
Master of Science in Communication Technology
June 2011
Danilo Gligoroski, ITEM

Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Telematics

Security Issues with Content
Management Systems (CMSs) on the
Cloud

Thomas Østdahl

Problem Description

Joomla! is a widely used open source Content Management System (CMS) plat-
form. Basically, it is a software which binds the content of a website to a template
that describes the design and presentation. Many CMS actors offer cloud hosting,
which is economically beneficial to customers because of flexibility and scaling.
Hence, cloud security becomes an important issue for both service providers and
their customers.

The candidate should investigate the security issues related to cloud computing,
and then study how open-source CMSs manage these. By looking into the core of
the Joomla! architecture, the candidate will get an insight in how the web content
is protected. If vulnerabilities are found, they should be analyzed and discussed in
detail. Finally, the candidate should investigate whether there exists cloud-specific
security weaknesses regarding CMSs.

Assignment given: 15.01.2011
Supervisor: Danilo Gligoroski

i

ii

Abstract

Although cloud computing is the major hype nowadays, it is actually a relatively
“old” concept which can be dated back to the 1950s. Then, AT&T was developing a
centralized infrastructure and storage space, where their customers could connect
to using advanced telephones. Cloud computing works in a similar fashion, where
customers subscribe to centralized service models. The models are separated in
three main categories; Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS)
and Infrastructure-as-a-Service (IaaS). The cloud is a multi-tenant environment,
i.e., several customers are able to use the same service simultaneously. More-
over, the cloud is highly scalable, which means that resources can be allocated
on demand. Cloud computing follows a pay-per-use payment model. Customers
could reduce their operational and maintenance costs significantly, because they
subscribe to a Cloud Service Provider (CSP) which is responsible for these tasks.
Moreover, an organization is no longer dependent on costly upfront investments.

Most of the industry-leading technology organizations (e.g., Amazon, Apple, Google,
Microsoft) have their own cloud services. Thus, the barrier to adopt the cloud for
customers has lowered. Organizations have hasted to move their services to the
cloud, without questioning the cloud’s maturity. Even though cloud security has
been a priority from the beginning, numerous attacks have been reported. The
CSP’s data-centers provide both physical and infrastructure security. However,
traditional security threats to IT systems, is still applicable to cloud applications.
Furthermore, new cloud-specific security risks emerge. Confidentiality, integrity
and availability of data are always of importance, however, becomes challenging
in the cloud due to its dynamic environment. Ensuring integrity of data, with-
out knowing the whole data set, is one of several challenges. Moreover, due to
the increasing incidents of Denial-of-Service (DoS) attacks, availability of data has
become problematic. Although the cloud is able to scale well with such attacks,
disruptions of services still occur. The scalability of clouds could also potentially

iii

be a threat, if malicious users are able to create bot-nets of multiple clouds.

The Internet is a hostile environment, likewise is the cloud. However, this does
not stop people from rapidly adopting it. Organizations have hasted to offer their
services on the cloud, to benefit from its advantages. Content Management Sys-
tems (CMSs) are examples of such services. They are widely popular, and used
to create professional websites without requiring technical skills. CMSs provides
a user-friendly platform to manage the contents (e.g., text, pictures, music), then
customize it with templates and extensions. Open source CMSs benefit from their
communities of developers, which contribute to keep their systems up to date and
safe, with the current technologies. Since many CMS have non-technical users,
they tend to be attractive targets for adversaries. Especially, third-party exten-
sions have been considered a major threat. The “core” of the systems are often
secure. However, web application vulnerabilities apply to these systems.

Joomla! is a widely popular open source CMS, due to its simplicity and remark-
able community. The latest version (Joomla! 1.6) has made it suitable for both
new unexperienced users, as well as professional users. Joomla! can be used as a
PaaS, to benefit from the cloud’s advantages. Anyhow, Joomla! is an attractive
target, due to its non-technical audience. It is considered secure by default. How-
ever, with simple open source tools, it is possible to obtain valuable information
about the system, e.g., server spesifications, OS, CMS version. Moreover, the se-
curity of the back-end have potential for improvements. Since many customers use
weak passwords, and the back-end is always located in the same folder, adversaries
could brute-force their way through. Many CMSs have static files and resources,
which finger-printers utilize to determine the system specifications. Furthermore,
poorly coded extensions are gateways for attackers. If an exploit is found in a com-
ponent, adversaries could automate attacks against websites with this vulnerable
component installed. Hence, it is critical for users to always keep up to date.

The emerging future would introduce numerous new ways of cloud usage. Many
companies invest in enormous data-centers, which is the size of small villages.
More and more services would move to the cloud, and software licenses would
start to be excess. The threats to the cloud are not significantly increased in
numbers, compared to traditional IT systems. However, the multi-tenancy could
be exploited by malicious users. Moreover, distributed attacks originating from
several clouds, could force CSPs to evolve cloud security.

iv

Acknowledgements

This Master’s thesis represents the final semester’s work in the Master of Communi-
cation Technology program at the Norwegian University of Science and Technology
(NTNU) in Trondheim. It was carried out in cooperation with the Department
of Telematics (ITEM), under the Faculty of Information Technology, Mathematics
and Electrical Engineering (IME).

I would like to thank my supervisor Danilo Gligoroski, for his guidance and help on
my thesis. I would also like to thank the Joomla! community, which have rapidly
answered all my questions regarding CMS security. Furthermore, I would like to
thank my classmates for their friendship and valuable input during our time at
NTNU. Finally, I would like to thank my family, and my girlfriend, for supporting
me throughout my studies.

Trondheim, 09.06.2011
Thomas Østdahl

v

vi

Contents

Abstract iii

Acknowledgements v

Abbrevations xv

1 Introduction 1

2 Cloud Computing 3
2.1 History of cloud computing . 3
2.2 The evolution towards cloud computing 4
2.3 What is cloud computing? . 6

2.3.1 Cloud delivery models . 6
2.3.2 The services of cloud computing 7

2.4 Drivers of cloud computing . 14
2.4.1 Small initial investments and low ongoing costs 15
2.4.2 Scalability . 15
2.4.3 Sustainability . 15

3 Cloud Security 17
3.1 Infrastructure security . 17

3.1.1 Network level . 18
3.1.2 Host level . 23
3.1.3 Application level . 27

3.2 Data security . 31
3.2.1 CSP data security . 32

3.3 Cloud insecurity . 37
3.3.1 Cloud-specific threats . 37
3.3.2 Poisoning of VMs . 38

vii

3.3.3 Attacks against the management console 39

4 Open source Content Management Systems (CMS) 43
4.1 What is a CMS? . 43
4.2 Open source vs. closed source . 45
4.3 Security in open source CMSs . 46

4.3.1 Common attacks towards CMSs 48

5 Joomla! Security 53
5.1 About Joomla! . 53

5.1.1 What is new in Joomla! 1.6? 55
5.2 How security is provided in the “core" 58

5.2.1 Protection against common attacks 58
5.2.2 Passwords . 61

5.3 Choose your extensions wisely . 64
5.4 The cloud and Joomla! . 65

6 Vulnerability testing on Joomla! 69
6.1 The Joomla! test-setup . 69
6.2 Available tools . 70

6.2.1 Visual fingerprinting . 70
6.2.2 BlindElephant Web Application Fingerprinter 71
6.2.3 Nmap – Network mapping tool 72
6.2.4 OWASP Joomla! vulnearbility scanner 73

7 Conclusion 77

A OWASP Top 10 Application Security Risks - 2010 87

B Annual trends for web application vulnerability types 91

C BlindElephant fingerprinting 93

D Nmap and Joomla! 95
D.1 Version trace . 95
D.2 OS detection . 97

E OWASP Joomla vulnerability scanner 99

viii

F MD5 algortithm description 107

ix

x

List of Tables

2.1 Cloud sub-services [1] . 8
2.2 Comparison of traditional IT systems and cloud computing. 14

3.1 Percentage of uptime [2] . 36

6.1 System information retrieved from the Joomla! setup, using Nmap 73

xi

xii

List of Figures

2.1 Evolution of cloud computing [2] (modified figure). 5
2.2 The architecture of cloud service models. 9
2.3 The service models of cloud computing as a hierarchy [2] (modified

figure) . 12

3.1 Generic network topology of private cloud computing [2] (modified
figure). 19

3.2 Virtualization System Components [3] (modified figure) 25
3.3 A new approach to a secure public IaaS structure 27
3.4 The SDLC . 29
3.5 DDoS attack on Twitter [4] . 30
3.6 Cloud data storage architecture [5] (modified figure) 33
3.7 Symmetric encryption scheme . 35

4.1 CMS trends (2005–2011) . 45
4.2 How a phising-attack is executed 48
4.3 Open source CMSs and related technologies [6] (modified figure) . 49

5.1 The Joomla! framework [7] (modified figure) 55
5.2 How tokens are used by the Joomla! framwork 62
5.3 A typical architecture of a CSP, which offers Joomla! as a PaaS . . 66

6.1 Static file fingerprinting on Joomla! [8] (modified figure) 72
6.2 SYN-scan of open port 22 . 73
6.3 SYN-scan of closed port 113 . 74

B.1 Annual trends for web application vulnerability types 92

xiii

xiv

Abbrevations

ACL Access Control List

AES Advanced Encryption Standard

AMI Amazon Machine Image

AWS Amazon Web Services

ASP Application Service/Infrastructure Provider

CaaS Communication-as-a-Service

CCaaS Compute Capacity-as-a-Service

CMS Content Management System

CSP Cloud Service Provider

CSRF Cross-Site Request Forgery

DBaaS DataBase-as-a-Service

DDoS Distributed Denial-of-Service

DES Data Encryption Standard

DoS Denial-of-Service

DTaaS Desktop-as-a-Service

EC2 Elastic Compute Cloud

xv

EDoS Economical Denial-of-Sustainability

IaaS Infrastructure-as-a-Service

IPS Intrusion Prevention System

ISP Internet Service Provider

MaaS Monitoring-as-a-Service

MAC Message Authentication Code

NDA Non-Disclosure Agreemen

OWASP Open Web Application Security Project

PaaS Platform-as-a-Service

POR Proof of Retrievability

QoS Quality of Service

SaaS Software-as-a-Service

SCP Secure Copy

SDLC Software Development Life Cycle

SECaaS SECurity-as-a-Service

SEO Search Engine Optimazation

SLA Service Level Agreement

SQS Simple Queue Service

SSH Secure Shell

STaaS Storage-as-a-Service

UXD User Experience Design

xvi

VM Virtual Machine

XSS Cross-Site Scripting

xvii

xviii

1
Introduction

“The Big Switch: Rewiring the world, from Edison to Google” [9], a book written
by Nicholas Carr, points out the similarities between the rise of cloud computing
in the information age, to electrification in the industrial age. Before the pub-
lic electrical grid, organizations had to provide their own power. However, after
the electrical network was available, organizations could just plug into the grid.
Electricity became a utility. Many similarities can be seen with cloud computing.
Computing resources have the potential to become a utility, in the same way as
electricity did. In the emerging future, people could be able to connect to the cloud
to get the resources they need. Applications and services will be available from
anywhere, through an internet connection. Moreover, processing power, storage
and memory could be scaled on demand. However, cloud computing introduces
certain security risks. Cloud security has been a topic of concern from the birth
of the cloud, even a dedicated non-profit organization (Cloud Security Alliance
(CSA) [10]) has been established. CSA provides education about the cloud, and
helps people use best practices for ensuring security within cloud computing. It is
a common mistake to think that with cloud computing, known threats to tradi-
tional IT systems magically disappear. On the contrary, they contribute to make
cloud security an even more challenging task.

Even though the cloud is a hostile environment, organizations seem to find it
highly attractive. There are several reasons for this, e.g., scalability, reduced op-
erational and maintenance costs, etc. The cloud has become a new playground to
developers, thus numerous new services arrises. Moreover, existing services and
applications can benefit from the dynamic cloud. Many CMSs have become avail-

1

CHAPTER 1. INTRODUCTION

able as cloud services, hence customers could easily create scalable websites, with
practically unlimited resources. CMSs have traditionally been tempting targets for
attackers, due to web application vulnerabilities. The cloud provides some security
mechanisms to the CMS, however, they are still exposed to common threats.

This report gives an overview of cloud computing and the associated security risks.
Both known threats to IT systems and new emerging threats are discussed. Since
CMSs have the potential to greatly benefit from cloud computing, this report
examines them from a security perspective. These systems have a considerable
audience, whereas many of them are non-technical. As a consequence, they become
attractive targets for adversaries. The report analyzes a popular CMS (Joomla!),
and looks into how an attacker might find vulnerabilities on it. Three open source
tools are used to simulate how an adversary could access exploitable information.
Moreover, the source code of Joomla! is investigated, to identify how security is
assured.

2

2
Cloud Computing

In this chapter, the history and evolution of cloud computing is described in detail.
Moreover, it will give an overview of the cloud service and delivery models. Finally,
the drivers of cloud computing are discussed.

2.1 History of cloud computing

Many of the main concepts of cloud computing can actually be dated back to
the 1950s. At that time, AT&T was developing a centralized infrastructure and
storage space which customer could connect to, using advanced telephones and
an enhanced telephone network. By using load-balancing, the companies could
utilize their resources more effectively and economically. The development of this
concept continued over the next decades, and concepts such as Internet Service
Providers (ISPs) and Application Service/Infrastructure Providers (ASPs) were
adopted. With the ISPs, servers are located at the Internet access point. An
ASP is when a customer rents infrastructure at a remote location, and often used
mainly by this one paying customer. The problem, however, with the ASPs was
that the customer needed to calculate the computing and storage capacity needed
before renting the infrastructure. As a result, an upgrade of the capacity led to
expensive hardware upgrades and critical delays [1].

The name, cloud computing, was most likely derived from the graphical representa-
tions of the Internet, commonly seen in computer textbooks. However, the concept
of cloud computing did not get much attention until Salesforce.com deployed their

3

CHAPTER 2. CLOUD COMPUTING

website in 1999, which delivered enterprise applications. After Amazon renewed
their data centers after the dot-com bubble, they became a major actor within the
cloud. They saw the potential of cloud computing, and the economical savings it
introduced, and launched Amazon Web Service (AWS) in 2006. AWS is a pay-
per-use platform in the cloud, which provides the infrastructure needed for storage
and computation resources [11].

“We in academia and the government labs have not kept up with the times,
universities really need to get on board.”

This citation is from Randal E. Bryant, dean of the computer science school at
Carnegie Mellon University [12]. The statement was in context with the collabo-
ration between IBM, Google and several american universities. IBM and Google
joined forces in 2007 and started a research initiative on cloud computing. They
invested in large data-centers, where students from six universities in the USA
could remotely connect to. These remote resources could be used for program-
ming and research. The goal of this initiative, was to explore the possibilities and
limitations of the cloud, and to get attention to this new era in computing.

2.2 The evolution towards cloud computing

The evolution towards the cloud began with the first Internet Service Providers
(ISP 1.0), which provided access to the Internet for both organizations and in-
dividuals. Dial-up modems were often used to connect to the Internet. As the
popularity of Internet grew, the ISPs added new services such as access to email
and servers at their facilities (ISP 2.0). With the introduction of these services,
organizations and individuals wanted to host their own servers. Specialized fa-
cilities and corresponding infrastructure were constructed to support the servers,
and enable applications to be run on them. These specialized facilities are known
as collocation facilities (ISP 3.0). The next step in the evolution, was the Ap-
plication Service Providers (ASPs). An ASP focuses on providing value-adding
applications to organizations, not just the computing infrastructure (ISP 4.0).
The application software and the necessary infrastructure were controlled by the
ASP. Although ASPs provided services to multiple customers, they did not do this
through a shared environment, which is the case for Software-as-a-Service (SaaS)

4

CHAPTER 2. CLOUD COMPUTING

providers nowadays. With ASPs, each customer had their own instance of an
application which ran on a dedicated server. The evolution has led to cloud com-
puting (ISP 5.0), which defines the SPI model (Software/Platform/Infrastructure).
In figure 2.1, the evolution of cloud computing is illustrated. The SPI model will
be discussed in detail in the following section.

ISP 1.0
Provide access to the

Internet (dial-up,
ISDN, T1, T3)

ISP 2.0
Access to

servers at the
Internet

access point

Racks for your
equipment at
the Internet
access point

Colo (ISP 3.0)

Hosted
applications
on servers at
the Internet
access point

ASP (ISP 4.0)

Internet-based
applications
and services

SaaS

Internet-based
developer
platform

PaaS
Java

Python

C#

Ruby

IaaS

Internet-based
computing and

storage on
demand

Dynamic, Internet-
optimized infrastructure

for hosting your
applications

Cloud (ISP 5.0)

Figure 2.1: Evolution of cloud computing [2] (modified figure).

5

CHAPTER 2. CLOUD COMPUTING

2.3 What is cloud computing?

“Cloud computing is a term used to describe a set of IT services that are
provided to a customer over a network on a leased basis and with the ability
to scale up or down their service requirements. Usually cloud computing
services are delivered by a third party provider who owns the infrastructure.”
[1]

Cloud computing has gained popularity during the recent years, due to flexibility
and the possibility to reduce operative costs. This concept can be described with
four main characteristics:

• Pay-as-you-go – The customer pays for his/her consumption of a cloud
service, i.e. the cost is variable.

• Abstracted – The hardware server, and related network architecture is
abstracted from the customers.

• Multi-tenant – The multi-tenant architecture allows several customers to
subscribe to the same cloud services, without compromising security and
privacy.

• Scalability – Consumption and capacity (i.e., cost) can be scaled up and
down transparently.

The customer only pays for the actual consumption, which could drastically de-
crease the customer’s costs. Another benefit with cloud computing is that several
users can use the same services, hence the utilization of resources is optimized. Ear-
lier, the capacity has been predefined and static, thus upgrades became a costly
and time-consuming operation. However, with cloud computing the capacity can
be scaled transparently, without delays and extra costs.

2.3.1 Cloud delivery models

Cloud computing delivery models can be divided into four main categories. The
difference between them, depends on the level of ownership and technical infras-

6

CHAPTER 2. CLOUD COMPUTING

tructure.

• Vendor cloud (external) – this type of cloud delivery model can be ac-
cessed over the Internet or through a private network. The model utilizes
virtualization technologies for rapid scaling, and can be used by multiple
tenants. When sharing a service, one or more data centers can be utilized,
and with different levels of access control. This cloud delivery model is also
known as a public cloud. However, by having a shared environment, the
customers have no dedicated resources, thus lack of control over them.

• Private cloud (internal) – The architecture of this cloud delivery model is
similar to the vendor cloud model. However, it is built, managed and used by
one single enterprise. This model is based on shared resources and variable
use of virtual data resources, where the data is controlled by the enterprise.
As a consequence, the enterprise can ensure both control and security over
their cloud resources.

• Hybrid cloud – The hybrid cloud delivery model is a combination of the
two models mentioned above, combined with a IT infrastructure. Therefore,
this model is suitable for enterprises that wish to store non-confidential data
externally, while keeping private data locally. The hybrid cloud model is
flexible and can be adapted to the customer’s needs.

• Community cloud – A community cloud is used between organizations
with the same goals and concerns, thus they can share resources and services.
This model can be deployed as one of the three models mentioned above.

2.3.2 The services of cloud computing

In cloud computing there are three main types of service models:

• Software-as-a-Service (SaaS)

• Platform-as-a-Service (PaaS)

• Infrastructure-as-a-Service (IaaS)

7

CHAPTER 2. CLOUD COMPUTING

Additionally, there are many subsets of these three primary service models. In
table 2.1 on page 8, the different subsets of the cloud service models are described
in detail. Figure 2.2 on page 9 illustrates the SPI model as a hierarchy, and shows
the relevant technologies.

Subservice type Description
IaaS: DataBase-as-a-
Service (DBaaS)

DBaaS allows the access and use of a database man-
agement system as a service.

PaaS: Storage-as-a-
Service (STaaS)

STaaS involves the delivery of data storage as a ser-
vice, including database-like servies, often billed on a
utility computing basis, e.g. per gigabyte per month.

SaaS: Communication-
as-a-Service (CaaS)

CaaS is the delivery of an enterprise communications
solution, such as Voice over IP (VoIP), instant mes-
saging, and video conferencing applications as a ser-
vice.

SaaS: SECurity-as-a-
Service (SECaaS)

SECaaS is the security of business networks and
mobile networks through the Internet for events,
database, application, transaction, and system inci-
dents.

SaaS: Monitoring-as-a-
Service (MaaS)

MaaS refers to the delivery of second-tier infrastruc-
ture components, such as log management and asset
tracking, as a service.

PaaS: Desktop-as-a-
Service (DTaaS)

DTaaS is the decoupling of a user’s physical machine
from the desktop and software he or she uses to work.

IaaS: Compute
Capacity-as-a-Service
(CCaaS)

CCaaS is the provision of “raw” computing resource,
typically used in the execution of mathematically
complex models from either a single “supercomputer”
resource or a large number of distributed computing
resources where the task performs well.

Table 2.1: Cloud sub-services [1]

8

CHAPTER 2. CLOUD COMPUTING

Software-as-a-Service (SaaS)

High
performance
computing

Analytics Finance Web Medical

Development,
administration and
management tools

Runtime and data
management engines

Security and user
management services

Platform-as-a-Service (PaaS)

Infrastructure-as-a-Service (IaaS)

Database File Other

Browser
clients

Browser
clients

Browser
clients

Public
broadband

Private
broadband

Figure 2.2: The architecture of cloud service models.

9

CHAPTER 2. CLOUD COMPUTING

SaaS

This service model is based on the concept of one-to-many, i.e., multiple customers
can subscribe to the same service simultaneously. SaaS could be described as a
service which is accessed on a hosted server. Hence, the customers do not need to
install the software on their local machines, only access the service over the Internet
(e.g., Google Docs, Photoshop.com). The vendor is running the software on a cloud
infrastructure, and makes sure updates and patches are installed continuously. The
customers use the service on a subscription basis, where they pay for their actual
usage. As a consequence, companies can reduce their expenses, since licenses for
every employee are unnecessary. Considering that most computer are idle almost
70% of the time, SaaS can drastically decrease a company’s expenses. Thus, this
service model could be beneficial for companies which want a service, and do not
want to spend money on infrastructure and the personnel to maintain it.

Many desktop software development companies have seen the benefits of SaaS,
thus want to adapt their existing software to work on the new platform. However,
this could be challenging because it often involves rewriting of software. This could
be too costly and time-consuming for many companies. As a result, the movement
to cloud computing has been a slow process for some companies. One solution is to
release a highly scaled down version of their software, and incrementally increase
the performance of it.

Another benefit with the introduction of SaaS, is that previously expensive soft-
ware now is available for the general consumer. An example of this phenomenon
is the popular photo-editing software; Adobe Photoshop. Nowadays, Adobe has
also launched Photoshop as a SaaS, with reduced functionality. Many users do
not need all the functionalities of the full version, therefore a light version offered
as a SaaS would be suitable. This is an example of a freemium service, which is a
term that describes a business model for scaled-down SaaS. The freemium model
anticipates that a certain precent of the users will eventually buy the full retail
version, or upgrade to a paid version of the software. A similar model is also found
in desktop software.

Customer support is a simpler task with cloud comuting, hence a driver for mov-
ing services into the cloud. Developers can implement fixes shortly after bugs are
found, without the need for customers to regularly download updates. As a con-

10

CHAPTER 2. CLOUD COMPUTING

sequence, most of the bugs are removed before the users encounter them, hence
the number of support calls are drastically decreased. With the software running
on the cloud, developers do not need to consider all the different platforms that
exist. Developing a software, which is compatible with Windows, Linux and Mac
OSX, could be a challenging task. Then, considering the many different versions
of each operating systems, the task gets even more complicated. The economical
benefits of using the cloud become obvious, as the control of the operating system
and versioning is managed by the cloud vendor. By controlling the platform the
software runs on, the developers can save money on testing and deployment of
fixes or new features. Furthermore, this can all be done transparently to the users,
which is advantegous for the user experience.

As the development and testing costs are notably reduced, the software companies
can put more though into the user interface. Many of the new SaaS have been
designed by a dedicated product team, which is a process known as User Experi-
ence Design (UXD). In conclusion, SaaS gives both developers and users several
advantages. However, some desktop software companies could find it challenging
to adapt their existing software to the new platform [13].

PaaS

Paas allows developers to build and deploy their applications on a hosted infras-
tructure. This service can be seen as the middle layer in a cloud stack, where SaaS
is on the top and IaaS at the bottom. The cloud stack is shown in figure 2.3 on
page 12. PaaS offers computing resources from a cloud infrastructure, which is
only limited by the size of the infrastructure. An example of a PaaS provider is
Google’s App Engine. Taking into consideration that Google’s infrastructure is es-
timated to contain one million x86-based computers [14], the computing resources
could almost be seen as infinite. When developing a software, one of the most
frustrating processes could be setting up the server, which often includes tasks
like:

• Acquire and deploy the server

• Installing the operating system, run time environments and additional mid-
dleware

11

CHAPTER 2. CLOUD COMPUTING

• Configuring the installation

• Move/copy existing code

• Testing and running of the code

Software

Platform

Infrastructure

maturing

nascent

evolving

 Definitions
 Applications that are enabled for the cloud.
 Supports an architecture that can run multiple
 instances of itself regardless of its location.
 Stateless application architecture.
 Monthly subscription-based pricing model

Definitions
 A platform that allows developers to write
 applications that run on the cloud.
 A platform would usually have several
 application services available for quick
 deployment.

 Definitions
 A highly scaled and redundant and shared
 computing infrastructure accessible using
 Internet technologies.
 Consists of servers, storage, security,
 databases and other peripherals.

Figure 2.3: The service models of cloud computing as a hierarchy [2] (modified
figure)

One advantage of PaaS is that it is possible to have a virtual machine (VM)
containing the whole server environment for testing purposes. The VM could be
put on a flash drive, thus easy to switch between clients. Basically there are two
main components of PaaS; service stack and platform. The computing platform
is the place were the service stack is deployed. Common platforms are Windows,
Apple OSX and Linux for operating systems. Additionally, there are platforms for
both mobile phones and software frameworks. The service consists of applications
which will help in the testing and deployment process (e.g. operating system, run

12

CHAPTER 2. CLOUD COMPUTING

time environment, etc.).

Since there are many different platforms available, choosing a PaaS provider could
be challenging. When choosing a provider, there are many factors to consider:

• Which frameworks and code languages are supported?

• How many applications can be created?

• What type of content is allowed?

• What kind of databases are supported?

• Does it support SSL? (Especially important with e-commerce services.)

These questions are important to ask when choosing a provider, to get the most
out of your application. Another topic of relevance is vendor lock-in, which means
that a customer is dependent of one vendor, thus unable to easily swap between
them. A standardization of APIs and platform technologies are necessary to avoid
this problem [14].

IaaS

As the name reveals, IaaS provide basic services such as data storage, databases
and virtual servers. The service models of cloud computing can be seen as a cloud
stack, where IaaS functions as this base layer. Without the base layer, the services
can not be deployed and executed.

IaaS has several advantages, cloud-bursting being one of them. This terms refer to
the process of moving tasks to the cloud when the compute resources are running
low. The economical benefits of cloud-bursting is significant, because no additional
investments for server equipment are necessary. Moreover, these servers normally
use on average only a very small amount of their computing capacity. However,
the process of off-loading tasks requires software which is able to reallocate pro-
cesses to an IaaS cloud. Another term frequently used within IaaS is elasticity,
which together with virtualization forms two important facets of IaaS. The elastic
infrastructure of an IaaS can be described with an example: A customer needs
to do statistical operations on a massive collection of data, which normally would

13

CHAPTER 2. CLOUD COMPUTING

take several weeks to process. By moving the collection to the cloud, the pro-
cessing time could be drastically decreased. Firstly, it is necessary to create an
instance of a server where the database software is implemented. This instance
is called an image, and allows the customer to run queries on the collection of
data. After deployment of the image, and putting the data into the database, it is
possible to duplicate the image as many times as necessary. As a consequence, the
data-processing can be run simultaneously on multiple instances. If a customer
finds the data-processing too slow, he/she could simply add more duplications of
the image. In other words, IaaS allows for easily configurations of resources for
unexpected peaks of traffic.

The second facet of IaaS is virtualization, which handles infrastructure manage-
ment tasks. This virtualization system runs beneath the operating system level.
IaaS is platform independent, and consists of a combination of software and hard-
ware resources. The software is low-level code and runs independently of the
operating system. The software is called a hypervisor, and is responsible for allo-
cating resources on demand. This process is called resource pooling, and makes
virtualization possible. Virtualization enables a multi-tenant environment, which
means that several customers can share the same infrastructure. In conclusion,
IaaS provides an infrastructure with dynamic resource allocation [15].

2.4 Drivers of cloud computing

Table 2.2 lists the advantages of cloud computing over traditional client/server
computing. Reduced complexity, costs and time to deploy a system are major
drivers towards the cloud.

Traditional IT Cloud computing
High upfront IT investmens for new
builds

Low upfront IT investmens; pay-per-
use model

High cost of reliable infrastructure Reliability is built into the cloud archi-
tecture

High complexity of IT environment Modular IT architecture environments
Complex infrastructure No infrastructure

Table 2.2: Comparison of traditional IT systems and cloud computing.

14

CHAPTER 2. CLOUD COMPUTING

2.4.1 Small initial investments and low ongoing costs

By utilizing a public cloud, no software, hardware or network equipment need to
be purchased. As a result, a company can reduce their expenses massively. The
pricing-model of the cloud is based on actual usage of the services. Due to the small
initial cost, the barrier to enter the cloud becomes smaller. Since most applications
are used only a small percentage of their lifetime, the pay-per-use model can be
cost efficient.

2.4.2 Scalability

In most traditional development projects, it is difficult to predict the required
computing resources. Usually, the developers need to calculate the requirements
in advance, which could be a challenging task. Therefore, many projects get too
much, or too little resources. These resources include storage, processing power
and memory requirements for both development, testing and deployment of a
project. With the flexibility of the cloud, the computing resources can be scaled
on demand. Previously, a company needed to make huge investments when scaling
their system. Moreover, an upgrade of the system meant downtime. However, by
utilizing the cloud, with its dynamic nature, a project can adapt to changes more
seamlessly.

2.4.3 Sustainability

The Cloud Service Providers (CSPs) have invested both money and thought into
providing a sustainable environment for their customers. Traditionally, companies
have struggled to maintain their services due to failures in the network, or sim-
ply adapting to rapid changes. CSPs, however, offer better resilience because of
clustering, and have limited points of failure.

15

CHAPTER 2. CLOUD COMPUTING

Chapter summary

In the recent years, cloud computing has been the major buzzword within IT. Many
have predicted that it will have a serious impact on our lives. The concept of the
cloud has been around for decades, however, it did not became publicly available
until Salesforce.com released their SaaS website in 1999. Well-known companies,
e.g. Google, IBM and Amazon, have brought cloud computing to a new level, thus
the barrier of moving to the cloud has become lower. The economical benefits,
together with the simplicity of development and testing, are major drivers for
adopting the cloud.

16

3
Cloud Security

The following chapter sheds light on the different aspects of cloud security. The in-
frastructure of the cloud is discussed from three points of views; network, host and
application level. Then, data security is evaluated using the CIA-triad1. Finally,
cloud-specific security threats are described.

3.1 Infrastructure security

This section will be discussed in the context of the SPI service models. A common
mistake is to assume that infrastructure security only is concerned with IaaS se-
curity. Although it is more relevant when using IaaS, the two other cloud service
models should also be considered. Another important facet of infrastructure secu-
rity is the cloud delivery models (e.g., private, public and hybrid). When utilizing
a public cloud, the responsibility of infrastructure security has transferred from
the organization to the CSP.

1 The CIA triad is concerned with the three core security principles of information security;
confidentiality, integrity and confidentiality

17

CHAPTER 3. CLOUD SECURITY

3.1.1 Network level

It is important to distinguish between private and public clouds, when considering
infrastructure security at the network level. There are no specific threats associated
with the topology of a private cloud. Thus an organization does not have to make
significant changes to their existing network topology. A private cloud has many
similarities to a secure private extranet, as seen in figure 3.1 on page 19. However,
a change in the network topology is required when moving to a public cloud. An
organization’s network topology may have to be adapted to work with the CSP’s
network topology. There are four main risks associated with this use-case:

• Secure (confidentiality and integrity) transfer of data between an organiza-
tion and its public cloud provider.

• Access control (authentication and authorization) when accessing public cloud
resources.

• Availability of an organization’s online resources from the public cloud provider.

• Domains replace the role of the traditional network zones and tiers.

Data integrity and confidentiality:

When using a public cloud, private data is exposed to the Internet and is located
in a shared environment controlled by a third-party. Amazon Web Services (AWS)
reported a security vulnerability in 2008, which is related to this topic. This vul-
nerability encompasses how Amazon constructed their digital signatures. These
digital signatures were used when making queries (REST2) to Amazon SimpleDB,
Amazon Elastic Compute Cloud (EC2) or Amazon Simple Queue Service (SQS)
over HTTP. Thus, customers using HTTP instead of HTTPS were affected by this
vulnerability.

2 REST (representational state transfer) is an approach for getting information content from
a website by reading a designated web page that contains an XML file that describes and
includes the desired content [16].

18

CHAPTER 3. CLOUD SECURITY

Desktops
(corporate end

users)

Internet

Router Router

Firewall + IDS Firewall + IDS

WAN
WAN

DMZ
Switch

Corporate
portal Switch

Security
managementSwitch

Intranet
Switch

Extranet
Switch

Business
partners

WAN

ISP1
ISP2

Servers (email,
web, e-

commerce,
content, virus)

IDS, firewall,
network, system,
PKI management

Servers (internal
web database,
applications,

backup

Servers (web, e-
commerce,
database)

IDS

IDS

IDSeth1, IDS

IDS/IPS/DLP

Figure 3.1: Generic network topology of private cloud computing [2] (modified
figure).

19

CHAPTER 3. CLOUD SECURITY

“If you are making Query (aka REST) requests to Amazon SimpleDB, to
Amazon Elastic Compute Cloud (EC2), or to Amazon Simple Queue Service
(SQS) over HTTP, and there is any way for an attacker to provide you with
data which you use to construct your request, switch to HTTPS or start using
AWS signature version 2 now.” [17]

Amazon forgot to implement collision-resistance, when inventing their digital sig-
nature scheme. It should be computationally infeasible to construct messages with
the exactly same digital signature. An adversary could take advantage of a colli-
sion by using a substitution attack, where the digital signature is moved from a
harmless message to the adversary’s message. However, Amazon released a new
digital signature version (AWS signature v2) which solved the problem.

Access control:

When moving resources to a public cloud, control and monitoring are adminis-
trated by a public cloud provider. Customers utilizing the public cloud, usually
have limited access to network-level logs and data, hence limited possibilities to do
forensic analysis. The lack of control could be problematic, especially if the CSP is
reusing IP addresses. In a public cloud, the public cloud providers often reassign
IP addresses instead of terminating them. IP addresses are a limited set, hence it
makes sense to reuse them, from a public cloud provider’s point of view. However,
from the customer’s point of view, this becomes a security issue. The IP address a
customer used for accessing resources on the public cloud, could then be reused by
adversaries. This problem is also applicable to the public cloud provider’s internal
network. Then, the resources of a customer could be reached internally by other
customers of the same public cloud. Therefore, the security features of public
cloud providers should be looked into before choosing whom to use.

Availability:

Network security has got an increased amount of attention the recent years, due
to adoption of cloud services. Nowadays, organizations rely on the security of
external network devices hosted by cloud providers. Border Gateway Protocol

20

CHAPTER 3. CLOUD SECURITY

(BGP)3 prefix hijacking (i.e. modification of network layer route announcements)
is an example of attack related to this use case. The prefix hijacking involves
announcing routes to other Autonomous Systems (AS)4 without permission. These
announcements usually occur by configuration mistakes, however, it still affects
the availability of the resources. An example of a failure which caused availability
problems, happened in February 2008 when Pakistan Telecom tried to deny access
to Youtube within Pakistan. The Pakistani government asked Pakistan Telecom
to block Youtube for the Pakistani population (which is estimated to be around
8.2 million Internet users), because of blasphemous content. It is not unusual that
countries block services for their population, another example is China’s blocking
of Google. However, Pakistan Telecom made two critical mistakes. They created
a dummy route, which rerouted all Youtube requests to a black hole. Announcing
the dummy route to their own telecommunication partner in Hong Kong (PCCW),
was the first mistake. PCCW was responsible for the second mistake, by accepting
the dummy route and relaying it to other ISPs around the world. Now, ISPs had
two conflicting routes to Youtube. The BGP protocol favors longer routes, thus
several ISPs chose the dummy route, leading to the Pakistan Telecom’s black hole.
As a result, millions of Internet users around the world were denied access to
Youtube. Although, prefix hijacking is a well-known a quite old security issue, it
is assumed to become increasingly relevant as the cloud continues to grow [20].

Another type of risk associated with availability is Domain Name System (DNS)5

attacks. In addition to vulnerabilities in the DNS protocol and in the implementa-
tions of DNS, there exist attacks known as poisoning attacks. DNS cache poisoning
attacks is an attack in which the server is tricked into accepting malicious informa-
tion. This attack has been known for many years, however recently new variants
of this attack has occurred.

3 BGP is a protocol for exchanging routing information between gateway hosts (each with its
own router) in a network of autonomous systems [18].

4 On the Internet, an AS is the unit of router policy, either a single network or a group of
networks that is controlled by a common network administrator (or group of administrators)
on behalf of a single administrative entity (such as a university, a business enterprise, or a
business division) [19].

5 The DNS is the way that Internet domain names are located and translated into Internet
Protocol addresses. A domain name is a meaningful and easy-to-remember “handle” for an
Internet address [21].

21

CHAPTER 3. CLOUD SECURITY

The last examples of attacks associated with availability are Denial of Service
(DoS) and Distributed DoS (DDoS) attacks. Anonymous, a group of hackers
which act on behalf of WikiLeaks6, are well known for their DDoS attacks against
those who refuse to do business with them. They have initiated DDoS attacks
against major companies, such as PayPal and Swiss Bank. The WikiLeaks site
itself has also been a target for this type of attack, shortly after they revealed
thousands of US embassy documents [22]. The DDoS attack hit WikiLeaks with
10Gbps of bogus data, which stopped their servers to work properly. The source
of this attack was unknown, however, this massive DDoS attack forced WikiLeaks
to change their service provider. They moved their site to Amazon’s EC2, because
this cloud would scale better in case of another DDoS attack. However, Amazon
decided they did not want to assist WikiLeaks with their work, thus refused them
to utilize their cloud [23].

New network model:

The traditional network model, consisting of network tiers and zones, is in public
IaaS and PaaS clouds replaced with domains. Usually, zones have been used to
differentiate intranet and extranet, or development and production. As a result,
the network traffic is separated, hence improved security. In the “old" model, the
zones and tiers had certain access rights associated with them. Therefore, only
people with specific roles could access the different zones and tiers. SaaS clouds
built on public IaaS or PaaS have similar characteristics.

In public cloud computing, “security groups”, “security domains” or “virtual data
centers” have replaced the role of zones and tiers. The new model uses logical
separation between tiers, which is less precise than the old model. In AWS, the
security groups feature allows VMs to access each other through a virtual firewall,
which filters traffic based on IP addresses, ports or packet types (e.g., UDP, TCP
or ICMP). A test domain and a production domain could be located on the same
server, hence the requirement of physical separation has disappeared. Furthermore,
the logical separation at the network level does not longer exist, and has been
replaced by logical separation at the host level. In other words, domains can run

6 WikiLeaks is a non-profit organization which publishes secret, classified information from
anonymous sources.

22

CHAPTER 3. CLOUD SECURITY

on the same physical server, separated by VM monitors (hypervisors).

Network-level mitigation:

Considering the previous sections, the network-level risks are not associated with
the different cloud service models, but rather the cloud delivery models. The
main risk factors are related to wether an organization choose to use private,
public or hybrid clouds, not IaaS, PaaS or SaaS. Choosing the private cloud is
the most secure option, however, also the most expensive. Using encryption on
data in transit, reduces the confidentiality risks. Additionally, by adding digital
signatures to the data makes it infeasible to tamper with it, hence integrity is
ensured. The availability problems at the network-level are difficult to mitigate
using public cloud computing. A solution is to use a private cloud which is internal
to an organization’s topology. However, the risks associated with availability are
not more relevant with cloud computing, than with traditional public and private
extranets.

3.1.2 Host level

The risks associated with the host level in cloud computing, are related to both the
cloud service models (SaaS, PaaS and IaaS) and the cloud delivery models (private,
public, hybrid and community). There exists cloud specific threats, however, these
are discussed in a later section. Public cloud computing utilizes virtualization
techniques to provide a dynamic environment, thus virtualization security becomes
an important factor. Virtualization security threats include VM escape7 , system
configuration drift and insider threats due to poor access control. Moreover, the
dynamic environment of the cloud leads to frequent changes of VM instances,
hence vulnerability and patching management becomes more challenging.

7 Virtual machine escape is an exploit in which the attacker runs code on a VM that allows an
operating system running within it to break out and interact directly with the hypervisor [24].

23

CHAPTER 3. CLOUD SECURITY

SaaS and PaaS host security:

Usually, CSPs hide information about their host platforms, operating systems
and security related processes. If hackers obtain this information, they could
exploit it and access the system. Thus, most CSPs have transparent security
mechanisms towards the customers. However, it is possible to get this information
through a Non-Disclosure Agreement (NDA)8 with the CSP. Both PaaS and SaaS
platforms hide information about the operating system from customers using a host
abstraction layer. A major difference between PaaS and SaaS is the accessibility
to this layer. SaaS users are unable to access the abstraction layer, while PaaS
users interact with it indirectly through the API. In conclusion, most of the issues
concerning SaaS and PaaS host security are handled by the various CSPs. Hence,
it is the customer’s responsibility to find out how the CSPs manage them.

IaaS host security:

The IaaS customers are responsible for securing their own cloud hosts, unlike
SaaS and PaaS customers. Normally, IaaS utilizes virtualization at the host layer.
Hence both virtualization software security and virtual server security are of im-
portance. Customers are able to create and destroy virtual instances, with the
help of virtualization software. This software is located between the hardware and
the virtual servers and is controlled solely by the CSP, thus customers are not able
to view or access it. The virtualization itself can be accomplished using any of the
virtualization models:

• OS-level virtualization (e.g., Solaris containers, BSD jails, Linux-VServer)

• Paravirtualization (a hybrid between the hardware version and versions of
Xen and VMware)

• Hardware-based virtualization (e.g., Xen, VMware, Microsoft Hyper-V)

Both hardware and OS virtualization allows for VMs to share resources in the
multi-tenant environment, without interfering with each other. The resources are
allocated by a program called the hypervisor, which is the OS of the virtualization

8 A NDA is a legal contract between at least two parties, where an outline of confidential
information is shared.

24

CHAPTER 3. CLOUD SECURITY

system. Each OS appears to have the host’s memory, processor and other resources
all by themselves. To achieve this, the hypervisor carefully allocates resources
to the VMs on demand. VMs are the main ingredient in IaaS, thus isolation
and security of each VM is critical, due to the shared nature of the cloud. In
figure 3.2, the virtualization system components are put into context. Each of
these components have has been subject to security vulnerabilities.

System
Administrators

Management
Console

Management
Server

Virtualization
Server

Guest VM
users

Virtualization System

Hardware

Hypervisor

Admin
VM

Guest
VM

Guest
VM

. . .

Virtual
Network

Figure 3.2: Virtualization System Components [3] (modified figure)

The customers of IaaS have full access to the guest VMs, which are isolated and
managed by the hypervisor. Therefore, customers are responsible for the securing
them. The EC2, a public IaaS, offers a web services API to its customers. This
API is used for management functions, thus allows for scalability of resources when
needed. Due to the dynamic lifetime of VMs, automated procedures need to be
implemented to provide seamless management. Moreover, access control of the
virtual instances is necessary, since the virtual server (Windows, Solaris or Linux)
may be reachable to anyone on the Internet. Usually, all ports to the virtual
instances are closed by the CSPs. Furthermore, the CSPs often recommend their

25

CHAPTER 3. CLOUD SECURITY

customers to utilize port 22 (SSH9) for administration of the virtual instances.
Nevertheless, host security threats in public IaaS still exist:

• Stealing keys used for access and manage hosts (e.g. SSH private keys)

• Vulnerabilities on unpatched services listening on standard ports (e.g., FTP)

• Hijacking of vulnerable accounts (e.g., weak passwords)

• Attacking systems without host firewalls

• Deployment of trojans in VMs

The paper “You are doing it wrong” by SecureNetwork [26], was presented at
the BlackHat conference in Europe 2011. This paper discusses problems with
the virtualization systems today, and proposes a new concept for security. The
traditional access control rules to VMs, should be replaced by a semantic to enforce
rules on “services”. Then apply these rules on services or logical items, instead of on
the physical system, as we see today. Furthermore, security should be controlled
by dedicated security teams. The paper introduces two new components to realize
their main goals; virtual cells (vCells) and a gatekeeper (vGatekeeper). VCells are
logical items which one can enforce rules on. The vGatekeeper is responsible for
enforcing the rules on the vCells, and should be able to do so even though the
vCells are compromised. As a result, the compromised vCell is isolated. Access to
vCells is only allowed through the vGatekeeper, in the same way as traffic flows
through a firewall. This suggested structure for a secure public IaaS is illustrated
in figure 3.3 on page 27.

9 Secure Shell (SSH), sometimes known as Secure Socket Shell, is a UNIX-based command
interface and protocol for securely getting access to a remote computer [25].

26

CHAPTER 3. CLOUD SECURITY

vCells

vGatekeeper

compromised vCell

customers

Access to the vCells is
only allowed through

the vGatekeeper

Isolate compromised
vCell from the other

healthy vCells

Figure 3.3: A new approach to a secure public IaaS structure

3.1.3 Application level

Application security is an important aspect of an organization’s total security pro-
gram. However, the implementation and design of this security could be a chal-
lenging task due to the huge variations in both platform and application type. Web
applications come in several variants, spanning from small single-user applications
to massive and complex multi-user e-commerce systems. An example of a web
application used by both small and large organizations are Content Management
Systems (CMS), which are discussed in detail in the following chapter. Another
challenging factor when securing web applications is the variety in web frameworks
used, e.g., PHP, .NET, Python, Java, etc. Adding the different cloud delivery and
service models to the mix, makes it even more complex. Since cloud applications
are accessed through a web browser (e.g., Google Chrome, Mozilla Firefox, In-
ternet Explorer, Safari, Opera), browser security needs to be integrated into the
application security program. In conclusion, the developers of cloud application
security face many challenges to ensure confidentiality, integrity and confidentiality
of data.

27

CHAPTER 3. CLOUD SECURITY

Security threats:

Web application vulnerabilities are found in both open source and custom built ap-
plications. The Open Web Application Security Project10 (OWASP) has made list
of the ten most critical web application security risks. This list with explanations
is included in appendix A on page 87. OWASP points out injections, Cross-Site
Scripting (XSS) and broken authentication and session management as the tree
most vulnerable risks. The IBM X-Force publishes a yearly report, considering the
trends and risks of the recent year. According to IBM X-Force, web application
vulnerabilities covers 49% of all disclosures in 2010 [3]. In figure B.1 in appendix
B on page 92, a graph based on data collected from hundreds of vulnerability-tests
done by IBM, shows the average number of vulnerabilities found in each threat-
category (e.g. XSS, Cross-Site Request Forgery (CSRF)). There are numbers
of conclusions to be drawn from this graph. For example, CSRF vulnerabilities
have increased drastically until 2009, where it reached a turning point. Further-
more, XSS vulnerabilities have followed an almost similar path as CSRF. This is
likely due to greater awareness of this risks recently, thus better detection tech-
niques have been implemented. Moreover, in 2010 improper use of SSL is most
likely to cause a vulnerability in web applications, according to IBM X-Force’s
report. Hackers are continuously scanning web applications to find vulnerabilities
to exploit. Numerous scanners are easily accessible on the Internet, thus finding
known vulnerabilities becomes frighteningly easy. The motivation for exploiting
vulnerabilities in web applications is widespread, including financial gain, convert-
ing trusted servers into malicious servers (i.e., creating botnets) or phising scams.
Traditionally, a combination of perimeter security, network- and host-based access
controls are used to provide a defense against attacks. A majority of the same
threats also apply to applications applied in the public cloud, thus many of the
same defense mechanisms are necessary. As a result, web applications deployed in
the public cloud, must implement security in every step of the Software Develop-
ment Life Cycle (SDLC), as illustrated in figure 3.4 on page 29.

Another threat to the application-level in public cloud systems, is DoS attacks.
This kind of attack could potentially disrupt a cloud service for a severe amount of
time. Usually, DoS attacks originate from large networks of compromised servers

10 OWASP is an open community dedicated to enabling organizations to develop, purchase, and
maintain applications that can be trusted [27].

28

CHAPTER 3. CLOUD SECURITY

(Secure)
release

(Secure)
coding

(Secure)
design

(Secure)
testing

Secure
features

Figure 3.4: The SDLC

(botnets), which simultaneously send massive amounts of bogus data to a victim
server. This kind of DoS attacks is called Distributed DoS (DDoS). This attack
forces the receiving server to handle enormous amounts of request, which causes
the services to become unavailable. However, customers utilizing the cloud can
better scale with such an attack, because of the elasticity of the cloud. This could
potentially be a costly procedure, since the cloud pricing-model is based on actual
usage. When attacked, the usage of resources (e.g. network bandwidth, CPU
power and storage) increases dramatically, as well does the costs. This variant
of the DoS attacks is known as Economical Denial of Sustainability (EDoS). It is
difficult to filter out traffic from DoS attacks, because they blend in with legitimate
traffic. Twitter was attacked by a DDoS attacks on August 2009, whereas the
whole service became unavailable for several hours. Figure 3.5 on page 30 shows
the status Twitter posted on their blog, shortly after the attack was initiated.. This
shows how powerful DoS attacks are, and with the adoption of cloud technologies,
new variants of DoS will appear. In the near future, we may be witness to malicious
accounts in IaaS or PaaS clouds, launching DDoS attacks with almost unlimited
compute resources available. This botnet of cloud-accounts is characterized as
dark clouds.

29

CHAPTER 3. CLOUD SECURITY

Figure 3.5: DDoS attack on Twitter [4]

SaaS application security:

In the SaaS model, the CSPs are responsible for securing the applications they
offer. The customers, however, are responsible of the operational control of their
application. This includes access and authentication control, which usually is pro-
vided as a web-based interface by the CSPs. Since the application security is
transparent to the customers, a NDA is often used to ensure the customers how
security is provided. The NDA encompasses architecture, design, development
process and testing methodic. Moreover, some customers hire third-party compa-
nies to perform penetration-testing on the applications. However, these tests are
not always allowed by the CSPs, and can be quite costly.

The access control and authentication management offered by the CSPs tend to be
too simplistic for many organizations. Weaknesses are discovered on these features
in many well-known CSPs. An example is when several weaknesses was found in
Google Docs, a popular SaaS text editor, in March 2009 [28]. Embedded images in
a document were still available after the document was deleted. Furthermore, if a
user removed other users from a shared document, they could regain access to the
same document without permission. This is just a couple of examples illustrating
the importance of security regarding SaaS applications. Many of the major SaaS
providers (e.g., Google, Salesforce.com and Microsoft) have invested in software
security as part of their SDLC. However, since no industry standard exist, it is
difficult to benchmark their security performances.

30

CHAPTER 3. CLOUD SECURITY

3.2 Data security

Data security is an important area, also when it comes to cloud computing. Many
levels of the infrastructure are involved in the various cloud service models, thus
several considerations must be taken. Additionally, the multi-tenant environment
of the cloud makes data security crucial. People often think of encryption tech-
niques when talking about data security. However, there are several aspects of this
topic besides encryption of data-at-rest, including:

• Data-in-transit

• Processing of data (multi-tenancy)

• Data lineage

• Data provenance

• Data remanence

The encryption algorithm is of importance considering data-in-transit. Usually,
only algorithms which are publicly accepted as strong are used. Furthermore, it
is important to utilize safe protocols, e.g., FTPS, HTTPS, Secure Copy (SCP).
These protocols are built to provide both confidentiality and integrity of the data.
However, when using traditional FTP and HTTP only confidentiality is achieved,
due to the use of symmetric stream ciphers.

There are many factors related to storing data securely. Encryption of data-at-rest
is usually possible (thus recommended) when using IaaS cloud services. However,
data used by an application running in the cloud is not encrypted. Since encryption
would prevent indexing and searching of the data, PaaS and SaaS cloud services
let data be unencrypted at some time during its lifecycle. Although this data is
encrypted during transit and at rest, they are vulnerable for a certain time if used
by an application. There is much research on the field of homomorphic encryption,
which basically is processing of data without decryption.

Another aspect of data security is multi-tenancy, which makes the cloud environ-
ment dynamic. The customer’s data is stored in a mixed manner, hence good

31

CHAPTER 3. CLOUD SECURITY

authorization controls are necessary. Normally, a tokenization-scheme is used to
tag and separate the data. However, exploits of application vulnerabilities could
be used to get unauthorized access.

How the data of an organization is stored and encrypted is of importance, as well
is the location of the data. A log-file containing metadata about where the data
has been, and by which application they have been used, could be important in
case of forensics or a failure. This concept is known as data-lineage. Data-lineage
is extremely time consuming, and there is yet no practical implementations of it.

Data-provenance is to proof both integrity and provenance of the data. Integrity
is to ensure the data has not been altered during transit by someone unauthorized.
Usually, integrity is provided through a checksum added to the data, which both
parties need to calculate using a secret key. To ensure provenance, the data needs
to be calculated correctly. Hence, this concept is critical in scientific and financial
equations, where the requirements for accuracy are especially important.

The last facet of data security is data-remanence, which is how to properly delete
and remove data from a system. CSPs tend not to mention data-remenance in
their security plans. For instance, if a customer of a CSP want to stop subscribing
to their service, good routines for deletion of the customer’s data need to be in
place. Moreover, how CPSs physically destroys storage devices, is of interest from
a customer’s perspective.

3.2.1 CSP data security

The CSPs capture and store massive amounts of metadata, which is used for both
auditing and security purposes. Log files from firewalls, Intrusion Prevention Sys-
tems (IPS) and router flow data, are examples of data stored from the network
level. Furthermore, system log files (host level) and application log data (applica-
tion level) are stored. The traditional CIA triad is used as a basis by the CSPs,
to ensure security of the data stored in the cloud. This triad has expanded during
its lifetime to include accountability and non-repudation11. Figure 3.6 on page 33

11 Non-repudation is the assurance that someone is unable to deny to have received certain data.

32

CHAPTER 3. CLOUD SECURITY

shows a typical cloud data storage architecture.

Cloud Service
Provider

Cloud
Storage
Servers

Users

Data flow

Security Message Flow

Optional Third
Party Auditor

Security Message
Flow

Security Message
Flow

Figure 3.6: Cloud data storage architecture [5] (modified figure)

Confidentiality

There are two main facets of confidentiality; access control and encryption. Access
control consists of both authentication and authorization. Usually, a CSP only uses
a password and username for its authentication scheme, often with no requirements
to password strength. Moreover, the authorization scheme provided by the CSPs
are often too generic, where user-authorization and administrator-authorization
are the only options. Many mid-size and large organizations need a more granular
and customizable access control scheme, where more levels of access are allowed.

The second facet of confidentiality is encryption of customer’s data. Whether

33

CHAPTER 3. CLOUD SECURITY

the stored data is encrypted or not, depends entirely on the various CSPs. The
Amazon S3, for example, does not provide encryption for customer’s data at-rest.
However, the customers could encrypt their data prior to uploading if they find
it necessary [29]. Dropbox12 , which utilize Amazon S3 for its storage, encrypts
the customer’s data with 256-bit AES13 [30]. Numerous encryption algorithms are
available, however, only those which are publicly approved by formal standards or
the cryptographic community should be used (e.g., AES, 3DES14). Since CSPs
store massive amounts of data, only symmetric encryption is practical because of its
speed and efficiency. Symmetric encryption is illustrated in figure 3.7 on page 35,
where a single secret key is used for both encryption and decryption. Both key size
and management are critical in symmetric encryption. Some attacks (e.g., brute
force) can be avoided by setting a proper key size. The recommended minimum key
size depends on the encryption algorithm, for example, 112-bit should be minimum
if 3DES is used. However, the length of the key is irrelevant if the key management
is poor.

The key management could be provided by the CSP, outsourced to a trusted
third party, or the customers handle their own keys. If the CSP provides the key
management, administer the whole set of customer’s keys is complex. Therefore,
some CSPs ease the management task by using a single key to encrypt all data
of a customer. Generally, an encryption key should only be used once to pro-
vide confidentiality, thus reuse of keys defaces security. In conclusion, the CSP
manage encryption and key management differently, hence it is important to read
the Service Level Agreement (SLA) thoroughly to understand how confidential-
ity is implemented. As an example, Dropbox has recently received a complaint
[31], where a security researcher accuses Dropbox of deceiving their customers
about their security program. Dropbox say they use 256-bit AES encryption when
storing customer’s data, thus keeping “your stuff safe”. However, they forgot to
mention that their employees have access to all encryption keys, hence are in theory

12 Dropbox is a widely popular STaaS, which helps their users upload and transparently back up
files.

13 The Advanced Encryption Standard (AES) is a block encryption algorithm, supporting key
sizes at 128, 192 and 256 bit.

14 Triple Data Encryption Standard (3DES) is DES used three times, because the key size in the
original DES (56 bit) was found too weak.

34

CHAPTER 3. CLOUD SECURITY

Symmetric
key

User A User B

plaintext plaintextciphertext

;?"#$
/%=$#

hello
world

hello
world

Figure 3.7: Symmetric encryption scheme

available to obtain data from any customer.

Integrity

Confidentiality does not imply integrity. Even though the data is encrypted during
transit, a receiver does not know that the data is unaltered. Usually, a Message
Authentication Code (MAC) is used to verify the integrity of data. The MAC is
calculated with a one-way hash function (e.g., SHA1, MD5) with the data and a
secret key as input, then appended to the data. The receiving part must calculate
the MAC with the same inputs, then compare the two MACs to verify the integrity.

The cloud is a dynamic environment, where the location of the data changes
rapidly. Therefore, traditional methods for integrity verification becomes imprac-
tical. Another concern is that the customer should be able to verify the integrity
of the data while it floats in the cloud. Moreover, verification of the data should
be done without the knowledge of the whole data set. These unique facets of cloud
computing makes integrity a major topic of research. Homomorphic encryption
has been considered as a solution. However, practical implementations are yet to
be developed. The paper “Data Integrity Proofs in Cloud Storage”[32] proposes

35

CHAPTER 3. CLOUD SECURITY

a scheme to provide Proof Of Retrievability (POR), i.e., proof of data integrity.
This paper focuses on efficiency and low computational costs, both at the client
and server side, which also leads to lower bandwidth consumption. However, this
scheme only works with static data sets, thus further development is needed to
handle the dynamic clouds.

Availability

The third asset of the CIA triad is availability, which has many risks associated
with it. However, none of these threats are cloud-specific. The first risk is network-
based attacks (e.g., DoS attacks), which is discussed in detail in subsection 3.1.1
on page 18. Another concern is how availability is provided by the CSPs. Usually,
a certain percentage of uptime per year is put in the SLA. Table 3.1 shows the
total downtime (HH:MM:SS) of typical availability percentages. Although a major
cloud vendor such as Amazon is able to scale with availability attacks, they have
suffered downtime caused by DDoS attacks. As a result, companies are not able
to put many “9s" in their SLA.

Availability Per day Per month Per year
99.999% 00:00:00:4 00:00:26 00:05:15
99.99% 00:00:08 00:04:22 00:52:35
99.9% 00:01:26 00:43:49 08:45:56
99% 00:14:23 07:18:17 87:39:29

Table 3.1: Percentage of uptime [2]

The facilities where the data is stored are also of importance considering avail-
ability. Which routines does the CSP have in case of a fire, or a power failure?
Does the CSP offer redundancy of all customer’s data? These are questions which
needs to be asked, when choosing a CSP. As an example, the Amazon S3 redun-
dantly stores the customer data in multiple locations. However, the PaaS and
SaaS services of Amazon does not offer backups of data used in running instances
[29].

36

CHAPTER 3. CLOUD SECURITY

3.3 Cloud insecurity

Cloud computing is an immature technology, which is constantly developing. Equally,
cloud security is in its early age. Luckily, it seems that security has been a priority
from the birth of cloud computing. However, the tremendous pursuit of moving
services to the cloud, has caused many vulnerabilities to be discovered. Hackers
know that cloud computing is in the beginning-phase, they try to find clever ways
to exploit the immaturity.

3.3.1 Cloud-specific threats

• Intrusion detection – In a traditional IT architecture, a firewall can be
thought of as a front door, which controls the access to the entire system.
In cloud computing, however, security is much more granular. Dedicated
firewalls for individual servers can be provided, typically at an extra cost.
Additionally, several security applications to protect agains well-known at-
tacks (e.g., SQL injection) are available.

• Data location – This is another area where cloud computing faces unique
challenges. Often, the location of the data is unknown, depending on the
service provider. Usually, this will not cause any problems. However, the
data is bound to the legal jurisdictions of the country it is located in. If
a customer’s data is located in Russia, and there is a dispute on the part
of the provider, accessing it could be a challenging task. The access of the
data would then be controlled by russian law, thus making the process time-
consuming and expensive. Many CSPs guarantee where the data is physically
located, thus eliminates this security risk.

• Regulatory compliance – One of the most challenging topics related to
cloud computing is achieving compliance with well-known security standards,
e.g. Payment Card Industry Data Security Standard (PCI/DSS), HIPAA,
Sarbanes-Oxley and Graham-Leach-Bliley. These standards were developed
when one-server/one-application deployments were the norm, and the servers
were controlled by the entity running the application. Thus, problems arise
when adapting these standards into the multi-tenant environments of cloud

37

CHAPTER 3. CLOUD SECURITY

computing [33].

3.3.2 Poisoning of VMs

Traditionally, dedicated stand-alone machines have been used in most organiza-
tions. Administrators and IT-personnel have been in charge of buying network
equipment (e.g., servers), installed the necessary software, then monitored and
maintained the equipment. However, with cloud computing VMs are used in a
multi-tenant environment to run an organization’s application. The administra-
tor is allowed to configure the OS of a VM in any way he/she wants. Moreover,
the administrator can run any desired code on the VM. Configurations made on
one single VM do not affect other VMs in the same environment, because of the
isolation mechanisms in PaaS. Although a VM is protected from other VMs, it
could be compromised by malicious users of the same VM. An attacker could alter
the VM settings, or modify the application running, to gain access to an organi-
zation’s data running on that cloud. An organization is in charge of preventing
unauthorized access by carefully configuring the VM.

The integrity of each VM is of importance, therefore it is crucial to know where it
came from, and who configured it. As an example, the Amazon EC2 gives their
customers three choices of VM selection; a fully configured Amazon Machine Image
(AMI), a pool of community-shared AMIs, or providing their own AMI. The latter
option is the simplest way of ensuring the requirements of an organization, however,
it requires knowledge of AMI development. Choosing the Amazon-configured AMI
gives an assurance of a clean VM, without hidden malicious code. If one choose to
utilize a community-shared AMI, all trust is put on the creator. An adversary could
easily hide code in an AMI, e.g., a rootkit15. Amazon is aware of this problem,
and has a warning on their webpage, which informs the users about the possibility
of malicious AMIs. Furthermore, they have also included a launch confirmation
process, which helps users detect malicious AMIs [35]:

1. Check the SSH authorized keys file. The only key in the file should be the

15 A rootkit is a collection of tools (programs) that enable administrator-level access to a com-
puter or computer network [34].

38

CHAPTER 3. CLOUD SECURITY

key you used to launch the AMI.

2. Check open ports and running services.

3. Change the root password if it is not randomized on startup.

4. Check if SSH allows root password logins.

5. Check whether there are any other user accounts that might allow backdoor
entry to your instance. Accounts with super user privileges are particularly
dangerous.

6. Verify that all cron jobs are legitimate.

Even though a developer of an AMI has good intentions, he could accidentally
introduce security-breaches, e.g., using an outdated library or software package,
or reusing private keys. In conclusion, AMIs could intentionally or unintentionally
be poisoned. Both situations could introduce vulnerabilities, which an adversary
could exploit.

3.3.3 Attacks against the management console

Normally, each CSP provides a web-interface to their customer for cloud-management.
The purpose of this management console is to have a centralized, user-friendly
environment towards their customers. Regardless of their good intentions, man-
agement consoles introduce vulnerabilities to the cloud. If an attacker gets access
to the management console, he could easily change the environment of the ap-
plication running. Although this application is protected against attacks and the
VM is isolated, unauthorized access to the management console could still cause
considerable damage.

Most PaaS cloud providers offer a web-interface as a management console on the
domain of their organization. As a consequence, all vulnerabilities on this domain
could possibly affect the console. Google has realized this fact, hence their man-
agement console of their Google App Engine has very limited functionality. If a
customer wants to modify or upload code to an application, he/she has to use a
python script in the command line. Although this is not particularly user-friendly,

39

CHAPTER 3. CLOUD SECURITY

it prevents damage caused by a vulnerabilities on the Google.com domain.

Unlike the Google App Engine, the Amazon EC2 gathers all management function-
alities in the console. Thus, vulnerabilities found on Amazon.com domain could
disturb the management console. For instance, if an adversary finds a XSS vulner-
ability, he/she could exploit this for an attack towards the EC2-console. Another
concern regarding the management consoles is weak access-management. Usually,
a username and password is all that is required to gain access to the console. An
attacker could capture these fields with e.g. XSS, SQL injection or phising, then
get access to the EC2-instances of the compromised account. Moreover, unautho-
rized access to the management console means that the attacker gets all necessary
information (e.g., X.509 certificates) he needs to access the running instances of
that specific user. In other words, one single XSS vulnerability found anywhere on
the domain, could lead to compromised secret keys and certificates. CRSF attacks
are also a threat to the management console. If an adversary gets a user to click
on a malicious link, while logged into the management console, he/she could get
unauthorized access. This type of attack is discussed in detail in section 4.3.1 on
page 51.

Chapter summary

Cloud security has been a priority since the birth of the cloud. However, due
to immaturity of the technology, adversaries have managed to disrupt services
even at major CSPs. They try to take advantage of the rapid adoption of the
cloud, while security still is under development. Perhaps the most difficult attacks
to withstand is the DDoS attack, which can cause even a highly elastic CSP to
stop functioning. Traditional threats to IT system does not magically disappear
with cloud services, hence the CIA-triad is still used to evaluate security. However,
ensuring confidentiality, integrity and availability in the cloud are challenging tasks.
Since the cloud is constantly changing, it is difficult to verify the integrity of the
data. Moreover, proofing integrity should be done without knowing the whole
data-set. It is also necessary to improve the key management schemes found in
many CSPs. In addition to the well-known vulnerabilities from IT systems, new
threats emerge to the cloud (e.g., VM poisoning, eDOS). In the emerging future, we
may encounter dark clouds, which is DDoS attacks originating from clouds. This

40

CHAPTER 3. CLOUD SECURITY

attack could have enormous impact, because of the cloud’s scalability. However,
the benefits of moving services to the cloud are too severe for organizations to be
frightened by plausible future threats. By better understanding how an attacker
thinks, developers can enhance security, and to a greater degree withstand attacks.

41

42

4
Open source Content

Management Systems (CMS)

In this chapter, CMSs are described in detail. Then, a comparison between open
and closed source CMSs are made. Moreover, the security of CMSs is analyzed.
Finally, common attacks towards these systems are discussed.

4.1 What is a CMS?

A CMS is a software which manages the contents (e.g., text, pictures, videos, music,
documents) on a web site. One major advantage of the CMS is that it requires
minimal amount of technical skill to publish a professional site. With CMS, an
organization could easily develop a professional web site, without outsourcing the
project. Many of the popular CMSs do not depend on programming skills, which
makes it attractive to a broader public. However, having a web site requires
maintenance and updates. From a security point of view, these two factors are
critical to prevent vulnerabilities. Since many CMS web sites are published by
people without IT-background, they are an attractive target for hackers.

All CMSs require a web host for their services. The web host provides and main-
tains the servers, where the CMSs are deployed. With the increasing popularity
of cloud computing, some CSPs have looked into the CMS marked. As a conse-
quence, certain open source CMSs are available as PaaS on CSPs. In other words,
these CSPs have performed the installation and setup of the CMS on their cloud

43

CHAPTER 4. OPEN SOURCE CONTENT MANAGEMENT SYSTEMS (CMS)

platform, thus offer a ready-to-use system. Then the customers are able to mod-
ify and enhance their site as they want, unaware of which mechanisms that run
beneath the surface. Simplicity and transparency are tempting factors for most
customers. Moreover, the cloud is a dynamic environment, which let the users
scale their services on demand. Therefore, organizations are able to expand their
services without buying new, expensive network equipment.

Most CMS have a front-end and a back-end. The front-end is what people see
when they visit the web site, while the back-end is where the site’s configurations
are made. A password and username are normally required to access the back-
end. Alterations to the design, publishing of articles, installation of modules,
are examples of configurations to a CMS site. The content of articles is usually
formatted using a rich text editor, which creates a XML, HTML or XHTML
markup. Then the text is rendered using style sheets (e.g., CSS) to personalize the
output. The administrator can set the access-rights for each user, hence controlling
what they are able to view and modify on the web site.

The three most widely used open source CMSs are; Drupal, Joomla! and Word-
Press [36]. Especially WordPress has become increasingly favored, due to its sim-
plicity. More professional users would perhaps prefer Joomla! or Drupal, because
they offer more flexibility. However, Joomla! is also quite straightforward to install
and maintain. WordPress is considered the most popular CMS, with Joomla! not
far behind, as seen in figure 4.1 on page 45, where the popularity of the three ma-
jor CMSs are compared. This figure also shows that WordPress seized the throne
from Joomla!, as the most popular CMS, in 2009. The figure is constructed using
numbers from Google’s “Insight for Search1 ”.

1 Google’s Insight for search is a service which measures the amount of search queries on specified
items, then normalizes them to a scale from 0-100 [37].

44

CHAPTER 4. OPEN SOURCE CONTENT MANAGEMENT SYSTEMS (CMS)

0

20

40

60

80

100

2005 2006 2007 2008 2009 2010 2011
Year

Drupal
Joomla!
Wordpress

Figure 4.1: CMS trends (2005–2011)

4.2 Open source vs. closed source

An open source CMS means that everyone is able to look into how the system is
constructured. The code is available to anyone, hence both developers and adver-
saries can make use of it. The main advantage of open source, besides the cost,
is that there is a community of developers constantly working to maintain and
upgrade the system. Another benefit is that it is customizable, hence an organi-
zation could implement features which separate them from the majority. Usually,
it is straightforward to find documentation, online guides and “how-tos” on devel-
opment and design. The open source CMS consist of a set of basic functionalities,
called the “core”. However, generally there exist several modules and add-ons to
enhance the web site. These extensions are normally made by third-parties, hence

45

CHAPTER 4. OPEN SOURCE CONTENT MANAGEMENT SYSTEMS (CMS)

it is necessary to ensure the security of the code. Most of the vulnerabilities related
to CMSs are due to poorly coded, or malicious third-party extensions.

The main drawback of open source is the availability for anyone to find out how
the system is built. Adversaries can take their time analyzing every part of the
“core", trying to find vulnerabilities to exploit. If an exploit is found, this could
possibly affect every system using the same code. Normally, a fix is created shortly
after a vulnerability is reported. As a consequence, the customers are responsible
to update regularly, hence avoid known threats. A good community is critical
when choosing an open source CMS, since vulnerabilities eventually will be found.
Normally, an open source CMS also has a forum, which is an important source of
knowledge. Any questions regarding the CMS can be posted there, and they are
usually answered quickly.

The closed source CMS is licensed, and the source code is not available. How-
ever, a closed source CMS often equates with better security. With open source
CMSs, the developers spend much time securing the code. If a security-breach is
found in a closed source CMS, the provider of the software is usually more than
happy to assist. Since the software is licensed, the barrier to entry is higher. The
main advantage of open source is perhaps the main drawback of the closed source,
namely the community support. The numerous amount of developers contributing
on every aspect of the CMS is valuable. Hence, the popularity of the closed source
CMSs are limited [38].

4.3 Security in open source CMSs

In software systems, vulnerabilities are caused by weaknesses at either the design
or implementation level. Although a vulnerability exists, it is not necessarily
exploited by adversaries. There are many tools available on the Internet, which
automates such attacks. As a result, script-kiddies2 use these tools and causes

2 A person, normally someone who is not technologically sophisticated, who randomly seeks out
a specific weakness over the Internet in order to gain root access to a system without really
understanding what it is he/she is exploiting because the weakness was discovered by someone
else [39].

46

CHAPTER 4. OPEN SOURCE CONTENT MANAGEMENT SYSTEMS (CMS)

disruptions on vulnerable web sites. Since CMSs are often used by non-technical
users, they tend to be attractive targets. Therefore, CMSs are a major source
of vulnerabilities. Moreover, since the source code is available for everyone, the
attackers are aware of how the system works. Open source CMS operate in a
hostile environment, and the threats include:

• Data manipulation: Manipulation compromises the integrity of the data.
Common attacks in this category are SQL injections and parameter manip-
ulation.

• Accessing confidential data: In this attack, an adversary gain unautho-
rized access to confidential data by utilizing SQL injections or XSS attacks.

• Phising: An attacker gathers confidential data (e.g., bank account informa-
tion, passwords) by sending emails to people, pretending to be a service they
use. For instance, an adversary sends a phising-mail to a customer of eBay,
requesting his username and password for their site’s maintenance. Phising
could also be accomplished by utilizing XSS on a vulnerable CMS, to place
malicious input forms and gather confidential data. Phising is illustrated in
figure 4.2 on page 48.

• Code execution: If a CMS does not carefully validate input, adversaries
could exploit this to execute code. If an input field assume graphic-files, only
files with certain extensions and sizes should be allowed (e.g, .jpg, .png). This
attack could possibly harm all applications running on the server.

The CIA-triad, as discussed in section 3.2.1 on page 32, is a good measurement
for security. Implementing the three facets of the triad, could prevent numerous
attacks. However, because the environment of an open source CMS is quite com-
plex, especially in the cloud, the developers face many challenges. For instance,
ensuring availability is troublesome because of the powerful DDoS attacks seen
today.

Open source CMSs utilize several technologies. Certain technologies are common
for most CMSs, e.g., MySQL, HTML, XML and CSS. Furthermore, there are
four main technologies, in which the various CMSs fall under; PHP, Java, Perl
and Python. An illustration of these technologies and related open source CMSs,
are shown in figure 4.3 on page 49. To add more complexity to an open source

47

CHAPTER 4. OPEN SOURCE CONTENT MANAGEMENT SYSTEMS (CMS)

Phisher

Victim Web
Server

Victim Users

Compromises a
host and installs a
phish web site and

mass-mailer

sends out phishing email

victim clicks a phish-URL

phish web site is viewed

victim submits information

Figure 4.2: How a phising-attack is executed

CMS’s security program, these technologies also have spesific vulnerabilities. For
example, PHP handles global variables differently than, e.g., Python.

4.3.1 Common attacks towards CMSs

Web applications in general are tempting targets, because of several known vul-
nerabilities. OWASP has made a list over the top 10 web applications threats in
2010, which is listed in appendix A on page 87. Moreover, if the application is
running on the cloud, more possible threats could be added to the equation. Since,
the open source CMSs live in an unfriendly neighborhood, it is necessary to take
precautions.

48

CHAPTER 4. OPEN SOURCE CONTENT MANAGEMENT SYSTEMS (CMS)

PHP Python

Java

Perl

HTML

MySQLCSS

XMLJoomla!

Drupal

Mambo
PHPnuke

MMbase

OpenCMS
Webman

Plone

ZMS

WebGUI
Mason

Metadot Portal-Server

Figure 4.3: Open source CMSs and related technologies [6] (modified figure)

Numerous attacks have similar characteristics. Thus adversaries makes use of
attack patterns, which are generalizations of the necessary steps, to perform a
successful attack. They consist of several phases of discovery and exploitation.
Furthermore, the patterns are usually made available for other adversaries, so
they likewise can carry out similar attacks. The pattern itself contains useful
information, such as resources needed, time consumption and techniques. If the
attack is successful, the adversary may obtain confidential customer data. If the
open source CMS is an e-commerce web site, then the customer data could hold
valuable credit-card information. Another critical consequence of an attack, is
the loss of confidence to the service. If a CMS fails to provide the adequate
security, their reputation could be harmed. As a result, customers could move to
a competitive service. An attacker could also damage the reputation of a CMS by
altering the company’s website, e.g., if a security vulnerability allows the attacker
to add bogus content to the site.

SQL injections

SQL injections are improperly filtered input which is sent to the SQL server.
This input could be SQL queries, which could possibly access sensitive data. An
adversary could use escape characters to include SQL queries in an input field. For

49

CHAPTER 4. OPEN SOURCE CONTENT MANAGEMENT SYSTEMS (CMS)

instance, if a malicious user append ’1’=’1’ to an input field, this could lead to
unwanted disclosure of data. Since the boolean expression OR ’1’=’1’ is always
true, the query in which the expressions is appended would also be allowed. The
adversary could exploit this, by requesting sensitive data in a query, e.g., usernames
and passwords, as shown in the SQL-query below:

SELECT username,password FROM users WHERE name = ’John Doe’

OR ’1’=’1’;

The various technologies used by open source CMSs have mechanisms to prevent
SQL injections. These mechanisms examine input strings to prevent exploits of es-
cape characters. For example, PHP uses the function mysql_escape_string()
to mask all kinds of special characters.

Cross-site Scripting (XSS)

This vulnerability occurs when an application takes untrusted input data and sends
it to the web browser, without proper escaping and validating. An adversary could
exploit this vulnerability by including script code (e.g., Javascript) on a web page.
Proper mechanisms for always treating output as text, are necessary to prevent
script code from being executed in a browser. Since applications uses different
browser side interpreters (e.g., ActiveX, Flash, Silverlight), detection of XSS is
challenging. Consider the following HTML snippet:

(String)page+="<input name=’creditcard’ type=’text’ value="’

+request.getParameter("CC")+"’>";

The attacker could modify the CC parameter in the web browser to include the
following script:

’><script>document.location=’http://www.attacker.com/cgi-bin

/cookie.cgi?foo=’+document.cookie</script>’

This script would forward the victim to the attacker’s malicious web site, hence
allows the attacker to hijack the victim’s current session [40].

50

CHAPTER 4. OPEN SOURCE CONTENT MANAGEMENT SYSTEMS (CMS)

Cross-site Forgery Requests (CRSF)

A CSRF is an attack where a user performs unwanted actions on a vulnerable
application, in which he is currently authenticated in. An adversary could trick a
user to load a page with a malicious request, then inherit the victim’s identity and
privileges to perform actions on the vulnerable application. The application would
think that the requests made by the adversary, actually are legitimate request from
the victim. Social engineering, e.g., sending a link via email or chat, could fool the
victim to open the “evil” web site. Links and forms that involves state-changing
functions are the main targets for CSRF attacks, hence special attention must be
given to these. As an example, consider the following state-changing request:

http://domain.com/vulnerableApp/transferMoney?amount=1500

&account=123456789

This request does not contain any secrets, however, an adversary could exploit this
request with a CSRF attack. The adversary wants to transfer the money to his
own account, instead of the victim’s account. Hence, the adversary embeds the
following image request on various web sites under his control:

<img src="http://domain.com/vulnerableApp/transferMoney?

amount=1500&account=attackerAccount#" width="0" height="0"/>

If the victim visits one of the malicious web sites, while still is authenticated at
domain.com, the attacker could forge request that includes the victim’s session
info. As a result, the vulnerable application authorizes the malicious request,
because it appears to be the victim.

The easiest way to prevent CSRF attacks is to include an unpredictable token in
the body or URL of every HTTP requests. These token should be unique to each
user session, or unique to each request. A good practice is to include the token in
a hidden field. Then the token is sent in the body of the HTTP request, thus not
exposed in the URL. The token could also be included in the URL. However, then
it could be compromised due to exposure to adversaries [40].

51

CHAPTER 4. OPEN SOURCE CONTENT MANAGEMENT SYSTEMS (CMS)

Chapter summary

CMSs are widely popular services, especially open source CMSs, because of their
low cost and simplicity. There are several additional advantages of choosing an
open source CMS, e.g., good documentation, online-guides, community of devel-
opers. However, security is a big concern. Nowadays, many open source CMSs
offer their services as a PaaS. Therefore, security threats to the cloud should also
be considered. Adversaries have found several ways of exploiting vulnerabilities,
particularly on the application level (e.g., CSRF, SQL injections, XSS). The huge
amount of non-technical CMS-users make these systems attractive targets. How-
ever, most of the attacks could easily be prevented by simple means, e.g., proper
validation and escaping of input. Usually, the vulnerabilities are not found in the
“core” of the CMSs, thus examining extensions and plugins for vulnerabilities are
of importance.

52

5
Joomla! Security

This chapter gives an overview of Joomla! and its functionalities. The latest up-
grade of Joomla! is discussed from different perspectives. Then, the framework
and some security related functions are investigated, i.e., how the Joomla! “core"
is protected against attacks. After that, the strength and weaknesses of exten-
sions are looked into. Finally, how Joomla! can benefit from cloud computing is
examined.

5.1 About Joomla!

“Joomla is an award-winning content management system (CMS), which
enables you to build websites and powerful online applications. Many aspects,
including its ease-of-use and extensibility, have made Joomla the most popu-
lar website software available. Best of all, Joomla is an open source solution
that is freely available to everyone.” [7]

Joomla! is one of the most widely used CMSs today and powers 2.7% of the entire
web [7]. The first version (Joomla! 1.0.0) was released in September 2005. Well-
known companies that uses Joomla! include Harvard University, Linux, Citibank
and IKEA. Joomla! is an open source CMS, hence it has no license costs. How-
ever, Joomla! requires a service provider to be deployed on. There are numerous
of CSPs which offer Joomla! as a PaaS, e.g., Cloudaccess.net, Uptimehost.com,
Hoodukucloud.com, etc. These CSPs have pre-installed Joomla! and maintains
the system transparently. Furthermore, the cloud can scale on demand, allowing

53

CHAPTER 5. JOOMLA! SECURITY

the Joomla! website to grow without having to buy expensive network equipment.
Although the installation procedure of Joomla! is quite straightforward, many
customers want to solely focus on the contents of their website.

The reason for Joomla’s popularity is manifold. However, the simplicity of build-
ing a professional working website, is a major factor. There are thousands of
professionally designed templates to Joomla!, which are installed with a few clicks.
With a little knowledge of CSS and HTML, customers could easily customize the
templates themselves. Furthermore, the Joomla! community is another attractive
asset. The community provides help with every aspect of the system, e.g., secu-
rity related questions, documentations, development guides. The strength of the
community is of importance when choosing an open source CMS.

Joomla! allows the users to expand their system easily. Its framework consists of
three layers, as seen in figure 5.1 on page 55; framework, application and exten-
sion. This framework is based on object-oriented design, which makes the “core"
very agile. As a consequence, customers can easily expand and customize their
system with modules, templates and components. The Joomla! community has
built around 7000 extentions [41], which is installed in a few seconds. These exten-
sions include forums, shopping carts, online storage, photo galleries, to mention a
few. However, poorly developed extensions could lead to security vulnerabilities.
Moreover, malicious users can hide evil code in their extensions, which could com-
promise a system. Although extensions could introduce certain security risks, some
of them are actually built to prevent them. Several extensions are security related,
e.g., enhance authentication, access control and site security. For instance, if a
customer wants increased authentication control, he could install a CAPTCHA1

module.

The access control in Joomla! gives control of who is allowed to view specific
content, and who is able to edit or publish content. The latest version of Joomla!
(version 1.6) offers a more granular access control than the prior versions. For
example, sports-journalists could be allowed to only publish content in the sports-
section of a newspaper.

1 A CAPTCHA is a program that protects websites against bots by generating and grading
tests that humans can pass, but current computer programs cannot [42].

54

CHAPTER 5. JOOMLA! SECURITY

The Joomla! platform consists of a front-end and a back-end system. The front-
end is how the website is viewed to the public, whereas the back-end provides an
interface for customizing the system. Publishing of articles, installation of exten-
sions and access control, are some examples of assignments accomplished in the
back-end. The intuiative interface of the back end makes it easy for non-technical
users to perform advanced customizations and enhancements to the website.

Modules

Libraries

Components Templates

Application

Framework Plugins

EXTENTION LAYER

APPLICATION LAYER

FRAMEWORK LAYER

Figure 5.1: The Joomla! framework [7] (modified figure)

5.1.1 What is new in Joomla! 1.6?

The latest release of Joomla! (version 1.6) arrived on January 10th 2011 [43]. This
update had many improvements over the previous version, e.g., enhanced Access
Control List (ACL), SEO2 and back-end. A significant feature of Joomla! 1.6
is that is does not work with “old" web host. As a minimum requirement, the
servers must run PHP 5.2 and MySQL 5.0. Additionally, extensions made for
earlier versions of Joomla! are not compatible with version 1.6., due to a different
architecture. As a result, users of Joomla! 1.6 avoid web hosts with outdated
servers and the corresponding vulnerabilities. Moreover, developers of version
1.6 extensions can benefit from the new features, e.g., granular ACL, automatic
updating and bundling of components.

2 Search Engine Optimization (SEO) is to tweak a website to rank high in search engine returns.
These tweaks is done by optimizing certain elements in the HTML code of each page, e.g.,
meta-keywords.

55

CHAPTER 5. JOOMLA! SECURITY

Designer

From a designer’s perspective, the new release of Joomla! introduces many at-
tractive features. HTML5 is supported, and every output files are written in
XHTML3 1.0 strict. Therefore, the designer is able to utilize the latest of tech-
nologies to create dynamic websites. Furthermore, it is easier to modify specific
pages, or just alter a certain module within a page. Moreover, it is possible to add
meta-keywords and meta-descriptions to elements, to improve SEO. This feature
has received increasing amount of attention in the recent years, and organizations
even hire dedicated personnel to enhance their SEO. Since websites appearing on
the first page on a search engine’s result list are more likely to be visited, the
economical benefits are significant. Another feature included in version 1.6 is au-
tomatic updates of extensions, hence the users can keep up to date with just a
click of a button. Previously, the users had to manually download updates from
the developer’s websites. As a consequence, many users had outdated extensions
with exploitable vulnerabilities.

Developer

A new feature for developers in Joomla! 1.6 is the possibility to bundle com-
ponents with the corresponding language files. Then the developers can create
bundled packages, which is installed with one click. Moreover, if the developer
adds the automatic update functionality, the users can easily keep track with the
latest updates. Because of a different architecture than earlier, extensions made
to previous versions of Joomla! are not compatible with version 1.6. However,
this ensures that extensions utilize the new features of version 1.6, hence provides
a more secure and user-friendly environment towards the customers. Outdated,
vulnerable add-ons have probably been the main cause of security risks in Joomla!.
However, making it more intuitive for users to keep their add-ons up to date, can
drastically reduce this security-threat. Additionally, developers can implement a
more granular ACL, thus providing a more secure environment.

3 XHTML is a family of current and future document types and modules that reproduce, subset,
and extend HTML 4. XHTML family document types are XML based, and ultimately are
designed to work in conjunction with XML-based user agents [44]

56

CHAPTER 5. JOOMLA! SECURITY

Administrator

Joomla! 1.6 provides a more user-friendly interface to the back-end, where sim-
plicity clearly is a focus. However, the most noteworthy upgrade is the new ACL,
which gives a range of opportunities [45]:

• Unlimited user groups

• A user can be assigned to multiple groups.

• Any combination of groups can be assigned to any access level.

• Access permissions can be set at multiple levels in the hierarchy; site, com-
ponent, category and object.

• Permissions can be inherited from parent groups and parent categories for
faster user management.

The granularity the new ACL presents, allows for more flexibility for mid-size to
large organizations. For instance, a specific user group is only allowed to publish
articles within a certain site. Hence, this group can only view their site in the
back-end.

In conclusion, the newest version of Joomla! introduces important features for
the designer, developer and the administrator. The most noteworthy features are
enhanced ACL and automatic extension updates. Furthermore, the source code
itself is reduced by over 30% compared to the previous version. Although the core
has shrunk, the total amount of comments are higher than before. This makes it
more intuiative for developers to understand the code, thus easier to customize.
Since extensions prior to version 1.6 are not compatible with the new architecture,
developers can utilize the new features in their extensions. However, Joomla! still
has no validation of extensions published in their community. As a consequence,
vulnerable extensions are still available, thus a major threat to Joomla! users.
These insecure extensions could either be caused by poor code, or by malicious
users. Developers are encouraged to use the Joomla! API, which has several
advantages concerning security (e.g., functions for input validation, prevention
of forgeries, etc.). Moreover, users of Joomla! 1.6 can more easily update their
extensions, hence preventing vulnerabilities to be left open. Anyhow, vulnerable
extensions do not magically disappear with Joomla! 1.6.

57

CHAPTER 5. JOOMLA! SECURITY

5.2 How security is provided in the “core"

The heart of Joomla! is the “core", which is an alias for the source code. Since
Joomla! is an open source CMS, anyone can download the source code and learn
how security is implemented. Therefore, it is necessary that the “core" is properly
coded, without vulnerabilities to exploit. Although Joomla! 1.6 introduces several
new functionalities, the “core" is significantly reduced in number of code-lines. The
Joomla! framework contains a number of security related functions, e.g., input
validation, password encryption. Proper validation and filtering mechanisms are
of importance, since the majority of attacks are XSS attacks and SQL injections.

5.2.1 Protection against common attacks

The Joomla! “core" provides various functions for input filtering. Some of these
functions are based on blacklisting or whitelisting, as shown in listing 5.1. This
shows various HTML tags which will be filtered out at input fields or URL pa-
rameters. However, adversaries are not restricted to write the HTML tags exactly
as they are written in the blacklist. The HTML tag “body" could be written in
several ways, e.g., “bOdy", “b o DY", etc., thus an attacker is able to trick the this
blacklist.

Listing 5.1: Blacklisting

1 /**

2 * @var array A list of the default blacklisted tags.

3 * @since 1.5

4 */

5 var $tagBlacklist = array (’applet’, ’body’, ’bgsound’,’base’, ’

basefont’, ’embed’, ’frame’, ’frameset’, ’head’,’html’, ’id’,

’iframe’, ’ilayer’, ’layer’, ’link’, ’meta’,’name’, ’object’,

’script’, ’style’, ’title’, ’xml’);

6

7

8 /**

9 * @var array A list of the default blacklisted tag attributes

10 * @since 1.5

11 */

58

CHAPTER 5. JOOMLA! SECURITY

12 var $attrBlacklist = array (’action’, ’background’, ’codebase’, ’

dynsrc’, ’lowsrc’);

Another interesting issue is found in the same source code file, regarding XSS
prevention. As listing 5.2 shows, the framework assumes that HTML tags used in
XSS attacks always starts with a ‘<’. However, this is not always true. As a fact,
many XSS cheat-sheets4 suggest to use other characters. Hence, adversaries are
able to go undetected through the filtering mechanisms, when inserting their XSS
attack. Instead of using the ‘<’ character, they can simply start the XSS string
with, e.g., "><script>alert(document.cookie)</script> [46].

Listing 5.2: Filter mechanism

1 // Is there a tag? If so it will certainly start with a ’<’

2 $tagOpen_start = strpos($source, ’<’);

One of the most common attacks against web applications is SQL injections (see
subsection 4.3.1 on page 49). This type of attack takes advantage of poorly filtered
input, which allows the attacker to inject malicious queries to the database. Thus,
it is important to correctly escape and quote SQL statements when they are con-
structed. Numeric fields, however, should not be quoted when using MySQL. They
should be typecasted as either integers or floats. The Joomla! framework provides
a function for escaping strings; JDatabase::getEscaped(), which can be seen
in listing 5.3. This method utilizes two PHP functions; mysql_real_escape_
string() and addcslashes(). The first PHP function escapes SQL-sensitive
characters (\x00, \n, \r, \, ’, ", and \x1a) [47], while the second function escapes
user-defined characters. The Joomla! framework use this latter function escape
the percentage-symbol, which is used in some SQL statements (e.g., LIKE).

Listing 5.3: Escaping of strings

1 /**

2 * Get a database escaped string

3 * @return string

4 */

5 public function getEscaped($text, $extra = false)

6 {

4 A XSS cheat-sheet is a collection of methologies to create XSS attacks.

59

CHAPTER 5. JOOMLA! SECURITY

7 $result = mysql_real_escape_string($text, $this->_connection)

;

8 if ($extra) {

9 $result = addcslashes($result, ’%_’);

10 }

11 return $result;

12 }

Joomla! has included a set of functions for protection against CSRF attacks. As
mentioned in subsection 4.3.1 on page 50, CSRF attacks are basically hijacking of
a user’s session. A simple way of avoiding these attacks is to utilize tokens, which
are randomly generated strings, i.e., a unique key. The Joomla! framework has a
function for creating tokens, as seen in listing 5.4. This function generates a 32
characters string, consisting of hexadecimal characters. The string, concatenated
with the session-name, is then encrypted using a MD5 hash function. When a form
is sent, a token is included in a hidden field, and a copy of the token is placed into
the user’s session. Hence, it is possible to validate the token using the function,
JRequest::checkToken(), as shown in listing 5.5 on page 60. These functions
are illustrated in figure 5.2 on page 62. Moreover, this function redirects a user to
the site’s front page if the session has expired.

Listing 5.4: Creation of tokens

1 /**

2 * Create a token-string

3 * @return string generated token

4 */

5 protected function _createToken($length = 32)

6 {

7 static $chars = ’0123456789abcdef’;

8 $max = strlen($chars) - 1;

9 $token = ’’;

10 $name = session_name();

11 for ($i = 0; $i < $length; ++$i) {

12 $token .= $chars[(rand(0, $max))];

13 }

14 return md5($token.$name);

15 }

60

CHAPTER 5. JOOMLA! SECURITY

Listing 5.5: Function which checks for a form token in the request

1 /**

2 * Checks for a form token in the request.

3 * Use in conjuction with JHtml::_(’form.token’).

4 * @return boolean True if found and valid, false otherwise.

5 */

6 public static function checkToken($method = ’post’)

7 {

8 $token = JUtility::getToken();

9 if (!self::getVar($token, ’’, $method, ’alnum’))

10 {

11 $session = JFactory::getSession();

12 if ($session->isNew()) {

13 // Redirect to login screen.

14 $app = JFactory::getApplication();

15 $return = JRoute::_(’index.php’);

16 $app->redirect($return, JText::_(’

JLIB_ENVIRONMENT_SESSION_EXPIRED’));

17 $app->close();

18 } else {

19 return false;

20 }

21 } else {

22 return true;

23 }

24 }

5.2.2 Passwords

A Joomla! website requires a password for both users and the administrator. At
the front end, certain components utilize username and passwords. Similarly, the
back end has a login-module to authenticate the users. The Joomla! framework has
a password generating function, to help users constructing passwords. However,
this generator only uses letters and digits. To strengthen the password, symbols
should be added to mix. The length of the password is also of importance and
should be a minimum of eight characters, which the generator fulfills. Adversaries
use dictionaries to brute force passwords, hence words should not be used. These

61

CHAPTER 5. JOOMLA! SECURITY

token is sent
with a form in
a hidden field

User

random_string
32 hex chars

session_name

XOR
MD5

token

copy of token

Joomla! framework
JRequest::checkToken()

JUtility::getToken()

JRequest::_createToken()

Figure 5.2: How tokens are used by the Joomla! framwork

dictionary-attacks utilize various dictionaries with certain “rules" applied, e.g.,
append a digit after the words, first letter is a capital letter, etc. As a result,
adversaries are able to crack relatively strong passwords. However, these type of
attacks are extremely time consuming. If a password consists of randomly chosen
digits, letters and symbols, and is at least eight characters in length, it is unfeasible
to crack it.

Weak passwords are a major threat to users of any Internet service. Surprisingly
often, “1234" or “password" are used as passwords. Since many users have such
passwords, it is critical to hide the login-page at the back-end. However, every
Joomla! website have its back-end in “example.com/administrator" directory. As
a consequence, it is easy for an attacker to start cracking the login module. Some
extensions add an extra layer of security, by requesting a password to access the
back-end. Furthermore, it is possible to change the name of this folder (e.g.,
“/admin-user", “/4dmInI$tr4t0r") to make it more difficult for adversaries to find.

62

CHAPTER 5. JOOMLA! SECURITY

The Joomla! framework uses MD5 to hash passwords in their database. The MD5
encryption algorithm is 128-bit, usually represented by 32 hexadecimal characters,
and was developed by Ron Rivest in 1992 (see appendix F for more details on how
the MD5 hash algorithm works). Although MD5 is one of the most widely used
cryptographic hash function, it has been proven weak against several attacks (e.g.,
collision attacks) [48]. Furthermore, every cryptographic hash function suffers from
the birthday paradox. This principle gets its name from the surprising fact that in
a group of 23 people, the probability of two persons having the exact same birthday
is greater than 50% [49]. Therefore, hash-algorithms are designed to produce an
output twice the size of the cipher-key they are intended to be used with. For
instance, to find a collision in a 128-bit MD5 hash would take on average 264 hash
operations. To avoid this attack, the output length of the hash function must be
large enough, thus the attack becomes computational infeasible. When using the
128-bit MD5 hash function, additional enhancements (e.g. salt5) are needed to
provide sufficient security.

The passwords stored in the Joomla! database are hashed with a 32 character
salt, which is appended to the password string. The salt is a randomly gener-
ated 32 character string, consisting of hexadecimal characters. Since the final
encrypted password consists of two separate variables, it becomes more difficult
for an attacker to crack it. As seen in listing 5.6, the default encryption algo-
rithm is MD5-hex, however, other algorithms are also available (e.g., SHA, DES,
Blowfish). Some password systems require to prepend the type of encryption used.
Therefore, as seen in listing 5.6, a $show_encrypt option is available.

Listing 5.6: Password encryption

1 /**

2 * Formats a password using the current encryption.

3 */

4 public static function getCryptedPassword($plaintext, $salt = ’’,

$encryption = ’md5-hex’, $show_encrypt = false)

5 {

6 // Get the salt to use.

7 $salt = JUserHelper::getSalt($encryption, $salt, $plaintext);

8

5 A salt is a random string added to a cryptographic function to enhance security.

63

CHAPTER 5. JOOMLA! SECURITY

9 // Encrypt the password.

10 switch ($encryption)

11 {

12

13 // ...other encryption cases

14

15 case ’md5-hex’ :

16 default :

17 $encrypted = ($salt) ? md5($plaintext.$salt) : md5(

$plaintext);

18

19 return ($show_encrypt) ? ’{MD5}’.$encrypted : $encrypted;

20 }

21 }

5.3 Choose your extensions wisely

The huge variety of extensions is an advantegous feature of Joomla!, compared to
its competitors. On joomla.org, there is an extensive list of extensions, divided into
several categories. Over 7500 extensions are registered at this point (May 2011)
[50]. Examples of extensions are CAPTCHA modules, social media components,
forums, shopping carts, etc. Anyone could create and publish extensions, which
leads to a security risk. Joomla! has no mechanisms for validating each extension,
thus poorly coded add-ons are difficult to discover. A worst-case scenario is if a
malicious user hide evil code (e.g., root-kit) inside a seemingly harmless extension.
The majority of vulnerabilities in Joomla! is found in extensions. Even though it
introduces a great risk, it is also one of the drivers to choose this CMS.

Joomla! has its own security team, which constantly searches for vulnerabilities
or possible security issues with every aspect of this CMS. If a vulnerability is
found in an extension, usually an an update with a security-fix is quickly released.
Adversaries are able to make smart searches, where they find Joomla! websites
with specific vulnerable components. For instance, if a certain forum-component
is vulnerable against a XSS attack, an adversary could automate an attack against
numerous websites with this component installed. Hence, it is critical to keep all

64

CHAPTER 5. JOOMLA! SECURITY

extensions up to date. With the new automatic updating mechanism in Joomla!
1.6, this problem could be drastically reduced. However, having to many extensions
could complicate the task. Therefore, extensions which are seldom used, should be
removed. Joomla! provides a vulnerability list, which is available as a RSS feed.
This helps users to quickly react to potential vulnerable components, if they have
one of them installed.

5.4 The cloud and Joomla!

One of the main reasons to the popularity of Joomla!, is that even non-technical
customers could easily create and publish professional customized websites. Cloud
computing makes Joomla! even more easy to use. Usually, the customers were
required to deploy Joomla! on a host, using Apache web server and a MySQL
database. This could be a frustrating task for non-technical customers. However,
Joomla! can be utilized as a PaaS. Hence, the CSP has already installed and
configured Joomla!, and offers a pool of resources to their customers. Moreover,
the CSP normally provides good security mechanisms (e.g., firewall, backups).
With a click of a button, customers are able to start creating their own professional
website, in a scaleable and safe environment. Many CSPs have realized that open
source CMSs are perfect for the cloud environment, and launched them as PaaS.
In figure 5.3 on page 66, an architecture of a CSP which offers Joomla! as a PaaS
is illustrated.

On Joomla!’s official website, there is an advertisement to a CSP, which offer
Joomla! as a PaaS. It is also possible to try this service freely for 30 days. Thus,
customers can start creating their website, and find out if the CMS fulfills their
demands. The payment model in the cloud is usually based on a monthly or a
yearly fee. The scalability of the Joomla! instances depends entirely on the infras-
tructure of the CSP. For example, Cloudaccess.net provides unlimited bandwidth
using a 10Gbps fiber ring as backbone. Furthermore, the memory capacity is also
unlimited. The variables deciding the monthly cost are storage and CPU capacity.
However, since there are no software, hardware or maintenance cost, most compa-
nies can significantly reduce their expenses by moving to the cloud. Moreover, the
CSPs often manage the software updates on their platform. Hence, the users can
solely focus on their website, instead of, e.g., server configurations, troubleshooting

65

CHAPTER 5. JOOMLA! SECURITY

FirewallCustomers
Joomla!

instances

Fiber ring

Shared resources

Cloud Service Provider

Backup
Servers

Figure 5.3: A typical architecture of a CSP, which offers Joomla! as a PaaS

virtualization problems.

The CSPs have a SLA, which encompasses various aspects of QoS, e.g., availability.
Availability is a critical asset, which is difficult to guarantee with small margins.
Due to the increase of DoS attacks, CSPs have problems with providing several
nines in their SLAs. For instance, Cloudaccess.net states in their SLA that [51]:

“If a third party not associated with CloudAccess.net initiates a “Denial
of Service" or other form of disabling attack against our Joomla! clusters
or major portions of our network, CloudAccess.net will do everything in its
power to stop the attack, but cannot guarantee a resolution time.”

This citation is listed under network and power exclusions, which is beyond the
scope of the CSP, thus is not a part of the SLA. In other words, if a major DDoS
attacks disrupt their services for a significant amount of time, it is not considered
as downtime in terms of the SLA.

Commonly, the CSPs offer a web interface as a management console towards their
customers. This console is used to manage the environment, in which the appli-
cation is running. As discussed in section 3.3.3 on page 39, these management

66

CHAPTER 5. JOOMLA! SECURITY

consoles are highly attractive targets for adversaries. Since most of these web
interfaces operate on the same domain as its PaaS service provider, all vulnera-
bilities on the domain also affects the management console. In other words, one
single XSS vulnerability on the domain could cause a compromised management
console. Another concern regarding the management console, is weak passwords.
If an attacker is able to launch a successful dictionary attack, or brute force attack,
he could easily compromise the secret keys and certificates of that user. Although
the Joomla! framework has protective functions for CSRF attacks, they only ap-
ply to the Joomla! back-end. It depends on the various CSPs, whether they have
implemented the proper security mechanisms in their code or not.

Chapter summary

Joomla! has been, and still is, one of the most popular open source CMSs on the
marked. It is difficult to pinpoint the main reason for its wide adoption, however,
simplicity and ease of use may have something to do with it. Furthermore, this
PHP-based CMS has a community of developers, which are willing to answer to
any questions regarding Joomla!. The numerous amount of extensions is also a
driver to choose this CMS. With just a click of a button, one is able to install a
component that enhances the functionality of the website (e.g., forum, shopping
cart). However, these third-party extensions introduce some security concerns.
Joomla! does not validate each and every extension which is available on their
website, hence poorly coded and malicious add-ons are easily accessible for the
users.

The latest version of Joomla! has some significant improvements, including a more
granular ACL, automatic updates and a more user-friendly back-end. Extensions
are now updated with a single click in the back-end, which makes it easier for
the customers be up to date. However, vulnerabilities do not magically disappear
with this new release. Even though the Joomla! core provides several mechanisms
to prevent attacks, adversaries still manage to exploit vulnerabilities on Joomla!
websites. A majority of these attacks are due to vulnerabilities in poorly coded
extensions, and the lack of maintenance of websites. Moreover, weak passwords
also leaves many websites vulnerable to attacks.

67

CHAPTER 5. JOOMLA! SECURITY

Cloud computing makes open source CMSs even more straightforward to use, since
Joomla! already is deployed on their servers. Furthermore, the maintenance and
updating of software are managed by the CSP. The website on a cloud can easily
scale, because of the pool of resources. This is an attractive solution to many
customers, since the cost of getting a working professional site is minimal. The
cloud introduce some new security issues (e.g,. management console attacks, VM
poisoning). However, the CSPs provide firewalls and sometimes dedicated security
software which makes attacks more difficult. Nonetheless, DoS attacks are difficult
to prevent, thus the availability on the website is affected. DDoS attacks have
become increasingly powerful during the last few years, and with the elasticity of
the cloud, they have the potential to become even more extensive.

68

6
Vulnerability testing on

Joomla!

In this chapter, various methods of vulnerability testing are analyzed on a Joomla!
setup. The tools (BlindElephant, Nmap, OWASP Joomla! vulnerability scanner),
used in these tests are described in detail. Furthermore, the results and their
significance are discussed.

6.1 The Joomla! test-setup

The vulnerability testing was performed on a Joomla! 1.5 PaaS website. The goal
of this investigation was not to find specific version’s vulnerabilities, however, give
a brief overview of security on default Joomla! websites. The tools utilized in the
analysis, are publicly available as open source. Hopefully, this will give an insight
in how an attacker thinks, and how he/she might extract valuable information
from websites. The tests performed on the Joomla! websites, includes penetration
testing (pen-tests), fingerprinting and injection-scanners.

On the official homepage of Joomla!, two options for getting a fully working demo
of Joomla! are available. The first option is a pre-configured virtual application,
which can be run locally. The second option, is a pre-configured Joomla! 1.5
web-site deployed on a PaaS. This CSP gives a 30-days trial to explore the func-
tionalities of Joomla!, without any costs. The analysis done in this chapter is based
on the PaaS option with a default setup, i.e., no configurations were made and no

69

CHAPTER 6. VULNERABILITY TESTING ON JOOMLA!

extensions were installed. This CSP protects the data center with a Fortinet1 fire-
wall. Moreover, the backbone consists of a fiber ring (10Gbps), hence can manage
vast amounts of data traffic.

6.2 Available tools

There are several open source tools which can be used for vulnerability testing on
CMS systems. These tools have different objectives, e.g., find SQL injection vul-
nerabilities, searching for open ports, fingerprinting software versions, etc. How-
ever, they have one thing in common; they are useful for both developers and
adversaries.

6.2.1 Visual fingerprinting

From an attacker’s perspective, it is valuable to find out what system is used on
a website. There are various ways to determine whether a website is running
Joomla!, or not. The easiest way is to append ?tp=1 to the site’s URL as seen
below, which triggers the modules debugging mode. This is a clear indication of
that the website is running Joomla!.

http://example.net/index.html?tp=1

Another way of detecting a Joomla! site, is to use the query parameter; tmpl. By
using the offline template (i.e., the template used when a Joomla! site is down),
one can force a Joomla! website to appear offline.

http://example.net/index.html?tmpl=offline

It is possible, however, to prevent adversaries from getting this information. By
adding a set of rules to the .htaccess2 file, these attempts will end up in a

1 http://www.fortinet.com/solutions/firewall.html

2 The purpose of .htaccess files is to provide a means to configure Apache for users who cannot
modify the main configuration file [52].

70

CHAPTER 6. VULNERABILITY TESTING ON JOOMLA!

404-page3 [53], as seen in the code-snippet below.

RewriteCond %QUERY_STRING (&|%3F)1,1 tp=[OR]

RewriteCond %QUERY_STRING (&|%3F)1,1 template=[OR]

RewriteCond %QUERY_STRING (&|%3F)1,1 tmpl=[NC]

RewriteRule ^(.*)$ - [R=404,L]

6.2.2 BlindElephant Web Application Fingerprinter

The BlindElephant Web Application Fingerprinter [8] tries to discover the version
of a web application, by looking at the static files of that application. These
static files are often located at the same places, thus it is possible to determine
the web application version by comparing them to precomputed hashes of every
static files from all releases. Since comparison of hashes are fast operations, the
BlindElephant use low bandwidth and can be used for automated operations.

When installing Joomla! on a web host, static files and folders are automatically
deployed. These files include language files, images, CSS and scripts. Each version
of Joomla! has a slightly different setup of static resources, than the others. As a
result, using the BlindElephant tool could give a relatively accurate guess of what
version of Joomla! is running. In figure 6.1 on page 72, the fingerprinting process
of static files in Joomla! is illustrated. One way to prevent similar fingerprinters,
is to remove or rename the static resources (e.g., stock images). In appendix C on
page 93, the BlindElephant tool is used on the test website running in the cloud.
The tool was able to recognize the correct version of Joomla!, simply by searching
for static files. An adversary can use this information, to get a picture of which
vulnerabilities that apply to the system. Hence, the adversary could easily find
possible exploits.

3 A 404-page (not found error message) is a HTTP standard response when a server was unable
to locate the requested page.

71

CHAPTER 6. VULNERABILITY TESTING ON JOOMLA!

xx/language/en-GB/en-GB.ini
/language/en-GB/en-GB.com_content.ini
/htaccess.txt
/language/en-GB/en-GB.com_contact.ini
/media/system/js/validate.js
/templates/rhuk_milkyway/css/template.css
/language/en-GB/en-GB.com_weblinks.ini
/configuration.php-dist
/language/en-GB/en-GB.com_users.ini
/media/system/js/caption.js
/language/en-GB/en-GB.mod_search.ini
/language/xx-XX/xx-XX.ini
/language/xx-XX/xx-XX.com_users.ini
/language/xx-XX/xx-XX.com_content.ini
/language/en-GB/en-GB.mod_breadcrumbs.ini

GET /.../HTTP/1.1

200 OK

403 404

Possible versions

most probable version
is found in the

intersection

Known static Joomla! files

Target server

Figure 6.1: Static file fingerprinting on Joomla! [8] (modified figure)

6.2.3 Nmap – Network mapping tool

Nmap [54] is an open source tool for analyzing network security. It was originally
designed to scan large networks, however, is also suitable for a single host. This
tool use raw IP-packets to find useful information about network hosts and their
services (name and version), operating systems (OS versions), firewalls, among

72

CHAPTER 6. VULNERABILITY TESTING ON JOOMLA!

others. From an attacker’s point of view, this tool could discover open ports with
potentially vulnerable services running. On the other hand, system administrators
can use Nmap to search for unauthorized servers on their network. Figure 6.2 and
figure 6.3 on page 74 illustrate how Nmap uses SYN packets to retrieve information
about open or closed ports.

As seen in appendix D on page 95, Nmap was used to find valuable information
about the host’ system, on the test website. With just two simple scans, the
information in table 6.1 was retrieved. Furthermore, the operating system was
detected to be Linux 2.6.9–2.6.27. An adversary could do a quick search on “ex-
ploits lighttpd 1.4.28", and probably get interesting results. This is a very simple
example, however, it shows the significance of hiding sensitive information. For
instance, many 404-errors reveals information about the server’s software. Nmap
is an extremely powerful tool if used correctly, and is quite easy to get started
with.

Port State Service Version
21/tcp open ftp ProFTPD
22/tcp open ssh OpenSSH 5.5 (protocol 2.0)
70/tcp open http lighttpd 1.4.28
80/tcp open http Apache httpd 2.2.3 (CloudLinux)

Table 6.1: System information retrieved from the Joomla! setup, using Nmap

Target server
Nmap user

SYN (request port 22 connection)

SYN/ACK (it's open, go ahead!)

RST (No, forget it!)

Figure 6.2: SYN-scan of open port 22

6.2.4 OWASP Joomla! vulnearbility scanner

The third tool used to analyze the Joomla! test site is the OWASP Joomla!
vulnerability scanner. The features of this open source project include:

73

CHAPTER 6. VULNERABILITY TESTING ON JOOMLA!

Target server
Nmap user

SYN (request port 113 connection)

RST (Port is closed!)

Figure 6.3: SYN-scan of closed port 113

• Exact version probing

• Common Joomla! firewall detection

• Searching through known vulnerabilities of Joomla and its components

This scanner can find known vulnerabilities such as XSS, SQL injections and file
inclusions to name a few. Moreover, this tool is updated regularly, since new
vulnerabilities are discovered continuously. Developers and system administrators
can utilize this vulnerability scanner to find security flaws. This pen-test allows
developers and system administrators to get ahead of the attackers. However,
this scanner does not encompass every facet of vulnerabilities. For example, the
vulnerability database used by the tool, does not include vulnerabilities whereas
the exploitation method is unknown. Hence, one should not blindly trust that a
system is secure if no vulnerabilities are found with this scanner.

The OWASP Joomla! vulnerability scanner found six vulnerabilities on the test
website, as seen in appendix E on page 99. Since the Joomla! website was pre-
configured with default settings and no extensions installed, few components were
exploitable. The first vulnerability detected, was that the file htaccess.txt was
not renamed. Since many hosts provide their own .htaccess file, Joomla! has
given another file-ending to it. Then it is possible for the system administrator
to chose which one to use. However, the htaccess.txt file is readable, thus
adversaries can gather information about the system. The second vulnerability on
the test system was an unprotected administrator directory, which is discussed in
section 5.2.2 on page 61. Furthermore, the scanner found a CSRF vulnerability in
the same directory. An adversary can trick a user to click on a malicious link, while
logged into the back-end of a Joomla! site. Then the adversary can forge requests

74

CHAPTER 6. VULNERABILITY TESTING ON JOOMLA!

to the system, pretending to be the correct user. The vulnerability scanner also
discovered a security issue regarding a core plugin, and two vulnerable components.

Chapter summary

The intention of these tests were to give a brief overview of how an attacker can
get information from a website running Joomla!. Even though a pre-configured
Joomla! setup from a CSP was used, several potential vulnerabilities were discov-
ered. With the help of the BlindElephant tool, the exact version of Joomla! was
determined. Furthermore, Nmap provided detailed information about the system,
including software version numbers and open ports. Then the Joomla! vulnerabil-
ity scanner analyzed the test website, and found six exploitable vulnerabilities. By
utilizing freely available open source tools, sensitive information about a system
can easily be collected. These tools should be used as a preventive mechanism, thus
staying one step in front of the attackers. Another conclusion to be drawn from the
test is to hide system information, e.g., with proper error handling mechanisms.

75

76

7
Conclusion

As seen throughout this report, cloud computing could be the next evolution in
the history of computing. Although there still are several questions which need
to be answered regarding cloud security, cloud computing has made a serious
impact in the world of technology. Organizations have found many interesting
ways to make use of the possibilities of the cloud. Popular cloud services, e.g.,
Dropbox, SoundCloud1 and GoogleDocs, have made people open their eyes to
this new technology. Furthermore, companies invest in enormous data-centers to
provide cloud services. Cloud computing is becoming a utility, where an Internet
connection is the only necessity to access a world of services and resources.

Both customers and organizations can benefit from this technology. The reduction
in maintenance and operational costs are significant. These tasks are the responsi-
bility of the CSPs, hence transparent to the customers. As a result, organizations
are not depended of their own dedicated operational personnel. Furthermore, the
elasticity of the cloud allows for an organization to easily expand their service. Up-
grading a system has previously meant buying new expensive network equipment,
however, the cloud scales on demand.

Although the cloud seems like a God-given technology, there are some concerns
regarding security. Cloud security has received a vast amount of attention, and
not without reason. In addition to the traditional web application vulnerabilities
(e.g. XSS, CSRF, SQL injections), new threats emerges. The multi-tenancy and

1 Amazon’s SoundCloud is a platform which allows users to easily upload and share their music.

77

CHAPTER 7. CONCLUSION

shared environment introduce cloud-specific security issues. Moreover, dark clouds
could possibly cause serious harm to any service. The elasticity of the cloud could
be exploited by malicious users to perform tremendous DoS attacks. If the power
of several clouds could be combined, in a similar way as bot-nets, DDoS attacks
would seem unstoppable.

CMSs are attractive targets for adversaries, due to their many potential vulnera-
bilities. With some knowledge of information security, a majority of these threats
could be avoided. However, a vast amount of CMS users have limited technical
background, thus their websites are easily exploited. CMSs allow customers to
build professional websites, without the need of writing a single line of code. They
can simply add the contents they need, and customize the design with pre-built
templates. Moreover, they can enhance the functionality of their site by installing
components. The CMS analyzed in this report (Joomla!), has a huge collection of
extensions. These extensions introduce risks to the users, since they are made by
third-party developers. Joomla! does not validate the security of these extensions,
hence they could obtain malicious code or simply be poorly coded. If an extension
is vulnerable, adversaries could exploit them to compromise a web site, or access
sensitive information. Chapter 6.1 on page 69, illustrates how facile it is to extract
valuable information about a system, only by using open source tools. Moreover,
adversaries are able to automate attacks against websites with vulnerable compo-
nents, which shows how important it is to have them updated. Every facet of a
system need to be up to date. Cloud computing makes this task a bit simpler, since
the CSP transparently updates software used on their cloud. Furthermore, some
CMSs (e.g., Joomla!) offer automatic updates of extensions within the back-end
of the system.

It is difficult to predict what the future would bring to cloud computing. However,
it is likely that more and more services move to the cloud. Amazon, Apple, Google
and Microsoft are rapidly developing cloud services, hence they would have a
significance on people’s everyday life. CMSs have started their migration to the
cloud, and it is probable that their customers would do the same. However, CMSs
must perform some cleaver moves to be considered secure. Since most of the
vulnerabilities found in CMSs are the customers’s responsibility, features which
makes it more effortless to keep up to date, are of importance. Additionally, CMSs
could provide more intuitive APIs to the developers, i.e. make it more simple to

78

CHAPTER 7. CONCLUSION

add preventive functions against common attacks.

79

80

Bibliography

[1] Centre for the Protection of National Infrastructure (CPNI). Infor-
mation Security Briefing - Cloud Computing, March 2010.

[2] Tim Mather, Subra Kumaraswamy and Shahed Latif. Cloud Security and
Privacy - An Enterprise Perspective on Risks and Compliance, volume First Edition.
O’Reilly, September 2009.

[3] IBM X-Force. 2010 Trend and Risk Report.
http://www-935.ibm.com/services/us/iss/xforce/trendreports/,

March 2011. Accessed 17.03.2011.

[4] Twitter.com. Ongoing denial-of-service attack.
http://status.twitter.com/post/157191978/ongoing-denial-of-

service-attack, August, 6th 2009. Accessed 28.04.2011.

[5] Cong Wang and Qian Wang and Kui Ren and Wenjing Lou. Ensuring data
storage security in Cloud Computing. In Quality of Service, 2009. IWQoS. 17th
International Workshop on, pages 1 –9, July 2009.

[6] Meike, M. and Sametinger, J. and Wiesauer, A. Security in Open Source Web
Content Management Systems. Security Privacy, IEEE, 7(4):44 –51, July-August
2009.

[7] Joomla.org. What is Joomla?
http://www.joomla.org/about-joomla.html. Accessed 24.01.2011.

[8] Patric Thomas. BlindElephant Web Application Fingerprinter.
http://blindelephant.sourceforge.net/. Accessed 04.04.2011.

[9] Nicholas G Carr. The Big Switch: Rewiring the World, from Edison to Google.
http://www.nicholasgcarr.com/bigswitch/interview.shtml, 2008.

Accessed 01.03.2011.

81

http://www-935.ibm.com/services/us/iss/xforce/trendreports/
http://status.twitter.com/post/157191978/ongoing-denial-of-service-attack
http://status.twitter.com/post/157191978/ongoing-denial-of-service-attack
http://www.joomla.org/about-joomla.html
http://blindelephant.sourceforge.net/
http://www.nicholasgcarr.com/bigswitch/interview.shtml

BIBLIOGRAPHY

[10] The Cloud Security Alliance (CSA).
https://cloudsecurityalliance.org/. Accessed 07.02.2011.

[11] CloudTweaks - Sourya Biswas. A History of Cloud Computing.
http://www.cloudtweaks.com/2011/02/a-history-of-cloud-

computing/, February 2011. Accessed 01.03.2011.

[12] The New York Times - Steve Lohr. Google and I.B.M. Join in ‘Cloud
Computing’ Research.
http://www.nytimes.com/2007/10/08/technology/08cloud.html?

_r=3&ex=1349496000&en=92627f0f65ea0d75&ei=5090&partner=

rssuserland&emc=rss&oref=slogin, October 2007. Accessed 03.03.2011.

[13] IBM Corporation, Dan Orlando. Cloud computing service models, Part3:
Software as a service.
http://www.ibm.com/developerworks/cloud/library/cl-

cloudservicemodels/index.html, January 2011. Accessed 07.02.2011.

[14] IBM Corporation, Dan Orlando. Cloud computing service models, Part2:
Platform as a service.
http://www.ibm.com/developerworks/cloud/library/cl-

cloudservicemodels/index.html, January 2011. Accessed 07.02.2011.

[15] IBM Corporation, Dan Orlando. Cloud computing service models, Part1:
Infrastructure as a service.
http://www.ibm.com/developerworks/cloud/library/cl-

cloudservicemodels/index.html, January 2011. Accessed 07.02.2011.

[16] SearchSOA.com. Definition of REST (representational state transfer).
http://searchsoa.techtarget.com/definition/REST. Accessed

02.05.2011.

[17] Colin Percival. AWS signature version 1 is insecure, from the blog Daemonic
Dispatches.
http://www.daemonology.net/blog/2008-12-18-AWS-signature-

version-1-is-insecure.html, December 2008. Accessed 23.03.2011.

[18] SearchNetworking.com. Definition of Border Gateway Protocol (BGP).
http://searchtelecom.techtarget.com/definition/BGP. Accessed

06.04.2011.

[19] SearchNetworking.com. Definition of Autonomeous System (AS).

82

https://cloudsecurityalliance.org/
http://www.cloudtweaks.com/2011/02/a-history-of-cloud-computing/
http://www.cloudtweaks.com/2011/02/a-history-of-cloud-computing/
http://www.nytimes.com/2007/10/08/technology/08cloud.html?_r=3&ex=1349496000&en=92627f0f65ea0d75&ei=5090&partner=rssuserland&emc=rss&oref=slogin
http://www.nytimes.com/2007/10/08/technology/08cloud.html?_r=3&ex=1349496000&en=92627f0f65ea0d75&ei=5090&partner=rssuserland&emc=rss&oref=slogin
http://www.nytimes.com/2007/10/08/technology/08cloud.html?_r=3&ex=1349496000&en=92627f0f65ea0d75&ei=5090&partner=rssuserland&emc=rss&oref=slogin
http://www.ibm.com/developerworks/cloud/library/cl-cloudservicemodels/index.html
http://www.ibm.com/developerworks/cloud/library/cl-cloudservicemodels/index.html
http://www.ibm.com/developerworks/cloud/library/cl-cloudservicemodels/index.html
http://www.ibm.com/developerworks/cloud/library/cl-cloudservicemodels/index.html
http://www.ibm.com/developerworks/cloud/library/cl-cloudservicemodels/index.html
http://www.ibm.com/developerworks/cloud/library/cl-cloudservicemodels/index.html
http://searchsoa.techtarget.com/definition/REST
http://www.daemonology.net/blog/2008-12-18-AWS-signature-version-1-is -insecure.html
http://www.daemonology.net/blog/2008-12-18-AWS-signature-version-1-is -insecure.html
http://searchtelecom.techtarget.com/definition/BGP

BIBLIOGRAPHY

http://searchnetworking.techtarget.com/definition/autonomous-

system. Accessed 06.04.2011.

[20] Brad Stone - The New York Times. Pakistan Cuts Access to YouTube
Worldwide.
http://www.nytimes.com/2008/02/26/technology/26tube.html,

February 2008. Accessed 23.03.2011.

[21] SearchNetworking.com. Definition of Domain Name System (DNS).
http://searchtelecom.techtarget.com/definition/domain-name-

system. Accessed 06.04.2011.

[22] NYTIMES.com - Scott Shane and Andrew W. Lehren. Leaked Cables Offer
Raw Look at U.S. Diplomacy.
http://www.nytimes.com/2010/11/29/world/29cables.html?hp,

November 2009. Accessed 01.03.2011.

[23] FoxNews.com. Amazon Pulls Plug on WikiLeaks.
http://www.foxnews.com/scitech/2010/12/01/amazon-severs-ties-

wikileaks/, December 2010. Accessed 28.04.2011.

[24] Whatis?com. What is Virtual Machine Escape.
http://whatis.techtarget.com/definition/virtual-machine-

escape.html. Accessed 07.04.2011.

[25] SearchNetworking.com. Definition of Secure Shell (SSH).
http://searchtelecom.techtarget.com/definition/Secure-Shell.

Accessed 06.04.2011.

[26] Claudio Cristone - SecureNetwork. You are doing it wrong, Failures in
Virutalization Systems, BlackHat Europe.
https://www.blackhat.com/html/bh-eu-11/bh-eu-11-archives.

html, March 2011. Accessed 24.03.2011.

[27] The Open Web Application Security Project (OWASP). About OWASP.
https://www.owasp.org/index.php/About_The_Open_Web_

Application_Security_Project. Accessed 17.03.2011.

[28] Ade Barkah (peekay.org). Security issues with Google Docs.
http://peekay.org/2009/03/26/security-issues-with-google-

docs/, March, 26th 2009. Accessed 28.04.2011.

83

http://searchnetworking.techtarget.com/definition/autonomous-system
http://searchnetworking.techtarget.com/definition/autonomous-system
http://www.nytimes.com/2008/02/26/technology/26tube.html
http://searchtelecom.techtarget.com/definition/domain-name-system
http://searchtelecom.techtarget.com/definition/domain-name-system
http://www.nytimes.com/2010/11/29/world/29cables.html?hp
http://www.foxnews.com/scitech/2010/12/01/amazon-severs-ties-wikileaks/
http://www.foxnews.com/scitech/2010/12/01/amazon-severs-ties-wikileaks/
http://whatis.techtarget.com/definition/virtual-machine-escape.html
http://whatis.techtarget.com/definition/virtual-machine-escape.html
http://searchtelecom.techtarget.com/definition/Secure-Shell
https://www.blackhat.com/html/bh-eu-11/bh-eu-11-archives.html
https://www.blackhat.com/html/bh-eu-11/bh-eu-11-archives.html
https://www.owasp.org/index.php/About_The_Open_Web_Application_Security_Project
https://www.owasp.org/index.php/About_The_Open_Web_Application_Security_Project
http://peekay.org/2009/03/26/security-issues-with-google-docs/
http://peekay.org/2009/03/26/security-issues-with-google-docs/

BIBLIOGRAPHY

[29] Amazon Web Services (AWS). Overview of Security Processes.
http://aws.amazon.com/articles/1697?_encoding=

UTF8&jiveRedirect=1, December, 5th 2008. Accessed 28.04.2011.

[30] Dropbox. How secure is Dropbox?
https://www.dropbox.com/help/27, April, 23rd 2011. Accessed 28.04.2011.

[31] Ryan Single - Wired.com. Dropbox Lied to Users About Data Security, Com-
plaint to FTC Alleges.
http://www.wired.com/threatlevel/2011/05/dropbox-ftc/, May, 13th

2011. Accessed 13.05.2011.

[32] Sravan Kumar, R. and Saxena, A. Data integrity proofs in cloud storage.
In Communication Systems and Networks (COMSNETS), 2011 Third International
Conference on, pages 1 –4, January 2011.

[33] Mike Stevens - Hosting.com and IT Business Edge. How Real Are Cloud Se-
curity Concerns?, Separating Fact from Fiction for Infrastructure-as-a-Service (Iaas)
Cloud Computing, 2010.

[34] SearchNetworking.com. Definition of Rootkit.
http://searchmidmarketsecurity.techtarget.com/definition/

rootkit. Accessed 06.04.2011.

[35] Amazon Web Services. Using Shared AMIs.
http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/

index.html?AESDG-chapter-usingsharedamis.html#usingsharedamis-

security. Accessed 25.03.2011.

[36] Laura Quinn and Heather Gardner-Madras from Idealware. 2010 Com-
paring Open Source Content Management Systems: WordPress, Joomla, Drupal
and Plone.
http://www.idealware.org/reports/2010-os-cms, December 2010. Ac-

cessed 22.04.2011.

[37] Google Insights for Search.
http://www.google.com/insights/search/#. Accessed 23.04.2011.

[38] Lisa Wehr. Which CMS is Right for Your Business?
http://mashable.com/2011/04/05/best-cms-for-business/, April,

5th 2011. Accessed 22.04.2011.

84

http://aws.amazon.com/articles/1697?_encoding=UTF8&jiveRedirect=1
http://aws.amazon.com/articles/1697?_encoding=UTF8&jiveRedirect=1
https://www.dropbox.com/help/27
http://www.wired.com/threatlevel/2011/05/dropbox-ftc/
http://searchmidmarketsecurity.techtarget.com/definition/rootkit
http://searchmidmarketsecurity.techtarget.com/definition/rootkit
http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/index.html?AESDG-chapter-usingsharedamis.html#usingsharedamis-security
http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/index.html?AESDG-chapter-usingsharedamis.html#usingsharedamis-security
http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/index.html?AESDG-chapter-usingsharedamis.html#usingsharedamis-security
http://www.idealware.org/reports/2010-os-cms
http://www.google.com/insights/search/#
http://mashable.com/2011/04/05/best-cms-for-business/

BIBLIOGRAPHY

[39] Webopedia. Definition of Script Kiddies.
http://www.webopedia.com/TERM/S/script_kiddie.html. Accessed

02.05.2011.

[40] The Open Web Application Security Project (OWASP). OWASP Top 10
- 2010, The Ten Most Critical Web Application Security Risks.
https://www.owasp.org/index.php/OWASP_Top_Ten_Project, April

2010. Accessed 17.03.2011.

[41] Cloudaccess.net. Joomla! Features Tour.
http://www.cloudaccess.net/joomla-features-tour.html. Accessed

31.01.2011.

[42] Captcha.net. CAPTCHA: Telling Humans and Computers Apart Automatically.
http://www.captcha.net/. Accessed 29.04.2011.

[43] Joomla.org. Joomla! 1.6 Has Arrived!
http://www.joomla.org/announcements/general-news/5348-

joomlar-16-has-arrived.html, January, 10th 2011. Accessed 24.01.2011.

[44] W3C. XHTMLTM 1.0 The Extensible HyperText Markup Language (Second Edi-
tion).
http://www.w3.org/TR/xhtml1/, August 2002. Accessed 29.04.2011.

[45] Joomla.org. ACL Tutorial for Joomla 1.6.
http://docs.joomla.org/ACL_Tutorial_for_Joomla_1.6, March 2011.

Accessed 22.02.2011.

[46] An Autonomous Zone. XSS Cheat Sheet.
http://anautonomouszone.com/blog/xss-cheat-sheet. Accessed

05.04.2011.

[47] PHP.net. mysql_real_escape_string().
http://php.net/manual/en/function.mysql-real-escape-string.

php. Accessed 29.04.2011.

[48] Wang Yu and Chen Jianhua and He Debiao. A New Collision Attack on
MD5. In Networks Security, Wireless Communications and Trusted Computing,
2009. NSWCTC ’09. International Conference on, volume 2, pages 767 –770, April
2009.

[49] Javvin - Network Management and Security. Birthday Attack.

85

http://www.webopedia.com/TERM/S/script_kiddie.html
https://www.owasp.org/index.php/OWASP_Top_Ten_Project
http://www.cloudaccess.net/joomla-features-tour.html
http://www.captcha.net/
http://www.joomla.org/announcements/general-news/5348-joomlar-16-has-arrived.html
http://www.joomla.org/announcements/general-news/5348-joomlar-16-has-arrived.html
http://www.w3.org/TR/xhtml1/
http://docs.joomla.org/ACL_Tutorial_for_Joomla_1.6
http://anautonomouszone.com/blog/xss-cheat-sheet
http://php.net/manual/en/function.mysql-real-escape-string.php
http://php.net/manual/en/function.mysql-real-escape-string.php

BIBLIOGRAPHY

http://www.javvin.com/networksecurity/BirthdayAttack.html. Ac-

cessed 26.04.2011.

[50] Joomla.org. Joomla! Extensions Directory (JED).
http://extensions.joomla.org/. Accessed 22.02.2011.

[51] Cloudaccess.net. CloudAccess.net Network Power Service Level Agreement
(SLA).
http://www.cloudaccess.net/network-sla.html. Accessed 28.04.2011.

[52] The Apache Software Foundation. Htaccess.
http://wiki.apache.org/httpd/Htaccess. Accessed 04.04.2011.

[53] Joomla! Community Magazine - Nicholas K. Dionysopoulos. Only a Ninja
can kill another Ninja.
http://magazine.joomla.org/component/k2/item/214, October 2010.

Accessed 04.04.2011.

[54] Gordon Lyon - Insecure.org. Nmap documentation.
http://nmap.org/docs.html. Accessed 04.04.2011.

[55] Ron Rivest. MIT Laboratory for Computer Science and RSA Data Security Inc.,
The MD5 Message-Digest Algorithm, Network Working Group, Request for Com-
ments: 1321.
http://tools.ietf.org/pdf/rfc1321.pdf, April 1992. Accessed 26.04.2011.

86

http://www.javvin.com/networksecurity/BirthdayAttack.html
http://extensions.joomla.org/
http://www.cloudaccess.net/network-sla.html
http://wiki.apache.org/httpd/Htaccess
http://magazine.joomla.org/component/k2/item/214
http://nmap.org/docs.html
http://tools.ietf.org/pdf/rfc1321.pdf

A
OWASP Top 10 Application

Security Risks - 2010

The ten most critical web application security risks in descending order, according
to OWASP [40]:

• A1 – Injection:
Injection flaws, such as SQL, OS, and LDAP injection, occur when untrusted
data is sent to an interpreter as part of a command or query. The attacker’s
hostile data can trick the interpreter into executing unintended commands
or accessing unauthorized data.

• A2 – Cross-Site Scripting (XSS):
XSS flaws occur whenever an application takes untrusted data and sends
it to a web browser without proper validation and escaping. XSS allows
attackers to execute scripts in the victim’s browser which can hijack user
sessions, deface web sites, or redirect the user to malicious sites.

• A3 – Broken Authentication and Session Management:
Application functions related to authentication and session management are
often not implemented correctly, allowing attackers to compromise pass-
words, keys, session tokens, or exploit other implementation flaws to assume
other users’ identities.

• A4 – Insecure Direct Object References:
A direct object reference occurs when a developer exposes a reference to an

87

APPENDIX A. OWASP TOP 10 APPLICATION SECURITY RISKS - 2010

internal implementation object, such as a file, directory, or database key.
Without an access control check or other protection, attackers can manipu-
late these references to access unauthorized data.

• A5 – Cross-Site Request Forgery (CSRF):
A CSRF attack forces a logged-on victim’s browser to send a forged HTTP
request, including the victim’s session cookie and any other automatically
included authentication information, to a vulnerable web application. This
allows the attacker to force the victim’s browser to generate requests the
vulnerable application thinks are legitimate requests from the victim.

• A6 – Security Misconfiguration:
Good security requires having a secure configuration defined and deployed for
the application, frameworks, application server, web server, database server,
and platform. All these settings should be defined, implemented, and main-
tained as many are not shipped with secure defaults. This includes keeping
all software up to date, including all code libraries used by the application.

• A7 – Insecure Cryptographic Storage:
Many web applications do not properly protect sensitive data, such as credit
cards, SSNs, and authentication credentials, with appropriate encryption
or hashing. Attackers may steal or modify such weakly protected data to
conduct identity theft, credit card fraud, or other crimes.

• A8 - Failure to Restrict URL Access:
Many web applications check URL access rights before rendering protected
links and buttons. However, applications need to perform similar access
control checks each time these pages are accessed, or attackers will be able
to forge URLs to access these hidden pages anyway.

• A9 - Insufficient Transport Layer Protection:
Applications frequently fail to authenticate, encrypt, and protect the con-
fidentiality and integrity of sensitive network traffic. When they do, they
sometimes support weak algorithms, use expired or invalid certificates, or do
not use them correctly.

• A10 – Unvalidated Redirects and Forwards
Web applications frequently redirect and forward users to other pages and

88

APPENDIX A. OWASP TOP 10 APPLICATION SECURITY RISKS - 2010

websites, and use untrusted data to determine the destination pages. With-
out proper validation, attackers can redirect victims to phishing or malware
sites, or use forwards to access unauthorized pages.

89

90

B
Annual trends for web

application vulnerability types

The data used to construct the graph in figure B.1 on page 92, is extracted from
the IBM X-Force’s 2010 trend and risk report [3].

91

APPENDIX B. ANNUAL TRENDS FOR WEB APPLICATION VULNERABILITY
TYPES

0

12,5

25

37,5

50

2007 2008 2009 2010

A
vg

er
ag

e
vu

ln
er

ab
ili

ty
 p

er
 t

es
t

Cross-Site Request Forgery Cross-Site Scripting Error Message Infromation Leak
Improper Application Deployment Improper Use of SSL Inadequate / Poor Input Control
Improper Access Control Information Disclosure Insufficient Web Server Configuration
Non Standard Encryption SQL injection

Figure B.1: Annual trends for web application vulnerability types

92

C
BlindElephant fingerprinting

user$ python BlindElephant.py example.net guess

Probing...

Possible apps:

joomla

user$ python BlindElephant.py example.net joomla

Loaded .~/blindelephant/dbs/joomla.pkl

with 39 versions, 3789 differentiating paths, and 140 version groups.

Starting BlindElephant fingerprint for version of joomla at

http://example.net

Hit http://example.net/language/en-GB/en-GB.ini

Possible versions based on result: 1.5.18

Hit http://example.net/language/en-GB/en-GB.com_content.ini

Possible versions based on result: 1.5.17, 1.5.18

Hit http://example.net/htaccess.txt

Possible versions based on result: 1.5.15

Hit http://example.net/language/en-GB/en-GB.com_contact.ini

Possible versions based on result: 1.5.17, 1.5.18

Hit http://example.net/media/system/js/validate.js

Possible versions based on result: 1.5.17, 1.5.18

Hit http://example.net/templates/rhuk_milkyway/css/template.css

Possible versions based on result: 1.5.17, 1.5.18

Hit http://example.net/language/en-GB/en-GB.com_weblinks.ini

93

APPENDIX C. BLINDELEPHANT FINGERPRINTING

Possible versions based on result: 1.5.17, 1.5.18

Hit http://example.net/configuration.php-dist

File produced no match. Error: Error code: 404 (Not Found)

Hit http://example.net/language/en-GB/en-GB.com_users.ini

File produced no match. Error: Error code: 404 (Not Found)

Hit http://example.net/media/system/js/caption.js

Possible versions based on result: 1.5.17, 1.5.18

Hit http://example.net/language/en-GB/en-GB.mod_search.ini

Possible versions based on result: 1.5.17, 1.5.18

Hit http://example.net/language/xx-XX/xx-XX.ini

File produced no match. Error: Error code: 404 (Not Found)

Hit http://example.net/language/xx-XX/xx-XX.com_users.ini

File produced no match. Error: Error code: 404 (Not Found)

Hit http://example.net/language/xx-XX/xx-XX.com_content.ini

File produced no match. Error: Error code: 404 (Not Found)

Hit http://example.net/language/en-GB/en-GB.mod_breadcrumbs.ini

Possible versions based on result: 1.5.17, 1.5.18

Fingerprinting resulted in:

1.5.18

Best Guess: 1.5.18

94

D
Nmap and Joomla!

D.1 Version trace

Starting Nmap 5.51 (http://nmap.org) at 2011-03-07 09:30 CET

PORTS: Using top 1000 ports found open (TCP:1000, UDP:0, SCTP:0)

--------------- Timing report ---------------

hostgroups: min 1, max 100000

rtt-timeouts: init 1000, min 100, max 10000

max-scan-delay: TCP 1000, UDP 1000, SCTP 1000

parallelism: min 0, max 0

max-retries: 10, host-timeout: 0

min-rate: 0, max-rate: 0

NSE: Loaded 8 scripts for scanning.

Overall sending rates: 1.23 packets / s.

mass_rdns: Using DNS server 129.241.208.40

mass_rdns: Using DNS server 129.241.206.252

mass_rdns: Using DNS server 129.241.0.200

mass_rdns: Using DNS server 129.241.0.201

mass_rdns: 0.47s 0/1 [#: 4, OK: 0, NX: 0, DR: 0, SF: 0, TR: 1]

DNS resolution of 1 IPs took 0.47s. Mode: Async [#: 4, OK: 1, NX: 0, DR: 0,

SF: 0, TR: 1, CN: 0]

Increased max_successful_tryno for xxx.xxx.xxx.xxx to 1 (packet drop)

Overall sending rates: 28.44 packets / s.

NSOCK (110.2190s) TCP connection requested to xxx.xxx.xxx.xxx:21 (IOD #1)

EID 8

NSOCK (110.2190s) TCP connection requested to xxx.xxx.xxx.xxx:22 (IOD #2)

EID 16

95

APPENDIX D. NMAP AND JOOMLA!

NSOCK (110.2200s) TCP connection requested to xxx.xxx.xxx.xxx:70 (IOD #3)

EID 24

NSOCK (110.2200s) TCP connection requested to xxx.xxx.xxx.xxx:80 (IOD #4)

EID 32

NSOCK (110.3640s) Callback: CONNECT SUCCESS for EID 8 [xxx.xxx.xxx.xxx:21]

Service scan sending probe NULL to xxx.xxx.xxx.xxx:21 (tcp)

NSOCK (110.3640s) Read request from IOD #1 [xxx.xxx.xxx.xxx:21] (timeout:

6000ms) EID 42

NSOCK (110.3650s) Callback: CONNECT SUCCESS for EID 16 [xxx.xxx.xxx.xxx:22]

Service scan sending probe NULL to xxx.xxx.xxx.xxx:22 (tcp)

NSOCK (110.3650s) Read request from IOD #2 [xxx.xxx.xxx.xxx:22] (timeout:

6000ms) EID 50

NSOCK (110.3650s) Callback: CONNECT SUCCESS for EID 24 [xxx.xxx.xxx.xxx:70]

Service scan sending probe NULL to xxx.xxx.xxx.xxx:70 (tcp)

NSOCK (110.3650s) Read request from IOD #3 [xxx.xxx.xxx.xxx:70] (timeout:

6000ms) EID 58

NSOCK (110.3650s) Callback: CONNECT SUCCESS for EID 32 [xxx.xxx.xxx.xxx:80]

Service scan sending probe NULL to xxx.xxx.xxx.xxx:80 (tcp)

NSOCK (110.3650s) Read request from IOD #4 [xxx.xxx.xxx.xxx:80] (timeout:

6000ms) EID 66

NSOCK (110.5150s) Callback: READ SUCCESS for EID 50 [xxx.xxx.xxx.xxx:22]

(21 bytes): SSH-2.0-OpenSSH_5.5..

Service scan match (Probe NULL matched with NULL): xxx.xxx.xxx.xxx:22 is ssh.

Version: |OpenSSH|5.5|protocol 2.0|

NSOCK (110.5210s) Callback: READ SUCCESS for EID 42 [xxx.xxx.xxx.xxx:21]

(23 bytes): 220 FTP Server ready...

Service scan match (Probe NULL matched with NULL): xxx.xxx.xxx.xxx:21 is ftp.

Version: |ProFTPD|||

NSOCK (116.3680s) Callback: READ TIMEOUT for EID 58 [xxx.xxx.xxx.xxx:70]

Service scan sending probe GetRequest to xxx.xxx.xxx.xxx:70 (tcp)

NSOCK (116.3680s) Write request for 18 bytes to IOD #3 EID 75

[xxx.xxx.xxx.xxx:70]: GET / HTTP/1.0....

NSOCK (116.3680s) Read request from IOD #3 [xxx.xxx.xxx.xxx:70] (timeout:

5000ms) EID 82

NSOCK (116.3680s) Callback: READ TIMEOUT for EID 66 [xxx.xxx.xxx.xxx:80]

Service scan sending probe GetRequest to xxx.xxx.xxx.xxx:80 (tcp)

NSOCK (116.3680s) Write request for 18 bytes to IOD #4 EID 91

[xxx.xxx.xxx.xxx:80]: GET / HTTP/1.0....

NSOCK (116.3680s) Read request from IOD #4 [xxx.xxx.xxx.xxx:80] (timeout:

5000ms) EID 98

NSOCK (116.3680s) Callback: WRITE SUCCESS for EID 75 [xxx.xxx.xxx.xxx:70]

NSOCK (116.3680s) Callback: WRITE SUCCESS for EID 91 [xxx.xxx.xxx.xxx:80]

NSOCK (116.5130s) Callback: READ SUCCESS for EID 82 [xxx.xxx.xxx.xxx:70]

(1708 bytes)

Service scan match (Probe GetRequest matched with GetRequest):

96

APPENDIX D. NMAP AND JOOMLA!

xxx.xxx.xxx.xxx:70 is http. Version: |lighttpd|1.4.28||

NSOCK (117.3490s) Callback: READ SUCCESS for EID 98 [xxx.xxx.xxx.xxx:80]

(4344 bytes)

Service scan match (Probe GetRequest matched with GetRequest):

xxx.xxx.xxx.xxx:80 is http. Version: |Apache httpd|2.2.3|(CloudLinux)|

Starting RPC scan against example.net (xxx.xxx.xxx.xxx)

NSE: Starting runlevel 1 (of 1) scan.

Nmap scan report for example.net (xxx.xxx.xxx.xxx)

Host is up (0.14s latency).

rDNS record for xxx.xxx.xxx.xxx:

xxx-xxx-xxx-xxx.static.trcy.mi.charter.com

Scanned at 2011-03-07 09:30:23 CET for 117s

Not shown: 982 filtered ports

PORT STATE SERVICE VERSION

20/tcp closed ftp-data

21/tcp open ftp ProFTPD

22/tcp open ssh OpenSSH 5.5 (protocol 2.0)

25/tcp closed smtp

70/tcp open http lighttpd 1.4.28

80/tcp open http Apache httpd 2.2.3 ((CloudLinux))

12345/tcp closed netbus

60020/tcp closed unknown

60443/tcp closed unknown

61532/tcp closed unknown

61900/tcp closed unknown

62078/tcp closed iphone-sync

63331/tcp closed unknown

64623/tcp closed unknown

64680/tcp closed unknown

65000/tcp closed unknown

65129/tcp closed unknown

65389/tcp closed unknown

Service Info: OS: Unix

Final times for host: srtt: 144419 rttvar: 405 to: 146039

Nmap done: 1 IP address (1 host up) scanned in 117.45 seconds

D.2 OS detection

Starting Nmap 5.51 (http://nmap.org) at 2011-03-07 09:42 CET

Nmap scan report for example.net (xxx.xxx.xxx.xxx)

Host is up (0.14s latency).

97

APPENDIX D. NMAP AND JOOMLA!

rDNS record for xxx.xxx.xxx.xxx:

xxx-xxx-xxx-xxx.static.trcy.mi.charter.com

Not shown: 984 filtered ports

PORT STATE SERVICE

20/tcp closed ftp-data

21/tcp open ftp

22/tcp open ssh

70/tcp open gopher

80/tcp open http

60020/tcp closed unknown

60443/tcp closed unknown

61532/tcp closed unknown

61900/tcp closed unknown

62078/tcp closed iphone-sync

63331/tcp closed unknown

64623/tcp closed unknown

64680/tcp closed unknown

65000/tcp closed unknown

65129/tcp closed unknown

65389/tcp closed unknown

Device type: general purpose

Running: Linux 2.6.X

OS details: Linux 2.6.9 - 2.6.27

OS detection performed. Please report any incorrect results at

http://nmap.org/submit/ .

Nmap done: 1 IP address (1 host up) scanned in 12.82 seconds

98

E
OWASP Joomla vulnerability

scanner
===

OWASP Joomla! Vulnerability Scanner v0.0.3-b

(c) Aung Khant, aungkhant]at[yehg.net

YGN Ethical Hacker Group, Myanmar, http://yehg.net/lab

===

Vulnerability Entries: 466

Last update: August 18, 2009

Use "update" option to update the database

Use "check" option to check the scanner update

Use "download" option to download the scanner latest version package

Use svn co to update the scanner

svn co https://joomscan.svn.sourceforge.net/svnroot/joomscan joomscan

Target: http://example.net

Server: Apache/2.2.3 (CloudLinux)

X-Powered-By: PHP/5.2.10

Checking if the target has deployed an Anti-Scanner measure

[!] Scanning Passed OK

Detecting Joomla! based Firewall ...

99

APPENDIX E. OWASP JOOMLA VULNERABILITY SCANNER

[!] No known firewall detected!

Fingerprinting in progress ...

~Generic version family [1.5.x]

~1.5.x en-GB.ini revealed [1.5.12 - 1.5.14]

* Deduced version range is : [1.5.12 - 1.5.14]

Fingerprinting done.

Vulnerabilities Discovered

==========================

1

Info -> Generic: htaccess.txt has not been renamed.

Versions Affected: Any

Check: /htaccess.txt

Exploit: Generic defenses implemented in .htaccess are not available, so

exploiting is more likely to succeed.

Vulnerable? Yes

2

Info -> Generic: Unprotected Administrator directory

Versions Affected: Any

Check: /administrator/

Exploit: The default /administrator directory is detected. Attackers can

bruteforce administrator accounts. Read: http://yehg.net/lab/pr0js/

view.php/MULTIPLE%20TRICKY%20WAYS%20TO%20PROTECT.pdf

Vulnerable? Yes

3

Info -> Core: Multiple XSS/CSRF Vulnerability

Versions Affected: 1.5.9 <=

Check: /?1.5.9-x

Exploit: A series of XSS and CSRF faults exist in the administrator

application. Affected administrator components include com_admin,

com_media, com_search. Both com_admin and com_search contain XSS

vulnerabilities, and com_media contains 2 CSRF vulnerabilities.

Vulnerable? No

4

Info -> Core: JSession SSL Session Disclosure Vulnerability

Versions effected: Joomla! 1.5.8 <=

Check: /?1.5.8-x

Exploit: When running a site under SSL (the entire site is forced to be

100

APPENDIX E. OWASP JOOMLA VULNERABILITY SCANNER

under ssl), Joomla! does not set the SSL flag on the cookie. This can

allow someone monitoring the network to find the cookie related to the

session.

Vulnerable? No

5

Info -> Core: Frontend XSS Vulnerability

Versions effected: 1.5.10 <=

Check: /?1.5.10-x

Exploit: Some values were output from the database without being properly

escaped. Most strings in question were sourced from the administrator

panel. Malicious normal admin can leverage it to gain access to super

admin.

Vulnerable? No

6

Info -> Core: Missing JEXEC Check - Path Disclosure Vulnerability

Versions effected: 1.5.11 <=

Check: /libraries/phpxmlrpc/xmlrpcs.php

Exploit: /libraries/phpxmlrpc/xmlrpcs.php

Vulnerable? No

7

Info -> Core: Missing JEXEC Check - Path Disclosure Vulnerability

Versions effected: 1.5.12 <=

Check: /libraries/joomla/utilities/compat/php50x.php

Exploit: /libraries/joomla/utilities/compat/php50x.php

Vulnerable? No

8

Info -> Core: Frontend XSS - HTTP_REFERER not properly filtered Vulnerability

Versions effected: 1.5.11 <=

Check: /?1.5.11-x-http_ref

Exploit: An attacker can inject JavaScript or DHTML code that will be

executed in the context of targeted user browser, allowing the attacker to

steal cookies. HTTP_REFERER variable is not properly parsed.

Vulnerable? No

9

Info -> Core: Frontend XSS - PHP_SELF not properly filtered Vulnerability

Versions effected: 1.5.11 <=

Check: /?1.5.11-x-php-s3lf

Exploit: An attacker can inject JavaScript code in a URL that will be

executed in the context of targeted user browser.

Vulnerable? No

101

APPENDIX E. OWASP JOOMLA VULNERABILITY SCANNER

10

Info -> Core: Authentication Bypass Vulnerability

Versions effected: Joomla! 1.5.3 <=

Check: /administrator/

Exploit: Backend accepts any password for custom Super Administrator when

LDAP enabled

Vulnerable? No

11

Info -> Core: Path Disclosure Vulnerability

Versions effected: Joomla! 1.5.3 <=

Check: /?1.5.3-path-disclose

Exploit: Crafted URL can disclose absolute path

Vulnerable? No

12

Info -> Core: User redirected Spamming Vulnerability

Versions effected: Joomla! 1.5.3 <=

Check: /?1.5.3-spam

Exploit: User redirect spam

Vulnerable? No

13

Info -> Core: joomla.php Remote File Inclusion Vulnerability

Versions effected: 1.0.0

Check: /includes/joomla.php

Exploit: /includes/joomla.php?includepath=

Vulnerable? No

14

Info -> Core: Admin Backend Cross Site Request Forgery Vulnerability

Versions effected: 1.0.13 <=

Check: /administrator/

Exploit: It requires an administrator to be logged in and to be tricked

into a specially crafted webpage.

Vulnerable? Yes

15

Info -> Core: Path Disclosure Vulnerability

Versions effected: Joomla! 1.5.12 <=

Check: /libraries/joomla/utilities/compat/php50x.php

Exploit: /libraries/joomla/utilities/compat/php50x.php

Vulnerable? No

102

APPENDIX E. OWASP JOOMLA VULNERABILITY SCANNER

16

Info -> CorePlugin: Xstandard Editor X_CMS_LIBRARY_PATH Local Directory

Traversal Vulnerability

Versions effected: Joomla! 1.5.8 <=

Check: /plugins/editors/xstandard/attachmentlibrary.php

Exploit: Submit new header X_CMS_LIBRARY_PATH with value ../ to /plugins/

editors/xstandard/attachmentlibrary.php

Vulnerable? No

17

Info -> CoreTemplate: ja_purity XSS Vulnerability

Versions effected: 1.5.10 <=

Check: /templates/ja_purity/

Exploit: A XSS vulnerability exists in the JA_Purity template which ships

with Joomla! 1.5.

Vulnerable? No

18

Info -> CoreLibrary: phpmailer Remote Code Execution Vulnerability

Versions effected: Joomla! 1.5.0 Beta/Stable

Check: /libraries/phpmailer/phpmailer.php

Exploit: N/A

Vulnerable? No

19

Info -> CorePlugin: TinyMCE TinyBrowser addon multiple vulnerabilities

Versions effected: Joomla! 1.5.12

Check: /plugins/editors/tinymce/jscripts/tiny_mce/plugins/tinybrowser/

Exploit: While Joomla! team announced only File Upload vulnerability, in

fact there are many. See: http://www.milw0rm.com/exploits/9296

Vulnerable? Yes

20

Info -> CoreComponent: Joomla Remote Admin Password Change Vulnerability

Versions Affected: 1.5.5 <=

Check: /components/com_user/controller.php

Exploit: 1. Go to url : target.com/index.php?

option=com_user&view=reset&layout=confirm 2. Write into field "token" char

’ and Click OK. 3. Write new password for admin 4. Go to url :

target.com/administrator/ 5. Login admin with new password

Vulnerable? No

21

Info -> CoreComponent: com_content SQL Injection Vulnerability

Version Affected: Joomla! 1.0.0 <=

103

APPENDIX E. OWASP JOOMLA VULNERABILITY SCANNER

Check: /components/com_content/

Exploit: /index.php?

option=com_content&task=blogcategory&id=60&Itemid=99999+UNION+SELECT

+1,concat(0x1e,username,0x3a,password,0x1e,0x3a,usertype,0x1e),3,4,5+FROM

+jos_users+where+usertype=0x53757065722041646d696e6973747261746f72--

Vulnerable? No

22

Info -> CoreComponent: com_search Remote Code Execution Vulnerability

Version Affected: Joomla! 1.5.0 beta 2 <=

Check: /components/com_search/

Exploit: /index.php?option=com_search&Itemid=1&searchword=%22%3Becho%20md5

(911)%3B

Vulnerable? No

23

Info -> CoreComponent: com_admin File Inclusion Vulnerability

Versions Affected: N/A

Check: /administrator/components/com_admin/admin.admin.html.php

Exploit: /administrator/components/com_admin/admin.admin.html.php?

mosConfig_absolute_path=

Vulnerable? No

24

Info -> CoreComponent: MailTo SQL Injection Vulnerability

Versions effected: N/A

Check: /components/com_mailto/

Exploit: /index.php?option=com_mailto&tmpl=mailto&article=550513+and

+1=2+union+select+concat(username,char(58),password)+from+jos_users+where

+usertype=0x53757065722041646d696e6973747261746f72--&Itemid=1

Vulnerable? No

25

Info -> CoreComponent: com_content Blind SQL Injection Vulnerability

Versions effected: Joomla! 1.5.0 RC3

Check: /components/com_content/

Exploit: /index.php?option=com_content&view=%’ +’a’=’a&id=25&Itemid=28

Vulnerable? No

26

Info -> CoreComponent: com_content XSS Vulnerability

Version Affected: Joomla! 1.5.7 <=

Check: /components/com_content/

Exploit: The defaults on com_content article submission allow entry of

dangerous HTML tags (script, etc). This only affects users with access

104

APPENDIX E. OWASP JOOMLA VULNERABILITY SCANNER

level Author or higher, and only if you have not set filtering options in

com_content configuration.

Vulnerable? No

27

Info -> CoreComponent: com_weblinks XSS Vulnerability

Version Affected: Joomla! 1.5.7 <=

Check: /components/com_weblinks/

Exploit: [Requires valid user account] com_weblinks allows raw HTML into

the title and description tags for weblink submissions (from both the

administrator and site submission forms).

Vulnerable? No

28

Info -> CoreComponent: com_mailto Email Spam Vulnerability

Version Affected: Joomla! 1.5.6 <=

Check: /components/com_mailto/

Exploit: The mailto component does not verify validity of the URL prior to

sending.

Vulnerable? No

29

Info -> CoreComponent: com_content view=archive SQL Injection Vulnerability

Versions effected: Joomla! 1.5.0 Beta1/Beta2/RC1

Check: /components/com_content/

Exploit: Unfiltered POST vars - filter, month, year to /index.php?

option=com_content&view=archive

Vulnerable? No

30

Info -> CoreComponent: com_content XSS Vulnerability

Version Affected: Joomla! 1.5.9 <=

Check: /components/com_content/

Exploit: A XSS vulnerability exists in the category view of com_content.

Vulnerable? No

31

Info -> CoreComponent: com_installer CSRF Vulnerability

Versions effected: Joomla! 1.5.0 Beta

Check: /administrator/components/com_installer/

Exploit: N/A

Vulnerable? No

32

Info -> CoreComponent: com_search Memory Comsumption DoS Vulnerability

105

APPENDIX E. OWASP JOOMLA VULNERABILITY SCANNER

Versions effected: Joomla! 1.5.0 Beta

Check: /components/com_search/

Exploit: N/A

Vulnerable? No

33

Info -> CoreComponent: com_poll (mosmsg) Memory Consumption DOS Vulnerability

Versions effected: 1.0.7 <=

Check: /components/com_poll/

Exploit: Send request /index.php?

option=com_poll&task=results&id=14&mosmsg=DOS@HERE<<>AAA<><>

Vulnerable? No

34

Info -> CoreComponent: com_banners Blind SQL Injection Vulnerability

Versions effected: N/A

Check: /components/com_banners/

Exploit: /index.php?option=com_banners&task=archivesection&id=0’+and

+’1’=’1::/index.php?option=com_banners&task=archivesection&id=0’+and+’1’=’2

Vulnerable? Yes

35

Info -> CoreComponent: com_mailto timeout Vulnerability

Versions effected: 1.5.13 <=

Check: /components/com_mailto/

Exploit: [Requires a valid user account] In com_mailto, it was possible to

bypass timeout protection against sending automated emails.

Vulnerable? Yes

36

Info -> Component: Dada Mail Manager Component Remote File Inclusion Vulnerability

Version Affected: 2.6 <=

Check: /administrator/components/

Exploit: /administrator/components/com_dadamail/config.dadamail.php?GLOBALS

[mosConfig_absolute_path]=

Vulnerable? No

There are 6 vulnerable points in 36 found entries!

~[*] Time Taken: 6 min and 9 sec

106

F
MD5 algortithm description

This appendix is an extraction of RFC1321, which encompasses Ron Rivest’s MD5 message-digest
algorithm [55].

[. . .] We begin by supposing that we have a b-bit message as input, and that we wish to find
its message digest. Here b is an arbitrary nonnegative integer; b may be zero, it need not be a
multiple of eight, and it may be arbitrarily large. We imagine the bits of the message written
down as follows:

m0m1...mb−1

The following five steps are performed to compute the message digest of the message.

Step 1: Append Padding Bits

The message is “padded" (extended) so that its length (in bits) is congruent to 448, modulo 512.
That is, the message is extended so that it is just 64 bits shy of being a multiple of 512 bits
long. Padding is always performed, even if the length of the message is already congruent to 448,
modulo 512.

Padding is performed as follows: a single “1" bit is appended to the message, and then “0" bits
are appended so that the length in bits of the padded message becomes congruent to 448, modulo
512. In all, at least one bit and at most 512 bits are appended.

Step 2: Append Length

A 64-bit representation of b (the length of the message before the padding bits were added) is
appended to the result of the previous step. In the unlikely event that b is greater than 264,
then only the low-order 64 bits of b are used. (These bits are appended as two 32-bit words and
appended low-order word first in accordance with the previous conventions.)

107

APPENDIX F. MD5 ALGORTITHM DESCRIPTION

At this point the resulting message (after padding with bits and with b) has a length that is an
exact multiple of 512 bits. Equivalently, this message has a length that is an exact multiple of 16
(32-bit) words. Let M[0 ... N-1] denote the words of the resulting message, where N is a multiple
of 16.

Step 3: Initialize MD Buffer

A four-word buffer (A,B,C,D) is used to compute the message digest. Here each of A, B, C, D is
a 32-bit register. These registers are initialized to the following values in hexadecimal, low-order
bytes first):

word A: 01 23 45 67

word B: 89 ab cd ef

word C: fe dc ba 98

word D: 76 54 32 10

Step 4: Process Message in 16-Word Blocks

We first define four auxiliary functions that each take as input three 32-bit words and produce
as output one 32-bit word.

F(X,Y,Z) = XY v not(X) Z

G(X,Y,Z) = XZ v Y not(Z)

H(X,Y,Z) = X xor Y xor Z

I(X,Y,Z) = Y xor (X v not(Z))

In each bit position F acts as a conditional: if X then Y else Z. The function F could have been
defined using + instead of v since XY and not(X)Z will never have 1’s in the same bit position.)
It is interesting to note that if the bits of X, Y, and Z are independent and unbiased, the each
bit of F(X,Y,Z) will be independent and unbiased.

The functions G, H, and I are similar to the function F, in that they act in “bitwise parallel" to
produce their output from the bits of X, Y, and Z, in such a manner that if the corresponding
bits of X, Y, and Z are independent and unbiased, then each bit of G(X,Y,Z), H(X,Y,Z), and
I(X,Y,Z) will be independent and unbiased. Note that the function H is the bit-wise “xor" or
“parity" function of its inputs.

This step uses a 64-element table T[1 ... 64] constructed from the sine function. Let T[i] denote
the i-th element of the table, which is equal to the integer part of 4294967296 times abs(sin(i)),
where i is in radians. The elements of the table are given in the appendix.

Do the following:

/* Process each 16-word block. */

For i = 0 to N/16-1 do

108

APPENDIX F. MD5 ALGORTITHM DESCRIPTION

/* Copy block i into X. */

For j = 0 to 15 do

Set X[j] to M[i*16+j].

end /* of loop on j */

/* Save A as AA, B as BB, C as CC, and D as DD. */

AA = A

BB = B

CC = C

DD = D

/* Round 1. */

/* Let [abcd k s i] denote the operation

a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s). */

/* Do the following 16 operations. */

[ABCD 0 7 1] [DABC 1 12 2] [CDAB 2 17 3] [BCDA 3 22 4]

[ABCD 4 7 5] [DABC 5 12 6] [CDAB 6 17 7] [BCDA 7 22 8]

[ABCD 8 7 9] [DABC 9 12 10] [CDAB 10 17 11] [BCDA 11 22 12]

[ABCD 12 7 13] [DABC 13 12 14] [CDAB 14 17 15] [BCDA 15 22 16]

/* Round 2. */

/* Let [abcd k s i] denote the operation

a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s). */

/* Do the following 16 operations. */

[ABCD 1 5 17] [DABC 6 9 18] [CDAB 11 14 19] [BCDA 0 20 20]

[ABCD 5 5 21] [DABC 10 9 22] [CDAB 15 14 23] [BCDA 4 20 24]

[ABCD 9 5 25] [DABC 14 9 26] [CDAB 3 14 27] [BCDA 8 20 28]

[ABCD 13 5 29] [DABC 2 9 30] [CDAB 7 14 31] [BCDA 12 20 32]

/* Round 3. */

/* Let [abcd k s t] denote the operation

a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s). */

/* Do the following 16 operations. */

[ABCD 5 4 33] [DABC 8 11 34] [CDAB 11 16 35] [BCDA 14 23 36]

[ABCD 1 4 37] [DABC 4 11 38] [CDAB 7 16 39] [BCDA 10 23 40]

[ABCD 13 4 41] [DABC 0 11 42] [CDAB 3 16 43] [BCDA 6 23 44]

[ABCD 9 4 45] [DABC 12 11 46] [CDAB 15 16 47] [BCDA 2 23 48]

/* Round 4. */

/* Let [abcd k s t] denote the operation

a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s). */

/* Do the following 16 operations. */

[ABCD 0 6 49] [DABC 7 10 50] [CDAB 14 15 51] [BCDA 5 21 52]

[ABCD 12 6 53] [DABC 3 10 54] [CDAB 10 15 55] [BCDA 1 21 56]

109

APPENDIX F. MD5 ALGORTITHM DESCRIPTION

[ABCD 8 6 57] [DABC 15 10 58] [CDAB 6 15 59] [BCDA 13 21 60]

[ABCD 4 6 61] [DABC 11 10 62] [CDAB 2 15 63] [BCDA 9 21 64]

/* Then perform the following additions. (That is increment each

of the four registers by the value it had before this block

was started.) */

A = A + AA

B = B + BB

C = C + CC

D = D + DD

end /* of loop on i */

Step 5: Output

The message digest produced as output is A, B, C, D. That is, we begin with the low-order byte
of A, and end with the high-order byte of D. [. . .]

110

APPENDIX F. MD5 ALGORTITHM DESCRIPTION

111

	Title Page
	Abstract
	Acknowledgements
	Abbrevations
	Introduction
	Cloud Computing
	History of cloud computing
	The evolution towards cloud computing
	What is cloud computing?
	Cloud delivery models
	The services of cloud computing

	Drivers of cloud computing
	Small initial investments and low ongoing costs
	Scalability
	Sustainability

	Cloud Security
	Infrastructure security
	Network level
	Host level
	Application level

	Data security
	CSP data security

	Cloud insecurity
	Cloud-specific threats
	Poisoning of VMs
	Attacks against the management console

	Open source Content Management Systems (CMS)
	What is a CMS?
	Open source vs. closed source
	Security in open source CMSs
	Common attacks towards CMSs

	Joomla! Security
	About Joomla!
	What is new in Joomla! 1.6?

	How security is provided in the ``core"
	Protection against common attacks
	Passwords

	Choose your extensions wisely
	The cloud and Joomla!

	Vulnerability testing on Joomla!
	The Joomla! test-setup
	Available tools
	Visual fingerprinting
	BlindElephant Web Application Fingerprinter
	Nmap – Network mapping tool
	OWASP Joomla! vulnearbility scanner

	Conclusion
	OWASP Top 10 Application Security Risks - 2010
	Annual trends for web application vulnerability types
	BlindElephant fingerprinting
	Nmap and Joomla!
	Version trace
	OS detection

	OWASP Joomla vulnerability scanner
	MD5 algortithm description

