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Summary

Patients undergoing cardiac surgery run the risk of serious complications during and af-
ter the intervention, and have their hearts monitored through the perioperative period.
Echocardiographic assessment of the contractility of the heart can be an important com-
ponent in this monitoring, but is often highly qualitative as visual inspection remains the
dominant technique. In recent years, efforts have been made to develop standardized quan-
titative measures of cardiac function, strain being one of them. Strain imaging technology
is available from the major vendors of ultrasound equipment and software, but currently
requires manual annotation of the images. In addition, the available technology suffers
from high inter- and intra-observer variability, making automation of the strain estima-
tion task desirable. Continuing advances in transesophageal echocardiography (TEE) are
believed to facilitate this automation.

This thesis aims to contribute towards the full automation of perioperative echocardio-
graphic monitoring through investigating the feasibility of fast, automatic longitudinal
strain estimation in the basal segments from unselected 4-chamber, 2-chamber, and long-
axis TEE images using unsupervised deep learning methods. A strain estimation pipeline
is proposed, composed of two major components: myocardial landmark detection and
frame-to-frame displacement estimation. Using the estimated displacements, the detected
landmarks can be tracked through the cardiac cycle and used to estimate strain. The land-
mark detection algorithm assumes known mitral annulus location and employs a series of
filtering operations to highlight a suitable landmark in the myocardial segment below it.
The displacements are estimated using a fully convolutional neural network (CNN) and
cubic B-spline interpolation, inspired by recent work in image registration. The CNN is
trained in an unsupervised manner, removing the need for manual annotation of the ground
truth, and estimates a low-resolution displacement field. This low-resolution field is then
interpolated to produce a dense displacement field describing the motion of each individual
pixel between two consecutive frames.

Three CNN models were trained and evaluated on samples from 94 patients (57 for train-
ing, 14 for validation, 23 for testing). The most succesful model shows promising results
in the 4- and 2-chamber views, especially when the images are of high quality. Notably,
it achieves a mean absolute difference (MD) of (2.96± 3.13)% on strain estimates in the
inferoseptal segment in the 4-chamber view when compared to a commercially available
method. In the other segments, the MD ranged from 4.04% to 6.17%, performing worst
on the long-axis samples. The largest differences were observed in samples where the
image quality was poor, leading to the conclusion that strain estimation using this method
is feasible if efforts are made to improve robustness or if image quality can be guaran-
teed.
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Sammendrag

Pasienter med behov for hjertekirurgi løper en risiko for alvorlige komplikasjoner under
og etter inngrepet, og blir derfor overvåket gjennom den perioperative perioden. Ekkokar-
diografisk evaluering kan være en viktig del av denne overvåkningen, men ettersom visuell
inspeksjon er den dominerende metoden er slik evaluering i høy grad kvalitativ. I senere
år har det vært stor interesse for å standarisere kvantitative indikatorer for hjertefunksjon,
og en mye brukt slik indikator er myokardiell strain. Strainavbildningsteknologi er i dag
tilgjengelig fra de fleste større leverandører av ultralydutstyr og -programvare, men disse
krever at personell med opplæring annoterer bildene manuelt. Det er også vist at det er
stor variasjon i slike målinger, både mellom observatører og mellom leverandører av ut-
styr, noe som gjør det ønskelig å standardisere automatiske strainmålinger. Fortsatt rask
utvikling innen transøsofagal ekkokardiografi (TØE) er ventet å fasilitere denne automa-
tiseringen.

Denne oppgaven har som mål å bidra til full automatisering av ekkokardiografisk overvåkning
i den perioperative perioden. Her undersøkes muligheten for rask automatisk longitu-
dinal strainestimering i basalsegmentene fra transøsofagale 4-kammer-, 2-kammer- og
lang-aksebilder gjennom bruk av ikke-veiledet (eng: unsupervised) dyp læring. Det blir
foreslått en metode i fire steg, der de to viktigste er deteksjon av gjenkjennbare punk-
ter på myokardium og estimering av bilde-til-bilde forflytning. De estimerte forflytnin-
gene brukes til å følge de detekterte punktene gjennom hjertesyklusen, og avstanden mel-
lom dem gir et estimat av strain. Punktdeteksjonen antar at mitralanullus’ posisjon er
kjent, og filtrerer bildene i flere omganger for å fremheve de mest distinkte punktene på
basalsegmentet under. Forflytningene blir estimert av et konvolusjonelt nevralt nettverk
og kubisk B-splineinterpolasjon, inspirert av nylig publisert arbeid innen bilderegistrering.
Nevralnettet estimerer et lavoppløst forflytningsfelt som så interpoleres til et felt med full
oppløsning, med én forflytningsvektor per piksel i bildene. Nevralnettet trenes uten veiled-
ning slik at de sanne forflytningene ikke behøver å være kjent.

Tre konvolusjonelle nevralnett ble trent og evaluert på undersøkelser fra 94 pasienter (57
til trening, 14 til validering, 23 til testing). Det beste nettverket viser lovende resultater
på 4- og 2-kammerbildene, spesielt der bildekvaliteten er høy. Dette nettverket oppnår en
gjennomsnittlig absolutt differanse (GD) på (2.96± 3.13)% i det inferoseptale segmentet
i 4-kammerbilder når det sammenlignes med en kommersiell metode. I resten av seg-
mentene ligger GD mellom 4.04% og 6.17%, med verst ytelse på lang-aksebildene. Størst
avvik ble observert i undersøkelser med lav bildekvalitet. Det leder til konklusjonen om
at strainestimering med denne metoden er mulig dersom robustheten forbedres eller om
bildekvaliteten kan garanteres.
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1 Introduction

1.1 Background

Cardiac surgery can be a complex and comprehensive intervention and is not without risk.
Procedures such as bypass surgery and valve replacements have been shown to negatively
impact cardiac function, often causing decreased myocardial contractility, and in some
cases, atrial fibrillation and myocardial infarction[1, 2, 3]. Consequently, patients under-
going such procedures have their hearts monitored through the perioperative phase. Cur-
rently, this monitoring is done by evaluating vital signs, such as blood pressure, heart rate,
blood oxygen level, and respiratory rate, as well as through manual echocardiographic
assessment of the cardiac function by an anesthesiologist[4, 5, 6].

The term echocardiography refers to ultrasonic imaging of the heart and is one of the
primary applications of ultrasound. It is an inexpensive and simple imaging technique
compared to other methods, such as computed tomography or magnetic resonance (MR)
imaging. Relative to its price and ease of use, the images are of high quality, and acquisi-
tions can be made in two or three dimensions in addition to time[7, 8]. Echocardiography
has long been an indispensable tool for assessing cardiac health and function in the di-
agnostic setting, and with advancements in transesophageal echocardiography (TEE), ul-
trasonic imaging is increasingly used to monitor patients cardiac function throughout the
perioperative period[4, 6].

Echocardiographic assessment of cardiac function in the perioperative period is often per-
formed by simple visual inspection. In the last decade, however, efforts have been made
to standardize quantitative indicators of cardiac function, as they rely less on the individ-
ual echocardiographer’s experience and preferences[4, 9]. Myocardial strain is one such
quantitative indicator, measuring global or regional myocardial deformation, and has been
shown to have prognostic value in patients undergoing cardiac surgery[10]. Reference val-
ues for strain in healthy patients have also been proposed, making it an ideal metric for
objective assessment of cardiac function[11].

Strain measurements depend on tracking the motion of the myocardium through the car-
diac cycle. Currently, this is done either through tissue Doppler imaging (TDI) or speckle
tracking methods. TDI is a one-dimensional velocity measurement along the ultrasound
beam direction and is thus dependent on the beam angle being relatively parallel to the
myocardium[12]. As the velocities measured by TDI samples are relative to the probe,
interpolation is required to estimate a velocity gradient. Once this estimate is made, the
strain rate may be calculated by integrating the gradient along a myocardial segment. To
get an estimate of the regional strain the strain rate is integrated over time[13].

Speckle tracking approaches are based on comparing the similarity of local speckle pat-
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Chapter 1. Introduction

terns between consecutive frames to track the distances between material points, or land-
marks, on the myocardium. These methods are not angle dependent, and strain measured
with speckle tracking shows a higher correlation than TDI when compared to higher qual-
ity MR images[14, 15]. These methods do, however, suffer from poor temporal resolution,
especially in 3D, as speckle similarity must be optimized for each consecutive frame in the
sample[16]. Furthermore, head-to-head comparisons have shown significant inter-vendor
variations[17]. These methods also currently require trained personnel to manually anno-
tate landmarks or ventricle contours in the images for the tracking to work, making strain
estimation a time- and resource consuming task, unsuited for the operating theater.

A third approach to the strain estimation problem is elastic or deformable image registra-
tion. These methods estimate displacements between two consecutive frames in an effort
to align them. Using these displacement vectors the distance between landmarks on the
myocardium can be tracked to produce a strain estimate, as with speckle tracking. These
methods are less used in practice, although performance has been shown to be similar to
speckle tracking when compared to a gold standard reference measured by sonomicrome-
try[18].

Efforts have been made to provide fully automatic strain measurements. Knackstedt et al.
demonstrated the reliability of the AutoLV algorithm (TomTec-Arena 1.2, TomTec Imag-
ing Systems, Unterschleissheim, Germany), which detects the contour of the myocardium,
to measure global longitudinal strain (GLS) in transthoracic images. Their experiments
showed a high correlation with manual methods[19]. A more recent approach aimed at
on-site analysis, proposed by Østvik et al., uses supervised deep learning to classify the
view, crop the samples to the myocardium, and track its motion through the cardiac cycle
and estimate GLS. Interestingly, the motion estimation was performed using a flownet type
neural network trained on a synthetic dataset, while the view classification and cropping
networks were trained on manually annotated data. Their results show promise but are still
preliminary[20, 21].

Machine learning methods, and in particular those based on deep learning, have revolution-
alized several fields of research in recent years, including speech recognition[22], natural
language processing[23], and computer vision tasks such as object detection and classi-
fication in images[24, 25]. These advancements have not escaped the medical research
community, and particularly computer vision models based on convolutional neural net-
works (CNNs) have been applied to a variety of medical imaging problems. Recent efforts
have shown great promise, matching or beating trained physicians in tasks such as dis-
tinguishing melanoma from moles[26], detecting breast lesions in mammograms[27], and
polyp detection in colonoscopy images[28, 29]. In the field of medical image registra-
tion, images have been successfully aligned by using CNNs to estimate the displacements
between pairs of images[30, 31, 32]. In echocardiography, deep learning has been success-
fully applied to tasks such as view classification[33, 34], chamber segmentation[34, 35],
and automatic measurement of global cardiac function indicators such as ejection fraction,
mitral annular plane systolic excursion, and, as mentioned, global longitudinal strain in
transthoracic images[20, 34, 36].
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1.2 Aim and method

1.2 Aim and method

To ensure patient safety during cardiac interventions, echocardiographic evaluation of car-
diac function is becoming a standard procedure during the perioperative period. As this
evaluation is commonly done by visual inspection, it remains highly qualitative. Quan-
titative assessment, while possible, is time-consuming, and there is currently a push to
automate such measurements. This thesis aims to contribute towards the full automation
of perioperative echocardiographic monitoring through investigating the feasibility of fast,
automatic longitudinal strain estimation in the basal segments from unselected 4-chamber,
2-chamber, and long-axis TEE images using unsupervised deep learning methods.

Inspired by its success in image registration, the Deep Learning Framework for Unsu-
pervised Affine and Deformable Image Registration introduced by de Vos et al.[32] was
adapted to estimate motion vector fields describing the movement of each pixel from one
frame to the next in the TEE recordings, similar to estimating optical flow. Following these
vectors through the recording for two points on a basal segment, the distance between them
can be used to estimate longitudinal strain.

1.3 Outline of thesis

In this first chapter, the motivation behind automatic strain estimation was covered, along
with a summary of previous efforts applying deep learning to medical imaging problems,
including echocardiography. The theoretical background needed to follow the rest of the
thesis is presented in Chapter 2, covering the basics of human cardiac physiology, ultra-
sound imaging, and deep learning. Chapter 3 covers the specific methods applied and the
dataset used, including preprocessing steps and model architecture. Chapter 4 presents the
results of the strain estimation. These results are discussed in Chapter 5, and a concluding
summary is found in Chapter 6.

In addition to this thesis, an abstract describing this work was accepted to the 2019 IEEE
International Ultrasonics Symposium in Glasgow, Scotland. A copy of the abstract is in-
cluded in Appendix A. Appendix B covers B-spline interpolation with transposed convolu-
tions. Appendix C contains the results of visually inspecting the basal landmark tracking.
There is also a digital appendix accompanying this thesis that contains some examples of
landmark tracking on the test set.
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2 Theory

2.1 The human heart

The human heart is a muscular organ in the thoracic cavity, which is responsible for the
distribution of blood in the body. As shown in Figure 2.1, its structure is made up of a left
and right section, working together as a parallel pump. The sections are separated by the
septum, and each section contains two chambers. The upper and lower chamber in each
section are referred to as the atrium and ventricle, respectively, and are separated by valves
to prevent the blood from flowing back[37].

The heart receives deoxygenated blood from the body via the venae cavae into the right
atrium. The blood then flows through the tricuspid valve into the right ventricle. From
there, the blood is pumped into the lungs, via the pulmonary arteries, where it is replen-
ished with oxygen. From the lungs, the replenished blood flows through the pulmonary
veins into the left atrium. It then flows through the mitral valve into the left ventricle. From
there, the blood is pumped out into the aorta and on to all parts of the body[38].

 

Figure 2.1: Illustration of the cardiac structure. White arrows show the direction of blood flow.
Illustration by Wikimedia user Wapcaplet1, reproduced under the CC BY-SA 3.0 license [CC BY-
SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0/)]

1https://commons.wikimedia.org/wiki/File:Diagram_of_the_human_heart_
(cropped).svg
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Chapter 2. Theory

The cardiac cycle consists of two phases referred to as systole and diastole and corre-
spond roughly to contraction and relaxation of the ventricles, respectively. The systolic
phase begins when the pressure in the left ventricle surpasses that of the left atrium and
the mitral valve closes. This point in the cycle is referred to as end-diastole (ED). With
the atrioventricular valves closed, the ventricles rapidly contract to push the blood into the
arteries while the atriums relax to allow new blood to arrive from the veins. When the
ventricle pressure is lower than that in the arteries, the arterial valves close. The closing
of the aortic valve marks the end of the systolic phase and the beginning of the diastolic
phase, referred to as end-systole (ES). Now the atriums contract while the ventricles re-
lax and expand. This causes a pressure gradient that draws the blood into the ventricles
until the pressure gradient is reversed, and the atrioventricular valves close again[8]. In
Figure 2.2, a Wiggers diagram is shown. It shows how the atrial, ventricular, and aortic
pressures evolve through the cardiac cycle with mitral and aortic valve opening and closure
annotated.
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Figure 2.2: Wiggers diagram illustrating the relation between different pressures, volumes, and
measurements through the cardiac cycle with important events annotated. Illustration by Wikimedia
user DanielChangMD revised original work of DestinyQx; Redrawn as SVG by xavax2. Repro-
duced under the CC BY-SA 2.5 license [CC BY-SA 2.5 (https://creativecommons.org/
licenses/by-sa/2.5)]
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2.2 Ultrasound imaging

2.2 Ultrasound imaging

Ultrasound imaging is a widely used and relatively inexpensive diagnostic tool, perhaps
most known for imaging fetuses in the uterus[8]. It is based on echos produced by the
reflection of ultrasonic waves in tissue and can produce many different types of images in
both two and three dimensions in addition to time. Covered here are 2D B-mode images,
where B is for brightness, which are the most common[7].

To form a B-mode image several ultrasonic pulses are transmitted one by one from a
probe at different angles, scanning a plane intersecting the object to be imaged, and the
intensity of the echos that come back are recorded. Using the speed of sound, which
is approximately c = 1450 m s−1 in human tissue, the distance d to the object which
produced the echo at time t can be calculated as d = ct

2 . This technique is known as
echo ranging and is illustrated in Figure 2.3. The intensities of the echos from each pulse
are then plotted as a function of their distance to the probe, forming B-mode lines. As
the acoustical properties are different for different types of tissue, different types of tissue
may be distinguished. These B-mode lines are visualized in a polar plot forming the final
image, as shown in Figure 2.4[7].

Figure 2.3: Echo ranging. The distance to an object is given by the time of arrival of the echo and
the speed of sound.

2https://commons.wikimedia.org/wiki/File:Wiggers_Diagram.svg
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Chapter 2. Theory

Figure 2.4: Scanning procedure to generate B-mode images. Recording the times of echos from
pulses transmitted at different angles, we get samples in a polar coordinate system which form the
image.

Two main factors thus determine the frame rate of an ultrasound recording. The first is the
depth of the scan, as a deeper scan means that the echos take longer to reach the probe.
The second is the width of the scan. Wider scans require more B-mode lines at more
angles, making each scan slower. The spatial resolution of the images also depends on
two main factors, the first being the frequency of the waves. At higher frequencies, echos
with shorter time intervals between them may be distinguished. The second is the number
of discrete angles used in the scanning procedure. Also, the distance between the B-mode
lines increases with depth. Thus, the spatial resolution decreases further away from the
probe.

2.2.1 Echocardiography

Echocardiography refers to ultrasonic imaging of the heart and is done in one of two
ways. They differ in the placement of the probe and the invasiveness of the procedure, as
illustrated in Figure 2.5. Transthoracic echocardiography (TTE) is performed by placing
the probe on the exterior of the patient’s chest, aiming the beam between the ribs. This
method is quick to set up and is non-invasive, but suffers from noise from the lungs, and
the ribs limit the probe placement. The probe must also be held still by the examiner
throughout the exam.

The alternative is transesophageal echocardiography (TEE) where the probe is placed in
the patient’s esophagus. In humans, the heart rests upon the esophagus, giving TEE several
advantages. The position of the heart relative to the probe is more or less constant, the
probe is kept still by the esophageal wall, and there is less noise from the lungs. The
shorter distance from the probe to the structures also allow for higher frequencies to be
used, yielding a higher spatial and temporal resolution. These advantages come at a cost.
TEE is a more demanding procedure and may be very uncomfortable for the patient, which
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2.3 Cardiac function

may require sedation. It is therefore mostly used for pre and post-operative assessment of
cardiac health[4].

TTE TEE

Figure 2.5: Probe placement for TTE and TEE. When performing TTE, the probe is placed on the
outside of the patient’s chest. When performing TEE, the probe is placed in the patient’s esophagus.

2.3 Cardiac function

Assessing the cardiac function, and in particular left ventricle (LV) systolic function is one
of the most common uses of TEE[4]. A distinction is made between global and regional
function. Global function serves as an indicator of overall cardiac health and is usually as-
sessed by measuring a difference in some size or distance between ED and ES. One com-
mon metric is the ejection fraction (EF) which is based on estimates of the end-diastolic
and end-systolic LV volumes EDV and ESV and is given by EF = EDV - ESV

EDV [9].

Regional cardiac function is assessed by observing the deformation or shortening of seg-
ments in the myocardium and has been shown to have prognostic value in cardiac surgery
patients[10]. A standardized 17-segment model, as recommended by the American Heart
Association, is often used to define the regions and is visualized in Figure 2.6[9]. The as-
sessment is commonly done by visual inspection by a physician, which makes both inter-
and intra-observer variability high. Thus, standardized quantitative measurements are de-
sirable, and in recent years, the adoption of strain imaging has increased, and efforts to
standardize these methods have been made[11, 39].
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1. Basal Anterior 7. Mid Anterior 13. Apical Anterior

2. Basal Anteroseptal 8. Mid Anteroseptal 14. Apical Septal

3. Basal Inferoseptal 9. Mid Inferoseptal 15. Apical Inferior

4. Basal Inferior 10. Mid Inferior 16. Apical Lateral

5. Basal Inferolateral 11. Mid Inferolateral 17. Apex

6. Basal Anterolateral 12. Mid Anterolateral

Figure 2.6: The 17-segment model of the left ventricle as recommended by the American Heart
Association illustrated for three different views.

The term strain in cardiology refers to local shortening, thickening or lengthening of the
myocardium, and is used as a measure of local LV function. This deformation is described
by a tensor with six components: shortening along the x, y, and z-axes along with shear
in the three planes between them. When estimating strain from images, a simplified strain
metric is used, measured by tracking the distance L between two material points on the
myocardium relative to the initial length L0, typically at ED. This metric is referred to as
Lagrangian strain and is defined in Equation (2.1)[39, 40].

ε(t) =
L(t)− L0

L0
(2.1)

Three principal types of strain can be measured by 2D echocardiography: longitudinal,
radial, and circumferential[40]. In Figure 2.7, the measurements required for end-systolic
radial and longitudinal strain in the basal segments are illustrated. Using ED as the initial
time, the end-systolic strain is calculated by setting t = ES in Equation (2.1) and quantifies
the contractile ability of the myocardial region.
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Figure 2.7: Measurements involved in end-systolic radial and longitudinal strain calculation on the
basal segments of the left ventricle.

2.4 Deep learning

Machine learning (ML) is a field of research concerned with algorithms and statistical
models that enable a computer system to perform a specific task without being explicitly
programmed. It is a highly interdisciplinary field, relying on methods from, among others,
optimization theory, statistics, and computer science. ML methods are applied to a variety
of tasks, including recommender systems, recognition of speech and images, and control
systems[41, 42]. ML methods are commonly divided into three categories: supervised
learning, unsupervised learning, and reinforcement learning. The differences between
them are illustrated in the flow charts in Figure 2.8.

Ground

truth
Score

Model

Training

data

Score

Model

Training

data

Score

Model

Environment

Supervised Unsupervised Reinforcement

Prediction

Parameter
update

Prediction

Parameter
update

Parameter
update

Action

Reward

Observation

Figure 2.8: Flow charts illustrating the differences between supervised, unsupervised, and rein-
forcement learning.

Supervised learning can be thought of as learning from examples. Assume that training
data x, which is a subset of all possible model inputs X , is available. In the supervised
setting, the desired outputs of the model y, called ground truth, must also be available.
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We assume that there exists some unknown mapping y = f(x), and the model should ap-
proximate this mapping as ŷ = f̂(x). During training, the model is fed examples from the
training data and makes a prediction ŷ. The prediction is then compared to the ground truth
y. This comparison results in some score, which is used to update the model parameters
to get the prediction closer to the ground truth[43].

Unsupervised learning is a more flexible framework and is primarily used for exploring
possible groupings in data in an approach known as clustering. However, it may refer to
any learning algorithm that does not rely on a ground truth. The score may only be based
on the training data, and in the case of clustering, a similarity metric between the examples
is used[43].

Reinforcement learning can be thought of as learning by doing and is heavily used in
artificial intelligence. These methods do not need data in the same way that supervised
and unsupervised methods do. Instead, the model explores an environment on which it
performs some action, based on observing it. The result of this action is some reward
or penalty, indicating how good the action was. Then, a new observation is made, and
the cycle starts over. During training, the model parameters are optimized to choose the
actions that maximize the reward[43].

Deep learning (DL) is a subfield of ML. The models used in DL are called artificial neu-
ral networks (ANNs), so named because they are inspired by the way the human brain
performs computations. The term deep comes from the fact that ANNs are complex es-
timators built from layers of simpler estimators, and the number of layers is referred to
as the depth of the network. Each of these layers learns a more abstract representation of
the input features until finally combining them into a prediction. The popularity of DL
methods has exploded in the previous decade, as the large datasets and computing power
needed has become more widely available[41, 44], and DL methods have revolutionalized
several fields of research, including computer vision[24, 25], speech recognition[22], and
natural language processing[23].

2.4.1 Feed-forward neural networks

A feed-forward neural network or multilayer perceptron (MLP) is the simplest form of
ANN[41]. Still, these models have been shown to approximate any continuous func-
tion[45, 46], and have been successfully applied to a variety of tasks, including playing
backgammon, noise filtering of ECG signals, and driving cars[47].

The fundamental building blocks of feed-forward networks are called hidden units or neu-
rons, and several neurons are combined to form a layer. Many such layers may be stacked
to form a deeper network, but every deep feed-forward network consists of one input layer,
one or more hidden layers, and one output layer. Each neuron in a layer connects to all
of the neurons in the next layer. For this reason, such layers are often referred to as fully
connected or dense layers. Inside a neuron, the contribution of each input is weighted by
a weight w, and added to a potential bias term b. Both of which are optimized during
training. To make the neuron non-linear, an activation function a is applied, as shown in
Equation (2.2). Commonly, sigmoid, tanh, or rectified linear units (ReLUs) are used as
activations[41].
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hi = a(~wT
i ~x+ bi) (2.2)

This form of connected computations forms a directed acyclic computational graph, as
illustrated in Figure 2.9. It is possible to include computations that make the graph cyclic.
Such graphs are called recurrent neural networks and are beyond the scope of this the-
sis.

Inputs

Input layer Hidden Layer Output layer Neuron

Neuron

Activation

function

Weights Bias

Figure 2.9: A feed-forward neural network, or MLP, with three input features, four hidden neurons
and two outputs, along with an illustration of the calculation performed in a neuron.

2.4.2 Convolutional neural networks

Convolutional neural networks (CNNs), named after the convolution operation, are a dif-
ferent kind of ANN and are the first choice for computer vision applications[48]. In digital
image processing, the 2D convolution operation is used for linear spatial filtering of im-
ages with fixed 2D filters. Such filters, commonly referred to as kernels, may be used
for smoothing, noise reduction, or feature extraction, such as edge and corner detection,
depending on the filter coefficients[49].

When convolving, each pixel in the filtered image is given by a linear combination of a
neighborhood of pixels in the original image, weighted by the kernel. If the image I is
viewed as an M × N matrix and the kernel K is an L × L matrix with L < M and
L < N , then a pixel in the filtered image H is given by Equation (2.3)3[49].

hi,j =

L−1∑
m=0

L−1∑
n=0

km,n · ii+m,j+n (2.3)

Performing this calculation for all the pixels in the filtered image can be viewed as sliding
the kernel over the original image, as shown in Figure 2.10. The resulting image has

3Equation (2.3) is actually the correlation, which is how convolution is commonly implemented in practice.
They are equivalent if the kernel is mirrored before filtering.
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dimensions M − (L− 1)×N − (L− 1). If identical dimensions are desired, the original
image may be zero-padded.

Figure 2.10: Filtering of an image I with a 3× 3 kernel K through convolution.

A CNN layer consists of one or more kernels that filter incoming images. The entries in
the kernel matrices are trained to produce more abstract features from the raw pixels. The
resulting images for each kernel are stacked to produce a 3D feature map of dimension
M − (L − 1) ×N − (L − 1) ×D, where D is the number of kernels in the layer. After
the convolution operation, non-linearity may be introduced by activating the pixels in the
filtered image. Commonly, ReLUs are used[50].

When stacking several convolutional layers, the receptive field of the resulting pixels in-
creases. The result is that more abstract feature maps are produced in each successive
layer, with the first layers usually ending up as edge and corner detectors. The later layers
combine these into higher-level features such as eyes, windows, or cars, depending on the
application[50].

Between every few convolutional layers, it is customary to add a downsampling operation
known as pooling. A pooling layer divides an image into non-overlapping rectangles and
produces one pixel from each rectangle in the resulting image. This reduces the mem-
ory footprint and computational load of the network, and also adds a regularizing effect.
Commonly average or max pooling is used, which averages or picks out the maximum
value of the neighborhood, respectively[41, 50]. An illustration of max pooling is shown
in Figure 2.11.
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Figure 2.11: 2×2 max pooling with stride 2. The resulting image is made up of the maximum from
each 2 × 2 rectangle. Illustration by Wikimedia user Aphex344. Reproduced under the CC BY-SA
4.0 license [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)]

2.4.3 Training neural networks

Training a neural network is a particular kind of optimization problem that is solved with
gradient-based methods. In general, we minimize a cost function J(θ) to obtain optimal
network parameters θ. This cost function is the expected value over the training set x of
some loss function L(f̂(x, θ)): J(θ) = Ex

[
L(f̂(x, θ))

]
, where f̂(x, θ) is the network

output. The expectation will, in practice, be estimated by an average. To efficiently train
the network the loss function should reflect the goal of the training, and in the supervised
case, this means some comparison with the ground truth[41].

The parameters are updated stepwise in an approach known as gradient descent, with a
learning rate α, as shown in Equation (2.4).

θi = θi−1 − α∇J(θi−1) (2.4)

Using the chain rule, it becomes clear that for the loss of a network f̂ with N layers, the
partial derivatives with respect to a parameter can be decomposed as

∂

∂θ
L(θ) =

∂L

∂f̂(x, θ)

∂f̂(x, θ)

∂θ

∂f̂(x, θ)

∂θ
=

∂f̂ (N)(f̂ (N−1)(· · · f̂ (2)(f̂ (1)(x))))

∂f̂ (N−1)(f̂ (N−2)(· · · f̂ (2)(f̂ (1)(x))))
· · · ∂f̂

(2)(f̂ (1)(x))

∂f̂ (1)(x)

∂f̂ (1)(x)

∂θ

where f̂ (i) is the output of the ith layer from the input.

Thus, the gradients can be found by simply differentiating each layer separately and mul-
tiplying. This forms the basis for the backpropagation algorithm. The gradient of the very

4https://commons.wikimedia.org/wiki/File:Max_pooling.png
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last layer is computed first, with respect to the second to last layer’s output. Then, the
second to last layer’s gradient is computed with respect to the third to last and so on, prop-
agating back to the input layer. When all gradients are calculated, the parameters can be
updated according to Equation 2.4.

Computing the gradients is computationally intensive. Also, neural networks may have
millions of parameters, thus requiring large amounts of data to optimize them. This makes
the training a time-consuming task, often requiring powerful computers with graphics pro-
cessing units (GPUs) for it to be feasible. The upside is that once the network is trained,
predictions can be made in a fraction of the time used for backpropagation.

In practice, due to memory limitations and the large datasets required, the training set
is almost always divided into non-overlapping random batches. The model is then opti-
mized with one update per batch according to Equation (2.4). This is known as mini-batch
gradient descent. Because of the computer architecture of GPUs, performance gains are
made if the batch size is chosen to be a power of two, with the exact choice depending on
the memory available. The batch size also impacts how well the model is able to learn,
and the speed at which it converges; a smaller batch size means that more updates, with
higher variance in the cost function estimate, are made for each run through the training
set[41].

Several adjustments to the straight-forward gradient descent update in Equation (2.4) have
been proposed to improve performance in particular use-cases. One example is the Adam
optimizer, where the gradients are smoothed by an exponential moving average (EMA) to
reduce variance in the updates. These smoothed gradients are then scaled by the square
root of EMA smoothed squared gradients, effectively adapting the learning rate to the cur-
rent region of the cost function[51]. Adam has become hugely popular since its release in
2014 and has been shown to be a good first choice for optimizing neural networks.

When evaluating neural network models, two metrics determine its ability to perform: the
estimated loss on the training set, and the estimated loss on a separate, unseen test set.
Together, the training and test set losses can be used to diagnose two fundamental issues
with any ML model if monitored throughout the training process: underfitting and over-
fitting. For a model to perform well, both training and test set loss should be as low as
possible, and the distance between the two should be small. If the model is unable to reach
an optimal loss value on both the training and test set, it is said to be underfitting. Under-
fitting most often occurs when training a model that is too simple for the task. Overfitting
happens when the model becomes too specialized to the training examples and fails to
generalize to unseen data, causing increased test set loss. This can happen if the model is
too complex, or training data is scarce[41].

Figure 2.12 shows examples of learning curves for models that are underfitting, overfitting
and fitting optimally. Figure 2.12a shows learning curves for an underfitting model. The
training and test set losses do not reach the optimum, as they converge at a higher value.
Figure 2.12b shows a model where overfitting occurs. As the training set loss decreases
beyond the optimal value, the test set loss is increasing, indicating a loss of generality.
Lastly, Figure 2.12c shows an optimal fit, where both training and test set losses converge
to the optimal value.
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Loss

Training step

(a) Underfitting

Training step

(b) Overfitting

Training step

Optimal loss

Test

(c) Optimal fit

Figure 2.12: Underfitting, overfitting, and optimal fit. Neither the training nor the test set loss
reaches the optimal value in an underfitted model. Overfitting occurs when further training yields
worse performance on the test set. A good fit is found when both losses are near the optimal value.
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3 Materials and Method

To estimate basal longitudinal strain from transesophageal echocardiographic (TEE) im-
ages, two things are needed: the location of at least two landmarks on each basal segment
and a method of tracking these points. Machine learning methods have proven success-
ful in segmenting of the left ventricle[35] and tracking the mitral annulus[34], the latter
also being the subject of an ongoing thesis project at our department. For these reasons,
the location of the mitral annulus was assumed to be known and was used as one of the
basal landmarks. Thus, a means of detecting the second landmark in the basal segment
was needed along with estimates of the trajectories of these points through the cardiac
cycle.

Landmark

Detection

Motion

Estimation

Landmark

Tracking

Strain

Estimate

Figure 3.1: Proposed pipeline for estimating regional strain in the basal segments using TEE images
with annotated mitral annulus.

In Figure 3.1, the proposed pipeline for automatic strain estimation is illustrated. A land-
mark detection algorithm was used to locate suitable points on the basal segments in the
first frame of the sample using the mitral annulus as a reference. Tracking of these land-
marks was done using an estimate of the pixel motion between each frame produced by
a convolutional neural network (CNN). Using the distance between the landmarks in the
end-diastolic (ED) and end-systolic (ES) frames a strain estimate could be calculated using
Equation (2.1).

3.1 Data

For training and evaluation of the strain estimation pipeline, TEE B-mode images were ob-
tained by cardiologists with echocardiographic expertise from 94 patients using GE Vivid
E95 and E9 systems with a 6VT-D probe (GE Vingmed Ultrasound, Horten, Norway).
89 of these patients were examined in the clinic for diagnostic purposes, and five patients
were examined before and after undergoing cardiac surgery (coronary artery bypass graft-
ing in four cases, mitral valve clipping in one case). At least three complete cardiac cycles
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were captured in three views: 4-chamber, 2-chamber, and long-axis. The pixel brightness
was recorded in the range [0, 255]. The frame rate of the recordings was in the range of
30 to 60 frames per second, and the resolution ranged from 255 × 180 to 537 × 380 de-
pending on the width and depth of the scan. No selection of the images was performed,
and all samples were anonymized before analysis. To facilitate processing, the images
were converted from the proprietary DICOM format to 2D images by applying a polar-
Cartesian transform on the raw B-mode lines. During this conversion, the images were
flipped from left to right by coincidence, which is the reason why some figures in this
thesis are mirrored.

To assess the performance of the strain estimation pipeline, reference values for basal lon-
gitudinal strain were provided by a trained physician. The reference values were acquired
by manually annotating the images and tracking the myocardium using the EchoPAC (GE
Vingmed Ultrasound, Horten, Norway) speckle tracking software.

3.1.1 Preparation of datasets

The data was divided into three separate datasets. A training set consisting of samples
from 57 patients chosen randomly was used for training the CNN. For hyperparameter
tuning and to monitor the model performance during training a validation set consisting
of the samples from 14 patients was used. In both of these datasets, the frames were zero-
padded to match the resolution of the sample with the highest resolution within each set
to enable training on batches. All frames of the samples in the training and validation sets
were organized into pairs of consecutive frames. During training, these pairs were drawn
randomly to construct batches.

The samples from the remaining 23 patients were used for testing. As the goal of the
method was to track points through the cardiac cycle, the frames of these samples were
kept in order. The test set samples were divided into smaller samples showing a single
cardiac cycle from ED to ED, with ES annotated. These points in time were assumed to be
known, as ED and ES can be found reliably from electrocardiogram signals, and previous
efforts have shown that detection of these frames is possible from the raw images[52, 53].
As the location of the mitral annulus was also assumed to be known, these points were
manually annotated in the initial frame (ED) of each of the divided samples.

All datasets were preprocessed by applying a proprietary contrast enhancement algorithm,
courtesy of GE (GE Vingmed Ultrasound, Horten, Norway), and all pixels were scaled to
[0, 1].

3.2 Basal landmark detection

For a point to be a suitable landmark for strain estimation, it should have some properties
that facilitate tracking. Firstly, it should be in a relatively bright neighborhood, as such
areas are less likely to be obfuscated by random noise. Secondly, the landmark should
be at some clearly defined feature, such as the endocardium edge, as these are easier to
track.

Motivated by these desired properties, a series of filters were applied to the initial frame
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of the samples. First, the frame was filtered by a 7 × 7 median filter to suppress noise.
Then, the filtered frame was thresholded to remove dark areas and further reduce noise.
To emphasize bright neighborhoods, rather than separate pixels, the resulting image was
filtered with a 3×3 Gaussian filter with σ = 3. Lastly, to highlight edges, a Sobel filter was
applied. The filter sizes and parameters were chosen empirically from a subset of the test
set. Using the mitral annulus as a reference, a triangular sector was defined perpendicular
to the mitral annular plane. From this sector, the brightest pixel in the final filtered frame
with a distance of 3 to 5 cm from the mitral annulus was picked as the landmark. This
procedure is illustrated in Figure 3.2.

Original frame Median filter and thresholding Gaussian filter Sobel filter and search sector

Figure 3.2: Detection of landmark points on the basal segments. The initial frame with annotated
mitral annulus is filtered with a 7 × 7 median filter, thresholded, and blurred with a Gaussian filter
before edges are highlighted with a Sobel filter. This processed frame is searched for the brightest
pixel in the triangular sectors below the mitral annulus.

3.3 Motion estimation and landmark tracking

To track the landmarks on the basal segment, the approach used for deformable image reg-
istration by de Vos et al.[31, 32] was adapted to this application. At the heart of the
method is a CNN that takes two consecutive frames Ii and Ii+1 from a sample, and
outputs a low-resolution displacement field ~D describing the motion between the two
frames in x and y directions. This displacement field is then upsampled using cubic B-
splines to make a dense displacement field ~Dd with one motion vector per pixel such that
Ii(x, y) ≈ Ii+1(x+Dd

x(x, y), y +Dd
y(x, y)). Thus, to perform point tracking, one can

follow the displacement vector from frame to frame.

The CNN architecture, shown in Figure 3.3, consists of a concatenation layer, merging
the two consecutive frames into one tensor, followed by alternating convolutional and
average pooling layers. The number of pooling layers determines the resolution of the
displacement field and thus, the number of B-spline control points. These low-resolution
feature maps are passed through two more convolutional layers before finally two 1 × 1
convolutions are performed yielding the estimated displacements.
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Figure 3.3: Architecture of the convolutional neural network used. As input, it expects two con-
secutive frames from an ultrasound sample. The output is a low-resolution displacement field to be
interpolated. Several alternating convolutional and average pooling layers may be added before the
final convolutions to achieve the desired spacing between the B-spline control points.

Figure 3.4 shows the desired result of the motion estimation task. A coordinate grid is
warped by the estimated motion vectors between the ED and ES frames of a sample, re-
sulting in a deformed grid illustrating the movement between these points in time. By
taking the distance between the landmarks one these grids a strain estimate can be calcu-
lated using Equation 2.1.

Figure 3.4: Frames from a sample at ED and ES, including a deformed grid illustrating the move-
ment between these frames.

In Figure 3.5, a flow chart visualization of the training procedure for the motion estimator
is shown. Following this procedure, consecutive frame pairs are fed to the CNN, which
produce low-resolution displacement fields. These fields are interpolated using B-splines
and used to warp the second frame. Then the warped frame is compared to the first frame
using normalized cross-correlation. This approach has two major advantages. The neural
network consists of only convolutional layers, meaning that the trained network can make
estimates on frames of any resolution, and the training is done unsupervised, eliminating
the need for costly ground truth annotation. In essence, this means that the method can be
repurposed for any type of image, medical or other, with minimal adjustments.
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Figure 3.5: Training procedure for the motion estimation network. The CNN produces a low-
resolution displacement field, which is then interpolated and used to warp frame i+ 1 into frame i.
Frame i and the warped frame are then compared using normalized cross-correlation. A differential
based bending penalty is calculated from the low-resolution displacements and added to the cross-
correlation to form the loss function. The loss is differentiated, and the gradients are used to update
the CNN parameters.

To ensure spatial smoothness of the displacements, a differential based bending penalty
can be added to the negated cross-correlation for regularization. This sum forms the loss
function used to optimize the parameters of the network. The bending penalty P , given
in Equation (3.1), minimizes the second order spatial derivatives of the displacements.
This ensures that the transformation is locally affine, meaning that the transformation is
globally smooth[54]. The scaling factor λ controls the amount of regularization.

P = λ
∑∑
x,y∈I

(
∂2 ~Dd

∂x2

)2

+

(
∂2 ~Dd

∂y2

)2

+ 2

(
∂2 ~Dd

∂xy

)2

(3.1)

B-splines were chosen as the interpolation method because they are controlled locally.
That means that a change in one control point only affects the neighborhood around it
in the resulting image. As regional strain is a measure of local deformation, this is a
significant advantage compared to other popular interpolation methods, such as thin plate
splines. Another advantage is that the k-th derivative of a B-spline of degree n is simply a
B-spline of degree n− k. This means that the differentials needed for the bending penalty
can be calculated by interpolating ~D using linear and quadratic B-splines[32, 55].

Image registration is often done in multiple stages in a coarse-to-fine manner. This makes
the registration less sensitive to local optima and image folding at high resolutions[56]. In
their work, de Vos et al. propose that a similar multi-stage strategy be employed for their
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method[32], and this was implemented for the motion estimator. By daisy-chaining net-
works with decreasing downsampling rates (i.e., number of pooling layers), as illustrated
in Figure 3.6, the warped image of each stage can be propagated to the next. In this way,
each network estimates increasingly fine motions. The training of such daisy-chained net-
works should be done sequentially, optimizing each stage on the warped images from the
preceding stage, keeping the weights fixed in the preceding stages, similar to boosting of
tree-based models[57].

+

CNN Spline

NCC

+

CNN

NCC

SplineWarp Warp

Figure 3.6: Daisy chaining of motion estimators. The warped frame of each consecutive estimator
is propagated through to the next and is compared to frame i in every step.

The motion estimation was implemented in the Python programming language, using Ten-
sorflow version 1.101 with eager execution enabled. As no source code was made available
by de Vos et al.[32], the networks were implemented from scratch. Readers interested in
the source code are referred to the Github repository for this thesis2. All convolutional lay-
ers except for the output layer consisted of 32 filters, and batch normalization and ReLU
activations were applied. The last 1 × 1 convolutional layer consisted of two filters and
was left unconstrained with no activation to freely estimate the displacements. Average
pooling was done over 2 × 2 neighborhoods with a stride of 2, thus downsampling the
features by 2 in each pooling layer. Zero-padding was performed for all convolution and
pooling layers to ensure the correct dimensions of the dense displacement field.

The B-spline interpolation was implemented using fractionally strided convolutions, in
which zeros are placed between each pixel in the image to achieve the desired dimensions.
A B-spline kernel may then be constructed that weigh the original samples appropriately
to produce an interpolated image through convolution. Because the downsampling factor
is determined by the number of pooling layers in the network, the B-spline kernels for
both the interpolation and the computation of the bending penalty may be precomputed,
leaving only the convolution to be performed at runtime. For a more thorough explanation
of this procedure, the reader is referred to Appendix B.

Three models for estimating motion were trained and evaluated: one model with four
downsampling layers and one model with two downsampling layers, hereafter referred
to as the high-downsampling-rate and low-downsampling-rate model, respectively, and a
daisy-chained model combining the two. In all models, the regularization parameter was

1https://www.tensorflow.org
2https://github.com/torjush/Strain_estimation

24

https://www.tensorflow.org
https://github.com/torjush/Strain_estimation


3.3 Motion estimation and landmark tracking

set to λ = 5 · 10−6, chosen empirically from results on the validation set. All weights
were initialized using the Glorot Uniform initializer[58] and optimized using the Adam
optimizer[51] with a learning rate α = 10−4. The batch sized used was 16 pairs of
consecutive frames. The training was performed on a Tesla K80 GPU (Nvidia, Santa
Clara, California) rented through the Floydhub cloud service for deep learning3.

3https://www.floydhub.com
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4 Results

4.1 Landmark detection

Evaluation of the detected landmarks was done by visual inspection by the author. Each
initial frame of the test set was inspected, and the points detected were classified as either
unsuitable, suitable, or highly suitable for strain estimation, based on the desired properties
stated in Section 3.2. The criterium for being suitable was that the landmarks were visible
and on the myocardium. The points that were near perfectly placed along the myocardium
edge were classified as highly suitable. Points that were either invisible, noise, or not
on the myocardium were classified as unsuitable for tracking. One example of each of
these classes is shown in Figure 4.1. In Figure 4.1a, the detected points are located on
the myocardium in a bright region near the endocardium. In Figure 4.1b, the detected
points are placed on the myocardium, but the left point is a bit far from the edge. Lastly,
in Figure 4.1c, one of the points is placed on the mitral valve, not on the myocardium,
making it unsuitable for strain estimation.

(a) Highly suitable (b) Suitable (c) Unsuitable

Figure 4.1: Examples of detected points (lower red dots) that are highly suitable, suitable and
unsuitable for strain estimation.

Table 4.1 summarizes the results of this visual inspection for each view present in the
dataset and overall. For the four- and two-chamber views, the majority of the points are
highly suitable, and suitable and highly suitable points make up around 95% of all de-
tections. On the long-axis samples, the performance was slightly worse, with 87% of the
detected points being suitable or highly suitable. Of these, only 29% were deemed highly
suitable.
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Table 4.1: Evaluation of detected landmarks on the test set, sorted by view.

4-chamber

Highly Suitable Suitable Unsuitable Total
# of detections 41 24 6 71

Percent 58% 34% 8% 100%

2-chamber

Highly Suitable Suitable Unsuitable Total
# of detections 57 13 5 75

Percent 76% 17% 7% 100%

Long-axis

Highly Suitable Suitable Unsuitable Total
# of detections 21 42 9 72

Percent 29% 58% 13% 100%

Overall

Highly Suitable Suitable Unsuitable Total
# of detections 119 79 20 218

Percent 55% 36% 9% 100%
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4.2 Motion estimation and landmark tracking

4.2.1 Model training

During training, the negated normalized cross-correlation (NCC) was monitored for the
training and validation sets. Validation was done every 100 steps, and training was ended
when the validation NCC seemed to converge. Figure 4.2 shows the NCC on the train-
ing and validation sets throughout the training for the low-downsampling-rate (LDR) and
high-downsampling-rate (HDR) models. As the inter-batch variance of the training NCC
is high, a 100 step moving average (MA) of the training NCC is included to ease the
comparison to the validation NCC.
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(a) LDR model
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(b) HDR model

Figure 4.2: Learning curves showing the negated normalized cross-correlation for the LDR (left)
and HDR (right) models on the training and validation sets. Training was ended when validation
cross-correlation converged. Note that the scales are different in the two graphs.

Initially, the validation NCC of the two models are almost equal, but for the LDR model,
it decreases more rapidly over the first 5000 steps. After 5000 steps, validation NCC
decreases more slowly and eventually converges around −0.960 for the LDR model and
−0.956 for the HDR model. Throughout the training, the validation NCC seems to follow
the MA of the training NCC closely for both models.

When training the daisy-chained model, the resulting weights from training the HDR and
LDR model separately were used to initialize the networks. Then, the LDR model was
fine-tuned on the output of the HDR model. The learning curves for the daisy-chained
model is shown in Figure 4.3. The dashed line indicates where fine-tuning of the LDR
model begins. The training NCC seems to drop more than the validation NCC, as the
validation curve does not follow the MA curve as closely as before, with validation NCC
ending at −0.961.
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Figure 4.3: Learning curves showing the negated normalized cross-correlation for the HDR and
LDR models daisy-chained and trained sequentially. The dashed line indicates where fine-tuning of
the LDR model begins. Training was ended when validation cross-correlation converged.

The inference time for the dense displacements was estimated for all models when running
on a MacBook Pro (Apple, Cupertino, California) with a 2.9GHz Core i5 processor (no
GPU) by averaging over 100 random samples. For the two single-networks, inference
time was found to be (232± 11) ms and (230± 22) ms for the LDR and HDR model,
respectively. For the daisy-chained model: (451± 15) ms.

4.2.2 Visual inspection

The results of the landmark tracking were also inspected qualitatively by the author. For
each basal segment in each view, the tracking of the mitral annulus and the detected land-
mark was classified as either successful or unsuccessful. For a tracking to be successful,
the landmarks should be followed perfectly (as precisely as could be determined by visual
inspection). No lag or drifting was allowed. Figures 4.4 and 4.5 show the percentage of
successful trackings for the LDR model and the HDR model, respectively. The same di-
agrams are shown in Figure 4.6 for the daisy-chained model. The raw numbers used to
produce these figures are available in Appendix C.
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Successful
11.59%

Unsuccessful
88.41%

4-chamber Anterolateral

18.92%

81.08%

2-chamber Anterior

30.56%

69.44%

LAX Anteroseptal

40.00%

60.00%

4-chamber Inferoseptal

28.38%

71.62%

2-chamber Inferior

13.89%

86.11%

LAX Inferolateral

Figure 4.4: Results from visual inspection of the landmark tracking using the LDR model. Tracking
is classified as either successful or unsuccessful.

Successful5.80%

Unsuccessful 94.20%

4-chamber Anterolateral

6.76%

93.24%

2-chamber Anterior

15.28%
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4-chamber Inferoseptal

5.41%
94.59%

2-chamber Inferior

2.78%
97.22%

LAX Inferolateral

Figure 4.5: Results from visual inspection of the landmark tracking using the HDR model. Tracking
is classified as either successful or unsuccessful.
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2-chamber Inferior

26.39%

73.61%

LAX Inferolateral

Figure 4.6: Results from visual inspection of landmark tracking for the daisy-chained networks.
Tracking is classified as either successful or unsuccessful.

From Figures 4.4 and 4.5, it is clear that the LDR model outperforms the HDR model in
both basal segments in all views. In many of the unsuccessful samples, the LDR model
was able to track the landmarks quite well when displacements were small, but lag was
observed for larger displacements due to underestimating the motion. The HDR model
consistently underestimated the motion of slow-moving landmarks. However, in some
samples captured at low frame rates, or where the patient’s heart rate was high, the overall
motion between frames was larger, and the HDR model was able to track the landmarks
perfectly.

The daisy-chained model outperformed both single-network models and tracked the land-
marks of one basal segment perfectly in more than 50% of the samples. Like the LDR
model, large displacements caused lag due to underestimation, but to a lesser degree and
in fewer of the samples.

In the digital appendix accompanying this thesis, some videos showing the tracking done
by the daisy-chained model are included. The files out-of-plane.mp4,
air pocket noise.mp4, and uniform region.mp4 correspond to Figure 5.2, 5.3,
and 5.4, respectively. successful 4c.mp4, successful 2c.mp4, and
successful lax.mp4 show examples of successful trackings in the 4-chamber, 2-
chamber, and long-axis view, respectively.
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4.3 Strain estimation

Basal end-systolic strain was estimated for each cardiac cycle in the recordings and aver-
aged using both the proposed pipeline and commercially available speckle tracking soft-
ware with operators being blinded to each other’s results. For the anteroseptal segment
in the long-axis view, the strain estimates produced by the CNNs are made by tracking
two points on either side of the left ventricular outflow track, whereas the reference values
are made tracking points further down on the myocardium. Due to the low frame rate in
some samples, and low image quality in others, ten segments out of the total 138 present
in the test set were deemed unsuitable for tracking in EcoPAC, and were removed from the
comparison.

Figures 4.7, 4.8, and 4.9 show the comparisons between the reference and the LDR, HDR,
and daisy-chained model, respectively. Each basal segment is shown separately, and the
mean absolute differences (MD) between the references and the CNN estimates in percent
are included. Table 4.2 summarizes the MD-values, along with their estimated standard
deviation σ. For each segment, the correlations ρ between the reference values and the
CNN estimates are also included.

The daisy-chained model estimates are closest to those from the speckle tracking method
overall, with the lowest MD in three out of the six segments and the highest correlation
in four. The HDR model produces the least similar estimates, with the highest MD and
lowest correlation in five out of the six segments. All models consistently underestimated
the strain in the anteroseptal segment in the long-axis view.
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(b) 4-chamber Inferoseptal
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(c) 2-chamber Anterior
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(d) 2-chamber Inferior
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(e) Long-axis Anteroseptal
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Figure 4.7: Strain estimates from the LDR model plotted against the reference values.
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(b) 4-chamber Inferoseptal
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(c) 2-chamber Anterior
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(d) 2-chamber Inferior
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Figure 4.8: Strain estimates from the HDR model plotted against the reference values.
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(c) 2-chamber Anterior

0 5 10 15 20 25 30 35
Reference

0

5

10

15

20

25

30

35

E
st
im
at
e

2-chamber Inferior - MD: (4.04 ± 2.91)%

(d) 2-chamber Inferior

0 5 10 15 20 25 30 35
Reference

0

5

10

15

20

25

30

35

E
st

im
at

e

Long-axis Anteroseptal - MD: (5.16 ± 3.98)%
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Figure 4.9: Strain estimates from the daisy-chained model plotted against the reference values.
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Table 4.2: Comparison between the reference values and the CNN estimates in percent. Mean
absolute difference and standard deviation σ are provided, along with the correlation coefficient ρ.
The best results are indicated in bold.

4-chamber

Anterolateral Inferoseptal
MD σ ρ MD σ ρ

LDR 5.88 4.92 0.34 3.56 2.66 0.47
HDR 8.36 6.17 0.26 4.71 3.24 0.30

Daisy-chained 6.09 5.36 0.38 2.96 3.13 0.59

2-chamber

Anterior Inferior
MD σ ρ MD σ ρ

LDR 7.16 3.85 0.65 5.67 4.48 0.69
HDR 4.40 2.34 0.68 6.49 3.70 0.61

Daisy-chained 5.43 3.50 0.62 4.04 2.91 0.82

Long-axis

Anteroseptal Inferolateral
MD σ ρ MD σ ρ

LDR 7.94 6.36 0.15 4.80 4.46 0.32
HDR 7.04 3.95 0.083 6.16 4.21 0.042

Daisy-chained 6.17 4.10 0.21 5.16 3.98 0.42
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5 Discussion

5.1 Landmark detection

The visual inspection of the detected landmarks showed that the method was able to detect
a visible point on the myocardium in the majority of the samples in the test set. The
detector performs best on the 2-chamber view and worst on the long-axis view. This is to
be expected, due to the trade-offs that are made in each view.

Two of the main applications of the 4-chamber view is to diagnose atrioventricular valve
dysfunction and atrial septal defects. As a consequence, these images focus on the mitral
valve and the septum, with the anterolateral segment being less important. The long-axis
view is often focused on the aortic valve and the left ventricular outflow tract. To achieve
this, the inferolateral segment is given less priority. These trade-offs negatively impact the
landmark detection, as the frequency of out-of-plane and blurry basal segments is higher
in these views. In the 2-chamber view, there is less of a trade-off from a strain imaging
perspective. Here, priority is given to the left ventricle (LV) in its entirety in addition to
the mitral valve, and both basal segments should be well depicted.

A few common factors were found to negatively impact the landmark detection. The first
and most obvious is the case where the myocardial segment is missing from the images
entirely, as shown in Figures 5.1a and 5.1b. In these cases, the detection of suitable land-
marks is entirely infeasible. A slightly less sinister case is when the boundary between the
basal segments and the ventricle is unclear or obfuscated by noise, as in Figure 5.1c. These
unclear boundaries make the detection of a highly suitable landmark difficult, but in most
cases, a somewhat suitable point is still found. While there is not much to do with the cases
where the segments are not visible in end-diastole, the method proved to be robust against
a variety of other issues, including random noise, variation in the mitral plane angle with
respect to the probe, and slightly decreased visibility of the myocardium.
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(a) Inferior segment is outside
of the scanning sector.

(b) Anterolateral segment is
outside of the scanning plane.

(c) Inferolateral segment is
visible, but has an unclear
boundary to the ventricle.

Figure 5.1: Examples of images where landmark detection is difficult or infeasible

Increasing the ratio of highly suitable points detected would be desirable. The main dif-
ference between the suitable and highly suitable points was that the suitable points were
not close enough to the endocardium edge. Thus, to improve these detections, the detec-
tor should be motivated to choose points closer to the center of the images. This could
be done by weighting such points more when searching for the brightest pixel. Another
more computationally expensive approach would be to employ an automated LV contour-
ing algorithm and detect suitable points along this contour. This would most likely require
training a machine learning model using manually annotated examples, making it a costly
improvement.

5.2 Motion estimation and landmark tracking

The motion estimation task was performed by a fully convolutional neural network (CNN),
which was trained in an unsupervised manner. This has several advantages over other
approaches. As the network contains only convolutional layers, it can predict motion
in samples of any resolution. This is particularly useful in ultrasound, where the view
and sample rate impacts the spatial resolution, so that samples acquired using the same
equipment on the same patient may have different dimensions. Unsupervised training
does not require manual annotation of the training set, which is a time-consuming process.
This makes it easy to retrain a model with different data. While hybrid approaches, such as
supervised training on synthetic datasets have shown promise[21], it was assumed that it
would be advantageous to train the model using the same type of data as for testing.

During the training of the CNNs, no evidence of overfitting was observed. For both single-
network models, the validation loss follows a moving average of the training loss closely
on a decreasing trend, indicating successful learning. When daisy-chaining the two single-
network models and fine-tuning the low-downsampling-rate (LDR) model, the training
loss decreased faster than the validation loss, indicating that little gain could be made
by fine-tuning. Still, the daisy-chaining alone gave lower validation loss. The training set
loss fluctuates a lot, meaning that there will be large variations between consecutive update
steps. This could make convergence to an optimum slower and more difficult, and would
normally be countered by increasing the batch size or lowering the learning rate. Due to
memory limitations, an increase in batch size was not possible, and a lower learning rate
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did not improve the end result in the presented experiments.

The inference times estimated are quite high, about twice the time needed using Østvik
et al.’s method for global longitudinal strain estimation[20]. This is an unfair comparison,
however, as a laptop with a GPU was used in their experiments. Inference times can likely
be significantly reduced if the experiments are run using a GPU, due to their excellent
performance on convolutions. Furthermore, the implementation used in this work relied
on processing by the Python interpreter in addition to the Tensorflow library. If the method
was to be implemented in a compiled language, such as C++, further performance gains
might be achieved. Another way of reducing inference time would be to crop the frames
before inference. As the landmarks are located in the top half of a frame, it is wasteful to
estimate the frame-to-frame displacements for the entire image.

As for the landmark detection, it is clear that the performance of the landmark tracking
depends on the view in all models. As expected, tracking performance in the 4-chamber
and long-axis views is best in the inferoseptal and anteroseptal segment, respectively, as
these segments are prioritized when acquiring samples in these views. In the 2-chamber
view, there is less of a difference in performance between the two basal segments.

Out of the three models evaluated, the daisy-chained model performs best. In total, 46%
of the segments are successfully tracked. This compares well to current methods. In their
population study, Dalen et al. report that tracking was infeasible in 60% of the segments
in samples acquired specifically for the purpose of strain estimation[11].

All models underestimated the motion of the landmarks in certain situations. The high-
downsampling-rate (HDR) model underestimated almost all motion, except for very large
movements. This indicates that the receptive field of the CNN is too large. The LDR model
shows the opposite behavior. It consistently underestimated large motion, while following
smaller movements quite well, indicating that the receptive field is too small. Combining
the two in a daisy-chained model improved tracking overall. This is somewhat expected, as
the sum of two underestimated motion vectors can be closer to the true motion. However,
underestimation was still an issue in some samples. An interesting experiment could be
to daisy-chain several networks with few downsampling layers. This would estimate the
larger motions incrementally while keeping the advantage on smaller motions. As the
bending penalty, in its effort to ensure spatial smoothness, also penalizes the magnitude of
the displacements, it is also possible that a decrease in the regularization parameter could
alleviate the underestimation.

Some issues common to all models were identified. Out-of-plane movement, where the
motion of the myocardium is not parallel to the scanning plane of the ultrasound beam,
makes the myocardium disappear in some frames and while being present in others, caus-
ing the tracked point to drift or get stuck. This is sometimes a result of the 4-chamber view
not being recorded at exactly 0◦. These improper 4-chamber images can be identified by
the presence of the left ventricular outflow tract (LVOT) in the images. Out-of-plane mo-
tion is illustrated in Figure 5.2. In Figure 5.2a, the anterolateral segment is clearly visible,
but a few frames later, the segment has moved out of the scanning plane and becomes
invisible in Figure 5.2b.
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(a) Anterolateral segment visible (b) Anterolateral segment not visible

Figure 5.2: Example of out-of-plane movement of the myocardium. The anterolateral segment’s
motion is not parallel to the scanning plane, causing it to disappear.

Another issue is noise caused by pockets of air between the probe and the heart. As air has
a higher acoustic impedance than tissue, these pockets cause strong reflections, resulting
in a bright spot in the images which is constant between frames. Figure 5.3 shows a frame
where such noise is covering the mitral annulus above the anterolateral segment, indicated
by a red rectangle. This causes the tracking to get stuck. Lastly, in some samples, the
landmarks are found in a near uniform, bright region. In these cases, the tracking follows
the region quite well but tends to drift within the region. Figure 5.4 shows a frame where
the mitral annulus above the inferior segment is found in such a region.

Figure 5.3: Example of noise caused by a pocket of air. The bright spot indicated in red is present
in all frames in the sample and causes the tracking to get stuck.

Figure 5.4: Example of a uniform, bright region around the landmark. The region is indicated in
red. Such uniformity causes the tracking to drift within the region.

Out-of-plane movement and constant noise in the samples ares issues that are difficult
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to overcome. Efforts were made to keep the tracking from failing in these situations,
including smoothing the motion vectors using exponential moving averages (EMAs) and
Kalman filtering without success. Using such smoothing methods also induce latency in
the tracking, which may lead to failed tracking in later frames or introduce bias in the
strain estimates.

Drifting in uniform regions can be attributed to the way the motion estimators are trained.
As the normalized cross-correlation was optimized, the trained models do not differenti-
ate which pixels go where in the warped frames, as long as they have similar brightness.
That means that the pixels within a uniform region may be shuffled, causing folding in the
warped frame. To reduce folding more networks could be daisy-chained, or the regular-
ization parameter could be increased. Both of these approaches come at a cost, as more
networks would increase the inference time, and increased regularization would cause the
estimates to be more biased towards small displacements.

It should be noted that the performance of both the landmark detection and tracking was
evaluated by visual inspection by the author. This inspection may be subject to biased
opinions, and intra-observer variability must be assumed. This is a consequence of us-
ing unsupervised methods and should be taken into consideration when interpreting the
results.

5.3 Strain estimation

In line with expectations from the visual inspection, the strain estimates produced by the
daisy-chained model from the inferoseptal segment are closest to the reference values in
terms of mean absolute difference (MD). Looking at correlation, the inferior segments
compare best. One would expect better performance on the anteroseptal segments from
the visual inspection, but as the CNN estimates on this segment are taken across the LVOT,
and the references are measured on the myocardium, some underestimation is expected,
and can in fact be observed in Figures 4.7e, 4.8e, and 4.9e. Strain is not normally measured
across the LVOT, and the fact that it was done in this implementation was a result of the
assumption of known mitral annulus landmarks, and the particular landmark detection
algorithm.

In Figures 4.7, 4.8, and 4.9, a large spread around the diagonal can be observed for all
models. This is not surprising, as the proposed pipeline includes several sources of er-
ror. Firstly, 55% of the detected landmarks used for tracking were highly suitable; the
remaining 45% are expected to cause decreased precision during tracking. Secondly, the
landmark tracking was deemed unsuccessful in the majority of the segments in the test set
for all models except for the daisy-chained model. Drifting and underestimation of motion
when tracking a landmark were the leading causes of unsuccessful tracking, both of which
may cause large variation in the resulting strain estimate.

The reference values that the strain estimates were compared against were acquired using a
commercial speckle tracking method. Speckle tracking, while commercially available and
widely used, can not be viewed as an absolute truth. As Knackstedt et al. demonstrated,
these methods suffer from significant inter- and intra-observer variation, in addition to
inter-vendor variability[17]. Thus, some deviation from the reference was expected. In
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addition, many of the samples used for strain estimation were acquired at very low frame
rates, challenging the feasibility of accurately measuring strain using traditional meth-
ods.

5.4 Limitations of study and future work

Mitral annulus landmark detection was not included in this thesis, as efforts have shown
this task to be learnable by deep learning models, and it is the subject of ongoing work
at our department. This is nevertheless a major shortcoming of the proposed estimation
pipeline, and to achieve the end-goal of fully automating basal strain estimation from raw
TEE images it would be necessary to extend the landmark detection algorithm to also
detect the mitral annulus. Furthermore, the algorithm should be extended to detect the
edge of the myocardium below the LVOT in the long-axis view so that the right landmarks
are tracked.

To improve the landmark tracking, more experiments should be done with different down-
sampling rates and different combinations of daisy-chained networks. Each hyperparam-
eter should also be carefully tuned for each model, most importantly the regularization
parameter, learning rate, and the number of filters in the convolutional layers. It is also
possible that training a separate model for each view would be beneficial. As the learn-
ing problem becomes less comprehensive, each model would be able to specialize more,
perhaps increasing performance. Alternatively, the networks could be provided with infor-
mation about the view. It would also be interesting to perform more experiments using the
current setup. Cherry picking high-quality samples with high frame rates for testing could
more precisely determine the feasibility of estimating strain using the proposed pipeline.
Then, if the results are satisfactory, efforts could be concentrated towards increasing ro-
bustness.

For a more accurate assessment of the strain estimates, reference values could be acquired
using several commercially available methods for comparison. The proposed method
should also be compared to other recent approaches, such as Østvik et al.’s flownet based
approach[20, 21], evaluated on the same test set. Such comparisons could provide a more
detailed view of the strengths and weaknesses of the method proposed in this thesis.

The long inference times are problematic, as continuous monitoring would require estima-
tion in real- or at least near real-time. Though a GPU is believed to improve performance
significantly, experiments should be run on the actual hardware available in the operating
theater to accurately determine wether or not real- or near real-time strain estimation is
feasible using the proposed method.
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6 Conclusion

In this thesis, a novel approach to automatic regional strain estimation in transesophageal
echocardiographic images was presented, consisting of landmark detection, landmark track-
ing, and strain calculation. The landmark detection algorithm assumed the location of the
mitral annulus to be known and used traditional linear filtering to detect a second landmark
on the myocardium at a suitable distance from the mitral annulus. The landmark tracking
was done using an adapted implementation of the Deep Learning Framework for Unsuper-
vised Affine and Deformable Image Registration introduced by de Vos et al.[32].

Three deep learning models were trained and evaluated for the landmark tracking task:
two single-network models and one daisy-chained network combining them. Both train-
ing and evaluation were done using unselected transesophageal echocardiographic images
in 4-chamber, 2-chamber, and long-axis views. The daisy-chained model achieved the
best performance, both when subject to visual inspection and when compared to a com-
mercially available method. In particular, the results from the 4- and 2-chamber views
show promise, while performance decreased in the long-axis samples. Several sources of
error were identified, and improvements suggested. The observed inference times rules
out real-time applications. However, several readily available measures may be taken that
are believed to reduce the time needed to estimate the frame-to-frame displacements sig-
nificantly.

In conclusion, the results show that the method can accurately estimate strain in the basal
segments in the 4- and 2-chamber views in samples where image quality is high. This
indicates that strain estimation is indeed a learnable task using deep learning methods and
that full automation is feasible. In samples where the images are of lower quality, the
method performs variably, or fails entirely to produce a reasonable estimate. Thus, further
efforts should be focused towards improving robustness and increasing performance in the
long-axis view.
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Chapter A. IEEE IUS 2019 Abstract

A IEEE IUS 2019 Abstract

Basal Strain Estimation in Transesophageal Echocardiography (TEE) using Deep Learning 
based Unsupervised Deformable Image Registration 
Torjus Haukom1, Erik Andreas Rye Berg23, Gabriel Hanssen Kiss24, 1Department of Electronic 
Systems, NTNU, Trondheim, Norway, 2Center for Innovative Ultrasound Solutions (CIUS), NTNU, 
Trondheim, Norway, 3Clinic of Cardiology, St. Olavs hospital, Trondheim, Norway, 4Operating Room 
of the Future, St. Olavs hospital, Trondheim, Norway 
 
Background, Motivation and Objective  
Major surgery and interventions may impact cardiac performance. As of today, per-operative 
monitoring is based on vital signs and clinical observations by the anesthesiologist. This, however, 
does not offer a complete monitoring of left ventricular function throughout the intervention. We 
hypothesize that functional monitoring of the heart can be performed automatically based on TEE 
images. 
 
Statement of Contribution/Methods  
Aim: compute the non-linear deformation between subsequent images in a TEE sequence of the left 
ventricle and estimate basal longitudinal strain to assess regional myocardial function via a deep 
learning approach. 
 
An unsupervised approach based on a convolutional neural network was implemented (code 
available), similar to the work of De Vos et al. The output of the CNN network is a dense vector field 
that describes the non-linear deformation required to maximize the similarity (normalized cross 
correlation) between two images. A B-spline based smoothing function was implemented and 
optimized in order to regularize the deformation. Manually selected points on the basal segments can 
be tracked from end-diastole to end-systole and strain derived. 
 
Recordings from 42 consecutive complete TEE exams from the Echocardiography Unit were 
anonymized and used for training. Recordings from 5 consecutive TEE exams performed during heart 
surgery, also anonymized, were used as test set and the frame order kept. All recordings were made 
using GE Vivid E95 or E9 systems with a 6T probe (GE Vingmed, Ultrasound, Horten, Norway). All 
recordings of a patient were captured within a limited time gap, and no patient selection was 
performed. The captures include 3 heart cycles of standard 4C, 2C, and LAX views.  
 
Results/Discussion  
For the test set patients, the basal strain was manually annotated in EchoPac by an expert 
echocardiographer. In this preliminary experiment, 19 heart cycles were randomly selected from the 
test set and checked to ensure visibility of the points to be tracked. Overall when estimating strain 
(Fig. 1), there was a mean difference of 7.25% (±4.56%).  

This research is ongoing, and more tests will be performed with more data. Still, the point tracking is 
working as expected in most low noise scenarios, where the myocardium is well depicted. However, 
dropouts, noise generated by implants or air bubbles after surgery, confuse the tracker and drifting 
occurs.  
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B B-spline interpolation

Given a digital image Ψ with widthW and heightH , it can be represented as a matrix with
dimensionsW ×H1. Let Ω be the image domain Ω = {(x, y) : 0 ≤ x < W, 0 ≤ y < H}.
Then, a continuous function approximating the image can be defined on Ω using B-spline
interpolation, as given in Equation (B.1).

T (x, y) =

~uT︷ ︸︸ ︷
1

6


u3

u2

u
1


T 
−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0

 Ψ̃i,j

~v︷ ︸︸ ︷
1

6


−1 3 −3 1
3 −6 0 4
−3 3 3 1
1 0 0 0



v3

v2

v
1

 (B.1)

Ψ̃i,j =


Ψi−1,j−1 Ψi−1,j Ψi−1,j+1 Ψi−1,j+2

Ψi,j−1 Ψi,j Ψi,j+1 Ψi,j+2

Ψi+1,j−1 Ψi+1,j Ψi+1,j+1 Ψi+1,j+2

Ψi+2,j−1 Ψi+2,j Ψi+2,j+1 Ψi+2,j+2


In Equation (B.1), u = x − bxc and v = y − byc (u, v ∈ [0, 1)) are the relative x and
y positions on the local spline, i = bxc and j = byc are the pixel indices of the closest
pixel to x and y in the original image that satisfy i ≤ x, j ≤ y. Ψ̃i,j is the 4 × 4
neighborhood of pixels closest to (x, y), referred to as the B-spline control points. ~u and
~v contain the basis functions for the splines. We see that for x = i and y = j, u = v = 0,
and the resulting value is the original pixel value. Furthermore, it is clear that changing
the brightness of one pixel only affects the neighborhood of this pixel in the interpolated
image.

It can be shown that Equation (B.1) can be rewritten to a sum over a Hadamard product of
two matrices as shown in Equation (B.2).

T (x, y) =

4∑
k=1

4∑
l=1

[(
~u~vT

)
◦ Ψ̃i,j

]
k,l

(B.2)

Equation (B.2) looks a lot like a convolution. In fact, we can get the original image back
by convolving Ψ with ~u~vT by setting u = v = 0. But, more interestingly, we can also get
the interpolated pixel values halfway between the original pixels by setting u = v = 0.5.
Similarly, we can get values at a quarter of the way between the original pixels with

1This results in a transposed image. This is done for notational purposes.
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Chapter B. B-spline interpolation

u = v = 0.25 and so on. Thus, if we want to upsample an image by a factor Nup, we
can construct expanded ~u and ~v vectors ~uint and ~vint by interleaving ~u and ~v vectors with
Nup evenly spaced values on [0, 1) for u and v. If we now insert Nup − 1 zeros between
each pixel in the original image, this image can be convolved with ~uint~uTint to form the up-
sampled image. This process of inserting zeros before convolution is known as fractionally
strided convolution or transposed convolution.

56



C Landmark tracking

Tables C.1, C.2, and C.3 contain the results from the visual inspection of the landmark
tracking performed by the low downsampling rate, high downsampling rate and daisy-
chained model, respectively.

Table C.1: Number of successful and unsuccessful landmark trackings for the low-downsampling-
rate model.

4-chamber

Lateral Septal

Successful Unsuccessful Successful Unsuccessful
# of trackings 8 61 28 42

Percent 11.59% 88.41% 40.00% 60.00%

2-chamber

Anterior Inferior

Successful Unsuccessful Successful Unsuccessful
# of trackings 14 60 21 53

Percent 18.92% 81.08% 28.38% 71.62%

LAX

Anteroseptal Posterior

Successful Unsuccessful Successful Unsuccessful
# of trackings 22 50 10 62

Percent 30.56% 69.44% 13.89% 86.11%

57



Chapter C. Landmark tracking

Table C.2: Number of successful and unsuccessful landmark trackings for the high-downsampling-
rate model.

4-chamber

Lateral Septal

Successful Unsuccessful Successful Unsuccessful
# of trackings 4 65 10 60

Percent 5.80% 94.20% 14.29% 85.71%

2-chamber

Anterior Inferior

Successful Unsuccessful Successful Unsuccessful
# of trackings 5 69 4 70

Percent 6.76% 93.24% 5.41% 94.59%

LAX

Anteroseptal Posterior

Successful Unsuccessful Successful Unsuccessful
# of trackings 11 61 2 70

Percent 15.28% 84.72% 2.78% 97.22%

Table C.3: Number of successful and unsuccessful landmark trackings for the daisy-chained model.

4-chamber

Lateral Septal

Successful Unsuccessful Successful Unsuccessful
# of trackings 18 51 48 22

Percent 26.09% 73.91% 68.57% 31.43%

2-chamber

Anterior Inferior

Successful Unsuccessful Successful Unsuccessful
# of trackings 31 43 40 34

Percent 41.89% 58.11% 54.05% 45.95%

LAX

Anteroseptal Posterior

Successful Unsuccessful Successful Unsuccessful
# of trackings 43 29 19 53

Percent 59.72% 40.28% 26.39% 73.61%
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