
A Configurable and Versatile Architecture for Low Power,
Energy Efficient Hardware Acceleration of Convolutional

Neural Networks

Steinar Thune Christensen

June 18, 2019

c© Steinar Thune Christensen 2019

Abstract

Convolutional neural networks (CNNs) have become paramount in today’s Artificial In-
telligence (AI) and Machine Learning applications. This is true for image recognition in
particular. This thesis presents a configurable, versatile and flexible architecture for hard-
ware acceleration of CNNs that is based on storing and accumulating the entire feature
maps in local memory inside the accelerator. This has been done while aiming to be able
to process any type of CNN while consuming as low power as possible and achieving the
highest possible energy efficiency, which refers to the number of operations per unit energy
(measured in Multiply-Accumulate operations per unit energy, MACs/s/W or MACs/J).
Several different versions of the architecture have been synthesized and tested using differ-
ent configurations. It performs well when compared to the state-of-the-art, achieving an
improved energy efficiency of over a factor 5 for select CNN layers. The most efficient con-
figuration achieves 175 GMACs/s/W, while consuming 2.3 mW of power and occupying 585
KGEs (Kilo Gate Equivalents) of area at 1V supply voltage and a 100MHz clock. This is a
significant improvement over Eyeriss [YuH17b] (a state-of-the-art accelerator) which has a
maximal energy efficiency of 122.8 GMACs/s/W.

Sammendrag

Nevrale nettverk basert på foldning (CNNs) har blitt essensielle i dagens Kunstig-Intelligens-
og Maskinlærings-anvendelser. Dette gjelder særlig bildegjenkjenning. Denne masteropp-
gaven presenterer en konfigurerbar, allsidig og fleksibel arkitektur for maskinvareakselerasjon
av CNNs som er basert på å lagre og akkumulere hele feature maps i lokalt minne inne i aksel-
eratoren. Dette har blitt gjort med et mål om å være i stand til å prosessere enhver type CNN
med så lavt effektforbruk og så høy energieffektivitet som mulig. Energieffektivitet viser til
antall operasjoner per energienhet (målt i antall multiplikasjon-akkumulasjon-operasjoner
per energienhet, MACs/s/W eller MACs/J). Flere ulike utgaver av arkitekturen har blitt
syntetisert og testet med ulike konfigurasjoner. Sammenliknet med dagens beste akselera-
torer preseterer den godt, den oppnår en energieffektivitetøkning med faktor større enn 5 for
utvalgte CNN-lag. Den mest energieffektive konfigurasjonen oppnår 175 MACs/s/W med et
effektforbruk på 2.3 mW og et arealforbruk på 585 KGEs (Kilo Gate Equivalents) med 1V
forsyningsspenning og en klokkefrekvens på 100 MHz. Dette er en betydelig forbedring over
Eyeriss [YuH17b] (en av dagens beste akseleratorer) som har en maksimal energieffektivitet
på 122.8 MACs/s/W.

Preface

This Master Thesis is a presentation of my work conducted during the spring of 2019. It is
a continuation of a literature review project I conducted during the autumn of 2018 where
I learned a lot about hardware implementations of Artificial Intelligence (AI).

The project is done for Nordic Semiconductor [Nor19] in Trondheim, Norway, and has been
carried out under their supervision. I was asked to implement an AI accelerator in hardware.
It proved to be quite a demanding path that I had put myself on. After many long days
and weeks at the office, constantly grinding and thinking about what I should do next I
managed to develop an architecture and achieve a result with which I am very satisfied.
This work has made me a much better engineer and digital hardware designer.

Acknowledgement

I would like to express my sincerest gratitude to Nordic Semiconductor for giving me such
an interesting task and to Omer Qadir for excellent technical and philosophical guidance.
Thanks also to Sondre Nesset and Saeeid Oskuii for technical advice. I would like to thank
my professor Snorre Aunet for guidance and especially for assistance on writing this thesis.

Further I would like to thank my good friend Jan Gulla for letting me use this wonderful
LATEX-template. Most importantly I would like to thank my dearest beloved Karine Avagian
for an overwhelming amount of support and belief along with a fair amount of coercion when
necessary.

Finally I would like to thank all my fellow students in the office A496 at Gløshaugen for
excellent company throughout these months and the high quantity of low quality coffee.

vii

Contents

Preface vii

List of figures xi

List of tables xiii

Acronyms and abbreviations xv

1 Introduction 1
1.1 Structure of report . 3

2 Background 5
2.1 The artificial neuron model . 5
2.2 Simple fully connected neural network . 6

2.2.1 Training NNs . 7
2.3 Convolutional neural networks . 8

2.3.1 2D Convolutional neural networks . 8
2.3.2 1D Convolutional neural networks . 12

2.4 Literature review . 14

3 Accelerator for One-Dimensional Convolutional Layers 17
3.1 Theoretical analysis . 17

3.1.1 Considerations . 17
3.1.2 Output stationary dataflow . 20

3.2 Hardware architecture . 23
3.2.1 Top level . 23
3.2.2 Ifmap Buffer . 26
3.2.3 Processing Elements . 26
3.2.4 Ofmap memory . 28
3.2.5 Biases . 29
3.2.6 ReLU . 29
3.2.7 Control path . 30

3.3 Verification . 36
3.3.1 Testbench . 37

3.4 Results . 39
3.4.1 Syntheses . 39

3.5 Discussion . 40
3.5.1 Variations of the architecture . 40
3.5.2 Closing note . 41

ix

4 Accelerator for Two-Dimensional Convolutional Layers 43
4.1 Theoretical analysis . 43
4.2 Hardware architecture . 45

4.2.1 Ifmap Buffer 2D . 48
4.2.2 Processing elements . 51
4.2.3 OfmapMems . 51
4.2.4 Control path . 52

4.3 Verification . 59
4.3.1 Stripe division . 60
4.3.2 Ofmap grouping . 61
4.3.3 Benchmarking using VGG16 . 62

4.4 Results . 64
4.5 Discussion . 68

4.5.1 Area . 68
4.5.2 Estimation of speed . 68
4.5.3 Estimation of Energy efficiency . 72
4.5.4 Comparison with Eyeriss . 73

5 Discussion 75
5.1 Matrix multiplication . 75
5.2 Quantization, range and precision . 75
5.3 Control path . 77
5.4 Optimizations and variations . 77
5.5 Future work . 78

6 Conclusion 79

Bibliography 81

Appendix A Supplementary Material 1
A.1 2D CNN structure . 1
A.2 Timing diagram of the 1D CNN Accelerator 1
A.3 Area plotted in 3D . 3

x

List of figures

2.1 The basic artificial neuron model. 5
2.2 Simple fully connected neural network. 6
2.3 Illustration of a single 2D convolution. The sliding window of a 2D convolution 9
2.4 A graphical overview of a complete CNN. Figure taken from [Shy17] 10
2.5 Ifmaps, kernels and ofmaps in one single convolutional layer 10
2.6 Illustration of a 1D convolution with a kernel of size 3. The sliding window

of a 1D convolution . 13
2.7 Ifmaps, kernels and ofmaps in a single 1D convolutional layer 14

3.1 Processing of the first ifmap and its corresponding kernels producing partial
sums of all ofmaps. 21

3.2 Processing of the second ifmap and its corresponding kernels adding on top
of the partial ofmap sums produced in figure 3.1. 22

3.3 Architecture of the 1D CNN accelerator . 23
3.4 Architecture of the 1D Ifmap Buffer. K is the parameter from table 3.1. . . . 26
3.5 Architecture of a Processing Element with an example kernel register size

(K) of 4. 27
3.6 Timing diagram showing the operation of a PE with kernel_size = 5. It is

assumed that the kernel reg has been loaded. 28
3.7 The sequence of operations for performing accumulation in an OfmapMem

block . 29
3.8 The ReLU module . 30
3.9 Architecture of the control block and a selection of inputs and outputs 30
3.10 The streaming interface circuit . 31
3.11 State diagram of the MasterControlFSM. 32
3.12 Figures showing the last samples of an ifmap being shifted in IfmapBuffer.

Sn denotes sample number n in the current ifmap. 35
3.13 Functional verification method. 36
3.14 Structure of the testbench for the 1D CnnAccelerator. Biases have been

omitted in figure as they are treated just like kernels. DUT means Device
under test. 37

3.15 A parallel processing element with an example kernel size of 4 40

4.1 Processing of the first ifmap and its corresponding kernels producing partial
sums of all ofmaps . 43

4.2 Processing of the second ifmap and its corresponding kernels adding on top
of the partial ofmap sums produced in figure 4.1 44

4.3 Architecture of the 2D CNN accelerator top level 45

xi

4.4 A simplified view of the architecture of IfmapBuffer with B = 15 and K = 5 . 48
4.5 IfmapBuffer with configurable width, using multiplexers for configurability.

K = 5 and B = 9. 49
4.6 Showing the correspondence between the ifmap and the IfmapBuffer. ifmap_width

= 15, B = 18 and K = 5. 50
4.7 The next stride position of the sliding window 50
4.8 Architecture of the 2D Processing Element with an example kernel register

of size 32. 51
4.9 The architecture of the control path of the 2D CNN Accelerator. This also

contains a Combinatorial Logic block as figure 3.9, but is not included for
illustrational purposes. 52

4.10 State diagram of the MasterControl FSM . 54
4.11 State diagram of the KernelStream FSM . 55
4.12 State diagram of the IfmapStream FSM . 56
4.13 State diagram of the Computation FSM . 57
4.14 State diagram of the OfmapStream FSM . 58
4.15 Functional verification method. 59
4.16 Structure of the testbench for the 2D CnnAccelerator. Biases have been

omitted in figure as they are treated just like kernels 59
4.17 Ifmap stripe division with ifmap width of 180, RAM size of 8192 and B = 90. 60
4.18 The second stripe, overlapping the first with 2 pixels. 61
4.19 The last stripe . 61
4.20 Example of ofmap grouping where M = 3 and the number of ofmaps is > 3 . 62
4.21 Area plotted as a function ofM . The number of OfmapMems and the number

of PEs . 65
4.22 Area plotted as a function of K. The maximal kernel size. 66
4.23 Area plotted as a function of B. The maximal ifmap width 67
4.24 Plots of the time used processing layers of VGG16 as a function ofM . K = 5,

B = 90 and 8k RAMs for all plots. 71

A.1 A full CNN. Comparable to figure 2.4. 1
A.2 The full CNN with one layer shown in more detail. 1
A.3 Scatter plot of area as a funtion of K and M . B = 90 and RAMs are 8k . . . 3
A.4 Area as a funtion of K and M . Same as A.3 Zoomed in somewhat. 4
A.5 Area as a funtion of K and B. M = 1 and RAMs are 8k 4

xii

List of tables

2.1 Table comparing the architectures investigated in the literature review project. 15

3.1 Hardware parameters of the 1D CNN accelerator. Typ. range refers to the
typical range of the parameter. 24

3.2 Inputs and outputs of top level . 25
3.3 inputs and outputs of FSM in figure 3.11 . 33
3.4 Results of synthesis with different parameter configurations. 39

4.1 Hardware parameters of the 2D CNN accelerator 46
4.2 Inputs and outputs of top level . 47
4.3 2D MasterControl FSM inputs and outputs of FSM in figure 4.10 54
4.4 2D KernelStream FSM inputs and outputs of FSM in figure 4.11 55
4.5 2D IfmapStream FSM inputs and outputs of FSM in figure 4.12 56
4.6 2D Computation FSM inputs and outputs of FSM in figure 4.13 57
4.7 2D OfmapStream FSM inputs and outputs of FSM in figure 4.14 58
4.8 The conv layers of VGG16 that have been used for verification and bench-

marking. All ifmap widths are 2 greater than whats normally given in
VGG16, this is because all ifmaps in VGG16 are zero padded outside the
borders with a width of 1 . 63

4.9 Processing of VGG16. (M = 5, B = 90, K = 5 and 8k RAMs), at 100MHz
and 1V supply voltage. Area is 585 KGEs. Power is estimated using Spyglass
Power. 64

4.10 Processing of VGG16. (M = 32, B = 90, K = 5 and 8k RAMs) at 100MHz
and 1V supply voltage. Area is 3.4 MGEs. Power is estimated using Spyglass
Power. 64

4.11 conf1: (B = 90,K = 5,M = 5), conf2: (B = 90,K = 5,M = 32), both use
OfmapRAMs of size 8k. CONV1-2 and CONV2-1 refer to two of the conv
layers of VGG16, described in section 4.3.3. 70

4.12 conf1: (B = 90,K = 5,M = 5), conf2: (B = 90,K = 5,M = 32), both use
OfmapRAMs of size 8k. The ck frequency is 100MHz and 1V supply voltage 73

4.13 Comparison between Eyeriss and the presented architecture implementing
layers of VGG16. conf1 refers to the presented architecture with parameters
(K = 5, M = 5, B = 90, ram_size = 8k) and conf2 refers to (K = 5,
M = 32, B = 90, ram_size = 8k). All architectures use 1V supply voltage.
Eyeriss runs at 200MHz and the presented accelerator at 100MHz. 74

A.1 Timing diagram for the 1D CNN Accelerator with no ifmaps = 10, no ofmaps
= 20, kernel size = 3, K = 5, M ≥ 20 . 2

xiii

Acronyms and abbreviations

NN Neural network
ANN Artificial neural network
CNN Convolutional neural network
AI Artificial intelligence
ReLU Rectified linear unit
FM Feature map
ifmap input feature map of a CNN layer
ofmap output feature map of a CNN layer
ASIC Application-Specific Integrated Circuit
Ops Operations
KGEs Thousand/Kilo gate equivalents
MGEs Million/Mega gate equivalents
MAC Multiply-accumulate
PE Processing element
IoT Internet of things
1D One-Dimensional
2D Two-Dimensional
FSM Finite state machine
MSB Most significant bit
LSB Least significant bit
conv layer Convolutional layer of a CNN
RTL Register-transfer level
MUX Multiplexer
DUT Device under test

xv

Chapter 1

Introduction

Artificial intelligence (AI) is moving to the edge, meaning that not only high throughput,
high power data centers perform it, but also low power mobile devices. More and more ap-
plications employ it, including autonomous vehicles, Internet of Things, medical equipment,
mobile phones and other mobile devices, just to mention a few in a large and growing land-
scape. Normally, AI and machine learning algorithms are processed in software and often
accelerated by a GPU, but the aforementioned applications require the development of spe-
cialized Application-Specific Integrated Circuits (ASICs), i.e. specialized hardware, in order
to decrease power consumption and increase speed. In [Cat17], a huge thirty-year survey
of the development of ASICs for Neural Networks Neuromorphic computing it is concluded
that: “the need for a non-von Neumann architecture that is low-power, massively parallel,
can perform in real time, and has the potential to train or learn in an on-line fashion is
clear.”. Most major companies in the electronics industry invest heavily in creating their
own machine learning and neural network processors for instance Qualcomm’s Snapdragon
855 [Qua18], Google’s TPU [Nor18] and Intel’s Loihi [Dav18] among others. However most
of the work done by these companies is undisclosed and patented. Much work has also been
done by academia, such as Eyeriss [YuH17b] from MIT and YodaNN [Ren16] from ETH
Zürich, and this thesis draws a lot of inspiration from these.

Ever since AlexNet [Ale12] won the ImageNet Large Scale Visual Recognition Challenge [Li
18] in 2012, deep convolutional neural networks (CNNs) have been the state-of-the-art in
image recognition, which is a common machine learning application. The goal of this thesis
is to accelerate convolutional layers in CNNs while consuming as little power as possible.
There are many different convolutional neural networks that perform very well in e.g. Image
recognition (ResNet [Kai15], VGG16 [Kar14], AlexNet [Ale12] etc.), and new CNNs emerge
and break records quite often. Until there is an established consensus on exactly which
CNN is the very best and the most efficient, a hardware architecture for the processing of
CNNs needs to be versatile and configurable, so that as many different CNNs as possible
can be processed.

1

Contributions

This thesis presents an architecture for hardware acceleration of convolutional neural net-
works. The proposed architecture is versatile, flexible and configurable, aiming to be able
to process any convolutional neural network. In this work only the convolutional layers are
accelerated, not pooling nor the fully connected layers (theory in section 2.3). The reason
for this is that, compared to the other layers, the convolutional layers typically have the
longest computation time, as shown in [Luk15] and consume the most power as stated in
[YuH18b]. The architecture has been compared with Eyeriss [YuH17b], a state-of-the-art
accelerator for CNNs. The most important metric for comparison is energy efficiency, mea-
sured in operations per unit energy. The presented architecture is intended to be as easy
to comprehend and intuitive as possible, which makes it differ somewhat from much of the
literature.

This work also presents a hardware accelerator for a special type of convolutional neural
network, namely one dimensional (1D) convolutional neural networks. These are used
to recognize patterns in one dimensional signals that vary over time, like accelerometers,
gyroscpoes and microphones. There exists much work on the applications of 1D CNNs, but
the literature is scarse or non-existent on the hardware acceleration of such networks. Since
these networks are reduced by one dimension compared to 2D, they are a lot smaller in size,
thus in hardware they consume less power, occupy less area and have a lower computation
time.

In this work only inference (theory in section 2.2.1) is performed. In [Cat17] it is stated
that the algorithm of backpropagation (the algorithm with which most CNNs learn) is not
typically thought of as an on-line method, meaning that it is not common to learn on-chip.
So in this project the implemented CNNs are assumed to be pre-trained so no adjustments
of weights nor biases will take place inside the accelerator. The well known pre-trained CNN
VGG16 [Kar14] has been used for comparison. The performance has been compared to other
state-of-the-art accelerators, with energy efficiency as the main metric for comparison.

Tools

The following tools have been used in this project.

• SystemVerilog used for implementation and verification of hardware.

• Questasim [Que19] version 10.7b used for simulation of hardware.

• Synopsys Design Compiler version J-2014.09 compiling 55nm CMOS [Syn19] for syn-
thesis.

• Synopsys Spyglass version 2018.09-1 [Spy19] for power estimation.

• Python 3.6 [Pyt19] for software scripting and software implementations of the hard-
ware accelerator. Matplotlib [Mat19] for plots.

2

1.1. STRUCTURE OF REPORT

• Keras [Ker19] with a Tensorflow [Ten19] backend. Used in Python to create neural
networks in software for comparison with the presented hardware.

• Lucidchart [Luc19] to create figures.

Some terms from the SystemVerilog vocabulary will be used. Examples are initial blocks,
meaning non-synthesizable code that is executed once, always_ff meaning sequential logic
processes and always_comb blocks meaning combinatorial logic processes.

1.1 Structure of report

This thesis is organized as follows:

Chapter 2: Background. gives an extensive walkthrough of the theory behind neural
networks. The focus is firstly on standard fully connected feed forward neural networks,
and halfway through it switches to the theory behind convolutional neural networks. It is
written so that also readers with little or no experience with neural networks should be able
to follow. Those experienced within the subject might want to skim through or skip ahead.
In the very end of the chapter there is a brief overview of a selection of previous relevant
work that has been done within the subject of hardware acceleration of convolutional neural
networks, including a literature review that was conducted as a preparation to this thesis.

Chapter 3: Accelerator for One-Dimensional Convolutional Layers. presents the
accelerator for 1D convolutional neural networks. This chapter contains its own theory,
implementation, results and discussion.

Chapter 4: Accelerator for Two-Dimensional Convolutional Layers. The architec-
ture and the ideas presented in chapter 3 are further developed, from 1D to 2D. Hence all
the well known 2D convolutional neural networks (e.g. AlexNet and VGG16) can be pro-
cessed and used for comparison with other CNN hardware implementations. This chapter
contains its own theory, implementation, results and discussion.

Chapter 5: Discussion. As the chapters 3 and 4 also contain their own more specific
discussions, this chapter is a wrapup discussion on a higher level, aiming to discuss the
broader points of the presented architectures.

Chapter 6: Conclusion. Concludes and summarizes main findings.

3

Chapter 2

Background

This chapter covers the relevant types of neural networks (NNs) that will be discussed in
the chapters to come. All theory is taken from Michael Nielsen’s online book [Mic15], unless
otherwise is stated.

2.1 The artificial neuron model

The term neuron is borrowed from bioloogy referring to the neurons in the brain, however
the artificial neuron is highly simplified in comparison. It takes any number of inputs
ai, multiplies them by their respective weight wi, adds all of the products together with
its own inherent bias b and the resulting value is used as an argument for an activation
function (indicated by the f inside the circle of figure 2.1) that produces the final output
activation value (see formula (2.1)). A neuron has only one output activation value aout.
The activation function can be any function at all, but typical ones are the sigmoid function
(σ), the hyperbolic tangent (tanh) and the rectified linear unit (ReLU [Sag17]). A graphical
representation of a neuron is shown in figure 2.1.

Figure 2.1: The basic artificial neuron model.

5

2.2. SIMPLE FULLY CONNECTED NEURAL NETWORK

The neuron of figure 2.1 performs the calculation shown in formula (2.1).

aout = f(b+
I∑

i=1
wiai) (2.1)

Where aout is the output activation, f is the activation function, wi is the weight of input
i, ai is the input activation of input number i, b is the neuron’s inherent bias and I is the
number of inputs. Figure 2.1 has a number of inputs I = 3.

2.2 Simple fully connected neural network

When several artifical neurons (shown in figure 2.1) are connected, they constitute a neural
network (NN). A graphical representation is shown in figure 2.2.

Figure 2.2: Simple fully connected neural network.

NNs are arranged in connected layers. When all neurons in a layer are connected to all
neurons in the next layer, and this is the case for all layers, then the NN is said to be
fully connected. A fully connected NN consists of one input layer, one output layer and any
number of layers in between. The layers that reside in between are known as hidden layers.
The weights are represented as matrices Wn−1,n going from layer n − 1 to n. The output
activations of one layer can be formulated in matrix-vector terms like shown in formula
(2.2).

an = f(bn + Wn−1,n × an−1) (2.2)

6

2.2. SIMPLE FULLY CONNECTED NEURAL NETWORK

Where an is the vector of all output activations of layer n, an−1 is the vector of all input
activations of layer n, f is the activation function applied element-wise,Wn−1,n is the matrix
of weights of connections mapping all neurons in layer n− 1 to layer n, bn is the vector of
inherent biases for each neuron in layer n and × represents matrix multiplication. If the NN
consists of more than one hidden layer then it is known as a deep neural network (DNN). It
has been shown that deeper NNs are typically better than shallower NNs at classification
tasks. It is generally accepted that deeper layers possess a more abstract representation of
the input data than earlier layers, which allows the NN to extract more meaningful features.
For example, in an image recognition task, one would not care so much about exactly which
pixel is dark and which is bright. One would rather like to be able to see if a line is present
and whether that line is generally curved or straight.

2.2.1 Training NNs

The phase known as training in an NN consists of adjusting the weights and biases until
the network exhibits some predefined desired behaviour (e.g. image recognition). The most
common way of doing this is by so-called supervised learning, which means that the desired
output of the input data is known (i.e. input data is labeled). Then a cost function can be
computed, which is a measure of how wrong the NNs output is. This function depends on all
weights and biases of the network, which in a multilayer, fully connected network is a very
high number of variables. Training consists of minimizing the cost function with respect
to the weights and biases, this is commonly done using gradient descent, which includes
calculating the gradient of each variable in the network. This is commonly done using the
algorithm of backpropagation (chapter 2 of [Mic15] gives an excellent walkthrough), which
includes computing the derivatives of activation functions, which means that having an
easily differentiable activation function is hugely beneficial (e.g. sigmoid or tanh). During
training it is common to test the network for several inputs subsequently, then compute the
cost function of all of those inputs and then run backpropagation, this method is known as
batching.

Overfitting should be avoided when training an NN. Just as when doing linear regression,
you would rather have a straight line almost hitting all data points than a curved line hitting
every data point exactly. This is because the former is more generalized and more likely
to give good predictions. To avoid overfitting in NNs, techniques known as regularization
(e.g. weight decay and dropout) are applied. These will not be discussed in detail here, but
chapter 3 of [Mic15] gives a good description.

In general, a neural network’s operation can be divided into 2 phases: the training phase,
which consists of adjusting weights and biases and the inference phase which consists of
using those weights and biases that were attained during training. Typically the training
phase will consist of an NN looking at thousands of sets of data to train and optimize weights
and biases. After training the NN can be used to do useful inference, where it would be used
to classify unseen data, or some similar task. One final note about training is that deeper

7

2.3. CONVOLUTIONAL NEURAL NETWORKS

networks are harder to train. This is due to the derivatives of the cost function with respect
to the weights and biases. When these derivatives are calculated using backpropagation
they are multiplied in long chains. These chains tend to either explode towards infinity or
go to 0. These problems are known as the exploding gradient problem and the vanishing
gradient problem respectively, and are one of the major problems with deep NNs.

Training can also be done without labeled data, this is known as unsupervised learning.
This can be done in many different ways. An example is self-organizing maps (SOMs) for
clustering [Abh18] which is about maximizing certain neurons’ responses to certain input
data. Reinforcement learning is another way a neural network can learn, it is about acting
in some environment, figuring out whether the action was desirable or not and adjusting
weights accordingly (this is how AlphaGo [Dem17] works).

2.3 Convolutional neural networks

2.3.1 2D Convolutional neural networks

For image recognition the standard NNs have major weaknesses. Fully connected NNs
have vast amounts of parameters, and they do not take into account the location of pixels
relative to one another. Pixels on completely different ends of the image will be evaluated
equivalently as pixels right next to each other, which typically is not useful. Pixels placed
close to one another should have a greater impact on the image recognition result than those
placed further apart. This is where convolutional neural networks (CNNs) are particularly
useful. They make the computation a bit more complicated, but use fewer parameters and
yield far better results.

In a 2D CNN, instead of the weighted sum (formula (2.1)), a 2D convolution operation is
performed, as shown in formula (2.3). In a 2D convolution, a small set of weights arranged in
a square 2D array (known as the filter or the kernel) is placed over a part of the input image.
Then one output activation value for that section is calculated by taking the weighted sum
of the pixels in the section and the weights in the kernel. The kernel is then shifted one
pixel (or some other fixed number of pixels, this number is known as the stride length) and
the same process, with the same kernel is repeated in all positions of the image until the
end is reached. This takes the relative positions of pixels into account. A CNN is working
in very much the same way as a regular NN, only that the neurons are replaced with pixels
and the matrix multiplications of formula (2.2) are replaced with convolutions. Figure 2.3
illustrates a 2D convolution operation and how it can be perceived as a sliding window.

8

2.3. CONVOLUTIONAL NEURAL NETWORKS

(a) 16×16 input feature map
and 5×5 kernel

(b) Calculation of the first element in
the output feature map, window posi-
tion 1.

(c) Second element, window position 2. (d) Last element and last window posi-
tion.

Figure 2.3: Illustration of a single 2D convolution. The sliding window of a 2D convolution

The images processed by a CNN are typically called feature maps. That is because after
doing convolutions the images are not containing anything concrete anymore, but rather they
are representations of features in the original image. Figure 2.3 shows how each element
in the output feature map is the sum of the element-wise multiplication of the kernel and
the input feature map at the kernels current position. This is repeated for the whole input
feature map until the entire output feature map is generated as shown in figure 2.3(d). The
calculation of a single convolution is shown in formula (2.3).

o(x, y) =
b−1∑
a=0

h−1∑
b=0

i(x+ a, y + b) · w(a, b) (2.3)

Where o(x, y) is the pixel at index (x, y) in the output feature map, i(x, y) is the pixel at
index (x, y) in the input feature map, w(a, b) is the kernel value at index (a, b) in the kernel.
b and h are the kernel width and height respectively. The output feature map is always
going to be b − 1 pixels narrower horizontally and h − 1 pixels shorter vertically than the
input feature map.

A CNN is arranged in layers just like a simple fully connected NN (presented in section 2.2),
a graphical model is shown in figure 2.4.

9

2.3. CONVOLUTIONAL NEURAL NETWORKS

Figure 2.4: A graphical overview of a complete CNN. Figure taken from [Shy17]

Figure 2.4 shows the complete architecture of a CNN including convolutional layers, pool-
ing layers and fully connected layers. In this work the main focus is on individual layers
performing convolutions (conv layers). In that context some terms will be borrowed from
Eyeriss [YuH17b] by Chen et al. The terms are ifmap, meaning an input feature map of
a CNN layer, and ofmap, meaning an output feature map of a CNN layer. In one single
convolutional layer there are, in general, several ifmaps and several ofmaps. Between each
ifmap and ofmap there is one unique kernel that is used for the convolution.

Figure 2.5: Ifmaps, kernels and ofmaps in one single convolutional layer

Figure 2.5 shows the relationship between ifmaps, kernels and ofmaps in a single CNN
layer (see the appendix A.1 for an illustration of how the figure 2.5 fits into figure 2.4).
A convolution is performed between each ifmap and its corresponding kernel in one of the

10

2.3. CONVOLUTIONAL NEURAL NETWORKS

kernel groups. All of these convolution outputs are added together element-wise (plus some
bias that is constant for that ofmap). The activation function is applied and then this
produces one ofmap. The same procedure is repeated for all groups of kernels. Note the
color coding used in this figure, green for ifmaps, red for kernels and blue for ofmaps. This
color scheme will be used throughout this thesis.

Formula (2.4) from [Ren16] shows, in matrix form, the operation of a 2D convolution in a
single CNN layer.

om = Cm +
∑
n∈I

in ∗wn,m (2.4)

Where m denotes ofmap number, n denotes ifmap number, I represents the set of ifmaps,
om is ofmap number m, in is input matrix number n, Cm is the bias to be added for ofmap
numberm, ∗ represents the convolution operator and wn,m is the kernel that is used between
ifmap n and ofmap m. This means that one ofmap is a sum of all ifmaps each of which
have been convolved with its own kernel. To emphasize, for every ifmap, there is one unique
kernel that maps it to every ofmap. Formula (2.5) is a form of the above formula (2.4)
written out more explicitly.

om(x, y) = f
(
Cm +

I∑
n=1

(hk−1∑
a=0

bk−1∑
b=0

in(x+ a, y + b) · wn,m(a, b)
))

(2.5)

Where m denotes ofmap number, n denotes ifmap number, I represents number of ifmaps,
om(x, y) is the value at index (x, y) for ofmap number m. in is ifmap number n, Cm is the
bias to be added for ofmap number m, wn,m is the unique kernel that is used between ifmap
n and ofmap m, hk and bk are the kernel height and width respectively. f is the activation
function. In CNNs ReLU (shown in formula (2.6)) is normally the activation function.

ReLU(x) =

0 x < 0

x otherwise
(2.6)

At the end of a CNN there are commonly one or more layers of fully connected NNs as
shown in figure 2.2, these give the output of the CNN. It can be seen at the rightmost side
of the CNN shown in figure 2.4.

Pooling

There are several more techniques that are commonly used in CNNs. Not all will be gone
through in detail here, but a very common one is pooling (also known as subsampling).
Pooling is a spatial downsampling of feature maps. The ifmap to a pooling operation is
separated into non-overlapping sub-squares of a fixed size e.g. 2×2, and one output value

11

2.3. CONVOLUTIONAL NEURAL NETWORKS

is calculated for each sub-square using a particular operation. The output value is placed
in a corresponding position in the ofmap. Common pooling operations are average-pooling,
average of all values in sub-square, and max-pooling, maximal value in sub-square. Sub-
squares of size 2×2 produce outputs that are 4 times smaller in size than the inputs, 9 for
3×3 etc.

2.3.2 1D Convolutional neural networks

Chapter 3 of this thesis is devoted to one-dimensional convolutional neural networks (1D
CNNs). These can be used for recognizing patterns in on dimensional data, like text or time
series data such as sensor data. In [Xia16], [Min14], [Ste14] and [Soj16] several different
applications are explored. One common applications is Human activity recognition (HAR),
which involves using wearable accelerometers and gyroscopes to capture data and use 1D
CNNs to recognize the behaviour of the wearers. In a 1D CNNs the feature map data
elements are referred to as samples instead of pixels.

1D CNNs have a structure that follows 2D CNNs to a large extent, but feature maps and
kernels are all one dimensional and the convolutions performed are 1D convolutions.

12

2.3. CONVOLUTIONAL NEURAL NETWORKS

(a) Ifmap of size Si and kernel of size 3
(b) Calculation of the first element of
the ofmap

(c) Second element (d) Last element

Figure 2.6: Illustration of a 1D convolution with a kernel of size 3. The sliding window of a 1D
convolution

Figure 2.6 shows the computation of a 1D convolution. Si is the number of elements in the
ifmap and So is the number of elements in the ofmap. The number of elements in the ofmap
is found by formula (2.7) where K is the kernel size.

So = Si −K + 1 (2.7)

A 1D CNN is arranged in layers of convolutions, pooling and fully connected layers just like
2D CNNs. Figure 2.4 shows the relationship between ifmaps, kernels and ofmaps in a single
1D CNN layer.

13

2.4. LITERATURE REVIEW

Figure 2.7: Ifmaps, kernels and ofmaps in a single 1D convolutional layer

The calculation of ofmaps is shown in formula (2.8).

om(x) = f(Cm +
I∑

n=1
(
bk−1∑
a=0

in(x+ a) · wn,m(a))) (2.8)

Where m denotes ofmap number, n denotes ifmap number, I represents the number of
ifmaps, om(x) is the value at index (x) for ofmap number m, in is ifmap number n, Cm is
the bias to be added for ofmap number m, wn,m is the unique kernel that is used between
ifmap n and ofmap m, bk is the kernel size and f is the activation function, which in CNNs
is normally the ReLU.

2.4 Literature review

Prior to this thesis a literature review project [Chr18] was completed. This was done for
investigation and exploration of the field of hardware acceleration of neural networks. In the
project, four different hardware accelerators were investigated in detail, these were: YodaNN
[Ren16], Eyeriss [YuH17b], EIE [Son16] and Hyperdrive [Ren18], all being accelerators for
neural networks with a focus on low power consumption. With the exception of EIE, they
all implement conv layers (section 2.3) each using its own set of optimizations. Table 2.1
shows the summary of the investigated architectures. MGEs are Million Gate Equivalents
as a measure of area are refers to how many 2 input NAND gates of the same technology
node would fit into given area. The architecture EIE is assumed to have 64 PEs. Ops
denotes number of operations.

14

2.4. LITERATURE REVIEW

Table 2.1: Table comparing the architectures investigated in the literature review project.

Architecture Energy Efficiency Memory Area Technology

YodaNN 1 TOps/s/W 19.6 kB 1.9 mm2/1.3 MGEs 65nm CMOS
Eyeriss 246 GOps/s/W 195 kB 12.3 mm2/8.0 MGEs 65nm CMOS
EIE 3.8 TOps/s/W 10.3 MB 40.8 mm2/40 MGEs 45nm CMOS

Hyperdrive 6.1 TOps/s/W 810 kB 1.92 mm2/9.6 MGEs GF 22nm FDX

The unit for energy efficiency Ops/s/W is equal to Ops/J which is the number of operations
per unit energy. Operations however are not all equal in a CNN. Generally speaking, the
only two operations performed in a CNN are multiplications and additions. Therefore this
thesis will use the number of Multiply-Accumulates (MACs) instead of the generic “Ops”.

15

Chapter 3

Accelerator for One-Dimensional
Convolutional Layers

This chapter is a walkthrough of the implementation and design choices in the first CNN
accelerator, which processes one dimensional convolutional layers. As mentioned in chapter
2, some terms will be borrowed from Eyeriss [YuH17b] by Chen et al. These are ifmap
meaning an input feature map of a conv layer and ofmap meaning an output feature map
of a conv layer. This is done for compactness.

3.1 Theoretical analysis

3.1.1 Considerations

When designing an accelerator for CNNs, there are a number of considerations that need to
be taken. A selection of the main considerations is shown in the list below, they are further
elaborated in the paragraphs that follow.

• Power consumption

• Energy Efficiency

• Speed

• Area

• Data reuse and movement

• Parallelization

• Number of input data passes

• Quantization and precision

17

3.1. THEORETICAL ANALYSIS

• Functional flexibility

Power consumption

Power consumption is an important aspect of this thesis. Power is notoriously difficult to
estimate because it is instantaneous and depends on which operation is being executed. If
one were to execute operations very slowly, with low levels of parallelism, the power con-
sumption would decrease, however the time taken to perform all operations would increase,
hence the energy consumed for all operations would have accumulated over a large period of
time. If speed and parallelism were to be increased, then power consumption would increase
as well, but the time taken to execute all operations would be lower and the energy con-
sumed could be more or less comparable to the first case. This leads to a trade-off between
power consumption and throughput.

Energy Efficiency

The optimal point in the trade-off between power consumption and throughput lies where
the energy used per operation is minimal, that is where the Energy Efficiency is maximal.
Energy efficiency is typically measured in Operations per unit energy, however there are
several different kinds of operations involved in the computation of a CNN, therefore the
metric used in this thesis is Multiply-Accumulates (MACs) per unit energy (MACs/J or
MACs/s/W). Energy efficiency will be measured using specific configurations of the pre-
sented accelerators implementing specific convolutional layers. Achieving a high energy
efficiency is the main focus of this thesis.

Speed

An accelerator for a conv layer should to be sufficiently fast, no strict constraints are set
here, but it is kept in mind. The throughput should to be as high as possible while still
maintaining a low power consumption.

Area

The accelerators for conv layers discussed in section 2.4 have areas larger than 1 MGE.
This project aims to produce an accelerator with a substantially smaller area than these.
However as area decreases one would expect speed to decrease because of a lower potential
for parallelism.

18

3.1. THEORETICAL ANALYSIS

Data reuse and movement

In [YuH17b] and [YuH18a] there is a major focus on optimizing data movement and data
reuse. As CNNs use a very large amount of data and weights, data movement can be more
energy consuming than computation. The movement of data should be minimized and the
reuse maximized.

Number of input data passes

Input data passes refers to how many times the CNN accelerator needs to be provided the
same data. Ideally the accelerator is provided the same data only once, but as the internal
storage capacity is inevitably limited, for a large conv layer the same data may have to be
provided several times. This is the opposite of data reuse. Many conv layers are very large in
size and number of parameters so this can make the number of data passes a great concern.
Whenever some data is not reused maximally, then that data needs to be provided to the
accelerator again. In the literature review project (section 2.4), it was discovered that the
movement of data and needing to send data in to and out from the accelerator constantly
is going to severely damage the energy efficiency. This was named the «I/O problem».

Parallelization

The reuse of data in a CNN also typically allows for parallelization. When designing any
hardware accelerator a certain amount of parallelization is typically desired, this is to in-
crease speed, although punishment comes in the form of extra area and power consumption
(energy usage on the other hand might not be affected negatively). In the case of a conv
layer there is a huge amount of parallelizable operations: e.g. a kernel is reused for all
positions in its ifmap and the same ifmap is reused with many different kernels. In the case
of batching, the same kernels are used for different ifmaps, although this thesis disregards
this completely, as it is a technique for training, not for inference.

Quantization and precision

Quanization is of great importance in CNNs in HW. Most, if not all, software implementa-
tions of CNNs operate using floating point numbers. In low power hardware implementations
however it is more common to use fixed point number representations because of its simplic-
ity resulting in better power consumption, throughput and area. This does however, result
in some lost accuracy, but has in the context of CNNs been shown to not necessarily affect
the classification ability negatively, sometimes quite the contrary ([Son15], [M C16a]).

Many attempts have been made of quantizing weights heavily. Some even as far as hav-
ing binary weights [Ren16], [M C16a], [M C16b]. In this project 16 bits have been used
throughout, as it can give both a fair range and a fair precision. The accelerator aims to

19

3.1. THEORETICAL ANALYSIS

be as versatile as possible, meaning that it should not be limited to only processing CNNs
with binary weights. However no deep analysis has been done on how many bits are needed
for accuracy, so the door is open to reduce the number of bits significantly. The weight data
widths and feature map data widths have been parameterized with different parameters,
allowing them to be adjusted independently.

Functional flexibility

Functional flexibility means that one would like to be able to process as many variations
of CNNs as possible, with arbitrary sizes of feature maps, number of feature maps, sizes
of kernels and number of layers. To support an arbitrary number of layers the accelerator
should not be operating on one specific CNN with all its fixed parameters, but rather it
should be a template in which any CNN could be implemented. To be able to have the
highest functional flexibility possible it is a good idea to operate on one layer at a time.
This means that no constraint will be put on the CNN depth, as one layer’s outputs can
be used as inputs of the next as many times as needed. All parameters inside one layer
(kernel/ifmap sizes and number of ofmaps) are constrained to some respective maximal
values. The accelerator supports all parameter sizes that are smaller or equal to the maximal
values, making it flexible. Some methods to overcome the maximal values are presented in
sections 4.3.1 and 4.3.2 so that CNNs larger than the maximal parameter values can be
processed. However, these methods come at the expense of more data movement and result
in sub-optimal data reuse.

3.1.2 Output stationary dataflow

The architecture presented here processes one layer at a time. It is provided with only
one ifmap at a time and several kernels. The kernels that are provided are only those that
are used in the convolutions using the current ifmap. This means that the provided ifmap
and kernels can be used to compute partial sums of several ofmaps. Convolutions are then
performed, and partial sums of all ofmaps are obtained in parallel. The partial ofmap sums
are kept inside the accelerator while the next ifmap is provided, along with its corresponding
kernels to perform more convolutions and accumulate on top of the previously computed
ofmap partial sums. Figures 3.1 and 3.2 illustrate the first and second ifmap, respectively,
being convolved with their corresponding kernels, which together give a partial sum of all
ofmaps. The figures are modifications of the figure 2.7, where the color highlighting show
which feature maps and kernels are currently being used. As the ofmaps are being kept and
fully accumulated on chip in one location this is known as an output stationary dataflow
architecture as presented in [YuH17a] and [Viv17].

Quoting [Viv17]:

The output stationary dataflow is designed to minimize the energy consumption
of reading and writing the partial sums [...]. It keeps the accumulation of partial

20

3.1. THEORETICAL ANALYSIS

sums for the same output activation value local in the RF. In order to keep the
accumulation of partial sums stationary in the RF, one common implemenation
is to stream the input activations across the PE array and broadcast the weight
to all PEs in the array.

Where RF means register file and refers to the memory where the ofmaps are stored. Partial
sums refer to the ofmaps while they are being accumulated. PEs refer to processing elements,
which are arranged in an array and will be presented in section 3.2. The architecture
presented in this thesis applies an output stationary dataflow approach. The figures 3.1 and
3.2 show this approach used for computing ofmaps from ifmaps and kernels. The kernels
are separated into groups, where each group corresponds to only one ofmap, but all ifmaps.

Figure 3.1: Processing of the first ifmap and its corresponding kernels producing partial sums of
all ofmaps.

Formula (3.1) shows the calculation of the first partial sum of the ofmaps. Illustrated in
figure 3.1.

psum1(om(x)) =
bm−1∑
a=0

i1(x+ a) · w1,m(a) (3.1)

Where psum1(om(x)) means the partial sum number 1 of ofmapm. The remaining variables
are the same as in formula (2.8). The psum1() is not a proper mathematical function, it is
merely an attempt to make it clear how the ofmap accumulation is happening.

21

3.1. THEORETICAL ANALYSIS

Figure 3.2: Processing of the second ifmap and its corresponding kernels adding on top of the
partial ofmap sums produced in figure 3.1.

Formula (3.2) shows the calculation of the second partial sum of the ofmaps. Illustrated in
figure 3.2. It adds on top of the first partial sum from calculation (3.1).

psum2(om(x)) = psum1(om(x)) +
bm−1∑
a=0

i2(x+ a) · w2,m(a) (3.2)

When this procedure is done for all n ifmaps, the bias Cm is added and the ReLU function
is applied. Then it all adds up to formula (2.8), meaning that a full 1D CNN layer has
been processed. The kernels can be kept stationary, while the one current ifmap “slides
through” all of them simultaneously. Using this technique opens for parallelization of ofmap
computation.

22

3.2. HARDWARE ARCHITECTURE

3.2 Hardware architecture

This section gives a walkthrough of the architecture designed for processing of 1D CNNs.
The architecture will from here on be referred to as the 1D CNN accelerator. Most accelera-
tors for CNNs consist of an array of processing elements (PEs), each of which does some sort
of MAC operation. This includes all architectures mentioned in section 2.4. The presented
architecture also follows this structure because it is a scalable and configurable approach.

3.2.1 Top level

Figure 3.3: Architecture of the 1D CNN accelerator

Figure 3.3 shows the top level architecture of the 1D CNN accelerator. In the figure only
data signals are depicted, the control signals are discussed in section 3.2.7. IfmapBuffer is
a shift register containing a section of the ifmap. One of the samples stored in that shift
register is multiplexed out to all PEs simultaneously. Each PE contains its own unique
kernel that is used for a MAC operation with the ifmap value. When the PEs have finished
processing, they have produced partial sums of single samples in the ofmaps, each PE
corresponding to its own ofmap, this is then stored in its corresponding OfmapMem. This
is done for all samples in the current ifmap. The OfmapMems are memory blocks that store
the partial/intermediate ofmap results. The OfmapMems are fed back into the PEs so the
current OfmapMem value is added to the output of the PE and stored in the same address
of OfmapMem that was just read from. This serves as an accumulator. This means that
the convolution of the current ifmap is added on top of the convolutions performed with the
previous ifmaps. When all ifmaps have been streamed in and the ofmaps in OfmapMem
are complete, then the ofmaps can be streamed out. Biases is a register containing n values
which are the biases of the conv layer (Cm in formula (2.5)). There is one bias for each
OfmapMem. The ReLU is the activation function. Data is represented as fixed point and
in 2’s complement.

23

3.2. HARDWARE ARCHITECTURE

Figure 3.3 has a clear correspondence to the figures 3.1 and 3.2. One ifmap is being convolved
with m kernels, which corresponds to the IfmapBuffer and the m PEs. The convolutions
produce m ofmaps, corresponding to the m OfmapMems.

Hardware parameters

To make the design as versatile as possible, there are several RTL hardware parameters
that are configurable, but by the time synthesis is performed they need to be fixed. The
parameters are as shown in table 3.1.

Table 3.1: Hardware parameters of the 1D CNN accelerator. Typ. range refers to the typical
range of the parameter.

Name Symbol Typ. range Description
MAX_KERNEL_SIZE K 3 to 15 The maximal number of elements in a

1D kernel. Typically odd.

MAX_NO_OFMAPS M 1 to 100 The maximal number of ofmaps that
can be computed in parallel. Equal to
the number of PEs.

MAX_NO_SAMPLES S 10 to 200 The maximal number of samples in the
ifmaps. Influences the size of Ofmap-
Mems.

FM_DATA_WIDTH Wd 8 to 32 The number of bits in feature map data

FM_FRAC_WIDTH - 0 to Wd-1 The number of bits in the fixed point
representation’s fractional part of the
feature maps.

WEIGHT_DATA_WIDTH Ww 1 to 32 The number of bits in weights. For
the possibility to adjust only the weight
precision independent of the feature
map precision. See section 3.1.1 about
quantization

WEIGHT_FRAC_WIDTH - 0 to Ww-1 The number of bits in the fractional
part of the weights.

Note that the maximal number of ifmaps is not specified as a parameter. This is because
in principle any number of ifmaps can be used as input. For the data widths, Wd and Ww,
16 bits has been used throughout the work, while the fractional lengths have been varied
depending on the CNN.

24

3.2. HARDWARE ARCHITECTURE

Inputs and outputs

All inputs and outputs of the accelerator are shown in table 3.2.

Table 3.2: Inputs and outputs of top level

Name I/O Width Description
rst in 1 Global active high reset.

enable in 1 Global active high enable.

ifmap_data_in in Wd Data signal. The ifmap data input.

kernel_data_in in Ww Data signal. The kernel data input.

bias_data_in in Wd Data signal. The bias data input.

ofmap_data_out out Wd Data signal. The ofmap data output.

new_layer in 1 Control signal that should be set high
when beginning to process a new layer.

layer_finished in 1 Control signal that should be set high
when the last ifmap of a layer is being
streamed in, valid ofmap data will be
found in ofmap_data_out as a result.

enable_ReLU in 1 Control signal that if high, the ReLU func-
tion will be applied to ofmap_data_out. If
low the data bypasses the ReLU.

no_samples in d(log2(S))e Control signal. The number of samples in
current ifmap. Must be lower than S.

kernel_size in d(log2(K))e Control signal. The size of the current ker-
nel. Must be lower than K.

no_ofmaps in d(log2(M))e Control signal. The number of ofmaps,
equal to the number of active PEs.

valid_ifmap in 1 Streaming interface signal.

valid_kernel in 1 Streaming interface signal.

valid_bias in 1 Streaming interface signal.

ready_ofmap in 1 Streaming interface signal.

ready_ifmap out 1 Streaming interface signal.

ready_kernel out 1 Streaming interface signal.

ready_bias out 1 Streaming interface signal.

valid_ofmap out 1 Streaming interface signal.

25

3.2. HARDWARE ARCHITECTURE

In table 3.2 log2 is the logarithm with base 2. dxe denotes rounding up to the nearest
integer that is strictly greater than x. This applies also if x already is an integer, e.g. 3 bits
are needed to represent the number 4 in binary although log2(4) = 2 (essentially this is a
bxc + 1 operation). Note that no_ifmaps is not an input. This is because only one ifmap
is processed at a time and the accelerator does not require information about how many
ifmaps are going to be used for computation, it is controlled by the layer_finished signal.

3.2.2 Ifmap Buffer

IfmapBuffer is a serial in parallel out shift register. The IfmapBuffer implements the sliding
window over the ifmap data like shown in figure 2.6. The register is of size K ×Wd. The
shifting of the IfmapBuffer is controlled by a signal shift_enable, which allows processing
over several clock cycles in between each shift.

Figure 3.4: Architecture of the 1D Ifmap Buffer. K is the parameter from table 3.1.

3.2.3 Processing Elements

The processing elements are the heart of the accelerator and perform the MAC operations.
Each PE contains one kernel stored in a register.

26

3.2. HARDWARE ARCHITECTURE

Figure 3.5: Architecture of a Processing Element with an example kernel register size (K) of 4.

The architecture of a PE is shown in figure 3.5. Only data signals are depicted in the figure.
The kernels are stored in a register of size K×Ww, indicated by the red boxes in the figure.
Before processing, a phase of streaming in the kernel values takes place (e.g. k1, k2 and
k3 in figure 2.6(c)). During processing the kernel_in input is unused. When initializing
the processing, the accumulator register Acc reg is reset to 0. An ifmap value is sent in
through the ifmap_in input, it is multiplied by its corresponding kernel value from the
kernel register. The product is sent into the adder and into Acc reg at the next rising clock
edge. Then this is repeated for all ifmap values at the current kernel position (e.g. i2, i3 and
i4 in figure 2.6(c)). When all ifmap values have been processed, valid data is provided on
offset_in and hence ofmap_out will contain a valid output. The product of multiplication
in the PE is truncated, meaning that the bits less significant than the LSB will be omitted,
resulting in a floor-type rounding operation.

Control signals

The control signals of the PE, all come from the main control path (section 3.2.7) and are
as follows: 1) kernel_sel which is the selection signal of the multiplexer at the output of
the kernel register. 2) load_kernel which if high, stores kernel_in in the kernel register.
It should be low when processing. 3) rst_acc which resets the accumulator register. 4)
enable_acc which enables the accumulator register.

Timing diagram

Figure 3.6 shows a timing diagram of a PE while processing.

27

3.2. HARDWARE ARCHITECTURE

Figure 3.6: Timing diagram showing the operation of a PE with kernel_size = 5. It is assumed
that the kernel reg has been loaded.

Where w0, s0, m0, ofm0 etc. are placeholder names given to weights, sums, products and
ofmaps respectively, to give them unique identifiers. The timing diagram shows that the
PE uses one extra clock cycle when resetting the accumulator. The reason for this will be
explained in section 3.2.7.

3.2.4 Ofmap memory

The OfmapMem blocks are memory blocks where the ofmaps values are stored and accu-
mulated. To perform accumulation, a read operation has to be executed and followed by
a write on the next clock cycle. In this case the OfmapMem blocks are implemented as
flip-flops each of size S ×Wd, meaning that each OfmapMem has the storage space of the
maximal ifmap size. They could be implemented as RAMs as only one address is required
at a time in each memory block.

The sequence of operations that constitutes ofmap accumulation is shown in figure 3.7. The
PE block in the figure disregards the intricacies of the PE discussed in section 3.2.3 and
just names it a general MAC operation. This is for emphasizing that the final adder in the
PE is what matters here.

28

3.2. HARDWARE ARCHITECTURE

(a) Showing how an OfmapMem and a
PE are connected. PE has calculated a
value, which subsequently will be added
to the OfmapMem value at current ad-
dress, 4.

(b) The sum being calculated. Write
will be performed on the coming positive
clock edge.

(c) Positive clock edge has arrived and
value is written to current address, 4.

(d) Address incremented to next posi-
tion, 5. Where the same procedure will
be executed.

Figure 3.7: The sequence of operations for performing accumulation in an OfmapMem block

At the output of the OfmapMem there is a MUX controlled by a signal named
ofmapMem_enable_acc (not shown in figure 3.7). If this signal is 1, the MUX outputs the
value stored at the current address in the OfmapMem. If it is 0 then the OfmapMem outputs
a 0. This logic is essential for controlling when to accumulate in the OfmapMems, and when
to rewrite.

3.2.5 Biases

The biases block is simply a register containing the biases of the ofmaps. It is loaded in the
initialization phase. As a CNN has only one unique bias value per ofmap (Ck in formula
(2.8)) the register has size M ×Wd. The register’s output is chosen by the same signal that
controls which ofmap is being streamed out.

3.2.6 ReLU

The ReLU activation function is described by formula (2.6). Data is represented in 2’s
complement form which means that the Most Significant Bit (MSB) can be used as an
indicator of whether or not a number is negative. The ofmap data is streamed out one value
at a time, so the ReLU block needs only one input and one output, each of width Wd. The
architecture of the ReLU module is shown in figure 3.8.

29

3.2. HARDWARE ARCHITECTURE

Figure 3.8: The ReLU module

3.2.7 Control path

The control path of the 1D CNN accelerator is organized as shown in figure 3.9. All sequen-
tial blocks (the FSM and Counters) run on the main clock.

Figure 3.9: Architecture of the control block and a selection of inputs and outputs

The inputs and outputs that are shown in figure 3.9 are just a small selection of all signals,
these are included for illustrational purposes. The control path is organized such that there
is only one main state machine (MasterControlFSM) that keeps track of which operations
are to be performed, and it does so by activating counters, input/output streaming interfaces
and some combinatorial logic. Not all of the combinatorial logic will be gone through in
detail.

30

3.2. HARDWARE ARCHITECTURE

Counters

Inside the Counters block in figure 3.9 there are 4 instances of a counter, they differ by
their maximal count values which are as follows: kernel_size, no_samples, no_ofmaps

and K. All counters run on the central common clock and are enabled by their own unique
enable signals. The enable signals are set by either MasterControlFSM or the handshake
signals from the Streaming Interfaces block. The usage of counters, with maximal count
values controlled by signals is the main contributor of functional flexibility as described in
section 3.1. It means that only by adjusting the input signals to the counters, the number
of ofmaps, size of ifmaps and size of kernels can be adjusted.

Streaming interfaces

Inside the Streaming interfaces block in figure 3.9 there are four instances of a streaming
interface that has been specially designed for this project. One instance for each type of
data, that is, ifmaps, kernels, biases and ofmaps. The streaming interface blocks are very
simple and fully combinatorial. They are written for being input data stream interfaces.
Hence it sets an output ready, based on an enable signal from MasterControlFSM and takes
an input valid, that is set by an external master which provides data. When both are high, a
handshake signal is sent back to the MasterControlFSM. The handshake signals are mostly
used to activate counters in the counter block, but in the case of the ifmap stream handshake
signal, also to change states in MasterControlFSM. The streaming interface block is shown
in figure 3.10.

Figure 3.10: The streaming interface circuit

The streaming interfaces can be fully combinatorial as the MasterControlFSM is a Moore
machine and the counters are fully synchronous. Then if the valid or ready signals were
to switch spuriously in between clock cycles it would not affect the rest of the control path.
For ofmap streaming, the ready and valid signals are simply switched around so the same
architecture can be used as an output streaming interface instead of input.

31

3.2. HARDWARE ARCHITECTURE

MasterControlFSM

The state machine MasterControlFSM is described by the state diagram in figure 3.11. Its
corresponding signals are shown in table 3.3. The FSM is a Moore machine so outputs are
a function of state only. Hence outputs are written inside the states, whereas the inputs are
shown along the edges that denote transitions.

Figure 3.11: State diagram of the MasterControlFSM.

In table 3.3 the list of inputs and outputs of MasterControlFSM is shown, the ordering
of signals is the same as depicted in the state diagram. Signal name disambiguation: rst

means reset (local resets for counters or accumulators). fin means finished, it is a signal that
is high for one clock cycle when a counter has reached its maximum value. PE refers to the
processing elements, no refers to the “number of” something and acc refers to accumulators.

32

3.2. HARDWARE ARCHITECTURE

Table 3.3: inputs and outputs of FSM in figure 3.11

Inputs Outputs
Signal name # Signal name

1 new_layer 1 ifmap_buffer_rst

2 layer_finished 2 PE_rst_acc

3 counterKernel_fin 3 PE_enable_acc

4 counter_ofmap_samples_fin 4 ofmapMem_write_enable

5 counter_no_ofmaps_fin 5 ofmapMem_enable_acc

6 counter_ifmapBuffer_fin 6 counter_kernel_rst

7 ifmap_stream_handshake 7 counter_kernel_enable

8 stream_biases 8 counter_ofmap_samples_rst

9 counter_ofmap_samples_enable

10 counter_no_ofmaps_rst

11 counter_ifmapBuffer_rst

12 ifmap_stream_enable

13 kernel_stream_enable

14 bias_stream_enable

15 ofmap_stream_enable

The idea behind the state machine is to perform operations in a loop. First load the kernels
that are used from the current ifmap to all ofmaps (state: Load kernels in figure 3.11),
then load the biases corresponding to all ofmaps (state: Load biases). Furthermore the
ifmapBuffer is going to fill up with samples (state: Load ifmap) and then the accelerator
is ready to process (state: Compute). While computing goes on there is a need for addi-
tional ifmap samples (state: Load ifmap sample), and when all ifmap samples have been
processed, the FSM returns to IDLE. Then the same process is repeated for the next ifmap.
When all ifmaps have been processed (indicated by the input layer_finished) then the
ofmaps get streamed out (state: Stream out). The FSM has a synchronous reset signal
and an enable signal. If reset is high it will automatically set IDLE as the next state
and transition there on the next rising clock edge regardless of inputs. If enable is high, it
will enable the state transitioning and if it is low, it will freeze the FSM in the state where
it currently is.

The state Incr ifmap cnt is the reason for the extra clock cycle in the timing diagram of
the PE, figure 3.6. In the state Load ifmap sample the FSM will wait for at least one
clock cycle before receiving a new ifmap sample, and then exactly one clock cycle will be
spent on incrementing the ifmap sample counter.

33

3.2. HARDWARE ARCHITECTURE

The OfmapMem enable acc signal

Note the “x” for output bit 5 (OfmapMem enable accumulator) in most states in figure 3.11.
This is the only special output in this state machine. The OfmapMem enable accumulator
signal is set to 1 by the IDLE state which means that the offset_in signal of the PEs (see
figure 3.5) will be set to whatever is stored in OfmapMem and ofmap accumulation will
take place. Then, if the new_layer signal is high before or exactly when the FSM starts
off, the ofmapMem_enable_acc signal will be set to 0 (in the state Init new layer). This
means that the offset_in signal of the PEs will be 0, meaning that the OfmapMems will
be rewritten. The signal is set high again in the Stream out state, this is because the
signal essentially is a read enable signal for the OfmapMems, and in the Stream out state
the OfmapMems need to be read. This signal is not set by any other states. It is kept
untouched during each cycle of the state machine. This results in it being stored in a latch.
The latch is intentional. This is not ideal, but was used in the implementation, a possible
alternative to this is mentioned in section 5.3.

The Combinatorial Logic

The combinatorial logic block in figure 3.9 contains some additional combinatorial logic that
needs to be applied to some select signals before sending them out to the top level.

For instance the ifmapBuffer_enable_shift signal is controlling when the IfmapBuffer
should shift. It is controlled mainly by the ifmap streaming interface circuit’s handshake
signal, but this handshake signal needs to be sent through some additional combinatorial
logic to handle some special cases imposed by the following problem. One special signal in
the combinatorial logic block is called last_ifmap_shifts. Its purpose is to ensure that
all samples of the current ifmap get processed. When the signal kernel_size, which gives
the current kernel size, is smaller than the maximal kernel size (K), the last samples in the
ifmap will not be processed. They are stored in the IfmapBuffer, but not used for processing.
The situation is illustrated in figure 3.12.

34

3.2. HARDWARE ARCHITECTURE

(a) When the last sample (number 80) has
been shifted into IfmapBuffer.

(b) Performed additional shift to process sam-
ple S79

(c) The last shift, so S80 can be processsed

Figure 3.12: Figures showing the last samples of an ifmap being shifted in IfmapBuffer. Sn

denotes sample number n in the current ifmap.

Figure 3.12 shows a case where the number of samples in ifmaps are 80, kernel_size = 3
and K = 5 The registers marked in red are used, the green are not. The X’s from figure
3.12 represent don’t care, more specifically they are not valid ifmap data. To perform the
shifts from 3.12(b) to 3.12(c) the additional logic is necessary because no additional ifmap
data should be provided at the input. So the last_ifmap_shifts signal is set high after
the last ifmap sample has arrived, and then the accelerator behaves as though there is valid
ifmap data at the input although there is not. The ready_ifmap signal will in this case not
be set high even though the IfmapBuffer performs shifts.

See the appendix section A.2 for a timing diagram showing how the calculation of an example
1D conv layer unfolds.

35

3.3. VERIFICATION

3.3 Verification

All subsystems described in section 3.2 have been tested, debugged and sanity checked
individually. However the thorough testing has only been done on the top level. Figure 3.13
is a representation of how the functionality of the top level of the 1D CNN accelerator has
been verified.

Figure 3.13: Functional verification method.

The idea behind the functional verification is to show that the accelerator will produce the
correct result when the right data is provided. The procedure consists of the 4 following
steps:

• The yellow box in figure 3.13 named Keras with Tensorflow is the producer of data,
there, Keras with a Tensorflow backend (see the tools section chapter 1) is used to
implement one single 1D CNN layer using the Keras function named Conv1D, and
then write the kernels, biases, ifmaps and ofmaps to files. All data is written in
double floating point precision.

• Verify that an ideal floating point precision version of the CNN accelerator produces
the same result as in the ofmap file given the input data written to the kernel, bias
and ifmap files. This is done in the box named python model floating point in figure
3.13. There will be some error, somewhere in the interval [∼ 10−10,∼ 10−3] depending
on how many values are accumulated, believed to be because of imperfections in the
floating point number representation. This has been done by implementing a software
version of the CNN accelerator in Python. The software mimics the functionality of
the hardware, but as it is software, it can use floating points to show that it is equal
to the Keras model.

• Run a script that implements software version of the CNN accelerator that is quantized
in fixed point, done in the box named python model fixed point in figure 3.13. The
only difference from this and the software model of the previous point is that the
multiplications and additions are quantized in fixed point in the precision given in
table 3.1. The quantized ofmaps are compared to those given by the ofmap files

36

3.3. VERIFICATION

produced by the Keras/Tensorflow model and the quantization error is identified.
This script writes the ofmaps it obtains to a file so that it can be compared with the
output of the hardware implementation. New quantized versions of the input data
files are also written, so the hardware can use it as input.

• The red box named CnnAccelerator Hardware in figure 3.13 represents a testbench
which instantiates the hardware CNN accelerator. The testbench uses the input files
(kernels, biases, ifmaps) written by the fixed point python script as input, runs the
hardware and obtains its ofmaps, these ofmaps are then compared with the ofmaps
written by the fixed point script. If and only if all values are exactly equal will the
test be considered a success.

3.3.1 Testbench

The testbench in the red box of figure 3.13 is shown in more detail in figure 3.14.

Figure 3.14: Structure of the testbench for the 1D CnnAccelerator. Biases have been omitted in
figure as they are treated just like kernels. DUT means Device under test.

In this testbench there is one main initial block which operates using for loops to provide the
right data when the HW accelerator sets its ready signals high, and capture the output data
when it sets its valid_ofmap signal high. This requires the initial block to be structured
to perform operations exactly in the order that the CNN accelerator’s control path expects.
This could have been made a bit easier using always blocks (done in section 4.3). In the
ofmap base in figure 3.14 the expected ofmap values are stored. These values are the ones
written by the software fixed point version in figure 3.13. In the error check always block

37

3.3. VERIFICATION

the ofmap values of the 1D CNN Accelerator are compared with the theoretically computed
values of the ofmap base. Only when all values are equal will the test be considered a success.
This testbench is developed for functional verification, it does not handle special corner cases
to prove the robustness of the hardware, it strictly operates under ideal conditions.

Since no other hardware implementation of CNNs have been found there are no existing
benchmarks to compare to. All that has been done to test the accelerator is to implement
a 1D conv layer in Keras using the mentioned function, generate random ifmap data and
see that they produce the same result as explained in the beginning of this section.

38

3.4. RESULTS

3.4 Results

A successful simulation of the 1D CNN accelerator has been run with the following param-
eters (K = 15, M = 100, S = 80) implementing a 1D conv layer with 5 ifmaps, an ifmap
size of 80, kernel size of 7 and 20 ofmaps. The time taken is 46561 ns at 100 MHz and 1V
supply voltage.

3.4.1 Syntheses

Area and power have both been estimated using Synopsys Design Compiler (see the Tools
section in chapter 1). The results of some syntheses are shown in table 3.4.

Table 3.4: Results of synthesis with different parameter configurations.

Area Power
M K S (KGEs) (mW)

1 15 80 17 0.3
32 15 80 451 3.5
32 30 80 521 6.7
32 15 200 949 3.6
100 15 80 1400 44

39

3.5. DISCUSSION

3.5 Discussion

3.5.1 Variations of the architecture

Here some variations of the CNN accelerator are discussed.

Weights in RAM

Using one central RAM to store all weights was one of the considered variations. However
this was found to pose problems for the number of weights that could be fetched at one time,
thus limiting parallelism. If several weights are concatenated into one address line, then
some parallelism can be permitted, but RAMs do have quite restrictive maximal numbers
of allowed bits per address line. For a RAM to be advantageous over a register to begin with,
it needs to be of a certain size. If that storage can not be utilized to improve parallelism by
having many active PEs simultaneously, then it becomes counter-productive to use a RAM.
Therefore it was concluded not to use a RAM for weights.

Parallel Processing Elements

A type of PE that is parallel has also been suggested. The multiplications are happening in
parallel and addition is happening in an adder tree. It is shown in figure 3.15.

Figure 3.15: A parallel processing element with an example kernel size of 4

The PE shown in figure 3.15 would give a lot more speed (a factor of kernel_size in terms
of clock cycles) and result in the PE producing an ofmap partial sum sample in a single clock

40

3.5. DISCUSSION

cycle. However it would damage the critical path significantly resulting in a lower maximal
clock frequency. Segmentation (Pipelining) of the adder tree would improve the critical
path and thus speed, but area would increase as well. The power consumption of a parallel
PE would be a lot higher than the regular sequential PE (section 3.2.3), as multipliers are
known to be power consuming operations (shown in [Son16]). For this reason the Parallel
PE was not synthesized nor tested thoroughly.

OfmapMems as RAM(s)

The OfmapMems comprise quite a lot of storage space. It was briefly planned to create
one central RAM in which to store the ofmaps. However this would affect parallelism
like explained regarding putting the weights in RAMs. Therefore each ofmap could be
implemented as its own RAM, but in the 1D CNN context each ofmap is often not very large
(< 1000 samples per ofmap), therefore it is not obviously advantageous to use RAMs instead
of registers. Implementing OfmapMems as several RAMs has been further elaborated in
chapter 4.

3.5.2 Closing note

One final note is that the 1D CNN accelerator has not been developed and verified as much
as planned and desired. In this thesis it serves mainly as an introduction to the chapter
to come, about the 2D CNN accelerator, which has been further developed, verified and
tested.

41

Chapter 4

Accelerator for Two-Dimensional
Convolutional Layers

This chapter is a walkthrough of the implementation and design choices for the second
CNN accelerator. This accelerator processes two dimensional convolutional CNN layers. It
is based on the same architecure as presented in chapter 3.

4.1 Theoretical analysis

For designing the 2D CNN accelerator the same considerations as taken for the 1D CNN
accelerator (section 3.1) need to be taken. One major difference is that the size of all data
is greater. Thus more power consumption, more area and lower speed is to be expected.
An illustration of the order of processing in this dataflow is described in the figures 4.1 and
4.2.

Figure 4.1: Processing of the first ifmap and its corresponding kernels producing partial sums of
all ofmaps

43

4.1. THEORETICAL ANALYSIS

Formula (4.1) shows the calculation of the first partial sum of the ofmaps. Illustrated in
figure 4.1.

psum1(om(x, y)) =
bm−1∑
a=0

hm−1∑
b=0

i1(x+ a, y + b) · w1,m(a, b) (4.1)

Where psum1(om(x, y)) means the partial sum number 1 of ofmap m. The remaining
variables are the same as in formula (2.5). The psum1() is not a proper mathematical
function, it is merely an attempt to make it clear how the ofmap accumulation is happening.

Figure 4.2: Processing of the second ifmap and its corresponding kernels adding on top of the
partial ofmap sums produced in figure 4.1

Formula (4.2) shows the calculation of the second partial sum of the ofmaps. Illustrated in
figure 4.2. It adds on top of the first partial sum from calculation (4.1).

psum2(om(x, y)) = psum1(om(x, y)) +
bm−1∑
a=0

hm−1∑
b=0

i2(x+ a, y + b) · w2,m(a, b) (4.2)

When this procedure is done for all n ifmaps, the bias Cm is added, the ReLU function
applied and it adds up to formula (2.5).

44

4.2. HARDWARE ARCHITECTURE

4.2 Hardware architecture

This section presents the hardware architecture of the accelerator for two dimensional con-
volutional layers, from here on referred to as the 2D CNN accelerator. It is very similar to
the 1D CNN accelerator from chapter 3, in the top level diagram of figure 4.3 there are no
structural differences. Square kernels are assumed and the OfmapMems are implemented
as SRAMs.

Top level

The top level of the 2D CNN accelerator is shown in figure 4.3.

Figure 4.3: Architecture of the 2D CNN accelerator top level

Hardware parameters

The SystemVerilog hardware parameters of the design are shown in table 4.1.

45

4.2. HARDWARE ARCHITECTURE

Table 4.1: Hardware parameters of the 2D CNN accelerator

Name Symbol Typ. Range Description
MAX_KERNEL_WIDTH K 1 to 15 The maximal number of weights is one

row of a 2D kernel. Square kernels are
assumed, thus only one size identifier is
required. The max kernel size will be K2

MAX_NO_OFMAPS M 1 to 100 The maximal number of ofmaps that can
be computed in parallel

MAX_IFMAP_WIDTH B 10 to 100 The maximal number of pixels in one
ifmap row.

FM_DATA_WIDTH Wd 8 to 32 The number of bits in feature map data

FM_FRAC_WIDTH - 0 to Wd-1 The number of bits in the fixed point rep-
resentation’s fractional part of the feature
maps.

WEIGHT_DATA_WIDTH Ww 1 to 32 The number of bits in weight data. For
the possibility to adjust only the weight
precision independent of the feature map
precision.

WEIGHT_FRAC_WIDTH - 0 to Ww-1 The number of bits in the fractional part
of the weights.

Another choice that has to be made, although not specified as a SystemVerilog code param-
eter is the size (number of words) of the OfmapMems. This is an independent variable and
it influences the choice of B. It is set in the implementation of the OfmapMems themselves.
More on this in section 4.2.3.

Inputs and outputs

All inputs and outputs of the accelerator are shown in table 4.2.

46

4.2. HARDWARE ARCHITECTURE

Table 4.2: Inputs and outputs of top level

Name I/O Width (bits) Description
rst in 1 Global active high reset.

enable in 1 Global active high enable.

ifmap_data_in in Wd Data signal. The ifmap data input.

kernel_data_in in Ww Data signal. The kernel data input.

bias_data_in in Wd Data signal. The bias data input.

ofmap_data_out out Wd Data signal. The ofmap data output.

new_layer in 1 Control signal that should be set high
when beginning to process a new layer.

layer_finished in 1 Control signal that should be set high
when the last ifmap of a layer is being
streamed in, valid ofmap data will be
found in ofmap_data_out as a result.

enable_ReLU in 1 Control signal that if high. The
ReLU function will be applied to
ofmap_data_out. If low the data
bypasses the ReLU.

ifmap_width in d(log2(B))e Control signal. The width of the current
ifmap.

ifmap_height in 16 Control signal. The height of the current
ifmap.

kernel_width in d(log2(K))e Control signal. The width of the current
kernel. Square kernels are assumed.

no_ofmaps in d(log2(M))e Control signal. The number of ofmaps,
equal to the number of active PEs.

valid_ifmap in 1 Streaming interface signal.

valid_kernel in 1 Streaming interface signal.

valid_bias in 1 Streaming interface signal.

ready_ofmap in 1 Streaming interface signal.

ready_ifmap out 1 Streaming interface signal.

ready_kernel out 1 Streaming interface signal.

ready_bias out 1 Streaming interface signal.

valid_ofmap out 1 Streaming interface signal.

47

4.2. HARDWARE ARCHITECTURE

4.2.1 Ifmap Buffer 2D

Distribution of data is the biggest difference between 1D and 2D convolutions and most
of the distribution of data takes place in the IfmapBuffer. Therefore the IfmapBuffer is
what differs the most between the 1D accelerator and the 2D accelerator, it is also the most
complex part of the system. This section explains how the 2D IfmapBuffer is designed.

A simplified version

A 2D convolution is processed using the sliding window technique shown in figure 2.3. As
the window slides across an ifmap, all pixels, except along the borders, are going to be used
more than once. This is a type of data reuse (section 3.1). Hence it is advantageous to load
all pixels once, keep them in memory as long as they are needed and throw them out as
soon as they cease to be.

The basic idea behind the 2D IfmapBuffer using a shift register to shift in the ifmap pixels
row-wise. The shift register is split into a new row for every full ifmap row. The register
should be able to contain full ifmap rows. This results in a constraint on the ifmap width,
hence the parameter B. The number of rows in the shift register does not need to be greater
than the maximal kernel height, kernels are assumed to be square, so the number of rows
in the ifmapBuffer is K.

A simplified view of the IfmapBuffer with some example parameters is shown in figure 4.4.

Figure 4.4: A simplified view of the architecture of IfmapBuffer with B = 15 and K = 5

All of the registers marked in blue in figure 4.4 are parallel outputs. They represent the

48

4.2. HARDWARE ARCHITECTURE

current position of the sliding window. The unmarked registers contain the pixels that are
not currently used, but will be.

Configurable ifmap width and kernel width

When the IfmapBuffer is organized like shown in figure 4.4, only an ifmap width equal to B
can be processed. To support different ifmap widths the architecture of figure 4.5 is used.
The idea is that the value stored in the last register of each row can be loaded into any
register in the next row. The architecture is drawn with a smaller B for simplicity.

Figure 4.5: IfmapBuffer with configurable width, using multiplexers for configurability. K = 5
and B = 9.

The ifmap width then needs to be an input, its usage is not shown in figure 4.5, but it
controls all multiplexers choosing into which register to load the value from the previous
row. One register in each row is loaded with the value from the last register in the row
above. The registers to its right act as regular shift registers, while the ones to the left are
unused and loaded with zeros. In this manner all ifmap widths that are smaller than or
equal to B can be processed. All rows are controlled in the same way by the ifmap width
input.

The size of the kernel can be controlled outside of the IfmapBuffer. As all of the marked reg-
isters are parallel outputs, one can outside utilize only some of the outputs, thus effectively
all kernel widths smaller than K can be processed.

The sliding window

How the sliding window technique is achieved is shown visually in the figures 4.6 and 4.7.

49

4.2. HARDWARE ARCHITECTURE

(a) The ifmap.
(b) The IfmapBuffer. Only the used connection between rows
is shown.

Figure 4.6: Showing the correspondence between the ifmap and the IfmapBuffer. ifmap_width
= 15, B = 18 and K = 5.

(a) The ifmap. (b) The IfmapBuffer.

Figure 4.7: The next stride position of the sliding window

50

4.2. HARDWARE ARCHITECTURE

4.2.2 Processing elements

Figure 4.8: Architecture of the 2D Processing Element with an example kernel register of size 32.

Figure 4.8 depicts only data signals and not control signals. The main difference between this
PE and the PE from section 3.2.3 is that the kernel stored in the kernel reg (the red boxes in
figure 4.8) is of size K2×Ww. Another difference is that the multiplication-accumulation is
using a round half-up instead of truncation. A round half-up is the round operation where
in the case where the distance up and down are equal, it always chooses to round up, this
gives a slight positive bias that could be noticeable when lots of values are accumulated.
Resulting in a significantly smaller quantization error when converting from floating point
numbers to fixed point numbers (section 4.3).

The timing diagram in figure 3.6 is descriptive also of the 2D Processing element, the only
differences are a larger 2D kernel register and two address identifiers for it, one for row and
one for column.

4.2.3 OfmapMems

The OfmapMems are functionally equal to the ones described in section 3.2.4, but in this
case, the ofmapMems are implemented as SRAMs. The reason is that when the size of a
memory exceeds a certain limit a RAM is advantageous over a register in terms of area
and power. The RAMs are compiled using MobileSemiconductor’s compiler SP-HSLV-
TS55EF_V1.43 which compiles an SRAM using TSMC 55nm low power CMOS process
[Mob19].

The RAMs need to have a fixed size upon compilation, simulation and synthesis. That puts
constraints on the size of the ofmaps that can be stored in each of them, which consequently
puts constraints on B. The maximal size that has been used is 8192 words and 16 bits per
word. 16 bits per word is because the 16 bit feature map data is what has been used the
most in this project. 8192 was the maximal number of words that the compiler tolerated.

51

4.2. HARDWARE ARCHITECTURE

If square ofmaps are assumed (which might not be the case), then the maximal width of
the ofmaps will be b

√
8192c = 90. Therefore a logical value for B is 90. One could have

B > 90 and add the constraint that ifmaps need to be wider than they are tall, however
this has not been considered. There are ways to overcome the limitation on the maximal
ifmap width (discussed in section 4.3.1). Formula (4.3) shows the value of B generically.

B = b
√
Nwc (4.3)

Where Nw is the number of words of width Wd in the ofmapMems. Formula (4.3) is only
a suggestion to what B should be. The convolutions make the ofmaps kernel_size - 1

smaller than ifmaps, so the ifmaps do allow a slightly larger size than given in formula (4.3),
but that depends on kernel_size. B = 90 is used here as a default for OfmapMems as
RAMs of size 8192.

4.2.4 Control path

The control path of the 2D CNN accelerator is more complex than that of the 1D CNN
accelerator. So the main FSM has been divided into several smaller FSMs, while maintaining
one central FSM that controls all the others. This results in the main FSM being a lot
simpler and able to keep track of only high level operations like when to stream and compute,
instead of low level operations like resetting specific counters.

Figure 4.9: The architecture of the control path of the 2D CNN Accelerator. This also contains
a Combinatorial Logic block as figure 3.9, but is not included for illustrational purposes.

The FSMs are described in the following paragraphs. The streaming interfaces are exactly
the same as described in section 3.2.7.

52

4.2. HARDWARE ARCHITECTURE

Counters

Inside the Counters block in figure 4.9 there are 8 instances of a counter, they differ by
their maximal count values which are as follows: 2 counting to kernel_width (one for rows
and one for columns), no_ofmaps, size of used ifmapBuffer, number of pixels in ifmap,
ofmap_width, ofmap_height and ofmapAddr (the current address used in the Ofmap-
Mems). The counter that counts to ofmapAddr is enabled every time either the counter
to ofmap_width or ofmap_height are enabled, hence no multiplier nor adder is needed to
get the ofmap address based on the ofmap width and height.

53

4.2. HARDWARE ARCHITECTURE

MasterControl FSM

All of the following FSM described on the pages to follow have reset and enable like the
masterControlFSM described in section 3.2.7.

The state diagram of the main central state machine MasterControlFSM is shown in figure
4.10, the inputs and outputs of the FSM are presented in table 4.3 which follows.

Figure 4.10: State diagram of the MasterControl FSM

The x’s in the state diagram in figure 4.10 represent that the signal of that position is not
set, resulting in a latch like explained in section 3.2.7.

Table 4.3: 2D MasterControl FSM inputs and outputs of FSM in figure 4.10

Inputs Outputs
Signal name # Signal name

1 new_layer 1 kernel_stream_FSM_enable

2 layer_finished 2 ifmap_stream_FSM_enable

3 kernel_stream_FSM_done 3 compute_FSM_enable

4 ifmap_stream_FSM_done 4 ofmap_stream_FSM_enable

5 compute_FSM_done 5 ofmapRam_enable_acc

6 ofmap_stream_FSM_done 6 ifmapBuf_rst

54

4.2. HARDWARE ARCHITECTURE

KernelStream FSM

The state diagram of the state machine which controls the input streaming of kernels is
shown in figure 4.11, the inputs and outputs of the FSM are presented in table 4.4.

Figure 4.11: State diagram of the KernelStream FSM

Table 4.4: 2D KernelStream FSM inputs and outputs of FSM in figure 4.11

Inputs Outputs
Signal name # Signal name

1 stream_biases 1 kernel_stream_enable

2 counter_kernel_col_fin 2 bias_stream_enable

3 counter_kernel_row_fin 3 counter_kernel_col_rst

4 counter_no_ofmaps_fin 4 counter_kernel_row_rst

5 counter_kernel_row_enable

6 counter_no_ofmaps_rst

7 counter_no_ofmaps_enable

8 counter_ifmap_pixels_rst

9 done

55

4.2. HARDWARE ARCHITECTURE

IfmapStream FSM

The state diagram of the state machine which controls the input streaming of ifmap pixels
is shown in figure 4.12, the inputs and outputs of the FSM are presented in table 4.5.

Figure 4.12: State diagram of the IfmapStream FSM

Table 4.5: 2D IfmapStream FSM inputs and outputs of FSM in figure 4.12

Inputs Outputs
Signal name # Signal name

1 counter_ifmap_buffer_fin 1 ifmap_stream_enable

2 counter_ifmap_buffer_rst

3 done

Computation FSM

The state diagram of the state machine which controls the computation is shown in figure
4.13, the inputs and outputs of the FSM are presented in table 4.6.

56

4.2. HARDWARE ARCHITECTURE

Figure 4.13: State diagram of the Computation FSM

Table 4.6: 2D Computation FSM inputs and outputs of FSM in figure 4.13

Inputs Outputs
Signal name # Signal name

1 counter_kernel_col_fin 1 counter_kernel_col_rst

2 counter_kernel_col_fin_minus_1 2 counter_kernel_col_enable

3 counter_kernel_row_fin 3 counter_kernel_row_rst

4 counter_ofmap_width_fin 4 counter_kernel_row_enable

5 counter_ofmap_height_fin 5 counter_ofmap_width_rst

6 ifmapStream_handshake 6 counter_ofmap_width_enable

7 counter_ofmap_height_rst

8 counter_ofmap_height_enable

9 PE_rst_acc

10 PE_enable_acc

11 ifmapStream_enable

12 ofmapRam_write_enable

13 done

The states Shift ifmap once and Shift ifmap edge are both for shifting in new ifmap
data while computation is going on. The Shift ifmap once state is for shifting the sliding

57

4.2. HARDWARE ARCHITECTURE

window (figure 2.3) one step along the same row. The Shift ifmap edge state is for
switching rows, thus requiring to stream in kernel_width ifmap samples before proceeding.

OfmapStream FSM

The state diagram of the state machine which controls the output streaming of ofmaps is
shown in figure 4.14, the inputs and outputs of the FSM are presented in table 4.7.

Figure 4.14: State diagram of the OfmapStream FSM

Table 4.7: 2D OfmapStream FSM inputs and outputs of FSM in figure 4.14

Inputs Outputs
Signal name # Signal name

1 counter_ofmap_width_fin_minus_1 1 ofmap_stream_enable

2 counter_ofmap_height_fin 2 counter_ofmap_width_rst

3 counter_no_ofmaps_fin 3 counter_ofmap_height_rst

4 counter_ofmap_height_enable

5 counter_no_ofmaps_rst

6 counter_no_ofmaps_enable

7 ofmapRam_enable_acc

8 done

58

4.3. VERIFICATION

4.3 Verification

The 2D CNN accelerator has been more thoroughly verified than the 1D CNN accelerator.
The basic method is the same (the one shown in figure 4.15), but one difference is that
the fixed point software version of the 2D CNN accelerator is not truncating, but rounding.
This is because the multiplication-accumulation in the PEs here are rounding instead of
truncating, leading to a much smaller quantization error.

Figure 4.15: Functional verification method.

Testbench

The SystemVerilog testbench which is used to verify the functionality has the structure
presented in figure 4.16.

Figure 4.16: Structure of the testbench for the 2D CnnAccelerator. Biases have been omitted in
figure as they are treated just like kernels

59

4.3. VERIFICATION

The initial block reads the files written by the SW implementation of figure 4.15. In the
ofmap base the expected ofmap values are stored. These values are the ones written by
the software fixed point version in figure 4.15. In the error check always block the ofmap
values of the 2D CNN Accelerator are compared with the theoretically computed values of
the ofmap base. Only when all values are equal will the test be considered a success.

The CNN accelerator is designed for being a low power, low area hardware accelerator.
CNNs are often huge so it may be a problem to combine the two, for instance, the CNN
discussed in section 4.3.3 has ifmap widths of 224 and hundreds of ofmaps as outputs in
certain layers. In spite of being parametrized and configurable the CNN accelerator is going
to have a limited maximal ifmap width and number of ofmaps. In sections 4.3.1 and 4.3.2
two important techniques to overcome these limitations are presented.

4.3.1 Stripe division

Take a case where the parameter B is smaller than the width of the ifmaps that are going
to be processed. Say the ofmapMems have a size 8192 words leading to B = 90 (see section
4.2.3 for an explanation). Then say the ifmap width and height are 180 and that the kernel
width is 3.

The stripe width ws of ifmaps is given by:

ws =
⌊
Nw

hi

⌋
=
⌊8192

180

⌋
= b45.5c = 45 (4.4)

Where Nw is the number of words per RAM and hi is the height of ifmaps. The important
point is that the number of pixels in the stripe (ws × hi) is less than or equal to Nw. The
number of stripes ns is given by:

ns =
⌈

wi

ws − (wk − 1)

⌉
=
⌈ 180

45− (3− 1)

⌉
= d4.2e = 5 (4.5)

Where wi is the width of ifmaps, ws is the stripe width and wk is the kernel width.

Figure 4.17: Ifmap stripe division with ifmap width of 180, RAM size of 8192 and B = 90.

All ifmaps are divided equally, all ifmaps send in the same stripe to the CNN Accelerator

60

4.3. VERIFICATION

before moving on to the next stripe shown in figure 4.18.

Figure 4.18: The second stripe, overlapping the first with 2 pixels.

The overlap of adjacent stripes is wk − 1.

Figure 4.19: The last stripe

4.3.2 Ofmap grouping

Ofmap grouping is fairly simple compared to stripe division. It is done when the number
of ofmaps that need to be processed is greater than M . Then one can quite simply just
process M ofmaps at a time, and repeat successively until all have been processed. When
one group of ofmaps has finished processing, the layer_finished signal needs to be set
high as if one entire layer was finished. It can be seen as processing one layer as if it was
several.

61

4.3. VERIFICATION

(a) (b)

Figure 4.20: Example of ofmap grouping where M = 3 and the number of ofmaps is > 3

This technique will require sending in all ifmaps into the accelerator as many times as there
are ofmap groups, resulting in a sub-optimal data reuse scheme. If ifmap stripe division and
ofmap grouping both are necessary, then stripe division is performed within ofmap groups.
So ofmap grouping is the highest level of hierarchy in the data preparation.

4.3.3 Benchmarking using VGG16

VGG16 [Kar14] is a famous CNN that has been among the best in image recognition for
years. It has been chosen for benchmarking in this project because a Python model using
Keras and Tensorflow is readily available and in [YuH17b] (Eyeriss) it has been used for
benchmarking (see table VI in [YuH17b]). The method used is the following: firstly an image
of the ImageNet database is chosen at random, then that image is used as the input of the
VGG16 network. Inference is run so that the image is classified and the CNNs functionality
is confirmed. Then one layer is chosen and the ofmaps of that layer are fetched and written
to files. This constitutes the yellow box of figure 4.15. Then the rest of the process proceeds
as described in section 3.3.

62

4.3. VERIFICATION

Table 4.8: The conv layers of VGG16 that have been used for verification and benchmarking.
All ifmap widths are 2 greater than whats normally given in VGG16, this is because all ifmaps in
VGG16 are zero padded outside the borders with a width of 1

Layer ifmaps ofmaps ifmap width kernel width

CONV1-1 3 64 226 3
CONV1-2 64 64 226 3
CONV2-1 64 128 114 3
CONV2-2 128 128 114 3

The accelerator has been benchmarked using two different parameter configurations one
having (B = 90, K = 5, M = 5) and (B = 90, K = 5, M = 32). The testbench has been
implemented using both techniques described in sections 4.3.1 and 4.3.2 as the dimensions
of the VGG16 CNN are quite a bit larger than these two given parameter configurations.

63

4.4. RESULTS

4.4 Results

VGG16

The first 4 conv layers of VGG16 (a CNN presented in section 4.3.3) have been implemented
successfully on the 2D CNN accelerator. The results of processing these layers with two
different parameter configurations are shown in tables 4.9 and 4.10. The tests have been
run using the method described in section 4.3.

Table 4.9: Processing of VGG16. (M = 5, B = 90, K = 5 and 8k RAMs), at 100MHz and 1V
supply voltage. Area is 585 KGEs. Power is estimated using Spyglass Power.

Layer Power (mW) Time (ms) Time (ck cycles)

CONV1-1 2.3 249.8 25.0 mill
CONV1-2 2.3 4675 468 mill
CONV2-1 2.4 2333 233 mill
CONV2-2 2.5 4650 465 mill

Table 4.10: Processing of VGG16. (M = 32, B = 90, K = 5 and 8k RAMs) at 100MHz and 1V
supply voltage. Area is 3.4 MGEs. Power is estimated using Spyglass Power.

Layer Power (mW) Time (ms) Time (ck cycles)

CONV1-1 26.7 65.7 6.57 mill
CONV1-2 26.5 749 74.9 mill
CONV2-1 28.2 374 37.4 mill
CONV2-2 28.7 732 73.2 mill

Power

Power has been estimated using Synopsys Spyglass power (chapter 1). The results of Spy-
glass Power are scenario based, meaning that the power consumption estimate is based on
the activity and switching in a specific testbench. The results of Spyglass Power in some
specific VGG16 layers are shown in the tables 4.9 and 4.10.

Area

The accelerator has been synthesized with many different parameter configurations, some
plots of area as a function of different parameters are shown on the following pages. The
blue dots represent results of syntheses that have been carried out and the orange lines are
the interpolations between them. Area is measured in Kilo/Mega Gate Equivalents (KGEs,
MGEs respectively).

64

4.4. RESULTS

(a) K = 5, B = 90, ram_size = 8k. (b) K = 11, B = 90, ram_size = 8k.

(c) K = 25, B = 90, ram_size = 8k.

Figure 4.21: Area plotted as a function of M . The number of OfmapMems and the number of
PEs

65

4.4. RESULTS

(a) M = 1, B = 90, ram_size = 8k. (b) M = 5, B = 90, ram_size = 8k.

(c) M = 10, B = 90, ram_size = 8k. (d) M = 32, B = 90, ram_size = 8k.

Figure 4.22: Area plotted as a function of K. The maximal kernel size.

66

4.4. RESULTS

(a) K = 5, M = 1, ram_size = 8k. (b) K = 11, M = 1, ram_size = 8k.

(c) K = 5, M = 5, ram_size = 8k. (d) K = 11, M = 5, ram_size = 8k.

(e) K = 5, M = 32, ram_size = 8k.

Figure 4.23: Area plotted as a function of B. The maximal ifmap width

Section A.3 shows some 3D plots of area as a function of 2 parameters simultaneously.

67

4.5. DISCUSSION

4.5 Discussion

4.5.1 Area

The plots of area presented in the results, and section A.3 in the appendix, show how the area
varies as a function of the parameters M , K and B. It is quite clear that M is dominating
the area. This means that the number of PEs and OfmapMems have the greatest impact
on area. This is shown by the high intercepts of the vertical axis in figures 4.22 and 4.23
when M gets large.

The parameter K, when large enough, will also affect the area significantly. The plots have
a parabolic shape, as the kernel registers in the PEs are squares. And it will also affect the
number of rows in the IfmapBuffer, making the increase even steeper. When K is larger,
B has a greater impact on the area this is shown in figure 4.23(b) when compared to figure
4.23(a).

4.5.2 Estimation of speed

Simulation of the 2D CNN accelerator can take hours when processing a large conv layer.
Therefore this section aims to produce calculations that estimate how much time the accel-
erator uses to process a given conv layer. Using pure calculation instead of simulation. Also
knowing how much time the CNN accelerator uses to compute is related to computing the
number of operations or MACs (Multiply-Accumulates) performed (shown in section 4.5.3).

Computation time

If kernel_width ≤ K, no_ofmaps ≤M and ifmap_width ≤ B the time used for computa-
tion can quite simply calculated from formula (4.6).

Tcomp_simple = ((w2
k + 2) · wo · ho) · ni (4.6)

Where T is total time taken, measured in number of clock cycles, wk is the kernel width,
wo is the ofmap width, ho is the ofmap height and ni is the number of ifmaps. This applies
only of no ≤ M and wk ≤ K and ho · wo ≤ mem_size. The +2 inside the parentheses
comes from the two extra clock cycles spent by the PE when waiting for new ifmap values
(described in section 3.2.7).

68

4.5. DISCUSSION

Computation time including stripe division

If however wi > B stripe division must be applied and the following formulae are obtained.

swi = min
(
min(

⌊
mem_size

hi

⌋
, wi), B

)
(4.7)

swo = swi − (wk − 1) (4.8)

Where swi is the stripe width of ifmap stripes, swo is the stripe width of the ofmap stripes
and min(a, b) is the function returning a if a < b and b otherwise. The number of stripes
per feature map thus becomes:

ns =
⌈
wo

swo

⌉
(4.9)

Tcomp = (((w2
k + 2) · swo · ho) · ni) · (ns − 1) + (((w2

k + 2) · last_swo · ho) · ni) (4.10)

Which simplifies to:

Tcomp = (((w2
k + 2) · ho) · ni) · ((ns − 1) · swo + last_swo) (4.11)

Computation time including ofmap grouping

If no > M ofmap grouping must be applied and the following formulae are obtained.

ng =
⌈
no

M

⌉
(4.12)

Tcomp = (((w2
k + 2) · ho) · ni) · ((ns − 1) · swo + last_swo) · ng (4.13)

Where last_swo = wo (mod swo) and denotes the width of the last stripe, as it will be less
than or equal to swo the other stripes. Here the situation where wo is divisible by swo is
ignored because the situation does not occur in the given scenarios and it would complicate
these calculations further. Time taken during edge shifts (when the sliding window goes to
the next row) is also omitted. This is the final version of the computation time that will be
used in calculations.

Streaming time

The time for streaming inputs (both weights and ifmaps) is given in the following formulae.
t is the input streaming time for a single cycle of the accelerator’s state machine. Biases

69

4.5. DISCUSSION

have been omitted as they take a negligible amount of time to stream.

t = K · swi + w2
k ·M (4.14)

Tstream_in = ni · ns · ng · t (4.15)

Time taken streaming ofmaps out is given in the following formula.

Tstream_out = wo · ho · no (4.16)

Total time

The total time used for processing a conv layer is given in the following formula.

Ttot = Tcomp + Tstream_in + Tstream_out (4.17)

Where Tcomp is given in formula (4.13), Tstream_in in formula (4.15) an and Tstream_out in
(4.16).

Using the above calculations an estimate of the speed of the 2D CNN accelerator can be
made, given the hardware parameters and the specific conv layer being implemented.

Table 4.11: conf1: (B = 90,K = 5,M = 5), conf2: (B = 90,K = 5,M = 32), both use
OfmapRAMs of size 8k. CONV1-2 and CONV2-1 refer to two of the conv layers of VGG16,
described in section 4.3.3.

conf1 conf2
CONV1-2 CONV2-1 CONV1-2 CONV2-1

wk 3 3 3 3
wi 226 114 226 114
hi 226 114 226 114
wo 224 112 224 112
ho 224 112 224 112
ni 64 64 64 64
no 64 128 64 128
ns 7 2 7 2
swi 36 71 36 71
swo 34 69 34 69

last_swo 20 43 20 43
ng 13 26 2 4

Speed (cycles) 464 mill 232 mill 74 mill 37 mill

The last row in table 4.11 indicates the calculated estimate of speed using the above calcu-

70

4.5. DISCUSSION

lations given the configurations and implemented conv layer. If compared with the results
from simulations in tables 4.9 and 4.10 it can be seen that the numbers are quite accurate,
but slightly lower, that is because of the simplifications done in these estimates.

The following plots show how the speed (time taken) varies with the hardware parameter
M which is equal to the number of PEs and OfmapMems. The plots are based on the
calculations made in this section. The higher M is, the faster it should go, as reflected in
the results.

(a) Implementing CONV1-2 of VGG16. (b) CONV1-2 of VGG16. Greater range M

(c) CONV2-1 of VGG16

Figure 4.24: Plots of the time used processing layers of VGG16 as a function of M . K = 5,
B = 90 and 8k RAMs for all plots.

As can be seen in the plots, the speed makes discrete jumps at certain places. This happens
when the value of M has increased enough that ng decreases, meaning that fewer ofmap
groups are required and parallelization can increase. At M = 64 it can be seen that the
speed stagnates, as no further increase in M can give fewer ofmap groups.

71

4.5. DISCUSSION

4.5.3 Estimation of Energy efficiency

Estimation of number of operations (MACs)

The number of operations that need to be performed in a conv layer will depend on the
implementation. This section will discuss how the presented architecture performs with the
two different parameter configurations used in the results section (section 4.4). The metric
that will be used to measure number of operations is MACs (multiply and accumulate
operations). Assume that all M PEs are active when processsing, then the number of
operations that take place at every ifmap position (window position, see figure 2.3) is the
following.

NMACs_1 = M · w2
k (4.18)

That happens for all ifmap positions in the given stripe resulting in the following number
of MACs per stripe.

NMACs_2 = M · w2
k · ho · swo (4.19)

That happens for all stripes in all ifmaps resulting in the following formula, but the last
ifmap stripe has a smaller width.

NMACs_3 = M · w2
k · ho · ni · (swo · (ns − 1) + last_swo) (4.20)

Then that happens for all ofmap groups resulting in formula (4.21) which is an estimate of
the total number of MACs that take place in a complete conv layer.

NMACs = M · w2
k · ho · ni · (swo · (ns − 1) + last_swo) · ng (4.21)

Where M is the hardware parameter presented, wk is the kernel width, swo is the stripe
width, last_swo is the width of the last ifmap stripe, ho is the ofmap height, ns is the number
of stripes, ni is the number of ifmaps and ng is the number of ofmap groups. The additions
of offset_in in the PEs has been ignored, only the multiply-accumulate operations are
considered. The addition of biases in the output of the 2D CNN accelerator have also been
ignored.

Energy Efficiency (MACS/s/W)

The power used for the two different parameter configurations in the four different conv
layers is shown in the results 4.4 in tables 4.9 and 4.10. The calculation of the number of
MACs per time per power (MACs per unit energy) is shown in the following formula.

EnEff =
#MACs

t

P
(4.22)

72

4.5. DISCUSSION

Where EnEff is the energy efficiency, #MACs is the number of MACs performed, t is the
time taken and P is the average power consumed.

Table 4.12: conf1: (B = 90,K = 5,M = 5), conf2: (B = 90,K = 5,M = 32), both use
OfmapRAMs of size 8k. The ck frequency is 100MHz and 1V supply voltage

Layers Configuration MACs Time Power Energy Efficiency
(ms) (mW) (MACs/s/W)

CONV1-1
conf1 88.1 mill 249.8 2.3 153 bill
conf2 86.7 mill 65.7 26.7 49.4 bill

CONV1-2
conf1 1.88 bill 4675 2.3 175 bill
conf2 1.85 bill 749 26.5 93.2 bill

CONV2-1
conf1 939 mill 2333 2.4 168 bill
conf2 925 mill 374 28.2 87.8 bill

CONV2-2
conf1 1.88 bill 4650 2.5 162 bill
conf2 1.85 bill 732 28.7 88.1 bill

According to the calculations shown in table 4.12, the different parameter configurations
does not have a great impact on the number of MACs performed. In fact, they should not
have much effect at all on the number of operations performed. The subtle differences come
from inaccuracies in the given calculations. The punishment of having low parallelization
does not come in the form of having to do more operations, but having to do them over a
longer period of time.

4.5.4 Comparison with Eyeriss

Eyeriss [YuH17b] is a state-of-the-art CNN hardware accelerator that can be considered
comparable to the presented architecture. It processes feature maps and weights in 16-bits
fixed point and has been benchmarked using the CNN VGG16 [Kar14].

73

4.5. DISCUSSION

Table 4.13: Comparison between Eyeriss and the presented architecture implementing layers of
VGG16. conf1 refers to the presented architecture with parameters (K = 5, M = 5, B = 90,
ram_size = 8k) and conf2 refers to (K = 5, M = 32, B = 90, ram_size = 8k). All architectures
use 1V supply voltage. Eyeriss runs at 200MHz and the presented accelerator at 100MHz.

Layer Architecture Power Time Area EnEff
(mW) (ck cycles) (MGEs) (MACs/s/W)

CONV1-1
conf1 2.3 25.0 mill 0.6 153 bill
conf2 26.7 6.57 mill 3.4 49.4 bill
Eyeriss 247 7.6 mill 8.0 27.7 bill

CONV1-2
conf1 2.3 468 mill 0.6 175 bill
conf2 26.5 74.9 mill 3.4 93.2 bill
Eyeriss 218 182 mill 8.0 31.4 bill

CONV2-1
conf1 2.4 233 mill 0.6 168 bill
conf2 28.2 37.4 mill 3.4 87.8 bill
Eyeriss 242 94.1 mill 8.0 28,2 bill

CONV2-2
conf1 2.5 465 mill 0.6 162 bill
conf2 28.7 73.2 mill 3.4 88.1 bill
Eyeriss 231 178.9 mill 8.0 29.6 bill

The time and power values of Eyeriss are taken from table VI in [YuH17b]. Its energy
efficiency is not directly given in that table so it has been calculated using formula (4.22)
based on the values given in the table. The performance of both configurations of the
presented architecture is significantly better than Eyeriss in terms of energy efficiency in
the given conv layers of VGG16. The maximal energy efficiency of Eyeriss is stated to be
122.8 GMACs/s/W at 0.82 V. Optimizing the supply voltage could also make the presented
architecture more energy efficient. One final consideration is that Eyeriss is implemented in
65 nm CMOS and the presented design on 55 nm. This has implications regarding power
consumption.

Discrepancy in number of MACs

In table VI in [YuH17b] the number of MACs per conv layer are shown. There is a discrep-
ancy between the number of MACs performed in the conv layers of VGG16 by Eyeriss and
by the presented accelerator. The presented accelerator consistently uses about a factor 3
fewer MACs than Eyeriss does. It is unknown why this discrepancy is there, it could be
that Eyeriss computes the conv layers less efficiently using more operations.

74

Chapter 5

Discussion

5.1 Matrix multiplication

The presented architecture is essentially a collection of multiply-accumulate processors
(PEs), each with memory (OfmapMems) and a distributor of data (IfmapBuffer). This
architecture could quite easily be adapted to perform many other kinds of operations
like dot products and matrix multiplications. To perform a matrix multiplication like:
M1×M2 = M3, the columns of M2 can be loaded into the PE as though they were kernels,
and the rows of M1 could be sent through the IfmapBuffer. When processing this could
result in a sum of all element-wise products of rows and columns inM1 andM2 respectively,
resulting in a matrix product. This could be done in both the 1D and 2D accelerators. The
parameters M and K would limit the sizes of the tolerated matrices.

The main operation performed in inference in fully connected neural networks is a product
of a matrix and a vector. Therefore this could conceivably be a starting point on how to
accelerate fully connected NNs.

5.2 Quantization, range and precision

The verification method presented in sections 3.3 and 4.3 involve using a version of the CNN
accelerator implemented in software using floating point numbers (leftmost blue box in figure
4.15). When the Keras model and this sofware version of the accelerator are equal, this is
regarded as definitive proof that the accelerator computes a conv layer correctly. However
there is always some error between the Keras model and the software implementation of the
accelerator. The error was found to decrease when few ofmaps were accumulated (around
∼ 10−10 absolute value) and increase when more were accumulated (around ∼ 10−3 absolute
value). So the error is believed to be only a result of small imperfections in the floating
point number representation.

75

5.2. QUANTIZATION, RANGE AND PRECISION

The difference between the floating point representation and fixed point representation give
the quantization error and that is the largest error. In the truncating multiplications used
in the 1D CNN accelerator the error quickly became disastrous, in some cases 100% off if
the kernel is large and many ofmaps are accumulated. For the rounding operations however
the error became significantly smaller, the maximal observed errors were <1% off even when
many ofmaps are accumulated.

The quantization of both inputs and weights is a major concern in this work. The inputs and
weights have been quantized in fixed point using 16 bits throughout this thesis. However the
data widths are parameterized so that more or less precision and range can be supported
depending on what may be needed. There is an often applied regularization technique
known as weight decay (see chapter 3 in [Mic15]) that during training makes the NN prefer
smaller weights over lower weights. This leads to the weights rarely being greater than one,
and makes precision more important than range, so in VGG16 the weights were quantized
with 16 bits having 14 fractional bits [16, 14] in two’s complement. Data however is often
pixels, and pixels are typically bytes, thus an integer of 8 bits between 0 and 255. As the
processing gets deeper into the neural network then there is no upper limit at 255 anymore,
therefore more bits are required, and also some precision. In VGG16 16 bits were used for
data whereas 2 bits were fractional [16, 2] in two’s complement.

Binary Weights

Some theoretical groundwork should be laid on how many data and weight bits are required,
this could then be implemented and used to improve the accelerator’s performance signif-
icantly, perhaps going as far as binary weights. Binary weights is a heavily explored field
[M C16b] and often means allowing all weights to be only either -1 or 1. This gives huge
hardware benefits, in terms of speed, area and power as all multipliers can be replaced by
multiplexers.

This has not been explored thoroughly in this thesis because of the desire for versatility.
This thesis does not limit itself to only one type of CNN. However the number of bits in
the weights can be reduced by adjusting the parameter Ww, and the multipliers in the
PEs can be replaced by more efficient operations. Binary weights make the idea of the
Parallel PE (section 3.5.1) more attractive as the parallel multiplications would become
less power consuming and area occupying. Because of this, the presented architecture is
quite far behind YodaNN [Ren16] and Hyperdrive [Ren18] which both exceed 1 TOPs/s/W
(although Ops are not the same as MACs, bear in mind that no multiplication is needed
in a binary CNN, rendering MACs unsuitable for comparison). YodaNN and Hyperdrive
however can only implement certain specialized kinds of CNNs with binary weights.

76

5.3. CONTROL PATH

5.3 Control path

First and foremost this thesis presents an architecture. The control path created along with
this architecture could be adjusted to handle some things more elegantly. For instance the
new_layer/layer_finished logic could be replaced by having for example no_ifmaps as an
input and thus not rely on the external user setting those two signals correctly at the right
time. This would also eliminate the need for the latch in the presented FSMs (section 3.2.7).
Given the logic that has been used, the latch could also have been eliminated using two
outputs from MasterControlFSM and use them as write_enable and data input to a flip flop
that resides outside of the FSM. The flip flop could then contain the ofmapMem_enable_acc

signal.

Different stride lengths can also be supported. This can be done by having stride_length

as a top level input and use a counter that counts to this value when streaming ifmap values
while computing, when the ComputationFSM is active. ResNet [Kai15] for example, the
best CNN around per 2018, uses larger stride lengths as a replacement for pooling.

State encoding in FSMs has not been considered in this thesis because again, the architecture
is in focus here, not the control path. It affects power consumption, so it should be accounted
for.

If padding around the ifmap borders should be applied (as VGG16 does), then the data is
assumed to be padded outside the accelerator, support can be added for built-in padding,
but this has not been considered.

5.4 Optimizations and variations

There are many optimizations that can be conceived. In the paragraphs that follow, some
of them are discussed.

For example the offset_in adder in the PEs, see figure 3.5, could be eliminated if the
possibility of loading a value directly into the Acc reg was introduced. Then the initialization
phase of the PEs could consist of loading the offset_in value into the register. A method
similar to this could also be used to add the biases directly into the PEs instead of needing
the extra bias adder at the end of the top level architecture, see figure 3.3.

Latch based implementations of memory have been used in [Ren16] and [Ren18] to be able to
scale voltage down further than a RAM or a register would allow. This could be investigated
if voltage scaling is going to be done.

In the presented design only the ReLU activation function (formula 2.6) has been consid-
ered. To improve versatility, other activation functions could also be implemented. It could
possibly be done generically by having a re-writable look up table as the activation function.

77

5.5. FUTURE WORK

An algorithm like simulated annealing could be carried out for optimizing the hardware
parameters for all relevant metrics.

Some sparsity optimizations can be done. So that when for example a 0 arrives to the PEs
from the IfmapBuffer, the PEs do nothing, save some energy, and skip to the next ifmap
sample/pixel.

The OfmapMem sizes (section 4.2.3) could be increased to relax its constraint on B some-
what, then the area and power must thus be evaluated for the greater OfmapMems. The
IfmapBuffer could then also grow larger, and it could be an advantage to implement it also
as a RAM.

Considering the 1D CNN accelerator. The operations involved in that could also be done
by the 2D CNN accelerator. All the necessary resouces are present, only some hardware
would remain unused. In order to do this some modifications to the 2D CNN accelerator’s
control path must be done.

Layout and physical production have not been done, so many considerations that are in-
volved when implementing hardware on chip have not yet been taken. The estimates given
by Synopsys Design compiler and Synopsys Spyglass might therefore not necessarily repre-
sent how the hardware would behave on chip.

5.5 Future work

One thing that has not been elaborated on as much as planned is the power consumption.
Time has not allowed further investigation into what dominates the power consumption and
thus neither the energy efficiency. A future goal could be to find the optimal point in the
speed vs power trade-off, the point where the energy efficiency is maximal. Thus far only
the results of a few cases have been stated, it has not been evaluated in its entirety.

This thesis is only concerned with accelerating the convolutions involved in CNN. However
fully connected layers also play an essential role in CNNs and NNs in general. It would be
very powerful if an accelerator for fully connected NNs were to be designed and together they
could perform all operations necessary in a CNN. There are many problems that arise with
respect to accelerating fully connected NNs, like the sheer number of weights involved (much
higher than in a conv layer), therefore much work has been done on pruning weights and
utilizing sparsity in NNs (EIE for example [Son16]). However, [YuH18b] says the following
about sparsity: “While this is efficient for sparse DNNs, there would be significant overhead
for processing dense DNNs in the compressed format. This is a challenge, since there is no
guarantee of sparsity in the DNN.”.

78

Chapter 6

Conclusion

This thesis has presented a configurable, versatile and flexible architecture for hardware
acceleration of convolutional neural networks (CNNs). The goal was to make a hardware
accelerator that is able to process any CNN. This has been achieved by making an accelerator
that processes one convolutional layer at a time so no constraints are put on the depth of
the network. The accelerator has been made versatile so that any kernel sizes, feature map
sizes and number of feature maps both in and out can be processed.

The thesis has presented an accelerator for a less common type of CNN, namely one-
dimensional CNNs. That architecture was subsequently further developed to design another
accelerator that processes two-dimensional CNNs. The two-dimensional CNN accelerator
has been tested and compared with literature and found to be comparable to state-of-the
art CNN hardware accelerators. This was found by comparison with Eyeriss [YuH17b] (a
state-of-the-art CNN accelerator in terms of energy efficiency) in implementing the CNN
VGG16 [Kar14] in 16 bit fixed point (for both weights and feature maps). The presented
architecture has been implemented mainly with two different sizes, one large (occupying 3.4
MGEs (Million Gate Equivalents) of area) with high levels of parallelism and one smaller
(0.59 MGEs) with low levels of parallelism. The former processes VGG16 consuming an
average power of about 27 mW achieving between 49 and 93 GMACs/s/W as energy effi-
ciency. The latter processes VGG16 slower, but consumes only around 2.4 mW of power
and has an energy efficiency between 153 GMACs/s/W and 175 GMACs/s/W. Both with
a 100MHz clock and 1V supply voltage. When compared to Eyeriss’ maximal efficiency of
122.8 GMACs/s/W at 0.82V while occupying 8 MGEs, the presented architecture is a sig-
nificant improvement. For some select convolutional layers, the energy efficiency is improved
by a factor of more than 5.

79

Bibliography

[Abh18] Abhinav Ralhan. Self Organizing maps. 2018. url: https://towardsdatascience.

com/self-organizing-maps-ff5853a118d4 (visited on 2018-12-13).

[Ale12] Alex Krizhevsky, Ilya Sutskever and Geoffrey E. Hinton. “ImageNet Classifica-
tion with Deep Convolutional Neural Networks”. In: (2012).

[Cat17] Catherine D. Schuman, Thomas E. Potok, Robert M. Patton, J. Douglas Bird-
well, Mark E. Dean, Garrett S. Rose and James S. Plank. “A Survey of Neuro-
morphic Computing and Neural Networks in Hardware”. In: arXiv: 1705.06963
(2017).

[Chr18] S. T. Christensen. A literature review of low power hardware accelerators for
neural networks. Tech. rep. Norwegian University of Science and Technology,
2018-12.

[Dav18] M. Davies. “Loihi: A Neuromorphic Manycore Processor with On-Chip Learn-
ing”. In: IEEE micro 38.1 (2018), pp. 82–99.

[Dem17] Demis Hassabis, David Silver.AlphaGo Learning from scratch. 2017. url: https:

//deepmind.com/blog/alphago-zero-learning-scratch/ (visited on 2018-
12-13).

[Kai15] Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. “Deep Residual
Learning for Image Recognition”. In: arXiv 1512.03385 (2015).

[Kar14] Karen Simonyan, Andrew Zisserman. “Very deep convolutional networks for
large-scale image recognition”. In: Proceedings of the IEEE (2014), pp. 1–14.

[Ker19] Keras. Keras. 2019. url: https://keras.io/ (visited on 2019-06-15).

[Li 18] Li Fei-Fei. ImageNet. 2018. url: http : / / www . image - net . org (visited on
2019-05-20).

[Luc19] Lucidchart. Lucidchart. 2019. url: https://www.lucidchart.com (visited on
2019-06-08).

[Luk15] Lukas Cavigelli, M. Magno, and Luca Benini. “Accelerating real-time embed-
ded scene labeling with convolutional networks”. In: in Proceedings of the 52nd
Annual Design Automation Conference (2015).

81

https://towardsdatascience.com/self-organizing-maps-ff5853a118d4
https://towardsdatascience.com/self-organizing-maps-ff5853a118d4
https://deepmind.com/blog/alphago-zero-learning-scratch/
https://deepmind.com/blog/alphago-zero-learning-scratch/
https://keras.io/
http://www.image-net.org
https://www.lucidchart.com

BIBLIOGRAPHY

[M C16a] M. Courbariaux and Y. Bengio. “BinaryNet: Training Deep Neural Networks
with Weights and Activations Constrained to +1 or -1”. In: arXiv: 1602.02830
(2016).

[M C16b] M. Courbariaux, Y. Bengio and J. P. David. “BinaryConnect: Training Deep
Neural Networks with binary weights during propagation”. In: arXiv: 1511.00363
(2016).

[Mat19] Matplotlib. Matplotlib. 2019. url: https://matplotlib.org/ (visited on 2019-
06-15).

[Mic15] Michael Nielsen. Neural Networks and Deep Learning. 2015. url: http : / /

neuralnetwork-sanddeeplearning.com/index.html (visited on 2018-12-12).

[Min14] Ming Zeng, Le T. Nguyen, Bo Yu, Ole J. Mengshoel, Jiang Zhu, Pang Wu,
Joy Zhang. “Convolutional Neural Networks for Human Activity Recognition
using Mobile Sensors”. In: 6th international conference on mobile computing,
applications and services (MobiCASE) (2014), pp. 197–205.

[Mob19] MobSemi. MobSemi. 2019. url: http://www.mobile- semiconductor.com

(visited on 2019-06-17).

[Nor18] Norman Jouppi, Cliff Young, Nishant Patil, David Patterson. “In-Datacenter
Performance Analysis of a Tensor Processing Unit”. In: IEEE Micro 38 (2018-
06), pp. 10–19.

[Nor19] Nordic. Nordic. 2019. url: https://www.nordicsemi.com/ (visited on 2019-
06-17).

[Pyt19] Python. Python. 2019. url: https://www.python.org/ (visited on 2019-06-15).

[Qua18] Qualcomm. Snapdragon 855 Mobile Platform. 2018. url: https://www.qualcomm.

com/products/snapdragon-855-mobile-platform (visited on 2018-12-16).

[Que19] Questasim. Questasim. 2019. url: https://www.mentor.com/products/fv/

questa/ (visited on 2019-06-15).

[Ren16] Renzo Andri, Lukas Cavigelli, Davide Rossi and Luca Benini. “YodaNN: An
Architecture for Ultra-Low Power Binary-Weight CNN Acceleration”. In: (2016).

[Ren18] Renzo Andri, Lukas Cavigelli, Davide Rossi and Luca Benini. “Hyperdrive: A
Systolically Scalable Binary-Weight CNN Inference Engine for mW IoT End-
Nodes”. In: (2018).

[Sag17] Sagar Sharma. Activation Functions: Neural Networks. 2017. url: https://

towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6

(visited on 2018-12-12).

[Shy17] Shyamal Patel, Johanna Pingel. Introduction to Deep Learning: What Are Con-
volutional Neural Networks? 2017. url: https://www.mathworks.com/videos/

introduction - to - deep - learning - what - are - convolutional - neural -

networks--1489512765771.html (visited on 2018-11-11).

82

https://matplotlib.org/
http://neuralnetwork-sanddeeplearning.com/index.html
http://neuralnetwork-sanddeeplearning.com/index.html
http://www.mobile-semiconductor.com
https://www.nordicsemi.com/
https://www.python.org/
https://www.qualcomm.com/products/snapdragon-855-mobile-platform
https://www.qualcomm.com/products/snapdragon-855-mobile-platform
https://www.mentor.com/products/fv/questa/
https://www.mentor.com/products/fv/questa/
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://www.mathworks.com/videos/introduction-to-deep-learning-what-are-convolutional-neural-networks--1489512765771.html
https://www.mathworks.com/videos/introduction-to-deep-learning-what-are-convolutional-neural-networks--1489512765771.html
https://www.mathworks.com/videos/introduction-to-deep-learning-what-are-convolutional-neural-networks--1489512765771.html

BIBLIOGRAPHY

[Soj16] Sojeong Ha, Seungjin Choi. “Convolutional Neural Networks for Human Ac-
tivity Recognition using Multiple Accelerometer and Gyroscope Sensors”. In:
International Joint Conference on Neural Networks (2016), pp. 381–388.

[Son15] Song Han, Huizi Mao, William Dally. “Deep Compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding”. In:
International conference on Learning Representations 2016 (2015).

[Son16] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark Horowitz,
William Dally. “EIE: Efficient inference engine on compressed deep neural net-
work”. In: IEEE Annual international symposium on computer atchitecture 43
(2016-06).

[Spy19] Spyglass. Spyglass. 2019. url: https://www.synopsys.com/verification/

static-and-formal-verification/spyglass/spyglass-power.html (vis-
ited on 2019-06-15).

[Ste14] Stefan Duffner, Samuel Berlemont, Gregoire Lefebvre, Christophe Garcia. “3D
gesture classification with convolutional neural networks”. In: IEEE Interna-
tional conference on Acoustic, Speech and Signal Processing (ICASSP) (2014),
pp. 5432–5436.

[Syn19] Synopsys. Synopsys. 2019. url: https://www.synopsys.com/support/training/

rtl-synthesis/design-compiler-rtl-synthesis.html (visited on 2019-06-
15).

[Ten19] Tensorflow. Tensorflow. 2019. url: https://www.tensorflow.org/ (visited on
2019-06-15).

[Viv17] Vivienne Sze, Yu-Hsin Chen, Joel Emer and Tien-Ju Yang. “Efficient Processing
of Deep Neural Networks: A Tutorial and Survey”. In: Proceedings of the IEEE
(2017).

[Xia16] Xiang Zhang, Yann LeCun. “Text Understanding from scratch”. In: arXiv:1502.01710v5
(2016-04).

[YuH17a] Yu-Hsin Chen, Joel Emer and Vivienne Sze. “Hardware for Machine Learning:
Challenge and Opportunities”. In: arXiv 1612.07625v5 (2017).

[YuH17b] Yu-Hsin Chen, Tushar Krishna, Joel Emer and Vivienne Sze. “Eyeriss: An energy
efficient reconfigurable accelerator for deep convolutional networks”. In: IEEE
journal of solid-state circuits 52.1 (2017-01), pp. 127–138.

[YuH18a] Yu-Hsin Chen, Joel Emer Vivienne Sze. “Eyeriss v2: A Flexible and High-
Performance Accelerator for Emerging Deep Neural Networks”. In: arXiv 1807.07928v1
(2018).

[YuH18b] Yu-Hsin Chen, Tien-Ju Yang and Joel S. Emer. “Understanding the Limitations
of Existing Energy-Efficient Design Approaches for Deep Neural Networks”. In:
2018.

83

https://www.synopsys.com/verification/static-and-formal-verification/spyglass/spyglass-power.html
https://www.synopsys.com/verification/static-and-formal-verification/spyglass/spyglass-power.html
https://www.synopsys.com/support/training/rtl-synthesis/design-compiler-rtl-synthesis.html
https://www.synopsys.com/support/training/rtl-synthesis/design-compiler-rtl-synthesis.html
https://www.tensorflow.org/

Appendix A

Supplementary Material

A.1 2D CNN structure

Figure A.1: A full CNN. Comparable to figure 2.4.

Figure A.2: The full CNN with one layer shown in more detail.

A.2 Timing diagram of the 1D CNN Accelerator

1

A.2. TIMING DIAGRAM OF THE 1D CNN ACCELERATOR

Table A.1: Timing diagram for the 1D CNN Accelerator with no ifmaps = 10, no ofmaps = 20,
kernel size = 3, K = 5, M ≥ 20

cycle 1 2 3 4 5 6 7 ... 63 64
State IDLE INIT LOAD KER LOAD-
data in k0,0[0] k0,0[1] k0,0[2] k0,1[0] k0,1[1] ... k0,19[2] b0

ker values
ifm value

continuation ...
cycle 65 ... 84 85 86 87 88 89 90 91
State BIASES LOAD IFMAP COMPUTE
data in b1 ... b19 i0[0] i0[1] i0[2] i0[3] i0[4]
ker values k0,all[0] k0,all[1]
ifm value i0[0] i0[1]

continuation ...
cycle 92 93 94 95 96 97 98 99 100 ...
State IFM COMPUTE IFM COMPUTE ...
data in i0[5] i0[6] ...
ker values k0,all[2] k0,all[0] k0,all[1] k0,all[2] k0,all[0] k0,all[1] k0,all[2] ...
ifm value i0[2] i0[1] i0[2] i0[3] i0[2] i0[3] i0[4] ...

continuation ...
cycle 389 390 391 392 393 394 395 396 397 398
State IFM COMPUTE
data in i0[79]
ker values k0,all[0] k0,all[1] k0,all[2] k0,all[0] k0,all[1] k0,all[2] k0,all[0] k0,all[1] k0,all[2]
ifm value i0[75] i0[76] i0[77] i0[76] i0[77] i0[78] i0[77] i0[78] i0[79]

continuation ...
cycle 399 400 401 402 403 404 405 406 407 408
State IDLE LOAD KER LOAD IFMAP
data in k1,0[0] k1,0[1] k1,0[2] k1,1[0] k1,1[1] ... k1,19[2] i1[0] i1[1]
ker values
ifm value

continuation ...
cycle 409 410 411 412 413 414 415 416 417 418
State LOAD IFMAP COMPUTE IFM COMPUTE
data in i1[2] i1[3] i1[4] i1[5]
ker values k1,all[0] k1,all[1] k1,all[2] k1,all[0] k1,all[1] k1,all[2]
ifm value i1[0] i1[1] i1[2] i1[1] i1[2] i1[3]

continuation ...
cycle 419 ... 3287 3288 3289 3290 3291 3292 3293 3294
State IFM ... IFM COMPUTE
data in i1[6] ... i9[79]

2

A.3. AREA PLOTTED IN 3D

ker values ... k9,all[0] k9,all[1] k9,all[2] k9,all[0] k9,all[1] k9,all[2] k9,all[0]
ifm value ... i9[75] i9[76] i9[77] i9[76] i9[77] i9[78] i9[77]

continuation ...
cycle 3295 3296 3297 3298 3299 ... 4856 4857
State COMPUTE STREAM OUT IDLE
data out o0[0] o0[1] o0[2] ... o19[77]
ker values k9,all[1] k9,all[2]
ifm value i9[78] i9[79]

Where kx,y[n] means weight number n in the kernel used between ifmap x and ofmap y,
by is the bias of ofmap y, ix[n] is sample number n of ifmap x, oy[n] is sample number n
of ofmap y. State refers to the current state of the 1D CNN accelerator’s main FSM. data
in/data out is a merged version of all the different inputs and outputs that the accelerator
has. The timing diagram is simplified slightly, e.g. some simple states for resetting counters
are omitted.

A.3 Area plotted in 3D

Figure A.3: Scatter plot of area as a funtion of K and M . B = 90 and RAMs are 8k

3

A.3. AREA PLOTTED IN 3D

Figure A.4: Area as a funtion of K and M . Same as A.3 Zoomed in somewhat.

Figure A.5: Area as a funtion of K and B. M = 1 and RAMs are 8k

4

	Preface
	List of figures
	List of tables
	Acronyms and abbreviations
	Introduction
	Structure of report

	Background
	The artificial neuron model
	Simple fully connected neural network
	Training NNs

	Convolutional neural networks
	2D Convolutional neural networks
	1D Convolutional neural networks

	Literature review

	Accelerator for One-Dimensional Convolutional Layers
	Theoretical analysis
	Considerations
	Output stationary dataflow

	Hardware architecture
	Top level
	Ifmap Buffer
	Processing Elements
	Ofmap memory
	Biases
	ReLU
	Control path

	Verification
	Testbench

	Results
	Syntheses

	Discussion
	Variations of the architecture
	Closing note

	Accelerator for Two-Dimensional Convolutional Layers
	Theoretical analysis
	Hardware architecture
	Ifmap Buffer 2D
	Processing elements
	OfmapMems
	Control path

	Verification
	Stripe division
	Ofmap grouping
	Benchmarking using VGG16

	Results
	Discussion
	Area
	Estimation of speed
	Estimation of Energy efficiency
	Comparison with Eyeriss

	Discussion
	Matrix multiplication
	Quantization, range and precision
	Control path
	Optimizations and variations
	Future work

	Conclusion
	Bibliography
	Appendix Supplementary Material
	2D CNN structure
	Timing diagram of the 1D CNN Accelerator
	Area plotted in 3D

