
TFE4590 Electronic Systems Design Semester Project
Project Report

FPGA acceleration of neural
network voice recognition

Anders Nilsen

December 19, 2018

Project Assignment

Candidate name: Anders Nilsen
Assignment title: FPGA acceleration of neural network image recognition

Assignment text

Machine Learning has increased dramatically in popularity the last years and is now
being used in various applications like web search, speech recognition, object detection,
face recognition, etc. Huge set of data are used to train a neural network (Learn), before
the network can be used stand-alone to classify new patterns (inference). Today’s most
common Machine Learning architecture is deep neural networks, which can be seen
as layers of matrix multiplication. The network can have typically many layers with
many weights (up to several 100k). Therefore, inference requires heavy processing
resources, usually run on a GPU. FPGA are natural devices to implement that kind
of processing, since they provide several thousand multiplications blocks that run in
parallel. The two main FPGA vendors are now providing tools to accelerate inference
of different Neural Networks types.

The goal of this project is to:
- run standard and custom image recognition networks on these tools
- explore their capabilities
- benchmark them towards GPUs (which typically has been used so far at Cisco)

To implement these networks, the student will use
- Xilinx SDAccel andXFDNN (https://www.xilinx.com/applications/megatrends/machine-
learning.html) on an Amazon AWS F1 cloud platform.
- Intel/Altera Deep Learning development toolkit (https://software.intel.com/en-us/computer-
vision-sdk) running on an Intel development kit available in a NTNU server.

Assignment proposer/co-supervisor: Florian Bochud (flobochu@cisco.com)

Supervisor: Kjetil Svarstad (kjetil.svarstad@ntnu.no)

1

Abstract

Using convolutional neural networks for voice recognition has increased in popularity
during the past few years, and Cisco has implemented a "wake-up word" using a CNN
in their Webex platform. As neural networks require heayv computational power,
efforts have been made to accelerate the CNN computation using GPUs and FPGAs.
While GPUs offer high performance, research is being made into using FPGAs for
computation as they offer high performance per watt compared to GPUs, which has
led to the development of neural network acceleration toolkits from Intel and Xilinx.
The goal of this project was to port an OpenCL-implementation of Cisco’s wake-up
word CNN to both toolkit: Intel OpenVINO and the Xilinx ML Suite.

The CNNwas not ported to the ML Suite, but was successfully ported to OpenVINO
and run on an Intel Xeon E5620 CPU and an Intel Arria 10 GX Development Kit FPGA
on a server at NTNU. The result was a classification time of 5.85ms and 3.10ms,
respectively. Though the FPGA implementation was on par with the earlier OpenCL-
implementation with a classification time of 3.6ms, the result was still slower than
the 2.2ms classification time achieved by Cisco on an Nvidia Tegra X1 GPU. The
OpenVINO implementation was most likely limited by running on a server from
2011, lacking the recommended PCIe-port and with only one convolutional layer
being accelerated. Nevertheless, the results are promising for OpenVINO acceleration
on FPGAs, providing a relatively easy way of accelerating existing neural network
applications compared to implementing the network in OpenCL.

Contents

1 Introduction 5

2 Background 7
2.1 Machine learning . 7
2.2 Neural network topologies . 8
2.3 Neural network training . 10
2.4 Inference . 10
2.5 Neural Networks on FPGA . 11

3 Survey of existing frameworks 12
3.1 OpenCL . 12
3.2 Intel OpenVINO . 13
3.3 Xilinx ML Suite . 14

3.3.1 Amazon Web Service . 15

4 Accelerating a speech-recognition CNN 17
4.1 Previous work . 17
4.2 Amazon AWS . 19

4.2.1 Registering and financing . 19
4.2.2 Server setup and connecting 19
4.2.3 Testing and importing . 20

4.3 Intel OpenVINO . 21
4.3.1 Setup . 21
4.3.2 Running examples . 22
4.3.3 Porting Skafså’s code to OpenVINO 22
4.3.4 The ported code . 23
4.3.5 Running the program . 24

5 Results 26
5.1 Test setup specifications . 26
5.2 Program execution times . 26

1

5.3 Layer execution times . 26

6 Discussion 29
6.1 Result analysis . 29

6.1.1 CPU vs FPGA . 29
6.1.2 Test setup influence on the results 30
6.1.3 OpenVINO performance compared to Skafså’s OpenCL imple-

mentation . 30
6.1.4 Model Optimizer optimisation 31

6.2 Intel OpenVINO vs AWS/Xilinx . 31
6.2.1 Feature comparison . 31
6.2.2 Ease of use . 31

6.3 Further work . 32
6.3.1 Use the ML Suite locally to port the network to a Xilinx FPGA 32
6.3.2 Change the network to map conv1 to the FPGA 32
6.3.3 Run the inference on a more modern computer 33

7 Conclusion 34

References 35

A Source code 38
A.1 voice_recognition_OpenVINO.cpp . 38
A.2 record_voice.cpp . 48
A.3 write_wav.c . 51

2

List of Tables

3.1 Performance and cost of Amazon Web Service EC2 F1 instances . . . 16

5.1 "Hey Spark"-CNN execution times and throughput from the Inference
Engine . 27

5.2 "Hey Spark"-CNN execution times for each layer on CPU and FPGA . 28

3

List of Figures

2.1 Perceptron model as described by Frank Rosenblatt[8]. The activate
function is a threshold for deciding whether the result of the input
function is 1 or 0. The threshold is adjustable. 8

2.2 Types of artificial neural networks[10] 9

3.1 GoogleNet acceleration with batch size = 1 on Intel FPGAs using OpenCL 14
3.2 Comparison of GoogLeNet V1 neural networks inferred on Nvidia

GPUs, Intel FPGA and Xilinx FPGAs [20] 15

4.1 Cisco "Hey Spark" wake-up word CNN topology 18
4.2 The SDx main menu using X11-forwarding from AWS EC2 F1 instance 21
4.3 Program flow using OpenVINO[26] 23

5.1 "Hey Spark" CNN throughput based on Inference Engine times. . . . 27

4

Chapter 1

Introduction

This project was done in co-operation with Cisco, and features acceleration of a
convolutional neural network (CNN) for voice recognition, even though the title of the
project was image recognition. Specifically, the recognition of the phrase "Hey Spark"
used to wake up a Cisco conference system from sleep-mode. This type of phrase and
function is also called a "wake-up word". The use of voice commands has increased in
popularity the last decade, with Apple’s Siri being a well-known example.

Convolutional neural networks usually require heavy computational power to
function within a reasonable time, causing a need for performance in situations where
it’s not feasible due to power, cost or area constraints, such as on an embedded system.
To provide more performance and lower latency, the CNN can be accelerated on a
server with GPUs or FPGAs. While GPUs have a relatively long history of acceleration,
having been used for the heavily parallel task of computer graphics calculations since
the late 1990s, FPGA’s have not been as widely adopted. FPGA’s offer a high degree
of reconfigurability, in theory being able to recreate most digital circuits, while using
less power than a GPU [1]. This makes FPGAs attractive both on a local device or on a
server.

Previously, the wake-up word CNN was implemented and accelerated using
OpenCL by Skafså[2], achieving a throughput of 277 classifications per second using
an Intel Arria 10 GX Development Kit. The result was compared to a larger net-
work implementation on an Nvidia Tegra X1 GPU at Cisco, achieving a throughput
of 454 classifications per second. The goal of this project has been to port Skafså’s
implementation to Intel OpenVINO and Xilinx ML Suite, two competing acceleration
platforms utilising custom machine learning FPGA designs to accelerate high-level
neural network descriptions.

The report will provide some background information on neural networks in
chapter 2, with a survey of some existing frameworks for acceleration. Chapter 4 will
provide more detailed information on how to use OpenVINO and the ML Suite along

5

CHAPTER 1. INTRODUCTION 6

with how Skafså’s program was implemented in OpenVINO, while chapter 5 will show
the results of the implementation. Chapter 6 will discuss the results and compare them
against Skafså’s results while discussing some factors which might affect the measured
performance, while chapter 7 is a conclusion.

Chapter 2

Background

This chapter will present some of the history of machine learning, provide a brief
overview of the situation today and mention some frameworks for neural network
design.

2.1 Machine learning

Machine learning is a concept which dates back to 1959 when the term was coined by
Arthur Samuel. [3]. The concept revolves around using statistical techniques to make
a computer "learn" an operation using sets of data instead of manually programming
the response. Initially, machine learning was restricted to relatively simple tasks such
as playing checkers and improving the quality of phone calls. The concept remained
mostly within academia for the next four decades until the required computational
power became affordable enough for individuals and companies to make use of the
techniques developed. The use was further increased through the introduction of free,
open-source frameworks such as TensorFlow[4] and Caffe[5].

According to an analysis of the machine learning application landscape by Moor
Insights & Strategy, over 2300 investors had funded 1700machine learning startups as of
February 2017 [6]. Companies such as Amazon, Baidu, Facebook, Google, IBM and Intel
are claiming that they are "AI-companies", investing in machine learning technology
and utilising it in their services. FPGA manufacturers such as Intel Altera and Xilinx
offer FPGA-accelerators for use in computers to satisfy the need for high-speed neural
networks. Amazon are renting servers fitted with FPGA-clusters to customers who
need computational power to run machine learning algorithms. Artificial neural
networks are being deployed in all fields: Industry, public health, surveillance and
transportation are all fields where machine vision and AI are being used.

7

CHAPTER 2. BACKGROUND 8

2.2 Neural network topologies

Machine learning uses artificial neural networks to simulate the human neural network.
Although computers are more efficient at performing mathematical computations and
storing data, humans are better at learning how to do things while a computer has to be
told how to do something. Learning something new, recognising faces and voices and
decision making are task which humans are better at, and which computers struggle
with. These actions are, in humans, performed by a neural network in the brain. The
neural network consists of approximately 1011 neurons which are interconnected into
a decision tree[7]. The desire to mimic the human neural network motivated scientists
to create a mathematical model of a neuron, called a perceptron. A model of the
perceptron was described by Frank Rosenblatt in 1958.

Figure 2.1: Perceptronmodel as described by Frank Rosenblatt[8]. The activate function
is a threshold for deciding whether the result of the input function is 1 or 0. The
threshold is adjustable.

Figure 2.1 shows a block diagram of the model proposed by Rosenblatt. This served
as a basis for further computational models, and was implemented in software by
IBM on 1958 to perform image recognition, but the network could only recognise one
pattern. This was due to the network having only one layer, and the solution was to
implement a feed-forward, multi-layered neural network consisting of perceptrons, as
suggested by Stephen Grossberg in 1973[9].

These new types of networks consist of several different types. The most common

CHAPTER 2. BACKGROUND 9

network types are shown in figure 2.2. The network types can be divided into several
categories: Feed-forward, recurrent, competitive and self-organising. Feed-forward
networks, also called convolutional neural networks, like figure 2.2a and 2.2b, can be
compared to combinatorial logical circuits. Recurrent networks, such as figure 2.2c
and 2.2d, are more akin to sequential circuits with the recursive connections acting
as a short-term memory. Competitive neural networks and self-organising networks,
such as figure 2.2e and 2.2f, allow the networks to build self-organise and build input
feature maps, a feature used during network "training".

Figure 2.2: Types of artificial neural networks[10]

What neural network type to use depends on the task of the network. For image
recognition, convolutional neural networks can be used, while for handwriting and
speech recognition, recursive neural networks can be used. After selecting a network
type, the weighting of the connection between the nodes has to be calculated.

In general, the networks consist of multiple layers where each layer can be trained
to look for a certain attribute. One example is a convolutional neural network for
recognising cats. One layer looks for eyes, while another layer looks for fur, and
another layer looks for a tail. To get the correct response from each layer, the weights
for the connections between the layers are adjusted until they produce the correct
response. This is done by "training" the network.

CHAPTER 2. BACKGROUND 10

2.3 Neural network training

The algorithms can be "trained" in multiple ways. The most common way of training is
supervised training where the algorithm is fed a set of specific data, e.g. an algorithm
for detecting cats is fed pictures of cats. Another way is unsupervised training, where
the algorithm gets a set of rules and "trains" itself. This was famously used by the AI
research-company AlphaMind in 2017 to create a computer program, AlphaGo Zero
[11]. In October 2017 it beat their previous Go-program "AlphaGo", which the previous
year beat world Go champion Lee Sedol.

2.4 Inference

An artificial neural network usually requires substantial training data and computa-
tional power to perform the training. This makes creating an artificial network on
a users cellphone difficult while delivering results with low latency. The solution is
to create an optimised model of the trained network. This is done through a process
called "inference".

Inference is the process of optimising a trained artificial neural network and deploy
it on a computational device, such as a cellphone, a computer or an FPGA, depending on
what the scale is. A cellphone could have a neural network running to analyse pictures
the user takes, while a company might infer the network to a server to perform speech
recognition on users’ cellphones. How the network can be inferred to a device varies
depending on how it was made. Usually, artificial neural networks are coded in either
C++ or Python using frameworks such as OpenCL[12], OpenCV[13], TensorFlow[4]
or Caffe[5].

These frameworks simplify the process of constructing and using artificial neural
networks in the user’s application. TensorFlow, developed by Google, for instance,
is a high-level API in which the programmer describes the neural network layers.
TensorFlow can be used for most artificial neural network-based tasks. Caffe, developed
by Berkeley AI Research, is another commonly used API and is mostly used for image
recognition. Both of these APIs are open-source, allowing them to be used, modified
and distributed by users free of charge. OpenCV, short for Open Source Computer
Vision Library, is an open source computer vision and machine learning software
library for C++, Python, Java and Matlab[13]. It offers over 2500 computer vision
and machine learning algorithms. In addition, it supports training on GPUs through
OpenCL and CUDA, in addition to CPU’s.

During inference, unnecessary parts of the network are identified based on their
activity and removed. Secondly, layers can be fused together to reduce the overall
number of layers. The result is an optimised algorithm in terms of speed and size,
usually at the sacrifice of accuracy. Inference can be done manually by a programmer

CHAPTER 2. BACKGROUND 11

or by a computer program. Traditionally, artificial neural networks have been inferred
on CPUs and GPUs, but due to the growing market of neural network applications,
FPGA’s have become a viable target.

2.5 Neural Networks on FPGA

Due to their parallel nature, FPGAs offer a high performance per watt, making it a
strong candidate for neural network computations and inference. In addition to speed,
FPGAs are reconfigurable allowing for several configurations to be programmed and
run on the platform during development. Run-time reconfiguration allows for the
FPGA to be reconfigured during the different stages of the artificial neural network
algorithm to increase hardware density [14]. Artificial neural networks also allow for
speedup when the inferred algorithm uses low numeric precision in calculations, e.g.
using fixed point weighting and quantization data instead of 32-bit floating point can
provide substantial speedupwhilemaintaining reasonable accuracy [15]. Implementing
this function when inferring to an FPGA results in significant speedup when using
low-bit numeric precision [16].

Due to their performance per watt and speed, FPGAs are a desired platform for
running inferred artificial neural networks. One of the main problems reducing the
adoption rate is, and has been for many applications, how they are programmed. FPGAs
are not programmed in the same way as micro-controllers or computer programs,
using a programming language such as C++ or C which is assembled into machine-
level instructions and run on a CPU. An FPGA is "programmed" by describing their
functionality using a Hardware Descriptive Language, such as VHDL or Verilog. The
HDL code is then synthesised into a netlist which is mapped onto the FPGA. This
way of programming differs from regular programming and increases the difficulty of
writing effective and good HDL-code, in most cases requiring specialised engineers.
To reduce the difficulty of programming FPGAs, several tools exist to synthesise
conventional programming languages, such as C, C++ and Python, into VHDL code.
This is called High Level Synthesis, and can be utilised in conjunction with artificial
neural networks to allow for inference of C++ code using OpenCV, TensorFlow, Caffe
and other frameworks to FPGAs without the need for the designer to write HDL-code.

Chapter 3

Survey of existing frameworks

This chapter will explore the existing frameworks for running neural networks on
FPGAs. Each section gives a brief overview of each framework.

3.1 OpenCL

OpenCL[12], short for Open Computing Language, is a platform heterogeneous frame-
work for writing and running programs on several computing platforms, including
CPUs, GPUs, FPGAs, DSPs and other hardware accelerators. OpenCL was launched in
2009 by Apple to utilise the acceleration possibilites of on-board GPUs. A collaborative
group, the Khronos Compute Working Group, was created featuring representatives
from several CPU, GPU, embedded-processing and software companies to maintain
and improve the framework. As of this report, the newest version was 2.2 which
incorporated more C++ features to the language.

The OpenCL framework is officially available for C and C++, but is unofficially
available for Python, Java, Perl and .NET. An OpenCL implementation of a program
is based around a host containing several compute devices, such as a CPU and a
GPU, which is further divided into multiple processing elements. A function which is
executed using OpenCL is called a kernel, and can run in parallel on all processing
elements. A programmer can utilise the acceleration capabilities available on a system
by getting the device information from the computer the program is running on.

While OpenCL provides good possibilities for acceleration and resource usage, it is
limited by its low-level nature. While it has functions for standard operations like FFT,
neural networks have to be manually declared unless the frameworks used to generate
the network have OpenCL-branches. Caffe has such a branch[17], but it is currently
under development. TensorFlow has an OpenCL-branch on its roadmap. The lack of
neural network framework support limits its adoption. A more supported and similar
framework to OpenCL is Nvidia’s CUDA, although this only runs on Nvidia GPUs.

12

CHAPTER 3. SURVEY OF EXISTING FRAMEWORKS 13

3.2 Intel OpenVINO

The OpenVINO toolkit is Intel’s solution for running neural networks on FPGAs, and
aims to simplify the process compared to existing solutions. The OpenVINO toolkit
was launched in 2018 by Intel, replacing the Open Vision SDK. It allows the user to
program applications which can be accelerated on Intel processors, GPUs, FPGAs
and VPUs. The suite consists of several programs, such as the Intel Deep Learning
Deployment Toolkit with a Model Optimizer for optimising the neural network model
and an inference engine for inferring the model to the target device. It also includes the
FPGA Runtime Environment for running the accelerated software on an Intel Altera
FPGA using Linux, as well as optimised computer vision libraries like OpenCV and
OpenVX. The toolkit is available for Windows 10, CentOS, Ubuntu and Yocto Project
Poky Jethro, but compatibility with different options such as FPGA acceleration varies
between platforms. As of this report, the FPGA acceleration with OpenVINO works
on the Altera Arria 10 GX FPGA development kit and the Intel Vision Accelerator
Design with Intel Arria 10, with a retail price of $4,495, while there is no publicly
available retail price for the Vision Accelerator. These FPGAs have a PCI-Express
connector which allows them to easily be integrated into a computer. In addition to
FPGA, OpenVINO supports CPUs, VPUs and GPUs[18]. The supported CPUs are 6th
or 8th generation Intel CPUs and select Pentium processors. The supported GPUs
included in some Intel CPUs. The supported VPU is the Intel Movidius and the Neural
Compute Stick 2.

OpenVINO is mainly used for accelerating image recognition, but can be used for
other purposes such as audio. It supports frameworks such as Caffe and TensorFlow,
and deep learning architectures such as AlexNET and GoogleNET. It supports a set
amount of layers for each framework out of the box, with custom layer support
available for developers.

OpenVINO has an advantage over OpenCL in that it is relatively simple to incorpo-
rate into an existing C++ program. To use OpenVINO in a project, the neural network
model is optimised using the model provided by the neural network framework, such
as a .caffemodel (from Caffe), with the calculated weights with the Model Optimizer.
The Optimizer provides an optimised intermediate representation which is loaded into
the code using the Inference Engine API. The API prepares and infers the network
to the target device and runs the network with the supplied input data. All pre- and
post-processing is done in C++, so the only part which has to be replaced is the neural
network of the previous implementation.

Intel has not published any whitepapers featuring the performance of OpenVINO,
but have published a whitepaper showcasing the performance of their FPGAs using
their Quartus Design Suite with OpenCL. As OpenVINO uses OpenCL to infer the
neural network to the FPGA, the paper can serve as a reference for the achievable

CHAPTER 3. SURVEY OF EXISTING FRAMEWORKS 14

performance. Though, the network used in the test, the Deep Learning Network (DLA),
was manually designed and not generated[19]. Figure 3.1 shows that the Arria 10 GX
achieved a classification throughput of 760 images per second with a INT9 data and
computation, while it achieved 250 images per seconds with FP16. This shows the
advantage FPGAs have when using relatively low-resolution integers, as mentioned in
chapter 2.5.

Figure 3.1: GoogleNet acceleration with batch size = 1 on Intel FPGAs using OpenCL

3.3 Xilinx ML Suite

To simplify neural network deployment on FPGAs, Xilinx has developed and released
the Machine Learning (ML) Suite in 2018. The suite allows the user to accelerate neural
networks on Xilinx FPGAs using inference from high-level programming languages
such as C++ and Python. The ML suite features the xfDNN Middleware, a software
library with APIs for for the aforementioned and several other programming languages
which connects the neural network from a supported framework, such as Caffe and
Tensorflow, to the xDNN IP core. The xDNN IP core runs on a Xilinx FPGA and acts
as the target for the inferred neural network. The IP core consists of several general
CNN processing elements, allowing it to be reconfigured to fit current neural network
topologies and maybe future topologies.

The ML Suite has a programming flow similar to OpenVINO: Initially the model is
compiled and afterwards quantized, usually from FP32, to Int16 or Int8. The final stage
is deployment, which is done through integrating xfDNN Middleware API into the
program which is to be accelerated. To showcase the performance of the framework,
Xilinx has published a whitepaper comparing their framework to Intel and Nvidia[20].
The results are shown in figure 3.2

CHAPTER 3. SURVEY OF EXISTING FRAMEWORKS 15

Figure 3.2: Comparison of GoogLeNet V1 neural networks inferred on Nvidia GPUs,
Intel FPGA and Xilinx FPGAs [20]

In addition to the ML Suite, Xilinx offers the SDAccel development environment
for accelerating C/C++ applications on FPGAs. The suite finds accelerateable parts of
the user’s code when using the SDAccel GUI interface, i.e. compatible code such as
OpenCL-code or C-code.

All software is available for free if the user has a Xilinx account. As of this report,
the FPGA acceleration works on the Alveo U200 Data Center Accelerator Card, Alveo
U250 and the Xilinx Virtex UltraScale+ FPGA VCU1525 Acceleration Development
Kit, with a retail price of $8,995, $12,995 and $10,000 respectively. An alternative to
purchasing the cards is to use Amazon Web Service.

3.3.1 Amazon Web Service

To make it easier for programmers to accelerate their applications using their tools,
Xilinx has teamed up with Amazon to provide servers for rent with up to 8 FPGA
Ultrascale+ accelerator cards. The servers are available to rent on Amazon Web
Services, with the the necessary tools available free of charge as Amazon Firmware
Images which can be deployed on any available Amazon server. The cost of renting a
server depends on the number of FPGAs and virtual CPUs, and is shown in table 3.1.

In addition, when registering a free account, 750 hours of server time per month
on a t2.micro server is provided free of charge for 12 months. The specifications of

CHAPTER 3. SURVEY OF EXISTING FRAMEWORKS 16

the t2.tiny server is shown in table 3.1. The instance does not feature any dedicated
storage, and the ECU rating is not available.

Name vCPU ECU1 Memory [GiB] Storage [GB] FPGAs Cost[$/hour]

f1.2xlarge 8 26 122 470 1 1.815
f1.4xlarge 16 52 244 940 2 3.630
f1.16xlarge 64 188 976 3760 8 14.52
t2.micro 1 - 1 - 0 Free

Table 3.1: Performance and cost of Amazon Web Service EC2 F1 instances

1ECU = EC2 Compute Unit, a unit of measurement for performance used by Amazon.

Chapter 4

Accelerating a
speech-recognition CNN

This chapter will briefly explain the related work by Skafså, and will look at Amazon
Web Services with the Xilinx ML Suite and Intel OpenVINO and their features, along
with how they were set up for this project. The chapter will also cover how Skafså’s
code was ported to the frameworks to OpenVINO and why it was not ported to the
ML Suite.

4.1 Previous work

To test out the various acceleration platforms, a speech-recognition CNN was provided
by Cisco along with an OpenCL-implementation from a prior master’s thesis by
Skafså[2]. In his thesis, Skafså implemented the pre-trained neural network using C++
and OpenCL through Intel Altera’s C++ AOCL-library included in the Intel FPGA SDK
for OpenCL for deployment on an Intel Altera Arria 10 GX Development kit. Figure
4.1 shows the CNN network topology for the Wake-up word detection network.

The network consists of 14 layers, including input and output. The input data is
a 1x1x40x90 input matrix of speech sample data in MFCC form, and the output is a
1x2x1x1 output matrix. The outputs are "Wake up word not detected" and "Wake up
word detected" for output 1 and 2, respectively. The convolutional layers are most
likely to benefit from acceleration as they feature heavy computation in the form of
interconnected perceptrons. For more information on the CNN, see chapter 5.1 in [2].

MFCC, short for Mel-Frequency Cepstral Coefficients, is a technique for low level
spectral information to convey vocal tract characteristics, eliminating unnecessary
information with regards to phonetic analysis[2]. The MFCC representation of the
recorded input signal is generated using a custom program provided by Cisco. The

17

CHAPTER 4. ACCELERATING A SPEECH-RECOGNITION CNN 18

Figure 4.1: Cisco "Hey Spark" wake-up word CNN topology

program is called after exporting the .wav-file to a hard-coded location.
Two programs were created by Skafså: One using a pre-recorded sample as the

speech input and a live implementation using the PortAudio API[21] to record au-
dio. The pre-recorded sample is imported into the program using the open-source
cnpy-library[22] for C++ to import the sample. The sample was generated using the
scientific computing library NumPy for Python, and was exported as an .npy-file
during development.

The program is mainly split into two parts: pre- and post-processing in C++ and

CHAPTER 4. ACCELERATING A SPEECH-RECOGNITION CNN 19

neural network computations implemented in OpenCL. Skafså calculates the execution
time based on the reports from the OpenCL implementation, based on the time spent
initialising and running the kernels.

Using the Arria 10 GXDevelopment kit with and the C++/OpenCL-implementation,
Skafså was able to perform a classification in 3.6ms. To have something to compare
with, Cisco ran a bigger CNN implementation on an NVIDIA Tegra X1 GPU, which per-
formed a classification in 2.2ms. Skafså also measured the performance in MAC/s, or
multiply-accumulate operations per second. The implementations had a computational
speed of 0.54 Gmac/s and 11.9 Gmac/s.

Looking at table 6.8 in [2], most of the computational time of the FPGA implemen-
tation is caused by the convolutional layers. Optimising the neural network model
using either OpenVINO or Xilinx ML Suite could help accelerate these networks and
speed up the classification time. In addition, using a network on the FPGA optimised
by the FPGA manufacturer will most likely be optimised for the target architecture.

4.2 Amazon AWS

4.2.1 Registering and financing

As the F1 instances have a fixed rate per hour, financing was required to run simulations
and develop. The free server instance, the t2.micro instance, is not suited for extensive
programming and compiling with only 1 CPU core and 1GiB of memory. It is therefore
necessary to rent larger server instances with greater computational capabilities,
especially if any HDL-synthesis is required. Luckily, Amazon has a student program
with affiliated colleges and universities, called AWS Educate, which NTNU is a part
of. AWS Educate gives access to special courses to learn the AWS platform, educative
communities and $100 of free credit each year. Server instance options are still limited
to the free-tier, making the F1-instances unavailable. This can be circumvented by
requesting access through Amazon’s support service. Server instances are free to start
and only start accumulating a bill once they are in the "running" state. The instance
can be stopped, which is similar to pausing as the instance is not terminated, to stop
billing.

4.2.2 Server setup and connecting

After registering an account, access is granted to the Amazon AWS dashboard with
shortcuts to all services, such as EC2-instances. Starting a server is quick and can be
done by following a guide[23] for server setup by Amazon. EC2-instances use AMIs,
AmazonMachine Images, as the starting point for a server. AMI’s are essentially virtual
machine images with an operating system, such as Windows, Ubuntu and CentOS, and
software. The AMI for FPGA development and acceleration is the FPGA Developer

CHAPTER 4. ACCELERATING A SPEECH-RECOGNITION CNN 20

AMI, which features the AWS EC2 FPGA Hardware and Software Development Kit[24].
The kit includes SDAccel, Vivado and SDx amongst other programs related to FPGA
development and acceleration. The kit also includes examples for SDAccel acceleration
and high-level synthesis using Vivado. After customising the FPGA Developer AMI
to the user’s liking, an AMI can be created. This allows data and configurations to
quickly be deployed on different server types.

After setting up the server, the user has to define a security group and whitelist the
current IP address to be allowed access to the server. Security groups with user rights
are managed through IAM roles. IAM, or Identity and Access Management, is the AWS
service for securely controlling access to AWS resources. Creating and administering
IAM roles is done through the IAM Management Console. To whitelist IP addresses,
the security group for the instance has to be edited. By editing the inbound rules of
the security group, IP addresses can be added to the whitelist.

Connecting to the server can be done in several ways, but the simplest is using SSH.
The connection details are listed in the AWS EC2 management console with a guide
on how to connect. The default connection is SSH using terminal, and X11-forwarding
has to be enabled manually to enable GUI interaction. Some form of GUI is necessary
to use most of the applications, such as Vivado or SDAccel.

4.2.3 Testing and importing

To test the acceleration capabilities, AWS recommends starting with the "Hello World
OCL" example. This will show the programming flow using SDAccel to accelerate
an OpenCL-application by synthesising it and running it on an FPGA, as well as
generating an AFI, an Amazon FPGA Image. An AFI can easily be transferred between
servers and can also be sold on the Amazon AWS Marketplace. This example is also
meant to showcase SDx-capabilities.

After finishing the example, an attempt was made at importing Skafså’s program.
This can be done by using SDx after setting up the server with X11-forwarding or
using some other remote-desktop application. Importing the project files is simple, and
after importing the application looks for parts of the code which can be accelerated.
This proved unsuccessful, possibly due to Skafså using the aocl-library in his C++
application. No further attempt to accelerate the code using AWS was done after this.

Due to the server being located in Ireland, there is a considerable delay when
interfacing with it using X11-forwarding. In addition, X11-forwarding is unreliable,
causing applications to crash seemingly at random. On one occasion it was not possible
to load SDx past the main menu shown in figure 4.2. This, along with the delay, makes
it difficult to program efficiently. Due to this, along with a limited amount of time, the
focus was shifted to OpenVINO, which was being worked on concurrently.

CHAPTER 4. ACCELERATING A SPEECH-RECOGNITION CNN 21

Figure 4.2: The SDx main menu using X11-forwarding from AWS EC2 F1 instance

4.3 Intel OpenVINO

4.3.1 Setup

As specified in the project description, a server at NTNU was available with an Intel
Arria 10 GX FPGA Development kit. The server, macron.iet.ntnu.no, had previously
been worked on by a masters student and was supposedly properly set up with the
accelerator card. The server used CentOS as the operating system, which is supported
by OpenVINO.

Initially, the server was unavailable as it was in storage, so CentOS along with
OpenVINO was installed on a Lenovo E470 laptop with an Intel i7-7500U CPU to get
familiar with the software and the operating system. OpenVINO installation is quick
and easy and can be done either in GUI or terminal. Following Intel’s installation
guide [25] to set up the FPGA, the process can be done in a couple of hours. Note
that when using Quartus Lite, it seems that it’s not possible to flash bitstreams to the
FPGA accelerator. It can still be programmed and will function properly, but it has to
be programmed with the bitstreams from step 1 in the installation guide every time
the computer is rebooted.

After the server was put online, it turned out that the Arria 10 GX card had not

CHAPTER 4. ACCELERATING A SPEECH-RECOGNITION CNN 22

been set up at all, only plugged into a PCI-express slot on the motherboard of the
server. In addition, shortly after being put online, the server crashed and was unable
to boot. The solution was to re-install CentOS, and at the same time install the FPGA
accelerator according to the installation guide.

4.3.2 Running examples

To test the functionality of OpenVINO and the accelerator card, Intel has included
examples with common machine learning tasks, mostly image recognition examples.
The initial example is the "hello-classification" example, which is an image classification
program for recognising objects in a picture of a car. This can either be run on a CPU
or an FPGA, depending on which example. The Intel installation guide features the
"hello-classification"-demo for FPGA and CPU as a part of the installation guide. The
demo can be compiled and run after setting the correct environment-variables for
Linux, which is done using a setupenv-script located in the OpenVINO folders. The
demo runs in the console and prints out the classification results in addition to the
throughput. Following Intel’s installation guide, the demo was initially run on the CPU
with a batch size of 1, followed by FPGA with a batch size of 1 and finally on FPGA
with a batch size of 100. The result was a throughput of 22FPS, 288FPS and 338FPS,
respectively, on the server. The reason for increased performance when running
increased batch sizes on FPGA is, according to Intel, due to the initial performance
cost of inferring the network onto the FPGA during the first classification.

4.3.3 Porting Skafså’s code to OpenVINO

Although Skafså used Intel FPGAOpenCL SDK, the code could not be directly imported
to the OpenVINO toolkit. Instead, the functionality of the code had to be included in
a new program which used the OpenVINO API. As mentioned, Intel provides many
sample applications in C++ to help understand how to use the API and the program flow,
although the program flow and API has changed since the initial release of OpenVINO.
While the still work, the examples use old API calls can make it confusing when trying
to learn the API. Intel has provided a guide [26] for integrating the Inference Engine
into pre-existing applications.

Running Skafså’s code required installing some additional libraries in addition to
modifications. The use of cnpy to read the pre-recorded voice sample was practical
for training purposes when generating the file in Python, but for inference testing
it was more practical to convert the file to .csv and read it into the application using
std::ifstream and getline to read the samples. Using PortAudio to record the voice for
the live demo required building the PortAudio library, which has to be done after
making sure that a suitable audio API, such as ALSA, is installed on the target system.

CHAPTER 4. ACCELERATING A SPEECH-RECOGNITION CNN 23

Otherwise, the PortAudio API won’t detect any recording devices when being called
in the C++ application.

Figure 4.3: Program flow using OpenVINO[26]

As the main part of Skafså’s code was initialising and running the OpenCL-code,
only the helper functions could be used in the OpenVINO implementation. Functions
for recording live audio, timestamping, andwriting .wav-files were kept. Otherwise, the
main functionality was replaced with the OpenVINO API. Using the Intel’s examples
and guides, the program was re-written to use the OpenVINO API. Figure 4.3 shows
the recommended program flow from Intel in their Inference Engine Developer guide
[26].

4.3.4 The ported code

Using the suggested flow, the programwas ported to OpenVINO. The code for the main-
loop and some helper functions is included in appendix A.1, while helper functions for
voice recording and .wav-export are included in appendix A.2 and A.3, respectively.
The code can be downloaded from Github1.

Initially, the input arguments are read using the argc and argv command line
options. The input arguments are used to set:

1. The path to the optimised network files generated by the Model Optimizer.

2. The number of times the program will loop. The program will start looping at
stage 6 shown in figure 4.3, reading either the pre-recorded sample or recording
a new input using PortAudio.

3. Whether to infer to CPU or FPGA and CPU.

4. The amount of information printed out during runtime.

After reading the input arguments, the program follows the flow shown in figure 4.3,
with the following actions for in each stage:

1https://github.com/andernil/OpenVINO_project

https://github.com/andernil/OpenVINO_project

CHAPTER 4. ACCELERATING A SPEECH-RECOGNITION CNN 24

1. The plugin is selected based on the input argument and can be either CPU or
FPGA. The Inference Engine has several plugins, usually one for each compatible
device, but also for using multiple inference targets. This program uses HET-
ERO:FPGA,CPU which runs the inference of the neural network layers primarily
on the FPGA with CPU as the fallback device in case the layer is incompatible
with the FPGA.

2. The network files are loaded into the inference engine.

3. The input and output of the inference are initialised with layout and precision,
in this case NCHW and FP32 for layout and input, respectively, and FP32 for
output. The input and output sizes are printed to the console.

4. The model is loaded into the inference engine.

5. An inference request is created based on the network and the input/output
precision.

6. The input data precision is set and the input is loaded or generated and stored
in the input buffer of the Inference Engine.

7. The inference is performed synchronously, causing the program to halt execution
until the inference is completed. A timestamp is taken here to calculate the time
spent pre-processing.

8. The output data is read out of the Inference Engine and printed. Additionally,
output statistics are read for each layer in the neural network. These statistics
include execution time for each layer, whether they were run or not and if they
were executed on CPU or FPGA. The result is printed for each iteration, and
finally for the whole program.

As the program can run for several iterations, the execution time for each iteration
is stored in an array. The execution time is measured in two ways: After the input
data is generated but before .wav-creation and MFCC-transform, and based on the
execution time for each layer reported by the Inference Engine. The execution times
are used for calculating the average, median and shortest times. This is useful as some
of the tasks performed executed on the CPU. CentOS is not a real-time system, and
the program execution will therefore have lower priority than OS-tasks, causing the
execution time to vary each iteration.

4.3.5 Running the program

To run the program, have OpenVINO installed, either with or without FPGA support,
for FPGA and CPU, respectively, and have programmed the FPGA with a topology

CHAPTER 4. ACCELERATING A SPEECH-RECOGNITION CNN 25

bitstream located in bitstreams/a10_devkit_bitstreams. Set up the environment vari-
ables by using source on either setup_env.sh in fpga_support_files or setupvars.sh in
computer_vision_sdk/bin. Optimise the model using mo.py in the Model Optimizer, and
build the program using cmake ./ when in the Hey_Spark_OpenVINO/ -folder. Make the
program and run it with the appropriate options. OpenVINO has several pre-combiled
bitstreams with different common neural network topologies, including AlexNET,
MobileNET and TinyYolo. All topologies have an 11-bit floating point precision.

An example on how to do this for FPGA with 1 iteration is with the following
bash-commands:

1 source ../ fpga_support_files /setup_env.sh
2 aocl program acl0 /opt/ intel /computer_vision_sdk/bitstreams /

a10_vision_design_bitstreams /4−0_PL1_FP11_SqueezeNet.aocx
3 ./ voice_recognition_OpenVINO network/wakeword.xml network/wakeword.bin 1

LIVE FPGA RELEASE

Running the code will generate printouts during execution, the amount depending
on whether the program is run as release or debug.

Chapter 5

Results

This chapter will show the results achieved using OpenVINO to accelerate the applica-
tion on an Intel Altera Arria 10 GX FPGA accelerator card.

5.1 Test setup specifications

The server at NTNU had the following specifications: HP Z800 workstation with
Intel Xeon E5620 2.4GHz with 8GB 800MHz DDR3 RAM, 2 TB Seagate Barracuda
Green HDD with 64MB cache and SATA 6Gbit s−1, CentOS 7.6.1810 with Linux 3.10.0-
957.1.3.el7.x86_64 kernel, HP Z800 Workstation Motherboard 460838-003. Intel Open-
VINO 2018 R4 and PortAudio version v.19.06.00 were used in the C++ program, which
was built using cmake version 2.8.12.2 and compiled using gcc version 4.8.5 20160623
(Red Hat 4.8.5-28).

5.2 Program execution times

Running the program on CPU and FPGA resulted in the execution times and through-
puts listed in table 5.2 for the execution times reported by the Inference Engine. The
results are based on the 100 iterations for CPU and for each of the FPGA topologies.

To easily compare the different implementations, figure 5.1 shows the throughput
for each topology based on the times reported by the Inference Engine.

5.3 Layer execution times

Table 5.3 shows the execution time for each layer. Note that the execution times for
the CPU and FPGA differ both in speed and what layers are executed as some of the
layers are accelerated.

26

CHAPTER 5. RESULTS 27

Inference Engine Execution Time[ms] Throughput [recordings/sec]
Topology Average Median Minimum Average Median Minimum
CPU 6.86 6.81 5.85 145.73 146.84 171.03

AlexNet 5.29 4.09 3.44 189.00 244.68 290.95
ELU 4.83 4.07 3.71 206.95 245.58 269.69

Generic 5.83 3.83 3.58 171.47 261.37 279.10
MobileNet 5.78 4.48 3.93 173.01 223.02 254.71
SqueezeNet 4.84 3.45 3.10 206.44 290.28 322.27
TinyYolo 5.61 4.17 3.83 178.32 239.92 261.10

Table 5.1: "Hey Spark"-CNN execution times and throughput from the Inference Engine

Figure 5.1: "Hey Spark" CNN throughput based on Inference Engine times.

CHAPTER 5. RESULTS 28

Layer CPU [µs] FPGA [µs]
conv1 1002 974
conv2 2767 -

FPGA pre-processing - 279
FPGA input transfer to DDR - 594

FPGA execution - 304
FPGA output from DDR - 195

FPGA output post-processing - 60
FPGA copy to IE output blob - 74

ip1 1428 641
ip2 32 18
ip3 7 5

pool1 93 78
pool1 reorder - 41

prob 9 10
relu5 8 -
Total 5436 3273

Table 5.2: "Hey Spark"-CNN execution times for each layer on CPU and FPGA

Chapter 6

Discussion

This chapter will discuss the results achieved with OpenVINO and compare OpenVINO
and the Xilinx ML Suite on AWS. The comparison will be mostly based on the user
experience of using the frameworks. There is also a section for further work, which
includes porting Skafså’s code to the ML Suite and improving the neural network
topology.

6.1 Result analysis

6.1.1 CPU vs FPGA

Looking at table 5.2 and 5.3 in addition to figure 5.1, it’s clear that the FPGA accelerates
the neural network computations. The sum of the FPGA-parts in table 5.3 is 1547 µs,
and based on the reported layers it is layer conv2 which is accelerated. On the CPU,
the execution time of conv2 was 2767 µs. relu5 was also apparently performed on the
FPGA, but the time it took on the CPU, 8 µs, is negligible. The remaining layers, such
as ip1, are run on the CPU, making them susceptible to being halted due to OS-tasks
with higher priorities, increasing their execution time. As such, the only point of
comparison is layer conv2, and based on that the FPGA provides a speed increase of
79%.

During testing, the possibility of computing all layers on the FPGA was attempted
by using only the FPGA-plugin in the Inference Engine API. This resulted in an error
message stating that kernel height of layer conv1 divided by the stride was greater
than the maximum height allowed supported by the architecture on the FPGA. Editing
the neural network to use a shorter height or increasing the stride might lead to layer
conv1 being accelerated on the FPGA, increasing the throughput even further.

29

CHAPTER 6. DISCUSSION 30

6.1.2 Test setup influence on the results

The test server at NTNU has several drawbacks which will affect performance:

• The PCIe-port is only generation 1 instead of generation 3, which makes the
maximum transfer speed to the FPGA 2Gbit s−1 instead of 8Gbit s−1.

• The CPU is not officially supported by OpenVINO.

• The relatively slow DDR3 RAM at 800MHz will cause slower performance
compared to a newer system.

Using a modern platform would increase the computational speed substantially. To test
this theory, the program was run on a laptop with an Intel i7-7500U CPU with 4GB of
DDR4 RAM and an SSD. The inference was done targeting the CPU, and resulted in a
computation time of 3.72ms, similar to the performance of using the accelerator card
on the test server at NTNU.

6.1.3 OpenVINOperformance compared to Skafså’sOpenCL im-
plementation

Skafså’s OpenCL implementation had a classification time of 3.6ms and Cisco achieved
a classification time of 2.2ms[2]. Skafså does not provide any information on what
processor the test computer had, making it more difficult to compare. Nevertheless,
the fastest classification time of the OpenVINO implementation, based on the reported
time by the Inference Engine, was 3.10ms. Skafså’s implementation had all the con-
volutional layers on the FPGA while only the second convolutional layer was on the
FPGA in the OpenVINO implementation. Comparing table 5.3 and table 6.8 in [2], the
layer conv2 were both executed on the FPGA, with an execution time of 1.547ms and
0.691ms, respectively. The OpenVINO implementation has additional overhead from
transfer to and from the CPU in addition to some pre- and post-processing. Skafså’s
implementation has the advantage of having all interconnects between the layers on
the FPGA. As such, comparing just the execution time on the FPGA, the OpenVINO
implementation is faster with 0.304ms against 0.691ms.

Skafså’s implementation is also custommade, while the OpenVINO implementation
runs on a non-custom architecture, which will most likely affect performance.

The overall code size was reduced substantially by using OpenVINO compared to
OpenCL, from 1672 to 432, not counting header files, for each project. While OpenCL
required all layers to be coded manually, OpenVINO’s use of pre-compiled bitstreams
and the Model Optimizer help reduce the code size while providing almost the same
classification time. OpenVINO has the advantage of being more user friendly, but has
the disadvantage of being relatively homogenous, only working on Intel platforms
while OpenCL works on many devices and platforms.

CHAPTER 6. DISCUSSION 31

6.1.4 Model Optimizer optimisation

Based on the layer information provided by the Inference Engine, using the OpenVINO
Model Optimizer on the CNN model by Cisco removed some layers, speeding up the
execution. Comparing the information with figure 4.1, layers relu1, relu2, relu3, drop1
and drop2 were optimised out. This might lead to increased performance if all the
layers can be implemented on the FPGA through OpenVINO, but this was not the case
for this project.

6.2 Intel OpenVINO vs AWS/Xilinx

One of the goals of the project was to compare the OpenVINO toolkit and Xilinx ML
Suite. While no inference was done with the ML Suite, it is still possible to do some
comparison between the two toolkits.

6.2.1 Feature comparison

• The features of OpenVINO and the Xilinx ML Suite are similar, both including
some form of OpenCL-integration with the FPGA SDK for OpenCL and SDAccel,
respectively.

• Both feature APIs for using CNN-models for inference using high-level languages
such as C++.

• Both are both free of charge and run on accelerator cards, though OpenVINO
can run on CPUs, VPUs and Intel GPUs, while it’s not apparent that the ML
Suite can deploy on other devices.

• Xilinx xDNN currently supports more bit precisions than OpenVINO, which
will most likely lead to faster acceleration when used.

• The cost of accelerating on an FPGA is cheaper with Xilinx due to their partner-
ship with AWS

• OpenVINO can use a CPU while the ML Suite is either on FPGA or simulated
on an FPGA.

• OpenVINO has more documentation and code examples than the ML Suite.

6.2.2 Ease of use

While good features might lead to a good product, ease of use is a big factor when
it comes to FPGA acceleration as complicated development leads to more work and
higher integration costs.

CHAPTER 6. DISCUSSION 32

Intel has provided a good amount of documentation with OpenVINO, along with
getting-started guides, installation guides and API guides. Installation is easy and
the amount of available samples make it easier to understand how to integrate the
Inference Engine into your program. As mentioned, some examples are out-dated
in regarads to the current API and the recommended program flow, but it is still
understandable. Deploying the program to an FPGA instead of CPU required a small
change to the program in the plugin-loading.

Based on the FPGA AMI on Amazon Web Services, the amount of documentation
is not on the same level as Intel. The main documentation is, seemingly, on Github, and
there are not many sample applications which showcase xDNN. Using the software
on the server is also cumbersome due to the delay when using X11-forwarding. The
overall experience might be better if the ML Suite is installed on a local computer, but
the lack of proper documentation and examples is still a problem.

In addition, using Amazon Web Services is difficult. It is a huge platform with lots
of different options and possibilities, making it confusing to navigate. It can be difficult
to find the information you are looking for, especially considering the vast amount of
documentation available.

6.3 Further work

6.3.1 Use the ML Suite locally to port the network to a Xilinx
FPGA

As the only attempt to use the ML Suite was done through AWS, the impression from
using it will most likely be improved by running it locally. This would remove the
need to use AWS and remove the delay from the X11-forwarding. It would give a
better insight into the functionality of the ML Suite, in addition to providing more
comparison points in terms of user friendliness, as well as give performance statistics
for comparison with OpenVINO.

Skafså’s OpenCL implementation could possibly have been accelerated using
SDAccel by changing using the regular OpenCL-library instead of the aocl-library.
This would require the code to be altered, probably on the same scale as porting to
OpenVINO, but would provide a good point of comparison for acceleration on the
Xilinx FPGAs.

6.3.2 Change the network to map conv1 to the FPGA

Changing the network topology to fit the restrictions of the FPGA architecture of
OpenVINO would increase the performance and classification speed. It would also
make a for a fairer comparison with Skafså’s implementation.

CHAPTER 6. DISCUSSION 33

6.3.3 Run the inference on a more modern computer

Running the program and inference on a modern computer would provide more
relevant results for today’s computers. It would better show whether accelerating a
neural network on an accelerator card would be worth it in terms of performance
gains versus price.

Chapter 7

Conclusion

Porting the program to OpenVINO showcased the acceleration capabilities of the Intel
Arria 10 GX Development Kit, increasing the classification time of the conv2-layer by
79%. The accuracy of the results can be questioned due to inconsistent execution times
on the CPU, caused by the operating system having higher priority than the program.
Nevertheless, the average results show that the FPGA accelerated the application by
28%. The fastest classification time was 3.10ms compared to Skafså’s implementation
with a time of 3.6ms, while being slower than Cisco’s GPU-implementation at 2.2ms.
Using OpenVINO to accelerate the program reduced the overall code size by almost 75%,
while providing classification times on par with the OpenCL implementation. While
the use of a relatively old computer might reduce the relevancy of the project, it was
still shown that the FPGA acceleration using OpenVINO does provide a performance
speedup.

34

References

[1] J. Fowers, G. Brown, P. Cooke, and G. Stitt, “A performance and energy compar-
ison of fpgas, gpus, and multicores for sliding-window applications,” Feb. 2012,
pp. 47–56.

[2] O. M. Skafså, “FPGA implementation of a Convolutional Neural Network for
"Wake up word" detection,” Master’s thesis, Norwegian University of Science
and Technology, 7491 Trondheim, Norway, 2018.

[3] A. Samuel, “Some studies in machine learning using the game of checkers,” IBM
Journal of Research and Development, vol. 3, 1959.

[4] Google Brain Team, Tensorflow, 2017. [Online]. Available: https://www.tensorflow.
org/.

[5] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,”
arXiv preprint arXiv:1408.5093, 2014.

[6] K. Freund, “A machine learning application landscape and appropriate hardware
alternatives,” Mar. 2017.

[7] S. Herculano-Houzel, “The human brain in numbers: A linearly scaled-up pri-
mate brain,” Frontiers in Human Neuroscience, vol. 3, p. 31, 2009. [Online]. Avail-
able: https://www.frontiersin.org/article/10.3389/neuro.09.031.
2009.

[8] F. Rosenblatt, “The perceptron: A probabilistic model for information storage
and organization in the brain,” Psychological Review, vol. 65, no. 6, 1958.

[9] S. Grossberg, “Contour Enhancement, Short Term Memory, and Constancies in
Reverberating Neural Networks,” Studies in Applied Mathematics, vol. 52, no. 3,
pp. 213–257, [Online]. Available: https://onlinelibrary.wiley.com/doi/
abs/10.1002/sapm1973523213.

35

https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.frontiersin.org/article/10.3389/neuro.09.031.2009
https://www.frontiersin.org/article/10.3389/neuro.09.031.2009
https://onlinelibrary.wiley.com/doi/abs/10.1002/sapm1973523213
https://onlinelibrary.wiley.com/doi/abs/10.1002/sapm1973523213

REFERENCES 36

[10] A. Perez-Uribe, “Artificial Neural Networks: Algorithms and Hardware Imple-
mentation,” in Bioinspired Computing Machines: Towards Novel Computational
Architectures, D. Mange andM. Tomassini, Eds. PPUR Press, 1998, ch. 11, pp. 289–
316.

[11] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T.
Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van
den Driessche, T. Graepel, and D. Hassabis, “Mastering the game of go without
human knowledge,” Nature, vol. 550,

[12] Khronos Group, Opencl, 2008. [Online]. Available: https://www.khronos.org/
opencl/.

[13] OpenCV Team, About - OpenCV library, Accessed 2018-09-27, 2018. [Online].
Available: https://opencv.org/about.html.

[14] J. G. Eldredge and B. L. Hutchings, “Density enhancement of a neural network
using FPGAs and run-time reconfiguration,” in Proceedings of IEEE Workshop on
FPGAs for Custom Computing Machines, 1994, pp. 180–188.

[15] D. Lin, S. Talathi, and S. Annapureddy, “Fixed point quantization of deep con-
volutional networks,” in International Conference on Machine Learning, 2016,
pp. 2849–2858.

[16] P. Colangelo, N. Nasiri, A. Mishra, E. Nurvitadhi, M. Margala, and K. Nealis,
“Exploration of Low Numeric Precision Deep Learning Inference Using Intel
FPGAs,” arXiv preprint arXiv:1806.11547, 2018.

[17] Community, OpenCL Caffe, 2018. [Online]. Available: https://github.com/
BVLC/caffe/tree/opencl.

[18] Intel, Computer Vision Hardware, Accessed 2018-12-09. [Online]. Available:
https://software.intel.com/en-us/openvino-toolkit/hardware.

[19] U. Aydonat, S. O’Connell, D. Capalija, A. C. Ling, andG. R. Chiu, “AnOpenCL™Deep
Learning Accelerator on Arria 10,” in Proceedings of the 2017 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays, ser. FPGA ’17, Monterey,
California, USA: ACM, 2017, pp. 55–64. [Online]. Available: http://doi.acm.
org/10.1145/3020078.3021738.

[20] Xilinx, “Accelerating DNNs with Xilinx Alveo Accelerator Cards,” Tech. Rep.,
2018, Accessed 2018-12-05. [Online]. Available: https://www.xilinx.com/
support/documentation/white_papers/wp504-accel-dnns.pdf.

https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://opencv.org/about.html
https://github.com/BVLC/caffe/tree/opencl
https://github.com/BVLC/caffe/tree/opencl
https://software.intel.com/en-us/openvino-toolkit/hardware
http://doi.acm.org/10.1145/3020078.3021738
http://doi.acm.org/10.1145/3020078.3021738
https://www.xilinx.com/support/documentation/white_papers/wp504-accel-dnns.pdf
https://www.xilinx.com/support/documentation/white_papers/wp504-accel-dnns.pdf

REFERENCES 37

[21] PortAudio community, Portaudio, version v19.06.00, Dec. 5, 2018. [Online]. Avail-
able: http://www.portaudio.com/.

[22] C. Rogers, Cnpy, version 4e8810b, Jun. 1, 2018. [Online]. Available: https :
//github.com/rogersce/cnpy.

[23] Amazon, Getting Started with Amazon EC2 Linux Instances, Accessed 2018-12-
09. [Online]. Available: https://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/EC2_GetStarted.html.

[24] AWS, AWS EC2 FPGA Hardware and Software Development Kit, Accessed 2018-
12-09. [Online]. Available: https://github.com/aws/aws-fpga/.

[25] F. Boyle, D. Deuermeyer, D. D., and K. O’Neill, Installation Guide for Intel®
Distribution of OpenVINO™ toolkit with Support for FPGA 2, Accessed 2018-12-
10. [Online]. Available: https://software.intel.com/en-us/articles/
installation-guide-for-intel-distribution-of-openvino-toolkit-

with-support-for-fpga-2.

[26] D. Deuermeyer, F. Boyle, A. Z, and A. R, Inference Engine Developer Guide,
Accessed 2018-12-10. [Online]. Available: https://software.intel.com/en-
us/articles/OpenVINO-InferEngine.

http://www.portaudio.com/
https://github.com/rogersce/cnpy
https://github.com/rogersce/cnpy
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://github.com/aws/aws-fpga/
https://software.intel.com/en-us/articles/installation-guide-for-intel-distribution-of-openvino-toolkit-with-support-for-fpga-2
https://software.intel.com/en-us/articles/installation-guide-for-intel-distribution-of-openvino-toolkit-with-support-for-fpga-2
https://software.intel.com/en-us/articles/installation-guide-for-intel-distribution-of-openvino-toolkit-with-support-for-fpga-2
https://software.intel.com/en-us/articles/OpenVINO-InferEngine
https://software.intel.com/en-us/articles/OpenVINO-InferEngine

Appendix A

Source code

A.1 voice_recognition_OpenVINO.cpp

1 # i n c l u d e < ios t r eam >
2 # i n c l u d e <map>
3 # i n c l u d e < f s t r eam >
4 # i n c l u d e < s t r i n g >
5 # i n c l u d e <a lgor i thm >
6 # i n c l u d e <iomanip >
7 # i n c l u d e < i n f e r e n c e _ e n g i n e . hpp>
8 # i n c l u d e " r e c o r d _ v o i c e . h "
9 # i n c l u d e " wri te_wav . h "
10 # i n c l u d e < c s t d l i b >
11
12 us ing namespace I n f e r en c eEng i n e ;
13
14 # d e f i n e INPUT_W 40
15 # d e f i n e INPUT_H 90
16 # d e f i n e INPUT_SIZE INPUT_W∗ INPUT_H
17
18 / / G loba l b u f f e r a r r ay f o r the i npu t aud io
19 f l o a t i npu t _ aud i o [INPUT_SIZE] ;
20
21 / / Path o f the r e co rded inpu t aud io f i l e and sample
22 con s t char ∗ i npu t _p ro c e s s ed_ r e co rd ing_name = " r e c o r d i n g s /

v o i c e _ r e c _ l i v e _ p r o c e s s e d " ;

38

APPENDIX A. SOURCE CODE 39

23 con s t char ∗ inpu t_proces sed_sample_name = " r e c o r d i n g s /
da t a . c sv " ;

24
25 / / Func t i on p r o t o t yp e s
26 vo id load_samp le (f l o a t ∗ i n p u t _ b u f f e r) ;
27 vo id r e c o r d _ i npu t (f l o a t ∗ i n p u t _ b u f f e r) ;
28 doub le ge tCurrentT imes tamp () ;
29
30 i n t main (i n t argc , char ∗ argv []) {
31 / / I npu t argument v a r i a b l e s
32 s t d : : s t r i n g DEVICE = "CPU" ;
33 i n t DEBUG = 0 ;
34 i n t USE_SAMPLE = 0 ;
35 i f (a rgc != 7) {
36 s t d : : c e r r << " I n c o r r e c t amount o f arguments , use : [

NETWORK_PATH XML] [WEIGHTS_PATH BIN] [NUM
ITERATIONS] [SAMPLE or LIVE] [CPU or FPGA] [
RELEASE or DEBUG] " << s t d : : end l ;

37 r e t u r n 1 ;
38 }
39 s t d : : s t r i n g NETWORK = s t d : : s t r i n g (argv [1]) ;
40 s t d : : s t r i n g WEIGHTS = s t d : : s t r i n g (argv [2]) ;
41 con s t i n t NUM_LOOPS = s t d : : s t o i (a rgv [3]) ;
42 i f (s t d : : s t r i n g (argv [4]) == "SAMPLE")
43 USE_SAMPLE = 1 ;
44 i f (s t d : : s t r i n g (argv [5]) == "FPGA")
45 DEVICE = "HETERO : FPGA , CPU" ;
46 i f (s t d : : s t r i n g (argv [6]) == "DEBUG")
47 DEBUG = 1 ;
48
49 / / Timestamps
50 long long e x e c u t i o n _ t im e _ bu f f e r [NUM_LOOPS] ;
51
52 / / P r o c e s s i n g t ime ave rage
53 long long p ro c e s s i ng_avg = 0 ;
54
55 / / 1 . Load p l ug i n
56 i f (DEBUG)
57 s t d : : cou t << " Loading P lug in " << s t d : : end l ;

APPENDIX A. SOURCE CODE 40

58 I n f e r e n c e P l u g i n p l ug i n = P l u g i nD i s p a t c h e r ({ " . . / . . / . . /
l i b / i n t e l 6 4 " , " " }) . g e tP lug inByDev i c e (DEVICE) ;

59
60 / / 2 . Read i n t e rme d i a t e r e p r e s e n t a t i o n
61 i f (DEBUG)
62 s t d : : cou t << " Reading i n t e rme d i a t e r e p r e s e n t a t i o n " <<

s t d : : end l ;
63 CNNNetReader ne twork_reader ;
64 ne twork_reader . ReadNetwork (NETWORK) ;
65 ne twork_reader . ReadWeights (WEIGHTS) ;
66 CNNNetwork network = ne twork_reader . getNetwork () ;
67
68 / / 3 . Con f i gu re i npu t and ou tpu t
69 / / Get i npu t i n f o and s e t i npu t l a y ou t and p r e c i s i o n
70 i f (DEBUG)
71 s t d : : cou t << " Con f i gu r i ng inpu t and ou tpu t " << s t d : :

end l ;
72 I n p u t I n f o : : P t r i n p u t _ i n f o = network . g e t I n p u t s I n f o () .

beg in () −>second ;
73 s t d : : s t r i n g input_name = network . g e t I n p u t s I n f o () . beg in

() −> f i r s t ;
74
75 i npu t _ i n f o −> s e t L ayou t (Layout : :NCHW) ;
76 i npu t _ i n f o −> s e t P r e c i s i o n (P r e c i s i o n : : FP32) ;
77
78 / / P r i n t i npu t i n f o
79 s t d : : cou t << " Ge t t i n g network i n f o " << s t d : : end l ;
80 s t a t i c s i z e _ t num_channels = i npu t _ i n f o −>ge tTensorDesc

() . getDims () [1] ;
81 s t a t i c s i z e _ t width = i npu t _ i n f o −>ge tTensorDesc () .

getDims () [3] ;
82 s t a t i c s i z e _ t h e i gh t = i npu t _ i n f o −>ge tTensorDesc () .

getDims () [2] ;
83 i f (DEBUG) {
84 s t d : : cou t << "Num . i npu t channe l s : " << num_channels

<< s t d : : end l ;
85 s t d : : cou t << " Inpu t d imens ions : " << width << " x " <<

he i gh t << s t d : : end l ;
86 }
87

APPENDIX A. SOURCE CODE 41

88 / / Get ou tpu t i n f o and s e t ou tpu t p r e c i s i o n
89 OutputsDataMap ou t pu t I n f o (network . g e tOu t pu t s I n f o ()) ;
90 s t d : : s t r i n g f i r s tOu tpu tName ;
91
92 f o r (au to & i tem : o u t pu t I n f o)
93 {
94 i f (f i r s tOu tpu tName . empty ())
95 {
96 f i r s tOu tpu tName = i tem . f i r s t ;
97 }
98 Da taP t r ou tpu tData = i tem . second ;
99 i f (! ou tpu tData)
100 {
101 s t d : : cou t << " Data ou tpu t p o i n t e r i s i n v a l i d " <<

s t d : : end l ;
102 }
103 i tem . second −> s e t P r e c i s i o n (P r e c i s i o n : : FP32) ;
104 }
105 / / P r i n t ou tpu t i n f o
106 con s t S i z eV e c t o r outputDims = ou t pu t I n f o . beg in () −>

second −>getDims () ;
107 i f (DEBUG)
108 s t d : : cou t << " Output dims : " << outputDims [0] << " x "

<< outputDims [1] << s t d : : end l ;
109
110 / / 4 . Load the model
111 i f (DEBUG)
112 s t d : : cou t << " Loading model " << s t d : : end l ;
113 auto exe cu t ab l e _ne twork = p l ug i n . LoadNetwork (network ,

{ }) ;
114
115
116 / / 5 . C rea t e i n f e r r e q u e s t
117 i f (DEBUG)
118 s t d : : cou t << " C r e a t i ng i n f e r r e q u e s t " << s t d : : end l ;
119 auto i n f e r _ r e q u e s t = exe cu t ab l e _ne twork .

C r e a t e I n f e r R e q u e s t () ;
120
121 / / 6 . P r epa r e i npu t
122 i f (DEBUG)

APPENDIX A. SOURCE CODE 42

123 s t d : : cou t << " As s i gn ing inpu t da t a " << s t d : : end l ;
124 Blob : : P t r i npu t = i n f e r _ r e q u e s t . GetBlob (input_name) ;
125 auto i npu t _ d a t a = input −> b u f f e r () . as < P r e c i s i o n T r a i t <

P r e c i s i o n : : FP32 > : : v a l u e_ t ype ∗ > () ;
126
127 / / Loop f o r e i t h e r i n f e r e n c e speed t e s t i n g or speech

r e c o g n i t i o n t e s t i n g
128 f o r (i n t loop = 0 ; loop < NUM_LOOPS ; loop ++)
129 {
130 i f (DEBUG)
131 s t d : : cou t << " P r epa r i ng da t a " << s t d : : end l ;
132 i f (USE_SAMPLE) {
133 s t d : : cou t << " Using sampled da t a " << s t d : : end l ;
134 load_samp le (& inpu t _ aud i o [0]) ;
135 }
136 e l s e
137 r e c o r d _ i npu t (& inpu t _ aud i o [0]) ;
138
139 s t d : : cou t << " F i l l i n g i npu t b u f f e r " << s t d : : end l ;
140 f o r (i n t i = 0 ; i < num_channels ∗ width ∗ h e i gh t ; i ++)
141 {
142 i npu t _ d a t a [i] = i npu t _ aud i o [i] ;
143 }
144
145 / / 7 . S t a r t synchronous i n f e r e n c e
146 i f (DEBUG)
147 s t d : : cou t << " S t a r t i n g synchronous i n f e r e n c e " <<

s t d : : end l ;
148 i n f e r _ r e q u e s t . I n f e r () ;
149
150 / / 8 . P r o c e s s ou tpu t da t a
151 i f (DEBUG)
152 s t d : : cou t << " R e t r i e v i n g ou tpu t da t a " << s t d : : end l ;
153 Blob : : P t r ou tpu t = i n f e r _ r e q u e s t . GetBlob (

f i r s tOu tpu tName) ;
154
155 / / Get per formance s t a t i s t i c s f o r each l a y e r
156 i f (DEBUG)
157 s t d : : cou t << " Ge t t i n g per formance s t a t i s t i c s f o r

each l a y e r " << s t d : : end l ;

APPENDIX A. SOURCE CODE 43

158 auto I n f o = i n f e r _ r e q u e s t . GetPer formanceCounts () ;
159 s t d : : map< s t d : : s t r i n g , I n f e r e n c e E n g i n e P r o f i l e I n f o > : :

i t e r a t o r i t = I n f o . beg in () ;
160 i f (DEBUG)
161 s t d : : cou t << "−−−−PERFORMANCE STATISTICS−−−− " <<

s t d : : end l ;
162 e x e c u t i o n _ t im e _ bu f f e r [loop] = 0 ;
163 whi l e (i t != I n f o . end ())
164 {
165 I n f e r e n c e E n g i n e P r o f i l e I n f o l a y e r _ i n f o = i t −>second ;
166 e x e c u t i o n _ t im e _ bu f f e r [loop] += l a y e r _ i n f o .

r ea lT ime_uSec ;
167 i f (DEBUG)
168 {
169 s t d : : cou t << " Per formance s t a t s f o r : " << i t −>

f i r s t << s t d : : end l ;
170
171 s t d : : s t r i n g s t a t u s = l a y e r _ i n f o . s t a t u s == 0 ? "

Not run " :
172 l a y e r _ i n f o . s t a t u s == 1 ? "

Opt imized out " :
173 "

Executed
"
;

174
175 s t d : : cou t << " Layer s t a t u s : " << s t a t u s << s t d : :

end l ;
176 i f (s t a t u s != " Not run ") {
177 s t d : : cou t << " Exec type : " << l a y e r _ i n f o .

exe c_ type << s t d : : end l ;
178 s t d : : cou t << " l a y e r type : " << l a y e r _ i n f o .

l a y e r _ t y p e << s t d : : end l ;
179 s t d : : cou t << " Rea l t ime run : " << l a y e r _ i n f o .

r ea lT ime_uSec << " us " << s t d : : end l ;
180 }
181 s t d : : cou t << "−−−− " << s t d : : end l ;
182 }
183 i t ++ ;

APPENDIX A. SOURCE CODE 44

184 }
185
186 s t d : : cou t << " R e s u l t s : " << s t d : : end l ;
187 / / P r i n t ou tpu t da t a and ex e cu t i on t ime
188 auto ou tpu t _da t a = output −> b u f f e r () . as < P r e c i s i o n T r a i t

< P r e c i s i o n : : FP32 > : : v a l u e_ t ype ∗ > () ;
189 s t d : : cou t << " Neura l Network ou tpu t " << s t d : : end l ;
190 f o r (i n t i = 0 ; i < outputDims [0] ∗ outputDims [1] ; i

++)
191 {
192 s t d : : cou t << ou tpu t _da t a [i] << s t d : : end l ;
193 }
194
195 s t d : : cou t << " Execu t i on t ime from IE : " << s t d : :

s e t p r e c i s i o n (4) << doub le (e x e c u t i o n _ t im e _ bu f f e r [
loop]) / 1 0 00 << "ms " << s t d : : end l ;

196 s t d : : cou t << "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
" << s t d : : end l ;

197
198 / / Add to running ave rage and b u f f e r
199 p ro c e s s i ng_avg += e x e c u t i o n _ t im e _ bu f f e r [loop] ;
200 }
201
202 / / C a l c u l a t e ave rage and s o r t b u f f e r
203 doub le ave rage = p ro c e s s i ng_avg / NUM_LOOPS ;
204
205 / / S o r t the t ime a r r a y s
206 s t d : : s o r t (e x e c u t i o n _ t ime_bu f f e r , e x e c u t i o n _ t im e _ bu f f e r

+ NUM_LOOPS) ;
207
208 / / P r i n t t ime and throughput c a l c u l a t i o n s
209 s t d : : cou t << " I n f e r e n c e Engine measurements " << s t d : :

end l ;
210 s t d : : cou t << " Time Avg : " << s t d : : s e t p r e c i s i o n

(4) << ave rage / 1 000 << "ms . Median : "
211 << doub le (e x e c u t i o n _ t im e _ bu f f e r [i n t (NUM_LOOPS

/ 2)]) / 1 0 00 << "ms . F a s t e s t : "
212 << doub le (e x e c u t i o n _ t im e _ bu f f e r [0]) / 1 0 00 << "

ms . " << s t d : : end l ;
213

APPENDIX A. SOURCE CODE 45

214 s t d : : cou t << " Throughput Avg : " << 1 0 0 0 ∗ 1 0 0 0 / ave rage
<< " samples / s . Median : "

215 << 1 0 0 0 ∗ 1 0 0 0 / doub le (e x e c u t i o n _ t im e _ bu f f e r [i n t
(NUM_LOOPS / 2)]) << " samples / s . F a s t e s t : "

216 << 1 0 0 0 ∗ 1 0 0 0 / doub le (e x e c u t i o n _ t im e _ bu f f e r [0])
<< " samples / s . " << s t d : : end l ;

217 }
218
219 / / / / / / / / / / / HELPER FUNCTIONS

/ /
220 / ∗ l oad_samp le
221 ∗
222 ∗ Func t i on f o r l o a d i n g the sample da t a s ay ing "Hey

Spark "
223 ∗ from a . c sv f i l e to the i npu t _ aud i o b u f f e r v i a the
224 ∗ i n p u t _ b u f f e r p o i n t e r
225 ∗ /
226
227 vo id load_samp le (f l o a t ∗ i n p u t _ b u f f e r) {
228 s t d : : cou t << " Loading a r r ay " << s t d : : end l ;
229 s t d : : i f s t r e am in (input_proces sed_sample_name) ;
230 s t d : : s t r i n g l i n e ;
231 i n t i = 0 ;
232 whi l e (g e t l i n e (in , l i n e))
233 {
234 s t d : : s t r i n g s t r e am s s (l i n e) ;
235 s t d : : s t r i n g da t a ;
236 s t d : : s t r i n g : : s i z e _ t y p e s t r i n g _ s i z e ;
237 whi l e (g e t l i n e (ss , data , ' , '))
238 {
239 i n p u t _ b u f f e r [i] = s t d : : s t o f (data , &s t r i n g _ s i z e) ;
240 i ++ ;
241 }
242 }
243 s t d : : cou t << " Read " << i << " i npu t v a l u e s " << s t d : :

end l ;
244 }
245
246 / ∗ r e c o r d _ i n pu t
247 ∗

APPENDIX A. SOURCE CODE 46

248 ∗ Func t i on f o r c a l l i n g r e c o r d _ v o i c e in r e c o r d _ v o i c e . c
and

249 ∗ s t o r e the ou tpu t da t a to a . wav− f i l e u s ing wri te_wav
in wri te_wav . c

250 ∗ Also c a l l s and the MFCC−p r e p r o c e s s f u n c t i o n and r e ad s
the da t a to

251 ∗ i npu t _ aud i o v i a the i n p u t _ b u f f e r p o i n t e r .
252 ∗ /
253
254 vo id r e c o r d _ i npu t (f l o a t ∗ i n p u t _ b u f f e r)
255 {
256 / / A l l o c a t e memory and r e co rd vo i c e
257 s t d : : cou t << " A l l o c a t i n g memory f o r r e c o r d i n g " << s t d : :

end l ;
258 i n t num_bytes = NUM_SECONDS ∗ SAMPLE_RATE ∗

NUM_CHANNELS ∗ s i z e o f (f l o a t) ;
259 f l o a t ∗ r e co rded_ samp l e s = (f l o a t ∗) ma l l o c (num_bytes) ;
260
261 / / S t a r t r e c o r d i n g
262 r e c o r d _ v o i c e (r e co rded_ samp l e s) ;
263 s t d : : cou t << " Recorded " << num_bytes << " o f da t a " <<

s t d : : end l ;
264
265 / / Expor t . wav f i l e
266 wri te_wav (" r e c o r d i n g s / v o i c e _ r e c _ l i v e . wav " ,

r e co rded_samp le s , num_bytes , NUM_CHANNELS ,
SAMPLE_RATE , 3 2) ; / /

267
268 / / P r e p r o c e s s da t a
269 system (" p r e p r o c e s s i n g / mf c c_p r ep ro c e s s −− i npu t

r e c o r d i n g s / v o i c e _ r e c _ l i v e . wav −−ou tpu t r e c o r d i n g s /
v o i c e _ r e c _ l i v e _ p r o c e s s e d ") ;

270
271 / / Read p r ep r o c e s s e d da t a
272 s t d : : i f s t r e am i n p u t _ f i l e (i npu t_p roce s s ed_ r e co rd ing_name

, s t d : : i o s : : i n | s t d : : i o s : : b i n a ry) ;
273 i f (i n p u t _ f i l e . i s _open ())
274 {
275 i n p u t _ f i l e . r ead ((char ∗) (i n p u t _ b u f f e r) , s i z e o f (f l o a t) ∗

INPUT_SIZE) ;

APPENDIX A. SOURCE CODE 47

276 i n p u t _ f i l e . c l o s e () ;
277 }
278 e l s e
279 {
280 s t d : : cou t << " Inpu t f i l e cou ld not be read " << s t d : :

end l ;
281 }
282 f r e e (r e co rded_ samp l e s) ;
283 }
284 doub le ge tCurrentT imes tamp () {
285 t imespec a ;
286 c l o c k _ g e t t im e (CLOCK_MONOTONIC , &a) ;
287 r e t u r n (1 0 0 0 ∗ ((doub le (a . t v _n s e c) ∗ 1 . 0 e −9) + doub le (a .

t v _ s e c))) ;
288 }

APPENDIX A. SOURCE CODE 48

A.2 record_voice.cpp

1 # i n c l u d e < s t d i o . h>
2 # i n c l u d e < s t d l i b . h>
3 # i n c l u d e <ct ime >
4 # i n c l u d e " po r t a ud i o . h "
5 # i n c l u d e " r e c o r d _ v o i c e . h "
6
7 vo id r e c o r d _ v o i c e (f l o a t ∗ r e co rded_ samp l e s) {
8
9 PaS t reamParamete r s i npu t _pa r ame t e r s ;
10 PaStream ∗ s t ream ;
11 PaEr ro r e r r ;
12 i n t t o t a l _ f r am e s ;
13 i n t num_samples ;
14 i n t num_bytes ;
15 f l o a t max , average , v a l ;
16
17 t o t a l _ f r am e s = NUM_SECONDS ∗ SAMPLE_RATE ;
18 num_samples = t o t a l _ f r am e s ∗ NUM_CHANNELS ;
19 num_bytes = num_samples ∗ s i z e o f (f l o a t) ;
20 i f (r e co rded_ samp l e s == NULL) {
21 p r i n t f (" Could not a l l o c a t e r e co r d a r r ay . \ n ") ;
22 e x i t (1) ;
23 }
24
25 f o r (i n t i = 0 ; i < num_samples ; i ++)
26 r e co rded_ samp l e s [i] = 0 ;
27
28 e r r = P a _ I n i t i a l i z e () ;
29 i f (e r r != paNoError)
30 goto e r r o r ;
31
32 i npu t _pa r ame t e r s . d e v i c e = Pa_Ge tDe f au l t I npu tDev i c e () ;
33 i f (i npu t _pa r ame t e r s . d e v i c e == paNoDevice) {
34 f p r i n t f (s t d e r r , " E r r o r : No d e f a u l t i npu t d e v i c e . \ n ") ;
35 goto e r r o r ;
36 }
37 i npu t _pa r ame t e r s . channelCount = NUM_CHANNELS ;
38 i npu t _pa r ame t e r s . sampleFormat = PA_SAMPLE_TYPE ;

APPENDIX A. SOURCE CODE 49

39 i npu t _pa r ame t e r s . s ugge s t e dLa t en cy = Pa_Ge tDev i c e In fo (
i npu t _pa r ame t e r s . d e v i c e)−>de f au l t Low Inpu tLa t en cy ;

40 i npu t _pa r ame t e r s . h o s tA p i S p e c i f i c S t r e am I n f o = NULL ;
41
42 e r r = Pa_OpenStream (& stream ,
43 &inpu t_pa r ame t e r s ,
44 NULL , / / &

ou tpu t _pa r ame t e r s
45 SAMPLE_RATE ,
46 FRAMES_PER_BUFFER ,
47 paC l ipOf f , / / we won ' t

ou tpu t out o f range samples so
don ' t bo the r c l i p p i n g them

48 NULL , / / no c a l l b a c k ,
use b l o c k i ng ap i

49 NULL) ; / / no c a l l b a c k ,
so no c a l l b a c k use rDa ta

50 i f (e r r != paNoError)
51 goto e r r o r ;
52
53 e r r = Pa_S t a r t S t r e am (s t ream) ;
54 i f (e r r != paNoError)
55 goto e r r o r ;
56 p r i n t f (" \ n−−−−−−NOW RECORDING!!−−−−−−\n \ n ") ; / / f f l u s h (

s t d ou t) ;
57
58
59 e r r = Pa_ReadStream (stream , reco rded_samp le s ,

t o t a l _ f r am e s) ;
60 i f (e r r != paNoError)
61 goto e r r o r ;
62
63 e r r = Pa_CloseS t ream (s t ream) ;
64 i f (e r r != paNoError)
65 goto e r r o r ;
66
67 Pa_Terminate () ;
68
69 r e t u r n ;
70

APPENDIX A. SOURCE CODE 50

71 e r r o r :
72 Pa_Terminate () ;
73 f p r i n t f (s t d e r r , "An e r r o r occured whi l e u s ing the

po r t aud i o s t ream \ n ") ;
74 f p r i n t f (s t d e r r , " E r r o r number : %d \ n " , e r r) ;
75 f p r i n t f (s t d e r r , " E r r o r message : %s \ n " , Pa_Ge tEr ro rTex t (

e r r)) ;
76 r e t u r n ;
77 }

APPENDIX A. SOURCE CODE 51

A.3 write_wav.c

1 # i n c l u d e < s t d i o . h>
2 # i n c l u d e < s t d l i b . h>
3 # i n c l u d e < f s t r eam >
4
5 # i n c l u d e " wri te_wav . h "
6
7
8
9 vo id wri te_wav (con s t char ∗ f i l e_name , f l o a t ∗ aud io_da ta ,

i n t num_bytes , s h o r t num_channels , i n t s amp le_ ra t e ,
s h o r t b i t s _ p e r _ s amp l e) {

10 wav_header_t header ;
11 / / RIFF wave header
12 header . chunk_id [0] = ' R ' ;
13 header . chunk_id [1] = ' I ' ;
14 header . chunk_id [2] = ' F ' ;
15 header . chunk_id [3] = ' F ' ;
16 header . chunk_s i z e = 36 + num_bytes ;
17 header . fo rmat [0] = 'W' ;
18 header . fo rmat [1] = 'A ' ;
19 header . fo rmat [2] = 'V ' ;
20 header . fo rmat [3] = ' E ' ;
21
22 / / Format subchunk
23 header . subchunk1_ id [0] = ' f ' ;
24 header . subchunk1_ id [1] = 'm ' ;
25 header . subchunk1_ id [2] = ' t ' ;
26 header . subchunk1_ id [3] = ' ' ;
27 header . subchunk1_s i z e = 1 6 ; / / 16 f o r PCM

, s i z e f o r r e s t o f subchunk
28 header . aud io_ fo rma t = 3 ; / / 1 f o r PCM,

3 f o r f l o a t i t seems
29 header . num_channels = num_channels ;
30 header . s amp l e _ r a t e = s amp l e _ r a t e ;
31 header . b i t s _ p e r _ s amp l e = b i t s _ p e r _ s amp l e ;
32 header . b y t e _ r a t e = header . s amp l e _ r a t e ∗ header .

num_channels ∗ header . b i t s _ p e r _ s amp l e / 8 ;
33 header . b l o c k _ a l i g n = header . num_channels ∗ header .

APPENDIX A. SOURCE CODE 52

b i t s _ p e r _ s amp l e / 8 ;
34 / ∗
35 / / F a c t subchunk
36 header . subchunk2_ id [0] = ' f ' ;
37 header . subchunk2_ id [1] = ' a ' ;
38 header . subchunk2_ id [2] = ' c ' ;
39 header . subchunk2_ id [3] = ' t ' ;
40 header . subchunk2_s i z e = 4 ;
41 header . unknown2_1 = 4 3 2 0 7 ;
42
43 / / PEAK subchunk
44 header . subchunk3_ id [0] = ' P ' ;
45 header . subchunk3_ id [1] = ' E ' ;
46 header . subchunk3_ id [2] = 'A ' ;
47 header . subchunk3_ id [3] = 'K ' ;
48 header . subchunk3_s i z e = 1 6 ;
49 header . unknown3_1 = 1 ;
50 header . unknown3_2 = 0 x59036d67 ;
51 header . unknown3_3 = 0 x 3 e a l f 3 8 0 ;
52 header . unknown3_4 = 0 x24 f c ;
53 ∗ /
54 / / Data subchunk
55 header . subchunk2_ id [0] = ' d ' ;
56 header . subchunk2_ id [1] = ' a ' ;
57 header . subchunk2_ id [2] = ' t ' ;
58 header . subchunk2_ id [3] = ' a ' ;
59 header . subchunk2_s i z e = num_bytes ; / / or num_samples ∗
60
61 / / Wri te
62 s t d : : o f s t r e am f i l e (f i l e_name , s t d : : i o s : : b i n a ry) ; / / s t d

: : i o s : : out
63 f i l e . w r i t e ((char ∗)&header , s i z e o f (header)) ;
64 f i l e . w r i t e ((char ∗) aud io_da ta , num_bytes) ;
65 f i l e . c l o s e () ;
66
67 }

	Introduction
	Background
	Machine learning
	Neural network topologies
	Neural network training
	Inference
	Neural Networks on FPGA

	Survey of existing frameworks
	OpenCL
	Intel OpenVINO
	Xilinx ML Suite
	Amazon Web Service

	Accelerating a speech-recognition CNN
	Previous work
	Amazon AWS
	Registering and financing
	Server setup and connecting
	Testing and importing

	Intel OpenVINO
	Setup
	Running examples
	Porting Skafså's code to OpenVINO
	The ported code
	Running the program

	Results
	Test setup specifications
	Program execution times
	Layer execution times

	Discussion
	Result analysis
	CPU vs FPGA
	Test setup influence on the results
	OpenVINO performance compared to Skafså's OpenCL implementation
	Model Optimizer optimisation

	Intel OpenVINO vs AWS/Xilinx
	Feature comparison
	Ease of use

	Further work
	Use the ML Suite locally to port the network to a Xilinx FPGA
	Change the network to map conv1 to the FPGA
	Run the inference on a more modern computer

	Conclusion
	References
	Source code
	voice_recognition_OpenVINO.cpp
	record_voice.cpp
	write_wav.c

