Thomas Stenseth

FPGA based video scaling for
broadcast systems

Master’s thesis in Electronics Systems Design and Innovation
Supervisor: Kjetil Svarstad

June 2019

=}
z
-
z

>
>
L2
o
c
<
o
'_
o
c
@©
)
o
c
@
)
wn
—
S)
>
=
)
j-
)
=
c
o]
c
.o
o
9]
2
[
o
Pz

_
o
©
O£
s o
o o
@ <
TTCY
C
S uw
©
>
(=2}
o
S
o
C
e
(8]
(0]
'_
C
o
b=
©
—
o
o
C
=
o
>
=
35
(&)
®
i

£
9}
3
0
>
wn
L
c
S
ju.
=
o
1]
w
—
5
-
c
o
S
b=
[
©
Q
o}
[mn]

@NTNU

Kunnskap for en bedre verden

Thomas Stenseth

FPGA based video scaling for broadcast
systems

Master’s thesis in Electronics Systems Design and Innovation
Supervisor: Kjetil Svarstad
June 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems

@NTNU

Norwegian University of
Science and Technology

Problem Description

Assignment title: FPGA based video scaling for broadcast systems

Implement FPGA based video scaler with support for upscaling and downscaling. The
scaler should be build-time configurable for scaling between any video resolution. It
should also support switching between preconfigured scaling modes during runtime.

Example of preconfigured video scaling modes:
* 720p to 1080p @ 60fps
* 1080p to 720p @ 60fps
* 1080p to 2160p @ 60fps
e 2160p to 1080p @ 60fps

Analyze the performance of the different scaling methods with focus on resource usage, la-
tency and maximum frequency. Find a recommendation for the optimal solution for broad-
cast video systems, by comparing the different scaling filter implementations. Where the
optimal solution offers the best tradeoff between scaled video quality and FPGA resource
usage.

The finished system should be verified and documented using best practice methods.

Assignment given: 15. January 2019
Supervisor: Professor Kjetil Svarstad, IES NTNU
Co-Supervisor: Lars Erik Songe Paulsen, Appear TV

ii

Summary

Video scaling is a process used to change the resolution of a video. This is widely used
in broadcast systems to be able to support multiple devices using different resolution.
Since broadcast systems relies on a continuous non-faulty operation, a hardware-based
implementation is preferred over a software-based one, as this often has better performance
and stability. The focus on this thesis is to implement a hardware-based video scaler, with
a focus on resource usage, latency and maximum frequency, and to verify the implemented
design using best practice methods.

A scaler with support for nearest-neighbor and bilinear interpolation was implemented in
this thesis. The results from the synthesis test shows that the design meets its performance
requirements. Both interpolation methods were able to operate at a maximum frequency
above 300 MHz, while only using 1% of the resources of an Intel Arria 10 FPGA, and
with a 4-line framebuffer the latency is four lines of pixels.

The objective image quality test shows lower performance of the implemented scaler al-
gorithms compared to the reference algorithms, however the subjective test shows little or
no difference, raising the suspicion that the lower objective results are a result of shifting
in pixel positions, not incorrect pixel color values.

UVVM was used to verify the sub-modules of the design, and an Avalon-ST VIP was
implemented for this purpose. Unfortunately, due to time limitations, the top level of the
design were not completed, preventing the use of the Avalon-ST VIP for verification of
the scaler algorithms.

With completion of the top level of the design, this video scaler would be able to handle
scaling of video up to a resolution of 4k with a 30Hz framerate.

iii

iv

Sammendrag

o

Video skalering er en prosess brukt for a endre opplgsningen pa en video. Dette er
mye brukt i profesjonelle kringkastningssystem som skal stgtte mange forskjellige typer
brukerutstyr med ulik opplgsning. Siden profesjonelt kringkastningsutstyr krever a kunne
operere med en kontinuerlig driftstid uten feil pa systemet, er en maskinvare-basert lgsning
a foretrekke over en programvare-basert, da denne ofte har en hgyere ytelse og bedre sta-
bilitet. Denne masteroppgaven fokuserer pa a designe og implementere en maskinvare-
basert video skaleringskrets, og verifisere denne. Designmalet er & kunne kjgre kretsen
pa sa hgy frekvens med sé lav forsinkelse som mulig, mens samtidig & kunne ha et lavt
ressursbruk.

I denne masteroppgaven har en skalererkrets som stgtter n&ermeste-nabo og bi-liner in-
terpolasjon blitt designet og implementert. Resultatene fra syntesetestingen viste at ska-
leringskretsen oppfylte spesifikasjonene som var satt. Den opererte med en maksimums-
frekvens pa over 300 MHz for begge interpolasjonsalgoritmene, mens den kun brukte 1%
av ressursene som var tilgjengelig pa en Intel Arria 10 FPGA. Med et 4-linjers bufferminne
er forsinkelsen gjennom kretsen fire piksellinjer.

Den objektive bildekvalitetstesten ga et lavere resultat for den maskinvare-baserte skalereren
sammenlignet med referansealgoritmene. Derimot kunne man fra de subjektive testene
ikke se noen tydelig forskjell pa resultatene sammenlignet med referansen. Dette hinter
til en mulighet for at de darlige objektive resultatene kom fra at pikslene ble flyttet pa i
posisjon, og ikke at pikslene i seg selv hadde feil fargeverdi.

UVVM ble brukt til & verifisere under-modulene i designet, og en Avalon-ST VIP ble im-
plementert for dette formalet. Dessverre pa grunn av tidsmangel, ble ikke toppnivéet av
designet fullfgrt, noe som gjorde at man ikke kunne bruke UVVM til a verifisere skaler-
ingsalgoritmene.

Ut ifra resultatene kunne man konkludere med at hadde toppnivaet pa skaleringskretsen
blitt fullfgrt, sd kunne dette designet ha skalert video med opp til 4k opplgsning og 30Hz
bildefrekvens.

vi

Preface

This report is the result of a Master’s thesis conducted during the spring of 2019. It is the
conclusion of a five year study in Electronics Engineering at the Department of Electronic
Systems at the Norwegian University of Science and Technology.

A lot of work has been put down into this thesis, and it has given me a lot of experience in
digital design and VHDL coding techniques. The implementation of the Avalon-ST VIP
for UVVM were a big challenge, but it gave me good insight into verification methods for
VHDL designs.

I would like to thank my supervisor Professor Kjetil Svarstad at NTNU, and my co-
supervisor Lars Erik Sogne Paulsen at Appear TV for their help and guidance during this
project. I would also like to thank Appear TV for providing me with the necessary software
needed to implement, test and verify this design.

June 10, 2019

Thomas Stenseth

vii

viii

Table of Contents

Problem Description
Summary
Sammendrag
Preface

Table of Contents
List of Figures

List of Tables

1 Introduction
1.1 Background
1.2 ODbjectives o o i e e e e e e e
1.3 Approach and limitations
1.4 Features and contributions L.
1.5 ReportOutline

2 Video Scaling
2.1 Basicsof VideoScaling
2.2 Nearest-Neighbor Interpolation
2.3 Bilinear Interpolation Lo
2.4 Bicubic Interpolation L. Lo

3 Interpolation on an FPGA
3.1 Reverse Mapping
32 Framebuffer
3.3 Nearest-Neighbor Interpolation
3.4 Bilinear Interpolation L L

4 Hardware Implementation
4.1 Fixed-Point Numbers

iii

vii

xi

xiii

XV

W W NN — -

O 3 N L

11
12
14
15

17
17

4.2
4.3

4.4

4.5

4.6

4.7

TopLevel Design
Interface
4.3.1 Packet Transmission
Controller e
44.1 Controller FSM
Framebuffer
4.5.1 Simpledual-port RAM,
452 Multi-port RAM
453 AnImproved Memory Configuration
Scaler
4.6.1 Scaler FSM
462 ReverseMapping
4.6.3 Nearest-Neighbor Interpolation
4.6.4 Bilinear Interpolation
FIFOs

Verification IP Implementation

5.1 UVVM . . e e e e
5.1.1 Udlity Library o
5.1.2 BFM (Bus Functional Model)
5.1.3 VVC (VHDL Verification Component)
52 Avalon-STVIP
52.1 Avalon-STBFM
522 Avalon-STVVC
523 Memory Concerns oo
Testing and Verification Strategy
6.1 Verifying VHDL Modules
6.2 Scaler Verification and Image Quality
6.2.1 Matlab binary conversion
6.2.2 Objective image quality models
6.23 TestImages e
6.3 Synthesistest
Results and Discussion
7.1 Verification of Sub-Modules
7.1.1 Controller
7.2 Scaler Verification and Image Quality
7.2.1 Nearest-Neighbor Functional Verification
7.2.2 Nearest-Neighbor Image Quality
7.2.3 Bilinear Functional Verification
7.2.4 Bilinear Image Quality L.
7.2.5 Subjectiveimage quality oL
7.3 Synthesistest

Conclusion and Future Work

31
31
31
32
32
33
33
34
35

8.1 VideoScaler. e
8.2 Avalon-STVIP e
83 FutureWork

Bibliography

Appendix

A

VHDL source code

Al FIFO
A.2 Simple Dual-Port RAM
A3 Multiport RAM
A4 MyFixedPackage
A.5 Nearest-Neighbor Scaling
A.6 Bilinear Scaling 4-line Framebuffer
A.7 Bilinear Scaling Full Size Framebuffer
A.8 ScalerController
A9 ScalerTopLevel,

VHDL Testbenches

B.1 FIFOTestbench
B.2 Simple Dual-Port RAM Testbench
B.3 Multiport RAM Testbench
B.4 Scaler Algorithm Testbench With FileIO
B.5 Scaler Top Level Testbench With UVVM
B.6 Scaler Top Level Testharness With UVVM

Avalon-ST Verification IP source code

C.1 Avalon-STBFEM
C.2 Avalon-STVVCTestbench
C.3 Avalon-ST VVC Testharness

MATLAB source code
D.1 ImagetoBinary Function
D.2 Binary toImage Function

Complete test results
E.1 Nearest-Neighbor Interpolation
E.2 Bilinear Interpolation 0oL

55

57

57
57
60
61
63
64
69
77
83
85

89
89
92
94
97
100
104

107
107
117
119

121
121
122

123
123
125

Xi

Xii

List of Figures

2.1 Reverse mappingo ii it e 6
2.2 Nearest neighbor interpolation 7
2.3 Bilinearinterpolation 7
2.4 Bicubicinterpolation L 9
3.1 Serialvideodata 13
3.2 First x-value as the function of scale factor 14
4.1 Scalertoplevel 18
4.2 Timing diagram of packet transmission 19
43 Controller FSM 20
44 Simpledual-port RAM 22
4.5 Mapping pixels in source image to memories [1]. 23
46 Upscaler FSM 24
5.1 Structured VVC architecture [2] 33
6.1 Animated content used for testing 39
6.2 Natural content used for testing. Taken from Planet Earth IT [3] 40
7.1 Output image from nearest-neighbor upscaling from 720p to 1080p 43
7.2 Nearest neighbor upscaling to 1080p using animated content 43
7.3 Nearest neighbor upscaling to 1080p using natural content 44
7.4 Output image from bilinear upscaling from 720p to 1080p 45
7.5 Bilinear bug using 4-line framebuffer 45
7.6 Bilinear upscaling to 1080p using animated content 46
7.7 Bilinear upscaling to 1080p using natural content 47
7.8 MATLAB vs VHDL bilinear upscaling from 360p to 1080p using ani-
mated content L. e e e 48
7.9 MATLAB vs VHDL bilinear upscaling from 360p to 1080p using natural
COMEBNL . .« . v v v v it e e e e et e e e e e e e 48
7.10 Synthesis test nearest neighbor DSP pipeline 51
7.11 Synthesis test bilinear DSP pipeline 51

Xiii

X1iv

List of Tables

5.1

7.1
7.2
1.3
7.4

E.1
E.2
E.3
E.4
E.5
E.6
E.7
E.8

Writing data to FIFO from testbenchusing BFM 32
Synthesis testof submodules L oo 49
Synthesis test using Intel Quartus 18.1 50
Performance on Intel Arria 10GX 1150 50
Resource usage on Intel Arria I0GX 1150 52
MATLAB nearest-neighbor, animated content 123
VHDL nearest-neighbor, animated content 123
MATLAB nearest-neighbor, natural content 124
VHDL nearest-neighbor, natural content 124
MATLAB bilinear, animated content 125
VHDL bilinear, animated content 125
MATLAB bilinear, natural content 125
VHDL bilinear, natural content 126

XV

Xvi

Chapter 1

Introduction

This master thesis builds upon an earlier project thesis conducted at NTNU in the fall of
2018 [4]. In the project thesis, the most common algorithms used for scaling video were
explored, and an implementation of these were done in MATLAB. They were compared
with each other with respect to ease of implementation, complexity of the algorithm, and
their respective performance in image quality after scaling. This master thesis is thus the
final step in implementing these algorithms in hardware, and building a working system
that performs video scaling.

As this thesis heavily explores hardware implementation of mathematical algorithms, the
reader is expected to have knowledge in mathematics, FPGA programming, hardware de-
sign and verification methods. Preferably the reader should also have some knowledge
about digital video, and be familiar with the concept of color spaces, data streams, and
how digital video is being presented to the user.

1.1 Background

As current video formats are evolving and people are moving away from watching linear
TV to watching content on multiple devices, broadcast equipment that supports these new
formats is required. One property of these new devices is that they have displays with
many different resolutions and aspect ratios. It is therefore necessary to scale video to
support these new formats.

Scaling of video requires scaling algorithms which reconstruct data that is not present
in the original material. This is a computational heavy workload, and the design and
implementation of the scaling algorithm is key for the end result. Using pure software-
based scalers to perform the scaling operation is heavily dependent on the underlying
hardware, and the other tasks performed by this hardware simultaneously. Because of
this, software-based solutions is not the most reliable and best performing solutions in
professional broadcast equipment.

Chapter 1. Introduction

A hardware implementation is preferred over a software-based one in broadcasting sys-
tems that require stable 24/7 operation. This way the system is guaranteed to meet its
specifications, and the performance is stable over longer periods without the concerns for
which other tasks that are running simultaneously. Given that new standards for video
delivery are continuously being developed as well, it is often desirable to be able to up-
date the current systems to support these new features. A hardware implementation on an
FPGA is therefore a good choice, as this both guarantees the performance demands to be
met, as well as having the possibility to be updated with newer video standards as these
are being released.

1.2 Objectives

This report will focus on the two most used scaling algorithms, and implement these on
an FPGA using VHDL. These two algorithms will be compared with regards to how much
resources they use on an FPGA, how well they perform in terms of speed, and the image
quality of the output produced. To verify the correctness of the system, UVVM (Universal
VHDL Verification Methodology) will be used, and a Verification IP that complies with
the Avalon-ST Video interface will be implemented for this purpose.

In summary this project aims to:

* Implement a video scaler in VHDL supporting upscaling between resolutions com-
monly used in broadcast systems.

e Implement a VIP (Verification IP) for the Avalon-ST Video interface compliant with
the open-source UVVM (Universal VHDL Verification Methodology) library.

» Test and verify the implemented modules with a focus on meeting the quality and
performance requirements set for the system.

1.3 Approach and limitations

Video scaling can be performed either as an up- or downscaling process. In the down-
scaling process the output consists of less data than the original input, and thus this is a
reduction of information. For the upscaling process the opposite is true, and the system has
to generate more information than what was present in the original source material. This
is a much more heavy computational workload, and in many cases this will be the limita-
tion for how well the system performs. This thesis will therefore focus on the upscaling
process in regards of the implementation and testing.

In order to properly test the design, the testing strategy was split into two parts. The first
part focuses on functional verification of the signaling and state machines using UVVM
and the Avalon-ST Verification IP implemented for this. The other part focuses on correct-
ness of the video output generated by the scaler. This was tested by creating a MATLAB

2

1.4 Features and contributions

script that read the output data from the scaler, and compared this to the built-in scaler in
MATLAB which served as a reference.

The Avalon-ST Video interface specification was chosen for this project because this de-
sign target the Intel Arria 10 FPGA family, and Avalon-ST Video is the interface used by
Intels own proprietary IP cores. This makes the Avalon-ST Video interface well docu-
mented through Intels own user guides, see [S] and [6], and we can expect this interface to
be well suited for implementation of a video scaler on an Intel Arria 10 FPGA.

1.4 Features and contributions

A major contribution of this project is the Avalon-ST VIP implemented for verification
with UVVM. This VIP is non-existing amongst the included VIPs in UVVM, or withing
the open-source UVVM community, and it will therefore be uploaded to the UVVM com-
munity with a MIT licence for public use. It can then serve as a foundation for other users
who need UVVM verification of modules utilizing the Avalon-ST interface.

The main contribution will be the implemented scaling algorithm together with the sub-
modules created for this project. These will also be published in a public repository on
GitHub with a MIT licence for others to use. A lot of groundwork has been made to
optimize these algorithms to utilize built-in DSPs on the FPGA, so these designs can be
used as a basis for other video scaling implementations.

1.5 Report Outline

This report first presents the basics of video scaling together with a detailed explanation of
the inner workings of the different scaling algorithms in Chapter 2. Chapter 3 then exam-
ines these algorithms further, and provide a possible manner to which these algorithms can
be implemented on an FPGA. The actual hardware implementation details is discussed in
Chapter 4, where the implementation details for each of the sub-modules making up this
design is discussed separately. Chapter 5 gives a brief introduction to UVVM and its com-
ponents, before discussing the implementation details of the Avalon-ST VIP. The testing
and verification strategy is discussed in Chapter 6, and the test images used for this project
are presented here. Finally the results are presented in Chapter 7 together with discussions
around these, and the final conclusion is drawn in Chapter 8.

Chapter 1. Introduction

Chapter 2

Video Scaling

2.1 Basics of Video Scaling

Video scaling is the process of changing the resolution of the frames making up the video.
If the resolution is reduced from its original size, a process know as downscaling, the
amount of information in each frame will be reduced. This happens since the number of
pixels in each frame is reduced. Upscaling, on the other hand, is the process of increasing
the amount of pixels in each frame, which also increases the amount of information in
each frame. Construction of new pixels in a scaling process from the pixels in the original
frames is known as interpolation.

When a video frame is scaled using an interpolation algorithm, the pixels in the new frame
has to be mapped to the original frame by a mapping function. This mapping function de-
fines which pixels in the original frame that should be used by the interpolation algorithm
to create the new pixel. There are two directions the mapping function could operate, and
these are known as source-to-target and target-to-source mapping, or forward- and reverse
mapping respectively.

In the forward mapping function, each pixel in the source frame is used as a basis and the
corresponding pixel in the target frame is calculated from these. This can be described as
the mathematical function

(«',y') =T(z,y) (2.1)

where 2’ and 3/ is the target pixels. This is a hard way to compute the new pixel values,
since the mapping function might not have all the necessary information about the target
frame to produce a correct result. A result of this is the possibility of introducing holes in
the target pixels when one or more pixels are forgotten [7]. A more natural way is therefore
to use reverse mapping.

Chapter 2. Video Scaling

The reverse mapping function uses the new pixels as a basis, and calculate their respective
position in the source frame. This can be seen in Figure 2.1.

Figure 2.1: Reverse mapping

The mathematical expression of reverse mapping can be expressed as

(z,y) =T (',y) 2.2)

and by using this mapping function, it is easier to determine which pixels in the source
frame the interpolation algorithm should utilize to generate the new pixel in the target
frame. By using reverse mapping you also ensure that all the pixels in the target frame are
given values. In the forward mapping method there is a possibility of generating “holes”
which are pixels without intensity values. This is not the case with reverse mapping.

2.2 Nearest-Neighbor Interpolation

The most basic interpolation algorithm is the nearest-neighbor interpolation algorithm.
After the reverse mapping function has calculated the new pixels relative position in the
source frame, nearest-neighbor algorithm simply chooses the value of the pixel in the
source frame that is closest to the new pixel. This can be described mathematically with a
kernel using the weighting coefficients

1 for —05<2,y<0.5
W (,7) = { Y 2.3)

0 otherwise
The function for calculating each pixel’s intensity value is thereby given as

f(m/uy/) = f(.’IJ, y) : Wnn<xl - xay/ - y) (24)

An illustration of nearest-neighbor interpolation in a single dimension can be seen in Fig-
ure 2.2, where the black dots represent the original pixels in the source frame.

2.3 Bilinear Interpolation

Hﬁ

®y Xy ®y ®y ®'s ®g x ¥

Figure 2.2: Nearest neighbor interpolation

Since nearest-neighbor interpolation simply takes the values of the nearest pixel, the end
result is a very pixelated image. This is generally not a desired result, unless the source
material is pixel art. However, nearest-neighbor interpolation has a very low computational
requirement, and can easily be done in real-time as it is basically a copy-paste operation.

2.3 Bilinear Interpolation

Bilinear interpolation uses a 2 x 2 neighborhood of pixels, as a basis to assign appropri-
ate intensity values to new pixels. It takes the 4 surrounding pixels of the position in the
source frame calculated by the reverse mapping function, and calculate a weighted average
of these to determine the new pixel intensity. Figure 2.3 demonstrates the concept of bilin-
ear interpolation with (z’, y') representing the position calculated by the reverse mapping
function.

(%1, ¥2) (X, y2) (%2, ¥2)
® . o
(J-\ (L'
® O o

(%1, ¥1) 0, ¥ (%2, ¥1)

Figure 2.3: Bilinear interpolation

As the name suggest, bilinear interpolation uses a linear kernel to calculate the weight of

7

Chapter 2. Video Scaling

each pixel [8], and the weighting coefficients are given by

1—z forlz| <1

I/Vlm(ac) = {

0 for |z| > 1

(2.5)
W (y) = 1—y forlyl <1
=0 for [y| > 1

where each weighting coefficient determines intensity in one direction. The kernel for
bilinear interpolation would then use the combined weighting coefficient

Weir(z,y) = Wiin(x) - Wiin(y) (2.6)

Using the kernel with the weighting coefficients shown in Equation 2.5, we can develop a
practical implementation-friendly algorithm for calculating the new pixel intensities. By
first performing interpolation in the x-direction, we could generate two new pixel points,
shown as (2’,y2) and (2/,y1) in Figure 2.3. These new points would then be used to
calculate the final pixel intensity, shown as (z’,y’) in Figure 2.3.

By using the x-direction as the first interpolation direction, we get the two intermediate
values (2, y2) and (2’,y;) as given by Equation 2.7 and 2.8.

x9 — 1’ -z

f@') = x;_xlf(whyl)"_ $2_x11f($2,y1) 2.7
x9 — 1’ —x

f@' y2) = zj 0 f(z1,y2) + - 1:11 f(z2,92) (2.8)

From Equation 2.7 and 2.8 we see that each of the four neighbouring pixels are counted
towards the two new intermediate intensity values based on the distance they reside from
the point given by the reverse mapping algorithm. These two intermediate values is then
used to calculate the final value of the pixel. The two values are interpolated in the y-
direction as shown in Equation 2.9

/

—_ / —_—
Fa)~ 2)+ L ol) 2.9)
Y2 — Y1 Y2 — Y1

which yield the final intensity of the new pixel in the target frame.

By using a 2 x 2 neighborhood of pixels and taking a weighted sum of these, the end
result of bilinear interpolation is a more correct result than nearest-neighbor interpolation.
This way several pixels determine the value of the new pixel, and we avoid situations
where the end result is very pixelated. This is especially favourable for natural content
where sharp changes from pixel to pixel is scarce. However, bilinear interpolation is more
computational demanding than nearest-neighbor as it requires several operations per pixel
for the interpolation process.

8

2.4 Bicubic Interpolation

2.4 Bicubic Interpolation

As with bilinear interpolation, bicubic interpolation uses a neighborhood of pixels as a
basis to calculate the value of the new pixel. The neighborhood consist of 4 x 4 pixels,
and an illustration of this can be seen in Figure 2.4.

(%1, ¥a)

(1. ¥)

ey

txa ¥

(%2, ¥1) j (%3, ¥1) j
(%4, Y1)

Y

Figure 2.4: Bicubic interpolation

(%1, ¥1)

Bicubic interpolation utilizes a more advanced convolution algorithm to calculate the
weight of the pixels from the source frame [9]. The weight of each pixel is calculated
from the following kernel

(a+2)|z]> = (a+3)x*+1 for|z| <1
Weus(z) = ¢ alz]® — balz|? + 8alx| —4a if1 < |x] <2 (2.10)

0 otherwise

In this kernel the value of a is usually set to —0.5, as this is the only value that will achieve
third-order precision [9]. Using a = —0.5 and having |z| < 2, which is the case for a
4 x 4 neighborhood, W_,,;(x) simplifies to

Wcub (37) -

{1.5|x3—2.5x|2+1 for |z < 1 o1

—0.5|z> + 2.5z —4|z| +2 ifl<|z] <2

The complete kernel for bicubic interpolation in two dimensions is given by multiplying
the cubic kernel in both x- and y-direction:

Chapter 2. Video Scaling

Wbic(mv y) = Wcub(m) . Wcub(y) (212)

Using Figure 2.4 as a basis, and the kernel for bicubic interpolation to calculate the weight
of each pixel in the 4 x 4 neighborhood, the formula for bicubic interpolation becomes the
sum

[/ +2 [Ly'J+2
@)=Y S f@y) Whiela' — 2,9 —y) (2.13)

r=[z']-1 |y=[y']-1

This operation is much more computational intensive than bilinear interpolation, but it can
also easily be done in parallel. Because of the larger number of source pixels used to
determine the value of the new pixel, and the third-order kernel, the end result of bicubic
interpolation is usually more accurate and correct than for nearest-neighbor and bilinear
interpolation [9].

10

Chapter 3

Interpolation on an FPGA

3.1 Reverse Mapping

Reverse mapping takes each pixel position in the output frame and calculates the corre-
sponding pixel position in the input frame. This makes reverse mapping well suited for
applications where the input can be buffered, and a streamed output is required, see chap-
ter 9.2 in [7]. With reverse mapping you also ensure that there is no holes in the output
frame, since the output frame is being generated based on the number of pixels in the
output frame itself, not on the input frame.

In the previous project thesis [4], the reverse mapping function was handled by iterating
though each pixel in the output frame, and calculate each pixels relative position in the
input frame. This was done using the same method for coordinate orientation and interval
calculation as was used by [8], and the equation is given as

! 1
T = I +05%x(1— ———
scalefactor scale factor 3.1)

Y 1
=——+05 l-—
Y scale factor Oox (scalefactor)

where (X, y) is the pixel position in the input frame and (x’, y’) is the pixel position in
the output frame, with x and y being the column and row position respectively in a 2D
matrix. The scale factor component is the number of pixels in one direction of the output
frame compared to the input frame, so an upscaling from 1280x720 to 1920x1080 would
give a scale factor of 1080/720 = 1.5 in the x-direction. This would also be equal for the
y-direction as the aspect ratio is preserved after scaling.

We can see from Equation 3.1 that this calculation has one multiplication and two division
operations. Division operations on an FPGA is hard, especially when using non-integer

11

Chapter 3. Interpolation on an FPGA

values as is the case with a scale factor of 1.5. Multiplication can be handled more easily
with the use of built in DSPs on an FPGA. A more suited equation for calculating (X, y)
on an FPGA would therefore be to rewrite Equation 3.1 to only have multiplications. This
can be done by first separating out the scale factor division, which is a constant, as

1
e — 3.2
scalefactor (3-2)
and then use this result to rewrite Equation 3.1 as
r=a"xc; +05x%(1—c
' (1-e) (3.3)

y:y/*61+0.5*(1761)

Investigating Equation 3.3 we see that this can be further optimized. The final part of the
equation is also always constant, and thus it is only the first part of the equation that needs
to be calculated for each new (x’, y’) value. We could therefore separate the last part as

co=05%(1—cp) (3.4)

which would yield the final two equations to be performed on an FPGA for each pixel as

r=a"%c; + ¢y
, (3.5)
y=y *xc1+c

Equation 3.5 only consist of one multiplication and one addition, this is something that
can be well optimized on an FPGA by using DSPs and pipelining.

3.2 Framebuffer

To be able to use reverse mapping on an FPGA, the input video frame has to be buffered
in a framebuffer. This is especially true for any interpolation algorithm that requires a
neighborhood of pixels in an input frame to calculate the new pixel in the output frame. If
the frame is not buffered, pixel values might be lost before the interpolation algorithm gets
to use them for the calculation of the new pixel values.

In many cases a digital video signal is being delivered as a stream of serial data with one
pixel being sent at a time, staring from the upper left-hand pixel of a video frame, and
finishing with the lower right-hand pixel. Because of this, each pixel is only available for
one clock cycle on the data bus, and thus is it very important that the pixel data is buffered
in a framebuffer. An illustration of the serial video data transfer can be seen in Figure 3.1

12

3.2 Framebuffer

Y

N-5 [N-4 | N-3 [N-2 [N1 N

Figure 3.1: Serial video data

A complete frame of a video contains a lot of data. Given an input video with the resolution
1920x1080, each frame holds ~ 2 - 10° pixels. If each pixel contains 24-bit of data, 8-bit
per colour component, a complete frame consist of ~ 50 Mbit of data. This is a very large
amount of data that needs to be stored in a framebuffer. Luckily we can exploit the fact
that video data often is being transmitted in a series. This way, we only need to store some
of the lines in the video frame at any given time.

Given that we use bilinear interpolation as our scaling algorithm, we need a neighborhood
of 2 x 2 pixels to generate a new pixel for our output data. This way we only need two
lines of video data in our framebuffer to do the interpolation. By using reverse mapping
and starting the interpolation with the upper left-hand pixel in the output image, the scal-
ing algorithm will flow naturally through the buffered lines in the framebuffer, at the same
time generating output data in the same serial fashion as the input data. When the interpo-
lation algorithm is done with these two lines, they are no longer needed, and their memory
addresses in the framebuffer can be reused.

While the interpolation is taking place, new data will arrive on the input, and this data
would need to be buffered in the framebuffer. If the scaler implementation produces one
new video output line at the same rate as one input line is being received, the framebuffer
will be emptied at the same rate as it is being filled. This way you would need a frame-
buffer that is twice the size of the minimum requirement of the pixel-neighborhood of the
interpolation algorithm used.

Using bilinear interpolation as an example, this would require a 4-line framebuffer. When
two lines have been processed, two new lines would have been filled in the framebuffer.
When the interpolation algorithm starts working on these two new lines, the memory ad-
dresses of the two old ones are free, and they can be refilled by the incoming video data.

Theoretically, bilinear interpolation could also be performed using a 3-line framebuffer,
or even a 2-line framebuffer where the new data is being written to the memory address
just emptied by the scaler. However, this could lead to unwanted situations where data is
overwritten before it is being read by the scaler if the scaler stalls for a couple of clock
periods, or vice versa in a situation where the input data is being stalled while the scaler
keeps on going. Using a framebuffer twice the size of the required neighborhood-pixels
always put at least one line between the read and write process to the framebuffer. This
way the design would have several clock cycles headroom to halt if for instance the input

13

Chapter 3. Interpolation on an FPGA

data is interrupted for a couple of cycles.

3.3 Nearest-Neighbor Interpolation

As discussed in Chapter 2.2, using nearest-neighbor interpolation with reverse mapping
consists of finding the pixel closest to the position in the source frame given by the reverse
mapping function. Studying Equation 3.1 we see that using scale factor > 1, which is
the case for an upscaling process, cz from Equation 3.4 is always withing the boundaries

0<cy <05 (3.6)

Looking at Equation 3.5 we also see that

0< (2 *c;) <1 3.7

when having scalefactor > 1, and that (2’ % ¢;) decreases in value as ¢ increases.
Knowing this we can make a plot of what the first x-value from Equation 3.5 would be
when having different scale factors. This plot can be seen in Figure 3.2.

first x-value

4
| scale factor |

Figure 3.2: First x-value as the function of scale factor

As seen from the plot in Figure 3.2, having scalefactor > 1 always implies that

r<1 when 2z =1. (3.8)

The same is true for the first y-value. Knowing this is something that can be exploited in
the nearest-neighbor interpolation algorithm. Memory addresses in VHDL are 0-indexed,
which means that we can use a floor rounding method on the (x, y) values to do a nearest-
neighbor interpolation. This means that the first pixel would be memory address 0, which

14

3.4 Bilinear Interpolation

is the upper left-hand pixel in a framebuffer using the serial data as illustrated in Figure
3.1

Continuation of the nearest-neighbor algorithm would then be to increase x’ using the re-
verse mapping function. By doing this, and always use the floor function, the interpolation
process would flow through one row of the input frame. When the row has been com-
pleted, the reverse mapping algorithm would increase y’ by 1, and y would eventually take
the value 1. To be able to calculate the memory addresses of the next row of pixels, we
could use the known information about the resolution of the input video.

By knowing that data in the framebuffer is stored serially, we could increase the memory
address to be read equal to the width of a row of pixels. This can be expressed with the
equation

addr gy, = floor(y) * ra,, + floor(z) 3.9)

where addr ¢y, is the memory address in the framebuffer, and rx,, is the width of the input
video frame. Thus by using Equation 3.5 to calculate the new pixels relative position in
the input frame, increase x’ to run through a row of pixels before increasing 3’, and then
use Equation 3.9 to calculate the memory address in the framebuffer, we would have a
working nearest-neighbor interpolation algorithm.

3.4 Bilinear Interpolation

As with nearest-neighbor, bilinear interpolation can use the same concept for calculat-
ing memory addresses in the framebuffer. Using the same concept for reverse mapping
calculation, and the first address as given in Equation 3.9, we can extend this to get the
addresses for the neighboring pixels as well. Since bilinear interpolation uses a neighbor-
hood of 2 x 2 pixels, we can use Equation 3.9 to represent pixel (x1, y2) from Figure 2.3,
and extend this address by one to get the pixel-data for pixel (z2, y2). This way these two
pixels will have the memory addresses

(x1,y2) = floor(y) * ra., + floor(x) (3.10)
(w2, y2) = floor(y) * ray, + floor(z) + 1 '

To get the two pixels (x1,y1) and (x2,y1) we can simply increase the memory address by
the size of one row in the video frame. This way these two pixels would have the memory
addresses

(z1,91) = (floor(y) + 1) * ray, + floor(x)

(x2,91) = (floor(y) + 1) x ray, + floor(x) + 1 3.11)

15

Chapter 3. Interpolation on an FPGA

One problem with these memory address calculation is that (x5, y2) will be outside the
row on the final reverse mapping calculation, and (x1,y;) and (z2, y1) will be outside of
the input video frame on the entire last row. However, this can be compensated by setting
x9 = x; for the last pixel in the row, and setting y; = y5 for the final row.

After the framebuffer addresses have been calculated, the weighting of each of these pixels
should be calculated. This is done by using Equations 2.7 and 2.8. Ideally this should be
done using infinite precision, however, this is hard to do on an FPGA. Therefore a good
option to allow for fast computation would be to use fixed-point numbers and DSPs to do
these calculations. Finally the new pixel value is calculated by using Equation 2.9, and a
rounding function to make the result an integer value.

The accuracy of this approach is decided by the number of bits used to represent the
fractional part of these fixed-point numbers. Using the unsigned Q number format UQm.n,
the range and resolution of the numbers would be

range: [0,2™ — 27"]

. (3.12)
resolution: 27"

where m is the number of bits representing the integer part, and n is the number of bits
representing the fractional part. It is important to choose appropriate values for m and n so
that as high a degree of accuracy is achieved, while being able to do calculations efficiently
on the FPGAs built-in DSP.

16

Chapter 4

Hardware Implementation

4.1 Fixed-Point Numbers

This design were implemented with performance and resource usage in mind. The design
goal was to be able to run the design at a minimum frequency of 300 MHz, and to use as
little resources as possible on the FPGA.

As discussed in the previous chapter, DSP multiplication with fixed-point numbers could
be a solution to meeting the frequency requirements. This is backed up by a white paper
published by Xilinx, where the DSP performance using fixed-point representations were
16% faster with a 7.5x lower latency compared to using single-precision floating point
numbers for a simple FIR filter implementation [10]. The resource usage was significant
lower as well, with a 5x reduction in the number of DSPs required, and 11x lower LUT
usage.

Looking at these numbers it is clear that fixed-point representation can have a great ad-
vantage over single-precision floating point numbers in designs that heavily utilizes DSPs,
especially when it comes to resource usage, and this is the reason why fixed-point numbers
were used in this design.

4.2 Top Level Design

The implementation of the scaler started with the planning of the top level design, and
the different sub modules needed to perform the scaling operation. From Chapter 3 it was
clear that a framebuffer was needed to buffer the input video data for the reverse mapping
function to work properly. A controller was also needed to control the flow of video data
to the framebuffer, and to start and stop the scaler itself according to the data present in
the framebuffer. It therefore became clear that at least three main modules was needed, a
controller, a framebuffer and a scaler. These three main modules can be seen in Figure 4.1.

17

Chapter 4. Hardware Implementation

controller

IDLE
data_out
VIDEQ_ CONTROL_ cirl_pKL_
PACKET PACKET generator
data_out

Avalon-ST N
video ¢

OTHERS decode_packet

{

‘ passthrough

””””””” framebuffer! """"\V”f”’s’{a’\;

data_
organizer

| !

video_data data_out

e = M

Scaler config:

output_width

output_height
scaling_method

video_
line_bufier

Figure 4.1: Scaler top level

As seen from Figure 4.1, the idea was to have the controller receiving all the input data
and process this. When a scale operation was needed, the controller would start filling the
framebuffer and subsequently enable the scaler when enough data had been filled in the
framebuffer. The video data would then be processed by the scaler and passed on to an
output FIFO that would deliver the finish data on the output of the scaler. The complete
source code for the scaler implementation can be seen in Appendix A.

4.3 Interface

To be able to send and receive data to and from the scaler design, an main interface had to
be specified. Since this project were targeted to run on an Intel Arria 10 FPGA, the most
natural thing was to explore the interfaces used by Intels proprietary IP cores for video
data, and see if a similar interface could be used in this design.

After studying the user guide on Intels Video and Image Processing Suite [6], it quickly
became apparent that the Avalon-ST Video interface would be a suitable choice for this
project. By using the same interface for this design, a lot of work would be saved by not
having to test and validate the correctness of the interface itself, as one can expect this to
be a good choice for transmitting video data as it is already used by Intels proprietary IP
cores.

18

4.3 Interface

4.3.1 Packet Transmission

The choice of method for packet transmission in this design landed on the Avalon-ST
YCbCr 4:4:4 Video Packet [6], only with a different position of the colour components
in the data bus for an easier comparison with the old MATLAB implementation from the
project thesis [4]. A timing diagram of this packet transmission method using 8-bit pixel
values can be seen in Figure 4.2.

cok [LTI LI LI L L L
Startofpacket _/_\

Endofpacket
Data[23:16] B oo JCranfCren)
Datapiss) I wof (2 (|
Data[7:0] B o o) Y Yoo Y Veo |

Empty . .
g [\ [L
Reay [L

Figure 4.2: Timing diagram of packet transmission

As seen by Figure 4.2, this packet transmission specification uses a “ready latency” of 1
clock cycle. This means that when a module asserts its ready signal, it will be ready to
receive data on the next clock cycle. Likewise, when the ready signal is set to low, the
module is expected to accept a packet coming on the next clock cycle. The valid signal is
asserted to tell when there is data on the data bus.

Startofpacket and endofpacket signals are asserted to tell the module which symbol is the
first and last respectively in a serial data transfer. This will later be used to tell when we
have the beginning of a video frame, and when the last pixel in that video frame arrives.

From Figure 4.2 we can see that the startofpacket signal is asserted along with the data
value 0 on the clock cycle prior to the arrival of the first pixel data. This is because the
first symbol transmitted is a packet type identifier telling the module what kind of data that
is being transmitted. This design uses the same packet type identifiers as specified in the
Avalon-ST Video transmission [6], hence the value ”0” represent a video data packet.

Finally the empty signal tells how many symbols in the last transmission there are which
are not populated by pixel data. This is used when several pixels are transmitted in parallel.
However, this design only uses a transmission of one pixel at a time, so the empty signal
will not be used in this implementation.

19

Chapter 4. Hardware Implementation

4.4 Controller

The first part of the design that receives any data is the controller module from Figure 4.1.
The main functionality of the controller module is to check what kind of data that is being
sent to the scaler, and act accordingly. This is done by decoding the packet type identifiers
sent with the Avalon-ST Video transmission.

There are two packets that are handled by the scaler, control packets and video data pack-
ets. Control packets contains information about the incoming video frame, like its resolu-
tion, while the video data packet contains pixel data from the incoming video frame. Other
types of packages defined by the Avalon-ST Video transmission is not supported by this
scaler design.

4.4.1 Controller FSM

A Mealy finite-state machine is used to control the controller with the packet type identifier
being used as the input for the state machine. A flowchart of the state machine in the
controller can be seen in Figure 4.3.

Istartofpacket

others

endofpacket endofpacket

video _data

lendofpacket lendofpacket

Figure 4.3: Controller FSM

From Figure 4.3 the controller starts in the IDLE state waiting for a startofpacket signal.
When the controller receives a startofpacket signal it goes to the CHECK_TYPE state

20

4.5 Frame buffer

which checks what kind of packet that is being received. If this is a non-supported packet
type, the state machine returns to IDLE position and simply passes the packet through to
the output of the scaler.

When the packet type is a control packet, the state machine goes to the CTR_PKG_GEN
state where the control packet is decoded. The control packet contains information about
the resolution of the upcoming video packet. This is passed on to the scaler to be able to
set up the framebuffer to a correct size. The controller then generates a new control packet
based on which output resolution the scaler is going to produce after scaling, and this is
packed in the same way as the control packet described in “Intel Avalon-ST Video Control
Packets” [6]. Once the new control packet has been generated and sent on the output, the
controller returns to the IDLE state, waiting for a new startofpacket.

In the case where the packet type is video data, the controller goes into its SCALE state. In
this state a startofpacket signal is sent together with the first pixel data to the scaler, thereby
initiating the filling of the framebuffer and starting the scaler. A big difference here in the
internal design is that the startofpacket signal is sent to the scaling module together with
the first pixel value Y C'bC'r (g o). The packet type identifier with its startofpacket signal
from Figure 4.2 is not passed on to the scaler module as this is only used by the controller.

The controller holds the SCALE state until the endofpacket signal is received, in which the
controller passes on the endofpacket signal together with the last data entry to the scaler,
and returning to its IDLE state.

Receiving a reset signal always makes the controller go back to the IDLE state, and thereby
aborting any current state.

4.5 Frame buffer

Once video data is received by the controller and passed on to the scaler module, it is
buffered in a framebuffer. As discussed in Chapter 3.2, video data is received in a serial
fashion starting with the upper left-hand pixel in an 2D image. This way several lines of
pixels has to be buffered in the framebuffer before the scaler can begin.

4.5.1 Simple dual-port RAM

To be able to buffer a decent amount of data while still having good memory performance,
a simple dual-port RAM using the built in M20K memory of the Arria 10 FPGA was
implemented. An illustration of the simple dual-port RAM implemented can be seen in
Figure 4.4.

21

© % N U AW o —

Chapter 4. Hardware Implementation

clk
—>
wr_en
—>
Simple dual-port
wr_addr RAM rd_addr
——
data_in data_out
EEE—

Figure 4.4: Simple dual-port RAM

The simple dual-port memory was implemented using a single process. At each rising
edge of the clock, the data on the input would be written to the given memory address
when wr_en was set to high as seen in Listing 1.

p_ram : process (clk_1i)
begin
if(rising_edge(clk_i)) then
-— Write to RAM

if(wr_en_1i = '1') then
ram_data (wr_addr_i) <= data_i;
end if;
Read from RAM
ram_out <= ram_data (rd_addr_1i);
ram_out_reg <= ram_out;
end if;

end process p_ram;

Listing 1: Simple dual-port RAM

A register was used on the output of the simple dual-port RAM. This was done to achieve
the highest possible performance from the RAM.

Nearest-neighbor interpolation was implemented using a 4-line framebuffer with simple
dual-port RAM. This way the scaler design would have a lot of pixels buffered to be able to
produce a steady output of pixels even if there would be an uneven flow of input video data.
Using 8-bit pixel values and a 1080p video input, this would result in 4 % 1080px * 24-bit ~
104 Kbit of memory being used on the FPGA.

4.5.2 Multi-port RAM

As discussed in Chapter 3.2, a 4-line framebuffer would be needed for bilinear interpola-
tion. This was implemented for the nearest-neighbor interpolation algorithm using simple
dual-port RAM. One problem with this implementation is that you are only able to read
one value from the memory at a time, which becomes a problem in bilinear interpolation
when you need 4 pixel values per calculation.

To overcome this a multi-port RAM design was implemented. This consisted of four
identical simple dual-port RAM designs, where each sub-memory holds identical data.

22

4.5 Frame buffer

Thus when there is new data on the input, and this is to be written to RAM, it is being
written to all four simple dual-port RAMs. The output, however, is separate for each sub-
memory. This allows the multi-port RAM to read four different pixel values each clock
cycle.

The downside of this design is that it uses four times the memory by storing each pixel in
four different memories. Because of this, the multi-port RAM takes up about 4 * 104 =
416 Kbit of memory on the FPGA. However, using the Intel Arria 10 GX 1150, there are
54,260 Kbit of M20K memory available on the FPGA [11], so this only amounts to ~ 1%
of the total memory available.

4.5.3 An Improved Memory Configuration

A better alternative to using four identical simple dual-port memories to store pixel data
for bilinear interpolation could be to use what Suhaib A. Fahmy presented in [1], which
can be seen in Figure 4.5.

D memory 0
D memory 1

(b)

D memory 0
D memory 1
. memory 2
. memory 3

©
Figure 4.5: Mapping pixels in source image to memories [1].

In Fahmys paper you either use four simple dual-port memories, seen in Figure 4.5 (c),
or two true dual-port memories, seen in Figure 4.5 (b), but the incoming pixels are stored
in separate memories according to their position in the source image, seen in Figure 4.5
(a). This way you don’t need to have four copies of every pixel and you save 3/4 of the
memory used. However this requires a more complex logic to keep track of which pixels
are in which memory. Because of this, and the time limiting factor, a simpler solution
using four identical simple dual-port memories as framebuffer was implemented.

23

Chapter 4. Hardware Implementation

4.6 Scaler

The idea behind the scaler implementation was to have the controller dynamically setting
up the scaler with respect to resolution and scaling algorithm based on the control packet
received and a configuration file. This is seen in the top level design in Figure 4.1. Unfor-
tunately, due to time limitations, this part of the design was never completed. The scaler
module is thus currently working as an independent module using VHDL generics to con-
trol the input and output resolution, and some work is still left to connect til scaler module
with the controller.

4.6.1 Scaler F[SM

The scaler module is controlled by a Mealy finite-state machine, and a flowchart of this
state machine can be seen in Figure 4.6.

Istartofpacket

fb_line_complete
& scaler_done

startofpacket

fo_full_
next_clk

PRE_FILL_FB FINISH_FILL_FB

fo_full
UPSCALE

Ifb_line_complete

A
fb_full_
next_clk

fb_line_complete
& Iscaler_done

ifb_full_
next_clk

UPSCALE_
AND_FILL

1fb_full_
next_clk

Figure 4.6: Upscaler FSM

When the scaler is in its IDLE state there is no data in the framebuffer. After receiving
a startofpacket signal from the controller, the framebuffer is filled up with four lines of
pixel data. When the framebuffer is full on the next clock cycle, it transitions to the
FINISH_FILL_FB state. This is done because of the 1 clock cycle delay of the ready
signal used in Avalon-ST Video [6], which requires the module to set its ready signal to
low one clock cycle before receiving the last data. The ready signal goes low when the last
pixel is filled in the framebuffer, and then the scaler goes to its UPSCALE state.

The upscaling takes place until one line in the framebuffer have been competed. The scaler
runs through one line at the time due to the reverse mapping function, and when this line

24

LR T Y N T

4.6 Scaler

is done, the framebuffer is ready to receive one new line of pixels. A transitioning is then
happening to the UPSCALE_AND_FILL process, where both filling of that one line in the
framebuffer and upscaling is taking place. The ready signal goes high at this point allowing
the filling of this one line in the framebuffer, before going low in the FINISH_FILL_FB
state to handle the 1 clock cycle delay.

When the reverse mapping function have run though all of the lines in the input video
frame, the scaler finish the last calculations before returning to its IDLE state, waiting
for the next startofpacket on the next video data. The ready signal is low in this period
preventing the scaler from missing a startofpacket signal.

4.6.2 Reverse Mapping

The reverse mapping function was implemented using the optimized equations from Equa-
tion 3.5. To be able to calculate these equations on a DSP, they were split into two as seen
in Listing 2.

ixed point DSP multiplication of variable part of dx/dy calculation
<= x_count_ufx_reg * scaling_ratio_reg;

dy_1 <= y_count_ufx_reg % scaling_ratio_reg;

dx_1_reg <= dx_1;

dy_1_reg <= dy_1;

Constant part of dx/dy ca - !
dxy_2 <= to_ufixed (0.5, 1, -2) % (1 - resize(scaling_ratio_reg, 12,
— —14));

dxy_2_reg <= dxy_2;

Final dx/dy calculation

dx <= dx_1_reg + dxy_2_reg;

dy <= dy_1_reg + dxy_2_reg;
dx_reg <= dx;

dy_reg <= dy;

Listing 2: Reverse mapping calculation

First the 2’ * ¢; and 3’ * ¢; calculations from Equation 3.5 was calculated as seen in line 2
and 3 from Listing 2 using an 18x18 multiplication DSP on the Arria 10 FPGA. The 18x18
multiplication DSP supports two 18-bit unsigned multipliers with 37-bit output [12].

The 2’ and 3 values were represented using an UQ12.0 fixed-point representation. This
gave 12-bits for the integer part, meaning that an output resolution consisting of 2!2 =
4096 pixel in both width and height dimension is supported. There was no need for a
fractional part since these numbers represent the pixels in the output video frame, which
are of integer values.

For the c; value, seen as scaling_ratio_reg in Listing 2, an UQ3.12 fixed-point represen-
tation was used. Having a 3-bit integer part means that you could support downscaling
as well, as this will give ¢; > 1. For the upscaling process the accuracy of c; is given

25

e Y N

Chapter 4. Hardware Implementation

by the 12-bit fractional part, which gives a resolution of 2712 ~ 0.000244. This way the
reverse mapping function will be very accurate while still being able to be calculated on
the built-in DSP.

After the DSP multiplication, the c; value was added to the result, thus completing the
reverse mapping calculation using Equation 3.5.

To keep the reverse mapping algorithm inside the 4-line framebuffer a check was imple-
mented as seen in Listing 3.

—— Check if all rowns in line buffer is completed
if dy_reg >= C_LINE_BUFFERS then

—— Reset y_count for fram r addresses

y_count <= 0;
y_count_ufx <= to_ufixed (0, y_count_ufx);
y_count_ufx_reg <= to_ufixed (0, y_count_ufx_req);

Variable part of dx/dy is zero, use only constant part

dy <= resize(dxy_2_reg, dy'h , dy'l ;
dy_reg <= resize(dxy_2_reg, dy'h , dy'low);
dy_int <= 0;

else
dy_int <= to_integer (dy_req);

end if;

Listing 3: Keep dy within the framebuffer

This way when the dy-calculation stated that line number 5 in the framebuffer was up
next, the dy-value was instead reset to start from line O thereby looping the four lines in
the framebuffer until the frame was completed.

4.6.3 Nearest-Neighbor Interpolation

After calculating a pixels relative position in the input frame using the reverse mapping
function, the framebuffer address of that pixel were calculated. This was done as seen in
Listing 4

Use floor from my_fixed_pkg to get dx/dy to integer for fb_rd_addr
dx_int <= to_integer (dx_req);
dx_int_reg <= dx_int;
dy_int_reg <= dy_int;

Find nearest neighbor address for framebuffer

fb_rd_addr_i <= g_rx_video_widthxdy_int_reg + dx_int_reg;

Listing 4: Nearest-neighbor interpolation

Here the floor function was performed by doing truncation. This way the digits right of
the decimal point was limited, which is a very quick operation to do on an FPGA.

26

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

4.6 Scaler

4.6.4 Bilinear Interpolation

Bilinear interpolation uses the same method for reverse mapping calculation as nearest-
neighbor interpolation. However, bilinear interpolation requires a 2 x 2 neighborhood of
pixels to calculate the new pixel value. The position of these pixels in the input frame
needed therefore to be calculated, and this was done as seen in Listing 5.

if dx_reg < 1 then
x1_int <= 1;
x2_int <= 2;
dx_reg_1l <= to_ufixed(l, dx_regqg);
elsif dx_reg > g_rx_video_width then
x1_int <= g_rx_video_width - 1;
x2_int <= g_rx_video_width;
dx_reg_1 <= to_ufixed(g_rx_video_width, dx_regq);
else
x1_int <= to_integer (dx_req);
x2_int <= to_integer (dx_reg) + 1;
dx_reg_1 <= dx_reg;
end if;

if dy_reg < 1 then
dy_int <= 1;
yl_int <= 1;
y2_int <= 2;
dy_reg_1l <= to_ufixed(l, dy_req);
elsif dy_reg >= C_LINE_BUFFERS+1 then
-— Start from beginning of framebuffer when both lines have been
— completed

y_count <= 1;

y_count_ufx <= to_ufixed(1l, y_count_ufx);

y_count_ufx_reg <= to_ufixed(l, y_count_ufx_reqg);

dy <= resize(scaling_ratio_reg + dxy_2_reg, dy);
dy_reg <= resize(scaling_ratio_reg + dxy_2_reg, dy);
dy_int <= 1;

yl_int <= 1;

y2_int <= 2;

dy_reg_1 <= to_ufixed(l, dy_reqg);

elsif dy_reg >= C_LINE_BUFFERS then
-— Special case when one line has completed but not the other one
dy_int <= C_LINE_BUFFERS;
yl_int <= C_LINE_BUFFERS;
y2_int <= 1;
dy_reg_1 <= dy_reg;

else
dy_int <= to_integer (dy_req);
yl_int <= to_integer (dy_req);
y2_int <= to_integer (dy_reqg) + 1;
dy_reg_1 <= dy_reg;

end if;

Listing 5: Bilinear interpolation pixel position calculation

Here the pixels are being calculated as the 2 x 2 neighborhood around the dx- and dy-

27

oW =

O

Chapter 4. Hardware Implementation

position, while still making sure they are within the input frame. These pixel positions are
then used to calculated the framebuffer address from Equation 3.10 and 3.11 as seen in
Listing 6.

fb_rd_addr_a_i <= ((yl_int-1)+*g_rx_video_width) + (x1_int - 1);
fb_rd_addr_b_i <= ((yl_int-1)+*g_rx_video_width) + (x2_int - 1);
fb_rd_addr_c_i <= ((y2_int-1)+*g_rx_video_width) + (x1_int - 1);
fb_rd_addr_d_i <= ((y2_int-1)+*g_rx_video_width) + (x2_int - 1);

Listing 6: Bilinear interpolation framebuffer address calculation

To calculate the new pixel value, we use Equations 2.7, 2.8 and 2.9. However, these
equations are not very well optimized for FPGA, so they were split up and parallelized.
The first thing that was done was to calculate the weighting coefficient values. E.g. the
weighting coefficient for pixel f(x1,y;) would be % This was done as seen in Listing
7 where they are called delta values.

dx_reg - xl_int, delta_x1);

delta_x1 <= resize)

x2_int - dx_reg, delta_x2);
)
)

delta_x2 <= resize
delta_yl <= resize
delta_y2 <= resize

’

dy_reg - yl_int, delta_yl
y2_int - dy_reg, delta_y2

’

Listing 7: Bilinear interpolation weighting coefficient calculation

UQ1.16 fixed-point representation was used for these values. The 1-bit integer part were
used for the case when the delta value is 1, that is when the reverse mapping maps hits the
pixel position exactly on the original pixel from the input frame. A 16-bit fractional part
ensures a high degree of accuracy with a resolution of 276 ~ 0.000015, while still being
able to fit on an 18x18 multiplication DSP. These delta values were then used to calculate
the pixel values in a pipelined fashion as seen in Listing 8.

—-— Calculate pixel values

A_yl_a <= delta_x2_reg » pixl_data_ufx_reg(7 downto 0);
A_yl b <= delta_xl_reg x pix2_data_ufx_reg(7 downto 0);
A_y2_a <= delta_x2_reg » pix3_data_ufx_reg(7 downto 0);
A_y2_Db <= delta_xl_reg * pix4_data_ufx_reg(7 downto 0);

A_yl <= resize(A_yl_a_reg + A_yl_b_reg, A_yl);
A_y2 <= resize(A_y2_a_reg + A_y2_b_reg, A_y2);

A_1 <= resize(delta_y2_reg_4*A_yl _reg, A_1l);
A_2 <= resize(delta_yl_reg_4+A_y2_reqg, A_2);

ation of new pixel value
A_1l_reg + A_2_reg, A);

Listing 8: Bilinear interpolation pixel value calculation

In Listing 8 the code for intermediate register assignment is not shown, but registers were
used to achieve proper performance on the built-in fixed-point DSPs on the FPGA. Also

28

4.7 FIFOs

these calculation were performed for all three colour components, but only one is shown
in the listing. The final step were to round the final pixel value to an 8-bit integer value,
which is performed by doing truncation.

4.7 FIFOs

FIFOs were originally designed on the input to handle the receiving of data during a ready
low state from the state machine seen in Figure 4.6. This works since the scaler is meant to
operate at a higher frequency than the input data stream, allowing to empty the FIFO faster
than it is being filled. By constantly filling the input FIFO at a steady rate, and then empty
it at a high rate after each framebuffer line completion, a proper flow of data to the scaler
is ensured while not having to stop the input flow of data. This does require dual-clocked
FIFOs, which unfortunately where not implemented in this project due to time limits.

A single-clock generic FIFO was designed and implemented, which can be seen in Ap-
pendix A.1, but there was no time to expand this design to a dual-clocked FIFO.

29

Chapter 4. Hardware Implementation

30

Chapter 5

Verification IP Implementation

5.1 UVVM

UVVM (Universal VHDL Verification Methodology) is an open-source methodology and
library used to improve testing and verification of VHDL modules. It is published by Bitvis
on GitHub under the MIT licence [13], and it allows for making structured testbenches
with the reuse of verification components (VCs).

The idea behind UVVM is reusability of previous implemented verification components
for different testbenches. Using these verification components, together with the utilities
provided, a lot of the groundwork for making testbanches has already been made. New
functionality can then be added by extending the verification component instead of re-
designing the testbench [2].

UVVM is made up of three main components: the utility library, the bus functional model,
and the VHDL verification component. The user has the choice to only use a few of these
components, or to use them all together to construct the testbench. This makes UVVM
very flexible, as it can be used as a complete toolset for designing a testbench, or only as
an additional utility to previously existing testbenches.

5.1.1 Utility Library

The utility library of UVVM consists of some fundamental components for verification.
It includes support for logging/reporting, verbosity control, alert handling and predefined
value and event checkers. This allows the user to automatically receive reports from the
VHDL simulator when a violation or error occurs in the design.

Large design containing many modules and interfaces can be hard to verify, especially
if the user relies on waveforms and manual checking of violations. This substantially
increases the chance for an error or violation to slip past the user, and this can lead to

31

Chapter 5. Verification IP Implementation

a faulty design. By having automated test reports presented to the user, the chance of
catching an error is increased drastically, and thus the utility library of UVVM provides
the foundation of creating an automated testbench and verification method.

5.1.2 BFM (Bus Functional Model)

A BFM (Bus Functional Model) is a non-synthesizable software model of a component
with a set of tasks used to apply stimulus to a DUT (Device Under Test). It defines an
interface similar to the underlying module of the DUT, which can be used to connect to
the DUT and apply the stimuli in a similar fashion as the design would have received in
a complete working system. This way the BFM can be used to simulate the connection
between two modules or systems, and the data exchange between these in an operational
system.

Sending test data to a DUT from a testbench is simplified with the use of a BFM as it
works under the principle “implement once, use many”. A simple example of writing data
to a FIFO using a BFM compared to a classical testbench approach can be seen in Table
5.1.

’ \ Normal testbench \ UVVM BFM ‘

1 write_en <="1";

2 data <= x"F6A4”; write_fifo(x"F6A4”);
3 | wait until rising_edge(clk);

4 write_en <="0’;

Table 5.1: Writing data to FIFO from testbench using BFM

In this example the user would have implemented a BFM that handled the assertion of
the write-enable signal, sending of data, and then setting the write-enable signal low after
completion. This way you could reuse the BFM whenever you needed to write some data
to the FIFO.

5.1.3 VVC (VHDL Verification Component)

Using BFMs and invoking these calls sequential in the testbench might not help you to
catch all the edge cases when it comes to verifying your design. This is where a VVC
(VHDL Verification Component) comes in to play. You can send commands and test-
patterns to a VVC, and these commands will be queued inside the VVC and later executed
towards the DUT. UVVM support multiple threads and several VVC in parallel, making
it easier to catch weird edge cases involving several interfaces being targeted at the same
time.

A VVC is made up of three main stages: Interpreter, Command Queue, and Executor.
These stages can be seen in Figure 5.1.

32

5.2 Avalon-ST VIP

Interpreter *_VVC Executor
- Is command for me? - Fetch from queue
- Is it to be queued? — «— - Case on what to do
If not Gorhmand Call rel (s)
- If not: - Call relevant BFM(s|
ueue
Case on what to do Q & Execute transactionh*
Iy
; q
Bit-rate checker | Queue
3
Frame-rate checker i
Response-Executor
Gap checker P =)

Figure 5.1: Structured VVC architecture [2]

The Interpreter receives a command from the sequencer, checks if the command should be
queued, and puts the command into the Command Queue if this is the case. The Executor
then fetches a command from the Command Queue, and calls the relevant BFM to execute
this command. This way queuing and execution of a series of commands is handled by the
VVC, and a large number of test-cases can be handled with a relative ease in the testbench.

5.2 Avalon-ST VIP

A VIP (Verification IP) was developed for this project with support for the Avalon-ST
Video interface, as this did not exist amongst the VIPs included with UVVM, or within
the open-source UVVM community. This implementation will be uploaded with a MIT
licence to the open-source UVVM community for others to use and further develop if they
so desire. The source code for the BFM implementation can be seen in Appendix C, and
the complete source code can be found on the GitHub repository as stated in Appendix C.

5.2.1 Avalon-ST BFM

The BFM was implemented to support transmission of serial data using the Avalon-ST
Video interface as specified in Intel Video and Image Processing Suite User Guide [6],
with the possibility of further extension to support the full Avalon-ST interface speci-
fied in [5]. It consists of three main functions: avalon_st_send, avalon_st_receieve, and
avalon_st_expect.

Avalon_st_send is the function used for transmitting a packet consisting of data-symbols
in a serial manner. It uses a ready latency of 1 clock cycle, as described in Chapter 4.3.1,
with startofpacket and endofpacket signals to mark the first and last symbol of the packet
being sent.

The avalon_st_send function works by generating a slv-array, which is a sub-type of a
std_logic_vector array with an unconstrained width, that can be dynamically increased in
terms of depth to support the number of data-symbols in the given package. This way the
slv-array can be filled with data from the testbench without having to be re-compiled to

33

Chapter 5. Verification IP Implementation

support the new symbol widths of the data packet sent. The BFM then loops through this
slv-array, sends one entry at a time, and assert the startofpacket and endofpacket signals
on the first and last slv-array respectively together with the valid signal when it receives a
ready signal. If the ready signal goes low, the BEFM sends one more data-symbol according
to the ready latency of 1, before pausing the transmission until the ready signal is asserted
again.

The maximum width of the data-symbols supported is limited at compile time to the max-
imum data-width supported by the Avalon-ST interface, which is 4096 bits [5]. The maxi-
mum depth of the slv-array is set in the VVC command package, and this is limited by the
amount of RAM present at the computer running the simulation, as the slv-array is mapped
to memory at compile time based on these values, and not the amount of data written to
the slv-array from the testbench.

To receive output data from a module, the avalon_st_receive function is used. This function
works in similar manners to the avalon_st_send function in that it uses a slv-array to hold
the data. Avalon_st_receive asserts its ready signal and waits for a startofpacket signal
together with a valid signal. When these two signals are received, avalon_st_receive fills
a slv-array with the incoming data until the endofpacket signal is received. After the
transmission is done, the slv-array is returned as an array to the testbench.

Avalon_st_expect further builds on the avalon_st_receive function in that it can have a slv-
array as an input, and use this array to do data comparison. The avalon_st_expect function
uses the avalon_st_receive function to receive data and store this in a slv-array, and then it
compares this received slv-array with the one provided as an input from the testbench. If
there are some data entries in these two arrays that do not match, an error is raised. This
way the avalon_st_expect function can be used to validate the data received against known
data values.

5.2.2 Avalon-ST VVC

To be able to send and receive multiple entries of test data in an easy manner, two VVCs
were implemented for the Avalon-ST VIP, the Avalon ST Source VVC and the Avalon
ST Sink VVC. By splitting the sending and receiving of data into two VVCs, a greater
possibility of detecting edge cases from concurrent send and receive is achieved. This
way you could verify designs that is built around having a single input while producing
several outputs, i.e. a video scaler with several outputs having different resolutions. The
Source VVC works as the sender module in this case, calling the avalon_st_send frunc-
tion from the BFM, while the Sink VVC acts as a receiver utilizing avalon_st_receive and
avalon_st_expect.

Support for random ready signaling is implemented in these VVCs. That is asserting
and de-asserting the ready signal at random times. This is done by utilizing the random
function from UVVM to generate a random number between 1 and 100, and then see if
this is bellow some value specified in the configuration of the VVC. If the VVC is set up
with a value of 50, the ready signal will only be asserted when the random number from
UVVM is between 1 and 50, effectively asserting the ready signal 50% of the total time

34

5.2 Avalon-ST VIP

at random times. This can be used to better detect edge cases when you have a receiver
module that asserts its ready signal at odd times.

5.2.3 Memory Concerns

As stated the BFM was implemented using a dynamically slv-array. The reason for this
choice was to be able to send test data of different symbol-width, and of different number
of symbols in a packet, without having to re-compile the Avalon-ST VIP for each test
case. However, this could potentially take up a lot of system RAM, as the entire slv-array
is mapped to memory at compile time even though only a part of this array is used by the
testbench. Some experimental results using a slv-array of width 4096-bits with a depth
of 65 536 entries gave a system RAM usage around 4 GB when compiled and simulated
using ModelSim DE-64 10.7c. Thus a problem may arise when large data-sets are being
used with this VIP.

A possible solution to this could be to add file I/O functionality to the Avalon-ST VIP,
where the slv-array could be replaced with reading data values directly from a file. How-
ever, this was not done in this project due to time limitations.

35

Chapter 5. Verification IP Implementation

36

Chapter 6

Testing and Verification Strategy

6.1 Verifying VHDL Modules

The first step in verifying the design will be to test the different sub-modules by using
UVVM and the Avalon-ST VIP implemented. This way a randomized testing strategy can
be used where test are running a random number of times, and valid/ready flow control is
tested with random test patterns.

The controller sub-module will be tested using this method of testing. Unfortunately, due
to time limits, the scaler was not completed in such a way that the controller could start
and stop the scaler according to the intended design. Because of this the Avalon-ST VIP
implemented could not be used to test the scaler itself, and thus a more classical testbench
approach was used to test the scaler together with test images.

The other sub-modules such as the FIFO and RAM designs was tested using classical
testbench approaches with manual validation of their correctness. The result from this
testing will not be presented in the results section, as these modules are considered to be
simple modules. The testbench code used for these modules is provided in Appendix B,
together with all the other testbenches, for the interested reader.

6.2 Scaler Verification and Image Quality

To test the scaler design a testbench approach with file I/O was used. This way test data
could be sent to the scaler module using known data from a local file, and the output from
the scaler could be stored in a new file for later comparison with the original material.
MATLAB was used for this verification and comparison, as this was the platform that had
been used in the project thesis to perform quality comparison between the different scaling
algorithms [4].

37

Chapter 6. Testing and Verification Strategy

This testing was performed by using a series of test images stored at 1920x1080 resolution
in the 8-bit PNG file format, downscaling these images to 360p, 540p and 720p resolution
using MATLABs built-in bicubic interpolation algorithm, and then use these down-scaled
images to scale back up to 1080p resolution. These new up-scaled versions was then
compared against the original 1080p version of the test image together with up-scaled
versions created by using MATLABSs built-in image processing toolbox. MATLABs image
processing toolbox would then act as a reference, as one can expect these implementations
of the nearest-neighbor and bilinear interpolation algorithms to be of good quality. To have
a fair comparison between MATLAB and VHDL, the anti-aliasing filter of MATLABs
scaler was turned off so that it would only use the raw interpolation algorithm.

6.2.1 Matlab binary conversion

To be able to use the test images with the VHDL testbench they had to be in a binary
format. As this scaler design uses the Avalon-ST Video interface which sends pixel data
in a serial fashion, a natural way was to do this in the testbench as well. A MATLAB
function was therefore needed to convert the PNG images to a serial binary data file. This
was done with the img2bin function presented in Appendix D.1. Using 8-bit pixel values
this code generates a 24-bit wide binary file where one pixel is represented on each line in
the file. The testbench then reads one line of the binary file per clock cycle, and send this
data to the scaler as seen in the testbench code in Appendix B.4.

The output from the scaler is binary 24-bit data, same as the input, and this data is stored
to a binary file similar to the input file. A function converting this binary file back to a
PNG image was made, and this function can be seen in Appendix D.2. The image created
by this function was then used as comparison with the original image against MATLABs
image processing toolbox.

6.2.2 Objective image quality models

Performance of the VHDL implementation in terms of image quality was determined by
using objective image quality models. The human eye can quite easily distinguish good
image quality from bad, but when two samples are very close to each other, it is not a very
good tool to determine which one is the best. To be able to differentiate two samples from
each other, mathematical models have been developed to approximate the results from
subjective quality assessments. By having an objective method to measure image quality,
the process of comparing two samples can be more accurate.

Full reference (FR) methods aims to give a quality metric by comparing the original video
material to the received one. This is typically done by comparing each pixel in the received
signal against the corresponding pixel in the original signal. This makes FR models usually
the most accurate for determining objective quality. Examples of widely used FR models
to determine image quality are Peak Signal-to-Noise Ratio (PSNR), Mean-Squared Error
(MSE) and Structural Similarity (SSIM).

38

6.2 Scaler Verification and Image Quality

Peak Signal-to-Noise Ratio (PSNR) is the most widely used objective image quality met-
ric. It gives the ratio between the maximum possible power of a signal and the power of
corrupting noise. PSNR is built upon the Mean-Squared Error (MSE), which is the average
of the squares of the errors.

While PSNR and MSE produces a quality metric based upon an estimate of absolute er-
rors, Structural Similarity (SSIM) tries to estimate the quality of an image as perceived
change in structural information. An image can be perceived by the human eye as having
good quality if the structure of the objects in the image is intact, even though there is a loss
of information at a pixel-by-pixel level. Thus SSIM is designed to improve on traditional
methods for quality estimation by ranking the quality of the image as perceived by the
human eye.

6.2.3 Test Images

The test images used for the objective image quality comparison were chosen to be of both
animated and natural content. This way a lot of the content normally displayed would be
represented. Because of time limitations and due to the fact that the scaler design was not
fully completed and connected to the controller module, a single test image was used at a
time.

A more preferred way of testing would be to have many images from the same content, or
even an entire video clip consisting of many frames. This way the result would be more
accurate than when only having a single image from a given content, as this one image
could be of an "unlucky” nature and thus give the scaler a poorer performance metric that
it would have gotten otherwise. However, the same exact images was used for both the
VHDL implementation and the MATLAB, so they should be comparable to each other.

Animated content was represented using screengrabs from the two animated movies Lion
King and Toy Story. These images can be seen in Figure 6.1.

“ (r

(a) Lion King [14] (b) Toy Story [15]
Figure 6.1: Animated content used for testing
These images was captured from the Blu-Ray release using the FFmpeg software library
[16] to do a screengrab.

Natural content was represented using screengrabs from BBCs nature documentary Planet
Earth II. These images can be seen in Figure 6.2.

39

Chapter 6. Testing and Verification Strategy

(a) Jaguar (b) Lemur (¢) Birds

Figure 6.2: Natural content used for testing. Taken from Planet Earth II [3]

These images was also captured by using the FFmpeg software library. However, they
were captured from the 4K UHD Blu-Ray release, and therefore they were first down-
scaled to 1080p using MATLABs built-in bicubic interpolation algorithm to be of the
same resolution as the other test images.

6.3 Synthesis test

The synthesis test is done to ensure that the design runs on an FPGA at the targeted spec-
ifications for frequency, area, resource usage and DSP usage. To simulate a ”worst case”
most heavy workload, the synthesis test is done with upscaling from 1080p to 2160p. This
ensures that the design will run on an FPGA under these heavy workload conditions. The
results from the synthesis test are taken from the “’balanced” compilation and packing ap-
proach in Quartus 19.1, and the slow performance model, to ensure that it operates under
“worst case” conditions.

The synthesis test does not include extra designs to intentionally pack the FPGA full of
several designs, so a target frequency of 300 MHz is set in this case, with an expected
operational frequency of 250 MHz. This allows for some headroom if there are several
other designs running on the same FPGA which require extra packing of the design.

In the synthesis test a dummy source and a dummy sink is attached to the design. This
prevents the compiler from optimizing away parts of the design that would otherwise have
had open connections. This ensures that the interface and all the signals in the design stays
intact during the compilation and optimization process.

40

Chapter 7

Results and Discussion

7.1 Verification of Sub-Modules

The verification of sub-modules were done using UVVM to test the scaler wrapper and the

scaler controller. Functional verification of the FSM were performed by using avalon_send()
and avalon_expect() to ensure that the FSM in the controller goes to the correct state, that

new control packets are being produced when the controller is in the ctrl_pkg_gen state,

that unsupported packages are passed through, and that video data is passed to the scaler

in the video_data state.

Unfortunately, due to time limits, the complete scaler implementation with the top level
wrapper were not completed, so the scaler itself were not tested and verified with UVVM.
The scaler implementation is thus only tested with visual functional verification. The
testbenches used for this testing can be ween in Appendix B.

7.1.1 Controller

In the test output shown in Listing 9 the avalon_st_send() function implemented in the
Avalon-ST VIP for UVVM was used to send data to the controller module through the
scaler wrapper, and verify the packet decoder function of the controller. This data consisted
of the packet identifier of a control packet, as well as the input resolution of the video given
in the Avalon-ST Video format. The receiver was the avalon_st_expect() function, and this
function did checking to ensure that the data from the newly generated control packet from
the controller was correct.

41

Chapter 7. Results and Discussion

UVVM: 100.0 ns Sending control packet

UVVM: 100.0 ns check_value() => OK, for boolean true.
['avalon_st_send (AVALON_ST_VVC,1l, 2 data entries)data_array length
— must be > 0'

UVVM: 100.0 ns ->avalon_st_send(AVALON_ST_VVC,1, 2 data entries):

. 'Sending v_data_array'. [9]
UVVM: 100.0 ns ACK received. [9]
UVVM: 100.0 ns -—>avalon_st_expect(): 'Checking data'. [10]
UVVM: 100.0 ns ACK received. [10]
UVVM: 100.0 ns ->await_completion (AVALON_ST_VVC,1,rx, 23040000 ns):

— [11]

UVVM: 102.0 ns avalon_st_send(80 bits) => 'Sending v_data_array' [9]
UVVM: 102.0 ns avalon_st_receive (80 bits) => 'Checking data’' [10]
UVVM: 125.0 ns avalon_st_send(80 bits) => Sent 2 data entries
UVVM: 135.0 ns avalon_st_receive (80 bits) => Received 2 data entries
UVVM: 135.0 ns avalon_st_expect (80 data bits, 1 empty bits)=> OK,

— received 2 data entries. 'Checking data' [10]
UVVM: 135.0 ns ACK received. [11]

UVVM: >> Simulation SUCCESS: No mismatch between counted and expected
— serious alerts

Listing 9: UVVM output from controller packet decoder test

As seen from the listing two data entries were sent, the packet identifier and the control
packet containing the resolution information. The avalon_st_recieve() function received
these two packets, and the avalon_st_expect() did check the result against the expected re-
sult with no errors. Thus the conclusion from this test is that the controller managed to
interpret an incoming control packet, and generate a new one based on the output resolu-
tion of the video.

This test was also repeated using a random ready-pattern, that is asserting the ready signal
high at random intervals to simulate delays in the receive process, and by using video data
packets that were bypassed the scaler module. This was done to see if the controller would
handle video packets in a correct way. The results from this testing was also successful and
the controller did not lose any packets, which can be concluded with that the valid/ready
flow of the controller works as expected.

7.2 Scaler Verification and Image Quality

Functional verification of the implemented scaler was done by converting the output data
from the scaler to a PNG image, and compare this with the original image using a MAT-
LAB script with PSNR, MSE and SSIM tests. The output produced by the scaler was also
verified by doing a visual functional verification where the output image was compared to
the original image in search for unwanted errors and artifacts in the image. The complete
test results from this testing can be seen in Appendix E.

42

7.2 Scaler Verification and Image Quality

7.2.1 Nearest-Neighbor Functional Verification

Two samples from the output images of the scaler using nearest-neighbor interpolation
upscaling from 720p to 1080p can be seen in Figure 7.1.

(a) Lion King (b) Planet Earth II Jaguar

Figure 7.1: Output image from nearest-neighbor upscaling from 720p to 1080p

The two samples from Figure 7.1 were produced using a 4-line framebuffer and the imple-
mented nearest-neighbor scaling algorithm in VHDL. Looking at these images we can see
no visual errors or artifacts when comparing with the source material seen in Figure 6.1a
and Figure 6.2a. A conclusion to this visual inspection would be that the nearest-neighbor
implementation is producing an output as expected.

7.2.2 Nearest-Neighbor Image Quality

Nearest-neighbor upscaling performance can be seen in Figure 7.2 and Figure 7.3, which
contains data from upscaling animated and natural content to 1080p respectively.

08 Matlabl 0 VHDL \ ‘llMatlabDDVHDL \ ‘lIMatlabDDVHDL
36 60
a4 0.98
32 40 0.97
30 - 0.96
360p 540p 720p 360p 540p 720p 360p 540p 720p
(a) PSNR (b) MSE (¢) SSIM

Figure 7.2: Nearest neighbor upscaling to 1080p using animated content

We can see from Figure 7.2 that the VHDL implementation performs identical to the MAT-
LAB implementation when using 360p and 540p source material. However, when looking
at the 720p source material, we see that the VHDL implementation falls behind in all three
tests.

43

Chapter 7. Results and Discussion

’DDMatlabD 0VHDL \ ’DDMatlabD 0VHDL \ ’DDMatlabDDVHDL
40 - | 15 1 0.98 |
22 " 10 ol
a4 HH H 0.96 |-
I I I I I:I\D D\ D\D I I
360p 540p 720p 360p 540p 720p 360p 540p 720p
(a) PSNR (b) MSE (¢) SSIM

Figure 7.3: Nearest neighbor upscaling to 1080p using natural content

Looking at Figure 7.3 we see a similar pattern using natural content as we saw with the an-
imated content. The 360p and 540p source material performs about equal as the MATLAB
algorithm, while the 720p source material falls behind in all three tests.

A possible explanation for this is that 720p to 1080p scaling has a scale ratio of 2/3 =
0.666666..., which cannot be accurate represented using fixed point numbers in VHDL.
This will give values either too low or too high on certain occasions, resulting in a rounding
error when calculating the framebuffer address.

On a 2/3 scaling ratio, every 3rd pixel would have an value with zero decimal points.
Looking at the 3rd pixel this would have the value 2 as framebuffer address in MATLAB,
whereas for VHDL using 12-bit decimal notation for scaling ratio calculation, this corre-
sponds to 2/3 = 0.666504, which gives the 3rd pixel a value of 0.666504 * 3 = 1.999512.
Since this design used a floor function to determine the framebuffer address this would
give the value 1 as the framebuffer address, and thus the output pixel would be wrong
compared to the MATLAB scaler.

So why does this not happen on 360p, which uses a scaling ratio of 1/3? Looking at the
scaling ratio calculation using 12-bit decimal points in VHDL we see a result of 1/3 =
0.333252. This would also lead to a rounding error with the floor function on every 3rd
pixel. However, the 360p source material is a much more “blurred-out” image compared
to the 720p. There is a lot less detail in that image, and this might be why we do not see
a more dramatic effect with 360p source material. There is simply not very much detail
that are being lost even though we get rounding errors, and this might be why the VHDL
implementation perform equal to the MATLAB implementation.

44

7.2 Scaler Verification and Image Quality

7.2.3 Bilinear Functional Verification

Two samples of the output images produced using a full sized framebuffer and bilinear
interpolation with upscaling from 720p to 1080p can be seen in Figure 7.4.

(a) Lion King (b) Planet Earth II Jaguar

Figure 7.4: Output image from bilinear upscaling from 720p to 1080p

The samples from Figure 7.4 were produced using a framebuffer the same size as the input
image. As seen from the two samples, there are no visual artifact or distortion in the
images, which from a visual functional verification standpoint can be concluded with a
proper working bilinear interpolation implementation. However, using a framebuffer the
size of the input image is not a good solution for a system that is designed to run on an
FPGA, as this will take up too much memory on the FPGA.

Given an input image of 1080p which is upscaled to 2160p, this would require an frame-
buffer of size 1920px * 1080px * 24-bit x 4-fb = 199 Mbit. Given that the Intel Arria
10 GX 1150 has 54 Mbit of M20K memory built-in [11], this would simply not work.
Therefore a solution is to buffer only a few lines in the framebuffer as was done with the
nearest-neighbor implementation.

Using 4 lines in the framebuffer for the bilinear interpolation, a bug arises at the right-hand
side of the output image. This can be seen in Figure 7.5.

Figure 7.5: Bilinear bug using 4-line framebuffer

45

Chapter 7. Results and Discussion

The last two pixels on the right hand side of the image consist of data belonging to the left
hand side of the image. Given that the bilinear implementation uses the same framebuffer
as nearest neighbor, it is most likely not the framebuffer that is the problem. This was
also confirmed by manually checking each read address sent to the framebuffer. It is
believed that this bug arises due to dx/dy calculations after the reset of dy position to 1
when reaching the last line in the framebuffer. A big effort was put into locating this
bug, but due to time limits this search had to be abandoned. Because of this bug, the
output images used in the image quality comparisons were generated using the full size
framebuffer.

7.2.4 Bilinear Image Quality

Bilinear upscaling performance using animated and natural content can be seen in Figure
7.6 and Figure 7.7 respectively.

WDthmDDVHDL\ DDthmDDVHDL‘ WDthmDDVHDL‘

AT 7 SOT 7 i 7
ol | 0.99

35 40 0.98 |

la

30 H‘D

360p 540p 720p

20
0

360p 540p 720p

0.97
0.96

|

I

360p 540p 720p

(a) PSNR (b) MSE (c) SSIM

Figure 7.6: Bilinear upscaling to 1080p using animated content

Looking at the results from bilinear upscaling to 1080p using animated content in Figure
7.6, we see a quite different results than what we saw with nearest-neighbor interpolation.
All the tests shows that MATLABs built-in scaler outperforms the VHDL scaler in this
design. This is true for both 360p, 540p and 720p source material, but the difference is
much greater for the 360p and 540p material. This is opposite to what we had with the
nearest-neighbor interpolation.

Using natural content as source material we get the result as seen in Figure 7.7.

46

7.2 Scaler Verification and Image Quality

’DDMatlabDDVHDL \ ’DDMatlabDDVHDL \ ’DDMatlabDDVHDL \
451 l or | 0.99 | |
40 2| i 0.98 |
» ﬂ[l [l o0l wll —m| 83; DD H

36‘0p 54bp 726p 36‘0p 54‘Op 726p 366p 54bp 72‘0p
(a) PSNR (b) MSE (¢) SSIM

Figure 7.7: Bilinear upscaling to 1080p using natural content

From Figure 7.7 we see the same pattern as we saw when using animated content as the
source material. MATLABs built-in interpolation algorithm outperforms the VHDL-based
one in this design, with the worst results seen using 360p and 540p source material.

An explanation for the poor performance in the VHDL implementation could be the fixed-
point representation used in this design. As we saw with nearest-neighbor using 720p
content, fixed-point numbers are unable to precisely represent a fraction. In bilinear inter-
polation this effect is amplified by not only calculating dx/dy using fixed-point numbers,
but by also by calculating the weighting coefficients for the kernel and the pixel values us-
ing fixed-point numbers. This way we get several levels of errors that passes through the
design and becomes amplified with each new error. This results in an incorrect pixel value
compared to calculation with MATLABs superior precision. When this happens for every
pixel in the image, the end result compared to MATLAB would yield a poor outcome.

The strange thing though is that the upscaling performance using 720p source material is
so much closer to the MATLAB results than what is the case using 360p and 540p source
material. One possible explanation for this could be that the 720p source material simply
has that much more data for the scaler to work with. Thus the rounding error could have a
less severe impact on this, as it is out-weighted by the fact that there is more information
in the image from the beginning.

An interesting note looking at Figure 7.6 and Figure 7.7 is that upscaling in VHDL using
540p source material is not much better than 360p. From the MATLAB results we see
the expected increase in performance going from 360p to 540p and then to 720p, but
for the VHDL implementation this is not the case, especially when looking at the PSNR
results. We only see a small increase in performance from 360p to 540p, and then a huge
performance increase going from 540p to 720p. This is a very strange result that is hard to
explain.

7.2.5 Subjective image quality

Given the poor performance of the VHDL implementation using bilinear interpolation
compared to MATLABs built-in scaler, the output images was used as a basis for a visual
comparison between the two to see if the human eye could detect noticeable quality dif-

47

Chapter 7. Results and Discussion

ferences between the two. The image from Lion King was used to represent the animated
content, and it was the 360p source image that was chosen based on the big difference in
PSNR between MATLAB and VHDL for this image. The result heavily zoomed in can be
seen in Figure 7.8.

(a) MATLAB bilinear (b) VHDL bilinear
PSNR =35.11 PSNR = 31.47

Figure 7.8: MATLAB vs VHDL bilinear upscaling from 360p to 1080p using animated content

Taking a first glance at the two images side by side from Figure 7.8, we can see no obvious
difference in image quality. There are no artifacts in the image or extra blurriness that the
eye can see. Studying the two images on a computer monitor side by side might give a
small hint at poorer colours in the VHDL image in Figure 7.8b. The MATLAB image
might have a tint more red-ish colour in the lions fur while the VHDL image is a bit more
”washed out”, but you need to really study hard to see this difference.

The same was done with a sample image from the natural content. Here the Jaguar image
from Planet Earth II was chosen, again because of its big difference in PSNR performance
between the two images. The two images can be seen in Figure 7.9.

(a) MATLAB bilinear (b) VHDL bilinear
PSNR = 39.20 PSNR = 32.27

Figure 7.9: MATLAB vs VHDL bilinear upscaling from 360p to 1080p using natural content

Looking at these two images side by side in Figure 7.9, we can see no obvious difference
with no extra artifacts or blurriness in the VHDL image compared to the MATLAB image.
In contrast to the animated content, no difference in colour can be seen either between
these two images by studying them closely side by side on a computer monitor. To the
human eye there is no difference between these two images.

48

7.3 Synthesis test

The reason for the big performance between the MATLAB images and the VHDL images
could be explained again with the fixed-point rounding errors. These errors contribute to
pixels being in wrong places, and to colours having a bit off-values compared to imple-
mentations using infinite precision. The incorrect position of some pixels is something that
the human eye cannot see, but a computer picks up on this quite easily. Incorrect colours
can be seen in the animated content where large areas is of the same colour, but in natural
content where variation in colour is much more rapid per pixel, it is almost impossible to
notice for the human eye. Because of this we cannot say that the VHDL images would
be perceived as having lower image quality by human viewers just because the objective
quality measurements point to this.

7.3 Synthesis test

Synthesis tests were done to see how well the design would perform if it were synthesized
to an actual FPGA. All test were performed using Intel Quartus 19.1, except the results
seen in Table 7.2 where Intel Quartus 18.1 was used. The scaler design were initialized as
an upscaling process from 1080p to 2160p using 8-bit pixel values. This way the synthesis
test would be performed in one of the hardest scaling conditions in regards to framebuffer
size and calculations needed.

The results are based on three metrics: Fmax, uTco and logic levels. Fmax is the maximum
frequency the design can run at on the given FPGA device. The uTco metric is the “time
clock output” results, which is the time it takes between having rising edge on the clock,
to having stable data on the output. Logic levels represent how many logic levels there are
in the design. A good rule of thumb is to have no more that 5 logic levels in a design.

Results from the synthesis test performed on the different sub-modules of the scaler design
can be seen in Table 7.1.

Sub module Fmax uTco Logic levels
FIFO - M20K (24x1024-bit) 418.76 MHz | 0.594 ns 5
Simple DP RAM - M20K (24x15360-bit) | 365.10 MHz | 0.591 ns 5
Multiport RAM - M20K (24x15360-bit) | 347.83 MHz | 0.591 ns 5
Scaler controller 388.05 MHz | 0.250 ns 5

Table 7.1: Synthesis test of sub modules

As seen from Table 7.1 every sub-module performs exceptionally well. The performance
goal for this design was to have no more that 5 logic levels, and to be able to achieve a
Fmax of 300 MHz. This is achieved with good margins for all the different sub-modules,
so they can be used in the scaler design without the concern of them slowing the design
down.

Compilation and synthesis of the nearest-neighbor design using Intel Quartis 18.1 during
the development process gave some strange results. The design were unable to properly

49

Chapter 7. Results and Discussion

synthesize in such a way that DSPs were used for the fixed-point calculations. The syn-
thesis of the design using Intel Quartus 18.1 gave the following results as seen in Table

7.2.

Scaling method (UQ-bits) Notes Fmax Logic levels | DSPs
Nearest neighbor (UQ16.16) no DSP 42.48 MHz 31 0
Nearest neighbor (UQ16.16) | no pipeline | 121.00 MHz 5 4
Nearest neighbor (UQ16.16) | pipelined | 144.76 MHz 6 3

Table 7.2: Synthesis test using Intel Quartus 18.1

The first test with the note “no DSP” did not utilize any DSPs, and the entire design was
compiled to a logic circuit. This gave the poor performance seen in the results. It is quite
clear when looking at the Fmax and logic level results that this were synthesized as a large
logic circuit. In the next results, the design was able to use DSP, which is seen by the
increase in Fmax and the number of DSPs going from 0O to 4. However, the design was
non-registered and had a poor pipeline performance, which holds back on the performance.
Effort was made to pipeline the design more and to have proper register usage in the DSP.
Splitting up the dx/dy calculation resulted in an increase in performance and lower DSP
usage, as each calculation now became simplified, and more calculations could share a
single DSP, and the final result of this gave Fmax of 144.76 MHz with 3 DSPs used.

After many trials and errors the conclusion to the testing was that Quartus 18.1 did not
recognize constants used in the calculations properly, and thus were unable to generate
proper register-based DSP chains of the calculations. This ended with a switch to Quartus
19.1 to see if this gave a better results.

Quartus 19.1 were able to better recognize the constant values of the calculations, and
thus a higher performance was achieved. By using Quartus 19.1 it also became more clear
where the problem in the pipeline was, as it gave a better picture of the DSP chain. After
further optimizations and splitting of equations, the pipeline became fully registered, and
the results from this can be seen in the results in Table 7.3.

Scaling method (UQ-bits) Fmax uTco Logic levels
Nearest neighbor (UQ16.16) | 340.37 MHz | 0.216 ns 4
Bilinear (UQ16.16) 32279 MHz | 0.216 ns 3

Table 7.3: Performance on Intel Arria 10 GX 1150

From table 7.3 we can see that nearest neighbor interpolation increased its Fmax from 144
MHz to 340 MHz. This was the results of using Quartus 19.1 that properly recognized the
constant values of the calculations, thereby making the DSP pipeline fully registered as
seen in Figure 7.10.

50

7.3 Synthesis test

‘5’ Compilation Report - syntest_scaler_nearest X

'
Q <<Filter>=>

MName Maode Register Usage

1 i_mut]mult_1~DATACUTAD

2 i_mut]mult_0~DATACUTAO

Independent 18x18 fully registered

Independent 18x18 fully registered

Figure 7.10: Synthesis test nearest neighbor DSP pipeline

These final result made the nearest-neighbor interpolation meet the performance require-
ments of 300 MHz Fmax, and maximum 5 logic levels.

After making the nearest-neighbor calculation properly registered, it was quite easy to
achieve the same performance result with bilinear interpolation. As seen from Table 7.3,
bilinear interpolation achieves a Fmax of 322 MHz and uses 3 logic levels, which is well
withing the performance requirements. However, the DSP chain of the bilinear calculation
were not utilizing all of the recomended input and output registers as seen in Figure 7.11.

'5’ Compilation Report - syntest_scaler_bilinear X4

Fixed Point DSP Register Packing Details

Q <<Filters>

Name Mode Register Usage Pipeline
1 i_mut|mult_23~DATACUTAD Independent 18x18 partially registered registered
2 i_mut|mult_22~DATACUTAD Independent 18x18 partially registered registered
3 i_mut|mult_19~DATACUTAD Independent 18x18 partially registered registered
4 i_mut|mult_18~DATACUTAD Independent 18x18 partially registered registered
5 | i_mutjmult_21~DATAOUTAO Independent 18x18 partially registered registered
6 | i_mutjmult_20~DATAOUTAO Independent 18x18 partially registered registered
7 i_mut|mult_1~DATAOUTAD Independent 18x18 partially registered registered
8 | i_mutladd_43~DATAOUTAO Sum of two 18x18 fully registered registered
9 | i_mutladd_42~DATAOUTAO Sum of two 18x18 fully registered registered
10 | i_mut|add_39~DATAOUTAO sum of two 18x18 fully registered registered
11 i_mut|add_38~DATAOUTAO sum of two 18x18 fully registered registered
12 i_mut|add_41~DATACUTAO Sum of two 18x18 fully registered registered
13 i_mut|add_40~DATACUTAO Sum of two 18x18 fully registered registered
14 | i_mutjmult_0~DATAOUTAD Independent 18x18 partially registered registered

Figure 7.11: Synthesis test bilinear DSP pipeline

As seen in Figure 7.11 some DSPs are only party registered. However all DSPs have reg-
istered pipeline, which is the factor affecting Fmax the most. More optimization of the
pipeline with proper register usage on inputs and outputs could have given even better
Fmax performance, but given that bilinear interpolation is a much more complicated task
with heavier resource usage than nearest neighbor, one would not expect the bilinear per-
formance to surpass nearest neighbor performance. Thus a bilinear Fmax performance of
94.8% of nearest neighbor is considered a very good result. Given the fact that bilinear
interpolation with a 4-line framebuffer also did produce some artifacts on the right-hand
side of the image, no more effort were put into optimizing this DSP chain any further.

51

Chapter 7. Results and Discussion

The final part of the synthesis test was to see how high of a resource usage the different
scaling methods used on the FPGA, and the results from this can be seen in Table 7.4.

Scaling method (UQ-bits) | M20K blocks ALMs Registers DSPs

Nearest neighbor (UQ16.16) 12/2713 357 /427 200 583 1/1518

Blinear (UQ16.16) 48 /2713 733 /427 200 1768 10/ 1518

Table 7.4: Resource usage on Intel Arria 10 GX 1150

As seen from Table 7.4 nearest-neighbor interpolation has a very low resource usage on
the FPGA. Only one DSP was used, and this is because one DSP on the Intel Arria 10
FPGA can support two 18x18 multiplications [12]. Given that nearest-neighbor only has
two 18x18 multiplications, used for calculating x- and y-values in the reverse mapping
algorithm, these calculations share the same DSP. The number of registers used and the
amount of M20K memory taken up by the design is also very low, and thus we can con-
clude with that this design is very resource efficient.

The same is seen for the bilinear results. Given the vastly more complex computations
in regards to nearest-neighbor, the resource usage is still low. The register usage is only
3 times that of nearest-neighbor, and only 0.17% of the total available resources on the
FPGA is used. The memory configuration uses 4 times the amount of nearest-neighbor,
but this is still only 1.8% of the total M20K memory available. DSP usage is quite a lot
higher for the bilinear calculation, but this is expected given the vastly more complicated
calculations.

Given these results, we can safely conclude with that both the nearest-neighbor and the
bilinear interpolation implementations were a success in regards to performance and re-
source usage. Because the implementations were not completed in regards to use the
controller and scaler wrapper to control the scaler implementations, the resource usage is
expected to go a bit up if these are properly implemented. It is not expected to go up by
a great margin, and given the results from Table 7.1, the performance is also expected to
stay roughly the same.

52

Chapter 8

Conclusion and Future Work

8.1 Video Scaler

In this project a video scaler was implemented in VHDL. The scaler supported upscaling
up to a resolution of 3840x2160 using nearest-neighbor and bilinear interpolation. The
synthesis test showed that the design was capable of running above the 300 MHz target
frequency, which translates to an ability to support up to 4k 30fps video running at 248
MHz serial data transmission. To be able to support 4k 60fps video, two scalers of this
design needs to be run in parallel.

The nearest-neighbor interpolation did work as intended with a very low resource usage
taking up less than 1% of the available resources on an Intel Arria 10 GX 1150 FPGA. Un-
fortunately there were a unresolved bug in the bilinear interpolation algorithm prohibiting
the design from working correctly using a 4-line framebuffer. The design therefore had to
use a full-sized framebuffer equal to the size of an input frame. However, the synthesis
tests showed that this design also would have had a very low resource usage at around 1%
of an Intel Arria 10 GX 1150.

The objective image quality test showed that the performance of this scaler was lower, in
terms of image quality, compared to MATLABs built-in scaler for both nearest-neighbor
and bilinear interpolation. The reason for this was most likely the fixed-point representa-
tion used together with the truncation rounding method in the design. However, subjective
visual comparisons between the two showed a very subtle, or no difference at all, giving
the impression that the bad results seen from the VHDL implementation was a result of
shifting of the pixel positions, not wrong pixel value calculations.

53

Chapter 8. Conclusion and Future Work

8.2 Avalon-ST VIP

UVVM was used in this project as a basis for the verification of the design. An Avalon-ST
Verification IP was implemented, as there were no existing implementation of this in the
UVVM community. The VIP was used for sub-module testing of the scaler design, as the
top level of the scaler were not completed due to time limitations. The Avalon-ST VIP did
function as intended, and it will be uploaded to the UVVM community with a MIT licence
for public use and further development.

8.3 Future Work

Since the top level of the scaler were not completed, this is something that would be
wanted to be further developed in a future implementation. This would make the scaler
usable in an actual system, as the current implementation only works in simulations. Fur-
ther development of the scaler to support dynamic resolutions for scaling would also be a
desire. This way the scaler would not need to be re-compiled to support a different resolu-
tion. Optimizing the design to allow for two scalers to run in parallel would also add the
possibility to support 4k 60fps video.

An interesting thing would also be to use 27x27 multiplication DSPs instead of the 18x18
DSPs used in this design. Using these 27x27 DSPs could improve the accuracy of the
fixed-point representations, which might in turn improve on the objective image quality
results. An implementation using normal rounding to the nearest integer in stead of trun-
cation could also help with this, but this would require a re-design of the framebuffer
memory address calculations for this to work.

Finally, support for bicubic interpolation and dynamic switching between the different
interpolation algorithms would be desirable. Bicubic interpolation uses many of the same
concepts as bilinear interpolation, so the bilinear implementation could be used as a basis
for a future bicubic implementation.

54

Bibliography

[1] S. A. Fahmy, “Generalised parallel bilinear interpolation architecture for vision sys-
tems,” in 2008 International Conference on Reconfigurable Computing and FPGAs,
Dec 2008, pp. 331-336.

[2] E. Tallaksen, UVVM — The Fastest Growing FPGA Verification Methodology
Worldwide!, March 2019, Workshop on Open-Source Design Automation (OSDA).
[Online]. Available: https://osda.gitlab.io/19/tallaksen.pdf

[3] BBC Natural History Unit, Planet Earth II. British Broadcasting Corporation
(BBC), 2016, Screengrab from 4K UHD Blu-Ray release using FFmpeg.

[4] T. Stenseth, “Exploration of video scaling algorithms for FPGA implementation,”
December 2018, Project Thesis, NTNU.

[5] Intel, Avalon Interface Specifications, September 2018, Document ver-
sion 2018.09.26. [Online]. Available: https://www.intel.com/content/dam/www/
programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf

[6] ——, Video and Image Processing Suite User Guide, September 2018, Document
version 2018.09.24. [Online]. Available: https://www.intel.com/content/dam/www/
programmable/us/en/pdfs/literature/ug/ug_vip.pdf

[7] D. G. Bailey, Design for Embedded Image Processing on FPGAs. Solaris South
Tower, Singapore: John Wiley & Sons (Asia) Pte Ltd, 2011.

[8] C. C. Lin, M. H. Sheu, H. K. Chiang, C. Liaw, Z. C. Wu and W. K. Tsai, “An
efficient architecture of extended linear interpolation for image processing,” Journal
of Information Science and Engineering, vol. 26, pp. 631-648, March 2010.

[9] R. G. Keys, “Cubic convolution interpolation for digital image processing,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 29, no. 6, pp. 1153—
1160, December 1981.

[10] A. Finnerty and H. Ratigner, Reduce Power and Cost by Converting from
Floating Point to Fixed Point, March 2017, white paper published by Xilinx Inc,
WP491 (v1.0). [Online]. Available: https://www.xilinx.com/support/documentation/
white_papers/wp491-floating-to-fixed-point.pdf

55

https://osda.gitlab.io/19/tallaksen.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_vip.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_vip.pdf
https://www.xilinx.com/support/documentation/white_papers/wp491-floating-to-fixed-point.pdf
https://www.xilinx.com/support/documentation/white_papers/wp491-floating-to-fixed-point.pdf

[11] Intel, Intel Arria 10 Device Overview, September 2018, Document ver-
sion 2018.12.06. [Online]. Available: https://www.intel.com/content/dam/www/
programmable/us/en/pdfs/literature/hb/arria- 10/al0_overview.pdf

[12] ——, Intel Arria 10 Native Fixed Point DSP IP Core User Guide, March 2017,
Document version 2017.03.13. [Online]. Available: https://www.intel.com/content/
dam/www/programmable/us/en/pdfs/literature/ug/ug nfp_dsp.pdf

[13] Bitvis AS, “UVVM v2018.12.03,” 2016-2018. [Online]. Available: https:
//github.com/UVVM/UVVM

[14] Walt Disney Feature Animation, Lion King. Walt Disney Pictures, 1994, Screengrab
from Blu-Ray release using FFmpeg.

[15] Pixar Animation Studios, Toy Story. Walt Disney Pictures, 1995, Screengrab from
Blu-Ray release using FFmpeg.

[16] FFmpeg Developers, “FFmpeg v4.0.2,” 2000-2018. [Online]. Available: https:
/Iwww.ffmpeg.org/

56

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/arria-10/a10_overview.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/arria-10/a10_overview.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_nfp_dsp.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_nfp_dsp.pdf
https://github.com/UVVM/UVVM
https://github.com/UVVM/UVVM
https://www.ffmpeg.org/
https://www.ffmpeg.org/

Appendix A

VHDL source code

A.1 FIFO

library ieee;
use ieee.std logic_1164.all;
use ieee.numeric_std.all;

entity fifo_generic is

generic (
g_width : natural :- 8;
g_depth : natural 1= 32;
g_ramstyle : string := "MLAB";
g_output_reg : boolean := false
)i
port (
clk_i : in std_logic;
sreset_i : in std_logic;
data_i : in std_logic_vector(g_width downto 0);
wr_en_i : in std_logic;
full_o : out std_logic := '0';
almostfull o : out std logic := '0';
—-— Read
data_o : out std_logic_vector (g_width-1 downto 0) := (others => '0');
rd_en_i : in std_logic;
empty_o : out std_logic := '1'

)i
end fifo_generic;

architecture fifo_generic_arc of fifo generic is

type t_ram is array (natural range <>) of std_logic_vector (g_width-1 downto 0);
signal ram_data : t_ram(g_depth-1 downto 0) ;= (others -> (others
signal ram_out : std_logic_vector (g_width-1 downto 0) := (others

signal ram out_reg : std_logic_vector (g_width-1 downto 0) := (others

attribute ramstyle : string;
attribute ramstyle of ram data : signal is g_ramstyle;

signal ram_wr_ptr : integer range 0 to g_depth-1; -
signal ram_rd_ptr : integer range 0 to g_depth-1; -—-

0N

57

53 signal words_in_ram : integer range 0 to g_depth;

54

55 signal wr_ok : std_logic 0

56 signal rd_ok : std_logic '0';

57 signal is_full : std_logic 0

58 signal is_almostfull : std _logic 0r;

59 signal is_empty : std_logic 1Y

60 begin

61 idate write and

62 wr_ok <= 'l' when wr_en_. and is_full = '0' else

63 rd_ok <= 'l1' when rd_en_i 1' and is_empty '0" else '0';

64

65 — of words in

66 p_words : process(clk_i) is

67 begin

68 if rising_edge(clk_i) then

69 if sreset_i = 'l' then

70 words_in_ram 0;

71 else

72 —

73 if (wr_ok '"l' and rd_ok = '0') then

74 words_in_ram <= words_in_ram + 1;

75 -- FIFO read

76 elsif (wr_ok '0' and rd_ok '1') then

77 words_in_ram <= words_in_ram - 1;

78 —- FIFO both read and write, or n

79 else

80 words_in_ram <= words_in_ram;

81 end if;

82 end if;

83 end if;

84 end process p_words;

85

86 -— Update empty and full sign.

87 p_flags : process(clk_i) is

88 begin

89 if rising_edge(clk_i) then

92 if sreset_i '1l' then

91 is_empty < ;

92 is_full <= '0';

93 else

94 -- Assert empty

95 if (words_in_ram = 0) or (words_in_ram 1 and wr_ok '0' and rd_ok '1') then

96 is_empty <= '1';

97 else

98 is_empty <=

99 end if;

100 -- Assert full signal

101 if (words_in_ram = g_depth) or (words_in_ram = g_depth-1 and wr_ok = '1' and rd_ok = '0') then

102 is_full <= '1

103 else

104 is_full <= '0';

105 end if;

106 - Assert almost 1 signal

107 if (words_in_ram - g_depth) or (words_in_ram - g_depth-1) or (words_in_ram - g_depth-2 and wr_ok - '1' and
s rd_ok '0') then

108 is_almostfull <= '1';

109 else

110 is_almostfull <=

111 end if;

112 end if;

113 end if;

114 end process p_flags;

115

116 -- Update write pointer

117 p_ram_wr_ptr : process(clk_i) is

18 begin

119 if rising_edge (clk_i) then

120 if sreset_i = '1' then

121 ram_wr_ptr <= 0;

122 elsif wr_ok = 'l' then

123 ram_wr_ptr <= (ram_wr_ptr + 1) mod g_depth;

124 end if;

125 end if;

126 end process p_ram wr_ptr;

127

128 -— Update read pointer

129 p_ram_rd_ptr : process(clk_i) is

130 begin

131 if rising_edge (clk_i) then

132 if sreset_i = '1' then

133 ram_rd_ptr <= 0;

134 elsif rd_ok = 'l' then

135 ram_rd_ptr <= (ram_rd_ptr + 1) mod g_depth;

136 end if;

137 end if;

138 end process p_ram_rd ptr;

139

140 -- Write to FIFO

141 p_write : process(clk_i) is

58

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

begin
if rising_edge(clk_i) then
if wr_ok = '1' then
ram_data (ram_wr_ptr) <= data_i;
end if;
end if;
end process p_write;

Read from FIFO
p_read : process(clk_i) is
begin
if rising_edge(clk_i) then
if rd_ok '1' then
ram_out <= ram_data(ram_rd_ptr);
end if;

if g_output_reg then
ram_out_reg <= ram_out;
end if;
end if;
end process p_read;

-- outputs

full_o <= is_full;

almostfull_o <= is_almostfull;

empty_o <= is_empty;

data_o <= ram_out_reg when g_output_reg else ram_out;

end fifo generic_arc;

59

A.2 Simple Dual-Port RAM

—-— Descri

library ieee;

use ieee.std logic_1164.all;
use ieee.numeric_std.all;

entity simple_dpram is
generic (
g_ram_width
g_ram_depth
g_ramstyle
g_output_reg
)i
port (
in

in

natural

natural

string 1= "M20K";
boolean := false
std_logic;

std_logic_vector (g_ram_width-1 downto 0);

in integer range 0 to g_ram_depth-1;

in std_logic;
data_o : out std logic_vector (g_ram width-1 downto 0)
rd_addr_i : in integer range 0 to g_ram_depth-1

)i

end simple_dpram;

architecture rtl of simple dpram is

RAM
type t_ram is array
signal ram_data
signal ram_out
signal ram_out_reg
- yle
attribute ramstyle

- st

(natural range <>) of std logic_vector(g_ram_width-1 downto 0);

t_ram(g_ram_depth-1 downto 0)

std_logic_vector (g_ram_width-1 downto 0)
std_logic_vector (g_ram_width-1 downto 0)

string;

attribute ramstyle of ram_data : signal is g_ramstyle;

begin

p_ram : process (clk_i)

begin

if (rising_edge (clk_i)) then
W,

if (wr_en_i

ite to RAM

'1') then

ram_data (wr_addr_i) <= data_i;

end if;

ram_out
ram_out_reg

end if;
end process p_ram;

ram_data (rd_addr_i);
ram_out;

ram_out_reg when g_output_reg else ram_out;

60

A.3 Multiport RAM

library ieee;

use ieee.std logic_1164.all;

use ieee.numeric_std.all;

entity multiport_ram is

0)
0)
0)
0)

generic (
g_ram_width : natural 8;
g_ram_depth : natural 32;
g_ramstyle : string "M20K";
g_output_reg : boolean false

)i

port (
clk_i : in std _logic;
data_i : in std_logic_vector (g_ram width-1 downto 0);
wr_addr_i : in integer range 0 to g_ram_depth-1;
wr_en_i : in std_logic;

Read

data_a_o out std logic_vector (g_ram_width-1 downto
data_b_o out std_logic_vector(g_ram_width-1 downto
data_c_o out std_logic_vector(g_ram_width-1 downto
data_d_o out std_logic_vector (g_ram_width-1 downto
rd_addr_a_i : in integer range 0 to g_ram depth-1;
rd_addr_b_i : in integer range 0 to g_ram_depth-1;
rd_addr_c_i : in integer range 0 to g_ram_depth-1;
rd_addr_d_i : in integer range 0 to g_ram_depth-1

)i
end multiport_ram;

architecture rtl of multiport_ram is

constant C_NUM_PORTS

type t_read_addr is array(0 to C_NUM_PORTS-1)
type t_read_data is array(0 to C_NUM_PORTS-1)

integer :=

signal read_addr : t_read_addr;
signal read_data : t_read_data;

component simple_ dpram

generic (
g_ram_width
g_ram_depth
g_ramstyle
g_output_reg

)i

port (
clk_i : in

natural
natural
string

std_logic;

std_logic_vector(g_ram_width-1 downto 0);

47

: boolean := false

downto 0)

wr_addr_i in integer range 0 to g_ram_depth-1;
i in std_logic;
data_o : out std_logic_vector (g_ram_width-1

)i
end component;

begin

in integer range 0 to g_ram_depth-1

g_multiport_ram : for i in 0 to C_NUM_PORTS-1 generate
u_simple_dpram : simple_dpram

generic map (

g_ram_width => g_ram_width,

g_ram_depth

> g_ram_depth,

g_ramstyle > "M20K",
g_output_reg > true

)

port map (
clk_i —> clk_i,
data_i —> data_i,

>

wr_addr_i,
wr_en_i,

read_data (i),

(others
(others
(others

(others

(others =

>

>

>

0N
0N
0Ny
0N

of integer range 0 to g_ram_depth-1;
of std_logic_vector(g_ram_width-1 downto 0);

0N

61

87 rd_addr_i > read_addr (i)

88)i

89 end generate g_multiport_ram;
90

91 read_data(0);
92 read_data (1) ;
93 = read_data(2);
94 read_data(3);
95

96 read_addr (0) <=

97 read_addr (1) <

98 read_addr (2) <

99 read_addr (3) <

100

101 end rtl;

62

A.4 My Fixed Package

—-— Descri

library ieee;
use ieee.fixed float_types.all;

package my_fixed_pkg is new ieee.fixed generic_pkg
generic map (

fixed_round_style > fixed_truncate,
fixed_overflow_style => ieee.fixed float_types.fixed_saturate,
fixed_guard_bits => 3,

no_warning => false

)i
end package my_fixed pkg;

63

Nearest-Neighbor Scaling

library ieee;
use ieee.std logic_1164.all;
use ieee.numeric_std.all;

use work.my_fixed pkg.all;

entity scaler is
generic (

)i

g_data_width
g_rx_video_width
g_rx_video_height
g_tx_video_width
g_tx_video_height

scaler_startofpacket_i
scaler_endofpacket_i

scaler_data_i
scaler_valid i
scaler_ready_o

scaler_startofpacket_o
scaler_endofpacket_o

scaler_data_o
scaler_valid_o
scaler_ready_i

end scaler;

natural;
natural;
natural;
natural;
natural

in
in

in

architecture scaler_arc of scaler is

type t_state is
signal state

constant C_LINE_BUFFERS

t_state

signal scaling_ratio

signal scaling_ratio_reg

signal tx_height
signal rx_height
signal tx_height_reg
signal rx_height_reg

(s_idle,

'1') or

signal fb_wr_en_reg
signal fb_data_i

signal fb_data_reg
signal fb_wr_addr_i

signal fb_wr_addr_reg

signal fb_valid_reg
signal fb_data_o
signal fb_rd_addr_i

Scaler

signal interpolate

signal
signal dy

signal dx_reg
signal dy_reg

signal dx_1
signal dy_1

signal dx_1_reg
signal dy_1l_reg

signal dxy_2
signal dxy_2_reg

s_pre_fill_fb,
:= s_idle;

std_logic
std_logic
std_logic_vector (g_data_width-1 downto 0) :=
std_logic :=
std_logic

std_logic;
std_logic;

std_logic;
std_logic;
std_logic_vector (g_data_width-1
std_logic;
std_logic

o

o
= 00;

r;

s_finish_f£ill_fb,

s_upscale,

integer := 4;
else division by 0 error
ufixed(3 downto -12) := (others => '0');
ufixed(3 downto -12) := (others => '0');
ufixed (11l downto 0) (others => '1'");
ufixed (11l downto 0) (others => '1'");
ufixed(11 downto 0) := (others 1)
ufixed (11 downto 0) := (others iy

std_logic ‘o’

std_logic 0y

std_logic_vector (g_data_width-1 downto 0)
std_logic_vector (g_data_width-1

integer := 0;
integer := 0;
std_logic := '0';
std_logic_vector (g_data_width-1 downto 0
integer := 0;
: boolean := false;
ufixed (16 downto -16) (others
ufixed (16 downto -16) (others
ufixed (16 downto -16) (others
ufixed(16 downto -16) := (others
ufixed (15 downto -12) (others —
ufixed (15 downto -12) (others =
ufixed (15 downto 2 (others =
ufixed (15 downto 2 = (others =
ufixed (15 downto -16) := (others
ufixed (15 downto -16) (others

downto 0)

0n);
0N
0N
0N

0N
0N
> '0");
> '0");

=> '0");
>0 ;

s_upscale_and_fill);

downto 0);

(others =>
(others =>

(others =>

(others =>

0"y ;
0" ;
0

0y ;

64

87
88
89

91
92
93
94
95
96

98
99

101

102
103

104
105

106
107

108

109
110
111

112
113
114
115
116
117
118
119
120
121

122
123
124
125
126
127
128
129
130
131

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

170
171
172
173
174

175

signal dx_int integer :
signal dy_int integer :
signal dx_int_reg integer :
signal dy_int_reg integer :
signal x_count integer := 0;
signal y_count integer := 0;
signal x_count_ufx ufixed (1l downto 0) := (others => '0');
signal y_count_ufx ufixed (11l downto 0) := (others => '0');
signal x_count_ufx_reg : ufixed(ll downto 0) := (others => '0');
signal y_count_ufx_reg : ufixed(l1l downto 0) : (others => '0'");
signal dy_int_last integer 0;
signal dy_change : boolean := false;
Counters
signal cur_input integer
signal cur_output integer :
begin
framebuffer : entity work.simple_ dpram
generic map (
g_ram_width g_data_width,
g_ram_depth g_rx_video_width+C_LINE_BUFFERS,
g_ramstyle "M20K",
g_output_reg => true
)
port map (
clk_i => clk_i,
-— Write
data_i > fb_data_i,
wr_addr_i > fb_wr_addr_i,
wr_en_i > fb_wr_en_i,
-- Read
data_o => fb_data_o,
rd_addr_i => fb_rd_addr_i
)i
p_fsm : process(clk_i) is
variable v_count : integer := 0;
begin
if rising_edge(clk_i) then
case (state) is
when s_idle —>
scaler_ready_o
cur_input
cur_output =
scaler_endofpacket_o <= '0';
fb_valid_reg <= '0";
if scaler_ready_o "l' and scaler_valid_i '"1' then
if scaler_startofpacket_i = '1' then
fb_wr_en_reg <= '1';
state <= s_pre_fill_fb;
end if;
end if;
when s_pre_fill fb =>
framebuffer before starting the scaler
if scaler_ready_o "l1"' and scaler_valid_ i '"1l' then

if fb_wr_addr_re
—— Ready laten
scaler_ready_o
fb_wr_en_reg
fb_wr_addr_reg
cur_input
state

else

-- Fill framebu

scaler_ready_o <
fb_wr_en_reg <
fb_wr_addr_reg <=
cur_input <=
end if;
end if;

when s_finish_fill fb =>

the last data recieved aft

(g_rx_video_width+C_LINE_BUFFERS)-2 then

ST-video

fb_wr_addr_reg + 1;
cur_input + 1;
s_finish_fill_fb;

er

1
1
fb_wr_addr_reg + 1;
cur_input + 1;

r ready latency of 1

if scaler_valid_i '1' then
fb_wr_en_reg < i
fb_wr_addr_reg <= 0 when (fb_wr_addr_reg
— 1;
cur_input <= cur_input + 1;

(g_rx_video_width+C_LINE_BUFFERS)-1)

else fb_wr_addr_reg +

65

176

177 -- Upscaling

178 state <= s_upscale;

179 if interpolate = true then

180 cur_output <= cur_output + 1;
181 fb_valid_reg <= '1';

182 end if;

183 end if;

184

185

186 when s_upscale =>

187 —-— Upscaling process

188 if scaler_ready_i '1' then

189 interpolate true;

190 cur_output cur_output + 1;
191 scaler_ready_o 0

192 fb_wr_en_reg 0';

193

194 if cur_output >-—

195 First data

196 -— Need +11 b e 1y through scaler is 11 clock cycles
197 fb_valid_reg <= '1';

198 scaler_startofpacket_o <= 'l1' when cur_output 12 else '0';
199 end if;

200

201

202 if dy_change and (cur_input < (g_rx_video_widthsg_rx_video_height)) then
203 C uffer has been pro i, ready to be refilled
204 scaler_ready_o i

205 fb_wr_en_reg <= '1';

206 interpolate <= false;

207 state <= s_upscale_and_fill;

208 end if;

209

210 if cur_output >= (g_tx_video_widthsg_tx_video_height)+6 then
211 - e processing

212 interpolate <= false;

213 end if;

214

215 if cur_output >= (g_tx_video_width+g_tx_video_height)+9 then
216 Last data on ou

217 fb_valid_reg <= '0';

218 scaler_endofpacket_o <= '1';

219 state <= s_idle;

220 end if;

221 else

222 interpolate <= false;

223 end if;

224

225

226 when s_upscale_and_fill =>

227 -- Fill one line in framebuffer while upscaling

228 if scaler_ready_o = 'l' and scaler_valid_i = '1' then

229 if scaler_ready_i '"1l' then

230 interpolate <= true;

231 scaler_ready_o <= 'l';

232 fb_wr_en_reg <= '1';

233 fo_wr_addr_reg <= 0 when (fb_wr_addr_reg = (g_rx_video_width+C_LINE_BUFFERS)-1) else
— fb_wr_addr_reg + 1;

234 cur_input cur_input + 1;

235 fb_valid_reg <= '0';

236

237 v_count v_count + 1;

238 if v_count 3 then

239 -- 2 clock cycles delay from fb_rd_addr is set to data is on output

240 fb_valid_reg <= '1';

241 cur_output <= cur_output + 1;

242 end if;

243

244 if v_count = g_rx_video_width-1 then

245 One n 1

246 Ready 1 ST-video

247 scaler_ready_o

248 v_count 0;

249 state = s_finish_fill_fb;

250 end if;

251 else

252 interpolate <= false;

253 end if;

254 end if;

255

256 end case;

257

258 Connect registers

259 fb_wr_en_i <= fb_wr_en_reg;

260 fb_wr_addr_i <= fb_wr_addr_reg;

261 fb_data_i <= scaler_data_ij;

262 scaler_valid_o <= fb_valid_reg;

263

264 —-— Handle reset

66

265 if sreset_i = 'l' then

266 state <= s_idle;

267 end if;

268 end if;

269 end process p_fsm;

270

271

272

273 p_nearest : process(clk_i) is

274 begin

275 if rising_edge(clk_i) then

276 if interpolate then

277 -— Make x/y_count xed

278 x_count_ufx to_ufixed(x_count, x_count_ufx);

279 y_count_ufx to_ufixed(y_count, y_count_ufx);

280 x_count_ufx_reg = x_count_ufx;

281 y_count_ufx_reg <= y_count_ufx;

282

283 Fixed point DSP tiplication of variable part of dx/dy calcu
284 dx_1 x_count_ufx_reg * scaling_ratio_reg;

285 dy_1 y_count_ufx_reg » scaling_ratio_reg;

286 dx_1_reg <= dx_1;

287 dy_l_reg <= dy_l;

288

289 —-- Constant part of dx/dy calculation

290 <= to_ufixed(0.5, 1, -2) » (1 - resize(scaling_ratio_reg, 12, -14));
291 <= dxy_2;

292

293 /dy calculation

294 dx_1_reg + dxy_2_reg;

295 dy_1_reg + dxy_2_reg;

296 dx;

297 dy;

298

299 -- Next pixel in target frame

300 x_count <= x_count + 1;

301

302 —-- Check if a row in target me is completed

303 if x_count = g_tx_video_width-1 then

304 x_count <= 0;

305 y_count <= y_count + 1;

306 end if;

307

308 —— Check all rowns in line buffer is completed

309 if dy_reg >= C_LINE_BUFFERS then

310 -- Reset y_c - frambu - addr

311 y_count 0;

312 y_count_ufx <= to_ufixed (0, y_count_ufx);

313 y_count_ufx_reg <- to_ufixed(0, y_count_ufx_req);

314 Variable part of dx/dy is zero, use only constant
315 dy <= resize(dxy_2_reg, dy'high,

316 dy_reg <= resize(dxy_2_reg, dy'high,

317 dy_int <= 0;

318 -— Unable to set dx_1/dy_1 to zero, as ins fixed point I tation
319 — instead handled by setting y_coun mnt_
320 - i1l give w. nt
321 s ing y_count set to zero.
322

323

324

325

326 Use floor from my_fixed pkg to get dx/dy to int fb_rd_addr
327 dx_int <= to_integer (dx_reg) ;

328 dx_int_reg <= dx_int;

329 dy_int_reg <= dy_int;

330

331 -- Find nearest neighbor ad framebuffer

332 fb_rd_addr_i <= g_rx_video_width«dy_int_reg + dx_int_reg;
333

334 —~ Che if scaler i

335 dy_int_last <= dy_int;

336 dy_change <= true when dy_int_last /= dy_int else false;
337 end if;

338

339 scaler_data_o <= fb_data_o;

340 end if;

341 end process p_nearest;

342

343

344

345 p_scaling_ratio : process(clk_i) is

346 begin

347 if rising_edge(clk_i) then

348 Calc scaling ratio

349 -- Needs to i e clocked process to become registers for fixed point DSP implementation
350 rx_height <= to_ufixed(g_rx_video_height, rx_height);
351 tx_height <= to_ufixed(g_tx_video_height, tx_height);
352 rx_height_reg <= rx_height;

353 tx_height_reg <= tx_height;

354 scaling_ratio <= resize(rx_height_reg/tx_height_reg, scaling_ratio'high, scaling_ratio'low);

355
356
357
358
359

scaling_ratio_reg <= scaling_ratio;
end if;
end process p_scaling ratio;

end scaler_arc;

68

Bilinear Scaling 4-line Framebuffer

library ieee;
use ieee.std logic_1164.all;
use ieee.numeric_std.all;

use work.my_fixed pkg.all;

entity scaler is
generic (

)i

g_data_width
g_rx_video_width
g_rx_video_height
g_tx_video_width
g_tx_video_height

clk_i ¢ in
sreset_1 : in

scaler_startofpacket_i
scaler_endofpacket_i
scaler_data_i
scaler_valid i
scaler_ready_o

scaler_startofpacket_o
scaler_endofpacket_o
scaler_data_o
scaler_valid_o
scaler_ready_i

end scaler;

natural;
natural;
natural;
natural;
natural

std_logic;
std_logic;

in std_logic;
in std_logic;

in std_logic_vector (g_data_width-1

in std_logic;
out std_logic 0
out std logic
out std_logic

o
= 00;

out std_logic_vector (g_data_width-1 downto 0) :=

out std_logic :=
in std_logic

0r;

architecture scaler_arc of scaler is

type t_state is
signal state

(s_idle,
t_state :=

constant C_LINE_BUFFERS

Using (= 1)

signal scaling_ratio
signal scaling_ratio_reg

signal tx_height
signal rx_height
signal tx_height_reg
signal rx_height_reg

signal fb_wr_en_reg
signal fb_data_i
signal fb_data_reg
signal fb_wr_addr_i
signal fb_wr_addr_reg

s_pre_fill_fb, s_finish_£ill_fb,

s_idle;

integer := 4;

or else di

ufixed (3 downto -12)

downto 0);

s_upscale,

(others =>
ufixed(3 downto -12) := (others =>
ufixed (11l downto 0) (others =>
ufixed (11l downto 0) := (others =>
ufixed(11 downto 0) := (others

ufixed (11 downto 0) :=

std_logic ‘o’

std_logic 0y

std_logic vector(g_data_width-1
std_logic_vector (g_data_width-1
integer := 0;
integer := 0

signal fb_valid_reg
signal fb_data_a_o
signal fb_data_b_o
signal fb_data_c_o
signal fb_data_d_o
signal fb_rd_addr_a_i
signal fb_rd_addr_b_i
signal fb_rd_addr_c_i
signal fb_rd_addr_d_i

signal dx
signal dy
signal dx_reg
signal dy_reg

signal dx_1

std_logic :=

o

std_logic_vector (g_data_width-1
std_logic_vector (g_data_width-1
std_logic_vector (g_data_width-1
std_logic_vector(g_data_width-1

integer := 0;
integer := 0;
integer := 0;
integer := 0;

: boolean := false;

ufixed (16
ufixed (16
ufixed(16
ufixed(16

ufixed (15

downto -16)
downto -16)
downto -16)
downto -16)

(others
(others

downto -12) (others

(others

(others =>
(others =>

>

downto
downto

downto

downto 0

downto
downto

0N
0"
0N
0N

0N

0" ;
0"y ;

1
1
"1
1)

0)
0)

0)

0)
0)

:= (others

(others =>

s_upscale_and_fill);

:= (others => '0');
(others => '0');
(others

:= (others

= (others

0 ;

69

87
88
89

91
92

94
95
96

98
99

101

102
103
104
105
106
107
108
109
110
111

112
113
114
115
116
117
118
119
120
121

122
123
124
125
126
127
128
129
130
131

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

170
171
172
173
174
175
176

signal dy_1
signal dx_1_reg
signal dy_1_reg

signal dxy_2
signal dxy_2_reg

Needs to be 1 becau,

signal x_count
signal y_count
signal x_count_ufx
signal y_count_ufx

signal x_count_ufx_reg
signal y_count_ufx_reg

signal x1_int
signal x2_int
signal yl_int
signal y2_int
signal pixl_int
signal pix2_int
signal pix3_int
signal pix4_int

signal dy_int
signal dy_int_last
signal dy_change

Delays
signal dx_reg_1
signal dy_reg_1
signal dx_reg_2
signal dy_reg_2
signal dx_reg_3
signal dy_reg_3
signal dx_reg_4
signal dy_reg_4
signal dx_reg_5
signal dy_reg_5
signal dx_reg_6
signal dy_reg_6
signal dx_reg_7
signal dy_reg_7

signal x1_int_reg_1
signal x2_int_reg_1
signal yl_int_reg_1
signal y2_int_reg_1
signal x1_int_reg_2
signal x2_int_reg_2
signal yl_int_reg_2
signal y2_int_reg_2
signal x1_int_reg_3
signal x2_int_reg_3
signal yl_int_reg_ 3
signal y2_int_reg_3
signal x1_int_reg_4
signal x2_int_reg_4
signal yl_int_reg_4
signal y2_int_reg_4
signal x1_int_reg_5
signal x2_int_reg_5
signal yl_int_reg_ 5
signal y2_int_reg_5
signal x1_int_reg_6
signal x2_int_reg_6
signal yl_int_reg_ 6
signal y2_int_reg_6

Coefficients
signal delta_xl1
signal delta_x2
signal delta_yl
signal delta_y2
signal delta_x1_reg
signal delta_x2_reg
signal delta_yl_reg
signal delta_y2_reg

signal delta_yl_reg_1
signal delta_y2_reg_1
signal delta_yl_reg_2
signal delta_y2_reg_2
signal delta_yl_reg_3
signal delta_y2_reg_3
signal delta_yl_reg_4

signal delta_y2_reg_4

signal pixl_data_ufx

ufixed (15 downto —12)
ufixed (15 downto -12)

(others => '0'");
(others => '0');

ufixed (15 downto -12) := (others => '0');

ufixed (15 downto -16) := (others => '0');

ufixed (15 downto -16)

dx/dy algorithm

integer :=

integer := 1;

ufixed(11l downto 0) := 12x"1";

ufixed (11 downto 0) := 12x"1";

ufixed(11 downto 0) : 12x"1";

ufixed (11 downto 0) := 12x"1";
integer := 1;

integer := 0;
integer := 0;
integer := 1;
integer := 1;

: boolean := false;

ufixed (16 downto -16)
ufixed (16 downto -16)
ufixed (16 downto -16)
ufixed (16 downto -16)
ufixed (16 downto -16)

(others
(others

(others => '0');

0N
0N
(others => '0'");
(others => '0');
(others => '0');

ufixed (16 downto -16) (others 0y ;
ufixed (16 downto -16) (others 0y ;
ufixed (16 downto -16) (others 0y ;
ufixed(16 downto -16) (others '0');
ufixed(1l6 downto -16) (others "0y
ufixed(l6 downto -16) (others "0');
ufixed (16 downto -16) (others => '0');
ufixed (16 downto -16) : (others => '0');
ufixed (16 downto -16) : (others => '0');

integer
integer
integer :
integer :
integer :=
integer :
integer :
integer :
integer :
integer :
integer :
integer
integer
integer

integer :

ufixed(l downto -16)
ufixed(l downto -16)
ufixed(l downto -16)
ufixed(l downto -16)

(others => '0
(others => '0
(others => '0
(others => '0

ufixed(l downto -16) : (others ‘0
ufixed(l downto -16) : (others 0
ufixed(l downto -16) (others o
ufixed(l downto -16) := (others 0
ufixed(l downto -16) := (others
ufixed(l downto -16) := (others
ufixed(l downto -16) := (others
ufixed(l downto -16) := (others
ufixed(l downto -16) := (others =>
ufixed(l downto -16) : (others =>
ufixed(l downto -16) : (others =>
ufixed(l downto -16) : (others =>

ufixed(g_data_width-1 downto 0) :=

i
i
i
i

)i
)i
)i
)i
01y ;
01y ;
01y ;
1) ;
01y ;
0" ;
0
0Ny

(others =>

0y

70

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

201
202
203
204
205
206

208
209
210
211
212
213
214
215
216
217
218
219

221

238
239

241

255

258
259

261
262

264
265
266

signal pix2_data_ufx : ufixed(g_data_width-1 downto 0)
signal pix3_data_ufx : ufixed(g_data_width-1 downto 0)
signal pix4_data_ufx : ufixed(g_data_width-1 downto 0)

signal pixl_data_ufx_reg
signal pix2_data_ufx_reg
signal pix3_data_ufx_reg
signal pix4_data_ufx_reg

ufixed(g_data_width-1 downto
ufixed(g_data_width-1 downto

signal A_yl_a
signal A_yl_b
signal A_y2_a
signal A_y2 b
signal A_yl
signal A_y2
signal A_1
signal A_2
signal A

signal B_yl_a
signal B_yl_b
signal B_y2_a
signal B_y2 b
signal B_yl
signal B_y2

signal B_1
signal B_2
signal B

signal C_yl_a
signal C_yl_b
signal C_y2_a
signal C_y2 b
signal C_yl
signal C_y2

signal C_1
signal C_2
signal C

signal A_yl_a_reg
signal A_yl_b_reg
signal A_y2_a_reg
signal A_y2_b_reg
signal A_yl_reg

signal A_y2_reg

signal
signal
signal

signal
signal
signal
signal
signal
signal
signal
signal
signal

signal
signal
signal
signal
signal
signal
signal
signal
signal

-- Counters
signal cur_input
signal cur_output

begin
framebuffer : entity
generic map (
g_ram_width
g_ram_depth
g_ramstyle

g_output_reg =>
)
port map (
clk_i =>
-- Write
data_i >
wr_addr_i >

ufixed(g_data_width-1 downto
ufixed(g_data_width-1 downto
ufixed (9 downto -16) := (others =
ufixed(9 downto -16) (others
ufixed(9 downto -16) (others
ufixed(9 downto -16) (others
ufixed(7 downto -8) (others =

ufixed(7 downto -8)
ufixed(7 downto -8)
ufixed(7 downto -8)
ufixed(7 downto 0) :=

ufixed (9 downto -16)

>
(others =>
(others —>
(others =>
(others =>

:= (others =

ufixed(9 downto -16) (others =
ufixed(9 downto -16) (others
ufixed(9 downto -16) : (others
ufixed(7 downto -8) : (others =>
ufixed(7 downto -8) (others =>
ufixed(7 downto -8) (others

ufixed (7 downto -8)
ufixed (7 downto 0)

(others
(others

ufixed(9 downto -16) := (others =
ufixed(9 downto -16) (others =
ufixed (9 downto -16) (others =
ufixed(9 downto -16) := (others
ufixed(7 downto -8) : (others
ufixed(7 downto -8) (others
ufixed(7 downto -8) (others
ufixed(7 downto -8) := (others
ufixed(7 downto 0) := (others
ufixed(9 downto -16) (others =
ufixed(9 downto -16) (others

:= (others =

ufixed (9 downto -16)
ufixed (9 downto -16) (others
ufixed(7 downto -8) (others

ufixed(7 downto -8)
ufixed(7 downto -8)
ufixed(7 downto -8)
ufixed(7 downto 0) :=

ufixed(9 downto -16)

(others
(others
(others
(others =>

:= (others =

ufixed(9 downto (others

ufixed(9 downto (others =
ufixed(9 downto (others =
ufixed(7 downto -8) (others =>
ufixed(7 downto -8) (others =>
ufixed(7 downto -8 (others =>
ufixed(7 downto (others =>

ufixed(7 downto

(others =>

ufixed (9 downto -16) := (others
ufixed (9 downto -16) (others
ufixed(9 downto -16) (others
ufixed(9 downto -16) (others =
ufixed (7 downto -8) (others =>
ufixed(7 downto -8) (others =>
ufixed(7 downto -8) (others =>
ufixed(7 downto -8) (others =>

ufixed(7 downto 0) :=

integer := 0;
integer := 0;

work.multiport_ram

g_data_width,
g_rx_video_width+C_LINE
"M20K",

true

clk_i,
fb_data_i,
fb_wr_addr_i,
fb_wr_en_i,

fb_data_a_o,

(others =>

._BUFFERS,

(others => '0');
(others => '0');
:= (others => '0');

0) := (others =>
0) := (others —>
0) := (others =>
0) := (others =>
> '0");
> '0");

0

01y
0N
0N
0N
o)

0N

> '0");
> '0");
> '0");
> '0");
0N
0N
0N
0N
0N

> 10N
> '0");
> '0");
> '0");
0N
0
0N
0N
0);

> 10"
> 10N
> '0");
> '0");
0N
0N
0N
0N
0N

> '0);
0N
> '0");
> '0");
0N
0N
0N
10N
0N

0Ny
0N
0N
> '0");
0N
0N
0N
0N
0

0
0
0N
0N

71

267 data_b_o fb_data_b_o,

268 data_c_o fb_data_c_o,

269 data_d_o fb_data_d_o,

270 rd_addr_a_i fb_rd_addr_

271 rd_addr_b_i fb_rd_addr_]

272 rd_addr_c_i fb_rd_addr_

273 rd_addr_d_i fb_rd_addr_

274)i

275

276

271

278 p_fsm : process(clk_i) is

279 variable v_count : integer := 0;

280 begin

281 if rising_edge (clk_i) then

282 case (state) is

283

284 when s_idle =>

285 scaler_ready_o

286 cur_input

287 cur_output

288 scaler_endofpacket_o

289 fb_valid_reg

290

291 if scaler_ready o = 'l' and scaler_valid i = '1' then

292 if scaler_startofpacket_i = '1' then

293 fb_wr_en_reg 1

294 state s_pre_fill_fb;

295 end if;

296 end if;

297

298

299 when s_pre fill fb =>

300 —— Pre-fill framebuffer before starting the scaler

301 if scaler_ready_o "l' and scaler_valid_i '"1' then

302 if fb_wr_addr_reg = (g_rx_video_width+C_LINE_BUFFERS)-2 then

303 -- Ready latenc

304 scaler_ready_o

305 fb_wr_en_reg

306 fb_wr_addr_reg fb_wr_addr_reg + 1;

307 cur_input <= cur_input + 1;

308 state <= s_finish_fill_fb;

309 else

310 -— Fill f. buffer

311 scaler_ready_o <= 'l1';

312 fb_wr_en_reg N

313 fb_wr_addr_reg fb_wr_addr_reg + 1;

314 cur_input <= cur_input + 1;

315 end if;

316 end if;

317

318

319 when s_finish_fill fb =>

320 —— Fill the recieved ready latency of 1

321 if scaler_valid_i "1' then

322 fo_wr_en_reg <= '0';

323 fb_wr_addr_reg <= 0 when (fb_wr_addr_reg = (g_rx_video_width+C_LINE_BUFFERS)-1) else fb_wr_addr_reg
— 1;

324 cur_input <= cur_input + 1;

325

326 g

327 state s_upscale;

328 if interpolate = true then

329 cur_output <= cur_output + 1;

330 fb_valid_reg <= '1';

331 end if;

332 end if;

333

334

335 when s_upscale —>

336 Upscaling process

337 if scaler_ready i = 'l' then

338 interpolate true;

339 cur_output <= cur_output + 1;

340 scaler_ready_o <= '0';

341 fb_wr_en_reg <= '0';

342

343 if cur_output >= 18 then

344 -- First data o ut

345 —— Need +18 because delay through scaler is 18 clock cycles

346 fb_valid_reg <= '1';

347 scaler_startofpacket_o <= 'l' when cur_output = 19 else '0';

348 end if;

349

350

351 if dy_change and (cur_input < (g_rx_video_width*g_rx_video_height)) then

352 -- One line framebuffer has been processed, ready to be refilled

353 scaler_ready_o <= 'l';

354 fbo_wr_en_reg 1Y

355 interpolate <= false;

72

356
357
358

361

371
378
379
380
381
382
383
384

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

406
407

409
410
411
412
413
414
415
416
417

419

427

437

439
440
441
442
443
444

state <= s_upscale_and_fill;

end if;

if cur_output >=

e proc

s

interpolate <= false;
end if;

depends on latency tl

(g_tx_video_width=g_tx_video_height)+24 then

if cur_output >= (g_tx_video_widthsg_tx_video_height)+25 then

data

fb_valid_reg <= '0'

scaler_endofpacket_o <= '1';
state <= s_idle;
end if;
else
interpolate <= false;
end if;
when s_upscale_and_fill =>
—-— Fill one line in framebuffer while upsc.
if scaler_ready_o "l' and scaler_valid_i
if scaler_ready_i = '1' then
interpolate <= true;
scaler_ready_o v
fb_wr_en_reg 1

fb_wr_addr_reg <= 0 when (fb_wr_addr_reg = (g_rx_video_width+C_LINE_BUFFERS)

utput

depends on lat

— fb_wr_addr_reg + 1;

cur_input
fb_valid_reg <= '0';

v_count := v_count +
if v_count >- 3 then
-= 2 clock

fb_valid_reg
cur_output
end if;

1;

h

ro

cur_output

ugh sc.

cur_input + 1;

ay from fb_rd_addr is set to data is

+ 1;

if v_count = g_rx_video_width-1 then

s

ed.

Avalon ST-video

s_finish_fill_fb;

-- One 1 s bee.
-— Ready ency of
scaler_ready_o <
v_count :
state
end if;
else
interpolate <= false;
end if;
end if;
end case;

registers
<= fb_wr_en_reg;
fb_wr_addr_i fo_wr_addr_reg;
fb_data_i scaler_data_i;
scaler_valid_o <= fb_valid_reg;

Handle t
if sreset_: '1' then
state <= s_idle;
end if;
end if;
end process p_fsm;

p_reverse_mapping : process(clk_i) is
begin
if rising_edge(clk_i) then
if interpolate then

-- Make x/y_cou ixed

x_count_ufx <= to_ufixed(x_count,
y_count_ufx <= to_ufixed(y_count,
x_count_ufx_reg <= x_count_ufx;

y_count_ufx_reg <= y_count_ufx;

y_count_ufx_reg *
dx_1_reg <= dx_1;
dy_1_reg <= dy_1;

part of dx/dy calc
<= to_ufixed(0.5,
<= dxy_2;

1 dx/dy calculation

f variable f

x_count_ufx_reg + scaling_ratio_re

x_count_ufx) ;
x_count_ufx);

rt of dx/dy calcule

scaling_ratio_reg;

1,

ation
—2)

*

(

— resize(scaling_ratio_reg,

on ou

12,

“14));

1)

else

73

451

459

461
462
463
464

466
467

469
470
471
472
473
474

476
477

479
480
481
482
483
484
485
486
487
488
489
490
491
492
493

495
496
497
498
499
500
501
502
503
504

506
507

509
510
511
512
513
514
515
516
517
518
519
520
521
522
523

525
526
527
528
529
530
531
532
533
534

dx <= dx_1_reg + dxy_2_reg;
dy <= dy_l_reg + dxy_2_reg;
dx_reg <= dx;
dy_reg dy;
-- Next pixel in target
x_count <= x_count + 1;

Check if a row in target frame is completed
if x_count = g_tx_video_width then

x_count <= 1;

y_count <= y_count + 1;
end if;

bot

x2_int <= 2;

dx_reg_1 to_ufixed(1l, dx_reg);
elsif dx_reg > g_rx_video_width then

x1_int <= g_rx_video_width - 1;

X2_int <= g_rx_video_width;

dx_reg_1 <= to_ufixed(g_rx_video_width, dx_reg);
else

x1_int <= to_integer (dx_reg);
x2_int <= to_integer (dx_reg)
dx_reg_1 <= dx_reg;

+1;

end if;
Keep kernel within
if dy_reg < 1 then
dy_int <= 1;
yl_int <= 1;
y2_int <= 2;
dy_reg_1 <- to_ufixed(1, dy_reg);
when both lines have been
y_count
y_count_ufx to_ufixed(l, y_count_ufx);
y_count_ufx_reg to_ufixed(l, y_count_ufx_reqg);
dy resize(scaling_ratio_reg + dxy_2_reg, dy);
dy_reg resize(scaling_ratio_reg + dxy_2_reg, dy);
dy_int 1;
yl_int 1;
y2_int 2;
dy_reg_1 to_ufixed(l, dy_reg);
elsif dy_reg >= C_LINE_BUFFERS then
Special case wk one line has completed but not the other one
C_LINE_BUFFERS;
C_LINE_BUFFERS;
1;
= dy_reg;
dy_int <= to_integer (dy_reg);
yl_int <= to_integer (dy_req);
y2_int <= to_integer (dy_reg) + 1;
dy_reg_1 <= dy_reg;
end if;
er addresses for each pixel
pixl_int ((yl_int-1) *g_rx_video_width) (x1_int 1)
pix2_int ((yl_int-1)+g_rx_video_width) + (x2_int - 1);
pix3_int ((y2_int-1) *g_rx_video_width) + (x1l_int - 1);
pix4_int ((y2_int-1) *g_rx_video_width) + (x2_int - 1);

from framebuffer
= pixl_int;
pix2_int;
pix3_int;
pixd_int;

—- Read data
fb_rd_addr_a_i
fb_rd_addr_b_i
fb_rd_addr_c_i
fb_rd_addr_d_i

to_ufixed(fb_data_a_o,
to_ufixed (fb_data_b_o,
to_ufixed(fb_data_c_o,
to_ufixed(fb_data_d_o,

Get p
pixl_data_ufx
pix2_data_ufx <=
pix3_data_ufx <

pixl_data_ufx);
pix2_data_ufx);
pix3_data_ufx);

pix4_data_ufx <

pixl_data_ufx_reg
pix2_data_ufx_reg
pix3_data_ufx_reg
pixd_data_ufx_reg

Delays

-- T Implemen
dx_reg_2 <= dx_re
dy_reg_2 <= dy_re
dx_reg_3 <= dx_re
dy_reg_3 <= dy_re
dx_reg_4 <= dx_re

<= pixl_data_ufx;
<= pix2_data_ufx;
<= pix3_data_ufx;
<= pix4_data_ufx;

g_1;
g_1;
9_2;
9_2;
9_3;

hift register

pix4_data_ufx);

1 comple

ed

74

535
536
537
538
539

541

576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603

605
606
607

609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624

dy_reg_4 <= dy_reg_3;
dx_reg_5 <- dx_reg_4;
dy_reg_5 dy_reg_4;
dx_reg_6 <= dx_reg_5;
dy_reg_6 <= dy_reg_5;
dx_reg_7 dx_reg_6;
dy_reg_7 dy_reg_6;

x1_int_reg_1
x2_int_reg_1l
yl_int_reg_1
y2_int_reg_1
x1_int_reqg_2
x2_int_reg_2
yl_int_reg_2
y2_int_reg_2
x1_int_reg_3
x2_int_reg_3
yl_int_reg_3 <
y2_int_reg 3 <
x1_int_reg_4 <
x2_int_reg_4 <
yl_int_reg_4 <
y2_int_reqg_4 <
x1_int_reg_5 <
x2_int_reg_5
yl_int_reg_5
y2_int_reg_5
x1_int_reg_6
x2_int_reg_6
yl_int_reg_6
y2_int_reg_6 <

—-- Calculate d
delta_x1 <= re.
delta_x2 <= re.

if yl_int_reg_!
Specia
delta_yl
delta_y2 <=
else
delta_yl <
delta_y2 <
end if;

delta_x1_reg
delta_x2_reg
delta_yl_reg
delta_y2_reg

— TODO:

- 0: Imple
delta_yl_reg_1
delta_y2_reg_l
delta_yl_reg_2
delta_y2_reg 2
delta_yl_reg 3
delta_y2_reg 3
delta_yl_reg_4
delta_y2_reg_4

delt
A_yl_b <= delt
A_y2_a <= delt
A_y2_b <= delt

B_yl_a <= delt
<= delt
B_y2_a <= delt
<= delt

C_yl_a <= delt
C_yl_b <= delt
= delt
delt

C_yl_a_reg

late pixel

x1_int;
x2_int;
yl_int;
y2_int;
x1_int_reg_1;
x2_int_reqg_1;
yl_int_reg_1;
y2_int_reg_1;
x1_int_reg_2;
x2_int_reg_2;
yl_int_reg_2;
= y2_int_reg_2;
= xl_int_reg_3;
x2_int_reg_3;
yl_int_reg_3;
y2_int_reg_3;
= x1_int_reg_4;
x2_int_reg_4;
yl_int_reg_4;
y2_int_reg_4;
x1_int_reg_5;
x2_int_reg_5;
= yl_int_reg_5;
= y2_int_reg_5;

eltas

size(dx_reg_6 - x1_int_reg_5, delta_xl);
size(x2_int_reg_5 - dx_reg_6, delta_x2);

5 = C_LINE_BUFFERS and y2_int_reg_5 - 1 then

resize ((y2_int_reg_5 + C_LINE_BUFFERS)

resize(dy_reg_6 - yl_int_reg 5, delta_yl);

- dy_reg_6,

resize(dy_reg_6 — yl_int_reg_5, delta_yl);
resize(y2_int_reg 5 - dy_reg_6, delta_y2);

delta_x1;
delta_x2;
delta_yl;
delta_y2;

ment as shift register

<= delta_yl_reg;
<= delta_y2_reg;

delta_yl_reg_1;
delta_y2_reg_1;

delta_yl_reg_3;
<= delta_y2_reg_3;

a_x2_reg+pixl_data_ufx_reg(7 downto
a_x1_regspix2_data_ufx_reg(7 downto

0)i
0);
a_x2_reg+pix3_data_ufx_reg(7 downto 0);
0);

a_x1_reg-pix4_data_ufx_reg(7 downto

a_x2_reg+pixl_data_ufx_reg(l5 downto 8);
a_x1_regxpix2_data_ufx_reg(l5 downto 8);
a_x2_reg+pix3_data_ufx_reg(l5 downto 8);
a_x1_reg+pix4_data_ufx_reg (15 downto 8);

a_x2_reg+pixl_data_ufx_reg (23 downto
a_x1_reg+pix2_data_ufx_reg(23 downto

6
a_x2_reg+pix3_data_ufx_reg(23 downto 16
16

a_x1_reg+pixd_data_ufx_reg (23 downto

o

delta_y2);

75

625 C_yl b reg <= C_yl b;
626 C_y2_a_reg <= C_y2_a;
627 C_y2 b reg <= C_y2 b;

resize(A_yl a reg + A_yl b_reg, A_yl);
resize (A_y2_a_reg + A_y2_b_reg, A_y2);

resize (B_yl_a_reg + B_yl_b_reg, B_yl);
resize (B_y2_a_reg + B_y2_b_reg, B_y2);

635 C_yl <= resize(C_yl_a_reg + C_yl_b_reg, C_yl);
636 C_y2 <= resize(C_y2_a_reg + C_y2_b_reg, C_y2);

638 —- Register
639 A_yl_reg -
640 A_y2_reg
641 B_yl_reg
642 B_y2_reg
643 C_yl_reg .
644 C_y2_reg <= C_y2;

]
N e

A_l <= resize(delta_y2_ reg 4+A_yl_reg,
647 A_2 <= resize(delta_yl_reg 4+A_y2_reg,

1 <= resize(delta_y2_reg_4+B_yl_reg, B_1l);
2 <= resize(delta_yl reg 4+B_y2 reg, B_2);

<= resize(delta_y2_reg_4+C_yl_reg, C_1);
<= resize(delta_yl_reg_4+C_y2_reg, C_2);

659

calculation of new pixel
resize (A_l_reg + A_2
resize (B_l_reg + B_2_reg, B);
resize(C_l_reg + C_2

673 dy_int_last dy_int;
674 dy_change <= true when dy_int_last /= dy_int else false;
675 end if;

677 scaler_data_o(7 downto 0) <= std_logic_vector (unsigned (A_req));
678 scaler_data_o (15 downto 8) <= std_logic_vector (unsigned (B_req));
679 scaler_data_o(23 downto 16) <= std_logic_vector (unsigned (C_reg));

681 —- Handle reset
682 if sreset_i
683 x_count
684 y_count
685 end if;

686 end if;

687 end process p_reverse_mapping;

688

689 p_scaling_ratio : process(clk_i) is
690 begin

691 if rising_edge(clk_i) then

692
693
694 rx_height
695 tx_height
696 rx_height_reg rx_height;

697 tx_height_reg tx_height;

698 scaling_ratio <= resize(rx_height_reg/tx_height_reg, scaling_ratio'hi
699 scaling_ratio_reg <= scaling_ratio;

700 end if;

701 end process p_scaling ratio;

702

703 end scaler_arc;

ess to be
to_ufixed(g_rx_video_height, rx_height);
to_ufixed(g_tx_video_height, tx_height);

ementation

me registers for point D

ih, scaling_ratio'l

76

Bilinear Scaling Full Size Framebuffer

library ieee;
use ieee.std logic_1164.all;
use ieee.numeric_std.all;

use work.my_fixed pkg.all;

entity scaler is
generic (
g_data_width
g_rx_video_width
g_rx_video_height
g_tx_video_width
g_tx_video_height

clk_i ¢ in
sreset_1 : in

scaler_startofpacket_i
scaler_endofpacket_i
scaler_data_i
scaler_valid i
scaler_ready_o

scaler_startofpacket_o
scaler_endofpacket_o
scaler_data_o
scaler_valid_o
scaler_ready_i
)i
end scaler;

natural;
natural;
natural;
natural;
natural

std_logic;
std_logic;

in std_logic;
in std_logic;

in std_logic_vector(g_data_width-1 downto 0);

in std_logic;

out std logic := '0';

out std_logic o

out std_logic := '0';

out std_logic_vector (g_data_width-1 downto 0) := (others =>
out std_logic := '0';

in std_logic

architecture scaler_arc of scaler is

type t_state is (s_idle,
signal state : t_state :=

signal scaling_ratio
signal scaling_ratio_reg

signal tx_height
signal rx_height
signal tx_height_reg
signal rx_height_reg

nebuf f

signal fb_wr_en_i
signal fb_wr_en_reg
signal fb_data_i
signal fb_data_reg
signal fb_wr_addr_i
signal fb_wr_addr_reg
signal fb_valid_reg
signal fb_data_a_o
signal fb_data_b_o
signal fb_data_c_o
signal fb_data_d_o
signal fb_rd_addr_a_i
signal fb_rd_addr_b_i
signal fb_rd_addr_c_i
signal fb_rd_addr_d_i

-- Scaler

signal interpolate

signal dx
signal dy

signal dy_fb
signal dx_reg
signal dy_reg
signal dy_fb_reg

signal dx_reg_l

or else di

ufixed (16 downto -16)

s_idle;

sion by 0 er

ufixed (3 downto (others =>
ufixed (3 downto (others =>
ufixed (11l downto 0) := (others =>
ufixed (11 downto 0) (others =>
ufixed (11 downto 0) (others =>
ufixed (11 downto 0) := (others =>

std_logic o

std_logic o'y

std_logic_vector(g_data_width-1 downto
std_logic_vector (g_data_width-1 downto

integer := 0;
integer := 0;
std_logic := '0';

std_logic_vector (g_data_width-1 downto
std_logic_vector (g_data_width-1 downto
std_logic_vector (g_data_width-1 downto

std_logic_vector (g_data_width-1 downto

integer := 0;
integer := 0;
integer := 0;
integer := 0;

: boolean false;

ufixed (16 downto -16) (others 0y ;
ufixed (16 downto -16) (others 0y ;
ufixed (16 downto -16) (others 0Ny
ufixed(16 downto -16) (others => '0');
ufixed(16 downto -16) (others "0');
ufixed (16 downto -16) (others "0');

(others => '0');

s_pre_fill_fb, s_finish_fill_fb, s_upscale);

0);
0);

1Y)
1
1
1

0)
0)

0)
0)
0) :=

(others
(others

(others =>
(others
(others
(others =>

oy
0r);
01y
o)
01y
0Ny

0 ;

77

87
88
89

91
92

94
95
9

98
99

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

170
171
172
173
174
175
176

signal dy_reg_l

signal dx_1

signal dy_1

signal dy_fb_1
signal dx_1_reg
signal dy_1_reg
signal dy_fb_1_reg

signal dxy_2
signal dxy_2_reg

—— Needs to be 1
signal x_count
signal y_count
signal y_count_fb
signal x_count_ufx
signal y_count_ufx
signal y_count_fb_ufx
signal x_count_ufx_re:
signal y_count_ufx_re:
signal y_count_fb_ufx

signal x1_int
signal x2_int
signal yl_int
signal y2_int
signal yl_fb_int
signal y2_fb_int

signal pixl_int
signal pix2_int
signal pix3_int
signal pix4_int
signal pixl_data
signal pix2_data
signal pix3_data
signal pix4_data

signal dy_int
signal dy_int_last
signal dy_change

—— Coefficients
signal deltal
signal delta2
signal delta3
signal delta4

signal deltal_reg_1
signal delta2_reg_1
signal delta3_reg_1
signal deltad4_reg_1

signal deltal_reg_2
signal delta2_reg_2
signal delta3_reg_2
signal deltad_reg_2

signal deltal_reg_3
signal delta2_reg_3
signal delta3_reg_3
signal deltad_reg_3

signal deltal_reg_4
signal delta2_reg_4
signal delta3_reg_4
signal deltad_reg_4

signal pixl_data_A :
signal pix2_data_A :
signal pix3_data_A :
signal pix4_data_A
signal pixl_data_B
signal pix2_data_B
signal pix3_data_B
signal pix4_data_B
signal pixl_data_C
signal pix2_data_C
signal pix3_data_C
signal pix4_data_C

signal A_yl_a
signal A_yl_b
signal A_y2_a
signal A_y2_b
signal A_yl
signal A_y2
signal A_1

ufixed (16

ufixed (15
ufixed (15

downto -16) (others =>
downto -12) (others =>
(others

downto -12)

ufixed (15 downto -12) (others —>
ufixed (15 downto -12) (others —>
ufixed(1l5 downto -12) := (others =>
ufixed (15 downto -12) := (others =>
ufixed (15 downto -16) := (others =>
ufixed (15 downto -16) (others =>
because of dx/dy al
integer
integer
integer :
ufixed (11l downto 0) := 12x"1";
ufixed (11 downto 0) 12x"1";
ufixed (11l downto 0) 2x"1";
g : ufixed (11l downto 0) := 12x"1";
g : ufixed(ll downto 0) := 12x"1";
_reg ufixed (11 downto 0) 12x"1";
integer 1;
integer := 2;
integer := 1;
integer := 2;
integer := 1;
integer := 2;
integer := 0;
integer :- 0;
integer := 0;
integer :- 0;

0N

0N
0N
0N
0N
0N
0N

0y ;
o) ;

i

std_logic_vector (g_data_width-1 downto 0)
std_logic_vector (g_data_width-1 downto 0)
std_logic_vector (g_data_width-1 downto 0)
std_logic_vector(g_data_width-1 downto 0)

integer := 1;
integer := 1;
: boolean false;
ufixed(l downto -16) (others 0
ufixed(l downto -16) (others]
ufixed(l downto -16) := (others => '0
ufixed(l downto -16) := (others => '0
ufixed(l downto -16) (others =>
ufixed(l downto -16) (others =>
ufixed(l downto -16) (others =>
ufixed(l downto -16) (others =>
ufixed(l downto (others =>
ufixed(l downto (others =>
ufixed(l downto -16) (others =>
ufixed(l downto -16) := (others =>
ufixed(l downto (others
ufixed(l downto (others
ufixed(l downto (others =>
ufixed(l downto -16) (others =>
ufixed(l downto (others =>
ufixed(l downto (others =>
ufixed(l downto (others =>
ufixed (1 downto (others —=>
ufixed (7 downto 0) := (others => '0
ufixed(7 downto 0) = (others "0
ufixed(7 downto 0) (others "0
ufixed(7 downto 0) = (others => '0
ufixed(7 downto 0) = (others => '0
ufixed (7 downto 0) H (others => '0
ufixed (7 downto 0) H (others => '0
ufixed (7 downto 0) = (others => '0
ufixed(7 downto 0) - (others 0
ufixed(7 downto 0) = (others => '0
ufixed (7 downto 0) = (others ‘0
ufixed(7 downto 0) = (others => '0
ufixed(9 downto -16) := (others =>
ufixed(9 downto -16) := (others =>
ufixed(9 downto -16) := (others =>
ufixed(9 downto -16) (others =>
ufixed(7 downto -8 (others =>
ufixed(7 downto -8) (others =>
ufixed(7 downto -8) (others —>

)i
)i
i
i

0N
0N
0N
0 ;

015
015
01y
oy

0N
0N
0N
0N

0
0
01);
0n);

i
i
i
i
i
i
)i
)i
")
)i
)i
i

0N
0N
0 ;
0

0N
0n);
0n);

(others
(others
(others =>
(others =>

g
g
g
g

)
)
)
)

78

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

201
202
203
204
205
206

208
209
210
211
212
213
214
215
216
217
218
219

221

238
239

241

255

259

261
262

264
265
266

signal A_2 ufixed(7 downto -8) : (others => '0');
signal A ufixed(7 downto 0) : (others => '0');
signal B_yl_a ufixed(9 downto -16) := (others => '0');
signal B_yl_b ufixed (9 downto (others => '0');
signal B_y2_a ufixed (9 downto (others => '0');
signal B_y2_b ufixed(9 downto (others => '0');
signal B_yl ufixed (7 downto (others => '0');
signal B_y2 ufixed(7 downto (others => '0');
signal B_1 ufixed(7 downto (others => '0');
signal B_2 ufixed(7 downto (others => '0');
signal B ufixed(7 downto 0) : (others => '0'");
signal C_yl_a ufixed(9 downto (others => '0');
signal C_yl_b ufixed (9 downto (others => '0');
signal C_y2_a ufixed (9 downto (others => '0');
signal C_y2_b ufixed (9 downto (others ') ;
signal C_yl ufixed(7 downto (others => '0');
signal C_y2 ufixed (7 downto (others => '0');
signal C_1 : ufixed(7 downto -8) := (others "0y
signal C_2 : ufixed(7 downto (others => '0');
signal C : ufixed(7 downto 0) := (others => '0');
—-- Counters
signal cur_input : integer
signal cur_output : integer :

begin

framebuffer : entity work.multiport_:

generic map (

g_ram_width => g_data_width,
g_ram_depth >
g_ramstyle > "M20K",
g_output_reg => true

)

port map (
clk_i —> clk_i,

fb_data_i,

fb_wr_addr_i,
fb_wr_en_i,

fb_data_a_o,
fb_data_b_o,
fb_data_c_o,

vV oVov

data_d_o fb_data_d_o,
rd_addr_a_i => fb_rd_addr_a_
rd_addr_b_i => fb_rd_addr_]

rd_addr_c_i => fb_rd_addr_

rd_addr_d_i => fb_rd_addr_d_i

p_fsm : process(clk_i) is
variable v_count : integer := 0;
begin
if rising_edge(clk_i) then
case (state) is

when s_idle =>

ram

g_rx_video_widthsg_rx_video_height,

scaler_ready_o e 1
cur_input <= 0;
cur_output <= 0;
scaler_endofpacket_o <= '0';
fb_valid_reg <= '0';
if scaler_ready_o = 'l' and scaler_valid_i = '1' then
if scaler_startofpacket_i = '1' then
fb_wr_en_reg <= '1';
state s_pre_fill_fb;
end if;
end if;

when s_pre_fill_fb =>

if scaler_ready_o - 'l'
if fb_wr_addr_reg =

-- Ready latency
scaler_ready_o <
fb_wr_en_reg

buffer before start

ng the scaler

and scaler_valid_i = '1' then

(g_rx_video_width+g_rx_video_height)-2 then

fb_wr_addr_reg <= fb_wr_addr_reg + 1;

cur_input <= cur_input + 1;

state <= s_finish_fill_fb;
else

—-— Fill framebuffer

scaler_ready_o 1

fb_wr_en_reg <= '1';

79

267 fb_wr_addr_reg <= fb_wr_addr_reg + 1;

268 cur_input <= cur_input + 1;

269 end if;

270 end if;

271

272

273 when s_finish_fill_fb —>

274 Fill the last data recieved of 1

275 if scaler_valid_i = '1' then

276 fb_wr_en_reg < ;

271 fb_wr_addr_reg <= 0 when (fb_wr_addr_reg (g_rx_video_width»g_rx_video_height)-1) else
— fb_wr_addr_reg + 1;

278 cur_input <= cur_input + 1;

279

280 -- Upsc g

281 state <= s_upscale;

282 end if;

283

284

285 when s_upscale =>

286 -— Upscaling process

287 if scaler_ready_i "1' then

288 interpolate <= true;

289 cur_output <= cur_output + 1;

290 scaler_ready_o <= '0';

291 fo_wr_en_reg <= '0';

292

293 if cur_output >= 13 then

294 irst data on output

295 Need +13 because de

296 fb_valid_reg <= '1';

297 scaler_startofpacket_o <= 'l' when cur_output = 14 else '0';

298 end if;

299

300 if cur_output >= (g_tx_video_widthsg_tx_video_height)+24 then

301 - e processing

302 —- +N depends on latency thr

303 interpolate <= false;

304 end if;

305

306 if cur_output >= (g_tx_video_widthsg_tx_video_height)+25 then

307 — st data on ou

308 -- +N+1 depends on latenc

309 fb_valid_reg <= '0';

310 scaler_endofpacket_o <= '1';

311 state <= s_idle;

312 end if;

313 else

314 interpolate <= false;

315 end if;

316

317 end case;

318

319 -- Connect registers

320 fbo_wr_en_i <= fb_wr_en_reg;

321 fb_wr_addr_i <= fb_wr_addr_reg;

322 fb_data_i scaler_data_i;

323 scaler_valid_o fb_valid_reg;

324

325 Handle reset

326 if sreset_i '1' then

327 state <= s_idle;

328 end if;

329 end if;

330 end process p_fsm;

331

332

333

334 p_reverse_mapping : process(clk_i) is

335 begin

336 if rising_edge (clk_i) then

337 if interpolate then

338 Jake y_coun

339 x_count_ufx <= to_ufixed(x_count, x_count_ufx);

340 y_count_ufx <= to_ufixed(y_count, x_count_ufx);

341 y_count_fb_ufx <= to_ufixed(y_count, x_count_ufx);

342 x_count_ufx_reg <= x_count_ufx;

343 y_count_ufx_reg <= y_count_ufx;

344 y_count_fb_ufx_reg <= y_count_fb_ufx;

345

346 -- Fixed point DSP multiplication of variable part of dx/dy calculation

347 dx_1 <= x_count_ufx_reg * scaling_ratio_reg;

348 dy_1 y_count_ufx_reg * scaling_ratio_reg;

349 dy_fb_1 y_count_fb_ufx_reg + scaling_ratio_reg;

350 dx_1_reg <= dx_1;

351 dy_1_reg <= dy_1;

352 dy_fb_1 _reg <= dy_£fb_1;

353

354 —

355 dxy_2 to_ufixed (0.5, 2 (1 - resize(scaling_ratio_reg, 12, -14));

80

356 dxy_2_reg <= dxy_2;

357

358 lation

359 dx_1_reg + dxy_2_reg;

360 = dy_l_reg + dxy_2_reg;

361 <= dy_fb_1_reg + dxy_2_reg;

362 dx_reg dx;

363 dy_reg dy;

364 dy_fb_reg dy_fb;

365

366 —-- Next pixel in target frame

367 x_count <= x_count + 1;

368

369 —— Check if a row in target frame is co

370 if x_count = g_tx_video_width then

371 x_count <= 1;

372 y_count <= y_count + 1;

373 end if;

374

375 —- Keep kernel within boundaries

376 if dx_reg < 1 then

371 x1_int <= 1;

378 x2_int <= 2;

379 dx_reg_1l <= to_ufixed(l, dx_reg);

380 elsif dx_reg > g_rx_video_width then

381 x1_int <= g_rx_video_width - 1;

382 x2_int <= g_rx_video_width;

383 dx_reg_l <= to_ufixed(g_rx_video_width, dx_reg);

384 else

385 x1_int <= to_integer (dx_req);

386 x2_int <= to_integer (dx_reg) + 1;

387 dx_reg_1 dx_reg;

388 end if;

389

390 -- Keep kernel within boundaries

391 if dy_reg < 1 then

392 yl_int <= 1;

393 y2_int 2;

394 dy_reg_l <= to_ufixed(l, dy_reg);

395 elsif dy_reg > g_rx_video_height then

396 yl_int <= g_rx_video_height - 1;

397 y2_int <= g_rx_video_height;

398 dy_reg_1l <= to_ufixed(g_rx_video_width, dy_reg);

399 else

400 yl_int <= to_integer (dy_reg);

401 y2_int to_integer (dy_reg) + 1;

402 dy_reg_1 <= dy_reg;

403 end if;

404

405 Read data framebuffer

406 fb_rd_addr_a_i ((yl_int-1) xg_rx_video_width) + (xl_int - 1);
407 fb_rd_addr_b_i <= ((yl_int-1)+g_rx_video_width) + (x2_int - 1);
408 fb_rd_addr_c_i <= ((y2_int-1)*g_rx_video_width) + (x1_int - 1);
409 fb_rd_addr_d_i <= ((y2_int-1)*g_rx_video_width) + (x2_int - 1);
410

411 pixl_data_A <= to_ufixed(fb_data_a_o(7 downto 0), pixl_data_A);
412 pix2_data A to_ufixed(fb_data_b_o(7 downto 0), pix2_data_A);
413 pix3_data_A to_ufixed(fb_data_c_o(7 downto 0), pix3_data_RA);
414 pix4_data_A <= to_ufixed(fb_data_d_o(7 downto 0), pix4_data_A);
415

416 pixl_data_B to_ufixed (fb_data_a_o (15 downto 8), pixl_data_B);
417 pix2_data_B to_ufixed (fb_data_b_o (15 downto 8), pix2_data_B);
418 pix3_data_B <= to_ufixed(fb_data_c_o(15 downto 8), pix3_data_B);
419 pix4_data_B to_ufixed (fb_data_d_o (15 downto 8), pix4_data_B);
420

421 pixl_data_C <= to_ufixed(fb_data_a_o(23 downto 16), pixl_data_C);
422 pix2_data_C <= to_ufixed(fb_data_b_o(23 downto 16), pix2_data_C);
423 pix3_data_C to_ufixed(fb_data_c_o(23 downto 16), pix3_data C);
424 pix4_data C to_ufixed(fb_data_d_o(23 downto 16), pixd_data C);
425

426

427 deltal <= resize(x2_int - dx_reg_1, deltal);

428 delta2 <= resize(dx_reg_1 - x1_int, delta2);

429 delta3 <= resize(y2_int - dy_reg_l, delta3);

430 deltad <= resize(dy_reg_l - yl_int, deltad);

431

432 --D

433 — Imp

434 deltal_reg_1

435 delta2_reg_1

436 delta3_reg_1

437 deltad_reg_1

438 deltal_reg_2 deltal_reg_1;

439 delta2_reg_2 delta2_reg_1;

440 delta3_reg_2 delta3_reg_1;

441 deltad_reg_2 deltad_reg_1;

442 deltal_reg_3 <= deltal_reg_2;

443 delta2_reg_3 <= delta2_reg_2;

444 delta3_reg_3 delta3_reg_2;

445 deltad_reg_3 <= deltad_reg_2;

446
447
448
449
450
451
452
453
454
455

457
458
459
460
461
462
463
464
465

467
468

470
471
472
473
474
475
476
477
478

480
481
482
483
484
485
486
487
488
489
490
491
492
493

495
496

deltal_reg_4 <= deltal_reg_3;
delta2_reg_ 4 <= delta2_reg 3;
delta3_reg_4 <= delta3_reg_3;
deltad_reg_4 <= deltad_reg_3;

e ebuffer wi t fit on an FPGA
A_yl resize(deltal_reg_3+pixl_data_A + delta2_reg_3+pix2_data_A, A_yl);
A_y2 <= resize(deltal_reg_3+pix3_data_A + delta2_reg_3+pix4_data_A, A_y2);
A <= resize(delta3_reg_4+A_yl + deltad_reg_4+A_y2, A);

B_yl <= resize(deltal_reg_3+pixl_data_B + delta2_reg_3+pix2_data_B, B_yl);
B_y2 <= resize(deltal_reg_3+pix3_data_B + delta2_reg_3+pixd_data_B, B_y2);
B <= resize(delta3_reg_4+B_yl + delta4_reg 4+B_y2, B);

c_yl resize(deltal_reg_3+pixl_data_C + delta2_reg_3+pix2_data_C, C_yl);
C_y2 resize(deltal_reg_3+pix3_data_C + delta2_reg_3+pix4_data_C, C_y2);
C <= resize(delta3_reg_4+C_yl + delta4_reg_4+C_y2, C);

end if;

scaler_data_o(7 downto 0) std_logic_vector (unsigned(a));
scaler_data_o(15 downto 8) std_logic_vector (unsigned (B));
scaler_data_o(23 downto 16) <= std_logic_vector (unsigned(C));

Handle r

if sreset_i

x_count be 1 of dx/dy
y_count be 1 of dx/dy a
end if;
end if;

end process p_reverse_mapping;

p_scaling_ratio : process(clk_i) is
begin

if rising_edge(clk_i) then

Calc scal

tio

Needs to be inside clocked process to become registers for fixed poi

rx_height <= to_ufixed(g_rx_video_height, rx_height);
tx_height <= to_ufixed(g_tx_video_height, tx_height);
rx_height_reg <= rx_height;
tx_height_reg <= tx_height;

scaling_ratio resize (rx_height_reg/tx_height_reg, scaling_ratio'high,
scaling_ratio_reg <= scaling_ratio;
end if;

end process p_scaling ratio;

end scaler_arc;

anyway

scaling_ratio'low);

82

Scaler Controller

generates

library ieee;
use ieee.std logic_1164.all;
use ieee.numeric_std.all;

entity scaler_controller is
generic (

g_data_width natural;
g_empty_width natural;
g_tx_video_width natural;
g_tx_video_height natural;
g_tx_video_scaling_method natural
)i
port (
clk_i std_logic;
sreset_1 logic;
> er
ctrl_startofpacket_i std_logic;
ctrl_endofpacket_i std_logic;
ctrl_data_i : in std_logic_vector(g_data_width-1 downto 0);
ctrl_empty_i : in std_logic_vector (g_empty_width-1 downto 0);
ctrl_valid_i : in std logic;

ctrl_ready_o out std logic :=

scaler_controller -> scaler
ctrl_startofpacket_o out std _logic := '0';
ctrl_endofpacket_o out std_logic := '0';
ctrl_data_o out std_logic_vector(g_data_width-1 downto 0) := (others
ctrl_empty_o : out std logic_vector (g_empty_width-1 downto 0) := (others =>
ctrl_valid_o out std _logic "0y
ctrl_ready_i : in std_logic;
—- Config
rx_video_width_o out std_logic_vector (15 downto 0);
rx_video_height_o out std_logic_vector (15 downto 0)
)i
end entity scaler controller;
architecture scaler_ controller_arc of scaler_controller is
type t_packet_type is (s_idle, s_video_data, s_control_packet);
signal state t_packet_type s_idle;
begin
-- Asseart ready out
ctrl_ready_o <= ctrl_ready_i or not ctrl_valid_o;
p_fsm process (clk_i) is
variable v_tx_video_width std_logic_vector (15 downto 0);
variable v_tx_video_height std_logic_vector (15 downto 0);
begin
if rising_edge(clk_i) then
if ctrl_ready_i "1l' then
ctrl_valid_o <= '0';
end if;
case state is
when s_idle =>
if ctrl_ready_o = 'l' and ctrl_valid_i = '1' then
if ctrl_startofpacket_i = '1' and ctrl_data_i(3 downto 0) = "0000" then
—-- Send startofpacket and video packet identifier to output
ctrl_data_o <= (3 downto 0 => '0', others => '1'); —— ng others =>
— odelsim
ctrl_valid_o <= '1';
ctrl_startofpacket_o <= '1';
-- Next state
state <= s_video_data;
elsif ctrl_startofpacket_i = '1' and ctrl_data_i(3 downto 0) = "1111" then
Send startofpacket and ctrl pkg identi - to

ctrl_data_o <= (3 downto 0 => 'l', others => '0');

ctrl_valid_o <= '1';

ctrl _startofpacket_o <= '1';

0);
0);

for easy identification

83

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

150
151
152
153
154
155
156

te

—— Next
state <= s_control_pa

end if;

-- Reset endofpacket
ctrl_endofpacket_o <= '0
end if;

when s_video_data =>
if ctrl_ready_o = '1'

if ctrl_endofpacket_i
ctrl_endofpacket_o <=

state

Next

state
else

<= s_idle;
Next state
state <= s_video_data
end if;
ctrl_data_o <= ctrl_dat
ctrl_valid_o <= '1';
ctrl_startofpacket_o <
end if;

when s_control_packet
if ctrl_ready o =
if g_data_width

de

and c
80 the:
video

rx_video_width_o (3 downto 0)
rx_video_width_o (7 downto 4)

Set
v_tx_video_width
v_tx_video_height

tput to slv

-- Send output resolu
ctrl_data_o(3 downto

ctrl_data_o (13 downto
ctrl_data_o (23
ctrl_data_o (33
ctrl_data_o (43
ctrl_data_o (53
ctrl_data_o (63
ctrl_data_o(73

downto
downto
downto
downto
downto
downto

ctrl_valid_o <= "1’

ctrl_startofpacket_o

ctrl_endofpacket_o <=
end if;
-- Next state

state <= s_idle;
end if;

end case;

then
or;

if sreset_i '
ctrl_valid_ o <
state <= s_idle;
end if;
end if;
end process p_f£fsm;
end scaler_controller_arc;

and ctrl_valid_i

cket;

'1' then
'1' then

1

i
a_ij

o

trl_valid_i = 'l' then
n

resolution

ctrl_data_i(33 downto 30);
ctrl_data_i (23 downto 20);
ctrl_data_i(13 downto 10);
ctrl_data_i (3 downto 0);

rx_video_width_o (11 downto 8)
rx_video_width_o (15 d
rx_video_height_o (3 d
rx_video_height_o (7 d
rx_video_height_o (11
rx_video_height_o (15

ownto 12)

ownto 0) ctrl_data_i (73 downto 70);
ownto 4) ctrl_data_i (63 downto 60);
downto 8) ctrl_data_i (53 downto 50);
downto 12) ctrl_data_i (43 downto 40);
format

std_logic_vector (to_unsigned(g_tx_video_width,
std_logic_vector (to_unsigned(g_tx_video_height,

tion and endofpacket

0) v_tx_video_width (15 downto 12);

10) v_tx_video_width (11 downto 8);
20) <= v_tx_video_width(7 downto 4);
30) v_tx_video_width (3 downto 0);
40) v_tx_video_height (15 downto 12);
50) v_tx_video_height (11 downto 8);
60) <= v_tx_video_height (7 downto 4);
70) <= v_tx_video_height (3 downto 0);
<= 10';

v_tx_video_width'length));
v_tx_video_height 'length));

84

A.9 Scaler Top Level

library ieee;
use ieee.std logic_1164.all;
use ieee.numeric_std.all;

entity scaler wrapper is
generic (

g_data_width natural;
g_empty_width natural;
g_fifo_data_width natural;
g_fifo_data_depth natural;
g_tx_video_width natural;
g_tx_video_height natural;
g_tx_video_scaling_method natural
)i
port (
clk_i : in std_logic;
sreset_1 : in std_logic;
To scaler
startofpacket_i : in std_logic;
endofpacket_i : in std_logic;
data_i : in std logic_vector(g_data_width-1 downto 0);
empty_i : in std_logic_vector (g_empty_width-1 downto 0);
valid_i : in std_logic;
ready_o out std_logic
-- From
startofpacket_o out std_logic
endofpacket_o out std_logic
data_o out std_logic_vector(g_data_width-1 downto 0) (others => '0');
empty_o out std_logic_vector(g_empty_width-1 downto 0) (others => '0');
valid_o out std logic := '0';
ready_i : in std_logic

)i
end entity scaler_ wrapper;

architecture scaler_wrapper_arc of scaler wrapper is

std_logic;
signal ctrl_ready_o std_logic;
signal ctrl_valid_i std_logic;
signal ctrl_valid_o std_logic;

std_logic_vector (g_data_width-1 downto
std_logic_vector (g_data_width-1 downto

signal ctrl_data_i
signal ctrl_data_o

signal rx_video_width_o std_logic_vector (15 downto

signal rx_video_height_o std_logic_vector (15 downto
—— Scaler

signal scaler_ready_i std_logic;

signal scaler_ready_o std_logic;

signal scaler_valid_i std_logic;

signal scaler_valid_o std_logic;

signal scaler_data_i
signal scaler_data_o

ctor (g_fifo_dat

—-— CONTROLLER

ith + g_

width + g

emp

empty_width +

0);
0);

0);
0);

std_logic_vector (g_data_width-1 downto 0);
std_logic_vector(g_data_width-1 downto 0);

downto 0);

85

87
88
89

91
92

94
95
96

98
99

101

102
103
104
105
106
107
108
109
110
111

112
113
114
115
116
117
118
119
120
121

122
123
124
125
126
127
128
129
130
131

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

scaler_controller : ent

generic map (
g_data_width
g_empty_width =
g_tx_video_width =>
g_tx_video_height =>

=>

g_tx_video_scaling_method => g_tx_video_scaling_method

port map (
clk_i =>
sreset_i =>

To scaler_control

ity work.scaler_controller

g_data_width,
g_empty_width,
g_tx_video_width,
g_tx_video_height,

clk_i,
sreset_i,
ler

£

-ange_fifo-1),
ange_fifo-1 downto 0),

o-1

artofpac fifo_in_data_o(c_sop_range_fifo-1),
--endofpacket_i => fifo_in_data_o(c_eop_
——data_i => fifo_ ta
-—empty_1i => fifo_ data_o (c_empty_range_.
ctrl_startofpacket_i => startofpacket_i,
ctrl_endofpacket_i => endofpacket_i,
ctrl_data_i => ctrl_data_i,
ctrl_empty_i => empty_i,
ctrl_valid i => ctrl valid_ i,
ctrl_ready_o => ctrl_ready_o,
—— From scaler controller
ctrl_startofpacket_o => startofpacket_o,
ctrl_endofpacket_o => endofpacket_o,
ctrl_data_o —> ctrl_data_o,
ctrl_empty_o => empty_o,
ctrl_valid_o —> ctrl_valid_o,
ctrl_ready_i => ctrl_ready_i,
- Config
rx_video_width_o => rx_video_width_o,
rx_video_height_o => rx_video_height_o
~--- Input FIFO
fifo_in_full_o,

- in_almostfull o 1_almostfull_o,
--fifo_in empty_o => 1_empty_o

)i

—— Test without scaler

ctrl_ready_i <= ready_i;

ctrl_valid_i <= valid_i;

ctrl_data_i <= data_i;

ready_o <= ctrl_ready_o;

valid_o <= ctrl_valid_o;

data_o <= ctrl_data_o;

—-— SCALER

--scaler : entity work.scaler

--generic map (

-)
--port map (

- clk i => clk_i,
-- sreset_i sreset
-- scaler_data_i =>

scaler_va [i =>

scaler_ready_o =

=>

scaler_data_o

vali

scaler o

scaler_ready_i

—-data_o

g data_width => g_data width,
g_tx_video_widtt
g_tx_video_height

> g_tx_video_width,
=> g_tx_video_height

scaler_data i,
scaler_valid i,

scaler_ready_o,

scaler_dat

scaler_vali
ler_ready_ i

ready_i;

scaler_valid_o;

scaler_data_ o;

= scaler_ready o;
ctrl_valid o;
ctrl_data_o;

downto

data_range

86

177

178 -- FIFO

179

180

181 —-fifo_in : entity work.fifo_generic

182 —-generic map (

183 - g_width => g_fifo_data_width,

184 -- g_depth g_fifo_data_depth,

185 -- g _ramstyle "M20K",

186 -- g output_reg => true

187 -=)

188 ——port map(

189 -— clk i => clk_i,

190 - sreset_i => sreset_i,

191 - wr_en_i => fifo_in_wr_en_i,

192 rd_en_i => fifo_in_rd_en_i,

193 -- data_i => fifo_in_data_i,

194 e full o fifo_in full o,

195 e almostfull_o => fifo_in almostfull_o,

196 -- empty_o => fifo_in_empty_o,

197 - data_o => fifo_in data_o

198 =)

199

200 —-p_fill fifo in : process(clk_i) is

201 —begin

202 —— if rising_edge(clk_i) then

203 - -- Assert ready out as long as there is room in FIFO

204 . if fifo_in_almostfull_o = '1' or fifo_ in full o = '1' then
205 scaler_ready o <= '0';

206 - else

207 — scaler_ready_o <= '

208 - end if;

209

210 - -- Write to FIFO on valid i if FIFO is not full

211 — if scaler_valid_i = '1' and fifo_in full o = '0' then

212 - fifo_in_wr_en_i <= '1

213 - else

214 - fifo_in_wr_en_i <= '0';

215 - end if;

216

217 - -- Empty FIFO when controller is ready and FIFO is not empty
218 - if ctrl _ready o = '1' and fifo_in_empty_o = '0' then

219 fifo_in_rd en_i <= '1';

220 — ctrl_valid_i <= '1';

221 - else

222 - fifo_in rd en_i <= '0';

223 - ctrl_valid i <= '0';

224 - end if;

225 -- end if; -- rising_edge (clk_i)

226 --end process p_fill_fifo_in;

227

228

229 —-p_fifo_in : process(clk_i) is

230 --begin

231 -- if rising edge(clk_i) then

232 — if fifo_in_rd en i = 'I' then

233 — ctrl_valid i <= '1';

234 - end if;

235 - end if;

236 --end process p_fifo_in;

237

238 —---- Read/write to fifo

239 --scaler_ready_o not (fifo_in_almostfull_o);

240 --fifo_in wr_en i '1'" when scaler_valid i = 'l1' and fifo in full o = '0' else
241 —-fifo_in_rd en_i '1' when (ctrl_ready_o = 'l1' and fifo_in empty o = '0') else
242

243

244 —--—- Map input data signals to input FIFO

245 --fifo_in data_i (c_data_range_fifo-1 downto 0) <= scaler_data_1i;
246 --fifo_in_data_i (c_empty_range_fifo-1 downto c_data_range_fifo) <= scaler_empty_ ij;
247 --fifo_in_data_i (c_sop_range_fifo-1) <= scaler_sop_i;
248 fifo_in_data_i (c_eop_range fifo-1) <= scaler_eop_
249

250 - FIFO output

251 ——ctrl_ready_i <= '1';

252

253 end scaler wrapper_arc;

88

Appendix B

VHDL Testbenches

B.1 FIFO Testbench

library ieee;
use ieee.std logic_1164.all;
use ieee.numeric_std.all;

library uvvm_util;
context uvvm_util.uvvm_util_context;

library uvvm_vvc_framework;
use uvvm_vvc_f .ti_vve_ k_support_pkg.all;
use uvvm_vvc_framework.ti_data_fifo_pkg.all;

Test bench entity

entity tb_fifo_generic is
end tb_fifo_generic;

architecture tb_fifo_generic_arc of tb_fifo generic is
constant C_SCOPE : string := C_TB_SCOPE_DEFAULT;
constant C_CLK_PERIOD : time : 10 ns; —— 100 MH

constant C_WIDTH : natural
constant C_DEPTH : natural =

signal clk_i : std logic;
signal sreset_i : std_logic;

signal data_i : std_logic_vector (C_WIDTH-1 downto 0) : (others
signal wr_en_i : std_logic;

signal full_o : std_logic;

signal almostfull_o : std_logic;

signal data_o : std_logic_vector (C_WIDTH-1 downto 0);

signal rd_en_i : std_logic;

signal empty_o : std_logic;

begin

> '0');

89

53 i_ti_uvvm_engine : entity uvvm_vvc_framework.ti_uvvm_engine;

55

56

57 —-- Instantiate DUT

58

59 i_fifo: entity work.fifo_generic

60 generic map (

61 g_width => C_WIDTH,

62 g_depth => C_DEPTH

63)

64 port map (

65 clk_i => clk_i,

66 sreset_i => sreset_i,

67 data_i > data_i,

68 wr_en_i wr_en_i,

69 full_o full_o,

70 almostfull_o almostfull_o,
71 data_o data_o,

72 rd_en_i => rd_en_i,

73 empty_o => empty_o

74)i

75

76

77

78 —- Reset process

79

80 Toggle the re after 5 clock periods
81 p_sreset: sreset_i <= 'l1', '0' after 5 *C_CLK_PERIOD;
82

83

84

85 ock proc

86

87 p_clk: process

88 begin

89 clk_i <= '0', '1' after C_CLK_PERIOD / 2;
90 wait for C_CLK_PERIOD;

91 end process;

92

93

94 -- Data_i generate random data process
95

96 p_data_i : process(clk_i)

97 begin

98 if rising_edge(clk_i) then

99 data_i <= random(C_WIDTH) ;

100 end if;

101 end process;

102

103

104 -— PROCESS: p_main

105

106 p_main: process

107 begin

108

109

110

111 - t the configt to the log
112 report_global_ctrl (VOID);

13 report_msg_id_panel (VOID) ;

114

115

116 -- Enable log message

117

118 enable_log_msg (ALL_MESSAGES) ;

119

120 log (ID_LOG_HDR, "Starting simulation of FIFO", C_SCOPE);
121 log("Wait 10 clock period for reset to be turned off");
122 wait for (10 * C_CLK_PERIOD);

123

124

125 Test 0

126

127 wr_en_i <= '0';

128 rd_en_i <= '0';

129 wait until rising_edge (clk_i);
130

131 -— Fill FIFO

132 for i in 1 to C_DEPTH+2 loop

133 wr_en_i <= '1';

134 rd_en_i <= '0';

135 wait until rising_edge (clk_i);
136 end loop;

137

138 - oty FIFO

139 for i in 1 to C_DEPTH+2 loop

140 wr_en_i <= '0';

141 rd_en_i <= '1';

142 wait until rising_edge (clk_i);

90

143 end loop;

144

145 -- Idle

146 for i in 1 to C_DEPTH+2 loop

147 wr_en_i <= '0';

148 rd_en_i <= '0"';

149 wait until rising_edge (clk_i);
150 end loop;

151

152 -— Stream through empty FIFO

153 for i in 1 to C_DEPTH#2 loop

154 wr_en_i <= '1';

155 rd_en_i <= '1';

156 wait until rising_edge (clk_i);
157 end loop;

158

159 Empty FIFO

160 for i in 1 to C_DEPTH+2 loop

161 wr_en_i <= '0';

162 rd_en_i <= '1';

163 wait until rising_edge (clk_i);
164 end loop;

165

166 -- Idle

167 for i in 1 to C_DEPTH+2 loop

168 wr_en_i <= '0';

169 rd_en_i <= '0"';

170 wait until rising_edge (clk_i);
171 end loop;

172

173

174

175 -- Ending the

176

177 wait for 1000 ns; to allow some time for completion
178 report_alert_counters (FINAL); —— Report fina ers and print conclusion for sin
179 log (ID_LOG_HDR, "SIMULATION COMPLETED", C_SCOPE);
180

181 Finish the

182 std.env.stop;

183 wait; to stop completely

184 end process p_main;

185

186

187 end tb_fifo_generic_arc;

B.2 Simple Dual-Port RAM Testbench

library ieee;
use ieee.std logic_1164.all;
use ieee.numeric_std.all;

library uvvm util;
context uvvm_util.uvvm_util_context;

library uvvm_vvc_framework;
use uvvm_vvc_framework.ti_ vvc_ framework support pkg.all;
use uvvm_vvc_framework.ti_data_ fifo_ pkg.all;

—-— Test bench entity

entity tb_simple dpram is
end tb_simple_dpram;

- 1 cture
architecture tb_simple dpram arc of tb_simple dpram is

constant C_SCOPE : string := C_TB_SCOPE_DEFAULT;

constant C_CLK_PERIOD : time := 10 ns; 100 1

-— RAM width h

constant C_RAM_WIDTH : natural := 20;

constant C_RAM_DEPTH : natural := 10;

signal clk_i : std_logic;

signal data_i : std_logic_vector (C_RAM_WIDTH-1 downto 0) := (others =>'0');

signal wr_addr_i : integer 0;

signal wr_en_i : std_logic := '0';

signal rd_addr_i : integer := 0;

signal data_o : std_logic_vector (C_RAM_WIDTH-1 downto 0) := (others =>'0");
begin

-- Instantiate the cor

i_ti_uvvm_engine : entity uvvm_vvc_framework.ti_uvvm_engine;

i_simple_dpram: entity work.simple_dpram
generic map (

g_ram_width > C_RAM_WIDTH,
g_ram_depth => C_RAM_DEPTH
)
port map (
clk_i clk_i,
data_i data_i,
wr_addr_i wr_addr_i,
wr_en_i wr_en_i,
rd_addr_i rd_addr_i,
data_o data_o

p_main: process

variable v_writeaddr : natural := 0;
variable v_readaddr : natural := 0;
begin

-- Wait to i i

await_uvvm_initialization (VOID);

the
report_global_ctrl (VOID) ;
report_msg_id_panel (VOID)

iguratio

enable_log_msg (ALL_MESSAGES) ;

92

87
88
89

91
92

94
95
96

98
99

101

102
103

104
105

106
107

108

109
110
111

112
113
114
115
116
117
118
119
120
121

122
123
124
125
126
127
128
129
130
131

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

161

log (ID_LOG_HDR, "Starting simulation of FIFO", C_SCOPE);
log("Wait 10 clock period for reset to be turned off");

wait for (10 C_CLK_PERIOD);

wait until rising_edge (clk_i);

-— Write random data to RAM

wr_en_i <= 'l';

for i in 1 to C_RAM_DEPTH loop
data_i <= random (C_RAM_WIDTH) ;
wr_addr_i <= v_writeaddr;

v_writeaddr :

wait until rising_edge (clk_i);
end loop;
wr_en_i <=

—-— Read from RAM
for i in 1 to C_RAM_DEPTH loop

v_writeaddr + 1 when (v_writeaddr < C_RAM_DEPTH-1) else 0;

rd_addr_i v_readaddr;
v_readaddr := v_readaddr + 1 when (v_readaddr < C_RAM_DEPTH-1) else 0;
wait until rising_edge (clk_i);

end loop;

—-- Random up RAM

wr_en_i <

for i in 1 to C_RAM_DEPTH loop
data_i <= random (C_RAM_WIDTH) ;
wr_addr_i <= random(0,C_RAM_DEPTH-1);
wait until rising_edge (clk_i);

end loop;

wr_en_i <= '0';

—- Random read RAM
for i in 1 to C_RAM_DEPTH loop

rd_addr_i random (0, C_RAM_DEPTH-1) ;
wait until rising_edge (clk_i);
end loop;
—-- Concurrent read and write form random addresses
wr_en_i <= 'l';
for i in 1 to 5+C_RAM_DEPTH loop
data_i <= random (C_RAM_WIDTH) ;

wr_addr_i random (0, C_RAM_DEPTH-1) ;
rd_addr_i random (0, C_RAM_DEPTH-1) ;
wait until rising_edge (clk_i);

end loop;

wr_en_i <= '0';

-- Ending the simulation

wait for 1000 ns; -- to allow some time for completion
report_alert_counters (FINAL); —- Report fina unters and print conc

log (ID_LOG_HDR, "SIMULATION COMPLETED", C_SCOPE);

> st
end process p_main;

sion for si

-- Clock process

p_clk: process
begin
clk_i <= '0', 'l' after C_CLK_PERIOD / 2;
wait for C_CLK_PERIOD;
end process;

end tb_simple_dpram arc;

ss/Fail)

93

Multiport RAM Testbench

library ieee;

use ieee.std logic_1164.all;

use ieee.numeric_std.all;

library uvvm util;
context uvvm_util.uvvm_uti

library uvvm_vvc_framework

1_context;

use uvvm_vvc_framework.ti_ vvc_ framework support pkg.all;
use uvvm_vvc_framework.ti_data_ fifo_ pkg.all;

- bench entity

Test
entity tb_multiport_ram is
end tb_multiport_ram;

1 cture
architecture tb_multiport_:

ram _arc of tb_multiport ram is

constant C_SCOPE string := C_TB_SCOPE_DEFAULT;

constant C_CLK_PERIOD time := 10 ns;

-— RAM width an I

constant C_RAM_WIDTH natural 305

constant C_RAM_DEPTH natural 10;

signal clk_i std_logic;

signal data_i std_logic_vector (C_RAM_WIDTH-1 downto

signal wr_addr_i integer := 0;

signal wr_en_i std_logic ;

signal rd_addr_a_i integer :

signal rd_addr_b_i integer 0;

signal rd_addr_c_i integer := 0;

signal rd_addr_d_i integer := 0;

signal data_a_o std_logic_vector (C_RAM_WIDTH-1 downto (

signal data_b_o std_logic_vector (C_RAM_WIDTH-1 downto

signal data_c_o std_logic_vector (C_RAM_WIDTH-1 downto

signal data_d_o std_logic_vector (C_RAM_WIDTH-1 downto
begin

0)

(others

(others
(others
(others
(others =

i_ti_uvvm_engine

entity uvvm_vvc_framework.ti_uvvm_engine;

i_multiport_ram:

generic map (
g_ram_width
g_ram_depth

)

port map (
clk_i >
data_i >
wr_addr_i = =>
wr_en_i
data_a_o
data_b_o
data_c_o
data_d_o
rd_addr_a_i =>
rd_addr_b_i =>
rd_addr_c_i =>
rd_addr_d_i =>

entity work.multiport_ram

C_RAM_WIDTH,
C_RAM_DEPTH

clk_i,
data_i,
wr_addr_i,
wr_en_i,
data_a_o,
data_b_o,
data_c_o,
data_d_o,
rd_addr_a_i,
rd_addr_b_i,
rd_addr_c_i,
rd_addr_d_i

p_main: process

variable v_writeaddr
variable v_readaddr_a
variable v_readaddr_b

: natural
: natural
: natural

94

87 variable v_readaddr_c : natural 0;

88 variable v_readaddr_d : natural 0;

89 begin

90 -- Wait for U to finish initialization

91 await_uvvm_initialization (VOID);

92

93 nt the configuration to the log

94 report_global_ctrl (VOID);

95 report_msg_id_panel (VOID) ;

96

97

98 -- Enable log message

99

100 enable_log_msg (ALL_MESSAGES) ;

101

102 log (ID_LOG_HDR, "Starting simulation of FIFO", C_SCOPE);
103 log("Wait 10 clock period for reset to be turned off");
104 wait for (10 » C_CLK_PERIOD);

105

106

107 -- Test simple dual-port RAM

108

109 wait until rising_edge (clk_i);

110

111 —-— Write random a to RAM

112 wr_en_i <= '1';

113 for i in 1 to C_RAM_DEPTH loop

114 data_i random (C_RAM_WIDTH) ;

115 wr_addr_i v_writeaddr;

116 v_writeaddr v_writeaddr + 1 when (v_writeaddr < C_RAM_DEPTH-1) else 0;
117 wait until rising_edge (clk_i);

118 end loop;

119 wr_en_i <= '0

120

121 -- Read from RAM

122 for i in 1 to C_RAM_DEPTH loop

123 rd_addr_a_i = v_readaddr_a;

124 rd_addr_b_i v_readaddr_b;

125 rd_addr_c_i v_readaddr_c;

126 rd_addr_d_i v_readaddr_d;

127 v_readaddr_a := v_readaddr_a + 1 when (v_readaddr_a < C_RAM_DEPTH-1) else 0;
128 v_readaddr_b := v_readaddr_b + 1 when (v_readaddr_b < C_RAM_DEPTH-1) else 0;
129 v_readaddr_c := v_readaddr_c + 1 when (v_readaddr_c < C_RAM_DEPTH-1) else 0;
130 v_readaddr_d := v_readaddr_d + 1 when (v_readaddr_d < C_RAM DEPTH-1) else 0;
131 wait until rising_edge (clk_i);

132 end loop;

133

134 -- Random f up RAM

135 wr_en_i <= '1';

136 for i in 1 to C_RAM DEPTH loop

137 data_i random (C_RAM_WIDTH) ;

138 wr_addr_i random (0, C_RAM_DEPTH-1) ;

139 wait until rising_edge (clk_i);

140 end loop;

141 wr_en_i <= '0';

142

143 - ndom read RAM

144 for i in 1 to C_RAM_DEPTH loop

145 rd_addr_a_i random (0, C_RAM_DEPTH-1) ;

146 rd_addr_b_i random (0, C_RAM_DEPTH-1) ;

147 rd_addr_c_i random (0, C_RAM_DEPTH-1) ;

148 rd_addr_d_i random (0, C_RAM_DEPTH-1) ;

149 wait until rising_edge (clk_i);

150 end loop;

151

152 —-— Concurrent read and write form random addresses
153 wr_en_i <= '1';

154 for i in 1 to 5+C_RAM_DEPTH loop

155 data_i <= random (C_RAM_WIDTH) ;

156 wr_addr_i random (0, C_RAM_DEPTH-1) ;

157 rd_addr_a_i random (0, C_RAM_DEPTH-1) ;

158 rd_addr_b_i random (0, C_RAM_DEPTH-1) ;

159 rd_addr_c_i random (0, C_RAM_DEPTH-1) ;

160 rd_addr_d_i <= random(0,C_RAM DEPTH-1);

161 wait until rising_edge (clk_i);

162 end loop;

163 wr_en_i <= '0';

164

165

166

167 - the simulation

168

169 wait for 1000 ns; to all

170 report_alert_counters (FINAL) ; Report 1

171 log (ID_LOG_HDR, "SIMULATION COMPLETED", C_SCOPE);
172

173 -— Finish the simulat

174 std.env.stop;

175 wait; - to stop

176 end process p_main;

177
178
179
180
181
182
183
184
185
186
187
188

-- Clock pro

p_clk: process

begin
clk_i <= '0', 'l' after C_CLK_PERIOD / 2;
wait for C_CLK_PERIOD;

end process;

end tb_multiport_ram arc;

96

B.4 Scaler Algorithm Testbench With File 10

library ieee;

use ieee.std logic_1164.all;
use ieee.numeric_std.all;

use std.textio.all;

use ieee.std logic_textio.all;

library uvvm_uti
context uvvm_util.uvvm_util_context;

library uvvm_vvc_framework;
use uvvm_vvc_: .ti_vve k_support_pkg.all;
use uvvm_vvc_framework.ti_data_fifo_pkg.all;

bench e 3!
entity tb_scaler is
end tb_scaler;

Test bench architecture
architecture tb_scaler_arc of tb_scaler is

constant C_SCOPE string := C_TB_SCOPE_DEFAULT;

constant C_CLK_PERIOD : time := 10 ns; —-- 100 MHz

constant C_DATA_WIDTH : natural

constant C_BITS_PIXEL : natural
constant C_RX_VIDEO_WIDTH : natural
constant C_RX_VIDEO_HEIGHT : natural

constant C_TX_VIDEO_WIDTH : natural
constant C_TX_VIDEO_HEIGHT : natural

File I/0

constant C_IMAGE : string := "lionking"

constant C_SCALING : string :- "nearest";
constant C_INPUT_FILE : string := "../../data/orig/" & C_IMAGE & "/" & C_IMAGE & "_ycbcrddd_" &
<+ to_string(C_BITS_PIXEL) & "bit_" & to_string(C_RX_VIDEO_HEIGHT) & ".bin";
constant C_OUTPUT_FILE : string := "../../data/vhdl_o & C_IMAGE & "/" & C_IMAGE & "_" & C_SCALING
<+ to_string(C_RX_VIDEO_HEIGHT) & "_to_" & to_string(C_TX_VIDEO_HEIGHT) & ".bin";
file file_input : text;
file file_output : text;

-- DSP

signal std_logic
signal std_logic

—— DUT scaler i ts

signal startofpacket_i std_logic := '0';

signal endofpacket_i : std_logic := '0';

signal data_i std_logic_vector (C_DATA_WIDTH-1 downto 0) := (others =>
signal valid_i std_logic := '0';

signal ready_i std_logic := '0';

- ler ou

signal startofpacket_o std_logic := '0';

signal endofpacket_o : std_logic := '0';

signal data_o std_logic_vector (C_DATA_WIDTH-1 downto 0) := (others =
signal valid_o : std_logic := '0';

signal ready_o std_logic := '0';

begin

e the co initia

i_ti_uvvm_engine : entity uvvm_vvc_framework.ti_uvvm_engine;

i_scaler: entity work.scaler
generic map (

g_data_width => C_DATA_WIDTH,
g_rx_video_width => C_RX_VIDEO_WIDTH,
g_rx_video_height => C_RX_VIDEO_HEIGHT,

g_tx_video_width > C_TX_VIDEO_WIDTH,

) ;

0

&

97

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

165
166
167
168
169
170
171
172
173
174

g_tx_video_height
)

=> C_TX_VIDEO_HEIGHT

port map (
clk_i => clk_i,
sreset_i —> sreset_i,
scaler_startofpacket_i =>

scaler_endofpacket_i
scaler_data_i
scaler_valid_ i
scaler_ready_o =>

scaler_startofpacket_o =>

scaler_endofpacket_o =>
scaler_data_o =
scaler_valid_o =
scaler_ready_i =>

startofpacket_i,
endofpacket_i,
data_i,

valid_i,
ready_o,

startofpacket_o,
endofpacket_o,
data_o,

valid_o,

ready_i

-— PROCESS: p_main

p_main: process
variable v_input_line
variable v_data_slv
variable v_data
variable v_num_test_loops
begin
-= Wait uvvM ish

for to f.

line;
std_logic_vector (C_DATA_WIDTH-1 downto 0) :=
integer
integer

(others => '0');

initialization

await_uvvm_initialization (VOID);

—— Print the configuration
report_global_ctrl (VOID);

report_msg_id_panel (VOID) ;

to the log

-- Enable log message

enable_log_msg (ALL_MESSAGES) ;

log (ID_LOG_HDR, "Starting simulation of nearest", C_SCOPE);
log("Wait 10 clock period for reset to be turned off");
wait for (10 » C_CLK_PERIOD);

wait until rising_edge (clk_i);

-- Test scaler

v_num_test_loops := 1;

-- Send video data control

packet

ready_i <= '1';

data_i <= (others => '0');
valid_i <= '1';
startofpacket_i <= '1';

wait until rising_edge (clk_i);

startofpacket_i <= '0';

- Send known video data

--for n in 1 to v_num_test_loops loop
-- for i in 1 to C_RX_VIDEO_WIDTH loop
- v_data := (100 * i) + 1;

— for j in 1

- valid i <=

o wait until r.

end loop;

to C_RX_VIDEO_HEIGHT loop
- while ready_o =

-- endofpacket_i <= '1' when (i = C_RX_VIDEO_WIDTH and j = C_RX_VIDEO_HEIGHT) else
-- data <= std_logic_vector (to_unsigned(v_data, data_i'length));
- <= 117
-- v_data v_data + 1;
wait until rising_edge(clk_i);

valid i <

--wait until
. end loop;
-- end loop;
--end loop;

i <= '0';
—-endofpacket_i <= '0';

ng_edge (clk_i);

-- Read input

file and send video data

file_open(file_input,

C_INPUT_FILE,

read_mode) ;

98

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

206
207

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

226
227
228
229
230
231
232
233

235
236
237
238
239
240
241
242
243
244
245
246
247
248

while not endfile(file_input) loop
while ready_o = '0' loop
valid_i <= '0';
wait until rising_edge (clk_i);
end loop;

Read input data and send
readline (file_input, v_input_line);
read (v_input_line, v_data_slv);
data_i <= v_data_slv;
valid_i <= '1';
wait until rising_edge (clk_i);

end loop;

file_close(file_input);

valid_i <= '0';

wait for 10+C_CLK_PERIOD;

wait for C_TX_VIDEO_WIDTH+C_TX_VIDEO_HEIGHT*C_CLK_PERIOD;
report_alert_counters (FINAL); -- Report final counters and print conclusion for simulation
log (ID_LOG_HDR, "SIMULATION COMPLETED", C_SCOPE);

-— Finish the simul
std.env.stop;

wait; t t
end process p_main;

-- Write data to binary file

p_write data: process
variable v_out_line : line;
variable v_data_slv : std_logic_vector (C_DATA_WIDTH-1 downto 0) := (others => '0');
variable v_sop : boolean := false;
begin
file_open(file_output, C_OUTPUT_FILE, write_mode);
wait until rising_edge (clk_i);

-- Wait for startofpacket_o
while not v_sop loop
wait until rising_edge (clk_i);

if startofpacket_o = 'l' then
v_sop := true;
end if;
end loop;
-- Write d as long as valid o = '1'
while v_sop loop
if valid_o '1' then
v_data_slv := data_o;

write (v_out_line, v_data_slv);
writeline (file_output, v_out_line);
end if;
wait until rising_edge (clk_i);
end loop;
file_close (file_output);
end process;

-- Clock process

p_clk: process

begin
clk_i <= '0', 'l' after C_CLK_PERIOD / 2;
wait for C_CLK_PERIOD;

end process;

end tb_scaler_arc;

(Success/.

a

o

1)

99

B.5 Scaler Top Level Testbench With UVVM

library ieee;

use ieee.std logic_1164.all;
use ieee.numeric_std.all;

use std.textio.all;

use ieee.std logic_textio.all;

library uvvm_uti
context uvvm_util.uvvm_util_context;

library uvvm_vvc_framework;
use uvvm_vvc_: .ti_vve k_support_pkg.all;
use uvvm_vvc_framework.ti_data_fifo_pkg.all;

library vip_avalon_st;
use vip_avalon_st.vvc_methods_pkg.all;
use vip_avalon_st.td vvc_ framework common methods_pkg.all;

Test ch entity
entity tb_scaler complete is
end entity;
—— Test bench ar e
architecture func of tb_scaler complete is
constant C_SCOPE : string C_TB_SCOPE_DEFAULT;
- k and bit period se
constant C_CLK_PERIOD : time := 10 ns;
constant C_BIT_PERIOD : time 16 « C_CLK_PERIOD;
- bus widths
constant C_DATA_WIDTH : natural 80;
constant C_EMPTY WIDTH : natural i

0s
constant C_FIFO_DATA_WIDTH : natural
constant C_FIFO_DATA_DEPTH : natural

C_DATA_WIDTH + C_EMPTY_WIDTH + 2;
64;

constant C_INPUT_FILE : string := "../../data/orig/lionking/lionking_ycbcr444_8bit_360.bin";
constant C_EXPECT_FILE : string := "../../data/orig/lionking/lionking_ycbcr444_8bit_360.bin";
file file_input : text;
file file_expect : text;

- Test a

constant C_RX_VIDEO_WIDTH : natural
constant C_RX_VIDEO_HEIGHT : natural
constant C_TX_VIDEO_WIDTH : natural
constant C_TX_VIDEO_HEIGHT : natural

constant C_DATA_LENGTH : natural
constant C_EXPECT_LENGTH : natural

C_RX_VIDEO_WIDTH+C_RX_VIDEO_HEIGHT;
C_TX_VIDEO_WIDTH+C_TX_VIDEO_HEIGHT;

procedure wait_for_time_wrap (-— Wait for next round time nu; - e.g. if 2100ns, and round_ the.
— next round time s 3000
round_time : time) is
variable v_overshoot : time := now rem round_time;

begin

wait for (round_time - v_overshoot);

anti arness,

i_test_harness : entity work.th_scaler_ complete
generic map (
g_data_width => C_DATA_WIDTH,
g_empty_width => C_EMPTY_WIDTH,
g_fifo_data_width => C_FIFO_DATA_WIDTH,
g_fifo_data_depth => C_FIFO_DATA DEPTH
1 dt

RX_
VIDEO_WIDTH,

g_tx_video_width C_TX
g_tx_video_height => C_TX_VIDEO_HEIGHT

86

87

88

89 —— PROC: : p_main

90

91 p_main: process

92 variable v_ctrl_pkt_array : t_slv_array(0 to 1) (C_DATA_WIDTH-1 downto 0) := (others —> (others
— =>'0"));

93 variable v_data_array : t_slv_array(0 to C_DATA_LENGTH) (C_DATA_WIDTH-1 downto 0) := (others => (others =>
— 0N

94 variable v_exp_data_array : t_slv_array(0 to C_EXPECT_LENGTH-1) (C_DATA_WIDTH-1 downto 0) := (others => (others
g >0

95 variable v_empty : std_logic_vector (C_EMPTY_WIDTH-1 downto 0) := (others => '0');

96

97 variable v_num_test_loops : natural := 0;

98

99 variable v_rx_video_width : std_logic_vector (15 downto 0) := (others => '0');

100 variable v_rx_video_height : std_logic_vector(l5 downto 0) := (others => '0');

101

102 variable v_file_input_line : line;

103 variable v_file_expect_line : line;

104 variable v_file_data_input : std_logic_vector (C_DATA_WIDTH-1 downto 0);

105 variable v_file_data_expect : std_logic_vector (C_DATA_WIDTH-1 downto 0);

106

107 variable v_counter : integer

108 begin

109

110

111

112

113 —- Print the ration to the log

114 report_global_ctrl (VOID);

115 report_msg_id_panel (VOID);

116

117

118 -

119

120 enable_log_msg (ALL_MESSAGES) ;

121 enable_log_msg (ID_LOG_HDR) ;

122 enable_log_msg (ID_UVVM_SEND_CMD) ;

123

124 disable_log_msg (AVALON_ST_VVCT, 1, TX, ALL_MESSAGES);

125 disable_log_msg (AVALON_ST_VVCT, 1, RX, ALL_MESSAGES);

126

127 enable_log_msg (AVALON_ST_VVCT, 1, TX, ID_BFM);

128 enable_log_msg (AVALON_ST_VVCT, 1, TX, ID_PACKET_INITIATE);

129 enable_log_msg (AVALON_ST_VVCT, 1, TX, ID_PACKET_COMPLETE);

130

131 enable_log_msg (AVALON_ST_VVCT, 1, RX, ID_BFM);

132 enable_log_msg (AVALON_ST_VVCT, 1, RX, ID_PACKET_INITIATE);

133 enable_log_msg (AVALON_ST_VVCT, 1, RX, ID_PACKET_COMPLETE);

134

135

136 -- Enable/disable Avalon-ST signals

137

138 shared_avalon_st_vvc_config(TX, 1).bfm_config.use_channel := false;

139 shared_avalon_st_vvc_config(TX, 1).bfm_config.use_error false;

140 shared_avalon_st_vvc_config(TX, 1).bfm_config.use_empty true;

141

142 Percent of cycles the receive module should assert ready_o

143 shared_avalon_st_vvc_config(RX, 1).bfm_config.ready_percentage

144

145 -- Set empty signal if some symbols are empty at the last transmission

146 v_empty := std_logic_vector(to_unsigned(0, v_empty'length));

147

148

149 log (ID_LOG_HDR, "Starting simulation of TB scaler", C_SCOPE);

150 log("Wait 10 clock period for reset to be turned off");

151 wait for (10 » C_CLK_PERIOD);

152

153

154

155 Control packet

156

157 log (ID_LOG_HDR, "Sending control packet", C_SCOPE);

158 —-— Send control p.

159 v_ctrl_pkt_array(0) := std_logic_vector (to_unsigned(15, C_DATA_WIDTH));

160

161 —-- Set rx resolut

162 v_rx_video_width std_logic_vector (to_unsigned (C_RX_VIDEO_WIDTH, v_rx_video_width'length));

163 v_rx_video_height std_logic_vector (to_unsigned (C_RX_VIDEO_HEIGHT, v_rx_video_height'length));

164 v_ctrl_pkt_array(l) (3 downto 0) := v_rx_video_width (15 downto 12);

165 v_ctrl_pkt_array(l) (13 downto 10) := v_rx_video_width (1l downto 8);

166 v_ctrl_pkt_array(l) (23 downto 20) := v_rx_video_width(7 downto 4);

167 v_ctrl_pkt_array (1) (33 downto 30) := v_rx_video_width(3 downto 0);

168 v_ctrl_pkt_array(l) (43 downto 40) := v_rx_video_height (15 downto 12);

169 v_ctrl_pkt_array(l) (53 downto 50) := v_rx_video_height (11 downto 8);

170 v_ctrl_pkt_array(l) (63 downto 60) := v_rx_video_height (7 downto 4);

171 v_ctrl_pkt_array (1) (73 downto 70) := v_rx_video_height (3 downto 0);

172

101

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

204
205

207
208

210
211
212
213
214
215
216
217
218
219
220
221
222

224
225

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

247
248
249
250
251
252
253

255
256

258
259
260

—— Start send and receive VVC

avalon_st_send (AVALON_ST_VVCT, 1, v_ctrl pkt_array, v_empty, "Sending v_data_array");
n_st_receive (AVALON_ST_VVCT, "Receiving");

avalon_st_expect (AVALON_ST_VVCT, 1, v_ctrl_pkt_array, v_empty, "Checking data", ERROR);

-- Wait for completi
await_completion (AVALON_ST_VVCT, 1, RX, 10+C_DATA_LENGTH+C_CLK_PERIOD);
wait for (10 s C_CLK_PERIOD);

-- Video data packet

log (ID_LOG_HDR, "Sending video data packet", C_SCOPE);
—- Number of times to run the test loop
v_num_test_loops 1

wait_for_time_wrap (10000 ns);

for i in 1 to v_num_test_loops loop

—- Create a random ready percentage for the recieve module
shared_avalon_st_vvc_config(RX, 1).bfm_config.ready_percentage := random(1l,100);
—-shar v st_vvc_config(RX, 1).bfm_config.ready percentage := 50;

-- Write packet info, Data[3:0] = 0 for video_packet
v_data_array (0) := std_logic_vector (to_unsigned (0, C_DATA_WIDTH));
v_exp_data_array (0) := std_logic_vector (to_unsigned(0, C_DATA_WIDTH));

Read input file and data array

file_open (file_input, C_INPUT_FILE, read_mode);

while not endfile(file_input) loop
v_counter := v_counter + 1;

—— Read input data and store to data array

readline (file_input, v_file_input_line);

read(v_file_input_line, v_file_data_input);

v_data_array (v_counter) := v_file_data_input;
end loop;

file _close(file_input);

—— Reset v_counter

v_counter 03

-- Read expect
file_open(file_expect, C_EXPECT_FILE, read_mode);

while not endfile(file_expect) loop
output d.
readline (file_expect, v_file_expect_line);

read(v_file_expect_line, v_file_data_expect);

and store to expe

v_exp_data_array (v_counter) := v_file_data_expect;
v_counter := v_counter + 1;
end loop;

file_close (file_expect);

—— Reset

v_counter

-- Margin
wait for 10+C_CLK_PERIOD;

Send/recieve using avalon st vvc

log (ID_LOG_HDR, "Test loop " & to_string(i) & " of " & to_string(v_num_test_loops) & " tests.

<+ to_string(C_DATA_LENGTH) & " pixels. Using ready percentage: " &
<+ to_string(shared_avalon_st_vvc_config(RX, 1).bfm_config.ready_percentage), C_SCOPE);

-- Start send and receive VVC
avalon_st_send (AVALON_ST_VVCT, 1, v_data_array, v_empty, "Sending v_data_array");
--avalon_st_receive (AVALON_ST_VVCT, 1, "Receiving");

avalon_st_expect (AVALON_ST_VVCT, 1, v_exp_data_array, v_empty, "Checking data", ERROR);

Wait for completion
await_completion (AVALON_ST_VVCT, 1, RX, 100+C_DATA_LENGTH+C_CLK_PERIOD);
end loop;

Sending

&

261
262
263

265
266
267

269
270
271

wait for 1000 ns; -— to allow

report_alert_counters (FINAL); —— Report
log (ID_LOG_HEDR, "SIMULATION COMPLETED",

e h the lation
std.env.stop;
wait; to stop completely

end process p_main;
end func;

me time for

121 counters and print

C_SCOPE) ;

simulation

(Success/Fail)

103

B.6 Scaler Top Level Testharness With UVVM

library ieee;
use ieee.std logic_1164.all;
use ieee.numeric_std.all;

library uvvm_util;
context uvvm_util.uvvm_util_context;

library uvvm_vvc_framework;
use uvvm_vvc_framework.ti_ vvc_ framework support pkg.all;

use uvvm_vvc_framework.ti_data_ fifo_ pkg.all;

library vip_avalon_st;

entity th_scaler_complete is

generic (

g_data_width : natural;

g_empty_width : natural;

g_fifo_data_width : natural;

g_fifo_data_depth : natural;

——g_rx. Heo_wi natural;

——g_rx_video_heig natural;

g_tx_video_width : natural;

g_tx_video_height : natural

)i
end entity;
Test harness architec
architecture struct of th_scals
-- DSP d gen 1
signal std_logic
signal sreset_i : std_logic
—- DUT scaler inp
signal startofpacket_i : std_logic;
signal endofpacket_i : std_logic;
signal data_i : std_logic_vector (g_data_width-1 downto 0);
signal empty_i : std_logic_vector (g_empty_width-1 downto 0);
signal valid_i : std_logic;
signal ready_i : std_logic;
aler out s

signal startofpacket_o : std_logic := '0';
signal endofpacket_o : std_logic := '0';
signal data_o : std_logic_vector(g_data_width-1 downto 0) : (others => '0');
signal empty_o : std_logic_vector(g_empty_width-1 downto 0) := (others => '0');
signal valid_o : std_logic 0
signal ready_o : std_logic 0
signal sink_startofpacket_i : std_logic;
signal sink_endofpacket_i : std_logic;
signal sink_data_i : std_logic_vector (g_data_width-1 downto 0);
signal sink_empty_i : std_logic_vector (g_empty_width-1 downto 0);
signal sink_valid_i : std_logic;
signal sink_ready_ o : std_logic := '0';
signal source_startofpacket_o : std_logic :=
signal source_endofpacket_o : std_logic := '0';
signal source_data_o : std_logic_vector (g_data_width-1 downto 0) := (others => '0');
signal source_empty_o : std_logic_vector (g_empty_width-1 downto 0) := (others => '0');
signal source_valid_o : std_logic := '0';
signal source_ready_i : std_logic;
constant C_CLK_PERIOD : time := 10 ns; —- 100 MHz

begin

i_scaler: entity work.scaler_wrapper

104

105

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

170
171
172
173
174
175
176

generic map (
g_data_width >
g_empty_width =>
g_fifo_data_width =>
g_fifo_data_depth
g_tx_video_width =>
g_tx_video_height =>

g_data_width,
g_empty_width,
g_fifo_data_width,
g_fifo_data_depth,
g_tx_video_width,
g_tx_video_height,

g_tx_video_scaling_method => 1

a
o
~
"
v

sreset_i >

—— x >
data_i =>
ready_o >
valid_i =
>
>

empty_i =
endofpacket_i
startofpacket_i

-> x
>
>

empty_o >
endofpacket_o =
startofpacket_o =>

clk_i,
sreset_i,

data_i,
ready_o,
valid_i,
empty_i,
endofpacket_i,

=> startofpacket_i,

data_o,
ready_i,
valid_o,
empty_o,
endofpacket_o,
startofpacket_o

—— AVALON

il_avalon_st_vvc: entity vip_avalon_st.avalon_st_vvc

generic map (
GC_DATA_WIDTH
GC_EMPTY_WIDTH =>
GC_INSTANCE_IDX =>

)

port map (
clk -> clk_i,

-- Sink

g_data_width,
g_empty_width,
1

avalon_st_sink_if.data_i
avalon_st_sink_if.ready_o
avalon_st_sink_if.valid_i

avalon_st_sink_if.empty_i =
avalon_st_sink_if.endofpacket_i =>
avalon_st_sink_if.startofpacket_i =>

-=- Source

avalon_st_source_if.data_o =>
avalon_st_source_if.ready_i >
avalon_st_source_if.valid o >
avalon_st_source_if.empty_o >
avalon_st_source_if.endofpacket_o =>
avalon_st_source_if.startofpacket_o =>

—-— Connect: source —->

sink_data_i,
sink_ready_o,
sink_valid_i,
sink_empty_i,
sink_endofpacket_i,
sink_startofpacket_i,

source_data_o,
source_ready_i,
source_valid_o,
source_empty_o,
source_endofpacket_o,
source_startofpacket_o

data_i <= source_data_o;
source_ready_i <= ready_o;
valid_i <= source_valid_o;
empty_i source_empty_o;

endofpacket_i
startofpacket_i

source_endofpacket_o;
source_startofpacket_o;

<=

sink_data_i
ready_i

data_o;
sink_ready_o;

sink_valid_i
sink_empty_i
sink_endofpacket_i
sink_startofpacket_i

<= valid_o;

<= empty_o;

<= endofpacket_o;
<= startofpacket_o;

5 ck periods
, '0'" after 5 »C_CLK

_PERIOD;

"k proc

p_clk: process

105

177
178
179
180
181
182

begin
clk_i <= '0', '1' after C_CLK_PERIOD / 2;
wait for C_CLK_PERIOD;

end process;

end struct;

106

Appendix C

Avalon-ST Verification IP source
code

Due to the enormous size of the full Avalon-ST Verification IP implementation in UVVM,
only the BFM (Bus Functional Model) is being presented here. For the full source code,
visit the open-source repository of the implementation at:
https://github.com/thoste/UVVM/tree/thoste

C.1 Avalon-ST BFM

1
2 -~ Copyright (c) 2019 by Thomas Stenseth. All rights resert
3
4
5
6
7 e
8
9
10
11
12
13
14 library ieee;
15 use ieee.std logic 1164.all;
16 use ieee.numeric_std.all;
17
18 library uvvm util;
19 context uvvm_util.uvvm_util_context;
20
21
22 package avalon_st_bfm_pkg is
23
24
s
25 — Types and constants fo \L.ON-S
26
s .
27 constant C_SCOPE : string := "AVALON-ST BFM";
28
29 Avalon Interface signals
30 type t_avalon_st_source_if is
31 record
32 “ha _ : std_logic_vector;
33 data_o : std_logic_vector;
34 o . std 1 s

107

35
36
37

39

41
42
43

45
46
47
48
49
50
51
52
53
54

56
57

59

61
62

63

65
66

67
68
69
70
71

73
74

76
77

79
80
81

83
84

86
87

89
90
91
92
93
94
95

96
97

98

100
101
102
103
104
105

107
108
109
110
111
112
113
114
115
116
117
118
119

ready_i std_logic;
valid_o std_logic;
empty_o std_logic_vector;

endofpacket_o
startofpacket_o
end record;

std_logic;
std_logic;

type t_avalon_st_sink_if is

record
——channel_i std_logic_vector;
data_i std_logic_vector;
——error_i std_logic_vector;
ready_o std_logic;
valid_i std_logic;
empty_i std_logic_vector;

endofpacket_i
startofpacket_i
-- Debug signal
heck_data
end record;

std_logic;
std_logic;

std_logi ;

-- Configuration record to be assigned in the test harness.
type t_avalon_st_bfm_config is
record
max_wait_cycles integer; -— The maximum number of clock cycles to wait before reporting
— a timeout alert.
max_wait_cycles_severity : t_alert_level; —— The above this severity
clock_period time; - Period of
clock_period_margin : time; Input clock p v margin to specified
— ck_period
clock_margin_severity t_alert_level; -- The above margin will have this severity
setup_time time; -- Setup time for generated signals, set to clock_period/4
hold_time : time; —— Hold time for generated signals, set to clo od/4
ready_percentage natural range 0 to 100; -- Percent of cycles the receive n 1
— signal
—-- Enable/disable specific signals in Alavlon-ST
use_channel boolean; —- Use channel signal
use_error boolean; -- Use error signal
use_empty boolean; -- Use empty signal
—-- Common
id_for_bfm t_msg_id; -~ The message ID used as a general message ID in the Avalon-ST BFM
id_for_bfm_wait t_msg_id; -- The message ID used for logging waits in the Avalon-ST BFM
id_for_bfm_poll t_msg_id; -- The message ID used for logging polling in the Avalon-ST BFM

end record;

constant C_AVALON_ST_BFM_CONFIG_DEFAULT t_avalon_st_bfm_config := (
max_wait_cycles => 10,
max_wait_cycles_severity => failure,
clock_period -> 10 ns,
clock_period_margin -> 0 ns,
clock_margin_severity => TB_ERROR,
setup_time -> 2.5 ns,
hold_time => 2.5 ns,
ready_percentage => 100,
use_channel > false,
use_error > false,
use_empty => false,
id_for_bfm => ID_BFM,
id_for_bfm_wait => ID_BFM_WAIT,
id_for_bfm_poll => ID_BFM_POLL

—
-- BFM procedures

—

-- init_avalon_st_source_if_signals
function init_avalon_st_source_if_signals (
--channel_width natural;
data_width natural;
——error_width : natural
empty_width natural
) return t_avalon_st_source_if;

function init_avalon_st_sink_if signals (

—-—-channel_width natural;

data_width natural;
-—error_width natural;
empty_width natural

) return t_avalon_st_sink_if;

108

120
121
122
123

125

137
138
139

141

145

165

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

204
205

207
208
209

—— Avalon send

procedure avalon_st_send (
--constant channel_num
constant data_array
constant data_width

constant error_bit_.

constant empty
constant empty_width
constant msg
signal clk
signal

avalon_st_source_if

in
inout t_avalon_st_source_if;

std

t_slv_array;
natural;

logic_vector;

std_logic_vector;
natural;

string;
std_logic;

1= C_AVALON_ST_BFM_CONFIG_DEFAULT

constant scope in string := C_SCOPE;
constant msg_id_panel in t_msg_id_panel := shared_msg_id_panel;
constant config in t_avalon_st_bfm_config
)i
e loaded vers 1 without records
procedure avalon_st_send (
——constant channel_num :in std_logic_vector;
constant data_array in t_slv_array;
constant data_width in natural;
--constant error_bit_mask in t_slv_array;
constant empty in std_logic_vector;
constant empty_width in natural;
constant msg in string;
signal clk in std_logic;
signal data_o inout std _logic_vector;
signal ready_i inout std logic;
signal valid_o inout std_logic;
signal empty_o inout std_logic_vector;
signal endofpacket_o inout std logic;
signal startofpacket_o inout std_logic;
constant scope in string C_SCOPE;
constant msg_id_panel in t_msg_id_panel shared_msg_id_panel;
constant config in t_avalon_st_bfm_config

—-— Avalon receive

procedure avalon_st_receive (
--variable channel_num

variable data_array

constant data_width

variable data_length

able error_bit_mask
variable empty

constant empty_width
constant msg

signal clk

signal avalon_st_sink_if

out std_logic_vector;

inout t_slv_array;

in

natural;

inout natural;

inout t_slv_array;

inout std_logic_vector;

in
in
in

natural;
string;
std_logic;

inout t_avalon_st_sink_if;

1= C_AVALON_ST_BFM_CONFIG_DEFAULT

1= C_AVALON_ST_BFM_CONFIG_DEFAULT

constant scope in string := C_SCOPE;
constant msg_id_panel in t_msg_id_panel := shared_msg_id_panel;
constant config in t_avalon_st_bfm_config
)i
—-— Overloaded version without records
procedure avalon_st_receive (
—-variable channel_num inout std_logic_vector;

variable data_array
constant data_width
variable data_length
variable error_bit_mask

variable empty

constant empty_width
constant msg

signal clk

signal data_i
signal ready o

signal valid_i

signal empty_i

signal endofpacket_i
signal startofpacket_i

constant scope
constant msg_id_panel
constant config

inout t_slv_array;

in

natural;

inout natural;

inout std_logic_vector;

in
in
in

inout t

Vi
natural;

string;
std_logic;

inout std_logic_vector;
inout std_logic;
inout std_logic;
inout std_logic_vector;
inout std_logic;
inout std_logic;

in
in
in

string
t_msg_id_panel
t_avalon_st_bfm_config

1= C_SCOPE;
:= shared_msg_id_panel;
1= C_AVALON_ST_BFM_CONFIG_DEFAULT

109

210 -

211

212 procedure avalon_st_expect (

213 constant exp_data_array : in t_slv_array;

214 constant exp_data_width in natural;

215 constant exp_empty in std_logic_vector;

216 constant exp_empty_width : in natural;

217 constant msg : in string;

218 signal clk : in std_logic;

219 signal avalon_st_sink_if : inout t_avalon_st_sink_if;

220 constant alert_level i t_alert_level := error;
221 constant scope string := C_SCOPE;
222 constant msg_id_panel t_msg_id_panel := shared_msg_id_panel;
223 constant config : in t_avalon_st_bfm_config := C_AVALON_ST_BFM_CONFIG_DEFAULT
224)i

225

226

227 Overloaded version without records

228

229 procedure avalon_st_expect (

230 constant exp_data_array : in t_slv_array;

231 constant exp_data_width : in natural;

232 constant exp_empty : in std_logic_vector;

233 constant exp_empty_width : in natural;

234 constant msg : in string;

235 signal clk std_logic;

236 signal data_i std_logic_vector;

237 signal ready_o std_logic;

238 signal valid_i std_logic;

239 signal empty_i std_logic_vector;

240 signal endofpacket_i std_logic;

241 signal startofpacket_i std_logic;

242 constant alert_level t_alert_level := error;
243 constant scope string := C_SCOPE;
244 constant msg_id_panel : in t_msg_id_panel :~ shared_msg_id_panel;
245 constant config : in t_avalon_st_bfm_config := C_AVALON_ST_BFM_CONFIG_DEFAULT
246)i

247

248 end package avalon_st_bfm pkg;

249

250

251

252 -

253

254 package body avalon_st_bfm pkg is

255

256

257 —- initialize Avalon-ST to DUT signals

258

259 function init_avalon_st_source_if_ signals (

260 channel_width : natural;

261 data_width : natural;

262 -—error_ g natural;

263 empty_width : natural

264) return t_avalon_st_source_if is

265 variable result t_avalon_st_source_if(

266 ——channel_o (channel_width - 1 downto 0),

267 data_o(data_width - 1 downto 0),

268 —-error_o(error_width -1 downto 0),

269 empty_o (empty_width -1 downto 0)

270 ;

271

272 _o i= _o'range => "0");
273 result.data_o := (result.data_o'range = '0");
274 --result.error_o : (result.error_o'range > '0');
275 result.ready_i 1= '

276 result.valid o = '0";

277 result.empty_o := (result.empty_o'range = 0");
278 result.endofpacket_o = '0";

279 result.startofpacket_o := '0';

280 return result;

281 end function;

282

283

284 -- initialize DUT to Avalon-ST signals

285

286 (

287 —-chan width

288 data_width

289 ——error_width

290 empty_width

291) return t_avalon_st_sink_if is

292 variable result : t_avalon_st_sink_if(

293 channel_i (channel_width 1 downto 0),

294 data_i (data_width - 1 downto 0),

295 ——error_i(error_width -1 downto 0),

296 empty_i (empty_width -1 downto 0)

297 ——check_data (data_width -1 downto 0)

298)i

299 begin

110

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

340
341
342

343

344

345

346
347

349

350
351
352
353
354
355
356
357
358
359

361
362

378
379
380
381
382
383

—--resu

result.data_i

channel_ i (res

(result.data_i'ran

1t.channel_

--result.error_i 1= (result
result.ready_o o'
result.valid_i 'z

result.empty_i
result.endofpacket_i

(result.empty_i'ran
~ogr;

ge =

result.startofpacket_i AN
return result;
end function;
—-- Avalon-ST send
procedure avalon_st_send (
constant channel_num :in std_logic_vector;
constant data_array : in t_slv_array;
constant data_width : in natural;
—-—constant error_bit_mask : in t_slv_array;
constant empty : in std_logic_vector;
constant empty_width : in natural;
constant msg : in string;
signal clk : in std_logic;
signal avalon_st_source_if inout t_avalon_st_source_ if;
constant scope : in string C_SCOPE;
constant msg_id_panel : in t_msg_id_panel := shared_msg_id_panel;
constant config : in t_avalon_st_bfm_config := C_AVALON_ST_BFM_CONFIG_DEFAULT
) is

constant proc_name

--onstant proc_cal

string

string

proc_name &

constant proc_call : string := proc_name & " ("
variable v_tot_symbols : natural;

variable v_top_sym : natural;

variable v_bot_sym : natural;

variable v_empty : natural;

begin
check_value (data_array'ascending, TB_ERROR, "S

<s 'to'), for byte order clarity", scope,

-- setup_

me and hold_time checking

check_value (config.setup_time < config.clock_period/2,
ID_NEVER,

— exceed clock_period/2.", scope,
check_value (config.hold_time < config.clock_pe
s exceed clock_period/2.", scope,
check_value (config.setup_time > 0 ns,
s scope, ID_NEVER,
check_value (config.hold_time > 0 ns,
— ID_NEVER, msg_id_panel, proc_call);
—- check if enough room for setup_time in low
if (clk = '0") and (config.setup_time > (confi,
await_value(clk, '1', 0 ns, config.clock_pe
<» period for setup_time.");
end if;
—— Wait setup_time specified in config record
wait_until_given_time_before_rising_edge (clk,
log (ID_PACKET_INITIATE, proc_call & " => "
wait until rising_edge (clk);
-- Loop through da
for byte in 0 to data_array'high loop

ray

—— Wait
while (avalon_st_source_if.ready_i =

for ready signal

'0') 1

—-— Wait for next clc

=

« cycle, t
wait until rising_edge (clk);
end loop;

Check for start
if (byte = 0) then

nning of packet transmi

log (ID_PACKET_DATA, proc_call &

of data_array

" => Sen

avalon_st_source_if.startofpacket_o <= '
end if;

- Send error bit mas.
r) then

f.error_o <

f (config.use_erro

— avalo.

——end if;

—- Send symbols to data_o

"(" & to_string(data_array, HEX,

ID_NEVER, msg_id_panel,
TB_FAILURE,
msg_id_panel, proc_call);
TB_FAILURE,

& add_msg_delimiter (msg),

sion, sen

error_bit_.

"avalon_st_send";

AS_IS,
" bits)";

,_RADI.

& to_string(data_width) &

anity check: Check that data_array is ascending
ID_NEVER, msg_id_panel, proc_call);

TB_FAILURE,
msg_id_panel, proc_call);
riod/2, TB_FAILURE, "Sanity check:
proc_call);
"Sanity check:

period
g.clock_period/2 - clk'last_event))then
riod/2, TB_FAILURE, proc_name & ":

config.setup_time, config.clock_period);

scope, msg_id_panel);

oop

en check for ready

d startofpacket
ding startofpacket",
1, o

scope, msg_id_panel);
after config.clock_period;

iask (byte) ;

X) &

"Sanity check: Check that hold_time is more than 0 ns.",

wyn,

(defined with

Check that hold_time do not

Check that setup_time is more than 0 ns.",

timeout waiting for clk low

"Sanity check: Check that setup_time do not

scope,

111

384 log (ID_PACKET_DATA, proc_call & " => TX: " & to_string(data_array (byte) (data_width-1 downto 0), HEX, AS_IS,

— INCL_RADIX) & ", array entry# " & to_string(byte) & ". " & add_msg_delimiter (msg), scope,
— msg_id_panel);
385 avalon_st_source_if.data_o <= data_array(byte) (data_width-1 downto 0);
386 avalon_st_source_if.valid o <= '1';
387
388 Check for end of data_array
389 if byte = data_array'high then
390 Packet done
391 if (config.use_empty) then
392 -- Send e signal together with last d.
393 log (ID_PACKET_DATA, proc_call & " => Number of symbols that are empty: " & to_string(empty, DEC, AS_IS,
— INCL_RADIX), scope, msg_id_panel);
394 avalon_st_source_if.empty_o <= empty (empty_width-1 downto 0);
395 end if;
396 -- Send endofpacket
397 log (T scope, msg_id_panel);
398 ava clock od;
399 k_period;
400 avalon_st_source_if.endofpacket_o < ;
401 avalon_st_source_if.valid_o <= '1';
402 end if;
403 wait until rising_edge (clk);
404 end loop;
405
406 -— Wait until module is done recieving
407 while (avalon_st_source_if.ready_i = '0') loop
408 Wait for next ck cycle, then check for ready
409 wait until rising_edge (clk);
410 end loop;
411
412 log (ID_PACKET_COMPLETE, proc_call & " => Sent " & to_string(data_array'high + 1) & " data entries", scope,
—> msg_id_panel);
413
414 -— Done, set source_if back to default
415 avalon_st_source_if <= init_avalon_st_source_if signals(
416 data_width => avalon_st_source_if.data_o'length,
417 empty_width => avalon_st_source_if.empty_o'lengtt
418)i
419 end procedure avalon_st_send;
420
421
422
423 —-— Overloaded version without records
424
425 procedure avalon_st_send (
426 --constant channel_num : in std_logic_vector;
427 constant data_array : in t_slv_array;
428 constant data_width : in natural;
429 constant error_bit_mask : in t_ array;
430 constant empty : in std_logic_vector;
431 constant empty_width : in natural;
432 constant msg : in string;
433 signal clk : in std_logic;
434 signal data_o : inout std logic_vector;
435 signal ready_i : inout std logic;
436 signal valid_o : inout std_logic;
437 signal empty_o : inout std_logic_vector;
438 signal endofpacket_o : inout std_logic;
439 signal startofpacket_o : inout std_logic;
440 constant scope : in string C_SCOPE;
441 constant msg_id_panel : in t_msg_id_panel shared_msg_id_panel;
442 constant config : in t_avalon_st_bfm_config := C_AVALON_ST_BFM_CONFIG_DEFAULT
443) is
444 begin
445 - 1 the record version
446 avalon_st_send(
447 data_array => data_array,
448 data_width data_width,
449 empty empty,
450 empty_width empty_width,
451 msg msg,
452 clk clk,
453 avalon_st_source_if.data_o => data_o,
454 avalon_st_source_if.ready_i => ready_i,
455 avalon_st_source_if.valid o > valid_o,
456 avalon_st_source_if.empty_o > empty_o,
457 avalon_st_source_if.endofpacket_o => endofpacket_o,
458 avalon_st_source_if.startofpacket_o => startofpacket_o,
459 scope => scope,
460 msg_id_panel => msg_id_panel,
461 config —> config
462)i
463 end procedure avalon_st_send;
464
465
466
467 -
468 —-- Avalon receive
469 -

470

471 procedure avalon_st_receive (

472 --variable channel_num inout std_logic_vector;

473 variable data_array : inout t_slv_array;

474 constant data_width : in natural;

475 variable data_length . inout natural;

476 variable error_bit_mask : inout t_slv_array;

477 variable empty : inout std_logic_vector;

478 constant empty_width : in natural;

479 constant msg : in string;

480 signal clk : in std_logic;

481 signal avalon_st_sink_if : inout t_avalon_st_sink_if;

482 constant scope ¢ in string := C_SCOPE;

483 constant msg_id_panel ¢ in t_msg_id_panel := shared_msg_id_panel;

484 constant config : in t_avalon_st_bfm_config := C_AVALON_ST_BFM_CONFIG_DEFAULT

485) is

486 constant proc_name : string "avalon_st_receive";

487 constant proc_call : string proc_name & " (" & to_string(data_width) & " bits)";

488

489 variable v_ready_low_done : boolean := false;

490 variable v_received_sop : boolean 1= false;

491 variable v_done : boolean := false;

492 variable v_byte : natural = 0;

493

494 variable v_data_i : std_logic_vector (19 downto 0) := (others => '0');

495 variable v_valid_i : std_logic := '0';

496 begin

497 check_value (data_array'a: ding, TB_ERROR, "Sanity check: Check that data_array is ascending (defined with

s 'to'), for byte order clarity", scope, ID_NEVER, msg_id_panel, proc_call);

498

499 —— setup_time and hold_time checking

500 check_value (config.setup_time < config.clock_period/2, TB_FAILURE, "Sanity check: Check that setup_time do not

— exceed clock_period/2.", scope, ID_NEVER, msg_id_panel, proc_call);
501 check_value (config.hold_time < config.clock_period/2, TB_FAILURE, "Sanity check: Check that hold_time do not
s exceed clock_period/2.", scope, ID_NEVER, msg_id_panel, proc_call);
502 check_value (config.setup_time > 0 ns, TB_FAILURE, "Sanity check: Check that setup_time is more than 0 ns.",
— scope, ID_NEVER, msg_id_panel, proc_call);
503 check_value (config.hold_time > 0 ns, TB_FAILURE, "Sanity check: Check that hold_time is more than 0 ns.", scope,
— ID_NEVER, msg_id_panel, proc_call);

504

505 check if enough room for setup_time in low period

506 if (clk = '0') and (config.setup_time > (config.clock_period/2 - clk' _event))then

507 await_value(clk, 'l', 0 ns, config.clock_period/2, TB_FAILURE, proc_name & ": timeout waiting for clk low

<» period for setup_time.");

508 end if;

509 -- Wait setup_t n config rec

510 wait_until_given_time_before rising_edge (clk, config.setup_time, config.clock_period);

511 log (ID_PACKET_INITIATE, proc_call & " => " & add_msg_delimiter (msg), scope, msg_id_panel);

512

513

514 by byte until receive is done, (until endofpacket is received)

515

516 while not v_done loop

517 - iule before as ing ready

518 if not v_ready_low_done then

519 wait_until_given_time_after_rising_edge (clk, config.hold_time);

520 v_ready_low_done := true;

521 end if;

522

523 Assert signals on rising edge

524 wait until rising_edge (clk);

525

526 if (random(1,100) <= config.ready_percentage) then

527 -- Signal that the module is ready to recieve

528 avalon_st_sink_if.ready_o <= '1';

529 else

530 avalon_st_sink_if.ready_o <= '0';

531 end if;

532

533 -- Wait for start of packet on a id signal

534 if (avalon_st_sink_if.startofpacket_i = 'l') and (avalon_st_sink_if.valid_i = 'l') then

535 v_received_sop := true;

536 log (ID_PACKET_DATA, proc_call & " => Received startofpacket", scope, msg_id_panel);

537 end if;

538

539 —- Sample data packet on each valid signal until endofpac. is recieved

540 if v_received_sop and (avalon_st_sink_if.valid_i = '1') and avalon_st_sink_if.ready_o = '1' then

541 -— TODO: add last ready 1 check, else assert error

542 data_array (v_byte) (data_width-1 downto 0) := avalon_st_sink_if.data_i;

543 log (ID_PACKET_DATA, proc_call & " => RX: " & to_string(data_array(v_byte) (data_width-1 downto 0), HEX,
— AS_IS, INCL_RADIX) & ", data_array entry# " & to_string(v_byte) & ". " & add_msg_delimiter (msg),
> scope, msg_id_panel);

544

545 if (avalon_st_sink_if.endofpacket_i = '1') then

546 log (ID_PACKET_DATA, proc_call & " => Received endofpacket", scope, msg_id_panel);

547 —— Empty signal received together with last data

548 empty (empty_width-1 downto 0) :- avalon_st_sink_if.empty_i;

549 log (ID_PACKET_DATA, proc_call & " => RX empty signal: " & to_string(empty (empty_width-1 downto 0), HEX,

— AS_IS, INCL_RADIX), scope, msg_id_panel);

550

113

551
552
553
554
555
556
557
558

559

560
561
562
563
564
565

567
568
569

570
571
572
573

575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596

598
599
600

602
603

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623

625
626

628
629
630
631
632
633

635
636
637

—-— Done
v_done

receiving date

true;

gnal module is no
avalon_st_sink_if.ready_o <

that

— ease counter for dat
v_byte v_byte + 1;
end if;
end if;
end loop;
data_length := v_byte;

log (ID_PACKET_COMPLETE, proc_call &

— msg_id_panel) ;
-- Done, set aval nk_if back
avalon_st_sink_if <=

data_width avalon_st_sink_if.

empty_width =>
)i
end procedure avalon_st_receive;

avalon_st_sink_if.

t ready to
- o

ST

video) module

Iow

a_array for

" => Recieved " & to_string(data_length + 1) & " data entires",

o default

init_avalon_st_sink_if_signals(

data_i'length,
empty_i'length

—- Overloa version without records

procedure avalon_st_receive (

—-variable channel_num : inout std_logic_
variable data_array inout t_slv_array;
constant data_width : in natural;
variable data_length inout natural;
variable error_bit_mask : inout ray;
variable empty inout std_logic_vector;
constant empty_width : in natural;
constant msg : in string;
signal clk ¢ in std_logic;
signal data_i inout std logic_vector;
signal ready o inout std logic;
signal valid_i inout std_logic;
signal empty_i inout std_logic_vector;
signal endofpacket_i inout std_logic;
signal startofpacket_i inout std_logic;
constant scope : in string 1= C_SCOPE;
constant msg_id_panel : in t_msg_id_panel := shared_msg_id_panel;
constant config : in t_avalon_st_bfm_config := C_AVALON_ST_BFM_CONFIG_DEFAULT
) is
begin

the record version
avalon_st_receive(
data_array
data_length
data_width
empty
empty_width
msg
clk
avalon_st_sink_if.data_i
avalon_st_sink_if.ready_o
avalon_st_sink_if.valid_i
avalon_st_sink_if.empty_ i
avalon_st_sink_if.endofpacket_i
avalon_st_sink_if.startofpacket_i
scope
msg_id_panel
config
)i
end procedure avalon_st_receive;

data_array,
data_length,
data_width,
empty,
empty_width,
msg,

clk,

data_i,

> ready_o,
valid_i,
empty_i,
endofpacket_i,
startofpacket_i,
scope,
msg_id_panel,
config

-- Avalon-ST expect

procedure avalon_st_expect (

constant exp_data_array : in
constant exp_data_width : in
constant exp_empty : in
constant exp_empty_width : in
constant msg : in
signal clk : in
signal avalon_st_sink_if : inout

t_slv_array;
natural;
std_logic_vector;
natural;

string;

std_logic;
t_avalon_st_sink_if;

scope,

114

low on r

638
639

661

671

681
682
683
684
685
686
687
688

689

701

702
703
704

706

707
708

709
710

711
712

713

constant alert_level ¢ in t_alert_level = error;

constant scope ¢ in string := C_SCOPE;

constant msg_id_panel : in t_msg_id_panel := shared_msg_id_panel;

constant config : in t_avalon_st_bfm_config := C_AVALON_ST_BFM_CONFIG_DEFAULT
) is

constant proc_name : string "avalon_st_expect";
constant proc_call : string := proc_name & " (" & to_string(exp_data_width) & " data bits, " &

<+ to_string(exp_empty_width) & " empty bits)";

variable v_config : t_avalon_st_bfm_config := config;

variable v_rx_data_array : t_slv_array (exp_data_array'range) (exp_data_array(0) 'range); -- received data
variable v_rx_data_length : natural;

variable v_rx_data_width : natural;

variable v_rx_empty_slv : std logic_vector (exp_empty'

variable v_rx_empty_width : natural;

variable v_data_error_cnt : natural

variable v_empty_error_cnt : natural

variable v_first_errored_byte : natural;
begin

v_rx_data_width := exp_data_width;

v_rx_empty_width exp_empty_width;

-- Receive and store data
avalon_st_receive (
data_array => v_rx_data_array,
data_length => v_rx_data_length,
data_width > v_rx_data_width,
empty => v_rx_empty_slv,
empty_width => v_rx_empty_width,
msg => msg,
clk => clk,

data_i avalon_st_sink_if.data_i,

ready_o > avalon_st_sink_if.ready_o,
valid_i > avalon_st_sink_if.valid_i,
empty_i > avalon_st_sink_if.empty_i,

endofpacket_i
startofpacket_i

avalon_st_sink_if.endofpacket_i,
avalon_st_sink_if.startofpacket_i,

scope scope,
msg_id_panel > msg_id_panel,
config => v_config

)i

-— Check if each received bit matches the expected

-- Find and report the first errored byte
for byte in v_rx_data_array'hich downto 0 loop
for i in v_rx_data_width-1 downto 0 loop

if (exp_data_array(byte) (i) = '-') or -- Expected set to don't
(v_rx_data_array (byte) (i) = exp_data_array (byte) (i)) then - r
—-- Check is OK

else

d byte does not match the expected by

te
proc_call & OK, checked " &
v. downto 0), HEX, o
EX, AS_IS,

data_array (byte)
ata_array (byte) (v_r
_id_panel);

downto 0), H

v_data_error_cnt := v_data_error_cnt + 1;
v_first_errored_byte := byte;
end if;
end loop;
end loop;

for j in v_rx_empty_width-1 downto 0 loop
if (exp_empty(j) = '-') or
(v_rx_empty_slv(j) = exp_empty(j)) then
-- Check is OK
else
—- Received empty does r match expected

DATA, proc_call & rx_empty_width-1
— downto 0), HEX, AS_IS, INCL_RADIX) & 0), HEX,
s AS_IS, INCL_RADIX) & msg, Scope,
v_empty_error_cnt v_empty_error_cnt -+
end if;
end loop;

-— No more than one alert per packet
if v_data_error_cnt /= 0 then
alert (alert_level, proc_call & "=> Failed in " & to_string(v_data_error_ent) & " data bits. First mismatch in
—» bytet " & to_string(v_first_errored_byte) & ". Was " &
<> to_string(v_rx_data_array(v_first_errored_byte) (v_rx_data_width-1 downto 0), HEX, AS_IS, INCL_RADIX) & ".
—» Expected " & to_string(exp_data_array (v_first_errored_byte) (v_rx_data_width-1 downto 0), HEX, AS_IS,

— INCL_RADIX) & "." & LF & add_msg_delimiter (msg), scope);
elsif v_empty_error_cnt /= 0 then
alert (alert_level, proc_call & "=> Failed in " & to_string(v_empty_error_cnt) & " empty bits. Was " &
— to_string (v_rx_empty_slv(v_rx_empty_width-1 downto 0), HEX, AS_IS, INCL_RADIX) & ". Expected " &
— to_string (exp_empty (v_rx_empty_width-1 downto 0), HEX, AS_IS, INCL_RADIX) & "." & LF &
— add_msg_delimiter (msg), scope);
else
log(config.id for_bfm, proc_call & "=> OK, received " & to_string(v_rx_data_array'length) & " data entries. " &
— add_msg_delimiter (msg), scope, msg_id_panel);
end if;

115

714

715 end procedure avalon_st_expect;

716

717

718

719 —-- Overloaded version without records

720

721 procedure avalon_st_expect (

722 constant exp_data_array : in t_slv_array;

723 constant exp_data_width : in natural;

724 constant exp_empty in std_logic_vector;

725 constant exp_empty_width in natural;

726 constant msg : in string;

727 signal clk ¢ in std_logic;

728 signal data_i inout std_logic_vector;

729 signal ready_o inout std_logic;

730 signal valid_i inout std_logic;

731 signal empty_i inout std logic_vector;

732 signal endofpacket_i inout std_logic;

733 signal startofpacket_i inout std logic;

734 constant alert_level : in t_alert_level = error;
735 constant scope : in string C_SCOPE;
736 constant msg_id_panel : in t_msg_id_panel shared_msg_id_panel;
737 constant config : in t_avalon_st_bfm_config C_AVALON_ST_BFM_CONFIG_DEFAULT
738) is

739 begin

740 -

741 avalon_st_expect (

742 exp_data_array exp_data_array,
743 exp_data_width exp_data_width,
744 exp_empty exp_empty,

745 exp_empty_width exp_empty_width,
746 msg > msg,

747 clk > clk,

748 avalon_st_sink_if.data_i > data_i,

749 avalon_st_sink_if.ready_o ready_o,

750 avalon_st_sink_if.valid_i valid_i,

751 avalon_st_sink_if.empty_i empty_i,

752 avalon_st_sink_if.endofpacket_i endofpacket_i,
753 avalon_st_sink_if.startofpacket_i startofpacket_i,
754 scope -> scope,

755 msg_id_panel => msg_id_panel,
756 config > config

757)i

758 end procedure avalon_st_expect;

759

760 end package body avalon_st_bfm pkg;

116

66
67
68
69
70
71

73
74

76
77

79
80
81

83
84
85

C.2 Avalon-ST VVC Testbench

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

library uvvm_util;
context uvvm_util.uvvm_util_context;

library uvvm_vvc_framework;

use uvvm_vvc_: .ti_vve _support_pkg.all;

use uvvm_vvc_framework.ti data_fifo_ pkg.all;

library vip_avalon_st;
use vip_avalon_st.avalon_st_bfm_pkg.all;
use vip_avalon_st.vvc_methods_pkg.all;

use vip_avalon_st.td vvc_framework common methods_pkg.all;

Test bench entity

entity tb_avalon_st_vvc is

end entity;

—— Test bench architecture

architecture func of tb_avalon_st_vvc is
constant C_SCOPE : string :=

Clock and bit period sett
constant C_CLK_PERIOD
constant C_BIT_PERIOD

~onstant C_CEk E atural
constant C_DATA_| WIDTH : natural
constant C_BITS_PER_SYMBOL : natural

constant C_DATA_: LENGTH : natural

C_ :

constant C_EMPTY. WIDTH : natural
begin

ati

C_TB_SCOPE_DEFAULT;

i_test_harness : entity work.th_avalon_st_vvc

generic map (

——CHANNEL_WIDTH > C_CHANNEL_WIDTH
DATA_WIDTH => C_DATA_WIDTH,
ROR_WIDTH => C_ERROR_WI
EMPTY_WIDTH => C_EMPTY_WIDTH
)i
p_main: process
variable v_data_array : t_slv_array (0
— 10
variable v_empty : std_logic_vector (C_EMPTY_WIDTH-1 downto 0)
variable v_num_test_loops : natural :=
begin
Wait £ U to finish initialization

await_uvvm_initialization (VOID);
uration to the log
report_global_ctrl (VOID);
report_msg_id_panel (VOID) ;

to C_DATA_LENGTH-1) (C_DATA_WIDTH-1

disable_log_) msg(ALL MESSAGES) ;
enable_loc . MESSAGE.

enable_lo:

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

150
151
152
153
154
155
156
157
158
159

—-enable_log_msg (ID_UVVM_SEND_CMD) ;

disable_log_msg (AVALON_ST_VVCT, 1, TX, ALL_MESSAGES);
disable_log_msg (AVALON_ST_VVCT, 1,
--enable_log_msg (AVALON_ST_VVCT, 1,

VVCeT, 1,

--enable_log_msg (AVALON_S

enable_log_msg (AVALON_ST_VVCT, 1, TX, ID_PACKET_INITIATE);
enable_log_msg (AVALON_ST_VVCT, 1, TX, ID_PACKET_COMPLETE);
enable_log_msg (AVALON_ST_VVCT, 1, RX, ID_PACKET_INITIATE);
enable_log_msg (AVALON_ST_VVCT, 1, RX, ID_PACKET_COMPLETE);

-- Enable/disable Avalon-ST signals

shared_avalon_st_vvc_config(TX, 1).bfm_config.use_channel := false;
shared_avalon_st_vvc_config(TX, 1).bfm_config.use_error false;
shared_avalon_st_vvc_config(TX, 1).bfm_config.use_empty true;

should assert ready_o signal
100;

—- Percent of cycles the receive mod
shared_avalon_st_vvc_config(RX, 1).bfm_config.ready_percentage

-- Set empty
v_empty :- std_logic_vector (to_unsigned (0, v_empty'lenc

f some symbols are empty at the last transmission

n)i

log (ID_LOG_HDR, "Starting simulation of TB scaler vvc", C_SCOPE);
log("Wait 10 clock period for reset to be turned off");
wait for (10 % C_CLK_PERIOD);

—— Number of times to run the test loop
v_num_test_loops := 50;

for i in 1 to v_num_test_loops loop
—— Create a random ready percentage for the recieve module

shared_avalon_st_vvc_config (RX, 1).bfm_config.ready_percentage := random(1l,100);
-- Random empty signal between 0 and number of symbols - 1.
v_empty := std_logic_vector (to_unsigned(random (0, (C_DATA_WIDTH/C_BITS_PER_SYMBOL)-1), v_empty'le

Write random data to data_array

for j in v_data_array'r loop

—-— Generate random data

v_data_array(j) := random(C_DATA_WIDTH);
end loop;
- Margin

wait for 10+C_CLK_PERIOD;

Start send and receive VV(

avalon_st_send (AVALON_ST_VVCT, 1, v_data_array, v_empty, "Sending v_data_array");
avalon_st_expect (AVALON_ST_VVCT, 1, v_data_array, v_empty, "Checking data",

end loop;

ERROR) ;

await_completion (AVALON_ST_VVCT, 1, RX, 100+C_DATA_LENGTH+v_num_test_loops+C_CLK_PERIOD);

log (ID_LOG_HEDR, "Completion of avalon_st_reviece", C_SCOPE);

Ending the simulation

wait for 1000 ns; -— to allow some time for completion
report_alert_counters (FINAL); —- Report final counters and print concl

log (ID_LOG_HDR, "SIMULATION COMPLETED", C_SCOPE);

-— Finish the si
std.env.stop;
wait; -- to stop completely

end process p_main;

end func;

simulation

ny)i

118

Avalon-ST VVC Testharness

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

library uvvm util;

context uvvm_util.uvvm_util_context;

library uvvm_vvc_framework;

use uvvm_vvc_i ~ti_vve

_support_pkg.all;

use uvvm_vvc_framework.ti data_fifo_ pkg.all;

library vip_avalon_st;

-- Test harness entity
entity th_avalon_st_vvc is
generic (
DATA_WIDTH
——ERROR_WIDTH

EMPTY_WIDTH

.

)i
end entity;

—-- Test harne

architecture struct of th_avalon_st_vvc is

DspP ce and gen
signal clk_i

signal sreset_i

signal data_i
——signal err

signal ready_o

signal valid_i

signal empty_i

signal endofpacket_i
signal startofpacket_i
signal check_data

co signals
std_logic '0';
std_logic '0';
std_1 :_vector (CHANNEL_WIDTH - 1 downtc
std_logic_vector (DATA_WIDTH - 1 downto 0);
std_ OR_ i - 1 downto 0);
std_logic;
std_logic := '0';
std_logic_vector (EMPTY_WIDTH - 1 downto 0);
std_logic ‘o’
std_logic '0';

std_logic_vector (DATA_WIDTH -1 downto 0);

) std_1 . _vector (CHANNEL_WIDTH - 1 downt
std_logic_vector (DATA_WIDTH - 1 downto 0);
o std_1 _WIDTH - 1 downto 0);

std_logic

signal valid_o std_logic;

signal empty_o std_logic_vector (EMPTY_WIDTH 1 downto 0);

signal endofpacket_o std_logic;

signal startofpacket_o std_logic;

constant C_CLK_PERIOD time 10 ns; ——

begin
-- Instantiate the concurrent procec

i_ti_uvvm_engine

entity uvvm_vvc_framework.ti_uvvm_engine;

GC_EMPTY_WIDTH =>
GC_INSTANCE_IDX =>

> CHANNEL

=> DATA_WIDTH,

NNEL_WIDTH,

WIDTH,

> channel_i

119

87
88
89

91
92

94
95
96

98
99

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

avalon_st_sink_if.data_i
——avalor
avalon_st_sink_if.ready_o
avalon_st_sink_if.valid_i
avalon_st_sink_if.empty_i
avalon_st_sink_if.endofpacket_i
avalon_st_sink_if.startofpacket_i

st nk

f.error_i

--avalon_st_so
avalon_st_source_if.data_o

ce_

_st_source_it
avalon_st_source_if.
avalon_st_source_if.
avalon_st_source_if.empty_o
avalon_st_source_if.endofpacket_o
avalon_st_source_if.startofpacket_o

data_i <= data_o;

ready_i <= ready_o;

valid_i <= valid_o;

empty_i <= empty_o;
startofpacket_i <= startofpacket_o;
endofpacket_i <= endofpacket_o;

> data_i,

> error_i,
=> ready_o,
valid_i,
empty_i,
=> endofpacket_i,
=> startofpacket_i,

nnel_o,
> data_o,
> error_o,
> ready_i,
=> valid_o,
=> empty_o,
=> endofpacket_o,
=> startofpacket_o

—- Toggle the reset after 5 clock periods
p_sreset: sreset_i <= '1', '0' after 5 »C_CLK_PERIOD;
-- Clock process
p_clk: process
begin

clk_i <= '0', 'l' after C_CLK_PERIOD / 2;

wait for C_CLK_PERIOD;
end process;

end struct;

120

Appendix D

MATLAB source code

D.1 Image to Binary Function

function output = img2bin(img, filename, bits)

fileID = fopen(filename, H
[height,width, colors] = (img) ;
for y = l:height
for x = l:width
for z = colors:
fprintf (fileID, dec2bin (img (y, x,z),bits));
end
if (y height) && (x width) s& (z)
else
fprintf (filelID, '\n');
end
end
end
fclose (fileID);
output = img;
end

121

Sowaous -

11

12
13
14
15
16
17
18
19

21
22
23
24
25
26

28
29

31
32
33
34
35
36

38
39

D.2 Binary to Image Function

function output = bin2img(filename, width, height, colours, bits)

$¢ Read data
fileID = fopen (filename);

num = (widthrheight« (bits+*3+2) - 2);
data_serial = fread(fileID, [l num], 'schar');
% Convert data to characters

data_lines = splitlines(data_serial);

if colours
for i = 1l:size(data_lines)
1 extractBetween (data_lines (i), bits+2
extractBetween (data_lines (i), bits

colour_c(i,1) = extractBetween(data_lines(i), 1, bits);
end
data_a bin2dec (colour_a);
data_b bin2dec (colour_b);

data_c = bin2dec(colour_c);
else

data = bin2dec(data_lines);
end

for y = l:height
for x = l:width
if colours

img(y,x,1) = data_a(((y-1)+*width)+x);
img (y,x,2) = data_b(((y-1)+width)+x);
img(y,x,3) = data_c(((y-1)*width)+x);

else
img(y,x) = data(((y-1)+width)+x);

end

end
end

fclose (filelD);
output = uint8(img);
end

1, bits«

bits«+2)

122

Appendix E

Complete test results

E.1 Nearest-Neighbor Interpolation

Test image | Source | PSNR MSE SSIM
Lion King 360p | 33.5059 | 29.0063 | 0.9913
Lion King 540p | 37.5863 | 11.3357 | 0.9970
Lion King 720p | 36.8666 | 13.3790 | 0.9961
Toy Story 360p | 28.4989 | 91.8733 | 0.9326
Toy Story 540p | 32.0706 | 40.3661 | 0.9718
Toy Story 720p | 32.0858 | 40.2250 | 0.9737

Table E.1: MATLAB nearest-neighbor, animated content

Test image | Source | PSNR MSE SSIM
Lion King 360p | 33.4575 | 29.3309 | 0.9911
Lion King 540p | 37.4891 | 11.5924 | 0.9969
Lion King 720p | 35.7447 | 17.3224 | 0.9954
Toy Story 360p | 28.4814 | 92.2444 | 0.9319
Toy Story 540p | 32.0355 | 40.6944 | 0.9712
Toy Story 720p | 30.5699 | 57.0289 | 0.9655

Table E.2: VHDL nearest-neighbor, animated content

123

Test image | Source | PSNR MSE SSIM
Jaguar 360p | 36.5703 | 14.3235 | 0.9702
Jaguar 540p | 39.9563 | 6.5682 | 0.9859
Jaguar 720p | 40.3204 | 6.0401 | 0.9877
Lemur 360p | 38.7634 | 8.6446 | 0.9706
Lemur 540p | 41.8370 | 4.2597 | 0.9856
Lemur 720p | 42.3832 | 3.7563 | 0.9881

Birds 360p | 34.0866 | 25.3759 | 0.9305
Birds 540p | 37.4493 | 11.6991 | 0.9672
Birds 720p | 37.7155 | 11.0036 | 0.9713

Table E.3: MATLAB nearest-neighbor, natural content

Test image | Source | PSNR MSE SSIM
Jaguar 360p | 36.4504 | 14.7246 | 0.9693
Jaguar 540p | 39.7004 | 6.9669 | 0.9849
Jaguar 720p | 38.6753 | 8.8217 | 0.9834
Lemur 360p | 38.5650 | 9.0486 | 0.9693
Lemur 540p | 41.4439 | 4.6633 | 0.9842
Lemur 720p | 40.6418 | 5.6092 | 0.9844

Birds 360p | 34.0191 | 25.7733 | 0.9286
Birds 540p | 37.3036 | 12.0981 | 0.9652
Birds 720p | 36.3976 | 14.9046 | 0.9626

Table E.4: VHDL nearest-neighbor, natural content

124

E.2 Bilinear Interpolation

Test image | Source | PSNR MSE SSIM
Lion King 360p | 35.1059 | 20.0675 | 0.9942
Lion King 540p | 37.8885 | 10.5739 | 0.9968
Lion King 720p | 40.3181 | 6.0433 | 0.9980
Toy Story 360p | 29.6236 | 70.9120 | 0.9444
Toy Story 540p | 32.7453 | 34.5584 | 0.9728
Toy Story 720p | 35.8528 | 16.8967 | 0.9863

Table E.5: MATLAB bilinear, animated content

Test image | Source | PSNR MSE SSIM
Lion King 360p | 31.4662 | 46.3935 | 0.9910
Lion King 540p | 32.6180 | 35.5860 | 0.9939
Lion King 720p | 38.7839 | 8.6039 | 0.9973
Toy Story 360p | 28.1786 | 98.9051 | 0.9373
Toy Story 540p | 30.4567 | 58.5343 | 0.9678
Toy Story 720p | 34.4312 | 23.4402 | 0.9821

Table E.6: VHDL bilinear, animated content

Test image | Source | PSNR MSE SSIM
Jaguar 360p | 39.1964 | 7.8242 | 0.9822
Jaguar 540p | 41.9287 | 4.1707 | 0.9900
Jaguar 720p | 44.6456 | 2.2311 | 0.9945
Lemur 360p | 39.8598 | 6.7159 | 0.9768
Lemur 540p | 42.7464 | 3.4550 | 0.9879
Lemur 720p | 45.9900 | 1.6371 | 0.9942

Birds 360p | 35.7531 | 17.2892 | 0.9472
Birds 540p | 39.0925 | 8.0136 | 0.9739
Birds 720p | 42.5781 | 3.5915 | 0.9876

Table E.7: MATLAB bilinear, natural content

125

Test image | Source | PSNR MSE SSIM
Jaguar 360p | 32.2711 | 38.5453 | 0.9755
Jaguar 540p | 32.8332 | 33.8656 | 0.9844
Jaguar 720p | 41.3190 | 4.7993 | 0.9911
Lemur 360p | 34.9387 | 20.8551 | 0.9698
Lemur 540p | 35.8418 | 16.9394 | 0.9818
Lemur 720p | 42.7182 | 3.4774 | 0.9906

Birds 360p | 31.3181 | 48.0027 | 0.9368
Birds 540p | 32.4206 | 37.2410 | 0.9658
Birds 720p | 39.7680 | 6.8593 | 0.9802

Table E.8: VHDL bilinear, natural content

126

@NTNU

Norwegian University of
Science and Technology

swa)sAs }seopeodq 4oy buieas oapia paseq vod4

	Problem Description
	Summary
	Sammendrag
	Preface
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Objectives
	Approach and limitations
	Features and contributions
	Report Outline

	Video Scaling
	Basics of Video Scaling
	Nearest-Neighbor Interpolation
	Bilinear Interpolation
	Bicubic Interpolation

	Interpolation on an FPGA
	Reverse Mapping
	Framebuffer
	Nearest-Neighbor Interpolation
	Bilinear Interpolation

	Hardware Implementation
	Fixed-Point Numbers
	Top Level Design
	Interface
	Packet Transmission

	Controller
	Controller FSM

	Frame buffer
	Simple dual-port RAM
	Multi-port RAM
	An Improved Memory Configuration

	Scaler
	Scaler FSM
	Reverse Mapping
	Nearest-Neighbor Interpolation
	Bilinear Interpolation

	FIFOs

	Verification IP Implementation
	UVVM
	Utility Library
	BFM (Bus Functional Model)
	VVC (VHDL Verification Component)

	Avalon-ST VIP
	Avalon-ST BFM
	Avalon-ST VVC
	Memory Concerns

	Testing and Verification Strategy
	Verifying VHDL Modules
	Scaler Verification and Image Quality
	Matlab binary conversion
	Objective image quality models
	Test Images

	Synthesis test

	Results and Discussion
	Verification of Sub-Modules
	Controller

	Scaler Verification and Image Quality
	Nearest-Neighbor Functional Verification
	Nearest-Neighbor Image Quality
	Bilinear Functional Verification
	Bilinear Image Quality
	Subjective image quality

	Synthesis test

	Conclusion and Future Work
	Video Scaler
	Avalon-ST VIP
	Future Work

	Bibliography
	Appendix
	VHDL source code
	FIFO
	Simple Dual-Port RAM
	Multiport RAM
	My Fixed Package
	Nearest-Neighbor Scaling
	Bilinear Scaling 4-line Framebuffer
	Bilinear Scaling Full Size Framebuffer
	Scaler Controller
	Scaler Top Level

	VHDL Testbenches
	FIFO Testbench
	Simple Dual-Port RAM Testbench
	Multiport RAM Testbench
	Scaler Algorithm Testbench With File IO
	Scaler Top Level Testbench With UVVM
	Scaler Top Level Testharness With UVVM

	Avalon-ST Verification IP source code
	Avalon-ST BFM
	Avalon-ST VVC Testbench
	Avalon-ST VVC Testharness

	MATLAB source code
	Image to Binary Function
	Binary to Image Function

	Complete test results
	Nearest-Neighbor Interpolation
	Bilinear Interpolation

