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Abstract

FSMs are used extensively in digital hardware designs. As the market for ICs and SoCs is

increasing rapidly, the designs must follow. FSMs are often custom made and hardwired

for each implementation. Thus, their behavior cannot be changed after manufacturing,

and it takes time to design each FSM. This thesis investigates a Universal Programmable

FSM (UPFSM), which can replace existing FSMs.

An FSM has a state set, a number of inputs and outputs, a state transition function,

and an output function. The state transition function finds the next state based on the

current state and the input signals. A Moore machine FSM calculates the output based

on the current state, while a Mealy machine FSM also uses the input signals.

Two solutions for the UPFSM has been prototyped and investigated:

The LFSM is a LUT based solution which is similar to microprogrammed control. It

stores the next state and the output in a LUT which is indexed using the current state

and the inputs. The LUT is connected to a bus, allowing a microprocessor to write a new

program to LFSM.

The SWFSM is a software-based solution. The input and output signals for the ”FSM”

are routed to registers accessible by a microprocessor. The microprocessor runs a program

in software that read the input register, computes the next state and outputs, and write

to the output register.

Both these solutions are used to replace an existing FSM in TD, an existing test-design.

TD is part of a larger test-chip, TC, which has a microprocessor.

A comparison between the original hardwired FSM, the LFSM, and the SWFSM has been

carried out. The original hardwired FSM is not programmable, but easy to use, has a

small area, and provide an output every clock cycle. The LFSM is equally fast as the

hardwired FSM but not easy to program and require more area. For the FSM in TD, the

LFSM is 3.71 times (Moore) or 5.6 times (Mealy) larger than the original hardwired FSM

in area. The LFSM area increases exponentially with FSM size. A ”666” {#input bits,

#state bits, #output bits} Moore LFSM is 441 times larger than a ”222” Moore LFSM.

The SWFSM require little area when the microprocessor is not considered, and it is easier

to program. It is, however, very slow compared to the others, using 992 microprocessor

clock cycles to read the input and write the output.

A UPFSM will always be a compromise between area, speed, ease of use, and complexity.

However, the programmability can be very useful in certain designs, and this thesis has

shown some possible ways to implement it.
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Sammendrag

Tilstandsmaskiner (FSM-er) blir utstrakt brukt i digital maskinvaredesign. Ettersom

markedet for integrerte kretser og brikke-systemer er økende m̊a designene følge etter.

FSM-er blir ofte spesiallaget og hardkodet for hver enkelt implementasjon. Følgende kan

ikke oppførselen endres etter at brikken er produsert. I tillegg tar det tid å designe hver

FSM. Denne oppgaven undersøker en Universell Programmerbar FSM (UPFSM) som kan

erstatte eksisterende FSM-er.

En FSM har et sett med tilstander, et antall inn- og utganger, en overgangs- og en ut-

gangsfunksjon. Overgangsfunksjonen returnerer neste tilstand basert p̊a n̊a-tilstanden og

inngangsverdiene. Utgangsfunksjonen returnerer utgangsverdiene. For en Moore-maskin

er denne kun avhengig av n̊a-tilstanden, mens en Mealy-maskin i tillegg er avhengig av

inngangsverdiene.

To løsninger for en UPFSM er blitt prototypet og undersøkt:

LFSM-en er basert p̊a en oppslagstabell (LUT), og minner om mikroprogrammert kontroll.

Den holder neste-tilstanden og utgangsverdiene i en oppslagstabell som blir indeksert av

n̊a-tilstanden og inngangsverdiene. LFSM-en er koblet til en buss, slik at en mikropros-

essor kan skrive et nytt program til oppslagsen.

SWFSM-en er basert p̊a programvare. Inn- og utgangssignalene til FSM-en er forlenget

til registre som kan leses og skrives til av en mikroprosessor. Mikroprosessoren kjører et

program som leser inngangsverdiene, regner ut neste tilstand og skriver utgangsverdiene

til registerne.

Begge disse løsningene er brukt til å erstatte en eksisterende FSM i TD, et eksisterende

test-design. TD er en del av en større test-brikke, TC, som har en mikroprosessor.

Den originale hardkodede FSM-en, LFSM-en og SWFSM-en er sammenlignet. Den orig-

inale FSM-en er ikke programmerbar, men er lett å bruke, krever lite areal og genererer

utgangsverdier hver klokkesykel. LFSM-en er like rask, men er vanskelig å programmere

og krever mye areal. For FSM-en i TD, bruker LFSM-en 3.71 ganger (Moore) eller 5.6

ganger (Mealy) mer areal enn den originale FSM-en. Arealet øker eksponensielt med

størrelsen til FSM-en. En Moore LFSM med ”666” {#inngangssignaler, #tilstandsbits,

#utgangssignaler} er 441 ganger større enn en ”222” Moore LFSM. SWFSM-en bruker

mindre areal (sett bort i fra mikroprosessoren), er er enklere å programmere, men den er

veldig treg siden den bruker 992 klokkesykler til å lese inngangen og skrive til utgangen.

En UPFSM vil alltid være et kompromiss mellom areal, ytelse, brukervennlighet og kom-

pleksitet. Men, programmerbarhet kan i visse design være veldg nyttig, og denne oppgaven

har vist noen mulige måte å implementere dette p̊a.
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1 Introduction

1.1 Motivation

Our daily lives today are depending on digital electronics and integrated circuits (ICs). In

the future, the demand for ICs will continue to increase. Internet of Things (IoT), where

electronic devices are connected to the internet, will fuel this demand for the foreseeable

future. In 2018, 7 billion IoT devices were connected, and this is predicted to increase

to 22 billion devices in 2025 [1], [2]. Innovation and smart design are critical factors in

order to fulfill the demands. Since Moores law is ending [3], smart design is even more

critical. Moores law used to be a driving element in the industry, and designers must

now find other means to develop the technology further. Another aspect is the increased

complexity of the designs. In order to be competitive and meet time to market demands,

it is beneficial to reduce the design time. This thesis aims at both provide innovations

into the field of state machines and help reduce design time.

Digital logic can be classified as sequential or combinatorial. In a sequential system, the

behavior is determined by the inputs to the system and the current state of the system.

This indicates that the system uses the previous events to determine the current state and

thus the behavior. Such systems cannot be described with a truth table and are instead

described as a finite-state machine (FSM) [4].

In this thesis, the focus will be on different implementations of FSMs used to control

other circuits or components of an IC. Usually, such FSMs are hardwired and custom

made to each application and implementation. Designing a custom FSM each time it is

needed is time-consuming and inflexible. The lack of flexibility arises from the fact that

the workings and behavior of the FSM cannot be changed after manufacturing of circuit.

Being able to change the FSM behavior can be useful if the circuit is not working as

expected. The central concept in this thesis is thus to present a Universal Programmable

FSM (UPFSM), which can be reprogrammed after manufacturing and can be used to

replace hardwired FSM. The FSM does not have to be programmable in run-time and

programmability at reset or power-up is sufficient.

Such a UPFSM can be implemented in software and use microprocessors to execute the

software [5], [6]. This kind of implementation has the advantage of being flexible, relatively

easy to use, and can do other tasks than just the FSM tasks. However, microprocessors

are slow and costly in terms of area, complexity, and power consumption, so hardware

FSMs are typically used. Instead of using a full microprocessor, it is possible to create

something in between a microprocessor and a custom hardwired FSM, which can remedy

a microprocessor’s drawbacks of cost and speed.
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1.2 Project description and limitations

This thesis describes the development and design of two possible solutions for a UPFSM.

The two are a hardware-based solution and a software-based solution. These solutions

are made to replace an existing FSM in a current IP-design, but they are designed with

the ability to replace other FSMs as well. Furthermore, these solutions will be compared

to each other and a hardwired FSM. The evaluation is based on area, throughput and

speed, power consumption, and complexity and ease of use.

The hardware-based design, is implemented as an intellectual property core (IP) [7] for

use in existing designs. It is not fully verified but is used to replace an existing hardwired

FSM in an analog mixed-mode IP (MMI) which has a testbench for verification.

The software-based design, is based on forwarding the input and output signals to a

microprocessor in a System-On-Chip (SoC). This microprocessor runs a software program

that acts like an FSM. The software-based FSM is also used to replace the same hardwired

FSM.

The assignment is proposed by semiconductor company Nordic Semiconductor, and ex-

isting designs and frameworks by Nordic semiconductor are used in this thesis.

1.3 Objectives and main contributions

The objectives in this thesis are:

• Compare state machines and microprocessors.

• Replace FSMs in an existing IP with a UPFSM.

• Evaluate and compare the different UPFSM solutions with the existing hardwired

FSM implementation. The evaluation criteria are area, speed and throughput,

power consumption, and ease of use.

The work and evaluation will contribute to an understanding of different ways to imple-

ment FSMs and use of them in digital circuits. This includes the compromises between

area and speed, and how the compromises are affected by the FSM size. Besides, it may

provide more ideas of FSM implementations and open up for other optimizations.

1.4 Report outline

The report is divided into the following chapters:

Section 2: Theory presenting relevant background theory on automata theory, FSMs,

2



microprocessors, microprogrammed control, and look-up-tables (LUT).

Section 3: Design tools, previous work, and related work describing the de-

sign tools and language used in this project and presents the previous work used for the

UPFSM. In addition, an overview of work related to this project is presented.

Section 4: UPFSM development and design presenting the development and design

of the hardware-based and software-based designs.

Section 5: Testing, results, and discussion for the UPFSM presenting the testing,

results obtained, and a discussion for each of the two designs.

Section 6: Evaluation and discussion presenting an evaluation and comparison of

the different ways to implement FSMs and suggesting topics for future work.

Section 7: Conclusion summarizing the findings in the thesis.

References list the references used in this thesis.

Additional information, such as source code are attached in the Appendices A to C.
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2 Theory

This chapter presents and describes relevant background theory used in this report.

2.1 Automata theory

Automata Theory is a theoretical branch of computer science. In the 20th century, mathe-

maticians began developing machines, both theoretically and physically, which completed

calculations faster and more reliably than humans [8]. The word automaton means per-

forming certain processes automatically and is closely related to the word ”automation”.

An automata is a simple machine which can be used to perform the logic computations

in such processes. Automata give computer scientists an understanding of how machines

compute functions and solve problems. More importantly, they provide insight into what

it means for a function to be computable or for a question to be decidable [8].

Abstract models of machines that perform computations on input signal changes by mov-

ing through a series of states or configurations are called automatons. A transition func-

tion determines the next configuration or state on the basis of a finite portion of the

present configuration. This transition function is used in each state of the computation.

The Turing machine is the most general and powerful automata [8].

The primary objective of automata theory is to develop methods which help to describe

and analyze the dynamic behavior of discrete systems where signals are periodically sam-

pled. The construction of the system in terms of storage and combinatorial elements

determines the behavior. The characteristics typically include [8]:

• Inputs: sequences of input symbols from a finite set I of input signals. I =

{x1, x2, x3...xk}, where k is the number of input signals.

• Outputs: sequences of symbols from a finite set Z of output signals. Z = {y1, y2, y3...ym},
where m is the number of output signals.

• States: a finite set Q, which is defined by the type of automaton

There are four major families of automatons:

• Finite-state machine (FSM)

• Pushdown automata

• Linear-bounded automata

• Turing machine

5



The above families can be seen as a hierarchy, where the simplest automaton is the FSM,

and the most complex is the Turing machine [8]. Besides, it can be said that the Turing

machine is an FSM, while the FSM is not a Turing machine. The Turing machine will be

briefly described in Section 2.2.1.

2.2 Finite State Machines

Sometimes, the inputs to a system do not contain enough information to describe the

system behavior. Modeling such systems require an internal state. If the number of

states in a system is finite, it is a finite state system [9]. A finite state machine (FSM)

is an automaton in which the state set Q contains a finite number of elements. FSMs

are abstract machines, and consists of a set of states (Q), a set of input signals (I), a

set of output signals (Z), a state transition function, and an output function. The state

transition function returns the next state and a new set of output events by using the

current state and an input event. In the most general form, the state transition function

can be seen as a function which maps an ordered sequence of input signals (I) into a

corresponding sequence of output signals (Z):

I → Z (1)

A finite state machine is a sequential system which provides an output based on the

following five components, which can be described by the following definition [8]:

M = (Q, I, Z, δ,W ) (2)

where

Q: Finite set of states.

I: Finite set of input signals.

Z: Finite set of output signals.

δ: State transition function, δ : Q× I → Q.

W : Output function, W : Q× I → Z.

As mentioned, an FSM contains a finite number of states. Each state accepts a finite

number of inputs, and each state has a state transition mapping function that describes

what actions to perform for a change in the input signals. Thus, a change in the input

signals may cause the machine to change states and change the output signals.

In order to explain some more concepts used in FSMs, consider an example of an FSM.

It should have two states, S1 and S2, and one input signal (I) and one output signal (0).

6



If I=0, the FSM should go to state S0, and if I=1, the FSM should go to S1. In S0, O=0

and in S1, O=1. Since the outputs only depend on the current state, it would be a Moore

machine. Moore machines and the counterpart, Mealy machines, is elaborated further in

Section 2.2.2. This FSM could, for example, describe a door, where S0 is an open door,

and S1 is a closed door. The input could resemble the door handle, and the output is the

actual door position; closed or open. This can be described using a state transition table,

which is presented in Table 2.1.

Table 2.1: State transition table for a simple FSM

Input Current State Output Next State

0 S0 0 S0

1 S0 0 S1

0 S1 1 S0

1 S1 1 S1

The state transition table contains all necessary information to describe an FSM. The

state transition table shows all the states, the transitions between the states, and what

the output is in each state. Such a table is still not a formal description, but it is intuitive

and easy to grasp. A state diagram illustrates the state transition table. The state

diagram does not formally describe the FSM, but contains the same information as a

formal description [10]. Figure 2.1 shows the state diagram for the example FSM.

S0

O=0
start

S1

O=1

I=1

I=0

I=0 I=1

Figure 2.1: Simple state diagram

Using formal definition from Equation (2), the example FSM will be described as

M1 = ({S0, S1}, {I}, {O}, δ, {W}) (3)

In Equation (3), the example state machine is called M1, and it has the state set Q =

{S0, S1}, the input signal I = {I} and the output signal Z = {O}. The state transi-

tion function δ is described using Table 2.2, and the output function is described using

Table 2.3.
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Table 2.2: State transition function δ. The next state is based on the current state and the

input signal.

0 1

S0 S0 S1

S1 S0 S1

Table 2.3: Output function W . The output signal is determined by the current state only.

0 1

S0 0 0

S1 1 1

2.2.1 FSM versus Turing machine

As previously described, the FSM is the simplest automaton, e.g., the simplest way to

describe a computational system. It is, therefore, not an adequate computation model for

all types of systems. A Turing machine, on the other hand, is a lot more powerful.

A theoretical computer has two states for each bit, but within the computer, there is no

theoretical limit of the number of components the computer interacts with. This means

an FSM will not be sufficient to model a computer. However, more powerful automata,

such as a Turing machine can be capable enough.

A Turing machine is an abstract machine essentially consisting of a ”control unit”, a

”tape” and a ”read-write device” [11]. The control unit, which essentially is an FSM,

contains a set of instructions and is at any time in a certain state. The state set is finite.

The tape is divided into squares, and each square can contain a symbol. The read-write

device can operate on exactly one square of the tape. It can read an existing symbol on

the tape, or overwrite what is on the square. The read-write device can move left or right

on the tape. The tape can be infinitely long, giving the Turing machine infinite memory.

[8]. Formally, the Turing machine is defined as a 7-tuple [12]:

M = (Q,Σ,Γ, δ, q0, B, F ) (4)

where

Q: The finite set of states of the control unit.

Σ: The finite set of input symbols.

Γ: The complete set of tape symbols, which always is a subset of Σ.

δ: The transition function δ(q,X), with the arguments state q and tape symbol X.

q0: The start state, which is a member of Q.

B: The blank symbol. This is in Γ, but not in Σ.
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F : The set of accepting states, a subset of Q.

The Turing machine differs from an FSM in the fact that the Turing machine is capable of

changing symbols on its infinitely long tape. The FSM’s only memory is its current state,

while the Turing machine has memory on the tape, which can be infinitely long. The

reading and writing of the tape simulates the execution and storage used in computers

and means the Turing machine can model all computations that can be calculated in

modern computers [12].

2.2.2 Mealy and Moore FSM

Current state Next-state function

Output function

Next state

Inputs

Clock

Outputs

Figure 2.2: Model of the functions in a FSM. The dashed line only applies to Mealy machines.

The output from an FSM can be determined by the current state only, or a combination

of the current state and the inputs. The first one is called a Moore machine, named after

Edward Moore, who presented the concepts in a paper [13] in 1956. The latter machine

is called a Mealy machine and is named after George H. Mealy [14]. In a Mealy machine,

the outputs are determined by both the inputs and the current state. It follows that the

output function uses both the current state and inputs as parameters. Figure 2.2 depicts

the functions and components of an FSM and the difference between Mealy and Moore.

The output function only depends on the current state for a Moore machine, while it also

depends on the inputs for a Mealy machine.

2.2.3 Implementation of FSM in hardware

In a digital circuit, a state register holds the current state, and two logic functions compute

the output and the next state which is to be fed to the state register. In a hardware-

description language (HDL) such as SystemVerilog, the example FSM could be written
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using enumerated types for the states [15]. A way to create the example FSM in Sys-

temVerilog is presented in Listing 1. The SystemVerilog language is further elaborated in

Section 3.1.1.

1 module example_FSM
2 (
3 input logic clk,
4 input logic rst,
5 input logic I,
6 output logic O
7 );
8 typedef enum logic {S0, S1} stateType;
9

10 stateType state, nextState;
11

12 always_ff @(posedge clk or posedge rst) begin
13 if (rst) state <= S0;
14 else state <= nextState;
15 end
16

17 always_comb begin
18 case (state)
19 S0: begin
20 O = '0;
21 if (!I) nextState = S0;
22 else nextState = S1;
23 end
24

25 S1: begin
26 O = '1;
27 if (I) nextState = S1;
28 else nextState = S0;
29 end
30 endcase
31 end
32 endmodule

Listing 1: HDL code for a simple FSM

In this code, one can see that the nextState function and output functions are combina-

torial logic and is declared inside an always comb block. The always ff block contain the

state register. A register is sequential logic and needs a clock for synchronization. This

code will result in a circuit almost similar to the Moore machine version in Figure 2.2,

but with some generalizations, as can be seen in Figure 2.3.

There are many more ways to create and optimize hardware implementations of FSMs.

Many computer-aided design (CAD) programs can use either a graphical or textual rep-

resentation of an FSM and produce an optimized implementation automatically [4].

2.3 Microprocessors

As presented in Section 2.1, it is possible to argue that a microprocessor can be modeled

as an FSM automaton. In the real world, however, microprocessors are more general

and capable than hardware FSMs. A microprocessor is an IC containing a central pro-

cessing unit (CPU) [16]. The microprocessor is a register-based, clock driven digital IC
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state

State register
(always_ff)

nextState

Combinatorial logic
(always_comb)

I

rst
clk

O

example_FSM

Figure 2.3: HDL implementation of the example FSM.

that accepts binary input data. The input data is processed according to instructions

found in the memory and provides results as outputs. Depending on the instructions, the

processing can be performed differently.

The logic circuitry of a microprocessor can be divided into two parts: the datapath and

the control unit [17]. The datapath performs the actual executions of the data, such as

adding numbers or writing to registers. The datapath thus contains the pipeline with its

functional units, such as the arithmetic logic unit (ALU) and registers for the temporary

storage of data. The control unit is responsible for controlling the datapath by setting

control signals to the functional units and the peripheral units such as memory.

2.4 Microprogrammed Control

A control unit with its binary control values stored as words in memory is called micro-

programmed control [18]. Each word contains a microinstruction that specifies one or

more microoperations for the system. A sequence of such microinstructions is called a

microprogram. Usually, this microprogram is fixed at design time and stored in ROM.

However, it can be stored in RAM and loaded at system startup from non-volatile stor-

age. A RAM solution is called writable control memory and would require read/write

functionality [18].

Figure 2.4 show the general configuration of microprogrammed control. The ”control ad-

dress register” (CAR) specifies the address of the microinstruction in the ROM. One part

of the microinstruction word is used to determine the address of the next microinstruc-

tion. The rest of the microinstruction is used for various control signals. The next-address

information may be combined with various input signals in the ”next-address generator”,

which generates the next address. The CAR and the next-address generator is often called

a sequencer.
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Figure 2.4: Microprogrammed control unit organization [18]

2.5 Lookup table

A lookup table (LUT) is a group of memory cells which, given a set of input values,

contain all possible results of a given function [19]. The values of the function must be

stored so that the output values correspond to the input values. A LUT with n inputs

will have 2n single bit memory cells. LUTs are often used to encode logic functions in

field-programmable gate arrays (FPGAs).
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3 Design tools, previous work and related work

3.1 Design tools

This chapter presents an overview and a brief description of the design language and tools

used in the work for this thesis.

3.1.1 SystemVerilog

SystemVerilog is a hardware-description language (HDL) [20]. It is used to model, sim-

ulate, and verify the functionality of digital circuits at levels of abstraction ranging from

system level down to gate and switch level, including RTL. The following paragraphs

present some important constructs and features used in this thesis.

Module is a basic unit of hierarchy in SystemVerilog. Modules contain declarations

and functional descriptions and represent hardware components. They can be nested,

meaning a module can be instantiated inside another module.

SystemVerilog Interface (SVI) is used to encapsulate communication between blocks,

for example, between modules. This makes it useful for design reuse, increases code read-

ability, and ease the maintenance of IPs [20]. In its purest form, an SVI is a bundle of

nets and variables but can contain tasks and functions to model bus functionality.

Assertions are used for functional verification. Two types exist, immediate and con-

current assertions. Immediate assertions are used to test the value of an expression.

Concurrent assertions are used to test properties. Properties are built from sequences,

which describe behavior over time, and thus with respect to a clock. If an assertion

is violated, an error is generated. Assertions are typically checked dynamically during

simulations [20].

always comb and always ff are the two main SystemVerilog constructs used in this

thesis. They are used for combinatorial and sequential logic, respectively. [20]

logic, enum and parameter are the most prevalent types used. logic is the same as

reg, and has a user-defined size. logic is preferred in SystemVerilog [20]. Enum is used

to compact the code and make it more readable. Typedef is used in combination with

enum to define user-defined types. Parameter is used to giving names to constant values.
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This can be used to define bus widths etc., which makes simulating different sizes and

modifying the design easier.

3.1.2 Mentor Graphics QuestaSim®

QuestaSim® is a simulation tool provided by Mentor Graphics. It is used to simulate

RTL designs and netlists, running testbenches, and help in verification of designs [21]. The

waveform generator is used extensively in the design work in this thesis. The waveform

can be used to measure the time between signals are set and see how the signals behave. It

supports SystemVerilog assertions and coverage for verification. For full-chip simulations,

version 10.7c 3 was used.

3.1.3 Industry standard synthesis tool

For synthesis of the different designs in order to get results for area, power consumption

and throughput, an industry standard synthesis tool is used.

3.2 Previous work at Nordic Semiconductor

Both following sections describe work done by Nordic Semiconductor. This work is used as

a foundation for development, design, and testing the different UPFSM implementations.

3.2.1 Test Design (TD)

TD is an IP from Nordic Semiconductor written in SystemVerilog. It is a mixed-mode

IP (MMI) used to control an analog power regulator using digital logic. It is a part of a

larger system for power supply to an SoC called Test Chip (TC). In this thesis, an FSM

inside TD is used for experimentation and evaluation purposes.

TD is connected to the main bus structure on the SoC and can thus be enabled or disabled

from software. If TD is enabled and a USB cable is connected, TD will initiate a startup

sequence using the aforementioned FSM for the analog logic and notify the microprocessor

when the USB power supply is ready and stable. The USB cable is in this context only

regarded as a power source.

The FSM in question has 4 input signals, 3 output signals, and 5 states. The state

transition diagram is seen in Figure 3.1. Only the input signals indicated at the transition

arrows are used for that transition. All other input signals are don’t care bits and not

used.
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STATE 0

output 0 = 0

output 1 = 0

output 2 = 0

start

STATE 1

output 0 = 1
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STATE 2
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output 1 = 1

output 2 = 0

STATE 3

output 2 = 1

output 1 = 1

output 2 = 0

STATE 4

output 0 = 1

output 1 = 1

output 2 = 1

!input 0

input 0 !input 0

input 0 & !input 1

input 0 & input 1

!input 2

input 2

!input 0

!input 3

input 3

!input 2

!input 0

input 0 & input 2

!input 0

!input 2

Figure 3.1: State diagram of TD.

The exact mechanisms controlled by this FSM are not crucial for this thesis. However, TD

and its FSM was relevant for experimentation for programmable FSMs, as the physical,

manufactured analog circuits may behave differently than the models used in the design

work. Being able to change the FSM behavior would allow for optimizing the circuit for

the analog circuits. The original FSM in TD is created similarly to the method presented

in Section 2.2.3.

3.2.2 Test Chip (TC)

TC is an SoC from Nordic Semiconductor, in which TD is included. TC is a wireless

communications SoC, with several peripherals and microprocessors. It is designed for low

power operation. The microprocessor used in this thesis is from ARM®. The micropro-

cessor is connected to a bus structure, which enables the microprocessor to access TD

and other components of TC. The physical TC was not used; only a model was used to

simulate the behavior of TC. The model of TC has an existing framework and toolchains
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for running simulations and programs.

3.3 Related work

This chapter presents work which is related to this thesis. Some of this work is directly

relevant for this thesis, as it has been the basis of the experimentation and evaluations.

Some of the work is not directly relevant for this thesis, but it can suggest other ways of

implementing FSMs and invoke other possible solutions.

3.3.1 Software based FSMs on microprocessors

Work in the field of software-based FSMs on microprocessors is relevant for programmable

FSMs. In this thesis, the work done by the microprocessor architecture company ARM

[5] and by Comer [6] is used. ARMs white paper is the most recent and relevant for this

thesis, but the work of Comer is, albeit old, relevant as it presents parameters and what

to consider when comparing conventional state machines to microprocessor-based state

machines.

ARM proposed in a white paper that the microprocessor architectures developed by

ARM can be used to replace hardware FSMs [5]. The paper presents several reasons to use

software-based FSMs in SoC designs and how they can be implemented. The advantages

of using software-based FSMs are:

• Increased flexibility: As the software-based FSMs reduce the risk of the project by

allowing the FSM to be changed at any time in the project cycle. A hardware FSM

cannot easily, if at all, be changed after production. Figure 3.2 shows how this

flexibility compares to the other methods of designing FSMs.

• Debug methodology: Since the software-based FSMs use a program, conventional

debug tools can be used to, for example, set breakpoints and halt the processor.

This helps in optimizing the design.

• Combine software control capability to FSM design: Sequential operations are easier

to handle, and functions/subroutine calls can be used to implement repetitive tasks.

Also, assembly code can be used to optimize parts of the FSM operations, and the

rest can be programmed in C.

The white paper then presents some design examples and what to consider for imple-

menting an FSM on the different ARM Cortex-M architectures. It is challenging to meet

the speed and time-critical requirements, and the paper also mentions workarounds and
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Figure 1: Software FSM allow modification of the FSM behaviors in different stages of the design cycle 

 

In advanced SoC designs, some of the FSMs might also need to be interacting with application software running on 

application processors. In such applications, sometimes the details of the FSM operation cannot be finalized until a 

very late stage of the product development flow. As a result, it can be impractical to use hardware FSM for the 

design. 

 

2. Debug methodology 

Software FSM design can be debugged using debug solution for microcontroller software development. For 

example, you can halt, single step or set breakpoint to the processor, which you cannot do with traditional FSM 

designs. You can also use a debugger to examine/modify the status of the FSM, memory contents and input/output 

interface with debugger. Such debug operations and visibility of the system status allows easy debug of the FSM 

design, and provides much better chance for designer to optimize the FSM behavior. 

 

3. Combine software control capability to FSM design 

By using software FSM design, the handling of complex sequential operations become much easier. For example, 

looping can be handled easily, and repetitive tasks can be implemented as function/subroutine calls. If needed, 

assembly code can be used to optimize part of the FSM operations, and the rest of the FSM programmed in C for 

easier development. 

 

You can also connect standard peripherals for microcontrollers to the processor in your FSM design, so that the 

design can handle additional I/O operations which can be difficult to handled using hardware FSM, or even use the 

FSM design as a general microcontroller system when the application does not need the FSM operation. 

 

Potentially, multiple program images can be stored on the system and the design can selectively load a suitable 

program image to the memory during runtime. This allows a device to select between multiple FSM behaviors at 

runtime.  In addition, you can even download a program into the SRAM and execute from there for maximum 

access speed. Running code from SRAM can also be very useful for BIST and field testing. 

 

Figure 3.2: Timeline showing the flexibility of a software based FSM during the design stages

[5].

propose methods to help with such challenges. However, many of these methods require

high clock frequencies.

Comer considers the use of a microprocessor as a controller for digital systems [6]. The

paper, published in 1987, suggests that a microprocessor can be considered as an FSM

with each state being defined in terms of possible machine instructions. The approach is

based on the following premises:

1. The state machine approach is used for the microprocessor controller. This means

that the functionality of the controller is partitioned into states, which are imple-

mented in software running on the microprocessor.

2. Since the same approach is used for both a controller running in a microprocessor and

a controller in a hardware state machine, it allows for partitioning the functionality

into software and hardware.

3. After all refinement has been done, a comparison between a conventional state

machine and a microprocessor state machine can be carried out. A choice between

them can thus be based on criteria such as cost, area, or performance.

Some key differences between them are presented. A conventional state machine computes

the next state directly when the input changes, while a microprocessor must add the

inputs to an accumulator which is used to branch to the next state. The addition to

the accumulator involves at least one data transfer. Another difference is the timing,
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where a conventional state machine remains in a given state for one clock cycle, and then

moves to a new state or remains in the same. In a microprocessor, some states may only

be for timing purposes, and others consider the inputs. A third difference is in the data

manipulation or processing capabilities of the microprocessor, which opens up possibilities

for storing data and use it for branching later and so on. A conventional state machine

will require additional circuitry to do this.

The strengths of microprocessors are versatility, the possibility of more states without

increasing system complexity, and the fact that they are programmable. The main weak-

nesses are speed and cost. The cost includes both the hardware and also the fact that

microprocessors require programming, which in 1987 involved paying a manufacturer to

program the ROM or buying an expensive ROM burner.

The concluding remarks are that a microprocessor controller is limited to lower frequency

operations and are more expensive for smaller systems. For large systems with many

states or that require flexibility in terms of changing the sequence of control signals, using

a microprocessor controller might be reasonable.

3.3.2 Programmable FSMs using custom processor architectures

Using a custom processor architecture to implement a programmable state machine has

been done in the past. Wangyang et al. [22] and Hatta et al. [23] has done this, and their

work is briefly presented below.

Wangyang et al. created a programmable state machine for packet processing [22].

It is called a PSM and is intended to bridge the gap between a hardware FSM and a

full processor. The PSM is a 4 stage pipeline with 18 instructions which are classified as

register type, immediate type, and branch types. The application example is for packet

processing. The PSM replace an FSM which is used for parsing packet headers. The main

drawback with the PSM instead of a hardware FSM is speed, but it is less complicated

and costly than a full processor and retains the advantages of programmability.

Hatta et al. also created a programmable FSM which they call the P-FSM [23]. It

is designed to minimize both the logic and memory area using a specific architecture for

state management of communication protocols. The P-FSM is a state processor capable

of handling various types of state diagrams. The instruction memory can be changed

and used to implement additional state management. A sequencer is used to index the

instruction memory. The P-FSM is used as a hardware accelerator on a communications

SoC, where it placed between the embedded processor and dynamically reconfigurable
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hardware for protocol processing (DRHPP). It must be programmable in order to handle

various communication protocols.

The P-FSM contains a sequencer used to address the instruction memory. The sequencer

is also used as a step counter to control activation of an instruction processor. The

instruction memory contains several FSM programs, and the sequencer thus indexes the

correct FSM instructions. The instruction processor consists of an instruction decoder,

calculation block, forwarding block, register-comparison block, event-comparison block,

and two MUXes.

According to the article, it is, for a network communications application, 90 times faster

than an ARM processor and from RTL synthesis only 1.5% of the area of a conventional

communications SoC.
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4 UPFSM development and design

The goal of this thesis is to make a Universal Programmable State Machine (UPFSM)

which can replace FSMs in existing IP designs and is possible to reprogram after the SoC

has been manufactured. The thesis will also include an evaluation of possible ways to

implement a UPFSM and compare it to a hardwired FSM, in terms of area, speed, power

consumption, and ease of use.

An existing IP, TD, and SoC, TC, is used to develop and test the UPFSM. TD and

TC are presented in Section 3.3. TD contains a hardwired FSM from before which is

used to control an analog MMI (mixed mode IP). This analog MMI is a power regulator

which gets its power supply from a USB cable. The existing FSM is therefore called the

”USB-FSM”. A simplified overview of TD and the USB-FSM can be seen in Figure 4.1.

A realistic aim in making the UPFSM is to be able to replace the USB-FSM and to be

able to program it. The USB-FSM is only an example of an FSM which can be replaced,

meaning the UPFSM should be able to replace most other FSMs as well.

USB-FSM

TD

Inputs Outputs

Figure 4.1: The existing TD with the hardwired USB-FSM. The dashed lines indicates that

the USB-FSM is not an IP, but is hardwired in TD.

A UPFSM can be implemented in many ways. Two possible starting points are using

a hardware-based design or a software-based design. A hardware-based design involves

developing a system that is programmable, flexible, and can replace existing design. A

software-based design means implementing the UPFSM in software that is running on a

microprocessor. The microprocessor can be hooked up to the existing FSM connections.

Investigating both of these solution spaces would allow for interesting evaluation and com-

parison. Therefore, two prototype designs for replacing the USB-FSM are implemented.

The development of the two methods are presented in Section 4.1 and Section 4.2.
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4.1 Hardware-based UPFSM

A hardware-based design can be inserted in the place of the original FSM. In the case of

TD, this will involve inserting a system to replace the original hardwired USB-FSM with

a UPFSM. To be programmable, the UPFSM must most likely have a bus interface which

is used for programming. The idea is illustrated in Figure 4.2.

Hardware-based
UPFSM

TD

Inputs Outputs

Bus

Figure 4.2: TD with the hardware-based UPFSM.

The inputs and outputs from the original FSM are connected to the hardware system. It

would, therefore, be useful for the system to be parameterized in such a way that it can be

used to replace different sizes of FSMs. Section 4.1.1 describes how the hardware-based

system was investigated and developed, and Section 4.1.2 describes the system that was

implemented based on the findings in the investigation.

4.1.1 Development

For learning and realizing what goes into an FSM in general, Python was used to model

the USB-FSM. The goal for this modeling was to determine what functionality should be

made programmable and to aid in making the UPFSM in hardware. This includes how

to read the inputs and write to the outputs, as well as how to implement the next-state

and output functions. However, it proved to be challenging to use Python for this task.

One problem is that Python does not contain switch-statements, which are useful for

describing the FSM. Instead, a bundle of ”if-else” statements had to be used, and this

made the code more confusing and did not help much in terms of making the USB-FSM

more understandable. A lower level language such as C would probably have been a

better choice since switch-statements can be used and the language provides more control

to what data types are used.

As the Python modeling was not as fruitful as one could have hoped, prototyping in

SystemVerilog was done instead. A common approach, as mentioned in Section 2.2.3, was

used in the beginning. This approach utilizes an enumerated variable for the different
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states and a switch-case statement with some if-else statements to compute the next

state and outputs. Firstly, a simple FSM was made, similar to the example FSM in

Section 2.2.3. This was done in order to get a better understanding of how this way to

write an FSM worked in SystemVerilog and how it can be made programmable. More

research was, however, needed to find ways to make a programmable system. Two main

possibilities were discovered; a custom instruction set processor or a microprogrammed

control system.

A processor is programmable by nature, as described in Section 2.3. As mentioned in

Section 2.2.1, a microprocessor can be modeled as a Turing machine, which is a more

powerful automaton than the FSM. Therefore, having a custom instruction set processor

architecture was considered, as it would be programmable, and flexible. Instead of a gen-

eral microprocessor, a processor reduced to the components and instruction set needed

to run a programmable FSM could be used. Such a system had been implemented by

Wangyang et al. [22] and Hatta et al. [23]. Their solutions are presented in Section 3.3.

However, designing a custom instruction set architecture is complicated, and due to lim-

ited time for this thesis, it was decided to find other solutions to make a hardware-based

UPFSM.

Microprogrammed control was the other possibility that was discovered. Since the USB-

FSM is used to control another system, this inspired to research other ways to implement

control circuits. In [4], it was discovered that hardwired FSMs can be used to control

microprocessors. [4] also presented microprogrammed control as a an alternative way to

control microprocessors. Microprogrammed control is presented in Section 2.4.

Microprogrammed control works on the principle of a memory with control words stored as

microinstructions. This memory is typically a ROM. A sequencer finds the address of the

next microinstruction based on information from the following microinstruction and some

input signals to the control unit. Microprogrammed control is, in fact, an FSM, with each

microinstruction containing the output values and the next state information. However,

it was considered not to be particularly universal, as an interface with the sequencer is

needed, and the next state is not only generated by the ROM but also linked to the

program running in the processor itself. Also, the ROM is by definition, not writable,

so it is not possible to reprogram or reconfigure the ROM. As mentioned in Section 2.4,

RAM can also be used in writable microprogrammed control. Using this would make it

more programmable and flexible. However, implementing a RAM with functionality for

reading and writing seemed slow and unnecessarily complicated. Using registers instead

would make likely make for a faster and simpler design.

Using registers to store functionality was further researched. The motivation was to use

general ideas from microprogrammed control and simplify it. Therefore, the concept of a

LUT was discovered. LUT is presented in Section 2.5. A LUT is a way to map an input to
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an output. This would be beneficial since it avoids the addressing and sequencing needed

for a microprogrammed control solution with RAM. A LUT-based design would also be

less complicated than a custom processor architecture. Therefore, it was decided to move

on with designing a LUT-based UPFSM called the LFSM, as in ”LUT-FSM”.

4.1.2 LFSM design

As mentioned, the LFSM is a variation of writable microprogrammed control. Figure 4.3

show an overview of the LFSM. As the figure depicts, it consists of three main parts; a

LUT, write logic, and a state register. Each part and how the LFSM is programmed is

described in the following paragraphs.

Current state

Inputs

Clock

OutputsLUT

Next State

Bus Write logic

Reset

Figure 4.3: Overview of the LFSM and its three main parts.

LUT From Section 2.2, it is clear that an FSM has a transition function which returns

the next state based on the current state and the input. In addition, the output is returned

by an output function, which, depending on if it is a Moore or Mealy machine, is based on

the current state and the inputs. A state transition table can describe this dependency.

In the LFSM, the state transition table is implemented in a three-dimensional LUT. The

LUT thus replace the state transition and output functions.

Figure 4.4 illustrates the layout of the LUT. At each position in the LUT, there is a

word containing the next state bits and the output value. Indexing the LUT with the

combination of the value of the current state bits and the value of the input signals, the

position returns the corresponding output value and the next state. The LFSM with a

LUT resembles microprogrammed control, except instead of using an address generator,

the LUT uses current state and the inputs directly. The LUT size is decided by the

number of input signals, output signals, and states needed for the desired FSM.
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Output value

Next state bits

Current state value

Input value

Figure 4.4: The layout of the LUT. The size in this figure correspond to the USB-FSM.

1 logic [2**MAX_NUM_STATE_BITS-1:0][2**MAX_INPUT_WITDH-1:0]
[MAX_OUTPUT_WITDH+MAX_NUM_STATE_BITS-1:0] state_table;↪→

Listing 2: Declaration of LUT.

Listing 2 show how the LUT named ”state table” is declared in SystemVerilog. As one

can see, there are three parameters to specify the size of the LUT. Equation (5) shows

how the size of the LUT is determined by the number of inputs signals, output signals,

and state bits.

Size = 2(I+Q) ∗ (Z +Q) (5)

where:

• Q = MAX NUM STATE BITS which specifies the number of bits needed to

represent the state set.

• I = MAX INPUT WITDH which specifies the number of input bits.

• Z = MAX OUTPUT WIDTH which specifies the number of output bits.

The LUT must be sized to this in order to accommodate all possible combinations of

input signal values and state bit values,and to store a word with next state bits and

output signals for each position. Figure 4.4 corresponds to the USB-FSM, which has

Q=3, I=4, and Z=3. This gives 16 possible input signal values and 8 possible state
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values. Each combination of an input value and a state value holds a 6 bit word (Q+Z).

The USB-FSM would, therefore, need a LUT size of 768 bits.

Since the LUT is generated in hardware, it must be sized large enough to accommodate all

possible FSM sizes that might be needed for the UPFSM in the future. It is not possible

to resize the LUT after the design is manufactured. However, it is possible to use fewer

states, input signals, and output signals than specified by the parameters. This would, of

course, lead to an area penalty, which can be very high for large FSMs with many states,

inputs, and outputs. Besides, the LUT size is determined by the number of bits needed to

represent the state set. For the USB-FSM, which has 5 states, Q=3 bits is must still be

used to represent the state set in the LUT. 3 bits is enough for 8 states, and this means

the LUT is excessively large.

Write logic The LUT is writeable and can be programmed. The programming is done

by connecting a bus interface to the LFSM and use logic to write to the LUT. Using this

bus interface, an FSM configuration can be loaded into the LUT, which obviously will

change the contents in the LUT. The new content in the LUT results in a different state

transition and output functions, and the FSM will react to the inputs differently. The

bus is connected to the main bus structure of the chip, and the on-chip microprocessor

can load the FSM configuration from non-volatile memory by software at startup.

The bus interface has both read and write capabilities, but only the write functionality

is used in the LFSM. The bus has an addressing scheme which is used to write and read

from other IPs. The bus data width is 32 bits, which for this design of the LFSM means

each word in the LUT only can be 32 bits wide. Due to this, the maximum number of

output bits and state bits combined cannot exceed 32 bits. However, the word length

issue can most likely be solved by, for example, using a two-stage write process which

loads each position with two bus transfers. This was not implemented for in the LFSM

due to limited time and since it is not required for the USB-FSM.

Listing 3 show the SystemVerilog code for how the LFSM configures the LUT from the

bus. Since it must be synchronized with the bus, the write logic is in a sequential always ff

block. The writing must be done by a bus master, such as a microprocessor, which uses

a software program to write the LUT at chip startup or reset. Due to limited time in

the work for this thesis, a bus driver in a testbench has been used for writing to the

LFSM. Writing starts by writing 32’hFFFFFFF to address 32’hFFC in the LFSM. This

toggles a register which tells the LFSM that it is in programming mode. While it is

in programming mode, it will not function as an FSM, and all the outputs will be zero.

Then, at each clock tick, a new word is written to the LUT from the bus, and the counters

increment and writing to the next position is performed. This iteration continues until the

entire FSM configuration has been written. After the FSM configuration writing finishes,
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1 // Used for iterating through LUT
2 logic [MAX_NUM_STATES-1:0] i;
3 logic [MAX_NUM_INPUTS-1:0] j;
4

5 // Write LUT
6 always_ff @(posedge clk or posedge arst) begin
7 // LUT set to zero on reset, and index variables are set to

zero↪→
8 if (arst) begin
9 state_table <= '0;

10 i <= '0;
11 j <= '0;
12 end
13 else begin
14 case(busAddr)
15 32'hFFC : begin //Set FSM in programming mode by sending

FFFFFFFF to address FFC↪→
16 if(busWe && busDo == 32'hFFFFFFFF) begin
17 if (programming_mode) programming_mode <= '0; //Toggle

programming mode↪→
18 else programming_mode <= '1;
19 end
20 end
21 //For every entry in state table to be indexable using

inputs and state bits, the below musbe done:↪→
22 LFSM_BASE : begin
23 if(busWe) begin
24 if(programming_mode) state_table[i][j] <=

busDo[MAX_NUM_OUTPUTS + MAX_NUM_STATES - 1 : 0];↪→
25 // Incrementing indexes
26 j <= j + 1;
27 if(j >= 2**MAX_NUM_INPUTS - 1) begin
28 i <= i + 1;
29 j <= '0;
30 if(i >= 2**MAX_NUM_STATES - 1) begin
31 i <= '0;
32 end
33 end
34 end
35 end
36 endcase
37 end
38 end

Listing 3: Writing process.

32’hFFFFFFF must be written to address 32’hFFC to toggle the programming mode off

and return the LFSM into FSM operating mode.

A reset signal will zero all the bits in the LUT, and also set the counters i and j to zero.

Therefore, the LUT must be rewritten when a reset has occurred.

Having the correct word at the corresponding position in the LUT is crucial for correct

behavior of the FSM. This poses a challenge in the writing process. The writing must

start at position (current state value 0, input value 0) and iterate using the counters i

and j in Listing 3. Each word written is a line from the state transition table. Thus,

care must be taken so that the state transition table is correct and will correspond to the

correct position in the LUT. The transition table must have a word for every position,

even if the position (a combination of state and inputs) is an unreachable state or not
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used at all. Having to write all positions can be seen in relation to the LUT size issue.

Having more clever indexing and writing by the bus may open possibilities to reduce the

LUT size, which should be considered for future work.

State register and reading the LUT The state register in the LFSM is not different

from what a was presented in Section 2.2.3. It holds the current state. The state register

is declared as an always ff block as shown in Listing 4. At each clock cycle, the state

register will either remain in the current state or get a new state from the LUT. If the

reset signal goes high, the state register will be set to zero.

1 always_ff @(posedge clk or posedge arst) begin
2 // Default state is 0 on reset
3 if (arst) begin
4 state <= '0;
5 end
6 else begin
7 state <= nextState;
8 end
9 end

Listing 4: State register in LFSM.

Finding the correct output values and the next state is relatively straight forward once the

writing of the configuration is finished. Listing 5 show how the LFSM finds the next state

and the outputs. Since it is a combinatorial process, it is declared as an always comb. As

mentioned in Section 2.2.2, a Moore machine only need the current state to determine the

outputs, while a Mealy machine needs both the state and the inputs. Thus, a parameter

can be set when instantiating the LFSM whether or not it should be a Mealy or Moore

machine.

As seen in Listing 5, the programming mode register is checked, which means the LFSM

only sets output and next state when it is not in programming mode. In a Moore machine,

input value zero is used constantly for finding the output. The use of input value zero is

arbitrary. For a Mealy machine, the actual input value instead of zero. Using a Moore

machine should make possibilities for reducing the area of the LUT after synthesis, while

a Mealy machine opens possibilities for more advanced state machines.

How to program the LFSM As mentioned, making sure the right word is at the right

position is crucial for correct behavior by the LFSM. The LFSM use a state transition

table in the LUT. State transition tables is presented Section 2.2. For the current LFSM

design, the user of the LFSM must manually create the state transition table for the FSM

which is to be used. The state transition table must be binary coded. The state transition

table is, as mentioned, written to the LUT using a bus interface.

28



1 if (MEALY == 1) begin : la_Mealy
2 always_comb begin
3 if(!programming_mode) begin //Only provide output and

nextState while not in programming mode↪→
4 outputs = state_table [state] [inputs] [MAX_NUM_OUTPUTS +

MAX_NUM_STATES - 1 : MAX_NUM_STATES]; //Only the
outputs from LUT word

↪→
↪→

5 nextState = state_table [state] [inputs] [MAX_NUM_STATES -
1 : 0]; //Only the nextState bits↪→

6 end
7 else begin
8 outputs = '0; //all outputs are zero when there is no

valid program in the FSM↪→
9 nextState = '0; //nextState is default zero when no valid

program↪→
10 end
11 end
12 end
13 else begin : la_Moore
14 always_comb begin
15 if(!programming_mode) begin
16 outputs = state_table [state] [0] [MAX_NUM_OUTPUTS +

MAX_NUM_STATES - 1 : MAX_NUM_STATES]; //Outputs only
determined by state. The use of input 0 is arbitrary.

↪→
↪→

17 nextState = state_table [state] [inputs] [MAX_NUM_STATES -
1 : 0];↪→

18 end
19 else begin
20 outputs = '0;
21 nextState = '0;
22 end
23 end
24 end

Listing 5: Finding the next state and the outputs.

Creating the state transition table for the format for writing over the bus has so far been

done by using a spreadsheet program like Microsoft Excel. The spreadsheet of the state

transition table for the USB-FSM can be seen in Appendix B. In Microsoft Excel, it is

possible to copy columns. So, the columns for the next state and the outputs are copied

into a .txt-file and all spaces are removed. A simple Python script is used to parse this

.txt-file into the format needed for the software or bus driver to write to the LUT. The

script is added in Appendix C.

This way of programming the LFSM is not particularly user-friendly and mistakes can

easily happen. Especially, creating the binary encoded state transition table is prone to

mistakes. It is also difficult to find mistakes and debug the program. The amount of work

to create the tables is also very dependent on the number of inputs, outputs, and states.

During the work of this thesis, more emphasis was put into creating a functional LFSM

rather than the programming interface, and it is left for future work to create a more

user-friendly interface. Some ideas for refinement are for example to create a C-program

for the FSM and then have a script parse the C-file and automatically create the format

required for the LUT. An even more advanced solution which might be more user-friendly

would be a graphical user interface where the FSM can be drawn as a state diagram and
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a program can interpret the drawing and generate the format for the LUT.

4.2 Software based UPFSM

Using a microprocessor as an FSM is not a new idea. As presented in Section 3.3, it

was considered already in 1987 [6], and ARM has a white paper [5] on the subject. The

main inspiration for the software-based design is from the ARM white paper. Besides,

implementing an FSM in software for running on a microprocessor opens possibilities for

comparison and evaluation to the LFSM. The software-based UPFSM is for simplicity’s

sake called the SWFSM. Figure 4.5 show a simplified overview of the SWFSM design.

USB-FSM

TD

Inputs Outputs

Microprocessor

Bus

Bus connection

TC

Figure 4.5: Simplified overview of how the SWFSM works with TD and TC. The USB-FSM

is gray to illustrate how the signals are re-routed.

The SWFSM should have a microprocessor connected to the inputs and outputs from the

original FSM. Since the microprocessor has multiple connections, a bus infrastructure is

needed to communicate to all the various units connected to the microprocessor. Sec-

tion 4.2.1 describes how the SWFSM was investigated an developed, and Section 4.2.2

describes the design that was implemented.
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4.2.1 Development

The ARM white paper [5] was used as a starting point. As the existing TC was used

in this thesis, a natural starting point. TC has a bus structure and a microprocessor, as

well as frameworks for testing and developing software. From the ARM white paper, it

was clear that some registers for reading and writing the FSM inputs and outputs were

needed. These registers had to be connected to the main bus structure of TC so that the

microprocessor could access them from software. It was decided to use one register for

the inputs to the FSM and one register for the outputs.

As TC is an existing SoC from Nordic Semiconductor, and the SWFSM is in the cross-

section of hardware and software design, cooperation with engineers from Nordic Semi-

conductor was necessary for the implementation. The development started at two ends,

with one end being the software side, and the other end the hardware side. Engineers with

knowledge of the software and hardware sides assisted in their respective fields. Eventu-

ally, the ends were tied together, and the design of the actual SWFSM could be carried

out.

4.2.2 Design

Figure 4.6 shows a simplified overview of the SWFSM and how it is placed in TD. It

can be divided into two major parts, the hardware side with signals and registers, and

the software side which runs in the microprocessor. Each side will be presented in the

following paragraphs.

PowerSystem

PowerSubSystem

RegulatorSystem

TD

USB_FSM

PowerSystemConnect

Bus
Read register

Write register

Inputs
Outputs

Microprocessor

Figure 4.6: Overview of the SWFSM and its connections.

Hardware side The SWFSM is using registers and signals which are added to the

hardware of TC. The existing USB-FSM in TD is removed, but the signals going in

and out of the USB-FSM are routed to registers accessible to the microprocessor. TD

is instantiated inside several layers of other IPs and subsystems. Thus, the input and
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output signals had to be routed through all the layers to the module which is connected

to the bus infrastructure.

As shown in Figure 4.6, TD is a part of a larger IP named PowerSystem. PowerSys-

tem contains submodules PowerSubSystem and RegulatorSystem, which contains TD.

However, PowerSystem is connected to the bus infrastructure via the submodule Power-

SystemConnect. This means that the signals from TD must be routed to the top module,

PowerSystem, and then into the PowerSystemConnect. PowerSystemConnect contains all

the registers for all the modules in PowerSystem. The PowerSystem has a base address in

the bus structure, and offsets are used to access the internal modules. The registers used

for the USB-FSM did not exist in TC from before, so they had to be added with help

from hardware-engineers from Nordic Semiconductor. The register for the input signals

is made as a read-only register since these signals originate from logic in TD and the mi-

croprocessor does not need to write to them. The register for the output signals is made

as a write-only register, as these signals used to be the outputs of the original USB-FSM.

An existing testbench for TC was used to verify that the signals were added correctly.

Software side With help from software engineers at Nordic Semiconductor, the regis-

ters implemented in hardware is added to the firmware for TC. The framework is built

up around software header-files containing structs. These structs are used to break down

the address which is used on the bus. As mentioned, each module has a base address and

an offset. The base address is used to find the correct struct, and the offset is specified

in the struct.

The program for running the SWFSM is written in C and is shown in Listing 6. As

TC is a complex SoC, unnecessary code from an existing C-program was removed and

replaced with the code for running the SWFSM. The existing C-program already had a

framework for co-simulating the hardware and software, which reduced the complexity

and time needed to implement the SWFSM.

The code is not very different from the SystemVerilog code used for the hardwired USB-

FSM and is based on the state transition diagram shown in Figure 3.1. The program

uses an infinite while-loop with a switch case. The states are stored as an enum variable

for readability. Each loop, the register ”POWER SYSTEM->FSM INPUTS” is polled

and stored as the variable ”temp”, and the switch statement checks the current state.

Based on the current state, the output is written to the register ”POWER SYSTEM-

>FSM OUTPUTS”. The writing of output is hexadecimal in the C program, but it

corresponds to the binary output for that state. In each state, an if-else statement is used

to compute the next state based on the polled inputs. The comments in the code indicate

which bits in the input register should be checked in each state. A bitwise ”AND” and a

shift right operation is used to mask out the don’t care-bits.
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1 int main(void)
2 {
3 volatile uint32_t temp;
4 uint32_t counter = 0;
5

6 enum FSMSTATE {STATE_0, STATE_1, STATE_2, STATE_3, STATE_4}
state;↪→

7

8 state = STATE_0; // Start
9 POWER_SYSTEM->FSM_OUTPUTS = 0;

10

11 while(1){
12 counter++;
13 temp = POWER_SYSTEM->FSM_INPUTS;
14

15 //Trigger input_0 backdoor
16 if(counter == 1) *(volatile uint32_t *)0x500045F8 = 0x3;
17

18 // Trigger input_2 backdoor
19 if(counter == 5) *(volatile uint32_t *)0x500045E8 = 0x3;
20

21 if(counter > 1){
22 switch (state){
23 case (STATE_1) :
24 POWER_SYSTEM->FSM_OUTPUTS = 4; //100
25 if ((temp & 8)>>3 == 0) state = STATE_0; //!input_0 0xxx
26 else if (((temp & 8)>>3 == 2) && ((temp & 4)>>2 == 0))

state = STATE_1; //input_0 and !input_1 10xx↪→
27 else if (((temp & 8)>>3 == 1) && ((temp & 4)>>2 == 1))

state = STATE_2; //input_0 and input_1 11xx↪→
28 break;
29 case (STATE_2) :
30 POWER_SYSTEM->FSM_OUTPUTS = 5; //110
31 if ((temp & 8)>>3 == 0) state = STATE_0; //!input_0 0xxx
32 else if ((temp & 2)>>1 == 0) state = STATE_2; //!input_2

xx0x↪→
33 else if ((temp & 2)>>1 == 1) state = STATE_3; //input_2

xx1x↪→
34 break;
35 case (STATE_3) :
36 POWER_SYSTEM->FSM_OUTPUTS = 6; //110
37 if ((temp & 8)>>3 == 0) state = STATE_0; //!input_0 0xxx
38 else if ((temp & 2)>>1 == 0) state = STATE_2; //!input_2

xx0x↪→
39 else if ((temp & 1) == 0) state = STATE_3; //!input_3

xxx0↪→
40 else if ((temp & 1) == 1) state = STATE_4; //input_3

xxx1↪→
41 break;
42 case (STATE_4) :
43 POWER_SYSTEM->FSM_OUTPUTS = 7; //111
44 if ((temp & 8)>>3 == 0) state = STATE_0; //!input_0 0xxx
45 else if ((temp & 2)>>1 == 0) state = STATE_2; //!input_2

xx0x↪→
46 else if (((temp & 8)>>3 == 1) && ((temp & 2)>>1 == 1))

state = STATE_4; //input_0 and input_2 1x1x↪→
47 break;
48 default : // case (STATE_0)
49 POWER_SYSTEM->FSM_OUTPUTS = 0;
50 if ((temp & 8)>>3 == 0) state = STATE_0; //!input_0

0xxx↪→
51 else if ((temp & 8)>>3 == 1) state = STATE_1; //input_0

1xxx↪→
52 break;
53 } //Switch
54 } //if counter > 1
55 } // end while
56 return 0;
57 }

Listing 6: Main function from C program for the SWFSM. The counter is used for testing

purposes, described in Section 5.2.
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5 Testing, results, and discussion for the UPFSM

This section will present how the two UPFSM solutions were tested and verified. The

results from the LFSM and the SWFSM will be presented and briefly discussed. A

thorough evaluation and discussion will be conducted in Section 6.

5.1 LFSM

Testing was performed continuously during the development of the LFSM. At first, a con-

figuration for a simple FSM like the example FSM from Section 2.2 was created and used.

The behavior was verified by examining waveforms in the simulation tool QuestaSim.

The LFSM was instantiated in TD and replaced the original hardwired USB-FSM. As an

IP-level testbench for verification of TD already existed, the behavior of the LFSM was

functionally verified using this testbench. The testbench needed the signals for the cur-

rent and next state from the LFSM, so they had to be extended as outputs. These signals

were used in asserting the correct behavior. After some attempts, the LFSM passed the

TD testbench without errors. A sanity check was also performed, by deliberately adding

errors in the FSM configuration, and the testbench did not pass accordingly.

However, the LFSM lacks complete verification. An IP-level testbench for the LFSM

should have been made. This would include the use of SystemVerilog assertions and

randomized stimulus. However, it is difficult to properly verify the behavior since it

depends on the FSM configuration. A complete verification is left for future work.

5.1.1 Results from synthesis

Synthesis was carried out to find the area and number of flip-flops needed for the LFSM

and TD. The LFSM was synthesized with different parameters and sizes for the LUT,

which included Mealy versus Moore. TD was synthesized both with and without the

LFSM. As different parameters could be set, such as Moore versus Mealy, and different

LUT sizes, several synthesis runs were conducted. The results are shown in the following

figures.

Looking at the number of flip-flops from Figure 5.1, it is easy to see that TD with LFSM

is substantially larger than TD with the original hardwired FSM. The functionality is the

same between the versions. The Moore machine version has over 4 times as many flip-flops

as the original, and the Mealy machine version has almost 7 times as many. Increase in

the number of flip-flops also increase the number of transistors and thus the area, which

is can be seen from Figure 5.2. The figure has the area relative to the original TD, which

is set to 1. It also shows the distribution between combinatorial and noncombinatorial
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Figure 5.2: Area relative to original TD.

area. The increase in area is mostly caused by an increase in noncombinatorial area.

Noncombinatorial area means sequential logic, such as registers. The increase is thus

expected, as the LUT is made from registers. The increase in combinatorial logic comes

from the logic used to write and read the LUT, such as multiplexers and decoders.

Figure 5.3 show the number of flip-flops for the LFSM for different parameter sizes and for

Mealy versus Moore versions. As mentioned in Section 2.5, the LUT size is determined by

the number of input and output signals, as well as the number of bits needed to represent

the state set. The increase in the number of flip-flops is exponential, and this can be seen

in Figure 5.3. The synthesis with 4 input signals, 3 state-bits, and 3 output signals reflect

the size used for the USB-FSM. The version with 6 input signals, 6 state-bits, and 6

output signals is at the limit of what the synthesis tool could handle, and the time needed

for synthesis was much longer than for the smaller versions. Synthesis with fewer inputs
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Figure 5.3: Number of flip-flops for different LUT sizes of LFSM. X-axis numbers are {#input

width, #state-bits, #output witdth}, Y-axis is logarithmic with base 10.

and outputs, but more state-bits could have been performed, but a ballpark estimate can

be done by using the LUT size from Equation (5).

The difference in area can be seen in Figure 5.4. The difference between Moore and Mealy

machines comes from the fact that only the state is needed to compute the outputs. Thus,

the LUT can almost be half the size. The synthesis tool is able to optimize the LUT based

on how many flip-flops that are not in use, and for a Moore machine version, this would

be almost half the registers. As seen in Listing 5 from Section 4.1.2, in the LFSM, input

value zero is constantly used to provide the output in a Moore instantiation, and the rest

of the flip-flops will never be used.
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logarithmic with base 10.

5.2 SWFSM

The SWFSM is tested by simulating TC in QuestaSim® with the SWFSM program run-

ning on the microprocessor. Only an RTL-model of TC is used, so no physical design was

used. As there was not enough time to create a proper testbench with test-stimulus for the

SWFSM, backdoor-signals to TD was used instead. Backdoor-signals are signals that can

be triggered by writing to registers from the C-program. By triggering these signals, the

USB regulator is enabled and another signal can emulate that a USB cable is connected.

They will thus act as input signals to the SWFSM. The backdoor-signals are set by adding

a counter in the while-loop in the SWFSM code, which can be seen in Listing 6. When

the counter reaches a value, the signal is set. However, backdoor signals only exist for the

signal ”input 0” and ”input 2”. Triggering ”input 0” automatically triggers ”input 1”

after one TD clock cycle. The input signal ”input 3” cannot be backdoor-triggered since
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a backdoor-signal does not exist in the design. The lack of this backdoor-signal means

the entire SWFSM cannot be properly tested and verified for all the states. However,

propagating through the states ”STATE 0”, ”STATE 1”, ”STATE 2, and ”STATE 3 can

be done, which gives a good indication of it working. A ballpark estimate of the speed

can be also be made.

An interesting test would be to see how fast the microprocessor is able to compute an

output following a change in the inputs. This is measured by the number of clock cycles

the microprocessor uses. The measurement is done using QuestaSim waveform generator.

By finding the time interval between two events in the waveform and divide this time

by the clock period, the number of clock cycles is found. The clock frequency for the

microprocessor is eight times higher than the frequency for TD and the bus.

The number of clock cycles can be found for two intervals:

1. The number of cycles the microprocessor needs to read the input register and write

a new output to the output register.

2. The number of cycles needed from an input change in TD to the output change is

present in TD. This includes the latency caused by the bus.

For the first interval, the microprocessor use 640 microprocessor clock cycles, or 80

TD/bus-cycles. This is the worst case interval found in the waveform.

The second interval needed 992 microprocessor cycles, or 124 bus/TD cycles.

Both these intervals indicate that the SWFSM is very slow compared to the original TD.

The original TD will provide an output every bus/TD clock cycle, whilst SWFSM will

provide an output every 124th cycle. Note that this is only for one of the state transitions,

and might not even be a worst-case scenario.

One explanation can be found in the C-program from Listing 6. The program runs in a

loop which first read the input registers. Then, it enters the switch statement and the

current state. Here, the output is set for the current state, and then the next state is

computed. Then, the loop starts over again, by reading the input. Henceforth, it now

enters the case for the state computed in the previous loop, where the outputs are set. In

this manner, when the input is changed, the program reads the inputs two times before

the output is set. This makes it slower, and the program should be optimized to avoid this.

According to [5], a possible way to optimize the code is to use ”goto” with labels. The

”switch” statement will not be needed, and this should make the program more efficient

because it does not need to jump back to the ”switch” statement in each transition.

Another possible explanation was found after discussion with Nordic Semiconductor en-

gineers. It turned out that the SWFSM software was running from flash memory. This

means the flash will add significant delay. Enabling the use of a cache would most likely
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reduce the number of microprocessor cycles significantly since a cache is a faster memory

than flash. Another option would be to run the program from RAM, which would also

be faster than flash memory. Unfortunately, these possibilities were discovered late, and

it was not enough time to optimize this.

Areawise, synthesis for TD without a USB-FM show that it is smaller than the original

TD and also the LFSM version. As the USB-FSM is removed from TD, the area is

reduced. The registers for inputs and outputs, which are not in TD, must be taken into

consideration. But they will at most be 32 flip-flops each, depending on the number of

inputs and outputs. The area is also not dependent on FSM state, except for the input

and output registers. In addition, the program will need space in the memory of TC,

which is also an area penalty.
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6 Evaluation and discussion

This section presents a comparison and evaluation of the three different methods to im-

plement an FSM. They are compared and evaluated in terms of area, throughput, power,

complexity, and ease of use. A small summary of the findings is also given.

6.1 Area

Having a small area as possible is very useful for IC and SoC designs. Small area means

lower power consumption, less manufacturing cost, and smaller physical size.

The SWFSM is the smallest in area. This is expected, as no logic is needed in hardware

when it is all performed in software. The LFSM is the largest. It is, however, not very

large for small FSM with few inputs, outputs, and states. But, if either of these parameters

is increased, the area will increase exponentially. This can be seen from Equation (5).

When synthesis was performed, the synthesis tool was not able to synthesize larger than

6 inputs/outputs signals and 6 state-bits. The LFSM is best suited for small FSMs. The

FSMs should also be Moore machines, as this nearly cuts the LUT size in half.

A possibility for reducing the LUT size is to use RAM blocks instead of registers. This

will remove the area occupied by the LUT and use RAM blocks that typically are found

in SoCs. Some logic and wires are needed to access the RAM which costs some area.

Having a hardwired FSM will cost some area, and the area will also depend on the number

of states, inputs, and outputs. But it is less area consuming than the LFSM. In terms of

area, the SWFSM is better, at least when there are many inputs, outputs, and states.

6.2 Throughput and speed

Having a fast FSM is not always needed, but in many cases, a constraint exists on the

speed of the FSM.

Hardwired FSM A hardwired FSM has combinatorial logic to compute the next state

and the outputs, and a sequential register to store the next state. This means it can

provide output every clock cycle. Some delay comes from the critical path in the digital

circuit, but nothing excessive compared to the rest of the circuit.

LFSM The LFSM also provide output every clock cycle. Next state and output are

generated by decoding what is present at a position in the LUT, and the next state is stored
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in a register. However, the LFSM must be programmed before it behaves as an FSM,

and this programming takes time. The LFSM requires one clock cycle per position in the

LUT for writing the program, in addition to two cycles to toggle the ProgrammingMode

register. If a large LUT is needed, such as the one synthesized with 6 input signals, 6

output signals and 6 state.bits, it will use 26+6 = 4096 clock cycles to fill all the positions

in the LUT. It must also be reprogrammed after a system reset, and this must be taken

into account when using it.

SWFSM The SWFSM is very slow compared to the other solutions. As mentioned in

Section 5.2, it takes 124 bus/TD clock cycles to compute an output from an input change,

whereas the hardwired FSM and the LFSM only use one clock cycle.

The SWFSM will most likely share the microprocessor with several other programs and

processes. This means additional time is needed to schedule the FSM tasks. An interrupt

can be used, but this also adds a delay as the microprocessor must store what it is doing

before it can handle the interrupt. The program for the SWFSM is not very optimized,

and the SWFSM could probably operate faster if more time and thought is put into

optimizing the code. Also, including the changes proposed by Nordic Semiconductor

engineers would also make significantly SWFSM faster.

If strict timing control and fast operation are required, it is probably better to avoid

using a microprocessor. The LFSM is equally fast as a hardwired when it is finished

programming, but will require substantial amounts of time if the FSM has many states,

inputs, and outputs.

6.3 Power consumption

Not too much emphasis has been put into power consumption for the SWFSM and the

LFSM. However, low power consumption is very important in SoCs and ICs, which typ-

ically run on battery power. Power consumption is related to the area and speed of the

design.

The LFSM is the most area-dependent and use registers for storing the LUT. The LUT

is not clock gated by design, but modern synthesis tools are able to insert clock gating

automatically, which helps to reduce the power consumption.

The SWFSM runs on a microprocessor, and the power consumption is related to the

power consumption of the microprocessor. The program currently used for the SWFSM

is causing the microprocessor to stay active and polling registers. This consumes a lot

of power. Using interrupts instead would allow the microprocessor to go to sleep when

there is no activity on the input registers. Sleeping the microprocessor obviously reduce
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the power consumption dramatically. How often it must be awakened will depend on the

FSM which is used and how active that FSM is. Also, if the number of clock cycles is

reduced, this would also save power since the microprocessor can return to sleep faster.

6.4 Complexity and ease of use

Having a UPFSM will most likely always come with some drawbacks and added complex-

ity. A programmable system will need extra features such as a programming interface

and a memory to store the program. Hardwired FSMs are not more complicated than

they need to be.

LFSM The LFSM is not very complicated, at least not for small FSMs. As mentioned,

the area increases exponentially with the size of the LUT, and, likewise, the complexity

increases. In terms of ease of use, the LFSM is relatively straight forward to use in a

design, as it is a standalone IP with parameterized inputs and outputs. A designer only

needs to specify the number of bits needed in the parameters and have a bus interface

present and hook it up accordingly. The real problems arrive when it is time to program

it.

During the work of this thesis, the writing over the bus has only been done in a testbench

with a bus driver. For a real application, software code must be written which writes

to the LUT after each reset. Creating the program is not very user-friendly either, as a

state transition table must be created. Creating such tables manually is not very difficult

for small FSMs, but the complexity increases exponentially for large FSMs. The state

transition table for the USB-FSM, which can be seen in Appendix B, has 80 rows and 15

columns. If a table had been made in the same manner for an FSM with 6 inputs/outputs

and 6 state bits, the table would have 384 lines and 26 columns. This is much more prone

to mistakes, and it is challenging to find the mistake.

Having a system that can generate the software code automatically, by for instance cre-

ating the state transition table from a C-program like the program used in the SWFSM,

would make the LFSM much more user-friendly, even with large FSMs.

SWFSM The SWFSM may be more user-friendly than the LFSM, at least considering

the programming interface. For a basic implementation, only a simple C program is

needed. An SoC will have all the necessary framework and the toolchain needed to write

programs to the microprocessor. More specialized and optimized code can also be written,

which can reduce the power consumption and memory required.
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The SWFSM will, however, need the input and output signals to be read and writable

by the microprocessor. If the FSM resides deep in several layers of IPs and modules, the

complexity increase as the signals must most likely be forwarded through all the IP layers

to a module that is connected to the bus in the SoC. An SWFSM will also occupy bus

address space, which is not unlimited. If the microprocessor would run several FSMs, this

will also increase the complexity.

The SWFSM has an advantage over the LFSM as the complexity is not increased as

much for larger FSMs. Albeit, the software program is larger, but the general ideas are

not much different. Having a software program allows for the use of debuggers and other

tools which help find bugs and faults in the program.

Hardwired FSM A hardwired FSM is less complicated than a UPFSM since it does

not need the extra features needed for the programmability. However, it is less flexible

and not universal. A custom FSM must be made for every design. Depending on the

user, it might be less user-friendly. A hardware engineer might find it easier to implement

a hardwired FSM than an SWFSM, while a software engineer might find it easier to

implement an SWFSM.

6.5 Summary and future work

The discussion and comparison presented is summed up in Table 6.1.

It is difficult to say whether one type of FSM implementation is better than the other.

Compromises must be made anyway. As mentioned, the hardwired FSM is not pro-

grammable, and it, therefore, has the disadvantage of not being able to change behavior

after manufacturing. Both the UPFSM implementations are programmable, but are more

complex and cost more in terms of area or speed. Even though this thesis aimed to cre-

ate a UPFSM, such a UPFSM might only be worth it if the programmability is strictly

required. The SWFSM has an advantage in area and ease of programmability over the

LFSM when it comes to large FSMs, while the speed of the LFSM is better than the

SWFSM for smaller FSMs.

Albeit, the ideas presented in this thesis might be a good starting point for further devel-

oping a UPFSM. The LFSM has potential if solutions to reduce its area and make it easier

to use can be found. Ideas for area reduction are more clever storage in the LUT, which

takes unreachable states into account. To make it easier to program, an automatic system

can be developed which reads an FSM program written in C or a different, higher-level

programming language and creates the format needed in the LFSM.

The SWFSM also has potential if the speed constraints for the FSM are low. A starting
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point to further develop the SWFSM, is to improve the program code and run the soft-

ware with cache enabled or run it from RAM. Avoiding polling the registers in a relatively

slow while-loop could prove useful. Also, having sufficient control of the timing of the

microprocessor and bus clocks would most likely increase the speed. However, the imple-

mentation of an SWFSM in an already existing SoC is not easy either, so if an SWFSM

is to be used, it is probably a good idea to develop the SoC with SWFSMs in mind. This

would involve easier connections to the bus infrastructure and a proactive design for what

FSMs should be partitioned to software in the microprocessor.

A different possibility for future work is to use the findings in this thesis to develop

a custom processor architecture such as in [22] and [23]. A custom architecture can

potentially avoid the vast area which the LFSM use, and be more user-friendly. The speed

would also most likely be higher, as it can operate separately from the microprocessor. A

custom architecture can even be implemented as an accelerator for the microprocessor,

which offloads the FSM tasks from the microprocessor.
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7 Conclusion

State machines are used extensively in digital hardware designs. The FSMs are usually

hardwired, and their behavior cannot be changed after the IC or SoC product has been

manufactured. Having a programmable FSM would allow this. Therefore, this thesis has

proposed two different solutions to make a UPFSM; the LFSM and the SWFSM.

The LFSM is designed as an IP which can be used to replace existing FSMs. It is based

on a programmable LUT, which can be programmed using a bus interface. This solution

is as fast as a hardwired FSM in terms of speed, but sacrifices area and programming

complexity. It can be instantiated as a Moore or a Mealy machine, and the Moore

machine has substantially less area. For comparison, it is used to replace an FSM in a

power regulator controller, with 4 inputs, 3 outputs, and 3 bits to represent the state set.

Synthesis of the LFSM in a Moore machine configuration returned 3.71 times more area

than the original, and a Mealy machine configuration returned 5.6 times more area. The

area increases exponentially for larger FSMs with more inputs, outputs, and state bits.

A 6 inputs, 6 output, and 6 state bits LFSM will have an area approximately 57 times

(Moore) or 63 times (Mealy) larger than a 4 input, 3 output, and 3 state bits FSM. The

programming complexity also increases with FSM size, since the LFSM need a full state

transition table for all combinations of inputs and current state.

The SWFSM is a software-based solution running on a microprocessor. The input and

output signals for the FSM is forwarded to registers that are read and written to by the

microprocessor. The microprocessor runs a program for the FSM. This proved to have a

reduction in area, but a much slower operating speed. It takes 992 microprocessor clock

cycles from when a change happens in the input signals to a change can be seen in the

output signals. However, it is easier to use for larger FSMs.

Having a programmable FSM will have some drawbacks and will always be a compromise.

A hardwired FSM is probably the simplest solution, but if programmability is required,

the LFSM or the SWFSM are both good solutions. Which one to choose depends on the

FSM size, speed constraints, and area constraints.
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Appendices

A LFSM source code

1 module LFSM #(
2 parameter ID_LFSM_RW_BASE = package_file::LFSM_BASE,
3 parameter BUS_AW = package_file::BUS_AW,
4 parameter BUS_DW = package_file::BUS_DW,
5 parameter BUS_WW = package_file::BUS_WW,
6 parameter MAX_NUM_STATE_BITS = package_file::MAX_NUM_STATE_BITS,

//number of state bits↪→
7 parameter MAX_INPUT_W = package_file::MAX_INPUT_W, //number of

input bits↪→
8 parameter MAX_OUTPUT_W = package_file::MAX_OUTPUT_W, //number of

output bits↪→
9 parameter MEALY = package_file::MEALY

10 )(
11 input logic ck,
12 input logic arst,
13 input logic [MAX_INPUT_W-1:0] inputs,
14 output logic [MAX_OUTPUT_W-1:0] outputs,
15 output logic [MAX_NUM_STATE_BITS-1:0] state,
16 output logic [MAX_NUM_STATE_BITS-1:0] nextState,
17

18 // -- BUS interface inputs
19 input logic arst,
20 input logic ck,
21 input logic [BUS_AW-1:0] bus_adress, // Bus

address.↪→
22 input logic [BUS_WW-1:0] bus_data, // Bus data

from microprocessor.↪→
23 input logic bus_write_enable
24 );
25

26 logic programming_mode;
27 logic [2**MAX_NUM_STATE_BITS-1:0] [2**MAX_INPUT_W-1:0]

[MAX_OUTPUT_W+MAX_NUM_STATE_BITS-1:0] state_table;↪→
28

29 // Used for iterating through LUT
30 logic [MAX_NUM_STATE_BITS-1:0] i;
31 logic [MAX_INPUT_W-1:0] j;
32

33 // Write LUT
34 always_ff @(posedge ck or posedge arst) begin : la_BUSWrite
35 // LUT set to zero on reset, and index variables are set to

zero↪→
36 if (arst) begin
37 state_table <= '0;
38 i <= '0;
39 j <= '0;
40 end
41 else begin
42 case(bus_adress)
43 32'hFFC : begin //Set FSM in programming mode by sending

FFFFFFFF to address FFC↪→
44 if(bus_write_enable && bus_data == 32'hFFFFFFFF) begin
45 if (programming_mode) programming_mode <= '0;

//Toggle programming mode↪→
46 else programming_mode <= '1;
47 end
48 end
49 //For every entry in state table to be indexable using

inputs and state bits, the below must be done:↪→
50 ID_LFSM_RW_BASE : begin
51 if(bus_write_enable) begin
52 if(programming_mode) state_table[i][j] <=

bus_data[MAX_OUTPUT_W+MAX_NUM_STATE_BITS-1:0];↪→
53 // Incrementing indexes

51



54 j <= j + 1;
55 if(j >= 2**MAX_INPUT_W-1) begin
56 i <= i + 1;
57 j <= '0;
58 if(i >= 2**MAX_NUM_STATE_BITS-1) begin
59 i <= '0;
60 end
61 end
62 end
63 end
64 endcase
65 end
66 end
67

68 // State register
69 always_ff @(posedge ck or posedge arst) begin : la_state_reg
70 // Default state is 0 on reset
71 if (arst) begin
72 state <= '0;
73 end
74 else begin
75 state <= nextState;
76 end
77 end
78

79 // Output and nextState functions
80 if (MEALY == 1) begin : la_Mealy
81 always_comb begin
82 if(!programming_mode) begin //Only provide output and

nextState while not in programming mode↪→
83 outputs = state_table [state] [inputs]

[MAX_OUTPUT_W+MAX_NUM_STATE_BITS-1:MAX_NUM_STATE_BITS];
//Only the outputs

↪→
↪→

84 nextState = state_table [state] [inputs]
[MAX_NUM_STATE_BITS-1:0]; //Only the nextState bits↪→

85 end
86 else begin
87 outputs = '0; //all outputs are zero when there is no

valid program in the FSM↪→
88 nextState = '0; //nextState is default zero when no valid

program↪→
89 end
90 end
91 end
92 else begin : la_Moore
93 always_comb begin
94 if(!programming_mode) begin //Only provide output and

nextState while not in programming mode↪→
95 outputs = state_table [state] [0]

[MAX_OUTPUT_W+MAX_NUM_STATE_BITS-1:MAX_NUM_STATE_BITS];
//Outputs only determined by state. The use of
"input" 0 is arbitrary.

↪→
↪→
↪→

96 nextState = state_table [state] [inputs]
[MAX_NUM_STATE_BITS-1:0];↪→

97 end
98 else begin
99 outputs = '0; //all outputs are zero when there is no

valid program in the FSM↪→
100 nextState = '0; //nextState is default zero when no valid

program↪→
101 end
102 end
103 end
104

105 endmodule
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B Spreadsheet for USB-FSM

STATE NEXT_STATE
input_0 input_1 input_2 input_3 output_0 output_1 output_2

STATE_0 0 0 0 0 0 0 0 0 0 0 STATE_0 0 0 0
0 0 0 1 0 0 0 STATE_0 0 0 0
0 0 1 0 0 0 0 STATE_0 0 0 0
0 0 1 1 0 0 0 STATE_0 0 0 0
0 1 0 0 0 0 0 STATE_0 0 0 0
0 1 0 1 0 0 0 STATE_0 0 0 0
0 1 1 0 0 0 0 STATE_0 0 0 0
0 1 1 1 0 0 0 STATE_0 0 0 0
1 0 0 0 0 0 0 STATE_1 0 0 1
1 0 0 1 0 0 0 STATE_1 0 0 1
1 0 1 0 0 0 0 STATE_1 0 0 1
1 0 1 1 0 0 0 STATE_1 0 0 1
1 1 0 0 0 0 0 STATE_1 0 0 1
1 1 0 1 0 0 0 STATE_1 0 0 1
1 1 1 0 0 0 0 STATE_1 0 0 1
1 1 1 1 0 0 0 STATE_1 0 0 1

STATE_1 0 0 1 0 0 0 0 1 0 0 STATE_0 0 0 0
0 0 0 1 1 0 0 STATE_0 0 0 0
0 0 1 0 1 0 0 STATE_0 0 0 0
0 0 1 1 1 0 0 STATE_0 0 0 0
0 1 0 0 1 0 0 STATE_0 0 0 0
0 1 0 1 1 0 0 STATE_0 0 0 0
0 1 1 0 1 0 0 STATE_0 0 0 0
0 1 1 1 1 0 0 STATE_0 0 0 0
1 0 0 0 1 0 0 STATE_1 0 0 1
1 0 0 1 1 0 0 STATE_1 0 0 1
1 0 1 0 1 0 0 STATE_1 0 0 1
1 0 1 1 1 0 0 STATE_1 0 0 1
1 1 0 0 1 0 0 STATE_2 0 1 0
1 1 0 1 1 0 0 STATE_2 0 1 0
1 1 1 0 1 0 0 STATE_2 0 1 0
1 1 1 1 1 0 0 STATE_2 0 1 0

STATE_2 0 1 0 0 0 0 0 1 1 0 STATE_0 0 0 0
0 0 0 1 1 1 0 STATE_0 0 0 0
0 0 1 0 1 1 0 STATE_0 0 0 0
0 0 1 1 1 1 0 STATE_0 0 0 0
0 1 0 0 1 1 0 STATE_0 0 0 0
0 1 0 1 1 1 0 STATE_0 0 0 0
0 1 1 0 1 1 0 STATE_0 0 0 0
0 1 1 1 1 1 0 STATE_0 0 0 0
1 0 0 0 1 1 0 STATE_2 0 1 0
1 0 0 1 1 1 0 STATE_2 0 1 0
1 0 1 0 1 1 0 STATE_3 0 1 1
1 0 1 1 1 1 0 STATE_3 0 1 1
1 1 0 0 1 1 0 STATE_2 0 1 0
1 1 0 1 1 1 0 STATE_2 0 1 0
1 1 1 0 1 1 0 STATE_3 0 1 1
1 1 1 1 1 1 0 STATE_3 0 1 1

STATE_BITS INPUTS OUTPUTS NEXT_STATE_BITS
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STATE NEXT_STATE
input_0 input_1 input_2 input_3 output_0 output_1 output_2

STATE_3 0 1 1 0 0 0 0 1 1 0 STATE_0 0 0 0
0 0 0 1 1 1 0 STATE_0 0 0 0
0 0 1 0 1 1 0 STATE_0 0 0 0
0 0 1 1 1 1 0 STATE_0 0 0 0
0 1 0 0 1 1 0 STATE_0 0 0 0
0 1 0 1 1 1 0 STATE_0 0 0 0
0 1 1 0 1 1 0 STATE_0 0 0 0
0 1 1 1 1 1 0 STATE_0 0 0 0
1 0 0 0 1 1 0 STATE_2 0 1 0
1 0 0 1 1 1 0 STATE_2 0 1 0
1 0 1 0 1 1 0 STATE_3 0 1 1
1 0 1 1 1 1 0 STATE_4 1 0 0
1 1 0 0 1 1 0 STATE_2 0 1 0
1 1 0 1 1 1 0 STATE_2 0 1 0
1 1 1 0 1 1 0 STATE_3 0 1 1
1 1 1 1 1 1 0 STATE_4 1 0 0

STATE_4 1 0 0 0 0 0 0 1 1 1 STATE_0 0 0 0
0 0 0 1 1 1 1 STATE_0 0 0 0
0 0 1 0 1 1 1 STATE_0 0 0 0
0 0 1 1 1 1 1 STATE_0 0 0 0
0 1 0 0 1 1 1 STATE_0 0 0 0
0 1 0 1 1 1 1 STATE_0 0 0 0
0 1 1 0 1 1 1 STATE_0 0 0 0
0 1 1 1 1 1 1 STATE_0 0 0 0
1 0 0 0 1 1 1 STATE_2 0 1 0
1 0 0 1 1 1 1 STATE_2 0 1 0
1 0 1 0 1 1 1 STATE_4 1 0 0
1 0 1 1 1 1 1 STATE_4 1 0 0
1 1 0 0 1 1 1 STATE_2 0 1 0
1 1 0 1 1 1 1 STATE_2 0 1 0
1 1 1 0 1 1 1 STATE_2 0 1 0
1 1 1 1 1 1 1 STATE_2 0 1 0

STATE_BITS INPUTS OUTPUTS NEXT_STATE_BITS
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C Python txt-file parser script

1 #Parameters describing the instantiated RTL FSM
2 num_state_bits = 3
3 num_output_bits = 3
4 num_input_bits = 4
5

6 #Parameters describing the txt file with FSM program
7 #If the RTL has more i/o and state than the state table
8 num_state_bits_in_file = 2
9 num_output_bits_in_file = 2

10 num_input_bits_in_file = 2
11

12 STD = open("state_transition_table.txt","r") #Specify txt file
here↪→

13

14 #Loop through the .txt line by line
15 for line in STD:
16 temp_state = ""
17 temp_output = ""
18 temp = ""
19

20 #Append zeros for unused state bits
21 for i in range(0,num_state_bits - num_state_bits_in_file):
22 temp_state = temp_state + "0"
23

24 #Append zeros for unused output bits
25 for i in range(0,num_output_bits - num_output_bits_in_file):
26 temp_output = temp_output + "0"
27

28 #Add the actual next state and output bits to the zeros
29 for i in range(0,num_state_bits_in_file):
30 temp_state = temp_state + line[i]
31 for i in range(num_state_bits_in_file, num_state_bits_in_file +

num_output_bits_in_file):↪→
32 temp_output = temp_output + line[i]
33

34 temp = temp_state + temp_output
35

36 #Create bus driver code
37 print("ucl_BusDriver.ta_simpleWrite (.addr

(ID_PROGRAMMABLESTATEMACHINE_RW_BASE), .data
(32'b"+temp+"));")

↪→
↪→

38

39
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