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Asymmetric cryptography, which is also known as public-key cryptography,
provide algorithms for encryption and decryption of data, digital signatures and
authentication. Compared with traditional asymmetric techniques, e.g. the RSA
algorithm, the elliptic curve cryptography (ECC) achieves an equivalent level of

security with smaller key sizes resulting in memory as well as bandwidth savings.
Computational intensive operations like scalar multiplication on elliptic curves are
required during the processing of ECC protocols. Using dedicated hardware units
for these operations improves execution time in an energy efficient manner. Most
implementations are based on high-end CPUs and GPUs and their use in mobile
devices with limited power resources such as smartcards is untested.

This assignment is a continuation of an autumn project focusing on a theoretical
and practical study of ECC, including experiments and profiling using Python and
C-based code versions. Based on the results from these profiling experiments, this
master thesis work will test the hypothesis that a hardware accelerated ECC
implementation where the entire scalar multiplication operation is optimized to
minimize memory transfers leads to a more energy efficient yet generic
implementation.
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With the great number of mobile, battery powered devices and IoT de-
vices being developed, there is a need for efficient, energy effective cryptog-
raphy. Elliptic curve cryptography (ECC) provides high security with small
key size, and seems very well suited for use in embedded, low-power sys-
tems.

The mathematics of ECC are based on set theory, performing operations
on elliptic curves, usually over finite prime fields or binary fields. The secu-
rity of these mathematical operations are based on the Elliptic Curve Discrete
Logarithm Problem.

This thesis has explored how to design a coprocessor for accelerating el-
liptic curve cryptography, based on the results from a pre-study. The copro-
cessor designed in the thesis, ECCo, was designed for use with the ARM
CM33 processor. The CM33 provides a coprocessor interface for tight inte-
gration of coprocessors, which allows instructions to be issued to connected
coprocessors from software. This motivated the design of an instruction set
for the coprocessor.

For the design in this thesis the operations of modular addition, modu-
lar multiplication and integer division was implemented. The design used
for testing consisted of a controller, register bank and arithmetic module.
A pure software implementation of elliptic curve cryptography, libecc, was
compared to the ECCo. Results showed that the hardware accelerated de-
signed performed 3.8x - 27x times better than the pure software implemen-
tation.

Area estimates of the design was aquired through synthesis, using Ques-
tasim. The ECCo accounted for 45% of the area when synthesizing ECCo+CM33.
The estimates showed that the ECCo area consumption was largely domi-
nated by the divisor (73.18% of the total ECCo area), which was implemented
using the SystemVerilog division operator, "/", and no optimization in syn-
thesis. However, the atomic operations of ECC, Modular Multiplication and
Modular Addition, only occupied 1.97% and 1.92%, respectively.
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Preface

This thesis is a continuation of an autumn project which explored how an
hardware accelerator of elliptic curve cryptography should be implemented
in order to address the shortcomings of elliptic curve cryptography in soft-
ware. Part of the theory is reused from the project. The project will from now
on be referred to as the pre-study.
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Chapter 1

Introduction

Today, many mobile and embedded devices are being used daily, and the
number of such devices are ever increasing. Embedded devices are used in
many applications where security is a concern, be it for a company or per-
sonal privacy: In hospitals, smart cards (banking, SIM, access control), mo-
bile phones, wifi routers, etc. Many of these use battery powered devices,
which in addition to security issues require low power solutions. This issue
motivates the exploration of low-power implementation of cryptographic al-
gorithms. A field of cryptography which seems suited for low-power appli-
cations is Elliptic Curve Cryptography (ECC), which was introduced in the
80s by Neil Koblitz [1] and Victor Miller [2]. It has gained popularity for
desktop and server use, and many of the algorithms in the Transport Level
Security protocol 1.3 (TLS 1.3) are elliptic curve (EC) algorithms.

In this thesis an implementation of a coprocessor for the ARM Cortex-
M33 (CM33) designed for accelerating Elliptic Curve Cryptography (ECC)
is designed and tested. The work is a continuation of the autumn project
on hardware acceleration of ECC, which concluded that the optimal use of
a hardware accelerator were to perform the entire operation of scalar multi-
plication (SM) in hardware. The implementation in this thesis aims at accel-
erating the entire SM in hardware, and taking advantage of the features the
coprocessor interface of the CM33 provides.

In this thesis cryptosystem is used in the same way as defined in [3]: “A
cryptosystem is a general term referring to a set of cryptographic primitives
used to provide information security services. Most often the term is used in
conjunction with primitives providing confidentiality, i.e., encryption.”

Also, the term big numbers are used to refer to numbers of bit length longer
than a processors word length.

1.1 Asymmetric Cryptography

Asymmetric cryptography, also known as public key cryptography, are cryp-
tosystems which uses key pairs: A public key and a private key. The private
key is only known to the owner, while the public key can be obtained by any-
one without compromising the security of the system. The private key may
be used to create a digital signature of a message, which allows anyone who
got both the public key and the message to verify that the message has not
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been corrupted, or the private key may be used to decrypt a message which
has been encrypted using the public key.

The security of public key cryptography systems relies on the private key
being infeasible for an attacker to compute, but not impossible given infinite
time and resources. That is, public key cryptosystems are computationally se-
cure and it is infeasible for an attacker to compute the private key if it requires
~ 10! instructions [4].

Another very common type of cryptosystems are symmetric cryptogra-
phy which uses a single shared key. These systems usually require smaller
key sizes and have lower power consumption compared to public key sys-
tems [5][6]. Because of this symmetric cryptosystems are prefered when en-
crypting large amounts of data, but since they require the shared key to be
shared over a secure channel it is usually not sufficient to rely solely on sym-
metric key cryptography. As a possible solution to this, a public key cryp-
tosystem was introduced in 1976 by Whitfield Diffie and Martin E. Hellman
[4] which enables two parties to securely share a key over an insecure chan-
nel, thus allowing secure communication through a combination of asym-
metric and symmetric cryptosystems.

This combination of symmetric and asymmetric cryptosystems are now
standard and the TLS 1.3 [7] standard describes a set of cryptosystems to
use for secure communication over insecure channels. A number of these
systems are public key systems and with the increasing demand for high
security without reducing the efficiency of low power devices such as IoT
[8][9] and mobile devices [10] it seems like a good incentive to explore the
possibilities of accelerating public key cryptosystems.

Further more, TLS defines a number of ellptic curve (EC) cryptosystems
to use. EC cryptosystems are systems that uses mathematics based on elliptic
curves and have traits that makes them suited for use in resource limited
environments, such as for IoT devices. ECC algorithms are often considered
safer than their non-EC counterparts [1], and this safety is provided with
smaller key sizes. The benefit of smaller key sizes is that less storage for the
variables of the algorithm is required and less data needs to be transfered
between devices. An efficient and good implementation of ECC algorithms
could potentially benefit IoT devices by reducing power consumption while
still maintaning high security.

1.2 Objective and Approach

The objective of this thesis is to explore how to design a coprocessor for accel-
erating elliptic curve cryptography, based on the conclusion of the pre-study
[11]. This thesis tries to describe how such a coprocessor could be imple-
mented, and implement as much of the proposed design as possible. The
implemented design should be benchmarked and compared to the perfor-
mance of a pure software implementation, to show what benefits a coproces-
sor could provide.

The design approach is to consider multiple possible designs before choos-
ing one that is appropriate for the setup used in this thesis. All modules



1.3. Main Contributions 3

should be tested separately during the development process, using test data
generated by software scripts, providing reliable test data.

1.3 Main Contributions

The main contributions of this thesis is the design of a flexible coprocessor
aimed at accelerating elliptic curve cryptography, with the possibility of ex-
tending use to non-EC asynchronous cryptography. Detailing both the de-
sign and the design process.

Also, for this thesis a generic modular addition algorithm was designed.

A C library for big numbers was implemented. The library was designed
for use with the elliptic curve coprocessor, supporting conversion to and
from string representation and loading/storing to/from coprocessor regis-
ters.

1.4 Structure

Chapter 2 presents mathematical and other related background information
necessary for the rest of the thesis. In Chapter 3 previous work relevant
for this thesis is presented. Chapter 4 details the methodology and design
choices of the coprocessor. Chapter 5 describes the implementation details
of the design, and Chapter 6 presents the results of the thesis. Finally, Chap-
ter 7 discusses thoughts on future work on the coprocessor, and Chapter 8
concludes the report.






Chapter 2

Background

This thesis is mainly concerned with elliptic curve cryptography, which are
cryptosystems that uses mathematical operations on elliptic curves over fi-
nite fields. In order to give the reader a better understanding of these subjects
this chapter gives a brief introduction into the mathematical field of set the-
ory, focusing on the understanding of finite fields, and explaining the funda-
mentals of elliptic curves and related arithmetic operations on elliptic curves.
Further, this chapter describes algorithms for implementation of modular
arithmetic and elliptic curve operations in hardware, which are used later
in the implementation of the coprocessor. Lastly this chapter also briefly de-
scribes the tools used.

2.1 Set theory

A set is (informally) a collection of objects (or elements). Sets are classified
according to their mathematical properties. In this report the sets of interest
are the finite fields, also called Galois fields, denoted by GF(q) or [F,. Finite
fields are, without going into details, a set with a finite number, g, of elements
where g = p* (p is prime and k > 0), on which the multiplication, addition,
subtraction and division operations are defined [12, p.310]. In this thesis we
are only interested in finite fields of integers, and, in particular, finite fields
IF; containing all integers from 0 up to, but not including, q. For the rest of
the thesis all fields will be assumed to be of this kind. These fields can be
constructed with the modulo operator, because: x = y mod g, where y can
be any integer, x will always be in the range 0 < x < 4. A simple example of
such a finite field is [F7, shown in Equation 2.1. It is a field with 7 elements,
and can be constructed with modulo 7.

F; = {0,1,2,3,4,5,6} (2.1)

If there exists a positive integer n such that n - a = 0 for all 4 € IF then the
smallest such number is called the characteristic of F. If no such number exist
then the characteristic of [F is said to be zero [12, p.170]. In our example of IF;
the characteristic is 7, since 7-a = 0 (mod 7) for a € F;. The characteristic
of any finite field GF(p¥) is p [12, p.311]. The size of a field, g, is also called
the order of the field.

Of particular interest when working with elliptic curves are finite fields
where g = p!, prime fields, and finite fields where q = 2, binary fields.
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2.1.1 Finite Field Arithmetic

For this report we are only concerned with finite fields, which implies that
all arithmetic operations in field elements are, in fact, moldular arithmetic
operations.

The reader is assumed to have basic knowledge of modular arithmetics,
but examples of the basic operations on [F; are illustrated in Equations 2.2-
2.5.

44+6=3 (2.2)
1-5=3 (2.3)
2.5=3 (2.4)
5.-471=3 (2.5)

Equations 2.2, 2.4 and 2.5 is 3 since 10 = 3 (mod 7) and Equation 2.3 is
3 since —4 = 3 (mod 7). Equation 2.5 is an example of modular division
which is the most complicated operation of the four. In order to perform
modular division one needs to find the modular inverse of the divisor, which
is why modular division often is written as in Equation 2.5, avoiding the
division operator, "/", to avoid confusion with integer division. [13]

To find the modular inverse of a field element the Extended Euclidean
Algorithm is used [14]. It is an extension to the Euclidean Algorithm which
is an algorithm for finding the greatest common divisor of two numbers, a
and b [15]. The extended algorithm can further be used to find two numbers,
x and y, such that:

ax + by = ged(a, b) (2.6)

For the level of details needed in this report we can now simply say that
a and b has to be co-prime (gcd(a,b) = 1) and assign b = g, the field size. It
can be shown that this leads to Equation 2.7.

ax =1 (mod q) (2.7)

This allows us to find the inverse x of element a by solving for x (x € IF,).
In Equation 2.5 a = 4 and g = 7, and so, we can find the inverse of 4 by
solving for x in Equation 2.7:

4x=1 (mod 7)

=

x=2

Equation 2.5 can then be explained by replacing 4~! with the modular
inverse of 4:

5.-2=3 (mod 7)
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2.2 Elliptic Curves

Only elliptic curves over IF, and [Fom are presented as these are the most com-
mon in ECC. Details will not be provided, only required conditions and a
brief explanation of arithmetic on the curves are provided. A more detailed
explanation can be found in [16]. The goal of this section is to get an intu-
itive understanding of what elliptic curves are, and the difference between
continuous and discrete elliptic curves.

2.21 EC over ]Fp

“Let IF, be a prime finite field so that p is an odd prime number, and let
a,b € T, satisfy 4a® + 27b* # 0 (mod p). Then an elliptic curve E(F,) over
IF, defined by the parameters a,b € IF, consists of the set of solutions or
points P = (x,y) for x,y € IF, to the equation:
Y¥=x>+ax+b (mod p) (2.8)
together with an extra point O called the point at infinity.” [16]

’ /

(0,6) (3,6) / (4,6)

(5,5)

/ (6,4)

(6,3)

/ (0,1) (3,1)41)

\
\

FIGURE 2.1: Illustration of y> = x® — 2x + 1 with the solutions
to Equation 2.8 in [F7 plotted.

Figure 2.1 illustrates the elliptic curve y> = x> —2x + 1, x € [-7,7]. The
continuous curve is the common way to illustrate an elliptic curve, over an
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infinite field. However, in cryptography finite fields are used, in which case
there only exists discrete solutions to the elliptic curve, and for all of the
solutions the x and y values must be in IF,,.

The discrete solutions to the elliptic curve (Equation 2.8) are plotted in
Figure 2.1, and it is apparent that only the solutions (0,1) and (1,0) lie on
the curve itself. This is because the x and/or y values resulting in the other
solutions produced a LHS or RHS value in Equation 2.8 which were > 7.

2.2.2 ECover Fx

“Let Fom be a characteristic 2 finite field, and let a,b € Fpm satisfy b # 0
in [Fpn. Then a elliptic curve E(IFon) over Fon defined by the parameters
a,b € Fom consists of the set of solutions or points P = (x,y) for x,y € Fon to
the equation:

V¥ 4+xy=x"+ax* +b (mod p) (2.9)
together with an extra point O called the point at infinity.” [16]

y
0l6)(1,6) /
/6y
(2,3)
(2,2)(3,2)(4,2)
((o 1 41)(5,1)

\

FIGURE 2.2: Illustration of y*> + xy = x> — 2x? + 1 with the
solutions to Equation 2.9 in [F; plotted.

Figure 2.2 illustrates the elliptic curve y? + xy = x> —2x*+1,x € [-7,7].
Also here both the continuous curve over an infinite field is plottet, along
with the discrete solutions to the elliptic curve.
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2.2.3 Point Arithmetics

In this report the arithmetic operations we are interested in on elliptic curves
are point addition and point doubling. An intuitive geometric understand-
ing of these operations where provided by Neal Koblitz [1], as illustrated in
Figure 2.3.

i i
Y e

FIGURE 2.3: Illustration of elliptic curve point addition and
doubling.

Let Py = (x1,y1), P» = (x2,y2) and P3 = (x3,y3) be points on an elliptic
curve, where P; = P; + P,. Draw a line P; P, through P; and P, then their
sum P5 will be the negative of the intersection of P P; and the curve.

The following equations is a result of the observations from Figure 2.3,
but there is not provided enough information to prove it. For a detailed ex-
planation see [1].

X3 = —x; —x2+a* (mod p) (2.10)
y3 = —y1 +a(xy —x3) (mod p) (2.11)

where

3xdta (2.12)

. % ifP; £ P,
ifP, = P,

2y
In the case of elliptic curves over Fon, when Py # Py:

x3=a’+a+x+x+a (mod p) (2.13)

y3=a(x1+x3)+x3+y; (mod p) (2.14)

w= LY (2.15)
X1+ X2

and when P; = P;:
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x3s=a’+a+a (mod p) (2.16)

y3=x3+ (a+1)x3 (mod p) (2.17)

w=x +20 (2.18)
X1

Note that all of these operations require modular inversion for the divi-
sion in the calculation of &, which is an expensive operation.

2.3 Scalar Multiplication

The central mathematical operation in all EC cryptosystems are the scalar
multiplication, which is to multiply a scalar with a point on an elliptic curve.
There are multiple different algorithms for performing a scalar multiplica-
tion. Most of these are based on the observation that any multiplication of a
point and a scalar can be expressed as a combination of point additions and
doublings, e.g. 11P = P + 2(P 4 2(2P)). There are many optimized algo-
rithms for this, and in many applications it is desirable to use algorithms that
have a constant execution time, for security reasons. However, in this thesis
a basic algorithm, with varying execution time, is presented.

Algorithm 1 displays the pseudocode for this algorithm, called Double-
and-add (left-to-right).

Algorithm 1 Double-and-add (left-to-right) [17]

INPUT: Base point P € Ef, scalar k = (k;_1, ..., ko)2
OUTPUT: Point Q =k - P

1: Rgp ¢ oo; Ry < P

2: forifrom t — 1 downto 0 do

3: Ry + 2R,

4 if k; = 1 then

5: Ro < Ro+ Ry

6 end if

7: end for

8: Q<+ Ry

In this algorithm P is the base point on the curve, which is being multi-
plied with the scalar k, and Q is the resulting point on the curve. ¢ is the bit
length of k. What Algorithm 1 does is to iterate through all the bits in k, start-
ing to the left (most significant bit). First Ry is set to the point at infinity, and
R; to the base point P. For each iteration it performes point doubling of Rg
(doubling of point at infinity returns the point at infinity), and if the current
bit i is 1 then the point addition of Ry and R; is stored in Ry (addition of a
point at infinity and a point P returns the point P).

This algorithm will perform t point doublings and, in worst case, ¢t point
additions.
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24 Coordinate Systems

Elliptic Curves are often represented using affine coordinates, (x,y), as we
have done so far, but there are several different coordinate systems with dif-
ferent attributes available. The purpose for using different coordinate sys-
tems is usually to increase performance. The way computation time is com-
pared between coordinate systems is by calculating how many inversions (I),
multiplications (M), and squarings (S) an addition or doubling operation re-
quire. From equations 2.10, 2.11 and 2.12 we see that in affine coordinates (.A)
the computation times are f(A+ A) = [ +2M + Sand t(2A) = [ +2M +2S.
[18]

An alternative coordinate representation often used in practice is projec-
tive coordinates (P). Here a point P is represented by a touple (X,Y, Z),
where x = % andy = % Using projective coordinates the computation time
ist(P+P) = 12M +2S and t(2P) = 7M + 5S. [18] The main motivation
for using projective coordinates is reduced computation time since there is
no inversion using projective coordinates, which is an expensive operation,
as noted in Chapter 2.2.

There are other common alternatives for coordinates, as described in [3,
p.-86] and [18], but they will not be discussed here.

2.5 ECC Algorithms

Elliptic curve cryptography is commonly used for handshakes and digital
signatures, such as in the Transport Layer Security (TLS) protocol 1.3 [7]. To
add some perspective as to how the scalar multiplication is used in ECC this
section will outline the Elliptic Curve Digital Signature Algorithm (ECDSA)
[19].

The two parties involved will be refered to as Alice and Bob [20], where
Alices private and public key are d4 and Q4, respectively. Same for Bob,
dp and Qp. For all ECC algorithms Alice and Bob have to agree on a set of
parameters, D. In the case of IF, these parameters are D = (q9,a,b,G,n,h),
where:

g Are the field order (Number of elements in the field. See Chapter 2.1)
a,b Are the elliptic curve coefficients (See Equation 2.8)

G Is the base point on the curve.

n Is the order of G; The smallest positive number such thatn -G = O

h Is a number such that h = %

For Fon the parameters are D = (m, f(x),a,b,G,n, h), where f(x) is an irre-
ducible binary polynomial of degree m specifying the representation of Fpm.
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Algorithm 2 ECDSA signature generation [19]

INPUT: Domain parameters D, private key d and message m
OUTPUT: Signature (r, s)

: Selectk € [1,n —1]

Compute kG = (x,y)

Compute r = x mod n. If r = 0 then go to step 1
Compute e = H(m)

Compute s = k~!(e +dr) mod n.If s = 0 the go to step 1
Return (7, s)

AN R o

If Alice wants to send a message to Bob with a digital signature to verify
that the message has not been corrupted during sending, she can use ECDSA,
as shown in Algorithm 2. First, a random number k are multiplied with the
base point G, and the resulting x value are used to compute , one of the two
parts of the signature. Then, a hash function H(m) are used to produce a hash
from the message. A hash function is a one-way function, where the message
is very difficult to guess for anyone who knows the hash value. The hash and
Alices private key is used to produce the second part of the signature s.

Algorithm 3 ECDSA signature verification [19]

INPUT: Domain parameters D, public key Q, message m and signature (7, s)
OUTPUT: Acceptance or rejection of the signature

1: Verify that r and s are integers in the interval [1,n — 1] If any verification
fails then return(“Reject the signature”).

Compute e = H(m)

Compute w = s~1 mod n

Compute u; = ew mod nand up, = rw mod n

Compute X = 1u1G + u20Q.

If X = oo then reject the signature

Convert the x-coordinate x of X to an integer X compute v =X mod n
If v = r then accept the signature

When Bob then receives the message and the signature from Alice he can
use Algorithm 3 to verify that the message has not been corrupted during
sending, and be sure that it is the exact same message as Alice sent. The proof
of the verification is out of scope for this thesis, but note that the verification
requires two scalar multiplications.

Relating to the TLS 1.3 [7] standard: ECDH [4] [21] is often used to pass
a symmetric key between Alice and Bob, along with an ECDSA-signature
which verifies that the symmetric key has not been corrupted during trans-
mission.
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2.6 Tools

For simulation and synthesis the tool Questasim [22] is used. Questasim is
developed by Mentor [23]. It is a high-performance tool supporting sim-
ulation, debugging and functional coverage using HDL languages such as
VHDL [24], Verilog [25], and SystemVerilog [26], including SystemVerilogs
object oriented features and SVA.

2.7 ARM Cortex M33

The Cortex-M33 [27] (CM33) is a processor developed my ARM [28]. It uses
the ARMv8-M [29] instruction set architecture and is developed for embed-
ded applications, allowing low power consumption while still providing ef-
ficient security and debug capabilities. It contains features such as an FPU
and DSP with SIMD instructions.

The CM33 also features a coprocessor interface, which allows for tight
integration of coprocessors and accelerators with the CM33. The coproces-
sors are accessible from software using assembly instructions provided in
the ARMvVS8-M instruction set [29]:

CPD, CPD2 Coprocessor data processing instructions.
MCR, MCR2 32-bit data transfer to the coprocessor.
MRC, MRC2 32-bit data transfer to the CM33.

MCRR, MCRR2 64-bit data transfer to the coprocessor.
MRRC, MRRC2 64-bit data transfer to the CM33.

2.8 Hardware Acceleration

Hardware acceleration is commonly known as a method to speed up calcu-
lations by using specialized hardware, designed for a specific task, which
often supplements a general purpose CPU [30]. A very common applica-
tion of hardware acceleration is graphical processing units (GPUs), which are
used in virtually every desktop. Other areas where hardware acceleration is
common is in the field of AI and neural networks, and relevant to this the-
sis: cryptography. The security of cryptosystems are based on mathematics
which often require heavy computations, which usually can greatly benefit
from dedicated hardware.

2.9 libecc

libecc [31] is a library implementing EC mathematics hierarchically, as illus-
trated in Figure 2.4. The library provides separate modules which provides
natural numbers arithmetics, field arithmetics (Chapter 2.1), elliptic curve
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FIGURE 2.4: libecc architecture [31]

operations (Chapter 2.2), hardcoded values for curves, and implementation
of the ECDSA algorithm (Chapter 2.5). Also, as seen in Figure 2.4, it provides
implementation of some required hash function, self tests and some utilies,
which will not be described here (see [31] for details).

Libecc does not actually implement multiple precision arithmetics but im-
plements finite field and point arithmetics on big numbers up to a maximum
integer width, which is determined at compile time. It uses projective coor-
dinates, no dynamic memory allocation and is written without any depen-
dencies, including the standard libc library.

210 Python

Python [32] is an interpreted, general-purpose programming language with
dynamic type checking. Python has several interesting features which makes
it flexible and easy to use, e.g. Python integers have an unlimited range [33]
which makes handling of big numbers trivial. Internally Python represents
big numbers as an array of fixed sized integers, but it is hidden when work-
ing with Python. Python also supports object oriented programming.
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Chapter 3

Previous Work

In this chapter, existing algorithms for hardware implementations of modu-
lar addition and modular multiplication is presented. A thorough explana-
tion and proof of correctness for these algorithms are not provided, see their
respective references for more details.

An FPGA implementation of ECC coprocessors are presented, and finally
the results from the pre-study is presented.

3.1 Modular Addition Implementation

Modular addition (MA) is the operation of calculating S = X +Y (mod n),
and is in effect the same operation for both addition and subtraction, if using
2’s complement to represent signed numbers.

A straight forward way of implementing MA is to assume that 0 < A, B <
n and do Algorithm 4 [34]. This algorithm may be performed in a single
cycle with minimal control logic, depending on the timing constraints and
the critical path through the additions on line 1 and 2.

Algorithm 4 Modular Addition Algorithm

INPUT: Addends A & B, modulo n
OUTPUT: Sum S

Compute S’ = A+ B
Compute S”" = 5" —n
if S” > 0 then

S — S//
else

S=¢
end if

The operations on lines 1 and 2 are normal addition and subtraction, and
the subtraction will require the 2’s complement of 7 to either be calculated
during operation or precomputed and be an input to the HW module. Algo-
rithm 4 is restricted to positive numbers smaller than .

Another method was proposed in [35]. Let n < 2X and m = 25 — n, where
k may be the word size of the system. It is assumed that A, B < 2X. Modular
addition can the be computed as in Algorithm 5.
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Algorithm 5 Omura’s Method, Modular Addition Algorithm

INPUT: Addends A & B
OUTPUT: Sum S
: Compute S’ = A+ B
if there is a carry then
S=5+m
else
S=¢
end if

ARSI R e

The value of m will need to either be computed during operation or pre-
computed and be an input to the HW module. Here the additions in line 1
and 3 are normal additions. If there is no carry the result is A + B, which
may be larger than 7, in which case it will be reduced later. However, if there
is a carry it will be ignored, which implies that S’ = A + B —2F. And the
correctness of the algorithm is given by:

S=S54+m
= (A+B-25+(2F—n)
=A+B—n

Omura’s algorithm is still restricted to positive numbers, but accepts ad-
dends greater than the modulo.

3.2 Modular Multiplication Implementation

Modular multiplication (MM) is the operation of calculating P = A-B (mod n).
There are many algorithms for performing MM, many of which relies on
alternative number representations for higher efficiency, such as the Mont-
gomery modular multiplication [34]

An intuitive way of calculating MM is the multiply-and-divide method
[34], illustrated in Algorithm 6.

Algorithm 6 Multiply and Divide Algorithm

INPUT: Multiplicand A, multiplier B, modulo n
OUTPUT: Product P

1: P =A-B
2P=P %mn
3: return P

This is, however, not an efficient implementation. The word size of P’
will have to be twice that of A and B in order to avoid overflow, and the need
to optimize the modulo reduction % will introduce unnecessary complexity
to the design. Unless the product P’ is needed an interleaving algorithm is
usually to be preferred.
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A basic interleaving algorithm is presented in Algorithm 7, where A and
B are k-bit numbers between 0 < A, B < n of which A; and B; represents the
ith bit.

Algorithm 7 Modular Multiplication Interleaving Algorithm
INPUT: Multiplicand A, multiplier B, modulo n
OUTPUT: Product P

1: P=20
2: fori=0tok—1do
3: P=2-P+A- By_1_;
4: P=P%mn
5
6

: end for
. return P

Since A, B, P < n it follows that

2P+A-B; <2n—-1)+(n—-1)=3n-3

Thus, maximum two subtractions are needed to reduce Pto 0 < P < n,
which means the modulo operation in line 4 may be implemented as condi-
tional subtractions.

Another efficient modular multiplication algorithm was proposed by Pe-
ter Montgomery in [36]. The result from the Montgomery algorithm is

P=A-B-r! (mod n)

where A, B < n and gcd(n,r) = 1. This adds overhead by requiring con-
version of the result. The number of bits in A or B is less than k, and we take
r = 2K [34]. The multiplication is shown in Algorithm 8.

Algorithm 8 Montgomery Modular Multiplication Algorithm

INPUT: Multiplicand A, multiplier B, modulo n
OUTPUT: Product P = A-B-r~! (mod n)
1: P=20
2: fori=0tok—1do
P=P+A;-B
if P is odd then
P=P+n
end if
P=P/2
8: end for
9: return P

Here, the division on line 7 is just a right shift, and the operations on line
3 and 5 can be combined: the LSB of P can be calculated before computing
the sum on line 3.
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Coprocessor Modular Modular Modular Point Point Scalar
Multiplication | Addition Subtraction Doubling | Addition | Multiplication
CP1 100
CP2 100 99 99
CP3 147 146 146 899 801
Cr4 147 146 146 899 801 240000

TABLE 3.2: Execution times of coprocessors, in clock cycles.

3.3 FPGA Elliptic Curve Coprocessor

In [17] four different EC coprocessors were implemented and tested on an
FPGA, each one implementing different arithmetic operations: CP 1 imple-
mented modular multiplication (Chapter 2.1.1); CP 2 implemented modu-
lar multiplication, addition and subtraction (Chapter 2.1.1); CP 3 also imple-
mented point doubling and addition (Chapter 2.2.3); and CP 4 implemented
SM in addition to the arithmetic operations (Chapter 2.3).

The execution time of the implemented operations in each CP is listed in
Table 3.2. The execution time is displayed in clock cycles.

The tests were performed using 256-bit values. The connected microcon-
troller used 8-bit word width, and the coprocessors were connected to and
read the operands from RAM. Execution times includes reading operands
and writing results.

3.4 Pre-Study

In the pre-study [11] possible partitioning between hardware and software
for an ECC accelerator was explored. Using a pure software implementation
of ECC profiling results were analyzed, trying to determine which parts of
the software implementation could benefit the most from hardware acceler-
ation.

The results showed that roughly 18.8% of execution time during testing
was spent on managing the software implementation of big numbers: ini-
tialization, checking correct behavior, and handling number meta data. The
conclusion was that as much as possible of an EC cryptosystem, in particular
the scalar multiplication, should be performed by a coprocessor to reduce the
overhead of dealing with big numbers in software.
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Chapter 4

Methodology and Architecture
Design

The main goal for this thesis is to implement an Elliptic Curve Cryptography
Coprocessor (ECCo) which primary purpose is to accelerate the scalar multi-
plication in EC cryptosystems, as was the conclusion of the pre-study [11]. To
perform the scalar multiplication the fundamental mathematical operations
needed are modular multiplication and modular addition (Chapter 2.1.1),
and integer division, when using affine coordinates (Chapter 2.4). These op-
erations are enough to perform point doubling and point addition (Chapter
2.2.3), which allows implementation of an entire scalar multiplication (SM).
The primary goal when designing the ECCo is therefore to implement the
modular arithmetic operations.

The design of a coprocessor are potentially a complex and lengthy pro-
cess. In the design process of the ECCo, to try to simplify this process,
reusable design patterns was actively used: communication between sub-
modules in the ECCo was generalized with clearly defined protocols; test
data for all arithmetic operations was generated with a single Python script,
utilizing Pythons OOP features; and a common testbench setup was used for
all modules. These design patterns are further explained in their respective
methodology and implementation chapters.

This chapter discusses which choices where made during the design and
testing of the ECCo, and why these choices were made. Further, it highlights
important aspects of the design process, specifically where and why reusable
design patterns where used.

4.1 ECCo Design

The goal of the ECCo is to be able to perform scalar multiplication. With-
out any restrictions from any specific systems this allows for a number of
different implementations.

1. It may be designed as a SM module which only performs the SM, simi-
lar to familiar division and multiplication modules. This module could
be integrated in a processor, or connected to a buss, possibly using
DMA to fetch operands.
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2. It may be designed as a collection of modules, each implementing an
atomic operation (i.e. modular addition or modular multiplication, see
Chapters 3.1 - 3.2), similar to an FPU. This would be particularly suited
for tight integration with a processor, and provide a flexible design
which could be used for non-EC cryptosystems which also rely on finite
field arithmetic, like RSA.

3. It may be designed as a combination of the previous solutions: Pro-
viding both the atomic operations and the SM operation. This could
provide both a flexible design and an optimized SM, and would also be
very well suited for tight integration with a processor.

The ECCo design in this thesis will interface with the ARM Cortex M33
(Chapter 2.7) for use from software. The CM33 provides a coprocessor inter-
tace which allows for tight integration of coprocessors and issuing opcodes to
the coprocessor from software. Because of this, Solutions 2. and 3. are good
choices. Ideally, Solution 3. would be chosen, but due to time limitations So-
lution 2. is the choice for this thesis. Allowing for estimates of SM speedup
with and without the coprocessor by comparing speed of atomic operations
in hardware and software. This minimal implementation will also be able to
give an indication on how the size of the coprocessor will compare to that of
the CM33 core itself.

Since the ECCo will be controlled from software through the coprocessor
interface an instruction set has to be defined for the ECCo. The instruction
set proposed in this thesis is presented in Chapter 5.1. The proposed instruc-
tion set includes more than the atomic operations and data transfer; It also
includes logical, comparison, and shift operations. The pre-study concluded
that an entire SM should be performed in the coprocessor in order to max-
imize the benefit of the coprocessor. By including these flow-control and
common operations the ECCo will be able to perform an entire SM without
datatransfer between the ECCo and CM33 during execution, even though it
is being controlled from SW.

4.2 Choice of Alorithms

The two essential atomic operations are modular addition and modular mul-
tiplication, both of which can be implemented with multiple different algo-
rithms (as described in Chapters 3.1 - 3.2). When choosing which algorithms
to implement, this thesis chose the simplest algorithms in order to reduce
time spent on implementation. Optimizations of the algorithms will be left
for furute work.

The modular multiplication algorithm implemented is the modular multi-
plication interleaving algorithm (Algorithm 7), which is described in Chapter
3.2. This algorithm requires no overhead or added complexity from number
conversion, but is not the most efficient algorithm and is not designed for
security.
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For the modular addition Algorithm 4 is the simplest presented algo-
rithm, but it does not support negative numbers (i.e. no subtraction) nor in-
termediate sums greater than 2n. To address these limitations an improved,
generic version of the algorithm was designed. The new algorithm is de-
scribed in Algorithm 9.

Algorithm 9 Generic Modular Addition Algorithm
INPUT: Addends A & B, modulo n
OUTPUT: Sum S
Compute S’ = A+ B
while S’ > n do
S =8 —n
end while
while S’ < 0 do
S =5+n
end while
S=9

This algorithm can handle both positive and negative numbers, and in-
termediate sums larger than 2n. Notice that the while loops are mutually
exclusive; After the intermediate sum, S’ = A + B, has been calculated, S’
will either be reduced or increased. Clearly, the while loops are not syn-
thesizable. Details on the interpretation of this algorithm are presented in
Chapter 5.

4.3 Interpretation of Algorithms

The mathematical foundation of ECC requires several abstract concepts and
algorithms to be "translated" into hardware, i.e. the modulo operator; mul-
tiplication over a finite field (see Chapters 2.1.1 and 3); EC point addition
(Chapter 2.2.3 and 3). There are often many ways of doing this, depending
on the algorithm being implemented and system requirements. A significant
decision when designing the implementation is the choice between sequen-
tial or combinatorial. Combinatorial designs are much more restricted by
the clock frequency of the system, and can make it harder to meet timing
requirements. For this thesis the sequential approach is preferred, and state
machines has been designed to implement the chosen algorithms. The rea-
son being that a sequential implementation is more similar to a state machine
representation of the system, which makes it easier to reason about the be-
havior of the system.

4.4 Test Data

In order to verify the results from the implementations of arithmetic oper-
ations a set of known test data is required. In the pre-study [11] test data
for the scalar multiplication and point arithmetic from reliable sources was
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used. This test data will be reused in this thesis. Test data for simpler opera-
tions (i.e. modular addition, division, etc.) is easy to generate using a Python
script. Using a Python script will also allow generating more test data for SM
and point arithmetic, since a Python implementation of these operations was
written for the pre-study. The details of this script are described in Chapter
5, and full source code is listed in Appendix A.

Generation of test data contains a repeating pattern, regardless of what
data is being generated: reading data from file, and writing properly format-
ted data to file. This can be handled by Pythons OOP features (see Chapter
5.5.5 and 2.10).

4.5 Verification

In order to both verify correct behavior and to speed up the development
process, the entire ECCo and each sub-module are separately tested with a
testbench verifying correct behavior. In the case of the arithmetic operations
this includes checking results with test data, previously mentioned in Chap-
ter 4.4.

Design of testbenches are a repeating process, which can be simplified
by following a design pattern. During the development of ECCo the chosen
pattern was:

* Each testbench consisted of a module, for instantiating and connect-
ing the design under test (DUT); An interface connected to the DUT; A
package with module specific parameters; A test program.

* All signals in the DUTs interface are connected to, and controlled by,
the testbench. Allowing independent testing of all sub-modules.

* The testbench uses drivers and dummy implementation of modules to
control the DUT. These dummies and driver can be reused between
testbenches, and can utilize system verilogs OOP features.

4.6 Internal Interfaces

During design of the ECCo a repeating design question is how to commu-
nicate between sub-modules. The sub modules of the system are primarily
modules implementing the operations defined by the instruction set, all of
which may share a common communication protocol. Because of this all
communication between sub-modules have been cleary defined using two
interfaces: one for all communication with the register bank, another for all
communication with the ECCo controller module. See Chapter 5.3 for further
details.
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4.7 Area Measurement

To aquire the results for area measurement the design was synthezised. The
results presented are relative values, compared between synthesis of the CM33+ECCo
and the CM33 only.

The speed results were measured during simulation, counting clock cy-
cles used to execute benchmarking code of modular addition and modular
multiplication, for both software and hardware implementations of those op-
erations. Further details in Chapter 5.8.3.
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Chapter 5

Implementation

This chapter describes implementation details about the work done for this
thesis: proposed instruction set for the ECCo; the implementation of the
ECCo and its integration with the CM33; testbench architecture and verifi-
cation of the ECCo and its sub-modules; test data generation using a Python
script; C implementation of the big numbers library, and the ECCo software
wrapper; benchmarking of modular arithmetic operations, using the ECCo
and a pure software implementation.

The logical, shift and comparison operations mentioned are not imple-
mented in the ECCo for this thesis. The proposed instruction set includes
these instructions, and discusses why they should be included in a future
implementatin of an elliptic curve coprocessor.

5.1 ECCo Instruction Set

The ECCo instruction set was aimed at allowing software controlled imple-
mentations of SM, while reducing data transfer between between CM33 and
ECCo. The instruction set designed in this thesis is listed in Table 5.2.

The connection between these instructions and the coprocessor instruc-
tions of the ARMv8-M instruction set (Chapter 2.7) is: the MCRR and MRRC
are used to for the Load and Store instructions; the CPD and CPD?2 instruc-
tions are used for all other instructions, where the opcl and opc2 arguments
are opcodes for the issued operation (see [29] for description of assembly in-
structions).

In the instruction set the conditional operations are not explicily listed,
the reason being that all operations has a conditional conterpart, using the
CPD2 instruction.

While further evaluation about the necessity of all instructions are re-
quired, the instruction set proposed in this thesis are based on the following
reasoning:

¢ The arithmetic instructions are fundamental for the SM (as discussed in
Chapter 4).

¢ The logical instructions allows functionality like masking and setting
registers to zero.

¢ Shift instructions allows efficient divide/multiply by 2, as required in
algorithms like Montgomery (Algorithm 8)
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Operation Parameter 1 Parameter 2 Parameter 3
(register) (register) (register)
Modular Multiplicand Multiplier Product
,,,,, Multiplication | ol
Modular Addition Addend Addend Sum
 Integerdivision | Diidend | Diosor | Quotiont
Negate2’s complement | Oprand | | Resutt
or Operand 1 Operand 2 Result
""""" and | Opnat | Oprandz | Rewt
""""" xor | Oprama1 | Oprmaz | Rewr
""""" not | Opmd | | Rewr
Left shift Operand Shift size Result
 Logicrightshift | Oprna | spsize | Resutt
© Arithmetic right shift | Operand | Sftsize | Result
Is zero Operand
"""" lsequal | Opramtt | Opmaz |
"""" Lessthan | Opnd1 | Opramdz |
 Greaterthan | Operana1 | Operanaz |
Load Offset Index
"""" Store | oper | | e
Increment Operand Result
""" Dectement | Oprand | | Rewr
 vertcomparison | | |
""" Setsignedbit | e | |
 Unsetsignedbit | wiee ||
TABLE 5.2: Instruction set for elliptic curve coprocessor.
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¢ Comparison and conditional instructions allow control flow.

¢ Increment and decrement are common operations. Since immediate
values are not available for the coprocessor instructions this avoids the
need of using a register for increment/decrement value.

¢ Inverting comparison allows for comparisons like greater or equal to, by

inverting Less than.

* Set/Unset are required because the signed bit is not accessible through
the data transfer instructions (see Chapter 5.4 for details).

An implementation of this instruction set will therefore allow an entire
scalar multiplication to be performed in the ECCo, without data transfer dur-

ing execution, while still being controlled by the CM33.

5.2 ECCo Architecture

The architecture of the ECCo were based on Solution 2 in Chapter 4.1. The
architecture is illustrated in Figure 5.1.

ECCo

CM33 Coprocessor Interface

Controller

in_Registers

in_OpModule

Register Bank

gisters

in_Re

Arithmetic Module

FIGURE 5.1: Architecture of ECCo, connected to the CM33 pro-
cessor through the coprocessor interface.

The ECCo is connected to the CM33 through the coprocessor interface. In-
ternally the sub-modules are connected through two interfaces, as discussed
in Chapter 4.6. These interfaces are described in Chapter 5.3.
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5.3 Internal Interfaces

There were used two internal interfaces in the design: in_OpModule which
defines the protocol for issuing an operation to one of the operation-modules
(a sub-module implementing one or more of the operations in the instruction
set), and in_Registers which defines the protocol for reading from and writing
to the register bank of the ECCo.

The in_OpModule interface uses a valid-ready protocol: when the sub-
module is ready to accept a new operation a ready signal is asserted. An
operation is issued by raising the valid signal, and it is accepted on the first
clock cycle where valid and ready are both asserted. As long as valid is asserted
all parameter values of the interface must be valid and stable. The interface
also defines an error signal, which is asserted whenever an operation fails.
The parameters of in_OpModule are:

oplReg Register index of operand 1
op2Reg Register index of operand 2
resReg Register index of result

opcode Opcode for the requested operation

Figure 5.2 illustrates the protocol of the in_Opmodule interface. At t3 an
operation is accepted. The controller issues another operation at t6, and has
to wait, while keeping the parameters valid, until the previous operation
has completed. At t9 the operation completed successfully, and the second
operation is accepted. The second operation fails, as indicated by the error
signal at t11. When the following, third, operation is accepted at 13, both
the ready and error signals are deasserted. The SV interface implementation
of in_OpModules is listed in Appendix B.

SN A

opcode 7 ox1 7 7 0x2 X N ox1 N
op1Reg AR Y Z R1 ¥ X RN
op2Reg AR Y Z R1 ¥ 7R3N
resReg AR Y Z R3 ¥ 7\ R4 N7
valid [ / Yy )
ready 4‘\2 H <~ / \
error / g

FIGURE 5.2: Illustration of in_OpModule communication proto-
col.

Because of this generalization of communication with all operation sub-
modules, a common state machine is implemented as the controller in all of
them, which is illustrated in Figure 5.3.
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On reset

IDLE
ReadyT

{StaﬁT’ReadyT
L

\

WAIT L;: .
WaltT

FIGURE 5.3: llustration of FSM implementing the in_OpModule
communication protocol.

In the state machine in Figure 5.3 StartT, ReadyT, and WaitT are names
of possible transitions. This is because the output of the state machine are
determined by both state and input. In IDLE the ready signal is asserted, and
the value of error may be either 0 or 1. In WAIT both ready and error is always
0.

The in_Registers interface exposes all the registers directly, for reading. To
write, the signals enable, register, and data are used, indicating when to enable
writing, which register to write to, and the write data, respectively. The SV
interface implementation of in_Registers are listed in Appendix B.

5.4 Register Bank

The register bank is a module containing 16 registers, which may be read
from and written to. The choice of 16 registers was done based on a limita-
tion from the CM33 which required the indexing of register using no more
than 4 bits. However, it may not be necessary with these many registers
to perform the SM. An evaluation of necessary number of registers are left
for future work, considering both the area usage of the register bank and
required number of registers for the SM implementation. All 16 registers
are exposed for reading through the in_Registers interface. Writing is imple-
mented following the in_Registers protocol.

The registers are of width WORD_WIDTH + 1, e.g. if the ECCo is in-
stantiated with a word width of 256-bit the word width of the registers will
be 257-bit. The reason for this is that parameter values from standards such
as [37] and [38] require WORD_WIDTH-bits to represent positive values.
Because of this the signed bit of registers are manipulated through dedicated
instructions, to avoid using a 64-bit data transfer to access the signed bit.
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Register Name Register Index Writable Readable
CRO 0 X X
CR1 1 X X
CR13 13 X X
Modulo Register 14 X X
Status Register 15 X

TABLE 5.4: List of ECCo registers.

Table 5.4 lists all registers in the register bank. There is only two non-
general registers: the modulo register and the status register. The modulo
register is used for storing the modulo during modular arithmetic operations.
The status register is read-only (all writing to it is done inside the register
bank) and contains information about the current status of the ECCo:

Bit 0 Comparison result bit.

Bit 1-15 Active bits. These are reserved for future use in an asynchronous de-
sign, for indicating which operation modules are currently working
and which are idle.

Bit 16-30 Signed bits. The signed bits of register 0-14, respectively.

Bit 31- Unused.

5.5 Arithmetic Module

The arithmetic operations sub-module is implemented as a controller imple-
menting the in_OpModule protocol and wrapping the modules implement-
ing each individual arithmetic operation: negation, integer division, modu-
lar addition, and modular multiplication. In Figure 5.4 the block diagram of
the arithmetic module are shown. The arithmetic controller implements the
in_OpModule FSM, as illustrated in Figure 5.3.
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FIGURE 5.4: Block diagram of arithmetic module.
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5.5.1 Negation

The negation operation is a single cycle operation which is straight forward
to implement, and performs a 2’s complement negation of the operand. It is
continually calculated:

-

assign res = ~(operand) + 1;

5.5.2 Integer Division

The integer division is a necessary operation when using Affine coordinates,
but its implementation is not very interresting in regards to the ECCo. There-
fore, it was initially implemented using an opensource design from Open-
Cores [39]. However, this design did not function properly and instead in-
teger division was implemented using the SystemVerilog division operator,
"

It is also a single cycle operation, but requires divide-by-zero detection
and handling of negative numbers: If the divisor and /or dividend is negative
its positive 2’s complement is used in the division and the sign of the result
is calculated using basic algebra rules, as shown in Listing 5.1.

// MSB of dividend (opl) and divisor (op2)
logic msbOpl, msbOp2;

// Internal signals

logic [WORD WIDIH: 0] intOpl;

logic [WORDWIDIH: 0] intOp2;

logic [WORDWIDIH: 0] intRes;

// The division is continuously calculated.
assign divideByZero = (op2 == 0);
assign intRes = intOpl / intOp2;
assign msbOpl = opl[WORD WIDIH];
assign msbOp2 op2 [WORD WIDIH] ;

O 0 N G e W =

=
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1 always_comb begin

15 intOpl = opl;

16 intOp2 = op2;

17 if ( msbOpl && msbOp2 ) begin

18 intOpl = (~opl) + 1;
19 intOp2 = (~op2) + 1;
20 end

21 else if ( msbOpl )

2 intOpl = (~opl) + 1;
23 else if ( msbOp2 )

2 intOp2 = (~op2) + 1;
25 end

7 always_ff @(posedge ck)
28 res <= (msbOpl » msbOp2) ? (~intRes) + 1 : intRes;

LISTING 5.1: Division SV implementation.



5.5. Arithmetic Module 33

5.5.3 Modular Addition

The modular addition is implemented using Algorithm 9, designed for this
thesis, as discussed in Chapter 4.2. This algorithm is interpreted as illustrated
by the FSM in Figure 5.5, and the datapath in Figure 5.6. The transitions in
the illustration are referred to by name.

- INCREASE -
_) ReduceT - _) IncreaseT

FIGURE 5.5: FSM interpretation of Generic Modular Addition
Algorithm.

—_—

DoneT Transition to IDLE when an addition has finished. Asserting done for
one cycle.

WaitT Transition in IDLE when not performing an operation.

ReduceT Transition to REDUCE when the intermediate sum is greater than
the modulo, and need to be reduced to 0 < Sum < Modulo.

IncreaseT Transition to INCREASE when the intermediate sum is less than
0, and need to be increased to 0 < Sum < Modulo.

If initially: op1 + op2 < mod then the calculation only takes one cycle to
complete, or else opl mux selects the intermediate result as operand 1 and
op2 mux selects either mod or —mod as operand 2, depending on if the state
is INCREASE or REDUCE, respectively. In worst case the addition could
take 2WORD_WIDTH __ 1 cycles to perform, calculating ((ZWORD—WID TH _ 1)+
0) % 1.

5.5.4 Modular Multiplication

The modular multiplication is implemented using the Algorithm 7, as dis-
cussed in Chapter 4.2. This algorithm is interpreted as illustrated by the FSM
in Figure 5.7, and the datapath in Figure 5.8. The transitions in the illustration
are referred to by name.

DoneT Transition to IDLE when an multiplication has finished. Asserting
done for one cycle.
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Modular Addition Module

start WORD_WIDTH#1

selOp2
opf R

WORD_WIDTH+ 2

op2

WORD_WIDTH=1
mod tmpOp2

|
WORD_WIDTH1 ! Modular o

opcode ! Addition e

Controller

done

impRes. fa———

error enbRes_rg
enbRes_rg

result
register

res

FIGURE 5.6: Block diagram of modular addition module.

WaitT Transition in IDLE when not performing an operation.

AddT Transition to ADD when calculating the sum of 2- P+ A - By_1_; (as
described in Chapter 3.2).

ReduceT Transition to REDUCE when the intermediate sum is greater than
the modulo, and need to be reduced to 0 < Sum < Modulo.

ReduceDoneT Transition to REDUCE_DONE when the intermediate sum
is greater than the modulo, and need to be reduced to 0 < Sum <
Modulo, before finishing to operation.

The modular multiplication always has an execution time of at least WORD_WIDTH
cycles since it has to iterate through all bits of op2, except the signed bit. None
of op1, op2, or mod are allowed to be negative. The emphpartial product mux
selects the current value of A - By_1_;. opl mux and op2 mux selects whether
to calculate 2 - P+ A - Br_1_; or to reduce the intermediate result.

5.5.5 Test Data

Test data was generated using a python script, which was written with an
architecture as illustrated in Figure 5.9. The test data solutions are created by
python operators, as shown in Listing 5.2.

def modular_addition(opl: int, op2: int, mod: int) —> int:
return (opl + op2) % mod

def modular_multiplication(opl: int, op2: int, mod: int) —>
int:



5.5. Arithmetic Module 35

__> ReduceDoneT

FIGURE 5.7: FSM interpretation of Multiply and Divide Algo-
rithm.

5 return (opl * op2) % mod

6

7 def integer_division (opl: int, op2: int) —> int:
8 if opl < 0 and op2 < 0:

9 res = abs(opl) // abs(op2)
10 elif opl < 0:

11 res = —(abs(opl) // op2)
12 elif op2 < 0:

13 res = —(opl // abs(op2))
14 else:

15 res = opl // op2

16 return res

LISTING 5.2: Test data solution calculations.

Notice the integer division // does not handle division of negative num-
bers correctly. Instead any negative numbers are negated, and basic algebra
rules are used to determine the sign of the result, just as it is implemented in
hardware.

The script source code is listed in Appendix A. Test data values used for
verification are listed in Appendix C.

5.5.6 Verification - Arithmetic Module

The arithmetic module was tested using a TB design as illustrated in Figure
5.10. The test program communicates with the arithmetic module through
an in_OpModule driver, and controls and verifies the register content during
testing through a dummy register bank, connected to the arithmetic module.

During testing the values listed in Appendix C were used to verify correct
results from arithmetic operations.
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Modular MultiplicationModule WORD_WIDTH#1

start

i
WORD_WIDTH+1
WORD_WIDTH#1
selOp2
op1 4 :
selOp2 op2 mux op1 mux
WORD_WIDTH#1 2

op2
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WORD_WIDTH#1
mod tmpop2

WORD_WIDTH¢1 M_od_ulaf .
opcode Multiplication
Controller

4
done

error enbRes_rg

FIGURE 5.8: Block diagram of modular multiplication module.

5.6 Controller Module

The controllers primary purpose is to handle communication with the CM33
using the coprocessor interface, the FSM in Figure 5.11 illustrates the imple-
mented state machine which does this. This is a synchronous design: the
controller will wait for any multicycle operation to finish before signaling to
the CM33 that it is ready to accept further instructions.

The outputs of the FSM is the coprocessor interface signals valid and er-
ror, and an internal valid, which are used in the in_OpModule interface. The
transitions in the illustration are referred to by name. The output signals of
the FSM are determined by both state and input, easiest described as the set
of all possible transitions:

RyT - ready transition Transition to READY, with ready asserted and error
deasserted, waiting for an instruction to be issued.

ET - error transition Transition to READY, with both ready and error asserted.
May be from an write error, read error, data processing error or an in-
valid instruction being issued.

WaT - wait transition Transition to WAIT when valid is asserted and a data
processing operation is issued.

WaWT - wait wait transition Transition to WAIT, from WAIT, while current
data processing operation is not yet finished.
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@ DataABC

headers: List[str]
data: List[Dict[str, int]]

@abstractclassmethod calculatelself) -> None
writeCswv(self, file: io.10Base, numFormat: int) -> None
writeCiself. file: io. 10Base, numFormat: int, fileName: str, arrayName: str} -= None

TS

@ ModAddData @ ModMulData @ DivData

@override calculate(self) -= None @override calculateiself) -= None @override calculate(self) -= None

FIGURE 5.9: Class diagram of python script generating test
data.

WaRT - wait ready transition Transition to WAIT, from WAIT, when a data
processing operation finished successfully and valid is asserted, request-
ing a new data processing operation immediately.

WaET - wait error transition Transition to WAIT, from WAIT, when a data
processing operation finished with error and valid is asserted, request-
ing a new data processing operation immediately.

ReT - read transition Transition to READ, when the processor wants to read
from a coprocessor register.

ReRT - read ready transition Transition to READ, from WAIT, when a data
processing operation finished successfully and valid is asserted, request-
ing a data transfer operation (read) immediately.

ReET - read error transition Transition to READ, from WAIT, when a data
processing operation finished with error and valid is asserted, request-
ing a data transfer operation (read) immediately.

WIT - write transition Transition to WRITE, when the processor wants to
write to a coprocessor register.

WrRT - write ready transition Transition to WRITE, from WAIT, when a data
processing operation finished successfully and valid is asserted, request-
ing a data transfer operation (write) immediately.

WrET - write error transition Transition to WRITE, from WAIT, when a data
processing operation finished with error and valid is asserted, request-
ing a data transfer operation (write) immediately.

5.6.1 Verification - Controller Module

The testbench setup for the verification of the controller module is illustrated
in Figure 5.12.



38 Chapter 5. Implementation

— Register Bank

Test Program 1 Dummy

gisters

in Re

in_OpModule " Ty Ophodule_
driver

DUT - Arithmetic Module

FIGURE 5.10: Block diagram of Arithmetic Module TB.

Operation module dummies for the arithmetic, logical, comparison and
shift modules are connected to the controller, and controlled by the test pro-
gram. A dummy register bank is connected to the controller, and the con-
troller is tested using a coprocessor interface driver for communication.

5.7 Verification - ECCo

The testbench setup for verification of the entire ECCo is illustrated in Figure
5.13.

A coprocessor interface driver is used to communicate with the ECCo,
and the test values from Appendix C are used to check for correct behavior
of the implemented operations.

5.8 Software

For this thesis three software components were implemented: a wrapper for
the coprocessor interface instructions; a big number library for use with the
ECCo; and a benchmarking program.
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FIGURE 5.11: FSM of ECCo controller module.

The big number library and ECCo wrapper were used to verify that com-
munication with the ECCo using the coprocessor interface was working as
expected. To verify correct behavior of the ECCo controller and the imple-
mented operations the test data form Appendix C were used. The source
code of the test programs used for verification are listed in Appendix F.

5.8.1 ECCo Wrapper

The ECCo wrapper was implemented to simplify calling the ECCo from C
using the coprocessor interface. The coprocessor instructions of the ARMv8-
M instruction set have to be called from assembly, using string literals to
refer to coprocessor registers and opcodes. Therefore a series of macros were
created for all the instructions in the proposed instruction set (Table 5.2). The
code for the wrapper is listed in Appendix D.

5.8.2 Big Number library

When using the ECCo some minor handling of big numbers in software are
still required. For this a big number library was implemented for use with
the ECCo. The functionality it provided was:
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| Testbench - Controller Module
_— Register Bank
‘ ‘ > Test Program Dummy
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CP interface 3
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in_OpModule dummies

Arithmetic in_OpModule

Logical in OpModule

DUT - Controller Module

Comparison in_OpModule

Shift in_OpModule

FIGURE 5.12: Testbench setup for verification of the controller
module.

¢ Converting to and from number strings on hexadecimal format.

¢ Comparing two numbers.

Loading a number to an ECCo register.
* Storing a number from an ECCo register.

¢ Some other convenient functionality.

The source code for the big number library is listed in Appendix E.

5.8.3 Benchmark Software

For benchmarking the pure software implementation of ECC, ANSSI libecc
(Chapter 2.9), were compared to the ECCo. The benchmarked operations



5.8. Software 41

Testbench - ECCo
DUT - ECCo
Test Program
______in Registers Register Bank
CP interface " Coprocessor Int $
h Coprocessor Interface ECCo 2
driver I Controller 3
€
£
~___in OpModule Arithmetic Module

FIGURE 5.13: Testbench setup for verification of ECCo.

were the modular multiplication and modular addition. As these are the
fundamental operations of SM the execution time of these will give an in-
dication of the possible speedup. The benchmarking was performed by do-
ing the setup of parameters once, instantiating operand 1 (OP1), operand 2
(OP2), and modulo (MOD) to large 256-bit values. The same values were
used for the libecc and ECCo benchmarks. Then the operation OP1 = OP1 +
OP2 % MOD were performed for the modular addition benchmark, and
OP1 = OP1 * OP2 % MOD for the modular multiplication benchmark.

The benchmarks were performed doing runs of 10 and 100 iterations, i.e.
performing the operation 10 or 100 times, updating the OP1 value each time.
The test values were large 256-bit values, making them similar to values used
during 256-bit SM. These benchmarks does, however, not include tests of
edge cases, such as when MOD << OP1 + OP2 in which case the ECCo will
have a very long execution time, nor does it guarantee coverage of the case
when MOD > OP1 + OP2 or MOD > OP1 x OP2.

The source code for the benchmarking programs are listed in Appendix
F.
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Chapter 6

Results

The simulation tests described in Chapter 5, verifying correct behavior of all
sub-modules and correct results from implemented arithmetic operations, all
succeeded.

This chapter presents the results from the benchmark, comparing the ex-
ecution time between the modular arithmetic software implementation by
libecc and the ECCo implementation. Lastly, the area estimates from synthe-
sis are presented.

6.1 Speed

The execution time of modular addition and modular multiplication is com-
pared between benchmark code running the operations on ECCo and using
the software implementation from libecc. Table 6.2 summarizes the bench-
marking results. The execution time is measured in clock cycles. As a ref-
erence, a simulation run without any operation was performed in order to
measure the setup time of the system. This empty run had an execution time
of 36,790 cycles (this is included in the results presented in Table 6.2).

The results show that the ECCo performed 3.8 times faster for modular
addition at 10 iterations, and 8 times faster at 100 iterations. As for the mod-
ular multiplication the ECCo performed 7.8 times faster at 10 and 27 times
faster at 100 iterations.

While the ECCo is significantly faster than the compared software imple-
mentation another notable result is how the ECCo and software implemen-
tation scales differently: From 10 to 100 iterations the ECCo had an increase

Operation Exec. Time - 10 Exec. Time - 100
Iterations Iterations

Modular Addition - ECCo 42,818 43,294
Modular Addition - libecc 164,906 347,966
Modular Multiplication - ECCo 46,840 87,864
Modular Multiplication - libecc 367,664 2,375,744

TABLE 6.2: Execution time of atomic operations. Measured in
clock cycles.
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Measurement Increase
Combinational Area 3.12x
Noncombinational Area 1.36x
Total Area 1.83x

TABLE 6.4: Area increase for design when adding ECCo.

Module Sub-Module ECCo Acc. Area Comb. Area Noncomb. Area
Arithmetic 84.63% 5.80% 13.61%
Multiplication* 1.97% 1.56% 4.81%

Addition* 1.92% 1.53% 4.61%

Negation 0.78% 0.25% 4.49%

Division 73.18% 83.02% 4.50%

Controller 4.65% 5.25% 0.42%
Register Bank 10.72% 2.59% 67.31%

TABLE 6.6: Area distribution of ECCo modules. (*modular)

in execution time of 1.01x (addition) and 1.8x (multiplication), while the soft-
ware implementation had an increase of 2.1x (addition) and 6.5x (multiplica-
tion). This gives an indication on the benefit of having a coprocessor which
allows an extensive amount of operations to be performed without the need
for data transfer between processor and coprocessor.

6.2 Area

The design of the CM33 with the ECCo was synthesizable, and did not have
any negative slack. It was synthesized without any optimization, at a fre-
quency of 128MHz. The area results are presented as a comparison between
synthesis estimates of the design with and without the ECCo included (Ta-
ble 6.4), and a area distribution between the sub-modules of the ECCo (Table
6.6).

The values shown in Table 6.4 are percentage increase in area when syn-
thesizing the CM33 and CM33+ECCo. Clearly, the ECCo contains a great
deal of combinatorial logic, increasing area of combinatorial cell area by 312%.
In total the ECCo’s area equals 83% of existing design.

The values shown in Table 6.6 are the area distribution of the ECCo sub-
modules.
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ECCo Accumulative Area The area percentage of the ECCo occupied by this
module, included its sub-modules. The percentages of Arithmetic, Con-
troller, and Register Bank modules add up to 100%, being all the sub-
modules of the ECCo. The percentages of Multiplication, Addition, Nega-
tion, and Division are included in the Arithmetic percentage, but they do
not sum up to 84.63% since the Arithmetic module contains some logic
of its own.

Combinatorial Area The area percentage of combinatorial cells for only this
module, not including any of its sub-modules. E.g. the Arithmetic mod-
ule uses 5.8% of the total area of combinatorial cells in the ECCo, ex-
cluded its sub-modules, and the Division module uses 83.02% of the
total combinatorial area of the ECCo.

Noncombinatorial Area Same as for combinatorial.

Not surprisingly, a majority of the noncombinational area are occupied by
the register bank. However, most of the area of the ECCo are occupied by the
divider, which were synthesized using the SV division operator "/" without
any optimization from the synthesizer.

The implementation of the most essential modules, Modular Multpilcation
and Modular Addition, only occupied 1.97% and 1.92%, respectively. Com-
bined with the benchmark results, this gives an indication of the advantages
of using the ECCo: Significant speedup, with only a small area increase, as-
suming the divisor can be more efficiently implemented. Assuming a more
efficient divisor implementation: the register bank may be the module occu-
pying the largest area, currently being 5x the size of the Modular Multiplica-
tion and Modular Addition modules, and 2x the size of the controller.
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Chapter 7

Future Work

The ECCo implementation in this thesis has only included a small subset
of necessary operations and features for the suggested design of a complete
elliptic curve coprocessor. This chapter discusses possible changes and con-
siderations for future work on the coprocessor proposed in this thesis.

7.1 Instruction Set Architecture

The instruction set proposed in Table 5.2 is intended for a design aimed for
solution 2 in Chapter 4.1. The desired solution, however, is solution 3, which
requires some additional, higher level operations to be included in the in-
struction set. More specifically point arithmetic (Chapter 2.2.3) and /or scalar
multiplication (Chapter 2.3).

Also, another desirable functionality would be to have a way of generat-
ing random numbers of the coprocessors word size. This is because random
numbers used in many cryptography algorithms, like ECDSA (Chapter 2.5).

The currently implemented arithmetic operations of modular addition
and modular multiplication are also the fundamental operations of common,
non-EC crypto systems, like RSA [20] and Diffie-Hellman [4]. Adding in-
structions for these common algorithms could be usefull, but would require
the possibility of working with numbers of bit sizes up to 4096-bit to provide
acceptable security.

7.2 Security

An issue which has not been addressed in this thesis, but which must be
considered for future work, is security of the implementation against attacks
such as side-channel attacks. A way of trying to defend against side-channel
attacks is by using constant time algorithms for calculations, which should
be considered both for the finite-field arithmetic, point operations and the
scalar multiplication algorithm.

7.3 Algorithms

While the implemented algorithms for modular addition and modular mul-
tiplication are simple, with more complex and efficient methods available
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(Chapters 3.1 and 3.2), the current implementation already provides signifi-
cant speedup over pure software implementation. A future change in choice
of algorithms is necessary for further development, a decision in which a
compromise between security and efficiency surely is needed.

The integer division will, however, need a more area efficient implemen-
tation. Reducing the area consumption of the divisor module could, poten-
tially, significantly reduce the total area of the ECCo.
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Chapter 8

Conclusion

This thesis has explored how to design a coprocessor for accelerating elliptic
curve cryptography, based on the results from the prestudy [11]. The co-
processor designed in the thesis, ECCo, was designed for use with the ARM
CMB33 processor. The CM33 provides a coprocessor interface for tight integra-
tion of coprocessors, which allows the instructions to be issued to connected
coprocessors from software.

This lead to the ECCo being designed with an instruction set providing
the atomic mathematical operations for ECC, with the possibility of adding
implementations of scalar multiplication to the instruct set in a future work.

As time did not allow for the entire proposed instruction set to be im-
plemented only the atomic arithmetic operations were implemented, and an
ECCo design with a controller, register bank and arithmetic module were
used to compare execution time with an ECC software implementation, and
to estimate area usage by synthesis. The ECCo accounted for 45% of the
area when synthesizing ECCo+CM33. The estimates showed that the ECCo
area consumption was largely dominated by the divisor (73.18% of the total
ECCo area), which was implemented using the SystemVerilog division oper-
ator, "/", and no optimization in synthesis. However, the atomic operations
of ECC, Modular Multiplication and Modular Addition, only occupied 1.97%
and 1.92%, respectively. These modules also performed 3.8x - 27x faster than
a pure software implementation of ECC.

While the implemented algorithms for modular addition and modular
multiplication are simple, with more complex and efficient methods avail-
able (Chapters 3.1 and 3.2), the current implementation already provides
significant speedup over pure software implementation. Providing a com-
plete system which allows efficiency to be achieved through several meth-
ods: reducing data transfers, optimizing implementation of mathematical
operations and flexibility and ease-of-use.
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Test Data Python script
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import argparse

import csv

import io

import os

import re

import shutil

import sys

from abc import ABC, abstractclassmethod
from typing import =

# Exception class used to differentiote between known and unknown errors.
class DataError (Exception):
pass

*

Baseclass #

class DataABC(ABC) :
"""DataABC is the baseclass for all calculations. It handles reading from
and writing to csv data files , writing to C files , and number formatting
(decimal, hex & binary).

headers = []
data =[]
def __init__(self, headers, file: io.IOBase, numBase: int) —> None:

self .headers = headers
rd = csv.reader(file)
# First line of the file must be the headers
fileHeaders = rd.__next__()
if self.headers != fileHeaders:
raise DataError(f’[!!] _DataABC
< ({fileHeaders} ")

init__: _Invalid_headers! Want_{self.headers} _— got,

# Read all data
for j, cols in enumerate(rd):
# Report and skip empty lines
if not cols:
print (f’[_]_DataABC
— Ignoring...")
continue
# Represent the data as a dict, indexed by header names
tmp = dict()
for i, h in enumerate(self.headers):
# Sanitychecks to avoid decimal interpreted as hex etc.
if not re.match(r’A~?\d+$’, cols[i]) and numBase == 10:
raise DataError(f 'DataABC,___init__:_Reading_{file}: Tried _interpreting,
< non—decimal_number_as_decimal:_"{cols[i]}"")
elif not re.match(r’'A—20x[0—9a—fA—F]+$’, cols[i]) and numBase == 16:
raise DataError(f’DataABC, __init__:_Reading {file}: Tried interpreting non-hex,
< number_as_hexadecimal:_"{cols[i]}" ")
elif not re.match(r’~"—20b[01]+$", cols[i]) and numBase == 2:
raise DataError(f’DataABC, ,__init__:_Reading, {file}: Tried interpreting,,
— non—binary_number_as _binary:  "{cols[i]}"")
tmp[h] = int(cols[i], numBase)
self.data.append (tmp)

init__:_Reading_{file}: Found_empty_line_({j+2})._

P

@abstractclassmethod
def calculate(self) — None:
pass

@staticmethod
def _formatNumber (num: int, numFormat: int) —> str:
# Determine number format string

if numFormat == 16:
return f’Ox{num:x}’ if num >= 0 else f’—0x{abs(num):x}’
elif numFormat == 2:

return f’Ob{num:b}’ if num >= 0 else f’—0Ob{abs(num):b}’

51
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else:
return f’{num}’

%
@
-

_formatDataCsv (self , numFormat: int) —> Generator[Dict[str, str], None, None]:
# Iterate through data values, yield dictionaries with strings of formatted numbers
for d in self.data:

tmp = dict()
for k, v in d.items():

tmp[k] = self._formatNumber(v, numFormat)
yield tmp

def writeCsv(self, file: io.IOBase, numFormat: int) —> None:
wr = csv.DictWriter (file , fieldnames=self.headers)
# First writeCsv the header line
wr. writeheader ()
# Write all data to the file
for d in self._formatDataCsv (numFormat) :
wr. writerow (d)

a
@
-

_formatDataC(self , numFormat: int) —> Generator[List[str], None, None]:
for d in self.data:
tmp = list ()
for v in d.values():
tmp . append (self ._formatNumber(v, numFormat))
yield tmp

def writeC(self , file: io.IOBase, numFormat: int, fileName: str, arrayName: str) —> None:
# Need to know size of all the arrays dimensions
numEntries = len(self.data) + 1 # Zero terminated
numHeaders = len(self.headers)
numChars = 0
# Iterate through all values and find the longest string
for d in self.data:
for v in d.values():
1 = len(self._formatNumber (v, numFormat))
if 1 > numChars:
numChars = 1
numChars += 1 # One extra, for terminating zero

# Print some general information comments

print(f’//_Created _by_{sys.argv[0]}_with _data_from_{fileName}\n//_Number_base: _{numFormat}’,
— file=file , end="\n\n")

# Print some macros with meta data

print(f’#define _{arrayName.upper () }_NUM_ENTRIES_{numEntries —1}", file=file)

print(f’#define _{arrayName.upper () ] NUM_HEADERS  {numHeaders}’, file=file)

print(f’#define _{arrayName.upper () } NUM CHARS_ {numChars—1}", file=file , end="\n\n")

# Print a comment with the headers

print(f’//_[{",.".join(self.headers)}]’, file=file)

# Write the actual data

print (f’char_{arrayName }[{ numEntries } | [{ numHeaders } | [{ numChars}]_=_{{’, file=file)
for data in self._formatDataC(numFormat) :
print(f""" ({"{’", "’.join(data)}"}},""", file=file)

# End with zero termination
print (/oo {0I\n}; 7, file=file)

#
# #
# Addition #
# #
# tH A H T tHAHTHITT tHAHITHT THAHITHITT tH T HITHT THAHITHITT T H A
class ModAddData(DataABC) :
def __init__(self, file: io.IOBase, numBase: int):
super().__init__ ([ ‘'modulo’, “operandl’, ‘operand2’, ’‘result’], file , numBase)

def calculate(self):
# For each entry calculate opl+op2 % mod
for i, d in enumerate(self.data):
self .data[i][ "result’] = (d[ operandl’] + d[ operand2’]) % d[ 'modulo”]

#

# #
# Multiplication #
# #
# FHHH#H#1 HHH## 4 FHH#H#H# 1 HHH## 4 FHH#H#H#E HHH## 4 HHH## 4
class ModMulData (DataABC) :

def __init__(self, file: io.IOBase, numBase: int):
super().__init__ ([ ‘'modulo’, ‘operandl’, ’‘operand2’, ’‘result’], file , numBase)

def calculate (self):
# For each entry calculate opl+op2 % mod
for i, d in enumerate(self.data):
self .data[i][ "result’] = (d[ operandl’] = d[ operand2’]) % d[ 'modulo”]

H#*

Division #

I S

class DivData(DataABC) :
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165 def __init__(self, file: io.IOBase, numBase: int):

166 super () .__init__ ([ "operandl’, ‘operand2’, ‘result’], file , numBase)

167

168 def calculate(self):

169 # For each entry calculate opl/op2, integer division

170 for i, d in enumerate(self.data):

171 opl = d[ operandl’]

172 op2 = d[operand2’]

173 # Integer division doesn’t behave as expected when dealing with

174 # negative numbers (e.g. it thinks 3//-4 = —1) so just give it

175 # positive numbers instead and use basic arithmetic rules for

176 # determining result sign.

177 if opl < 0 and op2 < 0:

178 self.data[i][ "result’] = abs(opl) // abs(op2)

179 elif opl < 0:

180 self .data[i][ "result’] = —(abs(opl) // op2)

181 elif op2 < 0:

182 self.data[i][ "result’] = —(opl // abs(op2))

183 else:

184 self.data[i][ 'result’] = opl // op2

185

186

187 #

188  # #

189 # Main code #

190 # #

192

193 if __name__ == "__main__"

194 # Setup argparse

195 par = argparse.ArgumentParser ()

196 par.add_argument('FILE’, type=str, help="data_file_on_either_hexa,_binary_or_decimal_format.")

197 par.add_argument(’'—o’, metavar="FILE", type=str, help="optional_output_file ")

198 par.add_argument(’'—c’, action='store_true’, help="output_the_data_as_C-array_instead of CSV’)

199 par.add_argument(’~b’, action='store_true’, help='create_a_backup_file’)

200 # Use a mutually exclusive group for selecting number format

201 formatGroup = par.add_mutually_exclusive_group (required=True)

202 formatGroup .add_argument(’—dec’, action=’store_true’, help="input_data_is _on_decimal_format. ")

203 formatGroup .add_argument(’—hex’, action='store_true’, help="input_data_is_on_hexadecimal
< format.”)

204 formatGroup .add_argument('—bin’, action=’"store_true’, help="input_data_is_on_binary_format.”)

205 # Use a mutually exclusive group for selecting output number format

206 formatGroup = par.add_mutually_exclusive_group (required=False)

207 formatGroup .add_argument( '—outDec’, action=’"store_true’, help="output_data _is _on decimal,,
< format. ")

208 formatGroup .add_argument( —outHex’, action=’store_true’, help="output data, is, on_hexadecimal
< format.")

209 formatGroup .add_argument('—outBin’, action=’store_true’, help="output data, is on_binary,,
— format.’)

210 # Use a mutually exclusive group for selecting operation

211 operationGroup = par.add_mutually_exclusive_group (required=True)

212 operationGroup .add_argument(’—add’, action="store_true’, help="calculate_data_for _modular_
< addition.”)

213 operationGroup .add_argument('—mul’, action="store_true’, help="calculate_data_for _modular_
< multiplication.”)

214 operationGroup .add_argument('—div’, action="store_true’, help="calculate _data_for_integer
< division.")

215

216 args = vars(par.parse_args())

217 dataFile = args|[ FILE"]

218 bkupFile = f’{dataFile}.backup’

219 outFile = args[’o’] if args[’o’] else dataFile

220 csvOut = not args[’c’]

221

222 # Select data operation

223 if args[’add’]:

224 dataClass = ModAddData

225 cArrayName = ’dataAdd’

226 elif args['mul’]:

227 dataClass = ModMulData

228 cArrayName = ’‘dataMul’

229 elif args[’div’']:

230 dataClass = DivData

231 cArrayName = ’‘dataDiv’

232

233 # Select input number base

234 if args[’dec’]:

235 inBase = 10

236 elif args[ hex’]:

237 inBase = 16

238 elif args[’bin’]:

239 inBase = 2

240 # Select output number base

241 if args[’outDec’]:

242 outBase = 10

243 elif args[’outHex']:

244 outBase = 16

245 elif args[’outBin’]:

246 outBase = 2

247 else:

248 outBase = inBase

249 cArrayName = f’{cArrayName}{outBase}’

250

251 # Perform calculation

252 try :

253 with open(dataFile, 'r’, newline="") as fin:

254 data = dataClass(fin, inBase)
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255 data.calculate ()

256 if args['b’]:

257 shutil .copy(dataFile , bkupFile)

258 with open(outFile, 'w’, newline="") as fout:

259 if csvOut:

260 data.writeCsv (fout, outBase)

261 else:

262 data.writeC(fout, outBase, outFile, cArrayName)
263 except DataError as e:

264 print(e, file=sys.stderr)

LISTING A.1: Python script for generating test data
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Internal Interfaces SV Code

interface in_Registers;
logic [NUM_REGS-1: 0][WORD WIDIH: 0]
logic [WORD WIDIH: 0]
logic [3:

logic

0]

modport slave (

output
input
input
input

)

registers,

wData,
wReg,
wEnable

modport master (

input

output
output
output

)

registers,

wData,
wReg,

wEnable

endinterface

interface in_OpModule;

logic ready;
logic error;
logic valid;
logic [3:0] opcode;
logic [3:0] oplReg;
logic [3:0] op2Reg;
logic [3:0] resReg;
modport slave (
output ready,
output error,
input wvalid,
input opcode,
input oplReg,
input op2Reg,
input resReg
)
modport master (
input ready,
input error,
output valid,
output opcode,

registers;
wData ;
wReg;
wEnable;
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output oplReg,

output op2Reg,

output resReg
);

endinterface

LISTING B.1:

SystemVerilog code for the internal
interfaces of ECCo.
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Test Data

modulo, operandl , operand2, result

7,15,1,2

11,3,2,5

11,3,—4,10

233,75,77,152

233,567,895,64

233,567,—895,138

28657,16578,19504,7425

514229,546500,357980,390251
99194853094755497,98275954794755497,12457956214,98275967252711711
99194853094755497,98275954794755497 , —12457956214,98275942336799283
92567853094755497,98275954794755497,92657924597654697,5798173202899200

92567853094755497,—-98275954794755497 , —92657924597654697 ,86769679891856297
75356465794755497,65245765798756497,70253759756423697,60143059760424697
74225698149877013133163669918490695756676765155849109751738796007550114900164,5522897
55228977394393414412853003502097247104908965897402951232160234933662925082798,4522897
74225698149877013133163669918490695756676765155849109751738796007550114900164,5522897
74225698149877013133163669918490695756676765155849109751738796007550114900164,6522897
74225698149877013133163669918490695756676765155849109751738796007550114900164,3528977
74225698149877013133163669918490695756676765155849109751738796007550114900164,9528977:
74225698149877013133163669918490695756676765155849109751738796007550114900164 ,8528977

74225698149877013133163669918490695756676765155849109751738796007550114900164 ,4522897

LI1STING C.1: Modular addition test data.

modulo, operandl, operand2, result
7,15,1,1

11,3,2,6

233,75,77,183

233,567,895,224
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28657,16578,19504,381

514229,546500,357980,218095
99194853094755497,98275954794755497,12457956214,31017271154744113
92567853094755497,98275954794755497 ,92657924597654697 ,48036520782282743

75356465794755497,65245765798756497,70253759756423697 ,65782237743603078

74225698149877013133163669918490695756676765155849109751738796007550114900164 ,552
55228977394393414412853003502097247104908965897402951232160234933662925082798,452~
74225698149877013133163669918490695756676765155849109751738796007550114900164 ,552
74225698149877013133163669918490695756676765155849109751738796007550114900164 ,652-
74225698149877013133163669918490695756676765155849109751738796007550114900164 ,352¢
74225698149877013133163669918490695756676765155849109751738796007550114900164 ,952¢
74225698149877013133163669918490695756676765155849109751738796007550114900164 ,852¢

74225698149877013133163669918490695756676765155849109751738796007550114900164 ,4527

LISTING C.2: Modular multiplication test data.

operandl, operand2, result

5,1,5

3,2,1

3,—4,0

75,77 ,0

567,895,0

567,—-895,0

16578,19504,0

546500,357980,1
98275954794755497,12457956214,7888609
98275954794755497, —12457956214, —7888609
98275954794755497,92657924597654697,1
98275954794755497,97,1013154173141809
98275954794755497,—-97,—-1013154173141809
65245765798756497,70256423697,928680
55228977394654679572853003502097247104908965897402951232160234933662925082798,412¢

65228977394654679572853003502097247104908965897402951232160234933662925082798,412¢
3528977394654679572853003502097247104908965897402951232160234933662925082798,4128"
9528977394654679572853003502097247104908965897402951232160234933662925082798,9128"
8528977394654679572853003502097247104908965897402951232160234933662925082798,9128"

45228977394393414412853003502097247104908965897402951232160234933662925082798,132¢

LISTING C.3: Integer division test data.
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1 #ifndef ECC_H

2 #define ECC_H

3

4 /*.>€*%%****%*k’%***k’)&*%**)&>€>F>('>bk’%***k’**%*k’)&*%*****%**%*****X’%****
5 * *
6 * Internal ecc.h macros *
7 * *
8 >('>€>€>f#****ﬂr**********=‘r>('>€>€>f>‘r>('>€>€>f>f>€**************ﬂr**************/
9

10 // Coprocessor number of the ECCo

11 #define _ECC_COPROC "p0"

12

13 />e>«>e>m¢>e>«>e>m¢>e>f>e

14 + Opcodes =

15 *******z.&*****/

16

17 // Arithmetic

18 #define _ECC_OPCI_MUL "0x0"

19 #define _ECC_OPC1_ADD "0Ox1"

20 #define __ECC_OPCI_DIV "0x2"

21 #define __ECC_OPCI1_NEG "0x3"

22 // Logical

23 #define __ECC_OPCI_LOG "0Oxd"

24 #define __ECC_OPC2_OR "Ox0"

25  #define _ECC_OPC2_AND "Ox1"

26 #define __ ECC_OPC2_XOR "0x2"

27 #define _ECC_OPC2_NOT "0x3"

28 // Shift

29 #define __ECC_OPCI_SFT "Oxe"

30 #define __ECC_OPC2_LSL "0x0"

31 #define __ECC_OPC2_LSR "Ox1"

32 #define __ECC_OPC2_ASR "0x2"

33 // Comparison

3¢ #define _ECC_OPCI_CMP "Oxf"

35 #define __ECC_OPC2_ZR "0x0"

36 #define __ECC_OPC2_NZR "Ox1"

37 #define __ECC_OPC2_EQ "0x2"

38 #define __ECC_OPC2_NEQ "0x3"

39 #define __ECC_OPC2 LT "0x4"

40 #define __ECC_OPC2_GT "Ox5"

41 // Miscellaneous

42  #define __ECC_OPC1_INC "Oxa"

43  #define __ECC_OPCI_DEC "Oxb"

44 #define __ECC_OPC1_SSB "Oxc"

45 #define __ECC_OPC2_SSB "0x0"

46 #define __ECC_OPCI1_USB "Oxc"

47 #define __ECC_OPC2_USB "Ox1"

48

49

50 /‘.>€>€>€>(-***********k’**%**)&***********%*****%*********%****%%****
51 * *
52 * Exported ecc.h macros *
53 * *
54 >€>€>€>{'>.‘>€>€>€*ﬂr*******************>f>f>€**************ﬂr**************/
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55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95
96
97
98
99
100
101

102

103

104

105

#ifndef NULL
#define NULL ((void=)0)
#endif

/w»»**»»*»»*****»»*»»**»»*»»*****
+ Coprocessor interface meta =

******%****************%********/

#define ECC_OP1_WIDTH 4

#define ECC_OP1_MAX 15

#define ECC_OP2_WIDTH 3

#define ECC_OP2_MAX 7

#define ECC_REG_IDX WIDTH 4

#define ECC_REG_IDX_MAX 15

#define ECC_ WORD_WIDTH 256

#define ECC_WORD_WIDTH_BYTE (ECC_WORD WIDTH/ 8)
#define ECC_MODULO_REG "14"

#define ECC_STATUS_REG "15"

/ﬂr>f>€>€***********************
+ Arithmetic operations =

***************************/

// All arguments are coprocessor register indexes, which must be integers
in double quotes.

#define ECC_MUL(oplReg, op2Reg, resReg) asm volatile ("cdp_"_ECC_COPROC",
#"_ECC_OPC1_MUL", cr"op2Reg", cr"oplReg", cr"resReg", #0")

#define ECC_ADD(oplReg, op2Reg, resReg) asm volatile ("cdp_"_ECC_COPROC",
#"_ECC_OPC1_ADD", cr"op2Reg", cr"oplReg", cr"resReg",6 #0")

#define ECC_DIV(oplReg, op2Reg, resReg) asm volatile ("cdp_"_ECC_COPROC",
#"_ECC_OPC1_DIV", cr"op2Reg", cr"oplReg", cr"resReg",6 #0")

#define ECC_NEG(opReg, resReg) asm volatile ("cdp_"_ECC_COPROC", |
#"__ECC_OPC1_NEG", cr0 cr"opReg", cr'"resReg", #0")

LA TR R T TR TR TR T

/>1'********#**********#***
+ Logical operations =

************************/

// All arguments are coprocessor register indexes, which must be integers
in double quotes.

#define ECC_OR( oplReg, op2Reg, resReg) asm volatile ("cdp_"_ECC_COPROC",
#"_ECC_OPC1_LOG", _cr" op2Reg", cr"oplReg", cr'"resReg", #"_ECC_OPC2_OR

)

#define ECC_AND(oplReg, op2Reg, resReg) asm volatile ("cdp,"_ECC_COPROC",
#"_ECC_OPC1_LOG", _cr" op2Reg",_cr"oplReg", cr'"resReg", #"
__ECC_OPC2_AND)

#define ECC_XOR(oplReg, op2Reg, resReg) asm volatile ("cdp_"__ECC_COPROC",
#"_ECC_OPC1_LOG", _cr" op2Reg", cr"oplReg", cr'"resReg", #"
__ECC_OPC2_XOR)

#define ECC_NOT(opReg, resReg) asm volatile ("cdp, "_ECC_COPROC", |
#"_ECC_OPC1_LOG" , _cr0 cr"oplReg", cr'"resReg", #"
__ECC_OPC2_NOT)

o

[ ST TR AT}

/*>(-X‘*#**X‘**X‘****X‘**X—***
+ Shift operations =

*»***»»**w»***w****w*»/

// All arguments are coprocessor register indexes, which must be integers
in double quotes.

#define ECC_LSL(oplReg, op2Reg, resReg) asm volatile ("cdp_"_ECC_COPROC",
#"__ECC_OPC1_SFT", cr"op2Reg", cr"oplReg", cr"resReg",6 #"__ECC_OPC2_LSL

)

#define ECC_LSR(oplReg, op2Reg, resReg) asm volatile ("cdp_"_ECC_COPROC",
#"__ECC_OPC1_SFT", cr"op2Reg", cr"oplReg", cr"resReg",6 #"__ECC_OPC2_LSR
)

#define ECC_ASR(oplReg, op2Reg, resReg) asm volatile ("cdp_"__ECC_COPROC",
#"__ECC_OPC1_SFT", cr"op2Reg", cr"oplReg", cr"resReg",6 #"__ECC_OPC2_ASR
)

=
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106
107
108
109
110
111

112

113

114

115

116

117

118
119
120
121
122
123
124

125

126

127

128

129
130
131
132
133
134
135

136

137
138

139
140

141
142
143
144
145

146
147
148
149
150

151
152
153
154
155

156
157
158

/***************************

+ Comparison operations =

***»***********************/

// All arguments are coprocessor register indexes, which must be integers
in double quotes.
#define ECC_ZR( reg) asm volatile ("cdp_"__ECC_COPROC", #"
__ECC_OPC1.CMP ", crO, . . cr'reg", . cr0, #"_ECC_OPC2_ZR)
#define ECC_NZR(reg) asm volatile ("cdp_"__ECC_COPROC", #"
_ ECC_OPC1_.CMP ", crO, . ..cr'reg", . cr0, #"_ECC_OPC2_NZR)
#define ECC_EQ( oplReg, op2Reg) asm volatile ("cdp_"__ECC_COPROC", #"
__ ECC_OPC1_CMP ", cr"op2Reg", cr"oplReg", cr0, #"_ECC_OPC2_EQ)
#define ECC_NEQ(oplReg, op2Reg) asm volatile ("cdp_"_ECC_COPROC", #"
__ECC_OPC1_.CMP ", _cr"op2Reg", cr"oplReg", cr0,_ #"_ECC_OPC2_NEQ)
#define ECC_LT( oplReg, op2Reg) asm volatile ("cdp "_ECC_COPROC", #"
__ECC_OPC1.CMP ", cr"op2Reg", cr"oplReg", cr0,_ #"_ECC_OPC2_LT)
#define ECC_GT( oplReg, op2Reg) asm volatile ("cdp_"__ECC_COPROC", #"
__ECC_OPC1.CMP ", cr"op2Reg", cr'"oplReg", cr0, #"_ECC_OPC2_GT)

/»»*»%*»»*»******»%*»»*»**%*»*»
+ Miscellaneous operations =

%***%*************************/

// All arguments are coprocessor register indexes, which must be integers
in double quotes.

#define ECC_INC(opReg, resReg) asm volatile ("cdp_"_ECC_COPROC",_ #"
__ECC_OPC1_INC ", _cr0,_cr"opReg", cr"resReg", #0")

#define ECC_DEC(opReg, resReg) asm volatile ("cdp_"_ECC_COPROC", #"
__ECC_OPCI_DEC ", _cr0,_cr"opReg", cr"resReg",6 #0")

#define ECC_SSB(reg) asm volatile ("cdp,_"__ECC_COPROC", #"
__Ecc_orci_ssB ", cr0, _cr"reg", .. .ct0, . . ... . #"_ECC_OPC2_SSB)

#define ECC_USB(reg) asm volatile ("cdp,_"__ECC_COPROC", #"
__ECC_OPC1_USB ", _cr0,_cr"reg" cr0 #"__ECC_OPC2_USB)

gu—— 7 e

/*%**%**%»*%**%*%**%**%**%*
+ Data transfer macros =

AAAEAEA KA AR AR AR A KA AR AR A A %

/+ Load coprocessor register macros. Offset is in hexa. ’‘reg’ is a
coprocessor
register index and must be a decimal integer in double quotes. 'Rt’ and
"Rt27 are
32—bit input variables. =/
#define ECC_LOAD_O(Rt, Rt2, reg) asm volatile ("mcrr_"_ECC_COPROC",_ #0x0,
%0, %1, cr'"reg :: "rm" (Rt), "mm" (Rt2))
#if BECC_WORD_WIDTH > 64
#define ECC_LOAD_1(Rt, Rt2, reg) asm volatile ("mecrr_"_ECC_COPROC", #0x1,

_%0,_ %1, cr'"reg :: "rmm" (Rt), "m" (Rt2))
#else
#define ECC_LOAD_1(Rt, Rt2, reg)
#endif

#if ECC_WORD WIDTH > 128
#define ECC_LOAD_2(Rt, Rt2, reg) asm volatile ("mecrr_"_ECC_COPROC", #0x2,

_%0, %1, cr'"reg :: "rmm" (Rt), "m" (Rt2))
#else
#define ECC_LOAD_2(Rt, Rt2, reg)
#endif

#if BCC_WORD WIDTH > 192
#define ECC_LOAD_3(Rt, Rt2, reg) asm volatile ("mecrr"_ECC_COPROC", #0x3,

_%0, %1, cr"reg :: "mm" (Rt), "rm" (Rt2))
#else
#define ECC_LOAD_3(Rt, Rt2, reg)
#endif

#if BECC_WORD WIDIH > 256
#define ECC_LOAD_4(Rt, Rt2, reg) asm volatile ("mecrr_"_ECC_COPROC", #0x4,

_%0, %1, cr'"reg :: "rmm" (Rt), "m" (Rt2))
#else
#define ECC_LOAD_4(Rt, Rt2, reg)
#endif
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159  #if ECC_ WORD WIDTH > 320

160 #define ECC_LOAD_5(Rt, Rt2, reg) asm volatile ("mcrr " ECC COPROC", #0x5,
_%0,.,%1, cr'"reg "rm" (Rt), "rm" (Rt2))

161 #else

162 #define ECC_LOAD_5(Rt, Rt2, reg)

163 #endif

164 #if ECC WORD_WIDTH > 384

165 #define ECC_LOAD_6(Rt, Rt2, reg) asm volatile ("mcrr"_ECC_COPROC", #0x6,
_%0, %1, cr'reg "m" (Rt), "rm" (Rt2))

166 #else

167 #define ECC_LOAD_6(Rt, Rt2, reg)

168 #endif

169 #if ECC_ WORD WIDTH > 448

170 #define ECC_LOAD_7(Rt, Rt2, reg) asm volatile ("mcrr"_ECC_ COPROC", #0x7,
_%0, %1, cr'"reg "m" (Rt), "rmm" (Rt2))

171 #else

172 #define ECC_LOAD_7(Rt, Rt2, reg)

173 #endif

174 #if ECC WORD_WIDIH > 512

175 #define ECC_LOAD_8(Rt, Rt2, reg) asm volatile ("mcrr"_ECC COPROC", #0x8,
_%0, %1, cr'reg "rm" (Rt), "mm" (Rt2))

176 #else

177 #define ECC_LOAD_8(Rt, Rt2, reg)

178 #endif

179 #if ECC WORD WIDTH > 576

180 #define ECC_LOAD 9(Rt, Rt2, reg) asm volatile ("mcrr " ECC_COPROC", #0x9,
_%0, %1, cr'reg "rm" (Rt), "rm" (Rt2))

181 #else

182 #define ECC_LOAD 9(Rt, Rt2, reg)

183 #endif

184 #if ECC_ WORD WIDTH > 640

185 #define ECC_LOAD_10(Rt, Rt2, reg) asm volatile ("mcrr "_ECC_COPROC", #0xa
,.%0,_ %1, cr'"reg "rm" (Rt), "mm" (Rt2))

186 #else

187 #define ECC_LOAD_10(Rt, Rt2, reg)

188  #endif

189 #if ECC_ WORD_WIDIH > 704

190 #define ECC_LOAD_11(Rt, Rt2, reg) asm volatile ("mecrr_"_ECC_COPROC", #0xb
,.%0,_ %1, cr'"reg "rm" (Rt), "mm" (Rt2))

191 #else

192 #define ECC_LOAD_11(Rt, Rt2, reg)

193  #endif

194
195

196
197
198
199
200

201
202
203
204
205

206
207
208
209
210

211
212
213
214
215

216

217

#if ECC_WORD WIDTH > 768

#define ECC_LOAD_12(Rt, Rt2, reg)
, %0, %1, cr'reg "rm" (Rt),

#else

#define ECC_LOAD_12(Rt, Rt2, reg)

#endif

#if ECC_WORD WIDTH > 832

#define ECC_LOAD_13(Rt, Rt2, reg)
, %0, %1, cr'"reg "rm" (Rt),

#else

#define ECC_LOAD_13(Rt, Rt2, reg)

#endif

#if BECC_WORD WIDTH > 896

#define ECC_LOAD_14(Rt, Rt2, reg)
, %0, %1, cr'reg "rm" (Rt),

#else

#define ECC_LOAD_14(Rt, Rt2, reg)

#endif

#if ECC_WORD WIDTH > 960

#define ECC_LOAD_15(Rt, Rt2, reg)

asm volatile
"rm" (Rt2))

asm volatile
"rm" (Rt2))

asm volatile
"rm" (Rt2))

asm volatile

, %0, %1, cr'reg "rm" (Rt), "mm" (Rt2))
#else
#define ECC_LOAD_15(Rt, Rt2, reg)
#endif
/+ Store coprocessor register macros. Offset is

coprocessor

register index and must be a decimal integer
g g

"Rt2’ are

32—bit output variables. =/

("mecrr_"__ECC_COPROC", #0xc

("mecrr_"_ECC_COPROC", #0xd

("mcrr_"__ECC_COPROC", #0xe

("mcrr_"__ECC_COPROC", #0xf

in hexa. ‘reg’ is a

in double quotes. 'Rt’ and
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218

219
220

221
222
223
224
225

226
227
228
229
230

231
232
233
234
235

236
237
238
239
240

241
242
243
244
245

246
247
248
249
250

251
252
253
254
255

256
257
258
259
260

261
262

264
265

266
267
268

270

271
272
273
274
275

276

#define ECC_STORE_O(Rt, Rt2, reg) asm volatile ("mrrc_"_ECC_COPROC", #0x0,

_%0,_ %1, cr'reg "=rm"
#if ECC_WORD WIDTH > 64

(Rt), "=rm"

(Rt2))

#define ECC_STORE_1(Rt, Rt2, reg) asm volatile ("mrrc_"_ECC_COPROC", #0x1

,.%0, %1, cr'reg "=rm"

#else

#define ECC_STORE_1(Rt, Rt2,

#endif
#if BECC_WORD WIDTH > 128

#define ECC_STORE_2(Rt, Rt2,

,.%0,_%1, cr'"reg "=rm"

#else

#define ECC_STORE_2(Rt, Rt2,

#endif
#if BECC_WORD WIDTH > 192

#define ECC_STORE_3(Rt, Rt2,

,.%0,_ %1, cr'"reg "=rm"

#else

#define ECC_STORE_3(Rt, Rt2,

#endif
#1f BECC_WORD WIDIH > 256

#define ECC_STORE_4(Rt, Rt2,

,.%0,_%1, cr'"reg "=rm"

#else

#define ECC_STORE_4(Rt, Rt2,

#endif
#if BECC_WORD WIDTH > 320

#define ECC_STORE_5(Rt, Rt2,

,. %0, %1, cr'"reg "=rm"

#else

#define ECC_STORE_5(Rt, Rt2,

#endif
#if BECC_WORD WIDIH > 384

#define ECC_STORE_6(Rt, Rt2,

,.%0,_ %1, cr'"reg "=rm"

#else

#define ECC_STORE_6(Rt, Rt2,

#endif
#i1f ECC_WORD WIDIH > 448

#define ECC_STORE_7(Rt, Rt2,

,.%0,_%1, cr'"reg "=rm"

#else

#define ECC_STORE_7(Rt, Rt2,

#endif
#if BCC_WORD WIDTH > 512

#define ECC_STORE_8(Rt, Rt2,

,.%0,_ %1, cr'"reg "=rm"

#else

#define ECC_STORE_8(Rt, Rt2,

#endif
#if BECC_WORD WIDIH > 576

#define ECC_STORE_9(Rt, Rt2,

,.%0,_%1, cr'"reg "=rm"

#else

#define ECC_STORE_9(Rt, Rt2,

#endif
#if BECC_WORD WIDTH > 640

(Rt),

reg)

reg)
(Rt),

reg)

reg)
(Rt),

reg)

reg)
(Rt),

reg)

reg)
(Rt),

reg)

reg)
(Rt),

reg)

reg)
(Rt),

reg)

reg)
(Rt),

reg)

reg)
(Rt),

reg)

"=rm" (Rt2))

asm volatile
"=rm" (Rt2))

asm volatile
"=rm" (Rt2))

asm volatile
"=rm" (Rt2))

asm volatile
"=rm" (Rt2))

asm volatile
"=rm" (Rt2))

asm volatile
"=rm" (Rt2))

asm volatile
"=rm" (Rt2))

asm volatile
"=rm" (Rt2))

("mrrc_"__ECC_COPROC" , #0x2

("mrrc_"__ECC_COPROC" , #0x3

"mrrc_"__ECC_COPROC", #0x4

("mrrc_"__ECC_COPROC" , _#0x5

("mrrc_"__ECC_COPROC" , #0x6

("mrrc_"__ECC_COPROC" , #0x7

("mrrc_"__ECC_COPROC" , #0x8

("mrrc_"__ECC_COPROC" ,_#0x9

#define ECC_STORE_10(Rt, Rt2, reg) asm volatile ("mrrc"_ECC_COPROC", #0

xa, %0, %1, cr'"reg
#else

#define ECC_STORE_10(Rt, Rt2,

#endif
#if ECC_WORD WIDTH > 704

#define ECC_STORE_11(Rt, Rt2,

" "
=m

xb, %0
#else

%1, cr'reg

s

#define ECC_STORE_11(Rt, Rt2,

#endif
#1f ECC_WORD WIDIH > 768

#define ECC_STORE_12(Rt, Rt2,
" rm”

xc, %0, %1, cr'"reg
#else

" —rm"

reg)

reg)

(Rt), "=rm"

(Rt2))

reg) asm volatile ("mrrc "_ECC_ COPROC", #0

(Rt), "=rm" (Rt2))

reg) asm volatile ("mrrc_"__ECC_COPROC", #0

(Rt), "=rm" (Rt2))
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277 #define ECC_STORE_12(Rt, Rt2, reg)

278  #endif

279 #if ECC_ WORD _WIDIH > 832

280 #define ECC_STORE_13(Rt, Rt2, reg) asm volatile ("mrrc_"_ECC_COPROC", #0
xd, %0, %1, cr'reg : "=rm" (Rt), "=rm" (Rt2))

281 #else

282 #define ECC_STORE_13(Rt, Rt2, reg)

283 #endif

284 #if ECC_ WORD WIDIH > 896

285 #define ECC_STORE_14(Rt, Rt2, reg) asm volatile ("mrrc_"_ECC_COPROC", #0
xe, %0, %1, cr'reg "=rm" (Rt), "=rm" (Rt2))

286 #else

287 #define ECC_STORE_14(Rt, Rt2, reg)

288 #endif

289  #1if ECC_WORD_WIDTH > 960

290 #define ECC_STORE_15(Rt, Rt2, reg) asm volatile ("mrrc_"_ECC_COPROC", #0
xf, %0, ,%1, cr'reg "=rm" (Rt), "=rm" (Rt2))

291 #else

292 #define ECC_STORE_15(Rt, Rt2, reg)

293
294
295

#endif

#endif // ECC H

LISTING D.1: ECCo C wrapper source.
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® N U W N e

10
11
12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33

35
36
37
38
39
40

41
42
43

45
46

47
48
49

#ifndef ECC_WORD H
#define ECC_WORD H

#include <stdbool.h>
#include "ecc.h"

/+ Length of array in word struct. Define here instead of ecc.h since it
depends
on array type. =/
#define EW_IENGIH (ECC_WORD_WIDTH BYTE/sizeof (int))
/+ +4 to fit terminating ’'\0’, leading ’'Ob’ and optional '—’ sign. =/
#define EW_STR LENGTH ECC_WORD WIDTH+4

/+ ecc_word is the datatype to work with big numbers width the same width
as
the ECC coprocessors word size. =/
typedef struct {
int word [EW_LENGIH];
bool is_zero;
bool is_negative;
} ecc_word_t;

/+ String—type big enough to represent any number on either
binary, decimal or hexadecimal format. =/
typedef char ew_str_t[EW_SIR LENGTH];

/+ Initializes a ecc_word. Returns a pointer to the given word. =/
ecc_word_t* ew_init(ecc_word_tx*);

/+ Creates a new copy of an ecc_word. Returns a pointer to dst. =/
ecc_word_t* ew_copy(const ecc_word_t* restrict src, ecc_word_t+ restrict
dst);

* *
* Content handlers *
* *

>e>e>e>e>(->e>e>e>e>(->e>e>e>é>e>(->(~>e>é>e>(->e>e>e>e>(->e>e>e>e>6>(->e>e>e>e>(-************************>e/

/+ Sets the content of a ecc_word to 0. Returns a pointer to the given word
+/

ecc_word_t* ew_zero(ecc_word_tx*);

/+ Set the value to an integer value. =/
ecc_word_t* ew_set_int(ecc_word_t*, int);

/+ Set the value of a word to a number represented by a string in
hexadecimal
(0x prefix) format. Return a pointer to the word, or NULL on failure. =/
ecc_word_t* ew_set_str(ecc_word_tx, const char[]);

65
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50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

/+ Set parts of the content of a word, based on the given offset. =/

ecc_word_t* ew_set_offs(ecc_word_t* w,

/#* Return a pointer to the hexadecimal formatted string of the number. =/
chars ew_to_str(const ecc_word_t*, char[],

int offs, int rl, int r2);

int);

/>(->e>(->(~>e>e>e>(->e>e>e>e>6>(->e>e>e>e>(->e>e>e>e>(->e>e>e>é>(->(->e>(->(->(->(->e>e>e>e***********************

*

*

*

*

Comparison *

*

*>f>e>e>e>6>f>e>e>e>e>(»>(»>e>e>e>$>f>e>e>e>6>f>e>e>e>e*>f>e>e>e>&>f>e>e>e>€**************%********>f/

/+ Check if two words are equal. =/
bool ew_eq(const ecc_word_tx*, const ecc_word_t=);

/**>(—x—x—***>(—>(->e>e*>(—>(->e>e>e>{—x—x—***>(—>(->e>e*>(—>(->(->(->f—>(—x—x—*********x—x—***»x—x—x—**x—x—x—x—*

*

*

*

*

Coprocessor interraction *

*

x->(->(-x~>(->(->(->(->e>e>(-x->(->ex—x—x->(->(-¥.~>(->(->f->(->e>e>(->(->(->ex—x—x->(->(-x~>(->(->(-**x-x-x-x-*x—x—x-x-x-*x—x-x-x-**x-x-*>(-/

/+ Load the given word

void
void
void
void
void
void
void
void
void
void
void
void
void
void
void

ew_load_crO(const
ew_load_crl (const
ew_load_cr2(const
ew_load_cr3(const
ew_load_cr4 (const
ew_load_cr5(const
ew_load_cr6(const
ew_load_cr7 (const
ew_load_cr8(const
ew_load_cr9 (const
ew_load_crl10(const
ew_load_crll(const
ew_load_crl12(const
ew_load_cr13(const
ew_load_cr14 (const

into a coprocessor register. =/
ecc_word_tx*);
ecc_word_tx);
ecc_word_tx*);
ecc_word_tx);
ecc_word_tx*);
ecc_word_tx);
ecc_word_tx*);
ecc_word_tx*);
ecc_word_tx);
ecc_word_t=*);
ecc_word_tx);
ecc_word_t=);
ecc_word_tx);
ecc_word_tx*);
ecc_word_tx);

/+ CP register 15 is status register and unwriteable =/

/+ Store the value of a coprocessors register in the given word. Takes
coprocessor register index as second argument. =/
void ew_store_cr0(ecc_word_t=);
void ew_store_crl (ecc_word_t=);
void ew_store_cr2(ecc_word_t=);
void ew_store_cr3 (ecc_word_t=);
void ew_store_cr4 (ecc_word_t=);
void ew_store_cr5(ecc_word_t=);
void ew_store_cr6(ecc_word_t=*);
void ew_store_cr7 (ecc_word_t=);
void ew_store_cr8(ecc_word_tx);
void ew_store_cr9 (ecc_word_t=);
void ew_store_cr10(ecc_word_t=);
void ew_store_crll (ecc_word_t=);
void ew_store_crl12(ecc_word_t=);
void ew_store_crl3 (ecc_word_t=);
void ew_store_crl4 (ecc_word_t=);
void ew_store_crl5(ecc_word_t=);

/+ Convenience macros =/

#define EW IOAD MOD(WORD) ew_load_cr14 (WORD)
#define EW_STORE MOD(WORD) ew_store_crl14 (WORD)
#define EW_STORE_STATUS(WORD) ew _store_cr15 (WORD)

/>('>('>€>F>('>€>F*******************
* Offset select macros =

************************>(->(-/

#define EW_GET_O(Rt, Rt2, W) Rt = W—>word[0]; Rt2 = W—>word[1]
#if ECC_WORD WIDIH > 64
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122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

#define EW_GET_1(Rt, Rt2, W)
#else

#define EW_GET_1(Rt, Rt2, W)
#endif

#if BECC_WORD WIDTH > 128
#define EW_GET 2(Rt, Rt2, W)
#else

#define EW_GET 2(Rt, Rt2, W)
#endif

#if BECC_WORD WIDTH > 192
#define EW_GET_3(Rt, Rt2, W)
#else

#define EW_GET _3(Rt, Rt2, W)
#endif

#if BECC_WORD WIDTH > 256
#define EW_GET_4(Rt, Rt2, W)
#else

#define EW_GET 4(Rt, Rt2, W)
#endif

#if BCC_WORD WIDTH > 320
#define EW_GET 5(Rt, Rt2, W)
#else

#define EW_GET 5(Rt, Rt2, W)
#endif

#if BECC_WORD WIDTH > 384
#define EW_GET_6(Rt, Rt2, W)
#else

#define EW_GET_6(Rt, Rt2, W)
#endif

#i1f ECC_WORD WIDIH > 448
#define EW_GET_7(Rt, Rt2, W)
#else

#define EW_GET_7(Rt, Rt2, W)
#endif

#if BECC_WORD WIDIH > 512
#define EW_GET 8(Rt, Rt2, W)
#else

#define EW_GET_8(Rt, Rt2, W)
#endif

#if BECC_WORD WIDIH > 576
#define EW_GET 9(Rt, Rt2, W)
#else

#define EW_GET 9(Rt, Rt2, W)
#endif

#if BCC_WORD WIDTH > 640
#define EW_GET_10(Rt, Rt2, W)
#else

#define EW_GET_10(Rt, Rt2, W)
#endif

#if BECC_WORD WIDTH > 704
#define EW_GET_11(Rt, Rt2, W)
#else

#define EW_GET_11(Rt, Rt2, W)
#endif

#if BECC_WORD WIDTH > 768
#define EW_GET_12(Rt, Rt2, W)
#else

#define EW_GET_12(Rt, Rt2, W)
#endif

#if BECC_WORD WIDIH > 832
#define EW_GET_13(Rt, Rt2, W)
#else

#define EW_GET_13(Rt, Rt2, W)
#endif

#if BECC_WORD WIDIH > 896
#define EW_GET_14(Rt, Rt2, W)
#else

#define EW_GET_14(Rt, Rt2, W)
#endif

#if BECC_WORD WIDTH > 960
#define EW_GET_15(Rt, Rt2, W)
#else

Rt

Rt

Rt

Rt

Rt

Rt

Rt

Rt

Rt

Rt

Rt

Rt

Rt

Rt

Rt

W—>word[2];

W—>word [4];

W—>word [6];

W—>word [8];

W—>word [10];

W—>word [12];

W—>word [14];

W—>word[16];

W—>word[18];

= W—>word[20];

W—>word [22];

W—>word [24];

W—>word [26];

W—>word [28];

W—>word [30];

Rt2

Rt2

Rt2

Rt2

Rt2

Rt2

Rt2

Rt2

Rt2

Rt2

Rt2

Rt2

Rt2

Rt2

Rt2

= W—>word[3]

= W—>word[5]

= W—>word[7]

= W—>word[9]

= W—>word[11]

= W—>word[13]

= W—>word[15]

= W—>word[17]

= W—>word[19]

= W—>word[21]

= W—>word[23]

= W—>word[25]

= W—>word[27]

= W—>word [29]

= W—>word[31]
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194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

#define EW_GET_15(Rt, Rt2, W)
#endif

#define EW_SET O(Rt, Rt2, W) ew_set_offs(W, 0, Rt, Rt2)

#if BECC_WORD WIDIH > 64
#define EW_SET_1(Rt, Rt2, W)
#else

#define EW_SET_1(Rt, Rt2, W)
#endif

#if BECC_WORD WIDIH > 128
#define EW_SET 2(Rt, Rt2, W)
#else

#define EW_SET_2(Rt, Rt2, W)
#endif

#if ECC_WORD WIDTH > 192
#define EW_SET 3(Rt, Rt2, W)
#else

#define EW_SET 3(Rt, Rt2, W)
#endif

#if ECC_WORD WIDTH > 256
#define EW_SET 4(Rt, Rt2, W)
#else

#define EW_SET 4(Rt, Rt2, W)
#endif

#if BECC_WORD WIDTH > 320
#define EW_SET_5(Rt, Rt2, W)
#else

#define EW_SET_5(Rt, Rt2, W)
#endif

#if ECC_WORD WIDIH > 384
#define EW_SET_6(Rt, Rt2, W)
#else

#define EW_SET_6(Rt, Rt2, W)
#endif

#if BECC_WORD WIDIH > 448
#define EW_SET_7(Rt, Rt2, W)
#else

#define EW_SET_7(Rt, Rt2, W)
#endif

#if BECC_WORD WIDIH > 512
#define EW_SET 8(Rt, Rt2, W)
#else

#define EW_SET_8(Rt, Rt2, W)
#endif

#if ECC_WORD WIDTH > 576
#define EW_SET 9(Rt, Rt2, W)
#else

#define EW_SET 9(Rt, Rt2, W)
#endif

#if ECC_WORD WIDTH > 640
#define EW_SET_10(Rt, Rt2, W)
#else

#define EW_SET_10(Rt, Rt2, W)
#endif

#if BECC_WORD WIDTH > 704
#define EW_SET_11(Rt, Rt2, W)
#else

#define EW_SET_11(Rt, Rt2, W)
#endif

#if ECC_WORD WIDIH > 768
#define EW_SET_12(Rt, Rt2, W)
#else

#define EW_SET_12(Rt, Rt2, W)
#endif

#if BECC_WORD WIDIH > 832
#define EW_SET_13(Rt, Rt2, W)
#else

#define EW_SET_13(Rt, Rt2, W)
#endif

#if ECC_WORD WIDTH > 896
#define EW_SET_14(Rt, Rt2, W)
#else

ew_set_offs (W,

ew_set_offs (W,

ew_set_offs (W,

ew_set_offs (W,

ew_set_offs (W,

ew_set_offs (W,

ew_set_offs (W,

ew_set_offs (W,

ew_set_offs (W,

ew_set_offs (W,

ew_set_offs (W,

ew_set_offs (W,

ew_set_offs (W,

ew_set_offs (W,

1, Rt, Ri2)
2, Rt, Rt2)
3, Rt, Rt2)
4, Rt, Rt2)
5, Rt, Rt2)
6, Rt, Rt2)
7, Rt, Rt2)
8, Rt, Rt2)
9, Rt, Rt2)
10, Rt, Rt2)
11, Rt, Rt2)
12, Rt, Rt2)
13, Rt, Rt2)
14, Rt, Rt2)
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267
268
269
270
271
272
273
274
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#define EW_SET 14(Rt, Rt2, W)

#endif

#if BECC_WORD WIDTH > 960

#define EW_SET_15(Rt, Rt2, W) ew_set_offs(W, 15, Rt, Rt2)
#else

#define EW_SET_15(Rt, Rt2, W)

#endif

#endif // ECC_WORD_H

LISTING E.1: Header file for big number
implementation of an ECCo word.

#include "ecc_word.h"

#include <ee_printf.h>
#include <stdbool.h>

#include "ecc.h"

ecc_word_t=*
ew_init(ecc_word_t* w)
{
for ( int i = 0; i < EW_IENGIH; i++ )

w—>word[i] = 0;
w—>is_zero = true;
w—>is_negative = false;

return w;

}

ecc_word_t=
ew_copy(const ecc_word_t* restrict src, ecc_word_tx restrict dst)
{
if ( !src—>is_zero )
for ( int i = 0; < EW_LENGIH; i++ )
dst—>word[i] = src—>word[i];

-

else
for ( int i = 0; i < EW.IENGIH; i++ )
dst—>word[i] = 0;

dst—>is_zero = src—>is_zero;

dst—>is_negative = src—>is_negative;
return dst;

/>'r,+>(->e>9i,-x—>(—>e*>(—x—>e>(-*ari,-,+>(->e>ei,-x—>'r>e*arx—>'r>(->f—ari,-ﬂ-x—x—*i,-*»****»***ﬂ;******»******

* *
* Content handlers *
* *
Sk ok ok o % % ok ok ok 3k o % 3 o ok 3k 3 % % % % 3 o o ¥ % % ok ok ok 3% % % 3 o 3 ok 3% % % % % 3 o ok ¥ % % % ok ok ¥ ¥ % % o o % ¥ ¥ /

ecc_word_t=*
ew_zero(ecc_word_t* w)
{
if ( !w—>is_zero ) {
for ( int i = 0; i < EWIENGIH; i++ )
w—>word[i] = 0;
w—>is_zero = 1;
}
return w;

}

ecc_word_t=
ew_set_int(ecc_word_t* w, int val)
{

ew_zero (w) ;

w—>word [0] = val;
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56
57
58
59
60
61
62
63
64
65
66

68
69
70
71
72
73
74
75
76
77
78
79
80

81
82
83
84

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

122
123
124

w—>is_zero = false;

return w;

}

ecc_word_t=*
ew_set_str(ecc_word_t* w,
{
int shift , tmp;
int* num = w—>word;
const charx c;
*Cc 1=

for ( ¢ = str ;

’

/#* Check sign =/

if ( xstr == =" ) {
w—>is_negative = true;
str++;

}

else
w—>is_negative = false;

/+ Sanity checks =/

if (xstr++ = 707 ) {

MSG(("ew_set_str
"—0x’\n"));
return NULL;
}
if ((xstr != 'x’ ) {
MSG(("ew_set_str
"—0x’'\n"));
return NULL;
}

/+ Set word to zero
if ( !'w—>is_zero ) {
do
smum = 0;

:_badly_formatted, string , must_start_with_’0x

:_badly_formatted, string , must_start_with_'0x

const char str[])

"NO7; c++ )

’_or

[ [

’
[

or

[

if non—zero x*/

while ( ++num != w—>word+EW_LENGIH ) ;

w—>is_zero = true;
num =

}

do {
tmp = 0;
for ( shift = 0;
switch ( *c )

case 'f’: case
tmp A= Oxf
break;
case ’‘e’: case
tmp "= Oxe
break;
case ’'d’: case
tmp "= Oxd
break;
case ’‘c’: case
tmp A= Oxc
break;
case 'b’: case
tmp "= Oxb
break;
case ’‘a’: case
tmp "= Oxa
break;
default:

w—>word ;

shift < 32 && —«c

R
<< shift;

'E’:
<< shift;

D
<< shift;
e
<< shift;
B
<< shift;

AT
<< shift;

'= str; shift += 4 ) {

if (*c< 0" && +c > "9 ) {
MSG(("ew_set_str:_invalid _character_in_string: %c", =c)

return NULL;

}

tmp A= (*c — ’0’) << shift;
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125 }

126 }

127 if ( tmp && w—>is_zero )

128 w—>is_zero = false;

129 snum = tmp;

130 } while ( ¢ != str && ++num != w—>word+EW_LENGIH ) ;
131

132 return w;

133}

134

135 ecc_word_t=*
136 ew_set_offs(ecc_word_t* w, int offs, int rl, int r2)

137 |

138 if ( w—>is_zero )

139 if (r1 11 r2)

140 w—>is_zero = false;
141 offs == 2;

142 w—>word [ offs ] =rl;

143 w—>word|[ offs+1] = r2;

144 return w;

145 )

146

147 char=
148 ew_to_str(const ecc_word_t* w, char s[], int sz)

149 |

150 int i = 0, shift;

151 const ints* num = w—>word+EW_LENGTH;

152 unsigned char tmp;

153

154 if (sz<4) {

155 MSG(("ew_to_str: too_small_string: _sz_=_%d\n", sz));
156 return NULL;

157 }

158 if ( w—>is_negative )

159 s[i++] = =7

160 s[i++] = '07;

161 s[i++] = "x’;

162

163 while ( i < sz && num— != w—>word )

164 for ( shift = 28; shift >= 0 && i < sz; shift —= 4, i++ )
165 switch ( (tmp = (*num >> shift) & 0xf) ) {
166 case Oxf:

167 s[i] = "f7;

168 break;

169 case Oxe:

170 s[i] = "e’;

171 break;

172 case Oxd:

173 s[i] = 'd’;

174 break;

175 case Oxc:

176 s[i] = "¢’;

177 break;

178 case Oxb:

179 s[i] = 'b’;

180 break;

181 case Oxa:

182 s[i] = "a’;

183 break;

184 default:

185 s[i] = (tmp > 9) ? X’ : tmp + '07;
186 }

187

188 if (i< sz)

189 s[i] = "\0";

190 else {

191 MSG(("ew_to_str: _too_small_string: _sz_= _%d\n", sz));
192 return NULL;

193 }

194 return s;

195 }

196



72 Appendix E. ECCo Big Number library
197

198 />f*>(-?‘,->(->€>€>F:‘,—>(->€>€>f>{-?{->€>€*>(->‘,->(->€*>‘r:‘,—>(->€>€>f>{->{->€>€>f->(—>‘,->&>€*ﬂr#*****?‘r****?{-****#*****
199 * *
200 * Comparison *
201 * *
202 >(->(->(->I->(->(->{->(->(->(->(->{->(->(->(->(->(->(->(->I->(->(->(->(->I->(->(->(->(->(-Y.->(->(->(->(->I->(->(->(->(->{->(->(->(->(->(->I->(->(->(-X-)I-X-X-X-)(-X-X—X-X-X->(-/
203

204 bool

205 ew_eq(const ecc_word_t+ lhs, const ecc_word_t+ rhs)

206 |

207 const intx lw = lhs—>word+EW LENGIH;

208 const int* rw = rhs—>word+EW_LENGIH;

209

210 if ( lhs—is_zero && rhs—is_zero )

211 return true;

212 while ( *——Iw == s——rw )

213 if ( lw == lhs—>word )

214 return true;

215 return false;

216}

217

218 />(->{->(->6Yr>(->(->(->(->I->(->(->(->(->(->(->(->(->(->(~>(->(->(->(->(->I->(->(->(->(->I->(->(->(->(->6Yr>(->{->(->(->I->(->(->(->(->I->(->(->(->(->6X->(->(->(->(->I-X->(->(->(-
219 * *
220 * Coprocessor load *
221 * *
222 %>('k’>€>€>€>('>6>€*%>¢'>€k’>€X'%>('k’>€>€>€>('>6>€*%>('>€k’>€X'*>('k’>€>€>€>('***%**k’**%*k’**%****%**>('/
223

224 #define _EW_LOAD_CR(N) void ew_load_cr##N(const ecc_word_t* w) { \
225 volatile register int rl, r2; \

226 /+ Offset 0 =/ \

227 EW_GET_0(rl1, r2, w); \

228 ECC_LOAD. O(rl, r2, #N); \

229 /% Offset 1 =/ \

230 EW_GET_1(rl, r2, w); \

231 ECC_LOAD_1(r1, r2, #N); \

232 /+ Offset 2 =/ \

233 EW_GET 2(rl, r2, w); \

234 ECC_LOAD_2(r1, r2, #N); \

235 /+ Offset 3 %/ \

236 EW_GET 3(rl, r2, w); \

237 ECC_LOAD 3(rl, r2, #N); \

238 /+ Offset 4 =/ \

239 EW_GET 4(rl, r2, w); \

240 ECC_LOAD. 4(rl1, r2, #N); \

241 /+ Offset 5 =/ \

242 EW_GET 5(rl, r2, w); \

243 ECC_LOAD 5(r1, r2, #N); \

244 /+ Offset 6 =/ \

245 EW_GET 6(rl, r2, w); \

246 ECC_LOAD_6(rl, r2, #N); \

247 /+ Offset 7 =/ \

248 EW_GET_7(r1, r2, w); \

249 ECC_LOAD_7(rl1, r2, #N); \

250 /+ Offset 8 =/ \

251 EW_GET 8(rl, r2, w); \

252 ECC_LOAD_8(r1, r2, #N); \

253 /+ Offset 9 =/ \

254 EW_GET 9(rl1, r2, w); \

255 ECC_LOAD9(r1, r2, #N); \

256 /+ Offset a =/ \

257 EW_GET_10(r1, r2, w); \

258 ECC_LOAD_10(rl1, r2, #N); \

259 /% Offset b =/ \

260 EW_GET 11(r1, r2, w); \

261 ECC_LOAD_11(rl1, r2, #N); \

262 /+ Offset ¢ =/ \

263 EW_GET_12(r1, r2, w); \

264 ECC_LOAD_12(r1, r2, #N); \

265 /+ Offset d =/ \

266 EW_GET_13(r1, r2, w); \

267 ECC_LOAD_13(rl1, r2, #N); \

268 /% Offset e »/ \
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269 EW_GET_14(r1, r2, w); \

270 ECC_LOAD_14(rl1, r2, #N); \

271 /+ Offset f =/ \

272 EW_GET_15(r1, r2, w); \

273 ECC_LOAD_15(r1, r2, #N); \

274 \

275 if ( w—>is_negative ) /+ Set signed bit if negative =/ \
276 ECC_NEG(#N, #N); \

277 else /+ Else make sure it’s unset =/ \
278 ECC_USB(#N); \

279}

280

281 _EW_LOAD _CR(0)
282 _EW_LOAD CR(1)
283 _EW_LOAD CR(2)
284 _EW_LOAD CR(3)
285 _EW_LOAD CR(4)
286 _EW_LOAD _CR(5)
287 _EW_LOAD CR(6)
288 _EW_LOAD _CR(7)
289 _EW_LOAD CR(8)
290 _EW_LOAD CR(9)
291 _EW_LOAD CR(10)
292 _EW_LOAD_CR(11)
293 _EW_LOAD CR(12)
294 _EW_LOAD CR(13)
295 _EW_LOAD CR(14)

296

297

298 />€***’r#****a‘******>('>€>F’r#=‘r>€>€***********’r#****#*********’r#********
299 * *
300 * C()pl"()CESS()r store *
301 * *
302 ﬂ.—X-X-X->(-7‘.->I->(->(->1-'\(-ﬂ.—X—X‘X->{-ﬂ.—>(->(->f->(-7‘.-X-X->(->{-7(—){->(->(->f->{-ﬂ.—X-X-X->(-7‘.->I->(->(->1-7‘.-ﬂ.—>(->(->f->(—ﬂ.—>(—>(->f->{->‘.—>l—>(->(->{->‘.—ﬂr>(—X—/
303

304 #define _EW_STORE_CR(N) void ew_store_cr##N(ecc_word_t* w) { \

305 register int rl, r2; \

306 unsigned mask; \

307 \

308 /+ Check sign */ \

309 ECC_STORE_O(r1, r2, ECC_STATUS REG); \

310 mask = 1 << (0x10 + N); \

311 if (rl & mask ) { \

312 w—>is_negative = true; \

313 ECC_NEG(#N, #N); \

314 [N

315 else \

316 w—>is_negative = false; \

317 \

318 w—>is_zero = true; \

319 /% Offset 0 =/ \

320 ECC_STORE_0(r1, r2, #N); \

321 EW_SET 0(rl, r2, w); \

322 /% Offset 1 */ \

323 ECC_STORE_1(rl1, r2, #N); \

324 EW_SET_1(rl, r2, w); \

325 /+ Offset 2 =/ \

326 ECC_STORE_2(rl, r2, #N); \

327 EW_SET 2(r1, 12, w); \

328 /+ Offset 3 =/ \

329 ECC_STORE_3(r1, r2, #N); \

330 EW_SET_3(rl, r2, w); \

331 /+ Offset 4 =/ \

332 ECC_STORE 4(rl1, r2, #N); \

333 EW_SET 4(rl, r2, w); \

334 /+ Offset 5 =/ \

335 ECC_STORE 5(r1, r2, #N); \

336 EW_SET 5(rl1, r2, w); \

337 /+ Offset 6 =/ \

338 ECC_STORE_6(r1, r2, #N); \

339 EW_SET 6(rl, r2, w); \

340 /+ Offset 7 =/ \



74 Appendix E. ECCo Big Number library
341 ECC_STORE_7(r1, r2, #N); \
342 EW_SET 7(rl, r2, w); \

343 /+ Offset 8 =/ \

344 ECC_STORE_8(rl1, r2, #N); \
345 EW_SET 8(rl, r2, w); \

346 /+ Offset 9 =/ \

347 ECC_STORE 9(r1, r2, #N); \
348 EW_SET 9(r1, r2, w); \

349 /+ Offset 10 =/ \

350 ECC_STORE_10(r1, r2, #N); \
351 EW_SET 10(rl, r2, w); \
352 /+ Offset 11 =/ \

353 ECC_STORE_11(r1, r2, #N);
354 EW_SET_11(r1, r2, w); \
355 /+ Offset 12 =/ \

356 ECC_STORE_12(r1, r2, #N);
357 EW_SET_12(r1, r2, w); \
358 /* Offset 13 =/ \

359 ECC_STORE_13(rl1, r2, #N);
360 EW_SET _13(r1, r2, w); \
361 /+ Offset 14 =/ \

362 ECC_STORE_14(rl1, r2, #N);
363 EW_SET_14(rl1, r2, w); \
364 /+ Offset 15 %/ \

365 ECC_STORE_15(r1, r2, #N);
366 EW_SET_15(r1, r2, w); \
367 \

368 if ( w—is_negative ) \
369 ECC_NEG(#N, #N); \
370}

371

372 _EW_STORE_CR(0)

373 _EW_STORE_CR(1)

374 _EW_STORE_CR(2)

375 _EW_STORE_CR(3)

376 _EW_STORE_CR(4)

377 _EW_STORE_CR(5)

378 _EW_STORE_CR(6)

379 _EW_STORE_CR(7)

380 _EW_STORE_CR(8)

381 _EW_STORE_CR(9)

382 _EW_STORE_CR(10)

383 _EW_STORE CR(11)

384 _EW_STORE_CR(12)

385 _EW_STORE_CR(13)

386 _EW_STORE_CR(14)

387

388 /+ Store word from CP register . Does not care about sign since it’s
389 the status register =/

390 void

391 ew_store_crl5(ecc_word_tx* w)
392 |

393 register int rl, r2;

394 w—>is_zero = true;

395 /+ Offset 0 =/

396 ECC_STORE_O(rl1, r2, "15");
397 EW_SET 0(rl, r2, w);

398 /+ Offset 1 =/

399 ECC_STORE_1(r1, r2, "15");
400 EW_SET_1(rl, r2, w);

401 /% Offset 2 =/

402 ECC_STORE_2(r1, r2, "15");
403 EW_SET 2(rl, r2, w);

404 /+ Offset 3 =/

405 ECC_STORE_3(rl1, r2, "15");
406 EW_SET 3(rl, r2, w);

407 /% Offset 4 =/

408 ECC_STORE_4(r1, r2, "15");
409 EW_SET 4(rl, r2, w);

410 /+ Offset 5 =/

411 ECC_STORE_5(r1, r2, "15");
412 EW_SET 5(rl, r2, w);
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75

413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443

/% Offset 6 =/

ECC_STORE_6(rl1, r2,
EW_SET_6(rl, r2, w);

/+ Offset 7 =/

ECC_STORE_7(rl1, r2,
EW_SET 7(rl1, r2, w);

/+ Offset 8 =/

ECC_STORE_8(r1, r2,
EW_SET 8(rl, r2, w);

/+ Offset 9 =/

ECC_STORE_9(rl1, 12,
EW_SET 9(rl, 12, w);

/% Offset 10 =/

ECC_STORE_10(r1, r2,
EW_SET_10(rl, r2, w);

/+ Offset 11 =/

ECC_STORE_11(r1, r2,
EW_SET 11(rl, r2, w);

/+ Offset 12 =%/

ECC_STORE_12(r1, r2,
EW_SET_12(rl, 12, w);

/+ Offset 13 =/

ECC_STORE_13(r1, r2,
EW_SET _13(rl, 12, w);

/+ Offset 14 =%/

ECC_STORE_14(rl1, r2,
EW_SET _14(rl1, r2, w);

/+ Offset 15 =/

ECC_STORE_15(r1, r2,
EW_SET_15(rl, 12, w);

LISTING E.2:

"15");

"15%);

"15");

"15");

"15");

"15%);

"5y ;

"15");

"15%);

"15");

Source file

for

big number

implementation of an ECCo word.
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Benchmark & Test program

O 0N Ul W

e T
@ N = o

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31
32

33

34

35

37

/*>e>e>é>e>(->(~>e>é>e>(->e>e>e>e>(->e>e>e>e>6>(->e>e>e>e>(->ex~>e>(->(->e>(~>(->(->(->(-************************

* *
* Control macros *
* *

>e>e>e*>f>e>e>e>€>(»>e>e*:6>f>e>e***>f>e>e>e>6>f>e>e**>f>f>e>e>e>(»>(»************************>e/

// #define ONLY HELLOW /% Only run a simple hello world =/

/+ Testing control macros =/

// #define TEST_ARI /+ Test arithmetic module =%/

// #define TEST_ARI.NOADD /s Skip addition during arithmetic testing =/

// #define TEST_ ARLNOMOD /+ Skip multiplication during arithmetic testing
+/

// #define TEST_ARI_.NODIV /s Skip division during arithmetic testing =/

// #define TEST_ARI.NONEG /+ Skip negation during arithmetic testing =/

// #define TEST_REGS /+ Test register bank reading/writing =/

/+ Benchmarking control macros =/

#define BENCHMARK /+ Disable anything but the
benchmarking code =/

// #define BENCHMARK _ECC_ADDITION /+* Perform additions with ECCo
with minimal extra code =/

// #define BENCHMARK ANSSI ADDITION /+ Perform additions with ANSSI

lib with minimal extra code %/

// #define BENCHMARK ECC MULTIPLICATION /+ Perform multiplication with
ECCo with minimal extra code =/

#define BENCHMARK_ANSSL MULTIPLICATION  /+ Perform multiplication with
ANSSI lib with minimal extra code =/

// #define BENCHMARK_ITERATIONS 1 /+ Number of iterations during
benchmarking =/

// #define BENCHMARK_ITERATIONS 10 /+ Number of iterations during
benchmarking =/

#define BENCHMARK_ITERATIONS 100 /+ Number of iterations during

benchmarking =/

/* ANSSI libecc control macros =/
#define ANSSI_LIBECC

/+ Sanity checks of macros =/

#if (defined (BENCHMARK ECC_ADDITION) && (defined (
BENCHMARK_ANSSI ADDITION) || defined (BENCHMARK ECC MULTIPLICATION) | |
defined (BENCHMARK_ANSSI MULTIPLICATION) )) |1 \

(defined (BENCHMARK_ANSSI ADDITION) && (defined (
BENCHMARK_ECC_ADDITION) 'l defined (BENCHMARK _ECC MULTIPLICATION) | |
defined (BENCHMARK_ANSSL MULTIPLICATION) )) |1 \

(defined (BENCHMARK _ECC MULTIPLICATION)  && (defined (
BENCHMARK_ANSSL ADDITION) || defined (BENCHMARK_ECC_ADDITION) I
defined (BENCHMARK_ANSSI MULTIPLICATION) )) |1 \

(defined (BENCHMARK_ANSSI MULTIPLICATION) && (defined (
BENCHMARK_ANSSI_ ADDITION) || defined (BENCHMARK _ECC MULTIPLICATION) ||
defined (BENCHMARK _ECC_ADDITION) ) )

#error ("Only_one BENCHMARK _macro_can_be_defined at_a_time")

#endif

77
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38
39

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

95

96

97
98
99
100

101
102
103

#if (defined (BENCHMARK ANSSI_ ADDITION) || defined (
BENCHMARK_ANSSI MULTIPLICATION) ) && !defined (ANSSI_LIBECC)
#error ("ANSSI_LIBECC_must_be_defined for ANSSI benchmarks")
#endif

/>(->e>(->(~>e>e>e>(->e>e>e>e>6>(->e>e>e>e>(->e>e>e>e>(->e>e>e>é>(->(->e>(->(->(->(->e>e>e>e***********************

* *
* Includes *
* *

*>f>e>e>e>6>f>e>e>e>e>(»>(»>e>e>e>$>f>e>e>e>6>f>e>e>e>e*>f>e>e>e>&>f>e>e>e>€**************%********>f/

/% ARM CM33 =/

#include <arm_cmse.h>

#include <cm4ss.h>

#include <ee_printf.h>

#include <cm33/secure/trustzone_util.h>

/* stdlib =/
#include <stdbool.h>
#include <string.h>

/+ Coprocessor =/

#include "ecc.h"

#include "ecc_word.h"

#include "division_data.h"

#include "modular_addition_data.h"
#include "modular_multiplication_data.h"

/* ANSSI libecc =/
#ifdef ANSSI_LIBECC
#include "libarith .h"
#endif

/>(>>f>(>>(->(->€>f>(>>b>(—>6>f>f*>(->6>€>f>(>>(—>(>>€>f>(>*>(->6>€>(>*>(->(>>€>f>(>>(->(->(>>f>(>****%****%****#%*X—****

* *
* Globals/Macros *
* *

***X—****>’r>(->€********X—****>(->(->€********X—**********X—****X—****X—*****/
/+ TZ_START_NS: Start address of non—secure application =/
#ifndef TZ_START_NS
#define TZ_START_NS (0x80000U)

#endif

#define CPACR_ ADDR ((unsigned=x) OxEOO0ED88U)

/>f>(»>(»>e>e>e*>f>e>e>e>6>f>e>e>e>e*>f>e>e>e>€>f>e>e>e>€>(»>e>e>e>e>f>f>e>e>(»>f***********************

* *
* Test setup *
* *

**4—*******************************4—>(->(->(—>f>{—>(—>(—>(—*>{—****************>f/

/* Arithmetic test functions =/

bool test_ari_multiplication (char (*)[DATAMULI6_NUM_HEADERS] [
DATAMUL16 NUM _CHARS+1]) ;

bool test_ari_addition (char (#)[DATAADDI6_NUM HEADERS][DATAADDI16 NUM_CHARS
+1]);

bool test_ari_division (char (*)[DATADIV1I6e_ NUM_HEADERS][DATADIV16_ NUM_CHARS
+11);

/+ ANSSI libecc helpers =/

#ifdef ANSSI_LIBECC

static void nn_import_from_hexbuf(nn_t out_nn, const char xhbuf, u32
hbuflen);

#endif

/#* Benchmark value strings =/
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104

105

106

107

108

109

110

111

112

113

114

115

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

char add_opl_str[] = "0
x63feblab67e6b315a2dea87e6547bal7e0daa6009366d19f14dbb427faee50ae";
char add_opl_buf[] = {0x63, Oxfe, Oxbl, Oxab, 0x67, Oxe6, 0xb3, 0x15, Oxa2,

Oxde, 0xa8, 0x7e, 0x65, 0x47, Oxba, 0x17, Oxe0, Oxda, Oxa6, 0x00, 0x93
, 0x66, 0xdl, 0x9f, 0x14, Oxdb, Oxb4, 0x27, Oxfa, Oxee, 0x50, Oxae};
char add_op2_str[] = "0
x2f08337b7ae05el6b4fadalebbb4c7bb56009e5c141dc5b487db427faee50ael”;
char add_op2_buf[] = {0x2f, 0x08, 0x33, 0x7b, 0x7a, Oxe0, 0x5e, 0x16, Oxb4,
Oxfa, Oxda, Oxle, Oxbb, 0xb4, O0xc7, Oxbb, 0x56, 0x00, 0x9e, 0x5c, 0x14
, 0x1d, Oxc5, Oxb4, 0x87, Oxdb, 0x42, 0x7f, Oxae, Oxe5, 0x0a, Oxe0};
char add_mod_str[] = "0
xa4la41a12a799548211c¢410c65d8133afde34d28bdd542e4b680cf2899c8a8c4";
char add_mod_buf[] = {0Oxa4, Oxla, 0x41, Oxal, Ox2a, 0x79, 0x95, 0x48, 0x21,
Oxlc, 0x41, Ox0c, 0x65, 0xd8, 0x13, 0x3a, Oxfd, Oxe3, 0x4d, 0x28, Oxbd
, 0xd5, 0x42, Oxe4, Oxb6, 0x80, Oxcf, 0x28, 0x99, 0xc8, 0xa8, Oxc4};
char mul_opl_str[] = "0
x63feblab67e6b315a2dea87e¢6547bal7e0daa6009366d19f14dbb427faee50ae";
char mul_opl_buf[] = {0x63, Oxfe, Oxbl, Oxab, 0x67, Oxe6, 0xb3, 0x15, Oxa2,
Oxde, 0xa8, 0x7e, 0x65, 0x47, Oxba, 0x17, Oxe0, Oxda, Oxa6, 0x00, 0x93
, 0x66, 0xdl, 0x9f, 0x14, Oxdb, Oxb4, 0x27, Oxfa, Oxee, 0x50, Oxae};
char mul_op2_str[] = "0
x02f08337b7ae05el6b4fadalebbb4c7bb56009e5c141dc5b487db427faee50ae”;
char mul_op2_buf[] = {0x02, 0xf0, 0x83, 0x37, 0xb7, Oxae, 0x05, Oxel, 0x6b,
0Ox4f, Oxad, Oxal, Oxeb, Oxbb, 0x4c, 0x7b, 0xb5, 0x60, 0x09, Oxe5, Oxcl
, 0x41, Oxdc, Ox5b, 0x48, 0x7d, 0xb4, 0x27, Oxfa, Oxee, 0x50, Oxae};
char mul_mod_str[] = "0
xa4la41a12a799548211c410c65d8133afde34d28bdd542e4b680cf2899c8a8c4";
char mul_mod_buf[] = {Oxa4, Oxla, 0Ox41, Oxal, O0x2a, 0x79, 0x95, 0x48, 0x21,
Oxlc, 0x41, 0x0c, 0x65, 0xd8, 0x13, 0x3a, Oxfd, Oxe3, 0x4d, 0x28, Oxbd
, 0xd5, 0x42, Oxe4, Oxb6, 0x80, Oxcf, 0x28, 0x99, 0xc8, 0xa8, 0Oxc4d};

#define BM_STR LEN 67

#define BM_BUF_LEN 32
#define BMNN_LEN ((BM_STR_LEN / 2) / WORD_BYTES)

/)E>€**#’A‘>€>€>€>1'=.‘>€>€>€>f>1'a‘>€>€>€#’=r‘>€>€>€3('*.>€>€>€>f>1'>>‘****%‘************************

* *
* Secure main *
* *
?{->'r>€*>(-?‘r***>‘r>‘,-?{-***>(—?{->€>€*>(-?‘,->P>(-*>F>(—>’.->€>€*>{-?{->'r>€*>(-?{-****#*****?{-fr***?‘r*****?{-*>(‘/
int

main (void)
{
#ifndef BENCHMARK
MSG(("C-code: _Secure_firmware_booting\n"));
MSG(( ">>>>>>>>_ Running_ECC_firmware_test.\n"));
#endif

/+ Enable coprocessor =/
*CPACR_ADDR "= 0x01;

#ifdef ONLY HELLOW
MSG (( "HELLO_EC_WORID!\n")) ;
#else

/*>f>€>€>f>.‘**************’r**’r****
* Test arithmetic module =

*>{—>(->e***********************4—/

#ifdef TEST_ARI
/* Modular addition =/

#ifndef TEST_ARIL NOADD
MSG((">>>>_Testing, addition\n"));
if ( test_ari_addition (dataAddl16) )

MSG(("Success!\n"));

#endif
/+ Modular multiplication =/

#ifndef TEST_ARI_NOMUL
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190
191
192
193
194
195
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197
198
199
200
201
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224
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228
229

MSG((">>>>_Testing_multiplication\n"));

if ( test_ari_multiplication (dataMull6) )
MSG(("Success!\n"));

#endif

/+ Division =/

#ifndef TEST_ARI_NODIV

MSG((">>>>_Testing, division\n"));

if ( test_ari_division(dataDivl6) )
MSG(("Success!\n"));

#endif

#endif

/>(->(-x-x-:{->c->(->(->(->:->(->(->(-x-x->f->(-x-x-:4->(-x-x->(->z->(->(->(->:->(->f->(-x->(->f->(-x-
+ Benchmark modular addition w/CP =

>ex-x->(->ex—x-x->'r>(->(->e>'r>(~>e>e¥.~>(->(->(~x->(->(->(~x->(->(->'r>(-x->e»:>(~>e>ex~x~/

#ifdef BENCHMARK ECC_ADDITION

ecc_word_t opl, op2, mod;

/+ Set parameter values =/

ew_set_str(&opl, add_opl_str);

ew_set_str(&op2, add_op2_str);

ew_set_str(&mod, add_mod_str);

/+ Load parameters to CP =/

ew_load_cr0(&opl);

ew_load_crl(&op2);

EW_LOAD MOD(&mod) ;

/* Perform N number of additions =%/

for ( int i = 0; i < BENCHMARK ITERATIONS; ++i )
ECC_ADD("0", "1", "0");

#endif

/4—s,->(->e>%s,->(->e>%>(—>(->e>e>{—4—**>fs—,>(->e*******************x—x—**

+ Benchmark modular addition in software =

>{->&>(->é>(—>’.—>(->é>{-#,->(->(-*.+>6>(-*>{->’.->(->é>(—#,-X-x->(—#,->(—>(->P>{->&>(->P>{->(—>(->(—>{-#,—>(->(—>{-*/

#ifdef BENCHMARK_ANSSI_ADDITION

nn nn_opl, nn_op2, nn_mod;
fp fp_opl, fp_op2;

fp_ctx fp_ctx; /+ Finite field context — size of field etc.

/+ Initialize and set parameter values =/

nn_init_from_buf(&nn_opl, add_opl_buf, BM_BUF_LEN);

nn_init_from_buf(&nn_op2, add_op2_buf, BM_BUF_LEN);

nn_init_from_buf(&nn_mod, add_mod_buf, BM_BUF _LEN) ;

fp_ctx_init_from_p(&fp_ctx, &n_mod);

fp_init(&fp_opl, &fp_ctx);

fp_init(&fp_op2, &fp_ctx);

fp_opl.fp_val = nn_opl;

fp_op2.fp_val = nn_op2;

/+ Perform N number of additions =/

for ( int i = 0; i < BENCHMARK ITERATIONS; ++i )
fp_add(&fp_opl, &fp_opl, &fp_op2);

#endif

/>e>(~>e>(->(->eJ.~>(->e>e>e>(~>e>(->'r>(->e>(->e>e>(->(->e¥.~>(->(->e¥.~>(->e>e>'r>(~>e>(->'rx->e>(->e>ex->(-
+ Benchmark modular multiplication w/CP =

>e>e>€>(->e>e>e>6>e»’>e>e>(-»’>e>e>(->e*%***%***%****%*******%*>(-/

#ifdef BENCHMARK ECC_MULTIPLICATION

ecc_word_t opl, op2, mod;

/+ Set parameter values =/

ew_set_str(&opl, mul_opl_str);

ew_set_str(&op2, mul_op2_str);

ew_set_str(&mod, mul_mod_str);

/+ Load parameters to CP =/

ew_load_cr0(&opl);

ew_load_crl(&op2);

EW_LOAD MOD(&mod) ;

/* Perform N number of additions =%/

for ( int i = 0; i < BENCHMARK ITERATIONS; ++i )
ECC_MUL("0", "1", "0");

#endif

*/
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230 /*>€>(-*>'r>€>6>(->6Yr%**k’**>(-*)’r**>(->6’:%**k’****)’r****’:***k’****)&***

231 + Benchmark modular multiplication in software =

232 X'*X'*)E%>('>6>€>€>F>('X'>€*****%>('>6>€>€>F>('k’******%****%*k’******%*>('/

233

234 #ifdef BENCHMARK_ANSSI MULTIPLICATION

235 nn nn_opl, nn_op2, nn_mod;

236 fp fp_opl, fp_op2;

237 fp_ctx fp_ctx; /+ Finite field context — size of field etc. «/

238 /+ Initialize and set parameter values =/

239 nn_init_from_buf(&nn_opl, mul_opl_buf, BM_BUF LEN);

240 nn_init_from_buf(&nn_op2, mul_op2_buf, BM_BUF LEN) ;

241 nn_init_from_buf(&nn_mod, mul_mod_buf, BM_BUF _LEN);

242 fp_ctx_init_from_p (&fp_ctx , &n_mod);

243 fp_init(&fp_opl, &fp_ctx);

244 fp_init(&fp_op2, &fp_ctx);

245 fp_opl.fp_val = nn_opl;

246 fp_op2.fp_val = nn_op2;

247 /+* Perform N number of additions =/

248 for ( int i = 0; i < BENCHMARK ITERATIONS; ++i )

249 fp_mul(&fp_opl, &fp_opl, &fp_op2);

250 #endif

251

252 #endif

253

254 #ifndef BENCHMARK

255 MSG((">>>>>>>>_Finished ECC_firmware_test.\n\n"));

256 #endif

257

258 finish_test (TEST_PASS) ;

259 return 0; // This line will never execute as boot_nonsec_program never
returns

260}

261

262

263 /)E>€***k’******)&X’*>('>€>€>€>€>('>6>€>(>>F>('>€>€>€X'*X'*)E’(’*>('>6>€>€>€****%****%**%*******X’

264 % %

265 * Test functions *

266 * *

267 >('>('>€>F>('=‘r*************>P*****>1'=‘r*****>('****:‘r*********************X‘*>('/

268

269 /********s—,**x—x—ﬂ—**ﬂ,—**x—***

270 * Arithmetic module =

271 x->(->(->(->(->{->(-:{-x->f->c->(->{->{->(->(—>(->f->{->(->{-x-x-/

272

273 /* Modular addition =/

274  bool

275 test_ari_addition (char (xdata)[DATAADDI6_NUM HEADERS][ DATAADD16 NUM_CHARS
+1])

276 |

277 int i = 0;

278 char (*entry)[DATAADDI6 NUM CHARS+1];

279 ew_str_t mod_s, opl_s, op2_s, sol_s, res_s;

280 ecc_word_t mod, opl, op2, sol, res;

281

282 while ( i++ < DATAADD16 NUM_ENTRIES ) {

283 entry = xdata++;

284 /+ Set parameter values from data strings =/

285 if ( 'ew_set_str(&mod, entry[0]) ) goto error;

286 if ( 'ew_set_str(&opl, entry[1]) ) goto error;

287 if ( 'ew_set_str(&op2, entry[2]) ) goto error;

288 if ( 'ew_set_str(&sol, entry[3]) ) goto error;

289 /+ Load parameters into CP registers =/

290 ew_load_cr0(&opl);

291 ew_load_crl(&op2);

292 EW_TOAD MOD(&mod) ;

293 /+ Perform addition =/

294 ECC_ADD("0", "1", "2");

295 /+ Verify result =/

296 ew_store_cr2(&res);

297 if ( !ew_eq(&res, &sol) )

298 goto wrong;

299 MSG(("Test_entry %d _passed.\n", i));
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300 }

301 return true;

302

303 wrong:

304 ew_to_str(&mod, mod_s, EW_STR LENGTH) ;

305 ew_to_str(&opl, opl_s, EW_SIR LENGIH);

306 ew_to_str(&op2, op2_s, EW_SIR LENGIH) ;

307 ew_to_str(&res, res_s, EW_SIR LENGTH) ;

308 ew_to_str(&sol, sol_s, EW_STR LENGIH) ;

309 MSG( (" %s \n

310 "t Ys\n"

311 " (mod_%s ) \n"

312 = %s\n"

313 "_got_%s\n",

314 opl_s, op2_s, mod_s, res_s, sol_s));

315 error:

316 MSG(("Failed...\n"));

317 return false;

318}

319

320 /* Modular addition =/

321 bool

32 test_ari_multiplication (char (*data)[DATAMULI6_ NUM_HEADERS] [
DATAMUL16_ NUM_CHARS+11])

323 |

324 int i = 0;

325 char (*entry) [DATAMULI6_ NUM CHARS+1];

326 ew_str_t mod_s, opl_s, op2_s, sol_s, res_s;

327 ecc_word_t mod, opl, op2, sol, res;

328

329 while ( i++ < DATAMULl6_NUM_ENTRIES ) {

330 entry = xdata++;

331 /+ Set parameter values from data strings =/

332 if ( 'ew_set_str(&mod, entry[0]) ) goto error;

333 if ( lew_set_str(&opl, entry[1]) ) goto error;

334 if ( 'ew_set_str(&op2, entry[2]) ) goto error;

335 if ( lew_set_str(&sol, entry[3]) ) goto error;

336 /+ Load parameters into CP registers =/

337 ew_load_cr0(&op1l) ;

338 ew_load_crl(&op2);

339 EW_LOAD MOD(&mod) ;

340 /% Perform addition =/

341 ECCMUL("0", "1", "2");

342 /+ Verify result =/

343 ew_store_cr2(&res);

344 if ( lew_eq(&res, &sol) )

345 goto wrong;

346 MSG(("Test_entry, %d_passed.\n", i));

347 }

348 return true;

349

350 ~ wrong:

351 ew_to_str(&mod, mod_s, EW_STR LENGTH) ;

352 ew_to_str(&opl, opl_s, EW_SIR LENGIH);

353 ew_to_str(&op2, op2_s, EW_SIR LENGIH) ;

354 ew_to_str(&res, res_s, EW_STR LENGTH) ;

355 ew_to_str(&sol, sol_s, EW_STR LENGIH) ;

356 MSG((" Y%s \n

357 " Yos\n"

358 " (mod,_%s )\n"

359 = %s\n"

360 "_got_%s\n",

361 opl_s, op2_s, mod_s, res_s, sol_s));

362 error:

363 MSG(("Failed...\n"));

364 return false;

365 |}

366

367
368
369

/* Modular addition =/
bool
test_ari_division (char (xdata)[DATADIV16_ NUM _HEADERS] [ DATADIV16 NUM _CHARS

+1])
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370 |

371 int i = 0;

372 char (+entry)[DATADIVI6 NUM_CHARS+1];

373 ew_str_t opl_s, op2_s, sol_s, res_s;

374 ecc_word_t opl, op2, sol, res;

375

376 while ( i++ < DATADIV16_NUM_ENTRIES ) {

377 entry = xdata++;

378 /+ Set parameter values from data strings =/
379 if ( 'ew_set_str(&opl, entry[0]) ) goto error;
380 if ( 'ew_set_str(&op2, entry[1]) ) goto error;
381 if ( 'ew_set_str(&sol, entry[2]) ) goto error;
382 /+ Load parameters into CP registers =/

383 ew_load_cr0(&opl) ;

384 ew_load_crl(&op2);

385 /+ Perform addition =/

386 ECC_DIV("0", "1", "2");

387 /+ Verify result =/

388 ew_store_cr2(&res);

389 if ( 'ew_eq(&res, &sol) )

390 goto wrong;

391 MSG(("Test_entry, %d _passed.\n", i));

392 }

393 return true;

394

395 wrong :

396 ew_to_str(&opl, opl_s, EW_STR_LENGIH);

397 ew_to_str(&op2, op2_s, EW_STR LENGIH);

398 ew_to_str(&res, res_s, EW_STR LENGTH) ;

399 ew_to_str(&sol, sol_s, EW_SIR LENGTH) ;

400 MSG((" oo Yos\n"

401 "o/ Yos\n"

402 " oo= Yes\n"

403 "_got_%s\n",

404 opl_s, op2_s, res_s, sol_s));

405 error:

406 MSG(("Failed ...\n"));

407 return false;

408}

LISTING F.1: C main of test and benchmark program.
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