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Abstract

This work presents a method to reduce the spatial degradation in hyperspectral
images caused during the image acquisition process. The degradation is modeled
by a convolution with a Point Spread Function (PSF), which in this work, is
assumed to be known. The three-dimensional hyperspectral images are modeled as
a composition of two-dimensional independent images. Degradation is reduced by
applying an accelerated Richardson-Lucy (RL) deconvolution algorithm on each
individual image. Boundary conditions are introduced in order to keep a constant
image size without distorting the estimated image boundaries. An algorithm
is implemented in C in both the floating-point and fixed-point representations.
The quantization error between the two representations is negligible. The RL-
deconvolution algorithm is fully ported on an FPGA-based platform (i.e., Xilinx
Zynq-7020) using the hardware description language VHDL. Two architectures are
designed and called Architecture-1 and Architecture-2. The former is optimized
with respect to the communication time with an external memory and the latter
is optimized for limited storage. Both architectures are parameterized with
respect to the image size and run-time configurable with respect to the number
of iterations. In addition, Architecture-2 is run-time configurable with respect to
the kernel size with a maximum kernel size equal to 9× 9. The execution time
of implemented architectures is compared to a software only implementation
of the algorithm running on the same Xilinx Zynq platform. A speed-up by a
factor of 31 is achieved for Architecture-1 and a speed-up by a factor of 61 is
achieved for Architecture-2. The execution time is also compared to a HW/SW
implementation of the RL-deconvolution and a speed-up by a factor of 13 is
achieved for Architecture-1 and a speed-up by a factor of 26 is achieved for
Architecture-2. Compared to a state-of-the-art solution, a speed-up by a factor of
1.8 is achieved for the Architecture-2 when running a standard RL-deconvolution.
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Sammendrag

Denne masteroppgaven presenterer en metode for å forbedre romlig oppløsning
i hyperspektrale bilder. Uskarpheter i bilder modelleres ved hjelp av foldning
(convolution) med en Point Spread Function (PSF), som antas å være kjent.
Et tre-dimensjonalt hyperspektralbilde modelleres som en komposisjon av flere
to-dimensjonale bilder. Uklarhet i bildene reduseres ved hjelp av en akselererert
Richardon-Lucy (RL) dekonvolusjon. Original bildestørrelse bevares ved hjelp av
“boundary conditions”. Algoritmen er implementert i C, med både “floating-point”
og “fixed-point” representasjoner. Kvantiseringsfeilen mellom representasjonene
er neglisjerbar. Algoritmen er derreter beskrevet i VHDL og kjørt på an FPGA-
basert plattform (Xilinx Zynq-7020). To arkitekturer har blitt designet, den første,
Architecture-1, optimalisert med hensyn til kommunikasjonstid med ekternt
minne, og den andre, Architecture-2, optimalisert med hensyn til intern FPGA
lagringsplass. Begge arkitekturene er parametrisert med hensyn til bildestørrelse
og konfigurerbar i kjøretid med hensyn til antall iterasjoner i algoritmen. I tillegg
er Architecture-2 konfigurerbar ved kjøretid med hensyn til kernel størrelse, der
maksimal kernel størrelse er 9 × 9. Kjøretid til Architecture-2 er to ganger
raskere en for Architecture-1. Kjøretid for de implementerte arkitekturene er
sammenlignet med en software-basert implementasjon som kjøres på samme
platform, der akselerasjonen er lik 61 for Architecture-2. Kjøretid er også
sammenlignet med en HW/SW implementasjon av RL-dekonvolusjon or en
akselerasjon lik 26 er oppnådd for Architecture-2. Sammelignet med en state-of-
the-art implementasjon, akselerasjon lik 1.8 for Architecture-2.
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Chapter 1

Introduction

1.1 Remote Sensing

In 1972, for the first time in history, a general-purpose satellite image data set was
captured by the Landsat Multispectral Scanner System (MSS) [6]. The images
were composed of only four spectral bands, but more advanced and complex
descendants of the MSS followed. Today there exists a wide variety of remote
sensing systems for Earth Observations (EO) with applications ranging from
weather forecasting to military operations. One important application of EO is
early detection of natural- or human-induced hazards. An example of the latter
could be oil spills, which if not detected early can have catastrophic effects on
the environment. Also, natural catastrophes, such as blooming algae, which is
harmful for both marine life and humans [7], can be detected with the help of
remote sensing.

1.1.1 Hyperspectral Imaging

Hyperspectral Imaging System (HIS) is the technology that is used in , e.g., the
detection of the toxic algae blooms. HIS combines spectroscopy, the study of
the interaction between electromagnetic waves and matter, and digital imaging,
thus providing both spectral and spatial information. An image is formed
by a spectrometer, which splits, with a prism or a grating, the detected light,
radiance, into narrow spectral bands, each corresponding to a certain wavelength [8].
Different surfaces interact with the light differently, therefore the amount of the
detected radiance differs depending on the surface. In order to characterize
a measurement, one can either plot the detected radiance or the measured
reflectance as a function wavelength. Radiance have units of [W/m2/sr/µm]
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1.1 Remote Sensing

and it includes illumination, the measurements position and atmospheric effects,
while reflectance is the ratio of reflected radiation to incident radiation and
describes the intrinsic property of the material [8]. Both terms are often used
interchangeably and called spectral signature [9].

Figure 1.1 is a composition of three spectral bands taken from the hyperspectral
dataset [2], which depicts the coastal line of the part of the New Zealand coast.
A light blue area close to the coast depicts the blooming algae. This can also be
seen in the radiance plot shown in Figure 1.2, where the red plot is estimated
from the area close to the coast, while the blue plot is estimated from the area in
the water far from the coast. The spectral classification is done by the comparison
to the similar data in [10].

Figure 1.1: A three color-composite of three spectral bands taken from the hyperspec-
tral dataset [2]. Image shows the coast of New Zealand recorded with Hyperspectral
Imager for the Coastal Ocean (HICO) spectrometer.

Figure 1.2: Spectral reflectance plot at two samples, one close to the coast and the
one farther away from the coast.
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1.1 Remote Sensing

1.1.2 Image Acquisition

Hyperspectral images, as the one shown in Figure 1.1, can be acquired by placing
the HIS on either an aircraft or a satellite. There are several types of remote
sensor systems designed to acquire hyperspectral images. One particular example,
is a pushbroom scanner, which has a linear array of detector elements, marked
gray in the left illustration in Figure 1.3, placed perpendicularly to in-track travel
direction of e.g., the satellite. The observed scene is collected slice by slice at each
time instance, by moving the sensor or its Field-Of-View (FOV) across the scene.
A slice, shown in the right illustration in Figure 1.3, refers to two-dimensional
(2-D) data with width equal to the number of detector elements in the cross-track
direction and depth equal to the number of spectral bands.

Figure 1.3: An illustration of an image acquisition by a pushbroom scanner. The
scanner moves in-track in the direction marked by red arrow, scanning a full width of
an image per time instance. The hyperspectral imaging system mounted on the scanner
then transforms the collected light into a 2-D matrix with one spatial dimension and
one spectral dimension.

The process results is a three dimensional data with spatial, temporal and spectral
axis. The spatial and temporal dimensions are measured along the cross- and
in-track directions respectively and the spectral dimension is measured along the
spectral axis. The recorded Hyperspectral Image (HSI) can also be referred to
as a hyperspectral data cube denoted Y ∈ RN×M×P , where N and M are the
number of spatial and temporal measurements respectively, and P is the number
of spectral measurements. The hyperspectral image can be characterized in both
the spectral and spatial domain. In the spatial domain, values of samples in one
spectral band form a grayscale image with two spatial dimensions, (x, y), where
each image depicts the same scene at different, well-defined, wavelength, λ. A
whole cube Y can then be modelled as a stack of two-dimensional spatial images
denoted Yp ∈ RN×M , p = 1, . . . , P . In the spectral domain, a spectral pixel, is a
vector of size P . Each pixel represents a contiguous spectrum of the reflected
radiation for a specific measurement. An illustration of a hyperspectral cube,
together a spectral and spatial representation, is shown in Figure 1.4.
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1.1 Remote Sensing

Figure 1.4: An ideal representation of a three-dimensional hyperspectral data cube:
(a) a pixel vector and its spectral signature, (b) a hyperspectral data cube and (c)
grayscale image for one spectral band.

1.1.3 Radiometric, Spatial and Spectral Resolution

Detector elements collect and store the light reflected by the surface by converting
the continuous data stream to quantised and sampled data. Detected by the
sensor data is continuous in both with respect to the cross- and in-track directions
and in amplitude [11]. When performing sampling, the coordinate values become
discrete, and in order to digitalize the amplitude, quantization is performed.
Each sample is then defined by a finite number of bits, Q, where Q determines
the radiometric resolution of the image. The larger the Q, the better is the
approximation of the analog signal. In addition to the radiometric resolution,
the hyperspectral imaging systems are also classified by their spectral and spatial
resolutions. The spatial resolution refers to the minimum distance at which two
different objects are distinguishable. In remote sensing, a common measure of
spatial resolution is the Ground Sampling Distance (GSD), which refers to the
size of the grid elements projected onto the Earth. For example, the hyperspectral
imager, HICO, used to acquire the image shown in Figure 1.1 has spatial resolution
equal to 90 m, meaning that an object smaller < 90 m will appear in the digital
image blended with the surrounding area. The spectral resolution refers to the
minimum distance between the recorded bands. For the same hyperspectral
image in Figure 1.1, the spectral resolution is 5.7 nm. Some of the HICOs
disadvantages are its size and cost. In order to reduce both of them, a trade-off
between spectral and spatial resolutions needs to be accounted for. As the
spectral information is the main concern when using the hyperspectral imaging,
the HIS are often built having a high spectral resolution and a lower spatial
resolution. Therefore, post-processing of the data is often inevitable.
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1.2 HYPSO mission

This master thesis is written as a part of the HYPSO1 mission. The main goal
of the mission is to observe ocean phenomena, including algae bloom, by the
use of an on-board processing chain for HIS. The hyperspectral data is going
to be acquired with a hyperspectral imaging system (V6) [12] which has a high
spectral resolution equal to 1.67 nm, but low spatial resolution equal to 300 m.
A planned data processing pipeline is shown in a block diagram in Figure 1.5.
The hyperspectral data cube is acquired and stored in the Double Data Rate
3 (DDR3) SDRAM. Then, the hyperspectral data in DDR3 can be streamed
efficiently using a special-purpose Direct Memory Access (DMA) core, called Cube
DMA, developed by J.A.Fjeldtvedt [13]. The data processing starts with the
first FPGA accelerator, called Binning, which adds two or more spectral bands
together. The resulting data is sent to the Super −Resolution block, where the
spatial resolution of a whole data cube is enhanced. This step is implemented
in this thesis. After Super-Resolution, the hyperspectral data cube is ready to
be analyzed with respect to the target detection. Some groundwork regarding
the dimensionality reduction for target detection is made by S. Bakken [14]
and an efficient HW/SW Implementation of Hyperspectral Target Detection
Algorithm is implemented by D. Bošković [15]. Finally, the hyperspectral data
cube is compressed in LosslessCompression block, before it is transmitted to
the ground station. For data compression purposes, the CCSDS-123 Compression
Algorithm implemented by J.A.Fjeldtvedt [16] [17] is used.

Figure 1.5: On-board data processing pipeline [].

1Hyper-spectral SmallSat for ocean Observation
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1.2.1 Super-Resolution

The aim of super-resolution is to improve the spatial image resolution by com-
bining information from several low resolution images into one high resolution
image [18]. There are two main steps involved in super-resolution: image regis-
tration and deblurring. By performing image registration, the pixel information
from several low resolution images are placed into the correct positions in a high
resolution grid. The deblurring step removes the blur that occurres during the
image formation. Deblurring can be done with a technique called deconvolution,
which is the main goal of this thesis, and is going to be discussed in more detail
in Chapter 2.

In this work, the HYPSO mission requirements [19] for the spatial resolution are
used as a motivation. The requirements state that the GSD should be smaller
than 100 m is used as a motivation. The image size is equal to 500× 1200× 100,
with 16 bits data width.

1.2.2 On-Board Computer

The main part of the satellite payloads on-board computer is the PicoZed System
on Module (SoM) based on the Xilinx Zynq-7000 All Programmable System on
Chip (SoC). In general, the Zynq architecture comprises a Processing System
(PS), and Programmable Logic (PL). The block diagram for the Zynq SoC is
shown in Figure 1.6. The main features of the PS section of the chip in regards
to this project, are a dual-core ARM Cortex-A9 processor along with an on-
chip memory, external memory interfaces and a set of peripheral connectivity
interfaces. The PL section is composed of general purpose FPGA logic fabric,
i.e., the Configurable Logic Blocks (CLBs) and Input/Output Blocks (IOBs). In
addition, there are two dedicated and optimized special purpose components,
Block Random Access Memories (BRAMS) and DSP48E1, designed for storing
large amount of data and for high-speed arithmetic, respectively. One BRAM
can store up to 36 Kb of data. Both the BRAM and the DSP48E1 can be clocked
at the maximum clock frequency of the device.

As shown in Figure 1.6, processing system is connected to the programmable
logic using the Advanced eXtensible Interface (AXI) ARM AMBA interconnects
and interfaces. The two important AXI interfaces are, a General Purpose (GP)
AXI, which is a 32-bit data bus for low to medium rate communication, and a
High Performance (HP) port, which supports a high rate communication. There
are three types of AXI4 interfaces, i.e., AXI4-memory-mapped, AXI4-Lite and
AXI4-Stream. The AXI4-Lite and AXI4-Stream are discussed in the following
section.
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Figure 1.6: Xilinx Zynq-7000 CPU/FPGA SoC block diagram. A modifies image
taken from [1].

1.2.3 AXI4 interfaces

AXI4-Lite protocol

AXI4-Lite is used for simple, low-throughput memory-mapped communication [3],
between a master port (i.e., the one initiating a transaction) and a slave port
(i.e., the one accepting the transaction). AXI4-Lite interface consists of five
different channels: Read Address, Write Address, Read Data, Write Data and
Write Response. A Read transaction uses the READ address and READ data
channels as shown in Figure 1.7 and a Write transaction uses Write address,
Write data and Write response channels, shown in Figure 1.8. Write and Read
transactions have unique addresses, which allows simultaneous data transfer.

An interaction between a master port and a slave port happens only after a
valid/ready handshake. Each channel (i.e., address, data and response) has its
own handshake. For most of the transactions, except the read transaction, the
master port asserts the valid signal and the slave answers with the ready signal.
For the read transaction, the slave asserts valid signal, indicating that the validity
of the returning data. The AXI4-Lite interface is usually used for control signals
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Figure 1.7: Read transaction architecture [3].

Figure 1.8: Write transaction architecture [3].

and status registers.

AXI4-Stream protocol

AXI4-Stream protocol is used to connect a master module, which generates data,
to a slave module, which receives data. Data streaming occurs in a point-to-
point fashion, without any addressing, thus the overhead time is reduced. The
commonly implemented interface signals are the TVALID, TREADY, TDATA,
TLAST, ACLK and ARESETn. Signals TKEEP and TSTRB are auxiliary. The
transfer between a master and a slave is controlled by a handshake process. For
a transfer to be valid both TVALID and TREADY signals must be asserted to
an active HIGH. TVALID is asserted by the master module and TREADY is
asserted by the slave module. Either TVALID or TREADY can be asserted first,
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or both can be asserted at the same time. It is important that a master module
does not wait for the slaves TREADY signal. Also, if TVALID is asserted it
should stay asserted until the handshake occurs [3]. All input signals are sampled
on the rising edge of ACLK and all output signal changes must occur after the
rising edge of ACLK. ARESET is an active-LOW reset signal.

1.3 Main contributions

This thesis presents a fast and reliable deconvolution algorithm implemented
on FPGA. Prior to this thesis, during the autumn of 2018, a specialization
project was conducted related to the selection of a suitable algorithm. The
RL-deconvolution algorithm was chosen due to its robustness against small
errors in kernel estimations and overall good visual deconvolution results. A
Hardware/Software codesign solution was implemented on a target FPGA. For
this project, the whole RL-deconvolution algorithm is ported onto the FPGA.
Two architectures are designed, one which after being initializes can operate
independently of the PS and the other one which is optimized with respect to
the internal storage of FPGA. The implemented architectures are scalable with
respect to the image size and run-time configurable with respect to the number
of RL-deconvolution iterations. In addition, one of the architectures is designed
to handle, at a run-time, kernels of varying size, with a maximum size 9× 9.

In addition to the hardware architecture, some additional theoretical analysis
of the RL-deconvolution algorithm is done. It is found that the standard RL-
deconvolution can be accelerated without a significant increase in resource usage.
This is done by adding one additional multiplier. Another aspect of the analysis is
the preservation of the image size. RL-deconvolution is based on the convolution
operation, where the input image needs to be extended in order to produce an
output image of the same size as the input image. The extended image borders
are estimated using boundary conditions, which in this project area set to be
equal to the first sample value of the input image. The estimated sample changes
value for each new RL-deconvolution iteration, thus adapting to the estimated
devolved image.

Two papers based on this work have been submitted:

• K. Avagian, M. Orlandić, T. A. Johansen. An FPGA-oriented HW/SW
Codesign of Lucy-Richardson Deconvolution Algorithm for Hyperspectral
Images. 8th Mediterranean Conference on Embedded Computing – MECO
Montenegro, 2019

• J. L. Garrett, D. Langer, K. Avagian, A. Stahl. Accuracy of super-resolution
for hyperspectral ocean observations. 2019
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1.4 Thesis structure

The thesis is divided into following chapters:

• Chapter 2 gives a background information regarding image processing,
including image formation process and image restoration. This chapter
also presets the state-of-the-art implementations of the RL-deconvolution
algorithm.

• Chapter 3 presents a theoretical analysis of RL-deconvolution algorithm
for hyperspectral images.

• Chapter 4 describes two RL-deconvolution hardware architectures.

• Chapter 5 presents a verification method used to test the implemented
designs.

• Chapter 6 presents the synthesis results, including resource utilization,
power estimation and execution time estimations for two architectures of
RL-deconvolution algorithm. The results are also discussed.

• Chapter 7 draws the conclusion.
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Chapter 2

Background

This chapter gives the necessary background information regarding image process-
ing. Section 2.1 describes the process of image formation and degradation and
Section 2.2 presents a way to reverse the degradation process with an algorithm
called Richardson-Lucy deconvolution. The main image quality metrics are
presented in Section 2.3. A summary of the state-of-the-art Richardson-Lucy
deconvolution hardware implementations are given in Section 2.4, where a brief
overview of a specialization project is given in Section 2.4.2.

2.1 Image Degradation

The sensor system optics consists of several components, such as lenses, mirrors,
beam splitters, etc. The optics collect the upcoming light from the object plane
and forms an image in an image plane. The transition between the two through
the optical system is described by the HIS’s response function, which models the
introduced distortions. Generally, if the light reflected by the surface is spatially
incoherent, meaning that the phase and the amplitude of the light wave fluctuate
randomly, then the image formation can mathematically be written as

f(s) =
∫
H(s, s′)g(s′)ds′ (2.1)

where H(s, s′) is the instrument’s response function, g(s) is the intensity of
the object and position s, and f(s) is the intensity measurement of that object
formed by the instrument [20]. The variable s has dimensions appropriate to the
application, e.g, s is equal to (x, y, λ) for a 3-D hyperspectral data cube. If an
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imaging system, in addition to being spatially incoherent, is also assumed to be
isoplanatic, meaning that the response function is space-invariant, equation (2.1)
can be written as a linear shift-invariant system,

f(s) =
∫
H(s− s′)g(s′)ds′. (2.2)

Symbolically, the equation (2.2) can be written as

f(s) = H(s) ~ g(s) (2.3)

where ~ denotes convolution. The H(s) is also called the Point Spread Function
(PSF) of the optical system [20] or the convolution kernel. The terms PSF and
kernel are used interchangeably. It is assumed that the neighbouring spectral
bands do not affect each other and can be modeled independently. This means
that the 3-D hyperspectral data cube can be seen as a composite of P separate
2-D images, where P is the number of spectral bands with each band having
N ×M samples. Following the model presented in [21], the 2-D observation
model for the hyperspectral image, within a given spectral band, p, is given by

Yp = Hp
D ~Xp + Np. (2.4)

where Yp ∈ RN×M is the p-th band of the observed hyperspectral data cube,
Xp ∈ RN×M is the corresponding ideal band, Hp

D ∈ RWx×Wy is the degradation
kernel and Np ∈ RN×M is a signal-independent Gaussian noise [21].

2.1.1 Image Filtering

In the discrete-space form the integral in equation (2.4), is written as a sum.
One output sample at the position (i, j) is found as

Y p(i, j) =
i+Wy/2∑

n=i−Wy/2

j+Wx/2∑
m=j−Wx/2

Hp
D(i− n, j − n)Xp(n,m) +Np(i, j). (2.5)

If the size of the kernel is an odd number, W/2 is rounded down [22]. The spatial
filtering of a whole input image happens by moving the kernel and processing,
using the equation (2.5), the input samples spanned by the kernel. A visual
illustration of the convolution process, assuming the absence of the additive
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noise, is shown in Figure 2.1, where the blue matrix illustrates an input image of
size 4× 5, the yellow matrix is the kernel of size 3× 3 and the green matrix is
the resulting output image. The light gray image borders represent the missing
output samples.

Figure 2.1: Spatial filtering by the means of a moving window.

The following rows can be produced in two ways, either by moving the whole
kernel down one row, as shown in Figure 2.2, or by continuing moving the kernel
elements column by column, as shown in Figure 2.3.

Figure 2.2: The second row produced by moving the whole kernel one sample down.

Figure 2.3: The second row produced by moving the kernel column by column.
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As seen in Figure 2.2 and Figure 2.3, the output image size depends on the way
the kernel is moved. In the case of moving the whole kernel down one row, the
linear spatial filtering will output an image of size (N − (Wx− 1),M − (Wy − 1)),
i.e., in this case the output image is equal to 2× 3, as illustrated by the green
matrix in Figure 2.2. Border elements, marked gray, are missing in this scenario.
In the case of moving the kernel column by column the output image width
will be partially preserved and the height will be shorten to the size equal to
M − (Wy − 1). The partial image width preservation can be seen in Figure 2.3,
where the output pixels are marked green. It should be noted that the first
sample(s) in the first valid output row and the last sample(s) in the last valid
output row are missing. The number of the missing samples depends on the
kernel size and is equal to (W − 1)/2, if W = Wx = Wy. These missing sample
can be estimated by setting their values equal to the first valid neighbour value.
A method for estimating the rest of the missing samples will be presented later.

2.1.2 Separability

A 2-D convolution is a computationally intensive operation, with a computational
complexity equal to O(MNWxWy). Assuming that the kernel is separable, the
computational complexity can be minimized to O(MN(Wx+Wy)), which results
in a speed-up by a factor equal to WxWy/(Wx +Wy). Separability means that a
2-D kernel can be decomposed into two 1-D kernel. For example, the kernel, H,
of size 3× 3 used in Figure 2.1 can be separated into one vertical kernel, Hy, of
size 3× 1 and one horizontal kernel, Hx, of size 1× 3, where

H = Hy ~Hx. (2.6)

The 2-D separable convolution is computed by first performing the convolution
of the input image with the vertical kernel and then convolving the intermediate
result with the horizontal kernel.
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2.1.3 Border Handling

Convolution, as seen in Figure 2.1, does not preserve the initial image size, thus a
pre-processing of data is needed. This can be done by approximating the sample
values outside the input image borders. This problem can be solved by imposing
a prior Boundary Conditions (BCs) on an input image, thus extending an input
image with synthetic sample values [23]. The most common BCs are

• Constant-BCs, where all samples outside the FOV are assumed to be equal
to some constant value, for example zero, as shown in Figure 2.4(b).

• Periodic-BCs, assumes the repetition of the object outside the boundaries
in all directions, as shown in Figure 2.4(c).

• Reflective-BCs, where the samples outside the FOV are a mirrored version
of the object inside the FOV, as shown in Figure 2.4(d).

Constant-BCs, where the constant is equal to zero, is the simplest solution,
although the least reliable [23]. Assuming periodic-BCs allow the use of the cyclic
convolution which can be implemented via Fast Fourier transform (FFT) [23]
or partially implemented by the convolution method shown in Figure 2.3. The
reflective-BCs preserve the boundary continuities. All these three synthetic
BCs are designed mostly for the easier computation and are usually the cause
of ringing artifacts, shown in Figure 2.6(a), at the image borders, as none of
them estimate the missing boundary pixels correctly. If the BCs are used in the
restoration process with an iterative restoration algorithm, the ringing artifacts
tends to worsen, as they will propagate throughout the entire image [24].
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(a) An input image. (b) Constant-BCs.

(c) Periodic-BCs. (d) Reflective-BCs.

Figure 2.4: An example showing different BCs applied on the same input image of
size 307 × 307 shown in (a). Red borders indicate FOV. The extended image is of size
359 × 359.
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2.2 Image Restoration

Image restoration is a well-known image processing problem, where the goal is to
find the best approximation of an original, undistorted image from the knowledge
of a blurred and noisy observation. If the response function is assumed to be
known, the image restoration process is referred to as a non-blind restoration,
where the only unknown is the undistorted image. Otherwise, if both the PSF
and the ideal image are unknown, the image restoration is called blind. In this
project the non-blind deconvolution for 3-D images is explored.

A general image restoration model is shown in Figure 2.5. It consists of two
blocks, the image degradation, described in Section 2.1 and image restoration.
An ideal image f(s) is filtered with a degradation function, hD(s), and further
distorted by an additive noise, η(s), resulting in a degraded image, g(s). This
degraded image is then passed through a restoration filter hR(s) to produce a
restored image f̂(s). The restoration filter depends on the chosen restoration
algorithm and the variable s depends on the data dimensions.

Figure 2.5: A general block diagram model representing the degradation and restora-
tion of the acquired data.

Classical 2-D restoration algorithms such as Wiener filtering [25] and Constrained
Least Squares filtering [26] have been also developed to solve 3-D problems. The
method in [27] assumes the separability between the spectral and spatial domain.
The restoration using Wiener filtering is done independently for each individual
2-D band of the 3-D data. It is stated that no cross-channel, where channel refers
to a spectral band, information is lost during the restoration process. The slow
execution time is the downside of the described algorithm, as p individual models
from equation (2.4) need to be solved. In [28], a modified Wiener filtering is
performed without using the separability assumption. It is stated that restoration
using the channel-dependent model is better in term of the mean square error
than the restoration using a channel-independent model. An alternative to the
proposed algorithms in [28] and [27] is presented in [29], where a multichannel
Least Squares filtering is presented. It is stated that in the presence of strong
cross-channel correlations, the multichannel model outperforms the single-channel
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models. The drawback of the described solutions is their inefficiency to restore
the frequencies beyond the PSF bandwidth [21]. This results in ringing artifacts,
which occurs due to the generation of the negative-value pixels in the deconvolved
image. It should be noted that a pixel intensity value can generally be viewed
as the number of photons or electrons hitting an imaging detector, and this
number cannot be negative, thus a positivity constraint should be used. In [21],
it is mentioned that in case of Poisson noise the Richardson-Lucy algorithm
can be used. It is a non-linear and iterative algorithm and as claimed in [30] it
can achieve both image restoration and super-resolution, where super-resolution
refers to the restoration of the high-frequency components.

2.2.1 Richardson-Lucy algorithm

An iterative algorithm developed independently by Richardson [31] and Lucy [32],
henceforth called RL-deconvolution, is a well-known deconvolution algorithm,
which has been applied in a various applications, ranging from astronomy to
microscopy. The algorithm has also been derived using a maximum likelihood
model for Poisson statistics by Shepp and Vardi [33], where the pixel intensity
at a position (i, j) is assumed to be a random variable following the Poisson
distribution [34]. If the RL-deconvolution is done on the 2-D data, the RL-
deconvolution algorithm is given by [30]

X̂
p

(k+1) = X̂
p

(k)

[ Yp

Hp
R ~ X̂

p

(k)
�Hp

R

]
(2.7)

where p = 1, . . . , P is the p-th spectral band of the 3-D hyperspectral data cube,
shown in Figure 1.4, X̂

p

(k) is the estimate of Xp after k iterations, � is the
correlation operator, ~ is the convolution operator, Yp is the p-th band of the
acquired hyperspectral image and Hp

R is the restoration kernel. The positivity
constraint holds as long as the initial estimate value X̂

p

(0) is positive, on the other
hand, if any of the components becomes equal to zero, it will remain zero for all
k [34]. In [34], the initial estimate value is set to the mean value of the input
image

X̂
p

(0) =
∑N∑M Yp

N ×M
(2.8)

where N ×M is the total number of pixels in one spectral band, but it can also
be set to any other positive value.

The RL-deconvolution converges slowly [35], where the pixel value changes
most rapidly in the first few iterations, and then slows down as the restoration
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2.2 Image Restoration

progresses. In the case when the additive noise is present, it can be necessary to
terminate the restoration process earlier to prevent the possible noise amplification.
The RL-deconvolution algorithm preserves the non-negativity in the images [30]
and is also robust against small errors in kernel estimations [20]. As mentioned
in [30], super-resolution can be achieved due to the non-linearity of the function
and the positivity constraint. It should also be mentioned that even though the
algorithm is derived assuming the Poisson distributed noise, it is shown in [34],
that within certain limits the restoration could also be performed on the data
corrupted by the Gaussian noise.

2.2.2 Acceleration of RL-deconvolution

Due to slow convergence, a way to accelerate the RL-deconvolution is needed.
A simple method, refereed to as a “multiplicative relaxation” [36] is introduced
in [37], where the use of an additional parameter, β, is suggested. The equation
(2.7) can be rewritten as

X̂
p

(k+1) = X̂
p

(k)

[ Yp

Hp
R ~ X̂

p

(k)
�Hp

R

]β
(2.9)

where β > 1 is the exponential correction factor [35]. As stated in [37], the
convergence rate is improved. The possible drawback is the lack of stability in
the convergence. In [34], it is proved that the number of iterations is reduced by a
factor of β, and that β should not be bigger than 2, otherwise the solution starts
diverging. It should be noted that for β = 2, the overall computational cost of
one iteration does not increase significantly, therefore when a large number of
iterations are needed this simple acceleration approach can be incorporated.

2.2.3 Image Restoration Artifacts

Section 2.2 mentions the ringing artifacts caused by the linear deconvolution. This
problem is also seen in the nonlinear algorithms, such as RL-deconvolution. There
are several possible causes of the artifacts. As mentioned in Subsection 2.1.3, the
unwanted ringing artifacts can arise at the image borders, which are explained
as follows: in order for the convolution to produce an output of the same size
as the input, the samples outside the optics’s FOV are needed. If an object is
completely inside the FOV, and the assumptions of the rest of the surroundings
can be made, then the restoration without the artifacts is possible. Otherwise, if
the samples outside the FOV are unknown and cannot be approximated, then
the deconvolved image is going to suffer from ringing artifacts, caused by the the
boundary discontinuities [38]. Different boundary conditions cause a different
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2.2 Image Restoration

amount of distortion. For example if Zero-BCs are used on a degraded image
shown in Figure 2.6(a), the boundaries of the restored image are going to have
ripples as shown in Figure 2.6(b).

(a) Degraded image. (b) Boundary ripple effects on
the restored image.

Figure 2.6: The restoration effects when using the Zero-BCs on the degraded image.

The ringing artifact can also occur around the edges and bright point sources.
In [39], the cause of the latter distortion is contributed to the use of the wrong
restoration kernel. Figure 2.7(a) shows an image degraded with a Gaussian kernel
with σ = 2.3 and the size equal to 7 × 7. Figure 2.7(b) shows the restoration
result when using a wrong restoration kernel, in this case equal to a Gaussian
kernel with σ = 2.6 and the size equal to 9× 9.

(a) (b)

Figure 2.7: The restoration effects on image degraded with Gaussian PSF with σ =
2.3 (a), which is restored with a restoration kernel not equal to the degradation kernel
(b).

The presence of additive noise can also be a cause of the artifacts. In order to
prevent the ringing artifacts, one can make use of the regularization techniques
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[39], or simply terminate the iterative algorithm earlier.

2.3 Image Quality Assessment

For simulation purposes only, the relative reconstruction error, RRE, can be used
to test how similar the reconstructed image X̂

p

k when compared with the ideal
image Xp

true

RRE = ||X̂
p

k −Xp
true||

||Xp
true||

(2.10)

where ||.|| denotes the Euclidean distance.

The performance of the RL-deconvolution algorithm can also be evaluated using
the Peak Signal-to-Noise Ratio (PSNR) as it is the most used image quality assess-
ment measurement. The PSNR is calculated band-by-band and is mathematically
expressed as

PSNR = 10log10
(M ×N)(Xp

true(max))2

||Xp
true − X̂

p

k||2
(2.11)

where Xp
true(max) is the maximum value of the image Xp

true and theM ×N is the
number of samples in one band [40]. The denominator in equation (2.11) refers
to the Mean Square Error (MSE). Ideally, the error between the restored image
and the ideal image is zero, which results in MSE = 0, which in turn results in
PSNR being equal to infinity. Thus, the higher PSNR value is, the better is the
restoration of the image.

PSNR performs poorly compared to the human visual system and properties
such as luminance, contrast or structure in the images are ignored. Structural
Similarity Index (SSIM) takes these parameters into the account and measures
similarity between a restored image and the reference image in a way which is
more similar to the human eye.

SSIM(X̂
p

k,X
p
true) = [l(X̂

p

k,X
p
true)α · [c(X̂

p

k,X
p
true)]β · [s(X̂

p

k,X
p
true)]γ (2.12)

where l(X̂
p

k,X
p
true) is related to the luminance difference, c(X̂

p

k,X
p
true) to the

contrast differences, and s(X̂
p

k,X
p
true) to the structure variations, where all three
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2.3 Image Quality Assessment

parameters are calculated between X̂
p

k and Xp
true. The parameters α, β and γ

defines the relative importance of each component. SSIM lies between 0 and
1, where 1 refers to the complete similarity between the restored image an the
reference image [40].

The equations (2.11) and (2.12) are computed for one 2-D band only. In order
to evaluate the quality of the whole 3-D hyperspectral cube, a mean PSNR
(M-PSNR) and a mean of SSIM (M-SSIM) are found by first computing the
PSNR and SSIM band-by-band and then averaging the results [40]. The M-SSIM
computations are done using built-in Matlab R2018b function.
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2.4 State-of-The-Art

In Section 2.4.1, the state-of-the-art software approach for 3-D RL-deconvolution
is presented. In Section 2.4.2, Hardware/Software codesign architecture of the RL-
deconvolution done during the specialization project in autumn 2018 at NTNU is
reviewed. Finally in Section 2.4.3, the state-of-the-art hardware implementations
of RL-deconvolution are presented.

2.4.1 3-D Richarsdon-Lucy Deconvolution

The article [41] presents a method to do a 3-D RL-deconvolution on the hyper-
spectral images acquired with a Short Wave Infrared (SWIR), pushbroom imaging
system. The method enhances the spatial resolution in both the cross- and in-
track directions simultaneously with the cross-channel displacement corrections.
The spectral image o is modeled as a 3-D convolution between an undistorted
image g(u,w, z) with the spatially-variant response function h(u,w, z),

o(u,w, z) = g(u,w, z) ∗ h(u,w, z) + b(u,w, z) + ε(u,w, z) (2.13)

where u, w and z are the cross-track, spectral and in-track directions, respectively,
variable b accounts for the temperature variations and ε stands for the difference
between the acquired image and the modeled one. The authors state that the
reduction of displacement and blur can be done simultaneously, when the response
function is known, using the 3-D RL-deconvolution. At the end of each iteration,
a standard deviation of the residual, r(u,w, z)(k), is compared to the a standard
deviation of the previous residual, r(u,w, z)(k−1), and the algorithm is stopped
if a pre-defined threshold is met. The tests are done on the images of size
320× 235×Z pixels, where Z is the extend in the in-track direction. It is stated
that the spatial resolution is enhanced over all the bands, having the biggest
effect on the bands with the lowest acquired resolution. The method is suitable
for an offline deconvolution, when a whole hyperspectral data cube is available.
The paper does not state how the image boundaries are treated nor what the
execution time is.
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2.4.2 Specialization project overview

The work of this thesis is based on the research performed during a specialization
project [42] conducted during the autumn of 2018 at NTNU. In the specializa-
tion project, the RL-deconvolution was studied by first writing a C-script and
comparing the results to the results generated by the built-in Matlab function,
deconvlucy(IMG, PSF, ITER) and then implementing the parts of algorithm in
hardware, resulting in a HW/SW codesign.

A 3-D hyperspectral data cube is assumed to be cross-channel independent,
therefore each 2-D band of size N ×M can be processed independently. Let
Yp denote the p-th band from the acquired and degraded hyperspectral data
cube, X̂p

(k) denote the estimated, underlying ideal p-th band after k iterations
and Hp

R denote the restoration kernel for the p-th band. The main steps of the
standard RL-deconvolution from equation (2.7) are summarized as follows:

• decide an initial estimate, X̂p
(0)

• compute the residual, residual = Yp

Hp
R ~ X̂

p

(k)
= Yp

Y′p(k)

• calculate the correction factor, φ(k) = residual �Hp
R

• lastly, update the initial estimate, X̂p
(k+1) = X̂p

(k) × φ(k).

where ~ denotes the 2-D convolution and � denotes 2-D cross-correlation. If
the restoration kernel is symmetric, the cross-correlation is the same as the
convolution. A block diagram illustrating one RL-deconvolution iteration for one
band is shown in Figure 2.8.

Figure 2.8: An illustration of one iteration of RL-deconvolution algorithm.
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The algorithm was tested on the several publicly available hyperspectral data
sets, such as Pavia university data set [43] and the Urban data set [4]. The
images were blurred by the Gaussian blur and by the additive Gaussian noise
prior to the deconvolution. For example, the image in Figure 2.9(a) is the
original three-color composite made of spectral bands (50, 30, 10) is used as
a reference. This reference image is degraded with Gaussian kernel with σ =
2.9, shown in Figure 2.9(b). The RL-deconvolution is run for 50 iterations and
the deconvolved result is shown in Figure 2.9(c). The relative improvement in
M-PSNR and M-SSIM compared to the reference image is equal to 2.6 dB and
15.37 %, respectively. M-PSNR and M-SSIM are found for a cropped image,
without taking borders into the account, this is due to the zero-BCs used to
approximated the image borders in this implementation.

(a) (b) (c)

Figure 2.9: The reference image (a) degraded with a Gaussian kernel with σ = 2.9
(b) is deblurred using 50 RL-deconvolution iterations (c).

In order to accelerate the software-based approach, a hardware accelerator was de-
signed specifically for the 2-D convolution computations. The RL-deconvolution
algorithm was implemented as a Hardware/Software codesign. The implementa-
tion was tested on the ZedBoard development board with the ARM Cortex-A9
processor and Zynq-7020 FPGA. The block diagram for Hardware/Software
codesign architecture of the RL-deconvolution is shown in Figure 2.10. The ac-
celerator is connected to the processing system through the AXI Direct Memory
Access (DMA) module. The CONCAT module, shown in Figure 2.10, is respon-
sible for correctly invoking the processor. The block diagram of the convolution
accelerator is shown in Figure 2.11. The accelerator consists of a convolution
module and write/read controllers.
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Figure 2.10: Block diagram for the Hardware/Software codesign implementation of
the RL-deconvolution algorithm.

Figure 2.11: Block diagram of the convolution accelerator.

The utilization report when using an image of size 640×310 is shown in Table 2.1.
Hardware/Software codesign was compared to the Software-Only implementation
on the same platform and the achieved speed-up was equal to 2.7×.
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Table 2.1: Utilization summary after the implementation for the input image of size
640 × 310 with address width 16-bits.

Resource Utilization Available Utilization %
LUT 5054 53200 9.50
LUTRAM 601 17400 3.45
FF 6131 106400 5.76
BRAM 6 140 4.29

2.4.3 State-of-The-Art hardware implementations of RL-Deconvolu-
tion algorithm

There are a few different hardware implementations of 2-D RL-deconvolution
algorithm. Some assume a space-invariant PSF [44] [45] [46], while there are also
implementations with a space-variant PSF [47]. Authors in [44] assume a shift-
invariant PSF, meaning that a whole scene is affected by the same degradation
kernel. The RL-deconvolution is performed in frequency domain. The presented
architecture is Digital Signal Processor (DSP) based, and uses Virtex-4 FPGA as
a co-processor. The maximum processing frequency is 100 MHz. The proposed
system executes the algorithm on images for of size 64× 65. In [47], the PSF is
assumed to be shift-variant. To ease the computational complexity and memory
requirements, PSFs are described by sparse matrices. The proposed architecture
is implemented on Altera Stratix V. Deconvolution is tested assuming both the
motion blur and the lens distortion, modeled with the Gaussian PSF. Every
sample in an image is associated with a unique PSF. The maximum processing
frequency is not stated. The implementation is tested on an image of size 640×480.
Authors in [] implement the accelerated RL-deconvolution, with β values among
1 to 3 at the first iteration. The kernel is assumed to be space-invariant and
separable, and a 2-D convolution is decomposed into two 1-D convolutions. The
solution implements a fixed amount of RL-deconvolution iterations, equal to 2
iterations. The algorithm is implemented as a one continuous datapath, which
simplifies the control system. The implementation uses a kernel size equal to
11 × 11 and images of size 640 × 480. The algorithm is implemented on a
Xilinx Virtex 3 XC2VP50, the maximum frequency is 63 MHz and an achieved
throughput is equal to 60 MP/s (megapixels per second). Finally, the authors
in [45] present a fully ported hardware implementation of the RL-deconvolution
algorithm. The presented architecture is scalable from 3× 3 to 9× 9 kernel sizes.
Similar to the [46], the architecture is implemented to process a fixed amount
of iterations, in this case equal to 10. The presented architecture is tested on
Stratix V device. Maximum processing frequency is equal to 61 MHz. This is
the only implementation presenting a way to keep the original image size.
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Chapter 3

Analysis of
Richardson-Lucy

Deconvolution Algorithm

The main chapter objectives are to test some of the assumptions made in Chap-
ter 2 and give a solid ground for designing a hardware architecture. It is stated
by several authors that the RL-deconvolution algorithm is robust against small
changes in the restoration kernel, thus the goal of the Section 3.3.1 is to ob-
serve how these errors in kernel estimation affects the restoration results. In
Section 3.3.2, the effects of different types of boundary conditions are examined.
In Section 3.3.3, the conversion from the floating-point to the fixed-point repre-
sentation is looked at. Finally, Section 3.4 examines how the presence of noise
affects the restoration results.

3.1 Hyperspectral Data Sets

Two different hyperspectral data sets are used in the RL-deconvolution algorithm
analysis, both are taken by different sensors (i.e., Hyperspectral Digital Imagery
Collection Experiment (HYDICE) and HICO) and have a varying amount of
detail.

The Urban hyperspectral data collected by the HYDICE sensor has a total of
P = 162 spectral bands, each of size 307× 307, where each sample corresponds
to a 2× 2 m2 area [4]. The three-band composite (100, 55, 30) taken from the
Urban data set is shown in Figure 3.1.

29



3.1 Hyperspectral Data Sets

Figure 3.1: A three-color composite of three spectral bands (100, 55, 30) from Urban
data set [4].

The HICO spectrometer is designed specifically for the ocean observations with
spatial resolution equal to 90 m. The hyperspectral data is of size 512×2000×128
[2]. The data used here represents the coast near Christchurch, New Zealand,
called Coast. The three-band composite (18, 25, 53) is shown in Figure 3.2.

Figure 3.2: Image to the left shows a three-color composite of three spectral bands
(18, 25, 53) from HICO data set [2].
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3.2 Restoration and Degradation Kernel

For simulation purposes, both the degradation kernel, Hp
D, and the restoration

kernel, Hp
R, are set to be equal to the Gaussian PSF, which is used to model e.g.,

the optical blur. The 2-D Gaussian function is given by

PSF (x, y) = 1
2πσ2 exp (−x

2 + y2

σ2 ) (3.1)

where the standard deviation, σ, determines the width of the PSF and controls
the amount of blur in the image. The Gaussian function is separable, thus the
equation (2.6) holds and the equation (3.1) can be written as

PSF = PSFx ~ PSFy =
[ 1
σ
√

2π
exp (− x2

2σ2 )
]
~
[ 1
σ
√

2π
exp (− y2

2σ2 )
]

(3.2)

Each 2-D image, Xp, in the hyperspectral data cube is degraded and restored
with the same Gaussian degradation/restoration kernel thus the superscript p in
Hp
R and Hp

D is not needed.

3.2.1 Kernel Size and Quantization

The designed hardware architecture uses fixed-point data representation, thus
an appropriate quantization of the kernel coefficients is needed. The size of the
Gaussian kernel depends on the chosen σ, where larger σs results in larger kernels.
Generally, values beyond three standard deviations from the mean value are
considered to the equal to zero. So in order to keep all the non-zero kernel values,
the minimum kernel size should be equal to minimum = 3σ. Assuming a 1-D
kernel with σ = 2.3 is used, then the minimum theoretical size of the kernel is
equal to 3× 2.3 = 6.9 = 7. The normalised kernel coefficients in a floating-point
representation with four significant digits after the radix point are equal to

hfloat =
{

0.0847 0.1358 0.1804 0.1982 0.1804 0.1358 0.0847
}

(3.3)

The fixed-point representation is found by

hfixed = round(hfloat × 2F ) (3.4)
h′float = hfixed × 2−F (3.5)

31



3.2 Restoration and Degradation Kernel

where h′float is the approximation of the original floating-point number hfloat and
F is the number of fractional bits. The kernel coefficients have all values smaller
than 1. Therefore, the fractional length can be set to be equal to the wordlength
and the value of the wordlength is decided experimentally by calculating the
Euclidean distance between the floating point, hfloat, and the approximation
of the floating point, h′float, the plot of the error as a function of fractional bit
length is shown in Figure 3.3. As seen in Figure 3.3, the more bits are used in
the quantization, the smaller is the error. If fractional bit length is set to be
equal or bigger than 7 bits, the resulting error is smaller than 0.5 %. By choosing
F = 7 bits, the kernel coefficients can be stored in an 8-bit integer. The kernel
coefficients in a fixed-point representation with F = 7 bits are equal to

hfixed =
{

11 17 23 25 23 17 11
}
. (3.6)

Figure 3.3: Euclidean distance between the floating point, hfloat, and the approx-
imation of the floating point, h′float as a function of fractional length of the kernel
coefficients.
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3.3 Hyperspectral Data - Urban

In this section, three spectral bands from the Urban data set are used. The
chosen bands are closed to the red-, green- and blue-wavelengths corresponding
to the bands 30, 55 and 100. The degradation-free image, used as a reference, is
shown in Figure 3.4(a). The image is synthetically degraded by the Gaussian blur
with zero mean and σ = 2.3, shown in Figure 3.4(b). All the individual bands
are degraded independently. The M-PSNR and the M-SSIM between the blurred
image and the reference image are equal to 41.15 dB and 0.7859, respectively.
In order to preserve the output image size, the input images are re-sized before
each convolution for each iteration of RL-deconvolution.

(a) (b)

Figure 3.4: Original three-color composite of three spectral bands (100, 55, 30) from
Urban data set (a) is degraded with the Gaussian blur with σ = 2.3 and size 7 × 7. The
small rectangular images on the right corners shows a close-up of an area marked with
a green rectangular.
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3.3.1 Varying Standard Deviation

The effects of the errors in kernel estimation are shown in this section. In addition,
the standard RL-deconvolution algorithm given by equation (2.7), is compared
to the accelerated RL-deconvolution algorithm in equation (2.9). The degraded
image is restored with the Gaussian kernel having σ = [1.0, 2.0, 2.3, 2.6, 5.0],
which results in the reconstruction kernel both smaller, equal and bigger than the
degradation kernel. Each kernel size is set to be equal to 3σ. The resulting mean
reconstruction error plotted as a function of the number of iterations is shown in
Figure 3.5, where the solid lines denote the standard RL-deconvolution and the
dashed lines denote the accelerated RL-deconvolution algorithm with β = 2.

Figure 3.5: M-RRE as a function of the number of iterations for different reconstruction
kernels using standard RL-deconvolution (solid lines) and accelerated RL-deconvolution
(dashed lines). Plot does not show M-RRE bigger than 4 %.

The minimum M-RRE is found for each reconstruction kernel. The M-PSNR
and the M-SSIM values at the calculated minimum are shown in Table 3.1 and
Table 3.2, for the standard RL-algorithm and the accelerated RL-algorithm
respectively. From Table 3.1 and Table 3.2, it is seen that the accelerated version
of the RL-deconvolution algorithm with β = 2 reaches minimum approximately
twice as fast as the standard version, demonstrating that the stated assumption
in Chapter 2 holds. This improvement can be significant, when a large number
of iterations is needed.

The reconstruction result depends on how good the knowledge about the degra-
dation kernel is, as seen in both the Figure 3.5, and the Table 3.1 and Table 3.2.
If restoration kernel is equal to the degradation kernel (i.e., in this example σ
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Table 3.1: M-PSNR and M-SSIM at the minimum M-RRE for different kernels running
the standard RL-deconvolution.

M-PSNR(dB) M-SSIM
Relative Relative

HR(σ) iter. M-PSNR improvement (dB) M-SSIM improvement (%)
1.0 300 41.57 0.42 0.8025 2.12
2.0 294 44.61 3.46 0.8985 14.33
2.3 300 46.11 5.97 0.9207 17.16
2.6 22 42.42 1.27 0.8287 5.45
5.0 1 41.14 0.0 0.7888 0.37

Table 3.2: M-PSNR and M-SSIM at the minimum M-RRE for different kernels running
the accelerated RL-deconvolution.

M-PSNR(dB) M-SSIM
Relative Relative

HR(σ) iter. M-PSNR improvement (dB) M-SSIM improvement (%)
1.0 165 41.57 0.42 0.8027 2.14
2.0 147 44.61 3.64 0.8986 14.34
2.3 300 46.79 5.64 0.9361 19.11
2.6 7 42.40 1.26 0.8293 5.52
5.0 1 39.85 -1.29 0.7807 -0.78

= 2.3) the RL-deconvolution algorithm will at one point converge to a suitable
solution. Figure 3.6 shows the M-RRE between the image reconstructed with
kernel with σ = 2.3 an the reference image for 5000 RL-deconvolution itera-
tions. The algorithm converges most rapidly for the first ∼500 iterations, and
then slows down. The achieved M-PSNR and M-SSIM after 5000 accelerated
RL-deconvolution iterations are equal to 48.84 dB and 0.9708, respectively, and
the relative improvement in M-PSNR and in M-SSIM after 5000 accelerated
RL-deconvolution iterations are equal to 7.69 dB and 23.53 %, respectively.
Visual reconstruction results using HR(σ) = 2.3 are shown in Figure 3.8(a) and
Figure 3.8(b) for 300 accelerated RL-deconvolution iterations and 5000 iterations,
respectively. Although, the M-RRE gets smaller for each iteration, the visual
result is similar for k = 300 and k = 5000.

When the reconstruction kernel is not ideal (i.e., not equal to the degradation
kernel) the deconvolution result will depend on how close the restoration kernel’s
coefficients are to the ideal kernel’s coefficients. For example, the restoration
kernel HR(σ) = 2.6 is bigger than the degradation kernel used in this example.
As seen in Table 3.2 and Figure 3.8(d) the relative improvement in M-SSIM after
22 iterations is equal to 5.52 % and after 300 iterations is equal to -2.38 % for
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Figure 3.6: Mean reconstruction error as a function of the number of iterations using
HR = HD.

the accelerated RL-deconvolution. This means that the restoration using this
kernel can improve the spatial image resolution as long as the RL-deconvolution
is stopped early. On the other hand, the restoration kernel HR(σ) = 5.0 is too
big compared to the degradation kernel. This can be observed in Figure 3.5,
where the deconvolution result keeps diverging for each new iteration (the values
for M-RRE bigger than 4 % are not shown), and in Table 3.1 and Table 3.2,
where the relative improvement in M-SSIM after 1 iteration is equal to 0.37 % for
the standard RL-deconvolution and -0.78 % for the accelerated RL-deconvolution.
The result is positive, even though not by a significant amount, for the standard
RL-deconvolution and negative for the accelerated RL-deconvolution. This would
suggest a need for the possibility to perform both algorithms, e.g., in this case
the standard RL-deconvolution would be preferred. The restoration results seem
to be better when using restoration kernels smaller than the degradation kernel
compared to the restoration kernels bigger than the degradation kernel. Table 3.1
and Table 3.2, shows an improvement in M-SSIM for both HR(σ) = 1.0 and
HR(σ) = 2.0. As seen in Figure 3.5, the M-RRE is constant, to a greater or
lesser extent, with respect to the number of iterations. Hence, RL-deconvolution
will give a reasonable result even if not stopped at the minimum reached M-RRE,
as shown in Figure 3.7(c), Figure 3.7(d), Figure 3.7(e) and Figure 3.7(f).

Figure 3.7(c), Figure 3.7(e), Figure 3.8(a), Figure 3.8(c) and Figure 3.8(e) shows
visual RL-deconvolution results at a minimum M-RRE for kernels with σ = 1.0, σ
= 2.0, σ = 2.3, σ = 2.6 and σ = 5.0, respectively. Visual RL-deconvolution results
in the case when the algorithm is not stopped at the minimum M-RRE are shown
in Figure 3.7(d), Figure 3.7(f), Figure 3.8(b), Figure 3.8(d) and Figure 3.8(f)
kernels with σ = 1.0, σ = 2.0, σ = 2.3, σ = 2.6 and σ = 5.0, respectively.
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(a) Reference image. (b) Degraded with HD(σ) = 2.3.
M-PSNR=41.15, M-SSIM=0.7859.

(c) HR(σ) = 1.0, k = 3. (d) HR(σ) = 1.0, k = 300.
M-PSNR=41.56, M-SSIM=0.8030.

(e) HR(σ) = 2.0, k = 147. (f) HR(σ) = 2.0, k = 300.
M-PSNR=44.38, M-SSIM=0.9092.

Figure 3.7: Visual accelerated RL-deconvolution results with varying kernel coefficients.
k indicates the number of RL-deconvolution iterations.
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(a) HR(σ) = 2.3, k = 300. (b) HR(σ) = 2.3, k = 5000.
M-PSNR=48.84, M-SSIM=0.9708.

(c) HR(σ)= 2.6, k = 208. (d) HR(σ) = 2.6, k = 300.
M-PSNR=38.02, M-SSIM=0.7672

(e) HR(σ) = 5.0, k = 8 (f) HR(σ) = 5.0, k = 300.
M-PSNR=25.39, M-SSIM=0.2195

Figure 3.8: Visual accelerated RL-deconvolution results with varying kernel coefficients.
k indicates the number of RL-deconvolution iterations.
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3.3.2 Boundary Conditions

Boundary conditions affect the restored image boundaries. Three types of
boundary conditions are tested, Z-BCs, Variable-Constant-BCs (VC-BCs) and a
Modified-Periodic-BCs (MP-BCs). It should be noted, that besides the Z-BCs,
the other two conditions are named specifically for the project and have not been
found in literature. The VC-BCs are the ones used in the simulations above. The
constant is set to be equal to the first sample value of the input image and it
changes for each iteration depending on the input data. A MP-BCs simulates
convolution showed in Figure 2.3, where the image border elements are estimated
by “wrapping” kernel around the image. It is modified as it uses the VC-BCs for
the upper and lower missing samples of an input image, and Periodic-BCs for
the missing samples on the sides of the input image. Here, an input image refers
to the data going into the convolution.

The restoration here is done using a Gaussian kernel of size 7 × 7 with σ =
2.3. Similarly to the Subsection 3.3.1, both standard- and the accelerated RL-
deconvolution algorithms are tested. The M-PSNR and M-SSIM between the
degraded data and the reference data for the full frame and cropped frame are
shown in Table 3.3.

Table 3.3: M-PSNR and M-SSIM for Full-frame and Cropped-frame compared to the
reference data.

M-PSNR M-SSIM

Full-frame 41.15 0.7859
Cropped-frame 39.90 0.7802

The RL-deconvolution is run for k = 100 iterations. The resulting mean re-
construction error plotted as a function of the number of iterations is shown
in Figure 3.9 for both the full frame and the cropped frame. The solid lines
correspond to the standard RL-deconvolution and dashed lines correspond to the
accelerated RL-deconvolution. M-PSNR and M-SSIM are calculated at the k =
100 and the results are shown in Table 3.4 and Table 3.5 for full- and cropped
frames respectively. The values are shown for the standard RL-deconvolution
algorithm. Visual deconvolution results can be seen in Figure 3.10, where Fig-
ure 3.10(a), Figure 3.10(c) and Figure 3.10(e) represent the deconvolution result
using Z-BCs, VC-BCs and MP-BCs, respectively. Figure 3.10(b), Figure 3.10(d)
and Figure 3.10(f) shows their corresponding cropped frames.

As seen in Figure 3.9 and Figure 3.10, when the boundaries of the deconvolved
images are disregarded (i.e., the image borders are cropped) the reconstruction
result is similar for all BCs. This can also be seen in Table 3.5, where the
differences in both the M-PSNR and M-SSIM are insignificant for the cropped
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Figure 3.9: Mean reconstruction error as a function of the number of iterations.
Deconvolution is done with two Gaussian kernel with σ = 2.3, and three different BCs,
Z-BC, VC-BC and MP-BC.

Table 3.4: M-PSNR and M-SSIM, for image deblurred using a Gaussian kernel of size
7 × 7 with σ = 2.3 and three different BCs. Full Frame.

M-PSNR(dB) M-SSIM
Relative Relative

BCs M-PSNR improvement (dB) M-SSIM improvement (%)
Z-BC 20.75 -20.37 0.7805 -0.69
VC-BC 45.00 3.85 0.8920 13.50
MP-BC 41.37 0.23 0.8859 12.72

Table 3.5: M-PSNR and M-SSIM, for image deblurred using a Gaussian kernel of size
7 × 7 with σ = 2.3 and three different BCs. Copped Frame.

M-PSNR(dB) M-SSIM
Relative Relative

BCs M-PSNR improvement (dB) M-SSIM improvement (%)
Z-BC 44.01 4.11 0.8855 13.50
VC-BC 44.01 4.11 0.8856 13.51
MP-BC 44.01 4.11 0.8856 13.51

frames in all cases. If the boundaries are included, the deconvolution results
differ significantly, where the Z-BCs produces the most visible ringing artifacts
around the image borders. The MP-BCs also produces the ringing artifacts on
the sides of the output image, although not as visible as the Z-BC. It seems as
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the VC-BCs produces the best results both visually as seen in Figure 3.10(c) and
from analyzing the quality metrics in Table 3.4.
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(a) Z-BCs (b) Z-BCs, close-up

(c) VC-BCs (d) VC-BCs, close-up

(e) MP-BCs (f) MP-BCs, close-up.

Figure 3.10: Visual deconvolution results with varying BCs.
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3.3.3 Precision Analysis

In described software-based approach, both the input and the output image, and
all the intermediate operations are represented in a single precision floating-point
format with width equal to 4 bytes. The hardware module for RL-deconvolution
is implemented using fixed-point format, therefore a correct conversion from the
floating-point format to the fixed-point format is needed. The data precision
is tested by deconvolving the degraded image shown in Figure 3.4 using the
floating-point C-script and a fixed-point C-script. Firstly, the conversion between
floating-point representation and the fixed-point representation method used in
the previous work [42] is tested. The described method disregards the fractional
part of the data by truncation. It is found that the precision loss gets significant
after some number of iterations. In the test case, this number is equal to around
30 iterations, as seen in Figure 3.11. This can be explained as follows: in the
first couple of iterations the integer part of the estimated image is dominant
and the made changes are noticeable, but after some time the fractional part
starts dominating. Since the fractional part is truncated after each operation,
the restored image does not improve any further. The achieved mean squared
error (MSE) between the floating-point and fixed-point data is equal to MSE =
121.07 and the M-SSIM = 0.9814.

Figure 3.11: Comparison of a floating-point restoration error to the fixed-point
restoration error.
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In order to find a better solution, a Matlab Fixed-Point Designer™ [48] is used.
The floating-point data is stored in the fixed-point data objects fi

xfixed = fi(xfloat, sign,WL,FL) (3.7)

where sign can be either 0 for unsigned number or 1 for signed ones, WL is the
word length and FL is the fractional length. The Matlab function converting the
floating-point RL-deconvolution to the fixed-point RL-deconvolution is written
and Matlab’s Fixed-Point Designer™ proposed WLs and FLs are used in the
updated C-script for fixed-point RL-deconvolution. The M-RRE plots using
floating-point data, the blue plot, and fixed-point data, red plot, is shown in
Figure 3.12. The achieved minimum squared error between the floating-point
and fixed-point data is equal to MSE = 1.51 and the M-SSIM = 0.9997.

Figure 3.12: Comparison of a floating-point restoration error to the fixed-point
restoration error.
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3.4 Hyperspectral Data - Coastal Image

The performance of the RL-deconvolution algorithm in a presence of noise is tested
on the hyperspectral data from the Coastal dataset. The original hyperspectral
cube is cropped in both the spectral and spatial directions, to the size equal
to 640 × 480 × 60. The spectral reduction is done in order to remove some
of the corrupted bands and also to reduce the computation time. A three-
band composition (18, 25, 53) of the original data, shown in Figure 3.13(a), is
set as a reference, which is degraded with a degradation kernel equal to the
Gaussian kernel with zero mean and σ = 2.9. The degraded image is shown
in Figure 3.13(b). In addition, the degraded image is contaminated with an
additive noise with SNR = 30 dB, shown in Figure 3.13(c) and SNR = 20 dB,
shown in Figure 3.13(d). The M-PSNR and M-SSIM between the three degraded
datacubes and the reference image are shown in Table 3.6, where Blurred stands
for image degraded only by the Gaussian blur, Noisy1 denotes the image degraded
by the Gaussian blur and an additive noise with SNR = 30 dB and Noisy2 refers
to the image degraded by the Gaussian blur and an additive noise with SNR =
20 dB. The mean spectral reflectance plots are retrieved from the reference- and
the degraded data cubes at a center sample with coordinates (396, 391). The
total amount of samples used for the calculation of the mean spectral reflectance
is equal to 25 samples. The area from which the reflectance plot is retrieved is
marked by a black rectangular in Figure 3.13. The spectral reflectance plots are
shown in Figure 3.14, which are used to analyze how the spectral reflectance is
affected by the degradation and the restoration processes.

Table 3.6: M-PSNR and M-SSIM, for Blurred, Noisy1 and Noisy2 hyperspectral
images compared with the reference image.

M-PSNR M-SSIM
Blurred 48.35 0.9654
Noisy1 48.19 0.9579
Noisy2 46.76 0.8989

The degraded data are restored using both the standard and accelerated RL-
deconvolution algorithms. The VC-BCs are used when estimating the missing
border information. Blurred, Noisy1 and Noisy2 datacubes are restored by
running the RL-deconvolution k = 50 times and the restored datacubes are called
Deblurred, Denoisy1 and Denoisy2, respectively. The M-RRE as a function of
the number of RL-deconvolution iterations for all three data sets is shown in
Figure 3.15. M-PSNR and M-SSIM are calculated at the minimum M-RRE and
the results are shown in Table 3.7. The restored spectral reflectance plots are
shown in Figure 3.16. Visual restoration results for the Deblurred, Denoisy1 and
Denoisy2 images shown in Figure 3.17, Figure 3.18 and Figure 3.19, respectively.
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(a) (b)

(c) (d)

Figure 3.13: Composition of three spectral bands (18, 25, 53) taken from the Costal
hyperspectral dataset. The original three-band composite (a), used as a reference, is
degraded with a Gaussian kernel with σ = 2.9 (b), which is further contaminated by an
additive noise with SNR = 30 dB (c), or SNr = 20 dB (d).
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Figure 3.14: Mean Radiance Spectrum at the center sample (395, 391) retrieved from
an area marked by the black rectangular in Figure 3.17.

Table 3.7: M-PSNR and M-SSIM at the minimum M-RRE reached after k standard
RL-deconvolution iterations.

M-PSNR(dB) M-SSIM
Relative Relative

k M-PSNR improvement (dB) M-SSIM improvement (%)
Deblurred 50 52.64 4.29 0.9809 1.61
Denoisy 1 27 50.99 2.80 0.9673 0.98
Denoisy 2 5 47.41 0.65 0.9009 0.22

Table 3.8: M-PSNR and M-SSIM at the minimum M-RRE reached after k accelerated
RL-deconvolution iterations.

M-PSNR(dB) M-SSIM
Relative Relative

k M-PSNR improvement (dB) M-SSIM improvement (%)
Deblurred 50 53.21 4.86 0.9835 1.87
Denoisy 1 14 50.98 2.79 0.9673 0.98
Denoisy 2 2 47.43 0.67 0.9014 0.29
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Figure 3.15: M-RRE as a function of the number of iterations for dataset degraded
with an additive noise.

Figure 3.16: Mean Radiance Spectrum at center sample (395, 391) retrieved from an
area marked by the black rectangular in Figure 3.17.
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(a) Reference image. (b) Degraded with HD(σ) = 2.9.
M-PSNR=48.35, M-SSIM=0.9654.

(c) HR(σ) = 2.9, k = 50.
M-PSNR=53.21, M-SSIM=0.9835.

(d) HR(σ) = 2.9, k = 500.
M-PSNR=55.15, M-SSIM=0.9913.

Figure 3.17: The degraded by the degradation kernel HD(σ) = 2.9 image (b) is
restored with HR(σ) = 2.9 for k = 50 RL-deconvolution iterations (c) and k = 500 RL-
deconvolution iterations (d). The close-up of the area marked by the green rectangular
is shown in the left corners of the images.
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(a) Reference image. (b) HD(σ) = 2.9 + SNR 30 dB.
M-PSNR=48.19, M-SSIM=0.9579.

(c) HR(σ) = 2.9, k = 14.
M-PSNR=50.98, M-SSIM=0.9579.

(d) HR(σ) = 2.9, k = 50.
M-PSNR=49.56, M-SSIM=0.9512.

Figure 3.18: The degraded by the degradation kernel HD(σ) = 2.9 and the Gaussian
noise with SNR = 30 dB image (b) is restored with HR(σ) = 2.9 for k = 14 RL-
deconvolution iterations (c) and k = 50 RL-deconvolution iterations (d).The close-up
of the area marked by the green rectangular is shown in the left corners of the images.

50



3.4 Hyperspectral Data - Coastal Image

(a) Reference image. (b) HD(σ) = 2.9 + SNR 20 dB.
M-PSNR=46.78, M-SSIM=0.8989.

(c) HR(σ) = 2.9, k = 2.
M-PSNR=47.43, M-SSIM=0.9014.

(d) HR(σ) = 2.9, k = 50.
M-PSNR=41.82, M-SSIM=0.7630.

Figure 3.19: The degraded by the degradation kernel HD(σ) = 2.9 and the Gaussian
noise with SNR = 20 dB image (b) is restored with HR(σ) = 2.9 for k = 2 RL-
deconvolution iterations (c) and k = 50 RL-deconvolution iterations (d). The close-up
of the area marked by the green rectangular is shown in the left corners of the images.
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As seen in Figure 3.17 and in Table 3.7 and Table 3.8, the presence of additive
noise prevents the restoration of the degraded images. When SNR = 30 dB, the
M-PSNR and M-SSIM has a relative improvement equal to 2.80 dB and 0.98 %,
respectively, compared to the Noisy1 data. When SNR = 20 dB, the M-PSNR
and M-SSIM has a relative improvement equal to 0.65 dB and 0.22 %, respectively,
compared to the Noisy2 data. An improvement, although not signifact, is present
in both cases, as long as the algorithm is stopped when the minimum M-RRE
is reached. As seen in Figure 3.15, the M-RRE starts diverging after around 14
to 27 iterations for Noisy1 data and after around 2 to 5 iterations for Noisy2
data. This is also visible in Figure 3.18(d) and Figure 3.19(d), showing the
deconvolution result after 50 iterations for Denoisy1 and Denoisy2 respectively.
In this case, the M-PSNR and M-SSIM has a relative improvement equal to 1.37
dB and -0.70 %, respectively, compared to the Noisy1 data and M-PSNR and
M-SSIM equal to -4.96 dB and -15.12 %, respectively, compared to the Noisy2
data.

The spectral reflectance plots for the degraded data, shown in Figure 3.14, is
compared to the spectral reflectance plots for the restored iterations data, shown
in Figure 3.16. The spectral reflectance of the data degraded only by the Gaussian
blur is fully restored at the sample with coordinates (395, 391). The spectral
reflectance of the data degraded by the Gaussian blur and an additive noise,
remains unchanged after the restoration. It should be noted that in all cases the
spectral reflectance plot keep its original shape.
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Chapter 4

Hardware Implementation

4.1 Introduction

One RL-deconvolution iteration consists of two convolutions, one element-wise
division and either one element-wise multiplication, in the case of the standard
RL-deconvolution algorithm (equation (2.7)), or two element-wise multiplications,
in the case of the accelerated RL-deconvolution algorithm with β = 2 (equation
(2.9)). Both versions can be implemented into one design without a significant
increase in the resource usage, as only one additional multiplier is needed. The
degraded input image, Yp, is used in each iteration in order to calculate the
residual and it needs to be either stored in the internal memory of the FPGA, or
streamed from the external memory for each new iteration. The former minimizes
the communication time between the FPGA and the external memory, while the
latter minimizes the internal memory usage. Two architectures exploring both
methods are designed, henceforth called Architecture-1 and Architecture-2. The
two architectures are designed to perform both the standard RL-deconvolution
and the accelerated RL-deconvolution with β = 2, where the end-user has the
possibility to chose at the run-time which of the two algorithms to use. A
summarized overview of main features for Architecture-1 and Architecture-2 is
shown in Table 4.1.
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Table 4.1: Feature summary for Architecture-1 and Architecture-2.

Feature Architecture-1 Architecture-2

Standard RL-deconvolution
Accelerated RL-deconvolution

Initial value, X̂
p

(0) Yp constant
VC-BCs
MP-BCs
Generic image size
Run-time conf. kernel size
Run-time conf. number of iterations
Independent of DDR3
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4.2 Architecture-1

A generalized block diagram for Architecture-1 is shown in Figure 4.1. It con-
sists of three blocks, the Core IP, for a complete RL-deconvolution algorithm,
an external Division IP and a Configuration block with an AXI4-Lite Slave
interface. Table 4.2 lists the signals, directions and corresponding short descrip-
tions for the inputs and outputs for the RL-deconvolution IP. Only the signal,
s00_axi_wdata, is shown for the AXI4-Lite channels. Table 4.3 shows the list of
generic parameters.

Figure 4.1: A block diagram for the top module of RL-deconvolution IP.

Table 4.2: List of Input/Output signals for the RL-deconvolution IP.

Name I/O Width Description

s00_axi_wdata in 32 wadata signal for s00_axi channel.
blurred_axis_tdata in 16/32 tdata signal for blurred_axis channel.
blurred_axis_tlast in 1 tlast signal for blurred_axis channel.
blurred_axis_tvalid in 1 tvalid signal for blurred_axis channel.
blurred_axis_ready out 1 tready signal for blurred_axis channel.
deblurred_axis_tdata out 16/32 tdata s. for deblurred_axis channel
deblurred_axis_tlast out 1 tlast s. for deblurred_axis channel
deblurred_axis_tvalid out 1 tvalid s. for deblurred_axis channel
deblurred_axis_ready in 1 tready s. for deblurred_axis channel
clk in 1 Global clock high
rst in 1 Global active reset.
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Table 4.3: Generic parameter list for the RL-Deconvolution IP.

Name Sym. Description

IMAGE_HEIGHT N The height of the input data.
IMAGE_WIDTH M The width of the input data.
DATA_WIDTH WD Input/output data width.
ADDR_WIDTH WA Address width, depends on image

size.

4.2.1 Core IP

The Core IP, shown in Figure 4.1, consists of a data path and a control path. The
block diagram for the data path together with the connected Division IP is shown
in Figure 4.2. The design is scalable with respect to the image size and run-
time configurable with respect to the number of iterations for RL-deconvolution
algorithm. The goal of the design is to minimize the communication between
the external memory and the programmable logic, by storing all the needed
data inside the FPGA accelerator. In order to internally store large amount
of data, Xilinx Block RAMs (BRAMs) are used, where one block can store up
to 36 Kb of information [49]. Before doing the convolution, the input image is
extended in order to preserve its initial size. The image borders are estimated
using the VC-BCs, described in Section 2.1.3, as it gives the best visual results.
Convolution is then done by moving a whole kernel from one row to another,
as shown in Figure 2.2. The value of the estimated samples is stored in the
REG_0 and is equal to the first value of either the data stored in BRAM_F or
BRAM_T , depending on which data is sent to the convolution module.

One iteration of the RL-deconvolution algorithm proceeds as follows: the de-
graded input image, Yp, is streamed from the external memory into the Core IP
through the AXI-Stream blurred_axis input and is stored in the BRAM_G
and BRAM_F . The address generators ensure the correct reading and writing
to/from the BRAMs. The data stored in the BRAM_F sets the initial estimate,
X̂
p

(0), to be equal to the blurred input image, Yp. After the input streaming
is finished and signal blurred_axis_tlast is received the module is left to be
independent of the rest of the system, meaning that no control from the PS side
is needed. Immediately after the signal blurred_axis_tlast is received, the
convolution module is enabled, where convolution is done on either the data
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Figure 4.2: Block diagram for Architecture-1.

stored in REG_0, or on the data stored in BRAM_F (depending if the image
itself or its borders are being processed). Division starts immediately after the
first valid output sample from the convolution module is produced. The dividend
is equal to the data stored in BRAM_G corresponding to the distorted input
image and the divisor is equal to the convolution output data. The division out-
put is stored in BRAM_T . The second part of the algorithm starts immediately
after the signal s01_axis_tlast from the division core is received. Convolution
is then done on the data stored in either REG_0 or in the BRAM_T . The
valid output samples from the convolution module are multiplied with the old
estimated value X̂

p

(k−1) (i.e., X̂
p

(0)) stored in BRAM_F . Finally, the data in
BRAM_F is updated with the new estimated value, X̂

p

(k). If several iterations
are intended, the process repeats, else the multiplication output is streamed out
through the AXI-Stream deblurred_axis channel.

4.2.2 Data Precision

The core is developed for input data width equal to 16 bits. In order to preserve
the output data precision, the fractional part of the quotient is set to be equal to
20 bits, as it was found in Subsection 3.3.3. The quotient integer part is always
between 0 and 1, thus it is sufficient to use one bit for the integer part. It is
chosen to use 22 bit width for the division output data. Thus BRAM_T stores
the data with width 22 bits, while BRAM_G and BRAM_F stores data with
width 16 bits. The convolution is done on the data with width 22 bits, therefore
zeros are appended to the data from the BRAM_F . The multiplication is done
on the 22 bit width data from the convolution and 16 bit wide data from the
BRAM_F .
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4.2.3 Convolution Module

Convolution on a 2-D image of size N ×M with a kernel of size Wx ×Wy is
performed by a convolution module proposed by [50], where Wx = Wy = W .
The 2-D convolution is accelerated by exploiting kernel separability, where a
2-D kernel is decomposed into two 1-D kernels. This allows a design with two
1-D convolutions, where a convolution with a 1-D vertical kernel, Hy, on the
continuous stream of input data is followed by a convolution with a 1-D horizontal
kernel, Hx.

Convolution is done by sliding the input image through the kernel, where at
each position a sample spanned by the kernel is processed by equation (2.5). An
image in Figure 4.3 illustrates computation of the first two output samples for a
1-D convolution of an input image of size 5× 5 with a kernel of size 3× 1. The
hardware module receives the matrix in Figure 4.3 in a continuous data stream.
In order to produce, the first output sample, the samples from the first two rows
(i.e., elements X(0,0) to X(2,0)) needs to be streamed into the convolution module.
For the second output element (i.e., elements X(0,1) to X(2,1)) are needed. It can
be observed that some samples are being reused. In order to avoid the reloading
of the same sample into the convolution module, line buffers are used.

Figure 4.3: An example of data requirements for 1-D convolution with a 3 × 1 kernel.

The block diagram, consisting of line buffers and two 1-D convolutions for a
kernel of size 3, is shown in Figure 4.4. The first input sample X(0,0) enters the
convolution module and is stored in a register (called DATA_1 in Figure 4.4).
On the next clock cycle X(0,0) enters the first convolution with a vertical kernel,
and at the same time is sent to the first line buffer (called LINE_1 in Figure 4.4)
and the second input element, X(1,0) gets stored in the DATA_1, shown in
Figure 4.5(b). The size of the line buffer depends on the width of the input image
and is equal to N − 1. For this example, the width of the line buffer is equal to 4.
When the first line buffer is filled, as illustrated in Figure 4.5(c), the data from
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Figure 4.4: An block diagram for the 2-D convolution with a separable 3 × 3 kernel.

the LINE_1 starts moving to the LINE_2. The total number of line buffers
depends on the kernel size and is equal to W − 1, which for this example is equal
to 2. At the end of the initialization, the first row of the input image will be
stored in the LINE_2 and the second row of the input image will be stored in
the LINE_1, as shown in Figure 4.5(d).

(a) The first input pixel is streamed
into the accelerator.

(b) The second input pixel enters
the accelerator. The first input
pixel moves to the first line buffer.

(c) Filled first line buffer. (d) The end of the initialization
stage.

Figure 4.5: Initialization of the line buffers.

After initialization, the line buffer outputs has the elements corresponding to the
dark grey data elements in Figure 4.3, as seen in Figure 4.5(d). These elements
are multiplied in parallel with their corresponding kernel values, summed and
sent to the CacheX block shown in Figure 4.4. The CacheX block concatenates
the resulting data from first convolution into one array of the same size as the
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Figure 4.6: A block diagram for the 2-D convolution with a separable 9 × 9 kernel.

kernel. This is done in order to be able to do a convolution with a horizontal
kernel in parallel. For example, for the left image in Figure 4.3, the concatenated
array will have elements [X(0,0), X(0,1), X(0,2)]. The CacheX block sends the
array elements to the corresponding registers DATA_Y# shown in Figure 4.4.
The element X(0,0) goes into register DATA_Y 3, the element X(0,1) goes into
register DATA_Y 2 and element X(0,2) goes into register DATA_Y 1. These
values are then multiplied and summed. The resulting output data is rounded.

The convolution module implemented in this design was made for a kernel size
equal to 9× 9 and it follows the same principle as described above. The kernel
coefficients are read from outside of the convolution module. The addition is
done by a pipelined adder tree. The block diagram is shown in Figure 4.6.

4.2.4 Multiplication Module

The block diagram for the multiplication module is shown in Figure 4.7. The
INPUT_1 is connected to the convolution module output with the signal width
equal to 22 bits and INPUT_2 is connected to the BRAM_F with the signal
width equal to 16 bits. This module is responsible for choosing between the
standard- and the accelerated RL-deconvolution. This is done with the help of
the MUX_1, which is set by the end-user through the Configuration block. For
the standard RL-deconvolution, the INPUT_1 is multiplied with INPUT_2, delayed
for three clock cycles and shifted to the right by 14 bits. For the accelerated
RL-deconvolution, the result of the first multiplication is multiplied again with
the delayed INPUT_1, as explained in Chapter 2. The result is shifted a different
amount of bits, depending on which iteration is run. For the first iteration
the result is shifted 16 bits to the right, while for the rest of the iterations the
result is shifted 20 bits to the right. The values are found experimentally, during
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the analysis part of the implementation described in Chapter 3. MUX_0 is
controlled by the internal controller.

Figure 4.7: Multiplication module. D stands for the delay.

4.2.5 Division Core

Division is done using a Pipelined Divider v5.1 core provided by Xilinx [5]. The
core is customized through the Core Generator tool. There are three possible
division implementations, i.e., LUTMult, Radix-2 and High Radix, each
having their advantages and disadvantages. The detailed description of each
is given in [5]. The Radix-2 implementation is chosen as it does not use the
DSP nor BRAM resources and also provides a high throughput. For a fully
pipelined design, a throughput of one division per clock cycle is achieved. When
a fractional output is required, the latency is equal to M + F , where M is the
quotient width and F is the fractional output width. The block diagram with
the input/output signals is shown is Figure 4.8.

An M-bit dividend is divided by an N-bit divisor producing a quotient with a
fractional remainder. For the unsigned case, the fractional part is equal to

FractRmd = IntRmd× 2F
Divisor

. (4.1)

The quotient bit width is equal to the divisor width and the fractional out-
put width is set independently. The core uses a global synchronous, active-
low reset which must be asserted for at least two clock cycles. The divider
core uses AXI-Stream interface to communicate with other modules. The only
non-optional signals are s_axis_dividend_tvalid, s_axis_dividend_tdata,
s_axis_divisor_tvalid, s_axis_divisor_tdata, m_axis_dout_tvalid and
m_axis_dout_tdata. All other signals seen in Figure 4.8 are optional. The tlast
signal can be used in order to avoid matching latency to the data path. The tlast
is read from the slave modules and is sent to the output channel with the same
latency as the datapath.
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Figure 4.8: The pinout diagram for Pipelined Divider v5.1 core [5].

4.2.6 Configuration Module

The Configuration block seen in Figure 4.1 contains a configuration register
which is used to configure the performed algorithm. The register is 32 bits
wide and written using the AXI4-Lite interface. The MSB is reserved for the
algorithm-select signal, where 1 selects the standard RL-deconvolution and 0
selects the accelerated RL-deconvolution. The remaining 31 bits assign the
number of iterations for RL-deconvolution.
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4.2.7 Control Path

The RL-deconvolution architecture contains one convolution module, which is
used twice during one iteration of the algorithm. Convolution output is connected
to either the division IP or the multiplication IP. In addition, the convolution
is performed as shown in Figure 2.2, i.e., the whole kernel is moved from one
row of the image to another. This adds some additional delay for the output
data stream from the convolution module, which in turn adds a delay in the
output from both the multiplication and division modules. Therefore, in order
to simplify the control system, the control of the architecture is split into two
stages: convolution and division (done by the Convolution&Division controller),
and convolution and multiplication (done by the Convolution&Multiplication
controller). A simplified data block diagram is shown in Figure 4.9, where the
master controller connects the two stages together. The state diagram for the
master controller is shown in Figure 4.10 and the corresponding inputs/output
signal name are shown in Table 4.4. The numbering of the bit arrays seen in
Figure 4.10 corresponds to the numbering in Table 4.4, where 0 is the LSB. The
controller is a Moore finite state machine, where outputs depend solely on the
state, therefore in Figure 4.10, outputs are shown inside the states and inputs
are placed on transitions. All states are connected to the IDLE state, which is
entered if the controller is reset. The state diagrams for Convolution&Division
and Convolution&Multiplication controllers can be found in Appendix A. The
control module, in addition to internal control signals connected to the data path,
is also connected to the external AXI-Stream control signals.

Figure 4.9: A simplified block diagram of the control path for Architecture-1.

The RL-deconvolution module starts when the blurred_axis_tvalid is equal
to 1. The master controller enters the state INIT, in which the BRAM_F
and BRAM_G are initialized with the input data. When the last input image
element is received and the blurred_axis_tlast is equal to 1, the REG_0,
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shown in Figure 4.2, is initialized with the first value stored in BRAM_F ,
state PAD1, and after two clock cycles the first stage, Convolution&Division, is
entered, state CONV&DIV, where Convolution&Division controller is enabled.
Convolution&Division controller is responsible for correctly choosing the data
to be sent to the convolution module (i.e., either data from REG_0 or data
from BRAM_F ) and also sending the valid output samples to the division
module. The master controller stays in this state until the signal stop_fsm_1
is received from the Convolution&Division controller. The master controller
moves to the state PAD2, where the REG_0 is initialized with the first value
in BRAM_T . The second stage, Convolution&Multiplication is entered and a
signal start_fsm_2 is set to 1, starting the Convolution&Multiplication controller.
In this case, Convolution&Multiplication controller sends the data either from
REG_0 or data from BRAM_T to the convolution module and also sends the
valid output samples to the multiplication module. When the stop_fsm_2 is
received, the state FIN2 is entered, where if the signal iter is equal to 1, the
master controller goes back to the IDLE state, else if iter is equal to 0, then the
master controller goes back to the state PAD1, where it re-initializes the REG0
and the process repeats.

Figure 4.10: State diagram for Architecture-1’s master controller.
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Table 4.4: Input/output signal names corresponding to the state diagram of the
master controller.

Bit Input Bit Output

0 blurred_axis_tvalid 0 start_fsm_1

1 blurred_axis_tlast 1 start_fsm_2

2 stop_fsm_1 2 reset_bram0

3 stop_fsm_2 3 enb_0

4 iter 4 ena_0

5 we_0

6 reset_bram1

7 ena_1

8 we_1

9 reset_bram2

10 ena_2

11 enable_pad_reg

12 reset_modules
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4.3 Architecture-2

A generalized block diagram for Architecture-2 is shown in Figure 4.11. The top
module is similar to the Architecture-1, containing three blocks, the Core IP,
containing both the datapath and the control system, an external Division IP
and an Configuration block with an AXI4-Lite Slave interface. The inputs and
outputs for the RL-deconvolution IP and generic parameters are the same as for
the Architecture-1, and are shown in Table 4.2 and Table 4.3 respectively. The
only difference between Architecture-1 and Architecture-2 on the top level is two
additional signals, enable_module and sigma_and_iter.

Figure 4.11: A block diagram for Architecture-2.

4.3.1 Core IP

This architecture is designed to deal with limited internal FPGA storage. The
solution uses one True Dual-Port BRAM to store the latent image, X̂

p

(k). An
additional convolution module is added in order to avoid storing the intermediate
data produced by the division module. The degraded input image, which remains
constant during the deconvolution process, is streamed from the external memory
instead of being stored inside the module. The block diagram for the complete
RL-deconvolution is shown in Figure 4.12.

The module is parametarized with respect to the input image size. In addition,
the module is run-time configurable with respect to the kernel size and the
number of RL-deconvolution iterations. The core is designed to work with a
kernel size equal to 9× 9 and 7× 7. There is a Read-Only memory initialized
with a few different kernels having a varying sigma. The end user can choose the
σ by simply writing the wanted value, together with the number of iterations,
into the register stored in the Configuration block, shown in Figure 4.1. The data
processing starts immediately after the signal enable_module, which is received
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Figure 4.12: Complete block diagram for RL-deconvolution.

from the Configuration block. The first iteration of the algorithm is done on the
constant predefined value, which is set to be equal to 1000. This value was chosen
experimentally. For this architecture, MP-BCs are chosen, giving reasonably
good visual results, as seen in Section 2.1.3. In this case convolution is done
as show in Figure 2.3, where for a continuous stream of input data, the kernel
always is moved by constant shift. This simplifies the controller system.

4.3.2 Configuration Module

The architecture of the configuration block is the same as for the Architecture-1.
The difference is the use of the signal s00_axi_wdata. In this case, the 32 bit
signal is divided as follows: the first 16 bits before the LSB are reserved for the
total number of iterations, the MSB is reserved for the algorithm-select signal
and the 15 bits after the MSB are used for writing restoration kernel size.

4.3.3 Multiplication module

Multiplication core is the same as the one used for Architecture-1.

4.3.4 FIFO modules

In Figure 4.12, an additional First In, First Out (FIFO) block is added. FIFO
is a data buffer, where the first entry, the oldest one, is processed first. In this
design, FIFO is implemented using Xilinx FIFO Generator v13.1 [51] with an
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AXI-Stream interface. For the simplicity of the illustration, FIFOs in Figure 4.12
are shown inside the Core IP, when in reality they are instantiated outside the
core and are connected to the core in a same way as the external Division IP.

There are two FIFOs in the design, FIFO_0 and FIFO_1. Convolution module
2 in Figure 4.12 processes the data stored in REG_1 first, and then the data
from the division IP. The division output samples need to be stored until the
processing of the the data in REG_1 is done. The depth of FIFO_0 depends
on the image width and the kernel size, and is equal to

FIFO_0depth = M × ((W − 1)/2) + 3. (4.2)

where M is the image width and W is the kernel size. The true Dual-Port
BRAM used in this design has one read and one write port which can be used
simultaneously. In this design, two read ports and one write port with different
addresses are needed. To solve this problem a FIFO_1 is added. The data
from BRAM_0 enters FIFO_1 at the same time as it enters the Convolution
module 1. The depth of the FIFO_1 is equal to

FIFO_1depth = M × (3× (W − 1) + (W(max) − 1)) + 52 (4.3)

where W(max) is the maximum available kernel size, in this architecture W(max)
is equal to 9.

4.3.5 Convolution Module

The convolution module is a more flexible version of the one designed for the
Architecture-1. The module has a fixed maximum kernel size, which is chosen to
be equal to 9× 9, in this case the data flow is the same as shown in Figure 4.6.
By using a control signal, sigma, a kernel size smaller than 9× 9 can be chosen.
Assuming, the kernel size is equal to 7× 7, then the data out from the register
DATA_1 and the data from the first line buffer LINE_1 are going to be
multiplied with zeros. Then, the result from the first convolution is concatenated
into an array in CacheX, shown in Figure 4.6, the size of which depends on the
kernel size. As mentioned previously, this is done in order to be able to perform
convolution with a horizontal kernel in parallel. The data from the CacheX is
sent to the corresponding registers as shown in Figure 4.6. The fixed number of
which is equal to 9. In the case when the kernel size is equal to 7, the two extra
registers will be initialized with zeros.
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4.3.6 Control Path

There are four controllers taking care of the algorithm’s data flow: two convolution
controller, division controller and multiplication controller. An additional master
controller ensures the correct enabling of each of them. A simplified block diagram
showing the complete control path is shown in Figure 4.13. Control module is
also connected to the global clock and reset signals. All states are connected to
the IDLE state, which is entered if the controller is reset.

Figure 4.13: Block diagram for the control path of the Architecture-2.

Counter module, shown in Figure 4.13, contains four counter instances, each
connected to one of the main controllers. The state diagram for the master
controller is shown in Figure 4.14 with the corresponding inputs/output signal
names in Table 4.5. The state diagrams for the Convolution 1 controller, Division
controller, Convolution 2 controller and Multiplication controller are shown
in Figure 4.15, Figure 4.16, Figure 4.17 and Figure 4.17 respectively. Their
corresponding inputs/output signal names are shown in Table 4.6, Table 4.7,
Table 4.8 and Table 4.9.

The control path designed for the Architecture-2 is somewhat simpler than the
one designed for the Architecture-1. This is due to the use of different boundary
conditions. In Architecture-1, VC-BCs are used, while in Architecture-2, MP-BCs
are implemented. The latter simplifies the controller system, due to the way
convolution of the whole image is done. In this case, the kernel is always shifted
periodically, which results in all modules producing one valid output sample per
clock cycle. The master controller is enable when the signal enable_module is
received. In the state CONV1, the Convolution 1 controller is enabled and
convolution on the data in either REG_0 or in BRAM_0 is done. After the
initial latency of the Convolution module, which depends on the image and kernel
sizes, the state DIV is entered and the Division controller is enabled. Master
controller stays in the state DIV until the signal s01_axis_tvalid is received,
indicating that the division output data is valid and ready to be processed. The
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second convolution module is enable in the state CONV2, where convolution is
done on the division output data. When a first valid output sample from the
convolution module is produced, the master controller enters the state MULT,
at which point the last step of the algorithm is performed. Finally, in state FIN,
the signal iter is checked, if it is equal to 1 then the master controller goes to the
state IDLE, else the master controller enters the state PAD1 and the described
process repeats.

The constants seen in Figure 4.15, Figure 4.17 and Figure 4.18 are given by

PAD_1 = (W − 1)/2×N (4.4)
START_DIV = PAD_1 + N ×M (4.5)

PAD_2 = START_DIV + PAD_1 (4.6)
FIN_IMG = (W − 1)×N +W + 4 (4.7)

IMG = N ×M. (4.8)
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Figure 4.14: State diagram for the master controller for Architecture-2.

Table 4.5: Input/output signal names for the master controller.

Bit Input Bit Output

0 enable_module 0 start_mult

1 s01_axis_tvalid 1 start_conv_2

2 do_div 2 start_div

3 do_mult 3 start_conv_1

4 stop_mult 4 enable_pad_reg_2

5 iter 5 enable_pad_reg

6 reset_address
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Figure 4.15: State diagram for Convolution1 controller.

Table 4.6: Input/output signal names for the Convolution1 controller.

Bit Output

0 reset_address

1 read_bram_0

2 do_div

3 stop_conv_1

4 reset_counter

5 enable_counter

6 enable_conv_1

7 enable_pad

8 ena_0
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Figure 4.16: State diagram for the Division controller.

Table 4.7: Input/output signal names for the Division controller.

Bit Output

0 m00_axis_tlast

1 m00_axis_tvalid

2 m01_axis_tlast

3 m01_axis_tvalid

4 s01_axis_tready

5 reset_counter

6 enable_counter

7 enable_div

8 stop_div
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Figure 4.17: State diagram for the Convolution2 controller.

Table 4.8: Input/output signal names for the Convolution2 controller.

Bit Output

0 do_mult

1 stop_conv_2

2 reset_counter

3 enable_counter

4 enable_conv_2

5 enable_pad_2
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Figure 4.18: State diagram for the Multiplication controller.

Table 4.9: Input/output signal names for the Multiplication controller.

Bit Output

0 m02_axis_tlast

1 reset_counter

2 enable_counter

3 stop_mult

4 enable_mult

5 enable_read
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Chapter 5

Verification

For hardware implementation a Zedboard platform [52] with a built-in Zynq-7020
FPGA is used. The main features of the Zynq-7020 All Programmable SoC are
summarized in Table 5.1.

Table 5.1: Feature summary for Zynq-7020 [1].

Processing System Programmable Logic

Maximum frequency 667 MHz Maximum frequency 250 MHz
L2 Cache 512 KB Block RAM (#36 Kb) 4.9 Mb (140)
On-Chip Memory 256 KB DSP Slices 220

LUTs 53,200
LUTRAMs 17,400
FFs 106,400

Both architectures, Architecture-1 and Architecture-2, are implemented in the
Xilinx Vivado development environment [53] and described in VHSIC Hardware
Description Language (VHDL). Architecture-1 and Architecture-2 implementa-
tions are tested in simulations. In addition Architecture-1 is tested on a target
FPGA, i.e., Zynq-7020.

The chapter is divided into two sections, where Section 5.1 presents verification
method and testing results for Architecture-1 and Section 5.2 presents verification
method and testing results for Architecture-2.
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5.1 Architecture-1

5.1.1 Functional Verification

The functionality of the RL-deconvolution, both the standard- and the accel-
erated versions, implemented in Architecture-1 is tested against the software
implementation written in C. Software is implemented using fixed-point repre-
sentation and using VC-BC boundary conditions i.e., equivalent to the algorithm
implementation in Architecture-1. Verification model consist of two parts, the
C-code block and the testbech written in VHDL, shown in Figure 5.1. The
C-code block produces the degraded image and a reference restored image, both
of which are saved in a corresponding text files. In the tesbench these files are
read and stored internally. Before the RL-deconvolution is enabled, the number
of iterations is decided and written to the the Design Under Test (DUT) through
the AXI4-Lite interface. The degraded image is sent to DUT and the restored by
the DUT image is compared to the reference restored image in the monitor block
shown in Figure 5.1. If the error count is equal to zero, the test is considered to
be passed.

Figure 5.1: Verification of Architecture-1. DUT - design under test.
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One band taken from the Urban dataset, shown in Figure 5.2(a), is used for the
functional verification. The data is coded with 16 bits. The image is degraded in a
software model with a Gaussian kernel with σ = 2.3, shown in Figure 5.2(b). The
degraded image is restored in both the software module and in the implemented
hardware module. Both the standard and the accelerated RL-deconvolution
are tested. The error between the software generated output, X̂

p

ideal, and a
hardware generated output, X̂

p
, are found by finding the Euclidean distance

between the two. Standard and accelerated RL-deconvolution are tested for
1 and 10 iterations. In all cases the error is equal to zero, so both software
and hardware modules produce identical results. Visual restoration results for
standard RL-deconvolution after 10 iterations are shown in Figure 5.2(a) and
Figure 5.2(b), using the software and hardware respectively.

(a) Reference image (b) Image degraded by the Gaus-
sian PSF with σ = 2.3.

(c) Restored image using Software.
10 RL-deconvolution iteration.

(d) Restored image using Hardware
accelerator. 10 RL-deconvolution
iteration.

Figure 5.2: Functional verification for Architecture-1. Visual deconvolution results.
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5.1.2 Verification on hardware: interfacing with Zynq 7000 SoC

Architecture-1 is connected to the Processing system and further tested on a
Zedboard platform. The whole system consist of an ARM Cortex-A9 CPU in the
processing side, an external memory, DDR3, a direct memory access, DMA, IP, a
concat IP core and a RL-Deconvolution IP. A generalized block design is shown in
Figure 5.3. DMA is initialized by the PS through the general purpose, GP0, port
using the AXI4-Lite interface. When initialized, DMA gets the master access
to the DDR through the HP0 port. The communication between the DMA and
the DDR happens using the AXI4-memory mapped interface. With the custom
RL-deconvolution Module DMA communicates via the AXI4-stream interface.
RL-Deconvolution module is also initialized by the PS through the same HP0
port. An additional AXI Interconnect IP ensures the correct routing of the signal
from the GP0 port to the corresponding modules. Concat IP core [54] is used
to combine several bus signals into one. In this design, concat IP core is used
to connect the DMA interrupts to the PS’s interrupt request, IRQ, generator.
DMA has two interrupt outputs, one for the Memory Map to Stream channel,
mm2s_introut and one for the Stream to Memory Map channel, s2mm_introut.
The PS gets an interrupt when either the last element of the input image is
send to the DMA and the m_axis_mm2s_wlast signal is set high or when the
last element of the output image is send to the PS and the m_axi_s2mm_rlast
signal is set to one. The PS will get notified by the interrupt system when the
RL-deconvolution is finished processing data.

Figure 5.3: The overall architecture for RL-deconvolution.
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The generated bit-stream is exported to the Xilinx Software Development Kit
(SDK), from which the implemented hardware design is tested. Processing is done
band by band for a 3-D hyperspectral image. A C-script is responsible for reading
one image band from an SD-card, storing these band in the external memory and
initializing the hardware module. The initialization starts by writing the desired
number of iterations, k, into the configuration register, and also deciding which
version of the algorithm to run. The degraded band, Yp, is sent to the hardware
module and after k iterations, the restored image X̂

p
is received by the PS and

is saved in the SD-card. The process repeats for all bands in the hyperspectral
data set. The flow of the RL-deconvolution for hyperspectral images is shown in
Figure 5.4.

Figure 5.4: Flow of the RL-deconvolution for hyperspectral images.
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5.2 Architecture-2

5.2.1 Functional and RTL Verification

The functionality of the RL-deconvolution, both the standard- and the accel-
erated versions, implemented in Architecture-2 is tested against the software
implementation written in C. Software is implemented using fixed-point repre-
sentation, and boundary conditions equal to MP-BCs, i.e., equivalent to the
algorithm implementation in Architecture-1. The complete testbech is shown in
Figure 5.5. In consists of a C-code block, which produces the degraded image
and a reference restored image, and a testbech written in VHDL. In the testbech
the degraded image and the reference restored image are read from a text file and
stored in the BRAMs. Then, the number of iterations and σ for the restoration
kernel are decided and written to the RL-deconvolution module through the
AXI4-Lite interface. The degraded image is sent to DUT and the restored by
DUT image is compared to the reference restored image by the monitor block
shown in Figure 5.5. If the error count is equal to zero, the test is considered to
be passed.

Figure 5.5: Verification of Architecture-2.

The difference between the testbench for Architecture-2 and Architecture-1 is
a loop block around BRAM storing the degraded image and DUT, shown in
Figure 5.5. The degraded image needs to be send to the RL-deconvolution module
for each new iteration. The image is fetched from the BRAM when the signal
blurred_axis_tready is set to 1 by the DUT.
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For simulation purposes one spectral band from the Coast hyperspectral data
set is degraded in the software module with a Gaussian kernel of size 7× 7 and
9× 9, the result with a kernel of size 9× 9 is shown in Figure 5.6(a). Then, the
images are restored in both the software and hardware module. The restoration
kernels are equal to the corresponding degradation kernels. The deconvolution
result after 10 RL-deconvolution iterations using the kernel of size 9× 9 is shown
in Figure 5.6(b) and Figure 5.6(c), for software and hardware respectively. The
difference between the software generated output, X̂

p

true, and hardware generated
output, X̂

p
, is found by calculating the Euclidean distance between the two.

The error matrix is shown in Figure 5.6(d). The error is equal to zero, except
for the upper and bottom rows. This is due to the way convolution is done in
the Architecture-2. This is illustrated in Figure 2.3 in Section 2.1, where the
first and the last output samples are generated randomly. The amount of this
random samples depends on the kernel size, e.g., for a kernel of size 9× 9, the
number is equal to 4 samples. These four samples are different in the software
and hardware implementations. For each iterations the difference grows due to
the way convolution is performed. This is the expected behaviour, and does not
affect the deconvolution results.
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(a) Degraded image. (b) Software: 10 iter.

(c) Hardware: 10 iter. (d) Error matrix (size equal to the
image size).

Figure 5.6: Visual restoration results from the functional verification for Architecture-
2.
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Chapter 6

Results and Discussion

This chapter gives the results, regarding timing and resource utilization, for the
Architecture-1 and Architecture-2 implementations on a target FPGA, i.e., Xilinx
Zynq-7020.

6.1 Resource utilization

6.1.1 Architecture-1

Architecture-1 uses three BRAM modules, where two of them (BRAM_G and
BRAM_F ) store the data with width equal to 16 bits and one (BRAM_T )
store the data with width equal to 22 bits. As explained in Appendix C, the
maximum number of elements which can be stored in each BRAMs is equal to
84954. For an image of size 1200× 54, the total amount of block RAMs needed
for storing the images is equal to 108. Figure 6.1 shows the resource utilization
for the Architecture-1 using a variable image size N ×M . Figure 6.1(a) shows
the utilization results as a function of image width, when image height N is equal
to 1200. Figure 6.1(b) shows the utilization results as a function of image height,
when image width M is equal to 1200.

Architecture-1 uses 20 DSPs, not shown in Figure 6.1, independent of the image
size, where 18 DSPs are used in the convolution module and 2 DSPs are used in the
multiplication module. Multiplication uses two DSPs due to the implementation
of the accelerated RL-deconvolution. The line buffers in the convolution module
are implemented in LUTRAMs as distributed RAM. The size of the line buffer
depends on the image width. This can be seen from Figure 6.1(b), where the
resource usage in respect to the LUTRAMs, as well as FFs and LUTs, increases
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(a) (b)

Figure 6.1: Architecture-1, resource utilization as a function of the image width (a)
and as a function of the image height (b).

when the width is set to 1200, i.e., M > N .

6.1.2 Architecture-2

Architecture-2 stores one image of size N ×M with width equal to 16 bits in
BRAMs. In addition, there are two FIFOs implemented in BRAMs storing data
with width equal to 16 bits and 32 bits. If the width of the image is set to a
fixed constant, then the maximum image height can be found as described in
Appendix C, e.g., for an image with width equal to M = 1200, the maximum
height is equal to N = 150. On the other hand, if the image height is fixed, then
for an image with height equal to 1200, the maximum width is then equal to
218. Figure 6.2(a) shows utilization results as a function of image width, when
image height N is equal to 1200. Figure 6.2(b) shows the utilization results as a
function of image height, when image width M is equal to 1200.

Architecture-2 uses 45 DSPs independent of the image size, where 2 × 18 DSPs
are used in convolution modules and 2 DSPs are used in the multiplication
module. The rest of the DSPs are used in the controller module. As seen in
Figure 6.2, the resource usage is higher if the image width is bigger than the
image height. The reason is the use of the image width dependent line buffers in
the convolution module, similar to the Architecture-1.

86



6.2 Execution time

(a) (b)

Figure 6.2: Architecture-2, resource utilization as a function of the image width (a)
and as a function of the image height (b).

6.2 Execution time

6.2.1 Architecture-1

For an image of size 1200× 54 the Worst Negative Slack (WNS) is equal to 2.0 ns
when the frequency is set to 100 MHz. This means that the maximum frequency
of 125 MHz can be achieved. The execution time for a bare-metal application
run on the Xilinx Zynq SoC is measured using the Xilinx library xtime_l.h. The
global timer is used, where a counter is increased every two clock cycles. Image
is of size 260× 250. The time measured from the time the last valid input pixel
is sent to the accelerator to the time the last valid output pixel is received. One
RL-deconvolution iteration takes 138358 clock cycles or 1.38 ms. The initial
latency is equal to N ×M = 65000 clock cycles. Execution time is plotted as a
function of number of iterations, without considering the initial latency, shown
in Figure 6.4. The plot is the same for both the standard and the accelerated
RL-deconvolution. The difference in the number of iterations needed in the case
of the standard and accelerated RL-deconvolution is shown in Figure 6.3.

In Figure 6.4 the M-RRE is shown for both algorithms, where the same M-RRE
is achieved twice as fast for the accelerated RL-deconvolution compared to the
standard RL-deconvolution.
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Figure 6.3: Execution time as a function of number of iterations. Measured from the
time the last input element is sent until the last element of the output image is received.

Figure 6.4: M-RRE as a function of number of iterations.
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6.2.2 Architecture-2

There are two slightly different versions of Architecture-2, the one is run-time
configurable with respect to the kernel size and another one has a fixed kernel
size. The maximum frequency of the former version is equal to 50 MHz, while
the maximum frequency of the latter is equal to 136 MHz. The implementation
difference does not affect the total number of clock cycles. Execution time for
Architecture-2 is taken from the simulations. The tested image is of size 260×250.
One iteration takes 69071 clock cycles (or 0.69 ms running on 100 MHz).

Figure 6.5: Execution time as a function of number of iterations for Architecture-2.
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6.3 Power estimation

6.3.1 Architecture-1

Power estimation are done on the post-synthesis design using the power estimation
tools provided bu Xilinx Vivado. Figure 6.6 shows power estimation when using
an image of size equal to either 1200 ×M , marked red, or N × 1200, marked
blue.

Figure 6.6: Power estimation for Architecture-1.

As for the resource utilization, the power usage is higher for M > N .
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6.4 Discussion

Resource usage

As seen in Section 6.1, for both Architecture-1 and Architecture-2, the resource
utilization depends on the image orientation, i.e., the resource usage is higher
if image width is larger than the image height. It should be noted, that the
usage of BRAMs depends solely on the total amount of stored samples. For
an image size equal to 1200 × 54, which is maximum possible image size for
the Architecture-1 implemented on Zynq-7020, ∼ 80 % of BRAMs are used in
Architecture-1 and ∼ 20% of BRAMs are used in Architecture-2. The result is
that the Architecture-2 can work with image containing 196800 more samples.
Compared to other resources, the Architecture-1 uses ∼ 5 % of available LUTs,
while the Architecture-2 uses ∼ 15 % of available LUTs. The biggest disadvantage
of the Architecture-2, is a higher DSP element use, that is twice as high as for
the Architecture-1.

Execution time

Architecture-1 and Architecture-2 are compared, with respect to the execution
time, to the state-of-the-art implementations presented in Section 2.4.3, the
HW/SW codesign implementation of RL-deconvolution algorithm presented in
Section 2.4.2 and a software only implementation of RL-deconvolution tested
on the target FPGA. Table 6.1 shows the comparison between the different
implementations.

Table 6.1: Comparison between several RL-deconvolution implementations.

Iter. Image size PSF Time (ms) Freq. (MHz)
[47] 15 640×480 <10 40 -
[45] 10 800×525 9×9 80 61
[44] 60 64×64 13×13 78 100
SW-Only 1 512×512 9×9 164 100
HW/SW codesign 1 512×512 9×9 70.1 100
Proposed Arch-1 1 640×480 9×9 6.32 100
Proposed Arch-21 1 640×480 9×9 3.14 100

1Execution time is shown for the Architecture-2 which does not support the run-time
configurable kernel size.
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6.4 Discussion

Assuming, for an easier comparison, that the execution time scales linearly and
that each iteration takes equal amount of time. The estimated execution times
are shown in Table 6.2

Table 6.2: Comparison between several RL-deconvolution implementations.

Iter. Image size PSF Time (ms) Freq. (MHz)
[47] 1 640×480 <10 2.66 -
[45] 1 640×480 9×9 5.85 61
[44] 1 640×480 13×13 97.5 100
SW-Only 1 640×480 9×9 192.19 100
HW/SW codesign 1 640×480 9×9 82.14 100
Proposed Arch-1 1 640×480 9×9 6.32 100
Proposed Arch-2 1 640×480 9×9 3.14 100

From Table 6.2, it is clear that both proposes architectures outperforms the
previously implemented SW-only and solution and HW/SW codesign solutions.
The speed-up by a factor of 30.4 and 13.0 is achieved for the Architecture-1
compared to the SW-Only implementation and HW/SW codesign implementation,
respectively and the speed-up by a factor of 61.2 and 26.2 is achieved for the
Architecture-2 compared to the SW-Only implementation and HW/SW codesign
implementation, respectively. Both proposed architectures do also compare well
with the state-of-the-art solutions. The architecture in [45] is most similar,
in terms of the algorithm implementation (i.e., kernel is assumed to be space-
invariant and the images are extended before performing the convolution), to the
proposed architectures. A speed-up by a factor of 1.8 is achieved when comparing
the Architecture-2 to [45]. In addition, the proposed architectures implement the
accelerated RL-deconvolution, with β = 2, thus decreasing a number of iterations
to be executed by a factor of two.

92



Chapter 7

Conclusion

RL-deconvolution algorithm, used for reducing degradation (e.g., the optical
blur) in hyperspectral images, was designed and implemented in FPGA. The 3-D
hyperspectral images were assumed to be cross-channel independent, and were
therefore modeled as a collection of 2-D independent images. Degradation was
modeled as a convolution between the 2-D images and a point spread function, also
called kernel, was assumed to be estimated prior to the deconvolution. The chosen
algorithm has slow convergence rate, hence an accelerated RL-deconvolution
version yielding a decrement in the number of iterations to be executed was
implemented alongside the standard RL-deconvolution. It was found that the
standard RL-deconvolution, in some cases (e.g., in the presence of noise), gave
better results than the accelerated RL-deconvolution, thus it was decided to have a
possibility to choose the algorithm version at a run-time. The input image size was
preserved by extending the image boundaries before performing convolution. It
was found that the boundary conditions, called VC-BCs, performs best compared
to the two other tested BCs, i.e., Z-BCs and MP-BCs. The comparison was done
with respect to the M-PSNR, M-SSIM and by visual comparison.

Two architectures were implemented, one (called Architecture-1) optimized with
respect to the communication with the external memory and the other one (called
Architecture-2) optimized with respect to the internal storage. Both implemented
architecture are scalable with respect to the image size and run-time configurable
with respect to the number of RL-deconvolution iterations. This results in a more
general solution compared to some of the state-of-the-art implementations, which
support only a limited amount of iterations. In addition, the Architecture-2 is
run-time configurable with respect to the kernel size, where maximum kernel
size is equal to 9× 9. The use of a correct kernel size is important as a wrongly
chosen one can worsen the degraded image. Therefore a flexible design in term
of the kernel size is significant.
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7.1 Future Work

The proposed hardware implementations are compared to a Software-Only im-
plementation of the RL-deconvolution running on a target platform (i.e., Xilinx
Zynq-7020) and a HW/SW codesign for RL-deconvolution, where the time con-
suming convolution is accelerated in FPGA. A speedup by a factor of 30 and 60
is achieved compared to a Software-Only for Architecture-1 and Architecture-2,
respectively. A speedup by a factor of 13 and 26 is achieved compared to a
HW/SW codesign implementations for Architecture-1 and Architecture-2, respec-
tively. The calculated speed-up does not take the communication with an external
memory into the account. Compared to the state-of-the-art implementation of
the RL-deconvolution, a speed-up by a factor of 1.8 is achieved for Architecture-2.

7.1 Future Work

The Architecture-2 was optimized with respect to the internal storage on FPGA,
nevertheless the proposed architecture still uses a high amount of BRAM com-
ponents. The number depends on the degraded image size. A possible future
work would be to store all the data in the external memory. The increase in the
communication with the external memory could be a possible bottleneck. In
addition, the run-time configurable with respect to the kernel size version of the
Architecture-2 has a maximum frequency equal to 50 MHz. This could possibly
be improved by further pipelining the design.

In addition, a few extra features could be implemented; image registration, kernel
estimation and a stopping criteria for the RL-deconvolution algorithm. These
features together with the proposed deconvolution implementation would make a
complete image spatial reconstruction system ready to be placed on a satellite.
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Appendix A

State Diagrams

A.1 Architecture-1

Convolution&Division Controller

Convolution&Division Controller in Architecture-1 is divided into three smaller
blocks, the main Convolution&Division module, a Convolution 1 module and a
Division module. The state diagram for the Convolution&Division Controller
is shown in Figure A.1.1 and the corresponding input/output signal names are
shown in Table A.1.1. The state diagram for the Convolution 1 Controller is
shown in Figure A.1.2 and the corresponding input/output signal names are
shown in Table A.1.2. The state diagram for the Division Controller is shown
in Figure A.1.3 and the corresponding input/output signal names are shown in
Table A.1.3.

The constants in Figure A.1.1, Figure A.1.2 are equal to

START_DIV = (M + (W − 1))× (W − 1) + 16 (1.1)
PAD_1 = w − 1 (1.2)
PAD_2 = (M + (W − 1))× (W − 1)/2 + 4 (1.3)

STOP_1 = (N + (W − 1)/2)× (M + (W − 1))− 4 (1.4)
STOP_2 = (N + (W − 1))× (M + (W − 1)) (1.5)
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Figure A.1.1: State diagram for the Convolution&Division Controller.

Table A.1.1: Input/Output signal names for the state diagram of Convolution&Divi-
sion Controller.

Bit Output

0 enable_counter_1

1 stop_fsm_1

2 enable_input_to_convolution

3 enable_input_to_division

4 reset_counter

5 enable_counter_2

6 reset_modules
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Convolution 1 Controller

Figure A.1.2: State diagram for the Convolution 1 Controller.

Table A.1.2: Input/Output signal names for the state diagram of Convolution 1
Controller.

Bit Output

0 enb_0_division

1 enb_0

2 enable_pad

3 en_conv

4 count_pad_en_in

5 count_lines_in_en
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Division Controller

Figure A.1.3: State diagram for the Division Controller.

Table A.1.3: Input/Output signal names for the state diagram of Division Controller.

Bit Output

0 enable_div

1 enb_1

2 m00_axis_tvalid

3 m00_axis_tlast

4 m01_axis_tvalid

5 m01_axis_tlast

6 count_pad_en_out

7 count_lines_out_en
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Convolution&Multiplication Controller

Convolution&Multiplication Controller in Architecture-1 is divided into three
smaller blocks as well, the main Convolution&Multiplication module, a Con-
volution 2 module and a Multiplication module. The state diagram for the
Convolution&Multiplication Controller is shown in Figure A.1.4 and the corre-
sponding input/output signal names are shown in Table A.1.4. The state diagram
for the Convolution 2 Controller is shown in Figure A.1.5 and the corresponding
input/output signal names are shown in Table A.1.5. The state diagram for
the Multiplication Controller is shown in Figure A.1.6 and the corresponding
input/output signal names are shown in Table A.1.6.

105



Figure A.1.4: State diagram for the Convolution&Multiplication Controller.

Table A.1.4: Input/Output signal names for the state diagram of
Convolution&Multiplication Controller.

Bit Output

0 enable_counter_1

1 stop_fsm_2

2 enable_input_conv

3 enable_input_mult

4 reset_counter

5 enable_counter_2

6 reset_modules
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Convolution 2 Controller

Figure A.1.5: State diagram for the Convolution 2 Controller.

Table A.1.5: Input/Output signal names for the state diagram of Convolution 2
Controller.

Bit Output

0 ena_2

1 enable_pad

2 enable_conv

3 count_pad_en_in

4 count_lines_en_in
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Multiplication Controller

Figure A.1.6: State diagram for the Multiplication Controller.

108



Table A.1.6: Input/Output signal names for the state diagram of Multiplication
Controller.

Bit Output

0 enable_write

1 en_mult

2 enb_0

3 count_pad_en_out

4 count_lines_en_out

5 stop_mult

6 last
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Appendix B

Block Diagrams

B.1 Architecture-1

Figure B.1.1: Block diagram for Architecture-1.
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Figure B.1.2: Block diagram for Architecture-1 connected to the processing system.
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B.2 Architecture-2

Figure B.2.1: Block diagram for Architecture-2.
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Appendix C

Maximum Image Sizes

A target FPGA (e.i., Xilinx Zynq-7020) has 140 Block-RAM which results in a
total of 4.9 Mib1 of memory. In addition, when using the data width equal to o
8, 16 or 32 bits, the capacity of one block RAM is reduced to 32 Kb [49].

Architecture-1 stores three equal sized images internally in the accelerator. Two
of the images has data width equal to 16-bits, and one image has data width
equal to 22 bits. The maximum number of samples in one image can be found as

xmax,theoretical =
⌈

32× 1024× 140
22 + 16 + 16

⌉
= 84954 (3.1)

Sample are stored in ab array, where each element has its own address. The
address size is equal to the poser of two, therefore the real maximum number of
samples is found from

xmax = dlog2(84954)e = 16 (3.2)

and consequently equal to xmax,real = (216 − 1) = 65535 elements in total. For
example, for an image with width equal to M = 1200 samples, the maximum
height of the image is equal to

Nmax =
⌈

65535
216 − 1

⌉
= 54 (3.3)

1 [1] writes 4.9 Mb (megabits) and not 4.9 Mib (megabibits). There are 140 BRAMs
each of size 36 Kib which in total is equal to 5160960 bits, which in terms is equal to
5160960 ∗ 2−20 = 4.9Mib.
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Architecture-1 also contains 8 line buffers in the convolution block, which poten-
tially can be implemented in BRAMs. The size of one line buffer depends on the
image width. Since the number of samples in one image row is relatively low,
the synthesis tool tends to implement the element in DRAMs in stead.

Architecture-2 stores only one image internally, but it does also contain two
FIFOs implemented in BRAMs. The FIFO sizes depend on the image size and
the maximum kernel size (i.e., equal to 9), and are found by

F0 = M × ((W − 1)/2) + 3 = M × 4 + 3 (3.4)
F1 = M × (3× (W − 1) + 8) + 52 = M × 32 + 52. (3.5)

The data stored in FIFO_0 has width equal to 32 bits, where the real data is
equal to 22 bits, but extended to 32 bits in order to be connected to the external
Xilinx FIFO. The data stored in FIFO_1 has width equal to 16 bits and the
data width of the elements stored in the BRAM is equal 16-bits. Additionally,
the number of elements stored in Xilinx FIFO is a power of two. The number of
samples if found from the following equations

F0bram =
⌈

2dlog2(F0)e × 32
36 ∗ 1024

⌉
(3.6)

F1bram =
⌈

2dlog2(F1)e × 16
36 ∗ 1024

⌉
(3.7)

M = 32× 1024× (140− F0bram − F1bram)− F0× 32 F1× 16
16×N (3.8)

which for N = 1200 gives Mmax = 135, which in turn results in a possibility to
work with images containing 97200 more samples than for the Architecture-1,
when using the Xilinx Zynq-7020.
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