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Preface
This master thesis is written as part of the study program Marine Technology at the
Norwegian University of Science and Technology (NTNU). The work done in the
thesis has been done using their testing facility, the Marine Cybernetics Laboratory
(MC-Lab). The thesis presents a literature review of dynamic positioning (DP) and
derivative-free optimization (DFO), derives an autotuning methodology for tuning
a DP controller and implements the concept on the newest vessel in the MC-Lab
fleet, the C/S Inocean Cat I drillship (CSAD).

The thesis has been fascinating to work with, and I feel fortunate to get to work
with real-world experiments. It has been challenging at times, but it felt rewarding
when the autotuning concept worked in practice. Through the process, I have
gained knowledge about marine control systems in terms of theory and practical
implementation, which has boosted my interest in the field.

The reader should preferably know hydrodynamics, marine cybernetics, and gen-
eral control theory.
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Abstract

This thesis presents the development of an autonomous tuning methodology for
a Dynamic Positioning (DP) controller. The method is implemented in the Ma-
rine Cybernetics Laboratory (MC-Lab) on the 1:90 model of a DP vessel, the C/S
Inocean Cat I Drillship (CSAD).

To derive a DP system for the CSAD, a 3 Degrees of Freedom (DOF) model of the
vessel and a motion control system for trajectory tracking is established. The mo-
tion control system includes the proportional-integral-derivative (PID) controller
that is responsible for calculating the necessary forces and moments for following
the trajectory. It is this component of the DP system that is the subject of tuning,
and the control parameters are established as the tuning variables.

The 3 DOF model and the motion control system are used to establish the simu-
lation model. The simulation model is used to investigate different types of per-
formance indicators to evaluate the control parameters of the PID controller. With
the control parameters as optimization variables and a performance indicator (PI)
as an objective function, derivative-free optimization (DFO) algorithms are com-
pared and evaluated. The integral of absolute error (IAE) is selected as the PI
and the particle swarm optimization (PSO) as the DFO algorithm for the practical
implementation.

A 2-step, 3 DOF transient maneuver is defined as the trajectory tracking test in
MC-Lab. This test is used to evaluate the performance in the autotuning. The
autotuning functionality is implemented in Simulink and is modified to function in
real-time. The implemented system is able to do autonomous tuning of the control
parameters without human intervention for multiple hours. Moreover, autotuning
of the PID controller is done in two environmental conditions, one in calm water
and one in moderate/rough waves. The result is a trajectory tracking with maximal
positional errors below 1 cm and maximal heading errors below 0.5 degrees.
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Sammendrag
Denne avhandlingen presenterer utviklingen av en autonom tuningmetode for en
dynamisk posisjoneringskontroller. Metoden er implementert i Marine Cybernet-
ics Laboratory (MC-Lab) på 1:90-modellen av et dynamisk posisjoneringsfartøy,
C/S Inocean Cat I Drillship (CSAD).

For å utlede et dynamisk posisjoneringssystem for CSAD, etableres en simuler-
ingsverifiseringsmodell med 3 frihetsgrader av fartøyet og et bevegelseskontroll-
system for banefølging. Bevegelseskontrollsystemet inkluderer proposjonal-integral-
derivatkontrolleren (PID-kontroller) som er ansvarlig for å beregne nødvendige
krefter og momenter for å følge banen. Det er denne komponenten av dynamisk
posisjoneringssystemet som skal tunes, og kontrollparametrene er etablert som
tuningsvariablene i autotuningen.

Simuleringsverifiseringsmodellen og bevegelseskontrollsystemet brukes til å etablere
utgjør til sammen simulerings- modellen. Den brukes til å undersøke ulike typer
ytelsesindikatorer for å evaluere kontrollparametrene til PID-kontrolleren. Med
kontrollparametrene som optimaliseringsvariabler og ytelsen som en objektiv funksjon,
blir gradientfrie optimaliseringsalgoritmer sammenlignet og evaluert. Integralet
av absolutt feil er valgt som ytelsesindikator og partikkelsvermoptimalisering som
gradientfri optimaliseringsalgoritme for den praktiske implementeringen.

En 2-trinns, transient manøver med bevegelser i 3 frihetsgrader er definert som
banesporingstesten i MC-Lab. Denne testen brukes til å evaluere ytelsen i auto-
tuningen. Autotuning- funksjonaliteten er implementert i Simulink og er modi-
fisert for å fungere i sanntid. Det implementerte systemet er i stand til å gjøre
autonom tuning av kontrollparametrene uten menneskelig innblanding gitt at det
ikke er noen eksterne feil. Videre gjøres autotuning av PID-kontrolleren i to sjøtil-
stander, en i rolig vann og en i moderate bølger. Resultatet er en banesporing med
maksimale posisjonsfeil under 1 cm og maksimale kursfeil under 0.5 grader.
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Chapter 1
Introduction

1.1 Motivation

The tuning of a Dynamic Positioning (DP) control system is both time consuming
and complicated. Today, the tuning is done at sea trials manually. The operators
evaluate the response during a set of predefined tests and make adjustments to the
control parameters based on expertise. However, the high dimensionality of the
control parameters and the uncertainties during sea trials make the tuning an almost
impossible task. The manual tuning is also affected by human errors and varying
weather conditions. Meanwhile, derivative-free optimization (DFO) methods are
getting more intelligent and it is believed that such methods, applied by a computer,
can outperform a human operator for the tuning task.

This motivates an investigation of the potential of autonomous tuning of a real-
world DP control system. This investigation is facilitated by the advanced marine
cybernetics laboratory (MC-Lab) at NTNU and it’s new DP vessel, the C/S Inocean
Cat I Drillship (CSAD).

1



Chapter 1. Introduction

1.2 Problem formulation and objectives

The problem that the thesis tries to answer is:

• Given the CSAD vessel, how can a DFO loop be designed to make the vessel
capable of efficient and autonomous tuning of the DP control system in the
MC-Lab?

The problem formulation above includes assessing topics like DFO, performance
indicators (PI), DP systems as well as combining it all using software and hardware
in the MC-Lab.

To answer the question, the main objectives have been formulated as

• Implement an autotuning DFO loop for a simulation model of the vessel.
Compare and select the PIs and DFO algorithms that are most suited for the
MC-lab setup.

• Implement an autotuning DFO loop for the CSAD in MC-lab able of doing
autonomous tuning (without operator intervention).

For accomplishing these main objectives, the sub-objectives at the top of the thesis
have been formulated in cooperation with the supervisor, Roger Skjetne.

1.3 Scope and delimitations

This thesis starts by doing a literature review on relevant methods and theory. Then
the methods are investigated through simulations and experiments.

The thesis is centred around the experimental setup in MC-lab and the vessel
CSAD. A large share of the time has gone into understanding this system to es-
tablish a DP system that is adequate and a DFO-tuning implementation that is
practical for the setup. It is therefore attempted to explain a mathematical model
of the system, the CSAD DP system, and the autotuning setup before establishing
the DFO as relevant to this system. The goal of the thesis is to conceptually test
autotuning, as well as contributing the motion control system of the CSAD, so that
it becomes easier to use for future candidates.

Some of the limitations of this thesis are:

• The performed tests were executed in a controlled environment in MC-lab
with a 1:90 scale model.

2



1.4 Contributions of the Thesis

1. The positioning system in MC-lab is very precise, and has little noise

2. Current and wind was not present during the tests

3. The suggested test duration would have been approximately 10 times
longer for the for the full-scale vessel

• The tuning was performed with a fixed thrust allocation. It is possible that a
more optimal thrust allocation, would affect the results of the tuning.

• The observer struggled with estimating velocities due to the transient move-
ments in the test. It is possible that a better velocity estimation would affect
the result of the tuning.

1.4 Contributions of the Thesis

The main contributions of the thesis are:

• It has been demonstrated that the implemented autotuning method is able of
tuning the DP controller without any human intervention for several hours,
only limited by battery failure or other serious failures. The resulting DP
controller has maximal errors below 1 cm/ 0.5◦deg errors for a 3 DOF ref-
erence tracking in both in calm water and in waves.

• A modular online autotuning block in Simulink has been created and can
easily be employed for tuning of other vessels. The methodology could also
be utilized for tuning of the DP observer.

• A Matlab program has been set up such that any of Matlab’s global opti-
mization tools can be used for autotuning of the DP simulation model. By
adjusting the input and output parameters, it is possible to apply optimiza-
tion to the observer as well.

• A high-precision, highly modular motion control system for reference track-
ing has been established for CSAD. Especially, a guidance system with fea-
sible velocity constraints, a tuned nonlinear proportional-integral-derivative
(PID) controller with feed-forward terms and a predictable fixed thrust allo-
cation with magnitude and rate constraints (MRS).
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Chapter 1. Introduction

1.5 Outline of the Thesis

This thesis is built upon the developement of an autotuning methodology for the
CSAD. It is organized in:

Chapter 1 introduces the thesis to the reader. It explains the motivation, problem
formulation, objectives, scope, delimitations and contributions of the thesis.

Chapter 2 provides relevant background to DP, DFO, PID tuning, CSAD and
MC-lab.

Chapter 3 presents the mathematical modeling for the for the simulation verifi-
cation model (SVM), as well as the control design model (CDM) used for model-
based observer and control design.

Chapter 4 presents the DP system as a motion control system. It includes a
trajectory generator, an observer, the tracking controller and the thrust allocation.

Chapter 5 presents the autotuning setup. A test maneuver is defined and the
autotuning setup for the simulation model and for CSAD is presented.

Chapter 6 details how DFO is used for autotuning. It defines the bounds of the
optimization, different PIs, and DFO algorithms. The PIs are tested and compared
and a favored PI is chosen. Then the DFO algorithms are tested and compared and
a favorite algorithm is chosen. Then the implementation of the PI and DFO in the
autotuning is presented.

Chapter 7 presents the results from the laboratory including calm water auto-
tuning and autotuning in waves.

Chapter 8 gives presents the conclusions and further work
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Chapter 2
Background
The main focus of the thesis is to establish a DFO-loop for optimizing the PID
controller in a DP system using the test platform, CSAD in MC-Lab. It therefore
seems intentional to provide some background information about these topics to
the reader.

2.1 Dynamic Positioning

According to (Sørensen, 2019), DNV GL’s definition of a DP system is

Definition 2.1.1. A DP vessel is by the class societies e.g. DNVGL (2018) defned
as a vessel that maintains its position and heading (fixed location or pre-determined
track) exclusively by means of active thrusters. This is obtained either by installing
tunnel thrusters in addition to the main screw(s), or by using azimuthing thrusters,
which can produce thrust in different directions.

According to (Sørensen, 2019), there are more than 2000 DP vessels operating
worldwide in offshore oil and gas, shipping, cruise ships and fisheries to mention
some applications. Most DP-systems are low-speed applications, meaning that the
vessel either keeps a fixed position and heading, or slowly moves from one point
to another. However, some tracking functions have been developed to enable DP
applications like cable laying and ROV operations. According to (Sørensen, 2019)
a trend is that high-speed operation functionality is merging with low-speed (DP)
functionality to have one system for all speeds and all types of operations.

The most common DP systems control the 3 Degrees of Freedom (DOF) surge,
sway and yaw through the following modes of control.

5



Chapter 2. Background

• Manual Control: The operator can generate force/moment setpoints the 3
DOFs

• Damping Control: It is used in DP for obtaining a smooth transition between
transit speed and fixed position operations.

• Set-point Control: Feedback from positional error and from low frequency
velocities. Often referred to as station keeping.

• Tracking Control: The vessel tracks a reference trajectory from one set-point
to another.

The DP vessel can be considered as a motion control system consisting of a guid-
ance, navigation and control system as illustrated in Figure 2.1.

Figure 2.1: Guidance, Navigation and Control

The guidance system calculates the reference (desired) position, velocity and ac-
celeration that is used by the DP controller. For DP purposes, an open-loop guid-
ance system is commonly used for tracking control. This guidance system takes
in a constant setpoint and calculates a smooth trajectory for the position, velocity
and acceleration.

Navigation is the science of determining the vessels position, attitude and course.
According to (Fossen, 2011), it is usually done using global navigation satelite
system (GNSS) and gyro compass and accelerometers. To use these for estimation
of the vessels position and velocity, a DP observer is commonly employed. A
commonly used DP observer is the nonlinear passive observer.

According to (Fossen, 2011) control is the the system responsible for calculating
the necessary forces and moments for the vessel to fulfil the control objective. For
a DP vessel the objective can for instance be trajectory tracking. A DP control
algorithm is often a combination of a feed-forward and feed-back control law. The
feed-forward control law uses signals from the guidance system or other sensors,
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2.2 PID tuning

while the feed-back control law uses the estimated values from the observer and the
reference from the guidance to apply control. For feed-back control, a nonlinear
PID controller can be used. For the PID to function properly, it has to be properly
tuned.

2.2 PID tuning

The Proportional-Integral-Derivative (PID) controller has been used as a method
of feedback control in many industrial applications because of it’s robustness and
simplicity in structure (Sahib, 2015). For a simple single-input single-output (SISO)
system it is expressed as:

e(t) = y(t)− r(t) (2.1)

u(t) = −Kpe(t)︸ ︷︷ ︸
P

−Ki

∫ t

0
e(t)dt︸ ︷︷ ︸

I

−Kd
d

dt
e(t)︸ ︷︷ ︸

D

(2.2)

Where e(t) is the error between the actual value of y and the desired reference r(t)
is the reference or set-point. It can be considered as the desired value ofthe output
variable, y(t). u(t) is the control action. Kp, Ki, Kd, are the proportional, integral
and derivative control gains, respectively. Theproportional term, P, is proportional
to the current error. The derivative term,D, is proportional to the change in error.
The integral term, I, is proportional to the integral of error.

Tuning of a PID controller, is the adjustment of the control gains, Kp, Ki, Kd,
to meet some requirements or performance. For example, doing manual tuning by
trial and error

1. Select a set of control gains, Kp, Ki, Kd, and run a relevant test.

2. Evaluate the performance from the test and adjust the control gains based
on experience. If the previous set of gains were better, you go back to these
and make a different adjustment. If the new gains are better, make som
adjustment to them.

3. Repeat step 1. and 2. until desired performance is achieved.

Note that a tuning can be complex for a SISO system where there are only 3 control
gains. However, for a multiple-input multiple-output (MIMO) system, the control
gains become matrices, so that for instance a 3 input, 3 output system has 27
control gains.
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Chapter 2. Background

2.3 Derivative-Free Optimization Methods

According to (Audet, 2016) DFO are methods within mathematical optimization
that does not use use information about the actual derivative to find optimal so-
lutions. The key concept with DFO is that it uses only function values of the
objective function for optimization. The objective function is thought of as being
wrapped in a black box, and the only information that is available is the objective
function, f(x). These methods have attracted attention from researchers in the
last decade, with interest still increasing. According to (Audet, 2016), black-box
optimization is often the most feasible alternative when doing simulation-based
design. However, it should be noted that modern gradient-based methods almost
always outperforms DFO algorithms if the gradient is available and can be cal-
culated at a reasonable cost. According to (Audet, 2016), black box optimization
(BBO) using DFO is especially suitable when conducting experiments where there
are no explicit mathematical expressions and thus no gradient

In 1965, John Melder and Roger Mead introduced the Nelder-Mead Simplex Method
that has since become a popular optimization that is effective and intuitive. Other
popular methods for optimization include evolutionary strategies like genetic al-
gorithms, dating back to at least 1971 (Audet, 2016). Other DFO methods include
swarm algorithms, particularly the popular Particle Swarm Optimization (PSO)
by (Kennedy, 1995). PSO has shown success in BBO and has become popular
in recent years. Another popular DFO method is the surrogate model optimiza-
tion (SGO). Typically, these are methods employing regression or interpolation
to approximate the objective function, thereby having a cheap evaluation of the
objective function.

2.4 C/S Arctic Drillship

In 2013, Inocean designed an arctic drillship for Statoil. The ship was called the
Cat I Arctic Drillship was a conceptual design of a DP and turret moored mobile
offshore drilling unit (MODU). In 2016, the CSAD was built and instrumented by
co-advisor Jon Bjørnø for research on Thruster-Assisted Positioning Mooring as a
part of his master thesis. According to (Bjørnø, 2016) the vessel is a 1:90 model of
Statoil’s Cat I Arctic Drillship shown in Figure 2.2 with model scale dimensions
of CSAD in Table 2.1
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2.4 C/S Arctic Drillship

Figure 2.2: CSAD vessel and thruster configuration [Courtesy: Frederich (2016)]

Table 2.1: Model ship Dimensions

Loa 2.578[m]
B 0.440[m]
D 0.211[m]
T 0.133[m]
∆ 127.92[kg]

As Figure 2.1 illustrates, there are 6 thrusters on the vessel. The low-level thruster
control is done using a speed controller for the RPM and a servo motor for the
control of the thruster angles. All the thrusters are azimuth thrusters called the
"Aero-naut Precision Schottel".

CSAD is controlled using a PlayStation 3 (PS3) controller or using a guidance,
navigation and control (GNC) system in Simulink. The PS3 controller can either
control the generalised forces (surge, sway and yaw), or it can control the indi-
vidual actuators (front and aft thrusters). Furthermore, the custom GNC system
outputs the thruster angles and speed of all 6 azimuth thrusters. The real-time con-
troller used onboard the vessel is the CompactRIO (cRIO), which compiles the
custom simulink block in real-time.

For a complete understanding of the setup of the CSAD, see Bjørnø (2016).
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2.5 Marine Cybernetics Laboratory

The Marine Cybernetics Laboratory consists of a wave basin and is mainly used
for testing motion control systems for marine vessels. The instrumentation of the
laboratory includes a towing carriage which can be used for specialised hydrody-
namic tests.

The MC lab has a fleet of vessels, with the newest vessel being the CSAD. The lab-
oratory has a real-time positioning system for both underwater vehicles and surface
vehicles. This system emulates a full scale global navigation satelite system. The
Qualisys motion capture system is composed of 3 Oqus cameras that detects the
distance to silver spheres in the frame and finds the positions of the spheres by
using triangulation. These silver spheres are called the reflectors and they are at-
tached to the ship at known locations. Using geometry, the 6 DOFs can be derived
from the position of 3 reflectors. However, for precision and redundancy purposes,
4 reflectors are used for the CSAD.

The wave maker is a single paddle wave making machine with a width equal to
that of the basin, 6 m. Furthermore, it has the following capacities:

• Regular waves: H < 0.25m, T = 0.3− 3s

• Irregulalar waves: H < 0.15m, T = 0.3− 3s

• Available Spectrum: JONSWAP

• Wave controller update rate: 10 Hz

• No. wave gauge on paddle: 4

• Stroke length on actuator: 590 mm

• Speed limit: 1.2 m/s

Furthermore, the towing carriage can be controlled from the computer or manually.
The computer mode is operated through, while the manual mode is operated from
the console at the towing carriage. Figure 2.3 shows the setup of the basin and
the towing carriage. Note that the measured position of the vessel is relative to the
towing carriage.
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2.5 Marine Cybernetics Laboratory

Figure 2.3: Illustration of the setup of the basin [Courtesy of (NTNU, 2015b)].
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Chapter 3
Mathematical Modelling

The mathematical modelling is used to design the 3 Degree of Freedom (DOF)
simulation verification model (SVM). It is also used to derive the control design
model (CDM) which is used to design the controller and observer.

At first, a 6 DOF model by (Bjørnø, 2016) was developed. Then, in (Lyngstadaas,
2018), an updated 3 DOF model with updated parameters was established, and it
is this model and these parameters that are used in this thesis.

3.1 Kinematics

Firstly, to establish a model of the vessel, a definition of the vessel motion is neces-
sary. This is key because the different sensors give measurements that are relative
to different reference frames. The reference frames used in MC-Lab are the body-
fixed reference frame and the carriage-fixed reference frame. The relation between
the two is seen in Figure 3.1 in the xy-plane.
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Chapter 3. Mathematical Modelling

TWC

y

x

r

Positive Directions

x: y:

:

Figure 3.1: TWC is the Towing Carriage where the QualiSys Cameras are attached

Carriage-fixed reference frame, with positions η1 = [x, y, z]> and Euler angles η2
= [θ, φ, ψ]>: This coordinate system is used like the North-East-Down (NED) ref-
erence frame is used for real vessels. This coordinate system assumes a flat earth
and does not take earth curvature into consideration. The positions and orienta-
tions of the vessel are measured in this reference frame by the QualiSys Tracking
Managers (QTM).

The body-fixed reference is a moving reference frame with translational and rota-
tional velocities ν1 = [u, v, w]> and ν2 = [p, q, r]>. The origin of the frame is in
ob, mid-ship in the waterline with the axis oriented to coincide with the principal
axis of inertia. xb is directed from aft to fore, yb is directed towards starboard
and zb directed down. It is in this coordinate system that the Inertial Measurement
Unit (IMU) measures translational and rotational accelerations. Furthermore, it is
in this coordinate system that the forces and moments are defined.

By assuming small roll angle, pitch angle, and heave motion (θ ≈ 0, φ ≈ 0, w ≈
0), the motion can be described in the xy-plane in 3 DOF with η = [x, y, z]> and
ν = [u, v, w]> :
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3.2 3 DOF Simulation Verification Model

η̇ = R(ψ)ν (3.1)

R(ψ) =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 (3.2)

3.2 3 DOF Simulation Verification Model

The 3 DOF SVM should be a high-fidelity model that aims to describe a vessel’s
motions as precise as possible. According to (Fossen, 2011), the model should
include the vessel’s dynamics, the propulsion system, environmental loads and
the measurement system should also be modelled. This mathematical model is
implemented in Simulink for simulation of the vessel. Like the actual setup in
MC-Lab, the SVM takes in the commanded angles, α, and control input, u and
outputs the measured pose, ηm like in Figure 3.2

Figure 3.2: Simulink block for the SVM

3.2.1 Vessel Dynamics

The vessel model was adopted from (Lyngstadaas, 2018) and is the nonlinear 3
DOF ship model in Equation (3.4) assuming νc = 0 as no current was used for the
simulations nor experiments.
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Chapter 3. Mathematical Modelling

η̇ = R(ψ)ν (3.3)

Mν̇ + C(ν)ν +D(ν)ν = τwave + τ (3.4)

The vessel dynamics take in the wave loadss and control forces, τw and τ , respec-
tively. Then the model calculates the pose vector, η. Moreover, M is the inertia
matrix, C(ν) is the Coriolis and centripetal matrix, and D(ν) is the damping matrix.
The inertia matrix, M, in 3 DOF is given as:

M = MRB +MA (3.5)

Where the rigid body mass, MRB and Added mass MA are

MRB =

m 0 0
0 m mxg
0 mxg Iz

 (3.6)

MA =

−X u̇ 0 0
0 −Y v̇ −Y ṙ

0 −N v̇ −N ṙ

 (3.7)

Where the mass of CSAD, m = 127.92 kg and the distance from the body fixed
origin to the center of mass, xg = 0.00375 m. The moment of inertia about the
z-axis, Iz = 61.967 kg/m2. The Coriolis and centripetal matrix is:

C = CRB(ν) + CA(ν) (3.8)

Where the rigid body and added Coriolis and centripetal matrices are:

CRB(ν) =

 0 0 −m(xg r + v)
0 0 mu

(xg r + v) −mu 0

 (3.9)

CA(ν) =

 0 0 −cA,13(ν)
0 0 cA,23(ν)

cA,13(ν) −cA,23(ν) 0

 (3.10)

Where
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3.2 3 DOF Simulation Verification Model

DL(ν) =

−Xu 0 0
0 −Y v −Y r

0 −Nv −N r

 (3.11)

DNL(ν) =

dNL,11(ν) 0 0
0 dNL,22(ν) dNL,23(ν)
0 dNL,32(ν) dNL,33(ν)

 (3.12)

Where

dNL,11(ν) = −X|u|u|u| −Xuuuu
2 (3.13)

dNL,22(ν) = −Y|v|v|v| − Y|r|v|r| − Yvvvv2 (3.14)

dNL,23(ν) = −Y|r|r|r| − Y|v|r|r| − Yrrrr2 − Yuru (3.15)

dNL,32(ν) = −N|v|v|v| −N|r|v|v| −Nvvvv
2 −Nuvu (3.16)

dNL,33(ν) = −N|r|r|r| −N|v|r|v| −Nrrrr
2 −Nuru (3.17)

(3.18)

Where the terms

Yur = Xu̇ (3.19)

Nuv = −(Yv̇ −Xu̇) (3.20)

Nur = Yṙ (3.21)

include the Munk moment.

3.2.2 Thruster Dynamics

The thruster model takes in the control signals (u,α) from the thrust allocation.
The thruster model calculates the force through:

τ(α, u) = T (α)KTu (3.22)

Where the thrust configuration matrix T is given in equation 3.23

T (α) =

c(α1) c(α2) c(α3) c(α4) c(α5) c(α6)
s(α1) s(α2) s(α3) s(α4) s(α5) s(α6)
φ(α1) φ(α2) φ(α3) φ(α4) φ(α5) φ(α6)

 (3.23)
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Chapter 3. Mathematical Modelling

Where c and s are the trigonometric functions cosine and sine, while φ(αi) =

Li cos(βi) sin(αi) where Li =
√
L2
i,x + L2

i,y and βi = tan(Li,x/Li,y). The

thrusters were fixed at α = [π, π/4,−π/4, 0, 5π/4, 3π/4]>. Figure 3.3 and Table
3.1 show the locations of the thrusters. Note that the orientations of thrusters (αi)
are defined relative to the body-fixed x axis with positive rotation clockwise.

Figure 3.3: Thruster configuration [Courtesy: Frederich (2016)]

Table 3.1: Thruster model scaled position [Courtesy: Frederich (2016)]

Thruster Position X[m] Position Y[m]
1 1.0678 0.0
2 0.9344 0.11
3 0.9344 -0.11
4 -1.1644 0.0
5 -0.9911 -0.1644
6 -0.9911 0.1644

The thrust coefficient matrix is KT = diag([1.49,1.49,1.49,1.49,1.49,1.49]). Lastly,
ui is the actuator input in Volt. According to Bjørnø et al. (2017) ui ∈ [−0.5, 0.5]
[V]. u is therefore saturated at these limits. The rate constraints of the thrusters are
taken into consideration in the thrust allocation and was therefore not modelled
here.

3.2.3 Wave Loads

The practical implementation of this concept in Simulink is done using a block
called ”Waves” in conjunction with an response amplitude operator (RAO) block
from the marine systems simulator (MSS) toolbox with parameters found by (Bjørnø,
2016). Because it was computationally heavy to use many waves components,
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3.3 3 DOF Control Design Model

only 4 out of 200 were used. 4 components is far from enough for representing
the total energy. However, as this thesis focuses on the tuning, it is prioritized with
computional efficiency over accurate waves. Furthermore, the waves gave a some
disturbance significant disturbance.

3.2.4 Measurement model

A simplified measurement modelling is done in this thesis by adding some white
noise to the actual positions

ηm = η + v (3.24)

According to (Fossen, 2011) the measurement noise can be assumed to be a zero-
mean Gaussian white noise process with covariance matrix, R. The measurements
from QTM are precise and the error is believed to be in the magnitude of 1 mm.
Therefore, white noise with power [0.001 , 0.001 m, 0.001 rad]> was added.

3.3 3 DOF Control Design Model

The control design model will be used for model-based controller and observer
design. It is desired to create a low-frequency (LF) CDM of the vessel to be used
for controller design, as well as a wave-frequency (WF) model, a bias model and
a measurement model to use for observer design. It is desired that this model
describes the physical characteristics of the system. The CDM is adopted from
(Sørensen, 2019).

3.3.1 Low-frequency Control Design Model

To simplify the SVM from Equation 3.4, low-speed maneuvers are assumed. The
LF vessel dynamics can then be described as:

η̇ = R(ψ)ν (3.25)

Mν̇ = −DLν +R(ψ)b+ τ (3.26)
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3.3.2 Wave Frequency Control Design Model

The WF wave motion is described using a state-space representation of a linear
wave spectra.

ξ̇w = Awξw + Ewww (3.27)

ηw = Cwξ (3.28)

Where ηw is the wave motion, and orientation vector, ww is a zero-mean Gaussian
white noise vector. The system matrix Aw, the disturbance matrix Ew and the
measurement matrix, Cw can be expressed as:

Aw =

[
03x3 I3x3
−Ω2 −2Λ

]
(3.29)

Cw =
[
03x3 I3x3

]
, Ew =

[
03x3
Kw

]
(3.30)

Where Ω = diag([ω1, ω2, ω3]), Λ = diag([ζ1, ζ2, ζ3]) andKw = diag([Kw1,Kw2,Kw3])
and the model is equivalent to the decoupled second-order transfer functions:

ηwi

wwi

=
Kwis

s2 + 2ζiωis+ ωi
(3.31)

Where ζi is a damping coefficient, ωi is the dominating frequency and Kwi =
2λiωiσi where sigma is a constant describing the wave intensity.

3.3.3 Bias Model

The bias model describes the slowly varying forces and moments due to 2. or-
der wave and wind loads and current. It will also account for for errors in the
modelling. The recommended model by (Sørensen, 2019) is the 1-order Markov
model

ḃ = −T−1b b+ Ebwb (3.32)

Where Tb are the time constants for these slowly varying forces in surge sway and
yaw. wb is a zero-mean Gaussian white noise vector and Eb is a scaling matrix.
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3.3 3 DOF Control Design Model

3.3.4 Measurement Modelling

The Measurements are modelled as

y = η + Cwξ + v (3.33)

Where v∈ R3 is the zero-mean Gaussian measurement noise vector.

3.3.5 Total Control Design Model

The control design model can be written in state space form by combining the
results from Section 3.3.1 - 3.3.4.

ξ̇w = Awξw + Ewww (3.34a)

η̇ = R(ψ)ν (3.34b)

ḃ = −T−1b b+ Ebwb (3.34c)

Mν̇ = −DLν +R(ψ)b+ τ (3.34d)

y = η + Cωξ (3.34e)

The CDM is a state-space model of the system that will be used for control design
in Section 4.3 and for observer design in Section 4.2.
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Chapter 4
Motion Control

Trajectory
Generator

Guidance
Setpoint Model-Based

Motion 
Controller

Control

Fixed Thrust
Allocation

CSAD or SVM

The DP System

Model-Based
Observer

Navigation

Figure 4.1: The DP system as a motion control system

Figure 4.1 describes the DP as a the motion control system as relevant for this
thesis. The motion control system is divided into a guidance system, a navigation
system and a control system.

The DP system designed in this thesis has trajectory tracking as the control objec-
tive. Section 4.1 describes the trajectory generator. Then, Section 4.2 describes
the model-based DP observer. Section 4.3 describes the model-based tracking
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controller subject to tuning and Section 4.4 presents the fixed thrust allocation for
allocating the low-level control input, u and α.

4.1 Guidance System

Figure 4.2: The Guidance block in Simulink

Simply explained, the guidance system used in Figure 4.2 is a trajectory generator
that generates a smooth trajectory to a setpoint, ηr. It takes in the set point and
generates a smooth trajectory, along a line from one set point to another. It also
generates the desired body-fixed accelerations and velocities.

As described by (Sørensen, 2019) a reference model can be used to calculate fea-
sible trajectories for the desired vessel motion. It is suggested by (Fossen, 2011)
that the the reference model should be of the third degree and should be designed
as a low-pass filter cascaded with a mass-damper-spring system.

ad + Ωvd + Γxd = Γxref (4.1)

ẋref = −Afxref +Afηr (4.2)

Where ad, vd and xd correspond to the desired carriage-fixed acceleration, velocity
and position such that

ν̇d = R>(ψ)ad = R>(ψ)η̈d (4.3)

νd = R>(ψ)vd = R>(ψ)η̇d (4.4)

ηd = xd (4.5)

Note that in Equation 4.3, low yaw rate is assumed such that Ṙ(ψ)η̇d ≈ 0. More-
over,
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4.1 Guidance System

• Ω is the diagonal matrix diag([2ζ1ω1 2ζ2ω2 2ζ3ω3])

• Γ is the diagonal matrix diag([ω2
1 ω

2
2 ω

2
3])

• Af is the diagonal matrix diag([ 1
t1

1
t2

1
t3

]) = diag([ω1 ω2 ω3])

By taking the Laplace transform and combining the Equation 4.1 and 4.2 in each
decoupled degree of freedom, the following is achieved:

xdi
ηri

=
ω2
i

s2 + 2ζiωis+ ω2
i

· ωi
s+ ωi

(4.6)

For i = 1,2,3. Where the parameters are given as

• ωi = 0.1 rad/s is the cutoff frequency of the reference model. By setting
ω1 = ω2, the trajectory follows a straight line.

• ζi = 1 is the relative damping ratio of the reference model.

The resulting guidance system follows a line from one setpoint to the next. The
DP problem can then be defined as in Figure 4.3.

N

E

U(   )   A(   )   

Maximal vessel speed and acceleration
as a function of the crab angle, 

U(   , t)   

A(   , t)   

Figure 4.3: The guidance objective

Assume that the vessel follows a straight line from one point to another with a
speed U(β, t) and a rotational speed r(t) like in Figure 4.3. The crab angle, β is the
angle between the the course (χ) and the heading (ψ). In this thesis the speed is to
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be equal for all crab angles so that U(β, t) = U(t). Moreover, U is saturated by a
maximal velocity Umax and r is saturated by a maximal yaw rate rmax so that:

Usat = sat(
√
u2 + v2) (4.7)

usat = Usat cosβ (4.8)

vsat = Usat sinβ (4.9)

rsat = sat(r) (4.10)

In (Nørgaard Sørensen et al., 2018) so-called feasible sets of the velocities were
investigated for the CSAD. In principle, they found the limits for coupled motion
like in Figure 4.4.

Figure 4.4: Feasible velocities for combined surge/sway: [Courtesy (Nørgaard Sørensen
et al., 2018)]

The speed is limited to Umax = 0.075 m/s and the yaw rate limited by rmax =
3 deg/s This is just a simplification and can lead to unfeasible velocities for rare
cases. In total, the parameters were chosen to be:

26



4.2 Model-based observer

Table 4.1: Reference trajectory parameters

Parameter Value
Umax 0.075 m/s
rmax 3 [deg/s]
ζi 1
ωi 0.1

4.2 Model-based observer

Figure 4.5: The Simulink block of the observer

Figure 4.5 illustrates the inputs and outputs of the observer. It takes in the measured
pose, ηm and commanded forces, τ and calculates the LF position and velocity
estimates, η̂ and ν̂. It is required that the observer has the following functionality:

• Wave filtering. The motion of CSAD is classified into LF and WF motion.
For DP purposes, the WF motions are not controlled. This is often because
the vessel does not have the power nor thrust capacity to do a appreciable
difference. The observer filters out the WF motion and sends a LF motion
signal to the controller.

• Reconstruction of non-measured data. For CSAD, the measured states are
towing carriage-fixed pose measurements, ηm = [xm, ym, ψm]>. How-
ever, the controller needs the velocities in the body-fixed coordinate system.
The observer reconstructs the LF velocities for the controller.
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Chapter 4. Motion Control

In this thesis an observer called the nonlinear passive observer (NLP) is used. The
NLP observer is advantageous in its tunability and that it meets the requirements
of global exponential stability (GES).

The nonlinear observer design is based on the 3 DOF CDM found in Section 3.3.5
and is represented in state-space form as

˙̂
ξ = Aω ξ̂ +K1ȳ (4.11a)
˙̂η = R(ψ)ν̂ +K2ȳ (4.11b)
˙̂
b = −T−1b +K3ȳ (4.11c)

M ˙̂ν = −Dν̂ +RT (ψ)b̂+ τ +RT (ψ)K4ȳ (4.11d)

ŷ = η̂ + Cωξ (4.11e)

Where the observer gains in Equation 4.11 are given as

K1 =



k1 0 0
0 k2 0
0 0 k3
k4 0 0
0 k5 0
0 0 k6

 ,K2 =

k7 0 0
0 k8 0
0 0 k9



K3 =

k10 0 0
0 k11 0
0 0 k12

 ,K4 =

k13 0 0
0 k14 0
0 0 k15


These matrices are tuned according to the tuning rules of (Fossen, 2011).

ki = −2(ζni − λi)
ωci
ωoi

(4.12a)

k3+i = 2(ζni − λi)ωoi (4.12b)

k6+i = ωci (4.12c)

k9+i >>
k12+i
Tb,i

(4.12d)

Where
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4.3 Model-Based DP controller

• ζn = 1 > λ is a damping parameter (Typically 1)

• λ = 0.1 is the relative damping of the wave spectrum (Typically 0.1 )

• ωo is the peak frequency of the wave spectrum

• ωc > ωo is the filter cut-off frequency (ωc = 1.2255ωo is used)

• Tb,i >> 1 (i = 1,...3) are the bias time constants (1000 s commonly used in
full scale). But for the CSAD doing transient motion the bias can change
rapidly so it is set to Tb,i = 100/

√
90 = 10.54 s because of time scaling.

4.3 Model-Based DP controller

(a) Parametrization (b) DP controller

Figure 4.6: The parametrized model-based DP controller

The DP controller in this thesis is concerned with the control objective called tra-
jectory tracking. Moreover, it is categorised as low-speed tracking according to
(Sørensen, 2019). Trajectory tracking means that the desired vessel motion has
temporal and spatial constrains, meaning that ηd = ηd(t), for example.

The proposed controller shown in Figure 4.6 (b) is a nonlinear PID with feed-
forward adopted from (Fossen, 2003). It takes in the desired pose (ηd), velocities
(νd), accelerations (ν̇d) as well as the estimated pose (η̂) and velocity (η̂). It also
has the PID controller gain matrices Kp, Ki and Kd as inputs to enable autotuning.
These are further parametrized by the relative damping (ζ) and bandwidth (ωb) of
the controller like seen in Figure 4.6 (a). Moreover, the outputs of the controller
are the desired forces in the body-fixed reference frame, τ .
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Chapter 4. Motion Control

The nonlinear PID with feed-forward from Figure 4.6 (b) is explained in Section
4.3.1, and the parametrization in Figure 4.6 (a) is described in Section 4.3.2.

4.3.1 Nonlinear PID controller with Feed-forward

Recall that the guidance system in Section 4.1 computes the desired positions,
velocities and accelerations, ηd, νd and ν̇d. Furthermore, recall the LF CDM from
Section 3.3.1. Assume no bias. Then while following the trajectory, the model-
based feed forward terms can be simplified to Equation 4.13

Mν̇d +Dνd = τFF (4.13)

Given that this model was perfect, feed-back control would not be necessary. Im-
perfections in the model and disturbences does, however, make a feed-forward
controller insufficient. Therefore, to create a robust controller, feed-back control
is added. For feed-back control, the PID controller is used.

ηe = η − ηd (4.14)

ξ̇ = ηe (4.15)

νe = R(ψ)>η̇e (4.16)

τPID = −MKp︸ ︷︷ ︸
Kp

R(ψ)>ηe︸ ︷︷ ︸
e(t)

−MKi︸ ︷︷ ︸
Ki

R(ψ)>ξ︸ ︷︷ ︸∫ t
0 e(t)dt

−MKd︸ ︷︷ ︸
Kd

νe︸︷︷︸
d
dt
e(t)

(4.17)

Combining the feed-forward control from Equation (4.13) and the feed-back con-
trol from the PID controller in Equation 4.17, the nonlinear PID with feed-forward
from (Fossen, 2003)

ξ̇ = ηe (4.18)

τ = −M(KiR
>(ψ)ξ +KpR

>(ψ)ηe +Kdνe)︸ ︷︷ ︸
τPID

+Mν̇d +Dνd︸ ︷︷ ︸
τFF

(4.19)

Where ηe = η − ηd and νe = ν − νd. Thus, the controller is tuned by adjusting
the control gain matrices, Kp, Ki and Kd. Furthermore, the two last terms in
(4.19) are feed-forward terms. In addition, all the control gains, Kp, Ki, Kd, are
body-fixed gains.
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4.3 Model-Based DP controller

4.3.2 The parametrization of the control gains

The tracking error from the nonlinear PID controller in Equation 4.17 is defined
as x = [ξ> η>e ν>e ]>. The error dynamics of the vessel can be expressed in
state-space form.

ẋ = T>(ψ)AcT (ψ)x (4.20)

Where

Ac =

 0 I 0
0 0 I
−Ki −Kp −(M−1D +Kd)

 (4.21)

and

T (ψ) =

R(ψ) 0 0
0 R(ψ) 0
0 0 I

 (4.22)

In order to do pole placement, Equation (4.20) is solved in the Laplace domain.

det(Is− T>(ψ)AcT (ψ)) = 0 (4.23)

Which gives
Λ3 + (M−1D +Kd)Λ

2 +KpΛ +Ki = 0 (4.24)

Where Λ = Diag([s, s, s]). Compare to the characteristic polynomial for a third-
order response (mass-damper cascaded with low-pass filter):

(Λ + Ωn)(Λ2 + 2ΓΩnΛ + Ω2
n) = (4.25)

Λ3 + Ωn(1 + 2Γ)︸ ︷︷ ︸
M−1D+Kd

Λ2 + Ω2
n(1 + 2Γ)︸ ︷︷ ︸

Kp

Λ + Ω3
n︸︷︷︸

Ki

= 0 (4.26)

Where Ω = Diag([ωn1 ωn2 ωn3]) and Γ = Diag([ζ1 ζ2 ζ3]) are the diagonal
matrices containing the natural frequencies and relative damping in surge, sway
and yaw. Comparing (4.24) with (4.26) yields

Kd = Ωn(1 + 2Γ)−M−1D (4.27)

Kp = Ω2
n(1 + 2Γ) (4.28)

Ki = Ω3
n (4.29)
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Furthermore, (Fossen, 2011) states that adequate tracking performance and stabil-
ity requires the bandwidth of the motion control system to be higher than that of
the reference model. The bandwidth in one dimension is given as

ωb = ωn

√
1− 2ζ2 +

√
4ζ4 − 4ζ2 + 2 (4.30)

By this definition the bandwidth of the guidance system is 0.064 rad/s for all
DOFs. Moreover, a parametrized nonlinear PID with feed-forward control has
been established. The control gains, Kp, Ki and d are parametrized by 6 param-
eters, namely the bandwidths (ωbi) and relative dampings (ζi) of the controller in
all 3 DOFs. From hereon out, the control parameters refers to the the bandwidths
and relative dampings of the controller.

The CSAD does however require both thruster orientation α and control input u
for all 6 azimuth-thrusters. To transform the high-level control forces τ to the
low-level commands α and u, a thrust allocation is applied in the Section 4.4.

4.4 Thruster Allocation

Figure 4.7: The Simulink block of the fixed thrust-allocation

The following thruster allocation was adopted from (Lyngstadaas, 2018). Recall
the thrust-configuration matrix established in Section 3.2.2. For simplified and
predictable thrust allocation, the orientations of the thrusters are fixed. Hence,
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4.4 Thruster Allocation

there is a constant relationship between the commanded forces and the control
input u

u = K−1T T †(α)τsat (4.31)

Where the KT is diagonal thrust coefficient matrix. The psuedo inverse of T(α),
T †(α) was computed using the Matlab function pinv(T). Moreover, τsat is the mag-
nitude and rate saturated (MRS) forces are calculated computed as

δ̇ = satr(τ̇ +K(τ − δ) (4.32)

τsat = satm(δ) (4.33)

Where K > 0 is a diagonal tuning matrix used to decide the speed in the inner
loop of the MRS model like in a low-pass filter. Setting Kii < 1 gives a slower
convergence towards the commanded forces than the rate saturation, whileKii > 1
gives an accurate tracking that enforces the rate saturation. The parameters for the
MRS model are given in Table 4.2.

Table 4.2: Parameters used for magnitude and rate saturation in the thrust allocation

Parameters Values
τ∗max [3 N, 3 N, 3 Nm]>

τ̇max [2.88 N/s, 1.6 N/s, 1.36 Nm/s]>

K diag([5, 2.78, 2.36]) [1/s]

Note that these parameters are adapted to the thrust configuration. Furthermore,
the magnitude saturation is not correct according to (Lyngstadaas, 2018), and
should be τmax = [3.6 N, 2 N, 1.7 Nm]>. The effect of this error is that
the thrust allocation can command infeasible forces for sway and yaw.
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Chapter 5
Experiment setup for autotuning

In Chapter 3 the simulation verification model of CSAD was explained and in
Chapter 4, the DP system was established as a motion control system. However,
the motion control system needs the following inputs

1. Setpoints defining some maneuver. A maneuver needs to be defined

2. Control gains, Kp, Ki and Kd. which are calculated from the control pa-
rameters, namely control bandwidths (ωb) and relative dampings (ζ). The
parameters are the tuning variables that needs to be defined by an autotun-
ing component.

In this chapter, the experimental setup for autotuning in simulation and laboratory
are elaborated. It includes a description of the test maneuver in Section 5.1 and
an explanation of the simulation and laboratory autotuning schemes in Section 5.2
and 5.3, respectivly.

5.1 Test maneuver

Initially, the plan was to do the 4-corner DP-test like in (Værnø et al., 2019). It is
a useful test that includes coupled and decoupled performance in surge, sway and
yaw. However, to reduce the time of each maneuver, a simple 2-setpoint test was
created as shown in Figure 5.1.
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z

y

x

Yaw

Figure 5.1: The 2-setpoints in the autotuning, ηd1 = [3, 0,−45◦] and ηd2 = [5, 0,−135◦].
The upper figures are from the MC-Lab. The lower figures from a home-made animation
tool of MC-lab. The red line defines the positional trajectory that the vessel should follow

One test in Figure 5.1 consists in two transients, namely line tracking from Position
2 to position 1, and line tracking from Position 1 to position 2. The corresponding
trajectory is displayed in Figure 5.2
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Figure 5.2: Desired position and desired body-fixed velocities, ηd and νd.

5.2 Simulation

The simulation setup is inspired by (Værnø et al., 2019) who did DP observer
tuning using DFO.

Offline Autotuner

DFO

SVMMCS

Simulation model
SPC

CP2K

PI

1

2

3

4

5

6

7

Figure 5.3: The simulation setup for autotuning. SPC is short for setpoint control and
defines the maneuver, CP2K transforms control parameters to control gains, MCS is the
motion control system, SVM is the simulation verification model, PI is the performance
indicator function and DFO is the derivative-free optimization.
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Figure 5.3 simply explains the way the offline autotuning in simulation works. It
is like a feed-back loop. The numbering of the signals mean

1. Setpoint: The setpoint control (SPC) sets the setpoint to ηd2 to the guidance
in the motion control system (MCS) when the a test starts. Half-way into
the simulation, it swaps setpoint to ηd1.

2. Control gains: The control parameters to gains (CP2G) calculates control
gains Kp, Ki, Kd which are constant throughout the test. They are calcu-
lated from the control parameters.

3. Low-level actuator control signals: The MCS sends low-level actuator con-
trol signals α and u into the simulation verification model (SVM) at each
timestep.

4. Measured position: The MCS recieves the measured position, ηm at each
timestep.

5. Timeseries of performance data. When the simulation model is finished
simulating, timeseries of performance data are sent to the offline autotuner
in Matlab. The time-series of data are then used to calculate the PI. These
performance time series are sent after each simulation.

6. Performance indicator: A scalar PI is sent to the DFO. The PI acts as an
evaluation of the objective function that the DFO tries to optimize.

7. New control parameters. The optimization sends out new control param-
eters, [ζ1 ζ2 ζ3 ωb1 ωb2 ωb3]. These parameters are sent in before each
simulation.

To complete the system architecture, the offline autotuner in Matlab needs to be
derived. This will be further detailed in Chapter 6.

5.3 MC-lab Test

The real world system utilizes a real-time embedded industrial controller called
the NI CompactRIO (cRIO). This system runs real-time control systems that are
programmed in LabView or Simulink code. The topology of the cRIO can be seen
in Figure 5.4
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5.3 MC-lab Test

Figure 5.4: Software topology for the CompactRIO. Note that the block called ctrlstudent
is called ctrlcustom in the current setup [Courtesy:(Bjørnø, 2016)]

The inputs to the cRio are

• Veristand Workspace. The Veristand workspace allows simple interaction
with the system. It is possible to adjust values of so-called Veristand inputs
as well as monitoring of different variables within the system and logging.

• Qualisys Tracking Managers. The camera/reflector measurs the pose. It is
then sent as inputs to the cRIO.

• The sixaxxis gamepad (Playstation 3 controller) can be used for choosing
control mode and can also be used for manual control.

The sixaxxis gamepad can select between 4 modes of control, including manual
control of the thrusters and a custom control mode where the user can implement
their controller. Hence, it is necessary to establish a custom control block that
takes in only position measurements from the QTM and returns low-level control
commands (α,u). The custom control consists of the motion control system as well
as an online autotuning component as illustrated in Figure 5.5
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MCS
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CP2K

Online Autotuner

DFO PI

PS3

QTM LLAC

Simulink: CTRL_Custom
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Figure 5.5: The laboratory setup for autotuning. SPC is short for setpoint control and
defines the maneuver, CP2K transforms control parameters to control gains, MCS is the
motion control system, SVM is the simulation verification model, PI is the performance
indicator function and DFO is the derivative-free optimization. QTM stands for Qual-
isys Tracking Manager. LLAC stands for low-level actuator control and PS3 refers to the
Playstation 3 controller/sixaxxis gamepad

Figure 5.5 simply explains the information flow between the different components
of the system. The numbering of the signals mean

1. (X)-button press: Is 1 when the (X) button is pressed on the PS3 controller

2. Estimated pose. The estimated pose η̂ is sent to the SPC. SPC uses it to
decide whether the vessel has stabilized. If so the guidance is reset from this
point.

3. Setpoint and reset signals: The setpoint control (SPC) is responsible for set-
ting the setpoint for the MCS and task handling. When signal 1. is activated,
the setpoint is set to ηd1. Simultaneously integral and guidance reset signals
are sent out to MCS. The setpoint is set to ηd2 when a test starts. Simultane-
ously integral and guidance reset signals are sent out to MCS and the PI so
that it starts integrating. Halfway in the simulation, the setpoint is set to ηd1.
When the simulation time is over, the SPC resets integrals, guidance and
switches to a safe controller in CP2K, and sends a signal so that DFO ap-
plies optimization and PI stops integrating. When the vessel has stabilized,
SPC changes setpoint, resets integrals, guidance and switches to the control
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new control gains.

4. Measured position: The MCS recieves the measured position, ηm, from the
Qualisys Tracking Manager (QTM).

5. Control gains: The control parameters to gains (CP2K) calculates control
gains Kp, Ki, Kd which are constant throughout the test. They are calcu-
lated from the control parameters. However note that it has a safe controller
that is activated when the test is over.

6. Low-level actuator control signals: The MCS sends low-level actuator con-
trol signalsα and u into the low-level actuator control (LLAC) for the thrusters.

7. Live performance data. During the test, performance data are sent to calcu-
late the performance indicator (PI).

8. Performance indicator: A scalar PI is sent to the DFO when the test is over.
The PI then acts as an evaluation of the objective function that the DFO tries
to optimize.

9. New control parameters. The optimization sends out new control parameters
when the DFO has been applied, [ζ1 ζ2 ζ3 ωb1 ωb2 ωb3]. These parameters
are sent to CP2K, but are not used until the vessel has stabilized and a new
test begins.

Moreover, the functionality of the online autotuner is best explained through ex-
ample. Assume that Figure 5.6 describes one dimension of the tracking problem.

5.6.
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Figure 5.6: Methodology of the tuning. p is the position. Eta_d can be considered xd(t),
Eta can be considered as x(t) and IAE is the integral of absolute error and is an example of
a performance indicator, PI

The process in 5.6 can be divided in five phases

1. This phase is the phase before the ship is put into autotuning mode. When
the user presses the (X)-button on the PS3 controller, a signal is sent to
the SPC. The SPC then sends reset signals to the MCS so that all inte-
grals are reset. The position in the guidance system is reset to the cur-
rent position and the setpoint is set to the origin of the autotuning, namely,
ηd1 = [3, 0,−45◦]>. This way, the guidance system creates a line trajectory
from where it is when (X) is pressed, to ηd1.

2. This phase is used for a "safe" trajectory tracking to ηd1. The control param-
eters used for this movement are predefined and are known to give a ”safe
behaviour”.

3. This is the stabilising phase that is used to give the ship a similar start-
ing basis for each performance test. The requirement is that the ship sta-
bilises within the error band, Ess for 20 seconds. The error band is Ess =
[0.02, 0.02, 2◦] >.

4. This phase is the testing phase and it lasts for 3 min (180 s). When the
stabilising phase is concluded, the DFO changes the control parameters and
this phase initiates. The SPC initiates the setpoint to ηd2 = [5,0,-135◦]>.
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5.3 MC-lab Test

Note that the trajectory should be created from where the vessel is at initia-
tion. This is done to minize the effect of biased initial conditions. Moreover
Halfway into the test (t = 90 s), the setpoint is set to the origin (ηd1) for the
remaining 90 s. During the test, the PI (IAE) is calculated as seen in Figure
5.6.

5. When phase 4. is over, the total PI is the objective function used for the
DFO to calculate new and more optimal control parameters. Meanwhile,
the ”safe" controller is used to stabilize the vessel at the test origin. This
phase is used to stabilise the vessel further. After phase 5., phase 4. and 5.
are repeated until satisfactory results are obtained.

As mentioned in Section 5.2, the PI and DFO need to be established to complete
the autotuning architecture and will be elaborated in Chapter 6.
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Chapter 6
Autotuning of control gains using
performance indicators and
derivative-free optimization

This chapter covers how to create the actual autotuning component introduced in
Section 5.2 and 5.3, with special focus on the DFOs and the PIs. First, the opti-
mization problem is formulated in Section 6.1 and the bounds defined in Section
6.2. 3 candidate PIs are established and tested on the simulation model in Section
6.3 and one is selected. Thereafter, 3 candidate DFO algorithms are established
and tested on the simulation model in Section 6.4, and the preferred algorithm is
selected. And finally, the implementation of the system in MC-Lab is explained in
Section 6.5.

6.1 Formulation of optimization problem

The goal is simply stated to find the control parameters, x, that yield the best
performance, f(x), subjected to the some constraints gi(x). Mathematically,

min f(x) (6.1)

subject to gi(x) (6.2)
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For i = 1, 2, .., 6. The control parameters, x = [ζ1 ζ2 ζ3 ωb1 ωb2 ωb3]
T . The

objective function, f(x) is the PI, and the constraints, gi(x) represent the linear
upper and lower bounds of the control parameters:

gi(x) : xi,min ≤ xi ≤ xi,max (6.3)

In simulation testing, it was implemented as in Figure 6.1

Figure 6.1: Example of implementation of offline autotuning with PSO as DFO algorithm
and IAE as PI.

In the simulation setup described by Figure 6.1, there are three Matlab functions,
namely an inbuilt DFO function (e.g., particleswarm), an objective function, f(x),
that assigns the control parameters, x, to the Simulink model and runs the simu-
lation. The simulation model contains toworkspace-blocks, that sends time series
back to Matlab after the simulation is over, making it possible to calculate the PI
(e.g., IAE). The PI is sent back to the DFO as objective function, f(x).

6.2 The bounds of the optimization

Recall the parametrization of the control gains derived in Section 4.3.2

Kd = Ωn(1 + 2Γ)−M−1D
Kp = Ω2

n(1 + 2Γ)

Ki = Ω3
n

ωni =
ωbi√

1− 2ζ2i +
√

4ζ4i − 4ζ2i + 2
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for i = 1, 2, 3 where ωbi is the bandwidth and Ωn = Diag([ωn1 ωn2 ωn3]) and
Γ = Diag([ζ1 ζ2 ζ3]) are the natural frequency matrix and relative damping ma-
trix, respectively. The parametrization has the following advantages :

1. Reduced the number of parameters of the optimization.

2. Enabled linear bounds. The elements Kp, Ki and Kd are interrelated and it
is not practical to use linear bounds for these as this will often lead to failure.
On the other hand, the bandwidth and relative damping can easily use linear
bounds.

3. The parametrisation is intuitive and the parameters can be understood as
physical entities.

It is stated in (Fossen, 2011) that the relative damping can be chosen between 0.8-
1.0 and that the bandwidth is between 0.01 rad/s for large oil tankers to 0.1 rad/s
for small ships and underwater vehicles. Froude scaled with λ = 90, this equates
to model scale bandwidths between 0.1 rad/s for large oil tankers to 1 rad/s for
small ships and underwater vehicles.

It is also stated that adequate tracking performance requires the bandwidth of the
control system to be higher than the bandwidth of the guidance system. Recall
from Section 4.3 that the bandwidth of the guidance system is 0.064 rad/s in all
DOFs.

CSAD is a relatively large vessel in full-scale (Loa = 232), and it was therefore
assumed that a bandwidth domain of 0.1-0.5 rad/s would suffice. Moreover, the
search domain of the relative damping was set to 0.7-1.5 to create a larger search
domain. This gave the bounds in Table 6.1.

Table 6.1: The upper and lower bounds of the optimization

Parameter Surge Sway Yaw
ωb,min 0.1 [rad/s] 0.1 [rad/s] 0.1 [rad/s]

ωb,max 0.5 [rad/s] 0.5 [rad/s] 0.5 [rad/s]

ζmin 0.7 [−] 0.7 [−] 0.7 [−]

ζmax 1.5 [−] 1.5 [−] 1.5 [−]

Which is equivalent to the relatively large search-space described by the minimal
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and maximal control gains:

Min:

Kp︷ ︸︸ ︷0.024 0 0
0 0.024 0
0 0 0.024


Ki︷ ︸︸ ︷0.001 0 0

0 0.001 0
0 0 0.001


Kd︷ ︸︸ ︷0.199 0 0

0 0.194 −0.026
0 0.003 0.017


Max:

7.140 0 0
0 7.140 0
0 0 7.140

 2.385 0 0
0 2.385 0
0 0 2.385

 5.305 0 0
0 5.301 −0.026
0 0.003 5.124



6.3 Performance indicator functions

The PI relevant for this thesis is a scalar value that defines the performance of
the trajectory tracking. More specifically, the trajectory tracking test defined in
Section 5.1.

The performance functions are evaluated on the following criterions

1. Tracking Accuracy

2. Avoiding excessive control action (wear and tear)

3. Quality

4. Tuning

To evaluate performance, the following time series are utilized

• The time series of the pose error, ηe(t) = η̂(t)− ηd(t). This time series can
be used to evaluate the accuracy of the tracking.

• The time series of the commanded generalised forces, τ(t). It can be used
as a counterweight to the accuracy.

• The time series of the velocity, ν̂(t). The velocity can be used to for example
calculate the total energy consumption.

The time series have different magnitudes and units. Therefore, inspired by (Lyn-
gstadaas, 2018), it is chosen to normalise the time series. The division in 6.4 is
element-wise.

η̄e(t) =
ηe(t)

ηe,max
, ν̄(t) =

ν(t)

νmax
, τ̄(t) =

τ(t)

τmax
(6.4)

Where the absolute limits are:
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Table 6.2: Max error, velocity and control effort

Parameter Value
ηe,max [2 m, 2 m, 90◦ deg]>

νmax [0.4142 m/s, 0.109 m/s, 6.327 deg/s]>

τmax [3.6 N, 2.0 N, 1.7 Nm]>

In (Sørensen and Breivik, 2015), controllers are compared using the integral of
absolute error (IAE), integral of squared error (ISE), integral of absolute error
multiplied by time (ITAE) and introduces the integral of absolute error multiplied
by work (IAEW). Moreover, in (Eriksen and Breivik, 2017) the measure integral
of absolute differentiated control, IADC. These PIs are described below.

• Integral of absolute error, IAE:

IAE(t) =

∫ t

0
|η̄e(σ)|dσ

IAE describes the overall accuracy. It acts as a simple accuracy measure, but
it is intuitive in that the perfect IAE is zero. To the authors knowledge, it is
the most common performance measure

• Integral of squared error (ISE):

ISE(t) =

∫ t

0
η̄e(σ)>η̄e(σ)dσ

ISE is similar to IAE in that it emphazises the accuracy of the tracking. It
does however lay more weight on large errors.

• Integral of absolute error multiplied by time, ITAE:

ITAE(t) =

∫ t

0
t|η̄e(σ)|dσ

The ITAE focus more on errors later in the simulation. Thus, transient re-
sponse is not weighed much, while stationary errors are important. This
measure is not so relevant for this thesis because the error has the same im-
portance throughout the tracking test, independent on time.

• Integral of absolute error times work, IAEW:

IAEW (t) =

∫ t

0
|η̄e(σ)|dσ

∫ t

0
|ν̄(σ)>τ̄(σ)|dσ
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The IAEW is a measure of error vs work. It weighs error, velocity and
control input equally. Theoretically, the integral of error can be reduced to
zero, while the integral of work can only be reduced to the minimal work for
the maneuver.

• Integral of absolute derivative control, IADC:

IADC(t) =

∫ t

0
|¯̇τ(σ)|dσ

The IADC is a pure wear and tear measure. It emphazises changes in control
input, and gives no weight to the accuracy, and needs to be in combination
with an accuracy measure to make sense. Since it is a derivative, it is highly
susceptible to noise.

• The integral of absolute error and control, IAEC

IAEC(t) =

∫ t

0
|η̄e(σ)|+ ρ|τ̄(σ)|dσ

Where ρ = 0.15 was set based on some tests. The measure weighs both
control input and error. Theoretically, the integral of error can be reduced
to zero, while the integral of control input can only be reduced to some
minimum. This makes the tuning of ρ difficult.

The three chosen candidates were IAE, IAEW and IAEC. Inspired by (Værnø
et al., 2019) who did observer tuning, it is chosen to use the 1. norm of the error,
velocity and control input instead of the 2. norm. In summary, the 3 chosen
candidate performance indicator functions are:

IAE(t) =

∫ t

0
|η̄e(σ)|1dσ (6.5)

IAEW (t) =

∫ t

0
|η̄e(σ)|1dσ

∫ t

0
|ν̄(σ)>τ̄(σ)|1dσ (6.6)

IAEC(t) =

∫ t

0
|η̄e(σ)|1 + ρ|τ̄(σ)|1dσ (6.7)

In terms of optimization, they are objective functions. To test these objective func-
tion, they were tested on the simulation model described in Chapter 3. and 4.
PSO was used for the optimization with swarm size, N = 6, self-adjustment weight
b1 = 0.1, social adjustment weight b2 = 1.49 and the algorithm used an adaptive
inertia weight, a ∈ [0.1, 1.1].

Figure 6.2, Table 6.3 and Table 6.4 indicates the results from optimization with
120 simulations with concern to these three performance integrals.
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Figure 6.2: Convergence of PI as a Function of simulation number

Table 6.3: The performance of the optimization methods with respect to 1-IAE, 2-IAEC,
and 3-IAEW. Hence, the diagonal elements should be the highest in each column. However
note that this is not the case for the first column

Method IAE IAEC IAEW

1-IAE 1.02 14.4 11.6
2-IAEC 1.35 13.5 11.1
3-IAEW 1.00 17.5 10.0

Table 6.4: Control parameters obtained when optimizing with respect to 1-IAE, 2-IAEC,
and 3-IAEW

Method ζsurge ζsway ζyaw ωb,surge ωb,sway ωb,yaw
1-IAE 1.05 0.70 0.87 0.49 0.44 0.27
2-IAEC 0.79 0.70 0.76 0.50 0.20 0.27
3-IAEW 1.05 0.70 0.70 0.49 0.35 0.34

Table 6.3 illustrates that optimizing with respect to IAEW yields a better IAE than
optimization with respect to IAE itself. This likely occurs because IAE is a factor
in IAEW. Thus, it appears that IAE and IAEW yield similar results. Moreover,
control parameters in Table 6.4 are illustrated below as control gains:
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IAE:

Kp︷ ︸︸ ︷2.0 0 0
0 0.46 0
0 0 0.32


Ki︷ ︸︸ ︷0.53 0 0

0 0.085 0
0 0 0.039


Kd︷ ︸︸ ︷2.5 0 0

0 1.01 −0.026
0 0.003 0.71


(6.8)

IAEC:

0.8 0 0
0 0.10 0
0 0 0.22

 0.18 0 0
0 0.008 0
0 0 0.025

 1.4 0 0
0 0.44 −0.026
0 0.003 0.52


(6.9)

IAEW:

2.1 0 0
0 0.29 0
0 0 0.27

 0.54 0 0
0 0.041 0
0 0 0.037

 2.5 0 0
0 0.79 −0.026
0 0.003 0.58


(6.10)

The results in Equation 6.8 and 6.10 illustrate that the surge and yaw parameters
are very similar for IAE and IAEW. Moreover, the optimized gains are not the
maximum or minimum control gains of the bound for any of the methods. The
simulation results in terms of pose and errors are given in Figure 6.3 and control
inputs, τ and velocities are given in Figure 6.4.
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Figure 6.3: Pose and error plots for the resulting control parameters

52



6.3 Performance indicator functions

0 50 100 150 200 250

-1

0

1

0 50 100 150 200 250

-1

0

1

0 50 100 150 200 250

-1

0

1

(a) Control input, τ

0 50 100 150 200 250

-0.05

0

0.05

0 50 100 150 200 250

-0.05

0

0.05

0 50 100 150 200 250

-2

0

2

(b) Velocities (ν̂) vs Reference (νd)

Figure 6.4: Control input and velocities

Figure 6.3 Illustrates tracking accuracy. In Figure 6.3(a) it can be seen that all the
solutions give decent tracking capabilities in the simulation. In Figure 6.3(b) the
tracking accuracy is seen more clearly. It appears that the observer struggles with
filtering the measurement noise. More importantly, it can be seen that tracking
accuracy is lower (higher error) for the IAEC-gains. However, for the control
forces and moments in Figure 6.4, IAEC-gains has lower oscillation in the surge
and sway forces. Moreover, the surge force is oscillatory, which is likely because
of the poor velocity estimate in surge in Figure 6.4(b). On the other hand, the
velocity estimates are relatively smooth and precise for the sway speed and yaw
rate.

In total, the IAE performance metric was chosen based on the arguments stated in
Table

Table 6.5: Selection matrix for performance indicators

IAE IAEC IAEW
Accuracy Good Ok Good
Wear and Tear Poor Ok Poor
Quality Good Ok Poor
Tuning No Yes No

Simply stated, IAEC was discarded because it requires a tuning parameter. More-
over, IAEW was discarded because it uses the estimated velocity, ν̂, which makes
the quality of the performance measure poor. Besides the tuning parameter, IAEC
is the favorite performance metric. However, from testing it is proposed to use
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only the feedback control, τPID = τ − τFF , since this component ideally oscil-
lates about zero.

6.4 DFO algorithms

The DFO algorithms use the objective function f(x) defined as the IAE. Their goal
is to find the control parameters, x, that minimize the objective function, f(x). The
objective function, IAE, will be based on data from real-world experiments for
MC-Lab testing. Thus, the tuning as an optimization problem has the following
characteristics:

• Non-smooth: Objective functions are contaminated with stochastic, random
noise (waves, measurement noise etc.). This can make the objective function
non-smooth.

• Nonlinear: The objective function is nonlinear because gain parametrization
is nonlinear, controller is nonlinear, etc.

For nonsmooth, nonlinear problems, Matlab especially recommends the following
solvers for optimization (Matlab, 2015):

1. particleswarm: The PSO has little supporting theory, but is often an efficient
algorithm. According to (Sahib, 2015) and (Kaliappan and Thathan, 2014)
PSO yielded the best performance in optimizing the control parameters of
a PID controller when comparing some global optimization algorithms. It
was also referred to as both efficient and accurate.

2. surrogateopt: The SGO provably converges to global optimum for bounded
problems. The algorithm is also recommended for time consuming objective
functions which is the case when there is a model test or a high-fidelity
simulation in the objective function, IAE.

3. fminsearch: The Nelder-Mead simplex algorithm is known to work well for
low-dimensional unbounded problems. Simple to use because of few tuning
options. Furthermore, the Nelder-Mead simplex algorithm (fminsearch) was
used in (Værnø et al., 2019) for DFO of a DP observer and therefore seems
highly relevant.

Therefore, these three algorithms are investigated further in Section 6.4.1, 6.4.2,
6.4.3 and compared in Section 6.4.4. Moreover, the psuedo-code for the algorithms
are in Appendix A.1, A.2 and A.3.
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6.4.1 PSO

The particle swarm optimization is a global optimization method inspired by how
swarms of birds and schools of fish collectively searches an area. The key is that
the individuals in the swarm use their own best known position (~p1), the globally
best known position (~p2) and its velocity (~vk) to calculate how to move around in
space.

The algorithm can be described as following

1. Initialization: The swarm is initialized randomly or at selected points in the
search space with random velocities. The swarm , S = {x1, x2, , , xN}
contains N candidate solutions, the so called particles. In the context of DP-
tuning, a particle is a set of control parameters x = [ζ1, ζ2 ζ3 ωb1, ωb2 ωb3 ]

2. Evaluation and updating: The fitness (IAE for DP tuning) of particle i in
the swarm is then calculated, f(xi).Then the locally best known and globally
best known position (~p1 and ~p2) and fitness of each particle is updated. The
following updating law is used for each particle.

~vk+1 = ~a⊗ ~vk +~b1 ⊗ ~r1 ⊗ (~p1 − ~xk) +~b2 ⊗ ~r2 ⊗ (~p2 − ~xk) (6.11)

xk+1 = xk + vk+1 (6.12)

Where

• ~r1,2 ∈ [0, 1] are uniformly distributed random vectors.

• ~a are the inertia weights.

• ~b1,2 are the social and self adjustment weight. If the social weight
dominates, the algorithm gravitates towards the best known position
and the algorithm predictably converges quickly. However, using a
higher self adjustment weight prevents local convergence and allows
for a global search.

• ~p1,2 are the best known local and global positions, respectively.

• ~vk is the previous velocity of the particle.

• ~pk is the previous position of the particle.

3. Step 2 is then repeated until satisfactory convergence is achieved.

The algorithm has a 4 tuning parameters, N, ~a, ~b1 and ~b1,2. According to (Trelea,
2002) the swarm size, N should be equal to the dimension of the problem, namely,
N = 6. Moreover, ~a,~b1 and~b2 can be set to scalars, a, b1 and b2.
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6.4.2 SGO

Surrogate model optimization is a global optimization method used when the real
model is too complex making simulations and experiments too time-consuming.
In the case of DP-tuning the surrogate model is an approximation of the objective
function, to approximate the relationship between control parameters and perfor-
mance (e.g., IAE). It uses function evaluations of the objective function (simula-
tions or real-world tests) to to approximate the objective function through regres-
sion or interpolation. The function approximation in Matlab is done with Radial
Basis Function (RBF) interpolation introduced by (Powell, 1990). surrogateopt
uses a cubic RBF interpolation with a linear tail. According to (Holmström, 2008)
it can be expressed as:

sn(x) =
n∑
i

λiφ(||x− xi||2) + b>x+ a (6.13)

Where

• sn(x) is the surrogate model which tries to approximate the performance
function, f(x). Where f might be the integral of absolute error.

• x are the control parameters, x = [ζ1 ζ2 ζ3 ωb1 ωb2 ωb3]
>

• φ(r) = r3 Is the cubic RBF where the radial distance r = ||x− xi||

• λi are the weigths weighing the radial bias functions

• b>x+ a is a linear function which approximates linear relations

The unknown parameters λ, b and a. Are found from the linear equations:(
Φ P
P> 0

)(
λ
c

)
=

(
F
0

)
(6.14)

Where Φ is the nxn matrix with Φij = φ(||xi − xj ||2) and

P =


x>1 1
x>2 1
...

...
x>n 1

 , λ =


λ1
λ2
...
λn

 , c =


b1
b2
...
bd
a

 , F =


f(x1)
f(x2)

...
f(xn)

 (6.15)
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When the parameters are found using Equation 6.14, one has a model of the sur-
rogate function. The more points (higher n), the more precise the surrogate model
theoretically becomes.

Simply, the algorithm works as following:

1. Initialize points n = d+ 1 points within the bounds X = {x1, x2, , , xd+1}
where d is the dimension of the optimization. Then evaluate the objective
function f(x) in these points and update the surrogate parameters. The best
point is called the incumbent point.

2. Evaluate the surrogate, s(x), at many points around the incumbent point and
select the best point based on g(x) = wS(x) + (1 − w)D(x). The func-
tion weighs both the normalized surrogate function S(x) and the normalized
distance function, D(x). If the weight w is high, the algorithm converges
quickly and if it is low, the algorithm focus more on the global search.

3. Evaluate the objective function, f(x), at the x that gave the lowest g(x). If
this function value is sufficiently lower than the incumbent value, x becomes
the new incumbent point. Anyway, the surrogate is updated using this value.

4. Repeat step 2.-3. are repeated until satisfactory convergence is achieved.

6.4.3 Nelder-Mead Simplex Method

According to (Lagarias et al., 1998), the Nelder-Mead Simplex algorithm has be-
come one of the most widely used methods of unconstrained optimization since
it’s publication in 1965. The method is a local search method that attempts to
minimize the nonlinear objective function, f(x), without any information about the
gradient. For a problem of dimension d, the algorithms creates a simplex of n+1
points. The figure below visualizes the how the algorithm works in 2 dimensions:
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Reflection Expansion

Outside
contraction

Inside 
contraction

Shrinking

Figure 6.5: Nelder-Mead Simplex algorithm

As Figure 6.5 illustrates, the algorithm creates a simplex with 3 points. The dashed
triangle illustrates a simplex where X3 is the worst point. The algorithm is simply
explained in the following steps detailing what happens in Figure 6.5:

1. Initialize points n = d+ 1 points around x0 by adding 5 % to each compo-
nent {x1, x2, . . . , xn} = {x0, x0 + 0.05x0,1, . . . , x0 + 0.05x0,d} where d is
the dimension of the optimization. Then evaluate the objective function f(x)
in these points.

2. Sort points from lowest (f(x1)) to highest (f(xn)) corresponding function
values. Generate the reflected point, r, and evaluate, f(r). If f(r) is between
the best and second worst function value, replace the worst value (xn) with
the reflected point, r, and go to step 2.

3. If the reflected value, f(r), is better, compute the expansion point, s. If f(s)
is better than f(r) replace xn with s and if not replace it by r. Then return to
step 2.

4. If the reflected point is better than the worst point, but worse than the second
worst point, an outside contraction is performed to calculate the point c. If
f(c) is better than the reflected point, xn is replaced with c. If that is not the
case, the simplex is shrunk to half size as shown in figure 6.5. Then all the
new points need to be evaluated. Then the algorithm goes to step 2.

5. If the reflected point is worse than the worst point, an inside contraction is
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performed to calculate the point cc. If f(cc) is better than the worst point, xn
is replaced with cc. If that is not the case, the simplex is shrunk to half size
as shown in figure 6.5 and all the new points need to be evaluated. Then the
algorithm goes to step 2.

6. This goes on until satisfactory convergence is achieved.

6.4.4 Comparison of DFO algorithms

The quality of the DFO algorithms are measured by their:

1. Convergence rate

2. Convergence

3. Generality

4. Global vs. Local optima

5. Tuning parameters

6. Complexity of implementation

7. Bounds

8. Ability to use historic data

To evaluate points, 1.-3., testing is necessary, while for points 4. through 8., argu-
ments are made based on the descriptions of the algorithms in Section 6.4.1, 6.4.2
and 6.4.3.

Three tests were made, including two tests with known optimas as well as well as
the autotuning task for the simulation model. All 3 tests are done for 6-dimensional
problems.

Tests with known global optimum The Rosenbrock function and Rastrigin func-
tion are difficult functions to optimize. Rosenbrock because of it’s valley-like
shape and Rastrigin for its multi-modal (multiple local optima) shape.

frb(x) =
n∑
i=1

[
100(xi+1 − x2i )2 + (1− xi)2

]
(6.16)

frs(x) = 10n+
n∑
i=0

(xi − 10 cos (2πxi)) (6.17)
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Where xi ∈ [−5, 10] and the global minimum f(x) = 0 is in xi = 1 for Rosen-
brock and xi = 0 for Rastrigin. The results from 10 optimization tests is given in
Table 6.6.

Table 6.6: Best results from 10 random optimizations

Method fminsearch particleswarm∗ surrogateopt

Rosenbrock: F100 4400 0.18 46

Rosenbrock: F1000 0.078 0.034 5.3

Rastrigin: F100 92 2.2 18

Rastrigin: F1000 75 0 8

where F100 is the lowest value after 100 function evaluations and is used as a
measure for convergence rate while F1000 is the lowest value after 1000 function
evaluations and is used as a measure for convergence.

From these results, it appears that the particleswarm is superior, however that is not
necessarily the case. For the Rosenbrock particleswarm had the best convergence
rate for swarm size N≥ 6, but fminsearch generally had the best convergence
during the 10 tests. For the Rastrigin function, particleswarm and surrogateopt
performed similarily for swarm size, N = 6, while particleswarm outperformed a
lot for swarm size, N = 60. fminsearch generally performed very poorly.

Autotuning on Simulation model The autotuning was done using approximately
120 test runs per algorithm (with 5 different start points for fminsearch), and it was
compared with a manual tuning by trial and error as a baseline. The resulting con-
trol parameters are seen in Table 6.7

Table 6.7: Results from autoutuning with different DFOs

Method ζsurge ζsway ζyaw ωb,surge ωb,sway ωb,yaw IAE
Manual 1.10 0.7 0.7 0.50 0.34 0.37 0.99
fminsearch∗ 0.879 0.243 0.829 0.700 0.718 0.344 0.86
particleswarm 1.046 0.700 0.869 0.490 0.444 0.266 1.02
surrogateopt 1.056 0.700 1.093 0.500 0.361 0.176 1.00

These results are illustrative of the differences between the different methods.
fminsearch works in a way that is quite similar to manual manual tuning. That
is, it starts at some start point and iterativly tries to find better and better control
gains. However, it does not take bounds into consideration, and for 5 different
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starting points it converged to 5 vastly different end points, all outside the defined
bounds. The best control parameters found by fminsearch are displayed in Ta-
ble 6.7. Because its inability of using constraints, it is inconvenient for use in a
practical case where there should be bounds. Also, it converges to very different
solutions, making it unpredictable in terms of general performance. It is therefore
not considered further in the thesis. The convergence of the other methods are
shown in Figure 6.6.
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Figure 6.6: Convergence of IAE as a Function of simulation number

It should be noted that other comparisons were made between these three meth-
ods and that it varies which of the methods achieve the best convergence, and that
the difference is of little significance. The important point is that all the methods
converge quite good within 30 simulations. Also, considering the size of the opti-
mization domain (e.g., 0.024 ≤ Kp,1,1 ≤ 7.14), the resulting control gains below
are very similar:

PSO:

Kp︷ ︸︸ ︷2.035 0 0
0 0.464 0
0 0 0.316


Ki︷ ︸︸ ︷0.534 0 0

0 0.085 0
0 0 0.039


Kd︷ ︸︸ ︷2.470 0 0

0 1.011 −0.026
0 0.003 0.710


SGO:

2.191 0 0
0 0.307 0
0 0 0.306

 0.591 0 0
0 0.046 0
0 0 0.030

 2.572 0 0
0 0.814 −0.026
0 0.003 0.767


Man:

2.525 0 0
0 0.272 0
0 0 0.322

 0.701 0 0
0 0.038 0
0 0 0.049

 2.804 0 0
0 0.764 −0.026
0 0.003 0.659
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Selection matrix To summarize the algorithms, consider Table 6.8

Table 6.8: Selection matrix for chosing optimization method

particleswarm surrogateopt

Convergence rate Good/very good Good
Convergence Good/very good Good
Generality Good Good
Global vs. Local Global/Local Global
Complexity of Implementation Low Medium
Complexity of parametrization Medium Low
Bounds Yes Yes
Ability to use historic data Suitable Very suitable

• Convergence rate: For the test functions, PSO had a better performance,
while they performed similarily for tuning of the simulation model.

• Convergence: For the test functions, PSO had a better performance, while
they performed similarily for tuning of the simulation model.

• Generality: Both PSO and SGO converge to very similar results as the man-
ual tuning, when considering the size of the domain. They also generally
yield a consistent results.

• Global vs local: They are both global optimization methods. SGO can be
proved to find global optimum, while PSO is an effective heuristic that can
focus on convergence or global search, depending on the parameters.

• Complexity of Implementation: The PSO as presented in Section 6.4.1 and
is considered to be simpler than SGO to implement as an online autotuning
algoritm.

• Both algorithms respect bounds which is important for the practical setup.

• Ability to use historic data. The more historic data available, the better,
the surrogate is able to approximate the objective function. particle swarm
can easily also use historic data, simply by initializing the swarm using the
historic data. SGO is perfect for this type of initialization.

Based on these criterions, PSO was selected as the algorithm to use in MC-Lab for
the autotuning.
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6.5 Implementation of Autotuning component

In the lab setup, the algorithm needs to work in real-time and was programmed in
manually. The DFO is only run once after each test is finished.

Simulink

PSOIAE
52

3Matlab: Initialize
swarm

NI Veristand: 
Log swarm

1

4

Figure 6.7

Figure 6.7 shows the signal flow of the PSO where 1 is the error used for calcu-
lation of IAE and boolean variables signaling which phase of the test the CSAD
is in. 2 is the IAE which is sent to the PSO when a test is over for optimization.
3 is the initial swarm which can be based on historic data, swarm from previous
tuning or a random initiation. 4 is the logging of optimization parameters so that it
is possible to resume optimization by inserting these as the initial swarm. 5 is the
control parameters.

A more detailed flow is described below

1. When Simulink starts running, initialize [x1, x2, x3, x4, x5, x6] within
the lower and upper boundary either randomly or using historic data as input.
This is referred to as signal 3 in Figure 6.7. Initialize the best local positions
to the initial positions and the global best position to [0,0,0,0,0,0]>. Initial-
ize the global best fitness to infinity and the local best fitnesses to infinity.
Also initialize the velocities of the particles randomely as {v1, v2, . . . , v6} ∼
U(−|ub − lb|, |ub − lb|) where ub and lb are the upper and lower bounds
of the optimization. During the first test, the vessel uses a known untuned
controller with [ζ1 ζ2 ζ3 ωb1 ωb2 ωb2]

> = [1, 1, 1, 0.1, 0.1, 0.1]>

2. After a test. When a test is over and the IAE is finished integrating the er-
ror (signal 1) it is sent to PSO (signal 2) which updates the local and global
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Chapter 6. Autotuning of control gains using performance indicators and
derivative-free optimization

best function values and positions. Then it updates the position and veloc-
ity as well as handling bounds as the complete algorithm in Appendix A.1.
Note further that the self-adjustment weight, b1 = 0, the social adjustment
weight, b2 = 1.7 and the inertia a = 0.6 are used for updating positions
and velocities. The test number parameter is increased by one, and the next
particle in the swarm will be used for the next test (signal 5)

3. Before/during a test: When the vessel has settled sufficiently using the safe
controller, the next set of control parameters are sent to the controller and
IAE starts to integrate. The system continously logs all the swarm data
(signal 4) needed to resume the autotuning, should something fail.

64



Chapter 7
Model Scale Testing Results

In this chapter the results of the autotuning in the MC-lab is presented. At first,
the results of the autotuning in calm water is presented. Then the results of the au-
totuning in waves is presented. A video demonstrating the conceptual autotuning
has also been made to show the autotuning.

7.1 Video illustrating concept

A video for demostrating the autotuning was made and can either be found through
the link:
https://www.youtube.com/watch?v=m8iEJI-xaQ8
or the QR-code:
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Chapter 7. Model Scale Testing Results

Figure 7.1: The QR-code for the autotuning demonstration

Note that the video was made before successful autotuning in waves was done.

7.2 Results from autotuning in calm water

By using PSO as DFO method and the IAE as a PI, it was attempted to optimize
the control gains for the PID in the DP tracking controller through testing in the
MC-Lab in calm water. It resulted in the parameters in Table 7.1 and gains in
Equation 7.1

Table 7.1: Results

#Tests ζsurge ζsway ζyaw ωb,surge ωb,sway ωb,yaw IAE
47 1.321 1.345 1.394 0.500 0.400 0.480 0.568

Kp︷ ︸︸ ︷4.71 0 0
0 3.20 0
0 0 5.19


Ki︷ ︸︸ ︷1.47 0 0

0 0.81 0
0 0 1.60


Kd︷ ︸︸ ︷4.10 0 0

0 3.39 −0.026
0 0.003 4.21

 (7.1)

The convergence of the IAE and the developement of the best known proportional,
integral and derivative gains is are illustrated in Figure 7.2
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(d) Developement of derivative terms

Figure 7.2: (a) is the convergence of IAE (b)-(d) development of the best known control
gains as a function of test number.

The convergence of IAE in Figure 7.2 (a) is satisfactory. The algorithm gradually
finds better gains and converges to even lower IAE than in simulation. For the
tuning plots in Figures 7.2 (b), 7.2 (c), and 7.2 (d), it is important to note that
that the gains in Figure 7.2 are parametrized so that Kp,max/Kp,min ≈ 300 and
Ki,max/Ki,min ≈ 2400 and 30 ≤ Kd,max/Kd,min ≤ 300. The convergence of
the control parameters are shown in Figure 7.3.
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Figure 7.3: Development of best relative damping parameters (ζ) and bandwidths (ωb) as
a function of test number

The performance of the best control parameters were compared with the perfor-
mance of a baseline controller with control bandwidth ωb = 0.1 and relative damp-
ing ζ = 1 for all DOFs. To illustrate the difference in the performance, consider
Figure 7.4.
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Figure 7.4: PIs before and after tuning in waves. The figures give the performance func-
tions IAE, IAEC and IAEW during a run. Note the difference in the scales for (a) and
(b)

In Figure 7.4, it is observed that all performance indices are much better after
tuning than before. Moreover, the performance indices are much lower than the
ones obtained in the simulation study in Chapter 6.
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7.2 Results from autotuning in calm water

The performance of the tracking control can also be evaluated from the time series
of the pose and errors. The reference tracking and errors are given in Figure 7.5.
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Figure 7.5: (a) and (b) Show the estimated, desired and measured positions and headings,
While (c) and (d) shows the estimated and actual errors.

In Figure 7.5 (a) and 7.5 (b) It is clearly seen that the untuned controller struggles
with following the trajectory, especially in sway and yaw as seen close up in Figure
7.5 (c). The actual errors are included in 7.5 (c) and 7.5 (d) to illustrate the inaccu-
racies in the position estimates from the observer. For evaluating the performance
of the tracking controller, the estimated tracking error (ηd− η̂) is used. And Figure
7.5 (d) shows that this error has a max value of around 1 cm in surge and sway and
0.5◦ deg in yaw.

It is observed in 7.5 (d) that the error in surge and sway start with some initial error.
This is because the trajectory starts the same place (ηd1) independent of where the
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vessel is at the time of test initiation. This is no major problem since the error is
so low (must be lower than 2 cm/2 deg). To fix this, the reference trajectory is
initialized to the estimated position, thereby giving an initial tracking error that is
zero. This was used for the wave test.

The control signals are important for evaluating the wear and tear of the control
system. The control signals of the tuned and untuned system is given in Figure 7.6
(a) and Figure 7.6 (b).
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Figure 7.6: Control input, τ

The untuned controller has slowly varying control signals, while the tuned con-
troller in Figure 7.6 (b) has more oscillation. However, these oscillations are small
in magnitude and in frequency and none of the forces or moments are close to
saturation.

The next plots to evaluate are the velocity plots in Figure 7.7.
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7.3 Results for Rough/Moderate Sea State
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Figure 7.7: Estimated and Actual Velocities. Note that the yaw rate is supposed to be in
deg/s and not rad/s

Figure 7.7 show that the estimates for the surge speed and yaw rate are poor, while
the sway estimate is accurate.

7.3 Results for Rough/Moderate Sea State

Recall the wave-making machine in MC-Lab as described in Section 2.5. In this
setup it creates waves according to the the JONSWAP spectrum. To chose wave
condition, it was chosen to use the definitions of sea states from (Price, 1974).
They are shown in Figure 7.8.

Figure 7.8: Table showing the definitions of sea states [Courtesy: (Price, 1974)]

The sea-state that was utilized was the Moderate/Rough sea-state withHs = 2.5 m
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and ωp = 0.68 rad/sm. However, these are given in full-scale. By Froude scaling
with a scale parameter, λ = 90, it becomesHs = 0.0278 m and ωp = 6.45 rad/s.

After testing the autotuning concept with waves it was found to be time consuming
to stabilise with a 45 ◦ angle to the waves. Also, the positioning system functioned
poorly near η2 = [5 m, 0 m,−135◦ deg]> Therefore, the wave test was adapted
so that the vessel is directed towards the waves during the stabilization and the
maneuver happens closer to the cameras. The modified test is illustrated in Figure
7.9.

Figure 7.9: The 2-setpoint autotuning with waves, ηd1 = [1.5, 0, 0◦] and ηd2 =
[3.5, 0,−45◦]. The waves propagate in the negative x-direction. The red line indicates
the line that the vessel tracks

The resulting control parameters are given in Table 7.2 and gains Equation 7.2.

Table 7.2: Results of tuning in waves

#Tests ζsurge ζsway ζyaw ωb,surge ωb,sway ωb,yaw IAE
19 1.50 1.38 1.07 0.50 0.50 0.50 0.41
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7.3 Results for Rough/Moderate Sea State

Kp︷ ︸︸ ︷7.14 0 0
0 5.42 0
0 0 2.30


Ki︷ ︸︸ ︷2.39 0 0

0 1.73 0
0 0 0.63


Kd︷ ︸︸ ︷5.31 0 0

0 4.47 −0.026
0 0.003 2.47

 (7.2)

The convergence of IAE and the proportional, integral and derivative gains are
showwn in Figure 7.10.
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Figure 7.10: Convergence of IAE and the developement of the best control gains as a
function of test number.

A reduced number of tests were used for the autotuning in waves, more precisely
19. This was caused by a slow stabilization phase in waves, because the stabilizing
controller was slow. It is believed that this could have been completely avoided by
using the best controller from calm water. Secondly, at this point, the algorithm

73



Chapter 7. Model Scale Testing Results

had found a good solution that gave a low IAE. However, the resulting tracking
controller gave a great tracking performance.

Ther performance indices achieved are given in Figure 7.11
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Figure 7.11: Performance indices before and after tuning in waves

The results in Figure 7.11 (a) and Figure 7.11 (b) illustrate an enormous difference
in performance between the poorly tuned control parameters and the tuned. The
main cause is that the error of the tracking is so high for the untuned controller as
illustrated in Figure 7.12.

74



7.3 Results for Rough/Moderate Sea State

0 20 40 60 80 100 120 140 160 180

1.5

2.5

3.5

0 20 40 60 80 100 120 140 160 180

-1

0

1

0 20 40 60 80 100 120 140 160 180

-45

-30

-15

0

(a) Before Tuning (note scale)

0 20 40 60 80 100 120 140 160 180

1.5

2.5

3.5

0 20 40 60 80 100 120 140 160 180

-1

0

1

0 20 40 60 80 100 120 140 160 180

-45

-30

-15

0

(b) After Tuning

0 20 40 60 80 100 120 140 160 180

0

0.1

0.2

0 20 40 60 80 100 120 140 160 180

-0.1

0

0.1

0 20 40 60 80 100 120 140 160 180

-5

0

5

(c) Before Tuning

0 20 40 60 80 100 120 140 160 180

-0.025

0

0.025

0 20 40 60 80 100 120 140 160 180

-0.025

0

0.025

0 20 40 60 80 100 120 140 160 180

-1

-0.5

0

0.5

1

(d) After Tuning

Figure 7.12: (a) and (b) Show the estimated, desired and measured positions and headings,
while (c) and (d) shows the estimated and actual errors.

Recall that the experiment in calm waters had initial errors which is not the case
in Figure 7.12 (d). The maximal tracking errors are around 0.5 cm/0.5 deg in 7.12
(d) (blue lines). Compared to the untuned error in 7.12 (c) which is up towards
15 cm in surge and sway and 5 deg in yaw, this is obviously much better. The
corresponding forces, τ and low-level control input, u are given in Figure 7.13
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Figure 7.13: (a) and (b) Illustrates the commanded generalized forces from the Controller,
and (c) and (d) are the low-level control signals, u, sent to each thruster in Volt

As expected, the tuned control effort in Figure 7.13 (b) is more high-frequent.
This is because the optimization only focuses on tracking accuracy. The resulting
thruster input u is given in Figure 7.13 (c) and 7.13 (d). Note that u∈ [−0.5, 0.5],
so neither the untuned or tuned controller ever gets saturation of the thrusters.
Moreover, note that the thruster input, in Figure 7.13 (d) is quite low from 40
s to 70 s before it increases. From 70 to 90 s, the vessel basically stands still.
However Figure 7.13 (d) illustrates that the thruster inputs rises during this period.
However, if zoomed in, it can be seen that signal u1 ≈ u4 and u2 ≈ u3 and
u5 ≈ u6. The reader is referred to Section 3.2.2 for a detailed description of the
thruster configuration.

Lastly, the velocity plots are given in the Figure 7.14 to illustrate the performance
in terms of tracking the velocities.

76



7.4 Summary of results
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Figure 7.14: Estimated and desired Velocities. Note that the yaw rate should be in deg/s

The observer is able to estimate the sway speed quite well in Figure 7.14. The
surge speed and yaw rate estimates are more problematic, however.

7.4 Summary of results

To briefly summarize:

• The performance metric, IAE, converges gradually for autotuning in both
calm water and waves.

• The resulting control gains for calm water perform well at the trajectory
tracking control objective with maximal tracking errors of 1 cm/ 0.5◦ deg
which had been lower had it not been for the initial error.

• The resulting control gains for waves perform well at the trajectory tracking
control objective with maximal tracking errors of 0.5 cm/ 0.5◦ deg. The
problem with the initial error was fixed for this test.

• The control gains for tuning in calm water converged nicely considering the
size of the search space. The control gains in waves converges less, probably
is because of the fewer test iterations.

• It is believed that the optimization can get stuck at bounds. This is improved
by setting the self adjustment weight, b1 to a non-zero value.

• The control input, τ is high frequent, but is never near actuator saturation
for the tuned control parameters.
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Chapter 7. Model Scale Testing Results

• The velocity estimation is good for sway speed, but poor for surge and yaw.
This is likely caused by a non-optimal observer tuning and the transient
nature of the maneuver which makes bias estimation hard. Moreover, the
observer estimates the pose wrongly for all 3 DOFs with a couple of cm.

• The increased stabilization time in waves, make the tuning in more time-
consuming and less efficient.
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Chapter 8
Conclusions and Further work

8.1 Conclusions

The potential of autonomous DP controller tuning has been successfully tested on
the 1:90 model of a DP vessel, the CSAD. It has involved establishing an improved
motion control system, including an improved guidance system, an enhanced and
tuned nonlinear PID controller with feed-forward and a predictable (not optimal)
thrust allocation. When the motion control system was established, a methodology
for autotuning with DFO was created for the established simulation model. Differ-
ent autotuning methods were tested on the model, before concluding on using PSO
for the objective of minimizing the IAE. Further, this methodology was adapted to
the experimental setup in MC-lab and implemented as a modular autotuning block
in Simulink. The autotuning was then tested for calm water and a moderate/rough
sea state.

DFO proved to be able to iteratively tune the control parameters of the nonlin-
ear PID controller to achieve a satisfactory tracking performance. The PI, IAE,
converges gradually, both in calm water and waves. The tuned control parameters
gave a tracking performance with maximal errors lower than 1 cm/ 0.5◦ deg for the
3 DOF tracking objective in both calm water and waves. The control input, τ , was
somewhat oscillatory but was never near actuator saturation. Hence, autotuning
seemed to be feasible in both calm conditions and waves.

The autotuning of a PID in a DP system was found to be affected by the other parts
of the system, in particular, the observer. The nonlinear passive observer gave poor
estimates for surge and yaw, which gives unnecessary derivative control, that could
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affect the tuning. Moreover, it is known from the simulation study that the tuning
is effected by choice of PSO parameters. The test focused on fast convergence
by setting the self-adjustment weight (b1) to zero. The last major issue that was
found was that waves increase the stabilizing time, decreasing the efficiency of the
tuning.

To summarize, the implemented online DFO autotuner in a loop with the estab-
lished motion control system is able to tune the PID controller without human
intervention iteratively. The tuned system is also able to do accurate trajectory
tracking. Thus, the system can perform the main objective of the thesis.

8.2 Further work

This thesis focused on implementing a functioning autotuning loop in the labora-
tory and did the necessary study of the DFO methods, PIs and dynamic positioning
to create a functioning autotuning setup. I hope that I have opened some doors and
my thesis can help others who research within similar fields.

A couple of suggestions for further work are

• Improvements can be made on the motion control system of the CSAD.

1. Improve the observer: This could be done by including more states,
for example using the Inertial Measurement Unit (IMU). Another in-
teresting project would be to do online observer tuning of the CSAD.

2. Improve the thrust allocation: The current thrust allocation on the
CSAD is predictable, but very inefficient in terms of energy usage.

• Further work on autonomous DP-tuning: A better PI should be established,
one that weighs both accuracy and wear and tear. Furthermore, the potential
of surrogate model optimization should be studied further.

• Applying autotuning to less intuitive controllers (e.g., backstepping con-
troller). For a PID controller, the manual operator has an understanding
of the tuning variables that the DFO lacks. However, given a non-intuitive
controller it would be interesting to see the performance of the DFO.

80



Bibliography

Audet, C., 2016. Blackbox and derivative-free optimization: theory, algorithms
and applications. Springer Science+Business Media New York.

Bjørnø, J., 2016. Thruster-assisted position mooring of c/s inocean cat i drillship.
Norwegian University of Science and Technology, Trondheim, Norway.

Bjørnø, J., Skjetne, R., Frederich, A. R., 2017. "modeling, parameter identification
and thruster-assisted position mooring of c/s inocean cat i drill- ship. Proceed-
ings of the 36th ASME International Conference on Ocean, Offshore and Arctic
Engineering.

Eriksen, B.-O. H., Breivik, M., 2017. Modeling, identification and control of high-
speed asvs: Theory and experiments.
URL http://hdl.handle.net/11250/2483676

Fossen, T., 2011. Handbook of Marine Craft Hydrodynamics and Motion Control.

Fossen, T. I., 2003. Fuel-efficient rudder and propeller control allocation for ma-
rine craft: Experiments with a model ship. IEEE Transactions on Control Sys-
tems Technology.

Frederich, P., 2016. Constrained optimal thrust allocation for c/s inocean cat i drill-
ship. Norwegian University of Science and Technology, Trondheim, Norway.

Holmström, K., 2008. An adaptive radial basis algorithm (ARBF) for expensive
black-box global optimization.

Kaliappan, V., Thathan, M., 2014. Design of optimum pid controller for nonlin-
ear process using evolutionary algorithms. Journal of Theoretical and Applied
Information Technology 69 (3), 522–529.

81

http://hdl.handle.net/11250/2483676


Kennedy, J., 1995. Particle swarm optimization.

Lagarias, J. C., Reeds, J. A., Wright, M. H., Wright, P. E., 1998. Convergence
properties of the nelder–mead simplex method in low dimensions. SIAM Jour-
nal on Optimization 9 (1), 112–147.

Lyngstadaas, O. N., 2018. Ship motion control concepts considering actuator con-
straints. NTNU.

Matlab, 2015. Global optimization toolbox solver characteristics. Retrieved
30. April, from https://se.mathworks.com/help/gads/improving-optimization-
by-choosing-another-solver.html.

NTNU(2015b), 2015. Marine cybernetics laboratory (mc-lab). Retrieved 10th of
February 2019, from http://www.ntnu.edu/imt/lab/cybernetics.

Nørgaard Sørensen, M. E., Lyngstadaas, O. N., Eriksen, B.-O. H., Breivik, M.,
2018. A dynamic window-based controller for dynamic positioning satisfying
actuator magnitude constraints. IFAC PapersOnLine 51 (29), 140–146.

Powell, M. J. D., 1990. The Theory of Radial Basis Function Approximation in
1990. Clarendon Press.

Price, W. G., 1974. Probabilistic theory of ship dynamics.

Sahib, M. A., 2015. A new multiobjective performance criterion used in pid tuning
optimization algorithms. Cairo University, Journal of Advanced Research.

Sørensen, A., 2019. Marine Cybernetics, lecture notes.

Sørensen, M. E. N., Breivik, M., 2015. Comparing nonlinear adaptive motion con-
trollers for marine surface vessels. IFAC PapersOnLine 48 (16), 291–298.

Trelea, I. C., 2002. The particle swarm optimization algorithm: convergence anal-
ysis and parameter selection.

Værnø, S. A., Skjetne, R., Kjerstad, K., Calabrò, V., 2019. Comparison of control
design models and observers for dynamic positioning of surface vessels. Control
Engineering Practice 85, 235–245.

82



Appendix

I



II



Appendix A
III



IV



A.1 Psuedo-code for PSO

Algorithm 1: Pseudo-code for Particle Swarm Optimization
Input : lowerB, upperB, N, a, b1, b2
Output: xg
Initiate n = d random points to be evaluated between lowerB and upperB and
initialize f:

X = {x1, x2, . . . , xn} ∼ U(lowerB, upperB)
F = {inf, inf, . . . , inf)}
Initialize velocities uniformly:
V = {v1, v2, . . . , vn} ∼ U(−|upperB − lowerB|, |upperB − lowerB|)
Set initial local best and global best:
Fl = F, Xl = X
fg = min f(xi), xg = min

xi
f(xi)

iterationNr = 1
while terminationCriteria = false do

for i← 1 to n do
Evaluate objective function, f(xi)
if f(xi) < Fl(i) then

Fl(i) = f(xi)
Xl(i) =xi

end
if f(xi) < fg then

fg = f(xi)
xg = xi

end
Create two random vectors , r1, r2 ∼ U(0, 1)
Update velocity vector and position:
vi =avi + b1r1 · (xi −Xl(i)) + b2r2 · (xi − xg)
xi = xi + vi
Consider boundaries for all dimensions:
for j ← 1 to d do

if xi(j) > upperB(j) then
xi(j) = upperB(j)
vi(j) = 0

else if xi(j) < lowerB(j) then
xi(j) = lowerB(j)
vi(j) = 0

end
end

end
end V



A.2 Psuedo-code for SGO

Algorithm 2: Pseudo-code for Surrogate Optimization
Input : lowerB, UpperB, w
Output: xBest
Initiate n ≥ d+ 1 random points to be evaluated between lowerB and upperB:
X = {x1, x2, . . . , xn}, F = {f(x1), f(x2), . . . , f(xn)}
xIncumbent = min

xi
f(xi)

while terminationCriteria = false do
Create 100-1000 sample around xIncumbent, within bounds, xj
Calculate the min and max value of the surrogate among the sample points:
s(x) from Eq. 6.13
smin = min s(xj)
smax = max s(xj)
Calculate scaled surrogate for sample points
S(x) = (s(x)− smin)/(smax − smin)
Calculate the minimal and maximal distance between sampled and evaluated
points:
dij = ||xi − xj ||,
d(x) = min ||xi − x||,
dmin = min dij ,
dmax = max dij
Calculate the scaled distance:
D(x) = (dmax − d(x))/(dmax − dmin)
Evaluate the merit function at every sample point:
g(x) = wS(x) + (1− w)D(x)
Select the sample that minimizes the merit function:
xAdaptive = min

xj
g(xj)

Evaluate the objective function using the adaptive point and compare to
objective function in the incumbent point:

if f(xAdaptive) is sufficiently lower than f(xIncumbent) then
xIncumbent = xAdaptive

end
if n < nmax then

n = n + 1
Include xn+1 in X
Include f(xn+1) in F
Calculate updated surrogate parameters using Equation 6.14

end
end
xBest = min

xi
f(xi)

VI



A.3 Psuedo-code for fminsearch

Algorithm 3: Pseudo-code for Nelder-Mead simplex method
Input : x0
Output: xBest
Initiate n = d+ 1 points by adding 5% of each component of x0 and evaluate:
X = {x1, x2, . . . , xn} = {x0, x0 + 0.05x0,1, . . . , x0 + 0.05x0,d}
F = {f(x1), f(x2), . . . , f(xn)}
while terminationCriteria = false do

Sort all points of X from lowest to highest
f(xn) = max f(xi)
Generate the reflected point:
m =

∑n−1
i=1 xi/(n− 1) r = 2m− xn

Evaluate the objective function in the reflected point, f(r)
if f(x1) ≤ f(r) < f(xn−1) then

Replace xn with r and terminate this iteration
else if f(r) < f(x1) then

Calculate the expansion point:
s = m - 2(m-xn)
Evaluate f(s)
if f(s) < f(r) then

Replace xn with s and terminate this iteration
else

Replace xn with r and terminate this iteration
end

else
if f(r) < f(xn+1) then

Calculate an ”outside contraction”, c = m + (r-m)/2
if f(c) < f(r) then

Replace xn with c and terminate this iteration
else

Shrink: xi = x1 + (xi − x1)/2 and evaluate f for i = 2, 3, ...n
end

else
Calculate an ”inside contraction”, cc = m + (xn-m)/2
if f(cc) < f(xn) then

Replace xn with cc and terminate this iteration
else

Shrink: xi = x1 + (xi − x1)/2 and evaluate f for i = 2, 3, ...n
end

end
end
xBest = xn

end
VII
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Appendix B
B.1 Content in attached ZIP-file

The attached zip-file contains

• All the data from the MC-Lab autotuning in calm water and with waves,
stored in two separate MAT-files. For both these files there is a 3 D ar-
ray, called ”run_specific_data” that contains 180 by N by 15. This ar-
ray can be used to look at data for any of the tests within the autotun-
ing. The configuration of this array can be understood from the function
”calc_run_specific_data.m”.

• ”ctrl_custom.slx” and initiation file. Using this block as the custom con-
trol for CSAD, it will automatically start autotuning. The corresponding
Veristand files are also included.

• A simulation folder that starts autotuning if the main function is run. The
main function also has some examples of how the different performance
indicator functions are called and how the optimizations are run

IX


