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Abstract

This work focuses on designing an analytical model for neural network in hardware. The

operation of a Convolutional Neural Network (CNN) was studied and imitated to create

analytic functions in python that mimics the hardware. Analysis was done to determine the

area, performance and power consumption of implementing parallel Multiply-Accumulate

(MAC) units. Sparse inputs were also studied to observe their effect on MAC computations

and their results are reported. The study provides the relationship between usage of MAC

on area and power. The results give a general idea to the hardware designers to make

expectations on the number of MAC units that can be fitted to a chip with given area

and find their respective power usage.
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1 Introduction

1.1 Motivation and Objective

Machine learning (ML) and Artificial Intelligence (AI) have been gaining dramatic

popularity in recent times. With sectors such as embedded software, electronics, medical

sciences and so on, the application of AI increases at a faster pace. A significant part of

this development is due to the use of Convolutional Neural Networks (CNNs).

Hardware manufacturers are also coming up with AI peripherals in their chips. Neural

network computations are memory and power intensive. Although there exists several

hardware architectures that can achieve neural network computations in less power

and computation budget, but they are not as optimized. This creates a vast area in

research to come up with ways in hardware solution for a more optimized neural network

computation which is accurate and less power hungry.

1.2 Contribution

One of the most demanding task in a CNN is the multiplication and addition of inputs

and kernels in each layer. Considering that CNNs use multiple layers of input images to

improve accuracy of computation, the focus of this thesis is mostly put on this computation.

In hardware, this computation is done using a Multiply Accumulate (MAC) block. The

goal of the thesis is as follows:

- Create a performance model of a single MAC.

- Create a performance model of a parallel MAC based on kernel size.
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1.3 Methodology

This work involves writing code blocks in python that mimics the hardware scenario. This

was done to create an analytical model that supports the computation of convolution

operation on a hardware MAC unit. The created model in Python was used to study the

patterns of area and power consumption for implementing parallel MAC units, considering

both normal and sparse inputs. Similar operation was done, writing codes in Python, to

generate random 1-D and 2-D matrix for inputs and perform computation that is followed

in CNN to get an output feature map within each layer. The output is compared to the

output of the python model that was created to perform the work in thesis which matched

as expected.
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1.4 Report Structure

Chapter 1 - Introduction

Chapter 1 introduces the work - its motivation, the target problem for which the work

was necessary and the contributions made in this thesis.

Chapter 2 - Background

Chapter 2 gives a brief overview of CNN and it operation that is relevant to this study.

Chapter 3 - Related Work

Chapter 3 presents the related work done in this field that are an in relation or extension

to the work done in the thesis.

Chapter 4 - Architecture

Chapter 4 presents the architecture that was designed and implemented for the study to

get a result for analysis.

Chapter 5 - Analysis

Chapter 5 compares the result that is obtained from running the codes and discusses

about the data and their relevance.

Chapter 6 - Discussion

Chapter 6 discusses about the work that is done and also highlights the future scope that

can be implemented to further extend the study.

Chapter 7 - Conclusion

Chapter 7 mentions the conclusion of the work along with some lessons learned and

suggestions that can be used as a starting point if the study is chosen to be continued

further.

Abstract

Contains the source codes and parameters used to conduct the study. Graphs from

analysis are also included in this section for better visualization.
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2 Background

In this chapter some background and theory necessary to understand the subject is

presented. At first, machine learning and neural networks are introduced, including some

theory on training the network. Then a brief explanation of CNN is presented along with

the basics behind multiply accumulate operation, which is the prime focus of this thesis

work.

2.1 Machine Learning

Machine learning (ML) stems from computer science and was originally defined in 1959

by A. L. Samuel [8] as a field of study that gives computers the ability to learn without

being explicitly programmed. A more formal definition was made by Mitchell [9] as :

A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P if its performance at task in T,

as measured by P, improves with experience E.

One such example is the hand writing recognition program. The task T will be to recognize

and classify the handwritten words within images, the performance measure P is the

percentage of words correctly classified, and training experience E is the database of words

with known classification. There are many applications of machine learning such as image

recognition, object detection, speech recognition etc. and the list continues to grow.

A subset of ML is neural network, also known as Deep Neural Network (DNN) when the

network consists of multiple layers. A further extension of DNN is the Convolutional

Neural Network (CNN) which is the highlight of this thesis.

2.2 Neural Network

A neural network is a network or circuit of neurons and is composed of artificial neurons

or nodes. Neural network is either a biological neural network, made up of real biological

neurons, or an artificial neural network for solving AI problems. The term neural network
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has its origin in attempts to find mathematical representations of information processing

in biological systems, where the perceptron was one of the big influential outcomes of

this research [10]. The perceptron is an artificial neuron that was developed by Frank

Rosenblatt during the 1950s and 1960s. It takes in several binary inputs, x1, x2, x3, ...,

and produces a single binary output. This is shown in figure 2.1 along with the respective

mathematical representation.

Figure 2.1: Perceptron model and equation

Rosenblatt introduced weights and threshold value, which are all real numbers and

parameters of the perceptron. Based on these parameters the output will either be 0 or 1,

depending on the input as demonstrated in the figure above.

Current models are similar to Rosenblatt’s perceptron, with a few changes. Bias, b is

introduced instead of using threshold and is defined as b ≡ −threshold. Additionally, an

activation fucntion is introduced which allows small changes in the weights or bias to only

cause a small change on the output, this property is helpful when training a network. For

the perceptron such small changes may cause the output to flip, e.g. from 0 to 1. The

new model and definition of a neuron is demonstrated in the following equation:

y = f(w · x+ b) = f(
∑

j

wjxj + b) (2.1)

In equation 2.1, y is the output that is given by the dot product of neuron’s weight vector

w, and the input vector w, plus the bias. The function, f(), that is wrapped around is

known as the nonlinear activation function. The three most common activation functions

are sigmoid, tanh and RelU and are shown in figure 2.2. Activation function is not a

major concern in this work so it will not be discussed in details.
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Figure 2.2: Activation functions

A neural network consists of many layers that are organized in multiple layers. The first

layer of the network in the input layer, that is followed by one or more hidden layers.

The term hidden layers are used as these layers are neither inputs nor outputs. The last

hidden layer is followed by the output layer. The number of neurons in the output layer

depends on the task. For example. in handwritten number recognition, there would be 10

output neurons; one for each number ranging from 0 to 9.

If all the inputs to a layer’s neurons stems from the previous layer, it is known as a

feed-forward neural network. If connections between neurons can form a directed cycle

in the network, it forms a recurrent neural network. Further discussion on the network

types are not important for this work, hence they are not touched in details.
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2.3 Network Training

Training a network involves a way to optimize the weights and biases of the network. This

work doesn’t focus on training the network so network training will be discussed in brief.

For training a network, a set of input vectors xn, where n 0 1, 2, ..., N, together with a

corresponding set of target vectors xn, is required. A cost function, C(w,b), is introduced

and to get better classification of results, the cost function needs to be minimized. The

equation for cost function is as follows:

C(w, b) = 1
2N

N∑
n=1
||y(xn)− tn||2 (2.2)

In equation 2.2, w and b is the collection of all the weights and biases in the network. To

minimize the cost function, an algorithm called gradient decent is used. The idea behind

it is to alter the values of the weights and biases by updating them with small steps in

the direction of the negative gradient. This update for each weight component wk and pl

is given by:

wk → wk = wk − η
∂C(w, b)
∂wk

(2.3)

bl → bl = bl − η
∂C(w, b)
∂bl

(2.4)

These updates are performed many times for the cost function to converge towards a local

minimum. The parameter η is the learning rate that decides how fast the cost function

converges. Larger η value causes the cost function to increase and not converge. η is

known as the hyper-parameter and is not trained like the weights and biases, but can still

be chosen appropriately and possibly be fine tuned [11].

Duration of training time depends on the number of training inputs. Stochastic gradient

descent can be used to speed up the process, where instead of using all N training inputs,

a smaller number of samples are randomly chosen from the training set. This makes the

update operation from equations in 2.3 and 2.4 perform faster.

Back propagation is another most important algorithm to train neural network in recent

times as it provides faster way of computing the gradient of the cost function. First an
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input vector xn is passed forward in order to find the activation of all the neurons. Then

error values on the outputs are propagated backwards through the network, that is used

to calculate the gradients and perform the updates [12][10].

2.4 Convolutional Neural Network

The Convolutional Neural Network (CNN) is a feed-forward neural network, which means

that there is no loop-backs in the network like in back propagation. CNNs are very

similar to normal neural networks as they are made up of neurons which have trainable

weights and biases. The difference is the CNN has fully connected layer with additional

two layers: pooling later and convolutional layer. These layers are stacked several times

to form a CNN [11]. This work explicitly focuses on the convolutional layer and uses its

operation to be implemented in a hardware environment.

Figure 2.3: Convolution Operation[1]

Figure 2.3 shows an example of a CNN that consists of 6 layers (excluding the input).

CNN uses filters (also known as kernels) to detect features such as edges present

throughout an image. A filter is a matrix of values, known as weights, that are trained

to detect specific features. The filter moves over each part of the image to check if the

feature which it is supposed to detect is present. To provide a value representing the

confidence about the presence of the specific feature, the filter performs a convolution

operation, which is an element-wise product and sum between two matrices.

If the feature is present in the part of the image, the convolution operation between the

filter and that part of the image results in a real number with a high value. If the feature

is not present, the resulting value is low.
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Additionally, a filter can be slid over the input image at varying intervals, as represented

in Figure 2.4, using a stride value. The value dictates by how much the filter should move

each step. Sometimes padding is added, as shown in Figure 2.4, for the filter to capture

all the data within the input image. The filter is passed through a non-linear mapping so

that the CNN can learn the values for a filter that detect features present in the input

data. The output of the convolution operation is summed with a bias term and passed

through a non-linear activation function. This introduces non-linearity in the network

and is done by the rectified linear unit (ReLU), which turns the values that are less

than zero to zero and all the positives are left unchanged. The final stage of CNN is the

pooling layer that is down-sampling of a feature map. Pooling layer operates on each

feature map independently.The most common approach of pooing is max pooling.

Figure 2.4: A demo of a Conv layer with K = 2 filters, each with a spatial extent F = 3 ,
moving at a stride S = 2, and input padding P = 1. [2]
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2.5 Multiply Accumulate (MAC)

Multiply accumulate operation is one of the vastly used operation in computing, especially

in digital signal processing. It is used to compute the product of two numbers and adds

that product to an accumulator which is usually a memory. The hardware unit that

does the operation is known as multiplier-accumulator (MAC or MAC unit [13]). The

operation can be represented by equation 2.5.

a← a+ (b× c) (2.5)

Figure 2.5: 4-bit MAC block diagram

Figure 2.5 represents a MAC unit that takes in two inputs (b, c from equation 2.5) of

4-bits each to the multiplier. The output of the multiplier is 8-bit due to the product

of two 4-bit inputs in the multiplier. The output of the multiplier is fed to the adder

circuit which adds the value of the multiplier from the previous cycle and stores it to the

accumulator. The adder circuit is further split-up to represent its architecture in Figure

2.6.

Figure 2.6 (a) represents a 4-bit adder circuit block diagram which is composed of 4 full
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Figure 2.6: 4-bit Adder Circuit [3, 4]

adder circuits and each of these adder consists 2-XOR gates, 2-AND gates and 1-OR gate

as shown in Figure 2.6 (b) (squared portion). Each adder outputs a summation value of 2

1-bit input (A0, B0, ...) and a carry value that is propagated to each of the connected full

adders until the end.

This project concentrates on the logical design of each of the blocks in the MAC unit for

which a low level representation of the blocks are discussed in the background section.
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2.6 Sparse Matrix

In mathematics "sparse" and "dense" often refers to the number of zero vs. non-zero

elements in an array (vector or matrix). A sparse array is one which contains mostly

zeros and few non-zero entries, while a dense array contains mostly non-zero values.

In the context of neural networks things that are described as sparse or dense include

the activation of units within a particular layer, the weights and the data. In sparse

connectivity, a small subset of units are connected to each other with no connection with

units that has zero weights.

Figure 2.7: CNN Sparse Connectivity Representation [5]

Sparse Connections, as presented in Figure 2.7, is one of the focus of this study as it saves

power. Since sparse connections does not deal with the zero input values, they are omitted.

This means that the multiply-add operation will not be performed for zero values, saving

number of cycles, gate usage and thus saving power as the MAC block would be turned

off for zero inputs. More details of the operation would be discussed in the Methodology

chapter.
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3 Related Work

A lot of research had been conducted on making the MAC operation more efficient with

designs and methods that make the operation faster. This section focuses on a couple

of those works that has been done on the CNN MAC designs, so that it can be used as

a base to support the work done in this thesis. Also the works in this chapter can be

considered as a motivation for future work.

3.1 Low complexity MAC

3.1.1 Abstract

CNNs require large amounts of processing capacity and memory bandwidth. Typical

hardware accelerators have large numbers of MAC units. Multipliers are large in integrated

circuits (IC) gate count and power consumption. "Weight sharing" accelerators have been

proposed where full range of trained weights are compressed and put into bins and it’s

index is used to access the weights-shared value. Parallel accumulate shared MAC (PASM)

[6] is implemented is discussed in this paper, that is coupled with the weight-shared CNN

method. PASM re-architects the MAC to count the frequency of each weight and place

it in a bin. The accumulated value is computed in a subsequent multiply phase that

significantly reduces gate count and power consumption of the CNN.

3.1.2 Concept

The PASM architecture reduces oiwer and area by first making the MAC do the

accumulation first, followed by a shared post-pass multiplication [6]. The accelerator is

shown in Figure 3.1. PASM has two phases:

1. Accumulate the image values into weight bins (known as parallel accumulate and

store (PAS)).

2. Multiply the binned values with the weights (completing the PASM).
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Figure 3.1: PASM showing PAS unit followed by a shared MAC[6]

Figure 3.2(a) represents an example of the accumulate phase. The PAS unit is a sequential

circuit that consumes a pair of inputs (the image value and the binIndex value) at every

cycle. The binIndex is the index of the weight value in the dictionary of weight encoding.

The PAS unit contains B accumulators, one for each entry in the dictionary of weight

encoding. The accumulator is initially set to zero. Every time the PAS consumes an input

pair, it adds the image value to the accumulator with the index in binIndex.

Figure 3.2(b) shows the example of the second phase of PASM operation. Here the

histogram of weight indices is combined with the actual weight values to compute the

result of the sequence of multiply-accumulate operation. Pre-trained weight of one bin

is multiplied with the image value of the same bin (e.g. 1.7 × 32.8 of bin 0 for both

weight and image gives 55.76). Subsequent bins of weights and images undergo the same

operation until all the corresponding bins are multiplied and accumulated in the result

register. The second phase of PASM can be implemented using a traditional MAC unit.

Figure 3.2: PASM Operation[6]
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3.2 Vedic MAC

3.2.1 Abstract

In this paper[7] a MAC design is presented using vedic multiplier with square root carry

select adder (SQRT-CSLA). It was seen to have significant impact on the area and power

consumption also providing better performance of the entire neural network.

3.2.2 Concept

3.2.2.1 Vedic Multiplier

Speed and accuracy is the constraint in multiplication process[14]. Speed can be achieved

by reducing the computation process in the multiplication technique which can be efficiently

done by a vedic multiplier [15]. The architecture of a 8× 8 vedic multiplier is presented

in Figure 3.3.

Figure 3.3: Block Diagram of 8 x 8 Vedic Multiplier[7]

In Figure 3.3, each 4× 4 vedic multiplier perform the operation separately, computing

partial products that are added by the 8-bit SQRT-CSLA; finally giving out a 16-bit
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multiplication output. The 8-bit input sequence is divided into two 4-bit numbers and a

combination of the inputs are fed in 4 4× 4 vedic multiplier to perform efficient Vedic

multiplication[16]. The inputs of the 4-bit multipliers are a[7:4] b[7:4], a[3:0] b[3:0], a[7:4]

b[3:0] and a[3:0] b[7:4].

3.2.2.2 SQRT-CSLA Adder

Carry propagation delay and low complexity are recognized as high potential in every

addition circuit[14]. An efficient output can be achieved by the SQRT-CSLA adder

architecture. Based on the selection of carry inputs, there are two kinds of SQRT-CSLA

adder: a) Dual Ripple Carry Adder (RCA) based SQRT-CSLA; d) Binary to Excess-1

converter (BEC) based SQRT-CSLA.

Figure 3.4: Architecture of BEC based SQRT-CSLA[7]

Figure 3.4 represents the architecture of a BEC based SQRT-CSLA containing BEC, RCA

and mux. Half adders, full adders and multiplexers are used for providing partial product

addition results. BEC circuits are used to provide same RCA functions, but have different

architectures with less gate count. Due to increasing propagation delay in the RCA circuit,

BEC based SQRT-CSLA adder architecture is used in the design of a vedic MAC unit.
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4 Architecture

This chapter discusses about the design choices made to conduct the thesis work, along

with the explanation of why such choices were made. The reasons behind the design

choices have been explained and discussed with reasoning. The study is done using python

programming and keeping the hardware design in mind so that the approximation of the

design can follow the real world hardware implementation.

4.1 Design choices

4.1.1 Multiply Accumulate (MAC) Design

The prime focus of this project is to design an analytical model for the computation of

convolutions performed in CNN. This is typically multiplication of two inputs (image

value and weight value) and addition of these products with its previous values. The

multiply-add is performed in CNN can be implemented using a MAC unit in hardware.

Traditional MAC unit is used in this study due to the complexity of AI networks and

limited time-frame. The re-architectured MAC units and methods mentioned in Chapter

3 can be used as a motivation to create a MAC block that is specialized for neural network

computation. It is also easy to measure the required objectives of this study using a

traditional MAC unit with the given limited time.

4.1.2 Programming Language

The main object of this thesis is to design a hardware MAC architecture with minimal

area and power consumption. For hardware design hardware description language (HDL)

is the go to language. But due to the complexity of the hardware design for neural network

and time constraint, Python is used to design methods and code blocks that mimic the

actual hardware scenario. Also python has excellent support and is the mostly preferred

choice of language for creating AI model and CNN.
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4.1.3 Design Parameters

Since the work involves creating code blocks using python, certain parameters are used to

demonstrate performance, area and power calculations. All these values are taken from

the libraries that Nordic uses for its 55nm technology. No simulation software is used

which makes it hard to get exact power consumption of the functional units.

For Area calculation, the total number of logic gates are found and their respective sizes

are computed for different MAC designs. To calculate the performance, the number of

cycles that is required by the MACs to complete the whole operation is considered. Power,

more specifically dynamic power, is calculated using the formula 1
2 ×α×C×V

2. Dynamic

power is one of the major contributor of power consumption for transistors and it increases

linearly with the area, which is why dynamic power is considered.

4.2 Design explanation

4.2.1 Multiply-Accumulate (MAC) Unit

The MAC unit consists of a multiplier, an adder and an accumulator which is usually a

memory or register. A block diagram of MAC unit is presented in Figure 2.5. A typical

4 × 4 multiplier unit is presented in Figure 4.3 which takes in two 4-bit inputs and

produces an 8-bit product. The multiplier unit is composed of 2 4-bit full-adder blocks

whose logic gate representation is shown in Figure 4.2. Figure 4.3 presents the complete

architecture of a 4× 4 MAC unit. It is constructed with a 4× 4 multiplier unit, an 8-bit

adder unit and an accumulator unit (typically a memory unit) that holds the output

value of the adder unit and loops it back to the adder unit. This is done so that the

current value of the adder unit at time t is added to the previous value of the adder at

time t-1. The carry out from the 8-bit adder can be used to check if the data has been

reached out of frame.
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Figure 4.1: Architecture of a 4-bit Multiplier unit

Figure 4.2: Logic gate representation of a 4-bit Full Adder
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Figure 4.3: Architecture of a 4-bit MAC unit

The 4-bit MAC block is discussed to give an overview of how a MAC is constructed. The

size of the MAC block would increase in size based on the number of inputs. Since the

calculation of Area is based on the number of gates in the circuit, table 4.1 represents
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the number of gates based on the n-bit input of MAC, where n = 1,2,3...N. For CNN

it is seen that maximum word length of 16-bit accommodates almost all forms of data

representation, so more than 16-bit word length is not explored in this study.

4-Bit MAC 8-Bit MAC 16-Bit MAC
AND 56 208 800
XOR 40 144 544
OR 20 72 272

Table 4.1: Table representing number of logic gates based on word length

4.2.1.1 Area

To calculate the Area of the MAC unit, the traditional hardware MAC design was inspected

to get the number of logic gates. Figure 4.1 through 4.3 shows the logical components

of a 4-bit MAC unit. It has 16 AND gates and 3 4-bit Adder units that makes up the

multiplier and a 8-bit adder unit that deals with the summation. The number of adder

units in the multiplier is n-1 where n is the number of inputs in the MAC unit. Each

4-bit adder unit is composed of 8 AND gates, 8 XOR gates and 4 OR gates. Following

the same construction, the 8-bit adder unit has twice the same number of logic gates. All

these values adds up to 56 AND gates, 40 XOR gates and 20 OR gates which makes up a

4-bit MAC unit. Similar rules are followed for calculating the total number of logic gates

in a 8-bit and 16-bit MAC and is presented in Table 4.1.

Values of area occupied by each 2-input logic gate was collected from Nordic’s 55m library

and is presented in Appendix A1. These values were considered to calculate the area of a

MAC unit. The area of MAC is calculated for both normal input data and sparse input

data. The sparse input data is generated based on the threshold value 2n bits. If the word

is 8-bit long then the threshold value is set to 28 = 256, beyond which all the values are

turned to zero using python’s numpy library. The difference in area of a traditional MAC

block and that of a sparse MAC block is discussed in the Analysis chapter.



22 4.2 Design explanation

4.2.1.2 Performance

The performance of the MAC blocks is calculated based on the number of cycles of MAC

code blocks that is run in the program. At first, the number of cycles taken for a single

MAC block is computed. Considering the number of MAC that are implemented, the

number of cycles are calculated. For instance if a single MAC block takes 324 cycles to

calculate a 8× 8 input image with a 3× 3 kernel, then using two MAC blocks will take

half (162 cycles) the amount of cycle to perform the same same operation doubling the

performance.

For parallel functionality, functions are written that uses a maximum of k2 MACs for a

k× k kernel; i.e. a 3× 3 kernel will have a maximum of 32 = 9 MACs to calculate a value

of the output feature map at one cycle, which would take 9 cycles if a single MAC is used.

A detailed discussion of this is done in Chapter 5.

4.2.1.3 Power

• Calculating power using gate

• Calculating power using Area

4.2.2 Program Structure

This section explains the functionality of each of the code blocks that were written as part

of work in the thesis. The code blocks are written keeping the hardware implementation is

mind. The values obtained from the codes are an approximation to the real implementation.

The codes can be used as a reference point for design in HDL.

4.2.2.1 Initial Block

Figure 4.4 shows the block of python code that is used to initialized all parameters used in

the program. Random matrix for both image and kernel are created using numpy library

in python. The dimension of both matrices are controlled using the row and column

variable (dimIR, dimIW) and (dimWR and dimWC) respectively. The size of the image
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Figure 4.4: Snippet of Initialization code block

and kernel matrix are manipulated changing these values to represent both 1D and 2D

array. The stride of the kernel on image is controlled by the stride variable. The strides

are controlled using if-else control statement for the code to work for 1-D and 2-D array.

Figure 4.5: Code snippet of MAC gate structure

Figure 4.5 represents the code snippet that defines the gate structure in a MAC unit.

MacStruct is a tuple that defines a struct known as MacStruct that consists of AND, OR

and XOR gates. This structure is used to obtain the number of logic gates generated by

running the MAC function which is used to calculate area and power consumption by the

MAC unit.

The function in Figure 4.6 represents the calculation of area for the MAC unit. It takes

in one parameter MACs which is the number of MACs used. The maximum number

of MACs used is the size of the kernel dimension. For instance, if a 3× 3 kernel is used
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Figure 4.6: Snippet of code block for calculating Area

then the maximum MACs used for parallel operation is 9. The global variables And, Or,

Xor contains the respective area values for 2-input logic gates as collected from 55nm

library. The area of the MAC unit is then calculated by adding the product of each logic

gate instances with it’s respective area of the logic gate and finally multiplying with the

number of MAC instances giving an approximate value in µm2.

Figure 4.7: Snippet of code block for calculating Power

Figure 4.7 shows the code snippet for calculating dynamic or active power. For power

calculation, values of voltage, activity factor and average routing length is considered as

per 55nm technology in the Nordic components library. These values are mentioned in

the Appendix. Using all the parameters, the power is calculated considering the frequency

of 100MHz.

Figure 4.8: Code snippet of Parallel MAC function

The implementation of parallel MAC operation is presented in Figure 4.8. This function
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performs the multiply and addition operation that is done by a traditional hardware MAC

unit. The function also performs parallel operation to improve performance as opposed to

using a single MAC block.

Figure 4.9: Code snippet of Parallel MAC function consider sparse input

Figure 4.9 demonstrates parallel MAC operation considering sparse input. The difference

between this block and a traditional MAC unit is that, a sparse MAC unit does not

consider any zero input values. It skips over those values which reduces the number of MAC

operations and thus reduce the power consumption altogether.The sparse representation

in this thesis is done to show the reduction of MAC operation.

Figure 4.10: Code snippet for sparse input formation
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Formation of sparse input is presented in Figure 4.10. Based on the word length, the

threshold value is put in the iM[iM > 256]. The code snippet shows the threshold value

set to 256 (28 = 256) considering a 8-bit word length, or 8-input MAC design. The

sparsity of input is calculated to compare the MAC performance by changing the word

length and input size.

4.2.2.2 Operational Blocks

Figure 4.11: Code snippet for CNN operation using single MAC block

Figure 4.11 presents the code block that is used to perform the convolution operation in a

CNN. One MAC unit is used, which is the multiplication and addition operation within

the loop. The loop makes sure that the multiplication of a k × k kernel is performed

on the same size of an image portion and strides one pixel throughout the image until

the whole convolution operation is performed. The accumulated result of the operation
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is stored in the outFS which is a 2-D array. The block also computes the number of

cycles required for the whole CNN operation to complete, along with the area and power

consumption of the MAC unit.

Similar operation is performed by the code block in Figure 4.12 which performs the MAC

operation considering the sparse input data. The difference being the if-else block within

the loop that ensures that no zero inputs are considered and that is reflected by the

smaller total number of cycles used to perform the whole convolution operation.

Figure 4.12: Code snippet for CNN operation using single MAC block with sparse input

Similarly, Figure 4.13 and 4.14 represents the code blocks that computes output

feature maps of a convolution operation using parallel MAC functions MAC(in1, k1)

and MAC_SP(in1, k1). These functions perform MAC operations using parallel MACs,

with and without sparsity. The code blocks also calculates the area and power of the

parallel MAC construction, and also computes the number of MACs along with the total

operation cycles that can be used to compare performance. Additionally, the number of

gates used are also computed which differ from a normal MAC architecture to that of one

considering sparse data architecture.
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Figure 4.13: Code snippet for CNN operation using parallel MACs
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Figure 4.14: Code snippet for CNN operation using parallel MACs with sparse input
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5 Analysis

This chapter discusses the relation of different parameters such as area, power, gate usage

and performance of the MAC units. The focus is made on parallel MAC operation since

it is more likely to affect on better performance. Both normal and sparse inputs were

considered for analysis. After running the code blocks, it was seen that the sparsity of

data using a threshold of 28 = 256 provides is around 0.50; meaning that almost half of

the values of 28× 28 image input is zero. The analysis and discussion is done based on a

MAC design with data size of 8-bit. For 16 and 32 bit word length the data would scale

significantly and can be done with a few tweaks in the codes. For simplicity, an 8-bit

MAC [MACs which takes two 8-bit inputs] is chosen and discussed. Analysis is done

using graphical representation between relationships of the parameters. MATLAB was

used to conduct the analysis for its powerful data analysis capabilities.

Figure 5.1: Graph showing the relationship
between Number of MACs and Kernel size

Kernel

Size

Total

MAC

Total

MAC

(sparse)

1 x 2 2 2

2 x 2 4 3

1 x 3 3 3

3 x 3 9 5

1 x 4 4 3

4 x 4 16 10

1 x 5 5 4

5 x 5 25 15

1 x 7 7 5

7 x 7 49 30

Table 5.1: Data for total MACs and kernel
size/dimension based on normal and sparse
input

The number of MACs, based on kernel size or dimension, for both normal and sparse

inputs are demonstrated in Table 5.1 and their trend is shown in Figure 5.1. It is clearly

seen that the number of MACs for sparse inputs (red line) are less than that of normal
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input data. It is also observed that the total number of MACs increases more significantly

for a 2-D kernel than that of a 1-D kernel. This is expected as the number of multiply and

addition operation increases as the size of the kernel increases. The rest of the sections in

this chapter demonstrates the MAC numbers from the same kernel dimension.

5.1 MACs vs. Area

Figure 5.2: Scatter plot showing the
relationship between Number of MACs and Area

Normal Sparse

Total

MAC

Area

mm2

Total

MAC

Area

mm2

2 1706.88 2 1706.88

4 3413.76 3 2560.32

3 2560.32 3 2560.32

9 7680.96 5 4267.20

4 3413.76 3 2560.32

16 13655.04 10 8534.40

5 4267.20 4 3413.76

25 21336.00 15 12801.60

7 5974.08 5 4267.20

49 41818.56 30 25603.20

Table 5.2: Data for total MAC and Area
based on normal and sparse input

Figure 5.2 represents the scatter plot for the total number of MACs used in parallel and

the Area. Respective data for the plot is presented in Table 5.2. Area increases with

number of MACs as the number of gates increases which is reflected in the plot. It is

observed that the total number of MAC reduces for the MAC designed with sparse input

compared to that of normal input data. This is an expected outcome since the number of

operations reduce for sparse input which also reduces the number of MACs, this ultimately

reducing area. Another observation is that the number of Area increases linearly with

the increase in number of MACs. The area of the fictional block will scale based on the

number of blocks that run in parallel.
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5.2 Performance

5.2.1 Number of MACs vs. Operation

Figure 5.3: Scatter plot with best fit showing
the relationship between Number of MACs and
number of operations

Kernel

Size

Total

MACs

Total

Operations

1 x 2 2 3024

2 x 2 4 5832

1 x 3 3 4212

3 x 3 9 12168

1 x 4 4 5200

4 x 4 16 20000

1 x 5 5 6000

5 x 5 25 28800

1 x 7 7 7084

7 x 7 49 47432

Table 5.3: Data for total MAC and
Operations with kernel dimension using
parallel Normal MAC units

Figure 5.3 showcases the relationship between number of MACs used in parallel and

the respective total number of cycles required for the whole convolution operation. The

relevant data are presented in Table 5.3 alongside the dimension of the kernel. Operations

represent the number of cycles that the MACs use in total. Normal image inputs are

considered using MACs in parallel to conduct the analysis. It can be observed that the

number of MACs increases as the kernel dimension move from 1-D to 2-D. The total

number of operations for 1-D kernel is less than that of 2-D kernel. This is expected as

more calculations are involved when the the number of kernel values increases. The data

points represent a scattered manner for which a scatter plot is chosen and its best fit line

is drawn to provide the linear relationship of data.
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5.2.2 Number of MACs vs. Operation for sparse input

Figure 5.4: Scatter plot with best fit showing
the relationship between Number of MACs and
number of operations considering sparse inputs

Kernel

Size

Total

MACs

Total

Operations

1 x 2 2 1444

2 x 2 3 2918

1 x 3 3 2810

3 x 3 5 6528

1 x 4 3 2624

4 x 4 10 11652

1 x 5 4 3584

5 x 5 15 16586

1 x 7 5 4528

7 x 7 30 28474

Table 5.4: Data for total MAC and
Operations with kernel dimension using
parallel MAC units considering sparse
inputs

A similar trend in data can be seen in Figure 5.4 and Table 5.4 for parallel MAC operation

considering sparse inputs. The significant difference of data in Table 5.3 and 5.4 is that

less number of cycles are required when a spars input is considered, Since the MACs do

not take the zero input values into consideration, less number of operations are performed

which results in less cycles being required to complete the whole convolution operation.

The difference is between the two types of MAC construction is more evident in Figure

5.5. The red line shows the sparse MAC operation and the blue line represent normal

operation.
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Figure 5.5: Graphical presentation of the two best it lines for MAC operations in parallel.

5.3 Gate Usage

Figure 5.6: Scatter plot with best fit showing
the relationship between Number of MACs and
number of gates

Total

MAC

Total

Gate

Total

MAC

Sparse

Total

Gate

Sparse

2 641088 2 306128

4 1236384 3 618616

3 892944 3 595720

9 2579616 5 1383936

4 1102400 3 556288

16 4240000 10 2470224

5 1272000 4 759808

25 6105600 15 3516232

7 1501808 5 959936

49 10055584 30 6036488

Table 5.5: Data for total MAC and Gates
using parallel MAC units
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Figure 5.6 and Table 5.5 presents the relationship between the total number of gate

operation with the respective number of MACs used in parallel. The gates include

combination of AND, OR and XOR gates that are used for the MAC construction. The

number of gates presented Table 5.5 does not mean the presence of that many gates,

rather the number of times the gates were used in combination when the MAC blocks

are in operation. It is observed that the number of MACs reduces when sparse input is

considered. This is expected as less number of operation means less usage of gates and

this is supported by the in Table 5.4. The best fit lines shows the trend in data points for

MACs considering with and without sparse input.

5.4 Power

5.4.1 Area Vs. Power

Figure 5.7: Scatter plot showing the
relationship between Area and Power

Area

[mm^2]

Power

[mW]

Area

sparse

[mm^2]

Power

sparse

[mW]

1706.88 0.05849819 1706.88 0.05849819

3413.76 0.11699638 2560.32 0.08774729

2560.32 0.08774729 2560.32 0.08774729

7680.96 0.26324186 4267.20 0.14624548

3413.76 0.11699638 2560.32 0.08774729

13655.04 0.46798553 8534.40 0.29249096

4267.20 0.14624548 3413.76 0.11699638

21336.00 0.73122739 12801.60 0.43873644

5974.08 0.20474367 4267.20 0.14624548

41818.56 1.43320569 25603.20 0.87747287

Table 5.6: Data for Area and Power using
parallel MAC units

Figure 5.7 shows the linear relationship between Area and Power. It is an expected

relation as the power consumption directly depends on the size of the component. Bigger

unit consumes more power and the figure suggests the same pattern. As number of MACs
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are used more the overall size or area of the architecture increases, this also increases the

power significantly as is seen in Table 5.6. The power is significantly seen to be less for

MACs that considers sparse input than that of normal input. This is supported by the

largest value shown in the table, which is comparatively significant in value.

5.4.2 MAC Vs. Power

Figure 5.8: Scatter plot showing the
relationship between number of MACs and
Power

Total

MAC

Power

[mW]

Total

MAC

sparse

Power

sparse

[mW]

2 0.05849819 2 0.05849819

4 0.11699638 3 0.08774729

3 0.08774729 3 0.08774729

9 0.26324186 5 0.14624548

4 0.11699638 3 0.08774729

16 0.46798553 10 0.29249096

5 0.14624548 4 0.11699638

25 0.73122739 15 0.43873644

7 0.20474367 5 0.14624548

49 1.43320569 30 0.87747287

Table 5.7: Data for Power using parallel
MAC units with and without sparse input

Similar trend in seen in Figure 5.8 and Table 5.7 as discussed in the section 5.4.1. Figure

5.8 supports Figure 5.8 which proves that as more MACs are used, the power consumption

is also more.
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6 Discussion

6.1 Design

Considering the objective of the thesis work, the analytical model was designed on high

level using Python. Python makes designing of AI models easy which is the main reason

for choosing this language. Functional code blocks are written to perform the analysis.

Using functional blocks makes it way to maintain and re-factor.

The design that is used in this study consider a 8-bit word length for simplicity. The same

design can a tweaked to accommodate 16-bit and 32-bit word length and perform the same

analysis. The most significant affect by using a 16-bit or 32-bit input will be on the area

and power. Also, the kernel dimensions used to obtain the results range from 2-7. This

is because the standard kernel used in CNN operation is usually 2×2, 3×3, 5×5or7×7[17].

Sparse inputs are considered as an alternative method to that of a traditional one. It is

observed that for most of the calculations in convolution operation, the zero input values

serves no purpose in calculating the output feature map. These redundant calculations

just increases computation cycles which is power hungry. Also the threshold value can be

used as a parameter to control the input matrix and remove all the redundant data. For

instance, in a radio application, if the design is used to identify signal, then the threshold

value can be used to eliminate the signal values from the input. In hardware this operation

can be controlled by a comparator unit/block that could filter out the values. Considering

sparse inputs has shown significant reduction in MAC operation which results in less area

and power consumption.

The kernel size has been modified to fit both 1-D and 2-D representation of kernel/weight

data. With a few minor modification in the codes, the design can be accommodated to

calculate output for 1-D input image as well. This might be more helpful to analyze and

design an AI accelerator that deals with 1-D input, say a time series data.
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6.2 Area

Area calculation is done based on the 8-bit word length of the image and kernel inputs.

This represents a simpler design which scales up significantly as the word length of the

inputs increases to 16-bit and 32-bit. For best implementation, 32-bit inputs are considered

can be implemented by further tweaking the code. This can be considered as a future

scope of study.

If a 16-bit and 32-bit word length is considered for the inputs, the area would also be

increased. On the same axis, the line graphs for the two will lie on top of the data points

that are presented in Figure 5.2. The graphical representations in section 5.1 provides

an idea of relationship between area and total MACs that can be used in parallel. The

data points could be used to draw a best fit line which will show a linear relationship

between the two parameters. The line can be used to get an approximation of the total

number of MACs that can be implemented with a given size/area and vice-versa. The

area calculation in this study is an approximate value for a real-life implementation, so it

may be used as a reference to have an approximate idea of the number of MACs that can

be fit in a System on Chip (SoC) for a given area.

6.3 Power

Similar idea to obtain an assumption for area can be used for power consumption as

well. Since power consumption is directly related to area, an increase in area would also

cause a linear increase in power; as is supported by Figure 5.7. There is also the obvious

conclusion that considering sparsity in the input data helps in significant reduction of

power consumption, and the same is demonstrated in Table 5.6.

The power calculation is done keeping the dynamic/active power of transistors in mind.

There are other factors that are taken into account for total power. Since active power is

the most controlling factor of power consumption, it was considered in this study to provide

value for approximate power. The model derived in this study for power consumption

gives a generic idea of the power consumption, and can be used for identifying power with

given number of MACs and area.
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6.4 Performance

The performance measure in this study is the number of clock cycles and MAC operations

for completing a whole convolution. Performance is directly related to the number of

MACs that are used in total. According to the results, a single MAC with 8-bit 28× 28

image and 7× 7 kernel requires 3388 number of MAC operations. Whereas using 7-MACs

the number of operations seen was 484. This proves that increasing number of MACs to

run in parallel increases the performance as well, with the trade-off in power consumption

and area.
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7 Conclusion

The idea of this thesis is to design an analytical model for MAC architecture and obtain

performance, area and power from the design. This was successfully implemented and the

results were found as expected. Since this is an anlytical study, the values obtained from

this model can be used as a reference to design and implement actual MAC accelerator in

hardware that can perform AI and more specifically CNN operation.

The values obtained from the result of this study can be a helpful insight for digital designers

for design consideration. The result might not be exact but is a close approximation as

the model is designed keeping hardware design in mind. The analysis of this report helps

identify the relationship that one can expect while designing MAC units for area, power

and performance. Since all the relationships are linear, hardware designers can have an

insight of the maximum number of MACs that can be fit into an AI accelerator for a

given size and also have a suggested power consumption.

In future, the model can be extended to fit all the activities, including activation, pooling

and flattening within an entire CNN operation. Moreover, the software implementation

gives an idea on how to implement the same in a hardware. This study is an entry point

to a much bigger study and can be extended to fit diverse AI applications.
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Appendix

A1 Code

#---------------- Library imports ----------------------------

import numpy as np

import math

from numpy import array, reshape, count_nonzero

from collections import namedtuple

#----------------- Variable declaration ----------------------

dimIR = 28 #row-dimension of input image matrix

dimIC = 28 #column-dimension of input image matrix

dimWR = 5 #row-dimension of kernel/weight matrix

dimWC = 5 #column-dimension of input kernel/weight matrix

cnt = 0 # for counting the number of MAC operations

cnt_sp = 0 # for counting the number of sparsed MAC operations

cntCycle = 0 # for getting the number of cycles within one MAC operation

↪→ | initialized to zero whenever MAC function is called

cycle = 0 # for geting the number of MAC operations based on strides

↪→ without cosidering sparsed input data

cycle_SM = 0 # for geting the number of MAC operations based on strides

↪→ cosidering sparsed input data

#------- Creating the input matrix ---------------------------

iM = np.random.randint(0, 500, size = (dimIR, dimIC)) # random generation

↪→ of input image matrix

kM = np.random.randint(-1, 5, size = (dimWR, dimWC)) # random generation

↪→ of kernel matrix

# printing for debugging purposes ---

#print(iM)

#print(kM)
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#------------------------------------

# calculating the number of stride for CNN operation based on the

↪→ dimension of image and kernel

strides = (dimIC - dimWC) + 1

# logic to handle stride value based on kernel dimention to fit 1-D/2-D

↪→ array

if (dimWC != dimWR):

stride = strides + 1 # stride value for 1-D kernel size

else:

stride = strides # stride value for 2-D kernel size

# In[13]:

bitSwap = 8 # variable to control numbber of gates | 8 for 8-bit

↪→ representation and 6 for 16-bit representation

# Code block for logic gate number and area representation

#--- Size in um^2 for logic gates as per Nordic library ------

And = 1.68 # size for 2 input And gate

Or = 1.40 # size for 2 input Or gate

Xor = 2.80 # size for 2 input XOr gate

#-------- Parameters for calculating power -------------------

voltage = 1.2 # as per 55nm technology

frequency = 100 #100MHZ

activity_factor = 0.2 #20% activity factor

capacitance = 4.04 #nF
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#-------- Parameters of logic gates used in MAC --------------

# considering a 8-bit MAC

orGate_8 = 72

xorGate_8 = 144

andGate_8 = 208

# considering a 16-bit MAC

orGate_16 = 272

xorGate_16 = 544

andGate_16 = 800

if (bitSwap == 16):

totalORGates = orGate_16

totalXORGates = xorGate_16

totalANDGates = andGate_16

else:

totalORGates = orGate_8

totalXORGates = xorGate_8

totalANDGates = andGate_8

#print(totalORGates, totalXORGates, totalANDGates)

# Mac struct to define the design of MAC using logic gates

MacStruct = namedtuple("MacStruct", "OR XOR AND")

# variable declaring total number of gates for one n-bit MAC

gate = MacStruct(totalORGates, totalXORGates, totalANDGates)

# In[14]:
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# Function for Calculating Area

def MAC_Area(MACs):

Area = (totalANDGates * And + totalORGates * Or + totalXORGates * Xor

↪→ ) * MACs

return Area

# In[15]:

# Function for calculating power considering area

def Power(Area):

global voltage, frequency, activity_factor, capacitance

power = 0.5 * activity_factor * capacitance * (voltage * voltage) *

↪→ Area

return int(power)

# In[16]:

# Parallel MAC functional block conducting MAC operation of the same size

↪→ as kernel dimension

def MAC(a,b):

global acc, cnt, cycle, cntCycle

global And, Or, Xor

for item in range(len(a)):

mul = a[item]*b[item]

cntCycle += 1

acc = acc + mul

cntCycle += 1
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cnt +=1 #getting the mac operation considering each value

cycle += 1 #getting the number of cycles for whole operation based on

↪→ kernel size

OrGate = gate.OR * cnt

XorGate = gate.XOR * cnt

AndGate = gate.AND * cnt

return (acc, cycle, OrGate, XorGate, AndGate, cntCycle, cnt)

# In[17]:

# Parallel MAC operation fucntion considering sparsed input

def MAC_SP(im_in,k_in):

global acc, cnt_sp, cycle_SM, cntCycle

global And, Or, Xor

for item in range(len(im_in)):

if (im_in[item] == 0 and k_in[item]):

pass

else:

mul = im_in[item]*k_in[item]

cntCycle += 1

acc = acc + mul

cntCycle += 1

cnt_sp += 1

cycle_SM += 1

OrGate = gate.OR * cnt_sp

XorGate = gate.XOR * cnt_sp
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AndGate = gate.AND * cnt_sp

return (acc, cycle_SM, OrGate, XorGate, AndGate, cntCycle, cnt_sp)

# In[18]:

cnt_single_mac = 0

outFS_v = []

mac_cycle = 0

for strideY in range(stride):

for strideX in range(strides):

acc = 0

for iRow in range(dimWR):

for iCol in range(dimWC):

IM = iM[iRow+strideY][iCol+strideX]

K = kM[iRow][iCol]

#print(IM, K)

mul = IM * K

acc = acc + mul

cnt_single_mac += 1

mac_cycle += 1

outFS_v.append(acc)

outFS = array(outFS_v)

outFS = outFS.reshape((int(outFS.shape[0]/strides), strides))

#print(outFS)

MAC_Single_Area = MAC_Area(1)

Power_Consumed = Power(MAC_Single_Area)

print("Total MAC cycles = %s" %mac_cycle)



A1 Code 49

print("Area of single 8-Bit MAC = %.2f um^2" %MAC_Single_Area)

print("Power consumed by a single 8-Bit MAC = %.2f nW" %Power_Consumed)

print('Total cycles required for operation: %s' %(cnt_single_mac))

# In[19]:

cntCycle = 0

cnt = 0

cycle = 0

outFP_v = []

for strideY in range(stride):

for strideX in range(strides):

in_1 = np.array([])

k_1 = np.array([])

acc = 0

for iRow in range(dimWR):

for iCol in range(dimWC):

IM = iM[iRow+strideY][iCol+strideX]

K = kM[iRow][iCol]

in_1 = np.append(in_1, IM)

k_1 = np.append(k_1, K)

#print(in_1)

#print(k_1)

result = MAC(in_1, k_1)

#print(result[0])

outFP_v.append(result[0])

MACs_used = math.ceil(result[6]/result[1])
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area = MAC_Area(MACs_used)

power = Power(area)

outFP = array(outFP_v)

outFP = outFP.reshape((int(outFP.shape[0]/strides), strides))

#print(outFP)

print('Total MAC cycles: %s' %result[1])

print('Total arithmatic cycles: %s' %result[6])

print('Total OR gates used: %s' %result[2])

print('Total XOR gates used: %s' %result[3])

print('Total And gates used: %s' %result[4])

print('Total arithmatic operations performed: %s' %result[5])

print('Total Area of MAC block: %.2f um^2' %area)

print('Total power consumed: %.2f nW' %power)

print('Total MACs used = %s' %MACs_used)

# In[20]:

iM[iM > 256] = 0

cnt = 0

print(iM)

print(kM)

# calculate sparsity

sparsity = 1.0 - (count_nonzero(iM) / iM.size)

print("Sparsity of input data = %s" %sparsity)

# In[21]:
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outFSS_v = []

cnt_single_mac = 0

mac_cycle = 0

for strideY in range(stride):

for strideX in range(strides):

acc = 0

for iRow in range(dimWR):

for iCol in range(dimWC):

IM = iM[iRow+strideY][iCol+strideX]

K = kM[iRow][iCol]

if( IM == 0 and K):

pass

else:

mul = IM * K

acc = acc + mul

cnt_single_mac += 1

outFSS_v.append(acc)

if(acc != 0):

mac_cycle += 1

#print(acc)

outFSS = array(outFSS_v)

outFSS = outFSS.reshape((int(outFSS.shape[0]/strides), strides))

#print(outFSS)

print('Total MAC cycles: %s' %mac_cycle)

print('Total operation cycles: %s' %(cnt_single_mac))

# In[22]:
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cntCycle = 0

cnt = 0

outFPS_v = []

mac_cycle = 0

for strideY in range(stride):

for strideX in range(strides):

in_1 = []

k_1 = []

acc = 0

for iRow in range(dimWR):

for iCol in range(dimWC):

IM = iM[iRow+strideY][iCol+strideX]

K = kM[iRow][iCol]

in_1.append(IM)

k_1.append(K)

#print(in_1)

#print(k_1)

result = MAC_SP(in_1, k_1)

outFPS_v.append(result[0])

if(result[0] != 0):

mac_cycle += 1

MACs_used = math.ceil(result[6]/mac_cycle)

area = MAC_Area(MACs_used)

power = Power(area)

outFPS = array(outFPS_v)

outFPS = outFPS.reshape((int(outFPS.shape[0]/strides), strides))

print('Total MAC cycles: %s' %mac_cycle)
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print('Total arithmatic cycles: %s' %result[6])

print('Total OR gates used: %s' %result[2])

print('Total XOR gates used: %s' %result[3])

print('Total And gates used: %s' %result[4])

print('Total arithmatic operations performed: %s' %result[5])

print('Total Area of MAC block: %.2f um^2' %area)

print('Total power consumed: %.2f nW' %power)

print('Total MACs used: %s' %MACs_used)

#print(outFPS)

A2 Parameter Values

For power calculation, the following values were obtained for a typical signal processing

unit within Nordic Semiconductor’s 55nm technology library:

• Average Current, Iavg = 60mA

• Operating Voltage, V = 1.1V

• Total number of gates, G = 1.7M

• Operating frequency, f = 180MHz

• Activity factor, α = 15%

These values were used to calculate active power of a gate using P = V × I and hence

calculate the capacitance using the following formula:

P = 1
2×Activityfactor×Capacitance×OperatingV oltage×Operatingfrequency (.1)

For this thesis work, the following parameters were considered to calculate dynamic power:

• Operating frequency, f = 100MHz

• Operating Voltage, V = 1.2V , as per Nordic’s 55nm library

• Activity factor, α = 20%
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A3 Result Data

Figure A3.1: Data from code using single MAC unit

Figure A3.2: Data from code using parallel MAC unit for normal input

Figure A3.3: Data from code using parallel MAC unit for sparse input
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A4 Graphs

Figure A4.1: Graph showing the relationship between Number of MACs and Kernel size

Figure A4.2: Scatter plot showing the relationship between Number of MACs and Area
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Figure A4.3: Scatter plot with best fit showing the relationship between Number of MACs
and number of operations

Figure A4.4: Scatter plot with best fit showing the relationship between Number of MACs
and number of operations considering sparse inputs
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Figure A4.5: Scatter plot with best fit showing the relationship between Number of MACs
and number of gates

Figure A4.6: Scatter plot showing the relationship between Area and Power
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Figure A4.7: Scatter plot showing the relationship between number of MACs and Power


