEDURE FOR THE USABILITY TEST

approach and a short description of why there is a problem with existing so-
lutions.

We explained that our product is an Android Application, and the purpose of
the application is to help the user better control the distribution of personal
information when using third party applications. In addition, the purpose
of the test application Location Finder was explained. The participants were
informed that they would not have to evaluate the usability of Location Finder.

We handed out the scenarios to the participants and shortly described the
task foreseen.

8. Answer potential questions, before running the test.

9. Finish up by giving the participants the opportunity to speak, before
gathering up the loose ends. We also asked the participants to give the
design a score between 1 and 5, both for the usability and the usefulness.

10. Use the results.

74

	Title Page
	Abstract
	Preface
	Abbreviations
	1 Introduction
	1.1 Privacy on mobile devices
	1.2 Motivation
	1.3 Objective
	1.3.1 Main objective
	1.3.2 Research Questions

	1.4 Research method
	1.5 Outline

	2 Background
	2.1 Introduction to Android
	2.2 Android Architecture
	2.3 Privacy and Security

	3 Related work
	3.1 The MockDroid Project
	3.2 The TaintDroid Project
	3.3 Automating Privacy Testing of Smartphone Applications.
	3.4 What You See is What They Get
	3.5 The TightLip Project
	3.6 Results from the literature study

	4 Design
	4.1 User scenarios
	4.1.1 Introduction
	4.1.2 Scenario 1
	4.1.3 Scenario 2

	4.2 Functional requirements
	4.3 Our design

	5 Implementation
	5.1 Environment
	5.2 Implementation Tools
	5.3 Privacy Application
	5.3.1 The Manifest File
	5.3.2 Privacy Application's Activities
	5.3.3 Saving Activity State
	5.3.4 Sharing of private data

	5.4 Privacy Service
	5.5 Test Application

	6 Evaluation
	6.1 Functionality test
	6.1.1 Preparations
	6.1.2 Scenarios
	6.1.3 Result

	6.2 Usability test
	6.2.1 Preparation
	6.2.2 Result

	7 Discussion
	7.1 Limitations and assumptions
	7.2 Middleware
	7.3 Simplicity, control and flexibility
	7.4 Security
	7.5 Usability
	7.6 Usefulness

	8 Future work
	8.1 Functionality
	8.2 Performance
	8.3 Privacy Application
	8.4 Privacy Service
	8.5 User interface
	8.6 Testing

	9 Conclusion
	References
	Web References
	Appendices
	A User Interface design
	B The Manifest file for Privacy Service Middleware
	C The Manifest file for the test application
	D Test procedure for the usability test

