
Master of Science in Communication Technology
June 2011
Danilo Gligoroski, ITEM
Carsten Maartmann-Mo, Ernst & Young

Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Cloud Storage Vault

Eirik Haver
Eivind Melvold
Pål Ruud

Problem Description

Modern cloud storage systems that encrypts data for "at rest" protection often has
access to the stored data, since the encryption is performed with an encryption key
known by the service provider.

The candidates will design an application in which all data stored in the cloud are
encrypted with a key that cannot be obtained by the service provider.

Other goals of the application should be the ability to share encrypted �les with
others users, without leaking the encryption key to the service provider, and make
it as user friendly as possible without compromising security. The students will
develop a proof of concept implementation of the design.

Assignment given: 24. January 2011
Supervisor: Danilo Gligoroski
External Supervisors: Carsten Maartmann-Moe, Ernst & Young AS

Antonio Martiradonna, Ernst & Young AS

Abstract

Today, major IT-companies, such as Microsoft, Amazon and Google, are o�ering
online storage services to their customers. This is a favourable solution � as op-
posed to regular storage � in terms of low costs, reliability, scalability and capacity.
However, important security features such as data privacy and integrity are often
absent.

To address these issues, a cryptographic architecture is proposed that ensures
the con�dentiality and integrity of the data stored by users, independent of the
trust of the provider. This includes secure sharing of private data among users of
the same service.

The underlying cryptographic architecture is based on existing open source sys-
tems and cryptographic primitives. The architecture was implemented as a reusable
general library in Java. An Android client was created, and several performance
tests were conducted1.

The proof of concept system shows that it is possible to implement the proposed
scheme, and that the cryptographic operations does not signi�cantly a�ect the user
experience on an Android device. Possible weaknesses of the scheme are identi�ed.

We present a scheme for secure storage and sharing of �les on an untrusted
server, and argue for its validity. To support streaming functionality, the scheme
could be extended with hash trees to validate small parts of a �le at the time.

1Source code available at https://github.com/zerqent/cloud-storage-vault/

I

https://github.com/zerqent/cloud-storage-vault/

II

Preface

The work behind this report was carried out during the spring semester in 2011 at
the Norwegian University of Science and Technology (NTNU), Institute of Telemat-
ics (ITEM). The report is the �nal result of a master thesis in information security
written by three graduate students at NTNU. The thesis was assigned by Ernst &
Young AS Norway, and acknowledged by ITEM.

We would like to thank our external supervisors Carsten Maartmann-Moe and
Antonio Martiradonna, at Ernst & Young AS, for their valuable contributions.
We would also like to thank Danilo Gligoroski at the Department of Telematics
for providing constructive feedback throughout the semester, and for giving us the
opportunity to write this thesis. In addition, we would like to thank all contributors
of code and documentation to the open source software Tahoe-LAFS, which has
given us great inspiration and building blocks for our thesis.

Best regards,

Eirik Haver, Eivind Melvold and Pål Ruud

June, 2011

III

IV

Contents

Abstract I

Preface III

List of Figures IX

List of Tables XI

Listings XIII

Acronyms XV

1 Introduction 1
1.1 Motivation . 2
1.2 Related Work . 2
1.3 Scope and Objectives . 3
1.4 Limitations . 3
1.5 Methodology . 3
1.6 Outline . 4

2 Background 7
2.1 Cloud Computing . 7

2.1.1 Service Models . 7
2.1.2 Deployment Models . 8

2.2 Security Services . 8
2.3 Security Attacks . 9

2.3.1 Attacks on Cryptographic Primitives 10
2.3.2 Security Considerations in Cloud Computing 10

2.4 Cryptographic Primitives and Applications 10
2.4.1 Randomness . 10
2.4.2 Encryption . 11
2.4.3 Cryptographic Hash Functions 12
2.4.4 MAC Functions . 12
2.4.5 Key Derivation Functions . 13
2.4.6 Digital Signatures . 13

V

2.4.7 Digital Certi�cates and PKI 13

2.4.8 SSL/TLS . 14

2.5 Research on Security in Cloud Computing 14

2.5.1 Privacy as a Service . 14

2.5.2 Privacy Manager . 16

2.5.3 Trusted Cloud Computing Platform 16

2.5.4 Cryptographic Cloud Storage 18

2.6 Existing Solutions . 20

2.6.1 Dropbox . 20

2.6.2 Tahoe-LAFS . 20

2.6.3 Wuala . 22

3 Technical Procedure 25

3.1 Architectural Overview . 25

3.1.1 File Storage . 26

3.1.2 Authorization, Authentication and Accounting Layer 27

3.1.3 User Scenarios . 28

3.1.4 Constraints . 31

3.2 Cryptographic Architecture . 31

3.2.1 Security Concepts . 32

3.2.2 File and Directory Operations 33

3.2.3 Recommendations for Cryptographic Primitives 35

3.3 Server Implementation . 40

3.3.1 Communication and Architectural Patterns 40

3.3.2 Environment . 42

3.3.3 Implementation Details . 43

3.4 Client Implementation - Android . 44

3.4.1 Environment . 44

3.4.2 Architectural Patterns . 45

3.4.3 Implementation Details . 45

3.4.4 Sharing . 48

3.4.5 Adding a New Client . 50

3.4.6 Securing the Client . 50

3.4.7 User Interface . 51

4 Experimental Procedure 55

4.1 Performance of the Client . 55

4.1.1 Measured Operations . 55

4.1.2 The Measurement Procedure 57

4.1.3 Eliminating Bottlenecks on Android Devices 57

4.1.4 Sources of Error . 57

4.2 Security of the Encrypted Keyring 58

VI

5 Results 61
5.1 Performance of the Client . 61

5.1.1 Files . 61
5.1.2 Folders . 62

5.2 Security of the Encrypted Keyring 64
5.2.1 Brute Force and Dictionary Attack 64
5.2.2 Cluster Dictionary Attack . 65

6 Discussion 67
6.1 Security of the Cryptographic Scheme 67

6.1.1 Con�dentiality . 68
6.1.2 Integrity . 68
6.1.3 Non-repudiation . 68
6.1.4 Authentication . 69
6.1.5 Access Control . 69
6.1.6 Availability . 69
6.1.7 Sharing . 70
6.1.8 Supporting Multiple Cryptographic Primitives 70

6.2 Implementation . 70
6.2.1 Choice of Use Case . 70
6.2.2 Key Distribution . 71
6.2.3 Performance . 71
6.2.4 Security of the Client . 72

7 Future Work 75
7.1 Simplifying the Server . 75
7.2 Key Distribution . 75
7.3 Deletion of Files . 76
7.4 Veri�cation of Files . 77
7.5 Version Control System . 78
7.6 Deduplication . 79

8 Conclusion 81

Appendices 89

A BFDA and CDA Implementations 89
A.1 Brute Force and Dictionary Attack 89

A.1.1 Implementation Details . 89
A.2 Cluster Dictionary Attack . 91

A.2.1 Environment . 91
A.2.2 Implementation Details . 92

B Attachments 95
B.1 Electronic Attachment . 95
B.2 Attached Disc . 95

VII

VIII

List of Figures

2.1 An illustration of the CBC mode of operation 12
2.2 System model of PasS . 15
2.3 System architecture of TCCP . 17
2.4 Cryptographic cloud storage, personal scenario. 18
2.5 Cryptographic cloud storage, enterprise scenario. 19
2.6 Tahoe-LAFS: Insertion of a new �le 21
2.7 Creating a new group in Wuala . 23

3.1 Overview of user functionality . 26
3.2 File system structure . 27
3.3 Scenario: Downloading a �le . 29
3.4 Scenario: Uploading a �le . 29
3.5 Scenario: Alice shares a �le with Bob 30
3.6 Sharing read-only folders . 31
3.7 Behind the scenes: Uploading a �le 34
3.8 Behind the scenes: Downloading a �le 35
3.9 Behind the scenes: Creating a directory 36
3.10 Verifying a directory . 37
3.11 Decrypting the contents of a directory and obtaining the signing key 38
3.12 Architectural layers in the server application. 41
3.13 Server module structure . 43
3.14 Cryptographic entities and their relations 46
3.15 Serialized form of a capability . 46
3.16 Establishing a share by copying the key 49
3.17 Establishing a share by using barcodes 50
3.18 The keyring format with encrypted �elds shaded in blue 51
3.19 Main screen of the client application 52
3.20 Browsing the cloud storage from the client 52
3.21 Context menu showing actions available for items stored 53

5.1 Benchmark of how long it takes to sign and encrypt a folder 64
5.2 Results from running brute force and dictionary attacks against an

encrypted keyring. 65

7.1 Theoretical cycle in the directory graph 77

IX

7.2 Hash tree of a �le . 78
7.3 Tahoe-LAFS deduplication scheme 80

X

List of Tables

3.1 The contents of a Capability . 32
3.2 The REST interface of the server application. 41

4.1 HTC Desire Speci�cations . 56
4.2 HTC Hero Speci�cations . 56
4.3 Test computer Speci�cations . 56
4.4 Hardware Speci�cations for Cluster Instances 59

5.1 File upload/download on CSV . 62
5.2 File upload/download on CSV with encryption and hashing disabled 62
5.3 Speed of individual operations on HTC Desire with a 4,38 MB �le . 62
5.4 Create a blank folder . 63
5.5 Serialize the contents of a folder with n*86 bytes of data 63
5.6 Encrypt and sign the contents of a folder with n*86 bytes of data . . 63
5.7 Verify a folder with n*86 bytes of data 63
5.8 Speed results of running BFDA . 64

XI

XII

Listings

3.1 URL mapping in �leserver.py . 43
3.2 Pipe and �lter upload of a �le . 47
4.1 Running local brute force attack . 59
4.2 Running local dictionary attack . 60
4.3 Starting Hadoop Cluster with HDFS 60
4.4 Copying �les into HDFS . 60
4.5 Executing the CDA Attack . 60
A.1 bruteForceAttack function . 90
A.2 dictionaryAttack function . 90
A.3 Mapper function in CDAMapper . 92

XIII

XIV

Acronyms

AES Advanced Encryption Standard

BFDA Brute Force and Dictionary Attack

CA Certi�cation Authority

CBC Cipher Block Chaining

CDA Cluster Dictionary Attack

CSPRNG Cryptographically Secure Pseudorandom Number Generator

CPU Central Processing Unit

CSV Cloud Storage Vault

CTR Counter

DRY Don't Repeat Yourself

DSA Digital Signature Algorithm

DSS Digital Signature Scheme

EC2 Elastic Compute Cloud

ECB Electronic Codebook

GPU Graphics Processing Unit

FEC Forward Error Correction

HDFS Hadoop Distributed File System

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IaaS Infrastructure as a Service

IV Initialization Vector

XV

JCA Java Cryptography Architecture

JCE Java Cryptographic Extensions

JVM Java Virtual Machine

LAFS Least Authority File System

MAC Message Authentication Code

MITM Man-in-the-middle

NIST National Institute of Standards and Technology

P2P Peer-to-Peer

PBKDF2 Password-Based Key Derivation Function version 2

PaaS Platform as a Service

PasS Privacy as a Service

PEP Python Enhancement Proposal

PGP Pretty Good Privacy

PKI Public Key Infrastructure

QR Quick Response

RAM Random Access Memory

ROM Read Only Memory

REST Representational State Transfer

RSA Rivest, Shamir and Adleman

SaaS Software as a Service

SDK Software Development Kit

SHA Secure Hash Algorithm

SQL Structured Query Language

SSL Secure Socket Layer

TCCP Trusted Cloud Computing Platform

TCG Trusted Computing Group

TLS Transport Layer Security

TPM Trusted Platform Module

XVI

TTP Trusted Third Party

URI Uniform Resource Indeti�er

URL Uniform Resource Locator

VM Virtual Machine

WPA Wi-Fi Protected Access

WSGI Web Server Gateway Interface

XVII

XVIII

1
Introduction

The term Cloud Computing is not clearly de�ned [1], but involves the provision
of software or computational resources available by demand via the Internet. In a
draft [2], the National Institute of Standards and Technology (NIST) de�nes cloud
computing as:

�Cloud computing is a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of con�gurable computing re-
sources (e.g., networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal management e�ort
or service provider interaction.�

More and more of the traditionally locally hosted services are moving to the
cloud. The amount of �exibility and cost savings this provides, can be extensive.

Today, we take the services that the established cloud providers o�er us for
granted. For example, both Google and Microsoft provide services for online docu-
ment editing, email, �le storage and more for free, and available at any time from
anywhere [3, 4].

However, this often comes at a cost of reduced privacy, as the control over the
hosting environment is lost. Users are therefore forced to increasingly think about
how the data stored online can leak to unwanted people, either by accident, or by
purpose by unfaithful servants. Should it be su�cient to trust the security policies
of the providers, or is it possible to handle the privacy issues locally?

This thesis deals with these question and suggests a scheme to make data stored
in the cloud secure. We de�ne the criteria of a secure storage system as follows.

1

1. Only authorized people can access the data.

2. Con�dentiality is to be assured in a safe environment prior to storing data
at the provider.

3. An intrusion of the server does not a�ect the con�dentiality of the data.

4. It is possible to verify the integrity of the stored data.

5. The storage scheme is documented in detail, such that users can easily un-
derstand the scheme and accept it on that basis.

6. An implementation of the storage scheme is open source.

7. The use of a trusted third party is not mandatory.

1.1 Motivation

There has lately been introduced numerous applications and architectures [5, 6, 7]
that ensure privacy and integrity of data stored at an untrusted provider. However,
many of these alternative systems are missing one or more properties towards being,
as we de�ne it, a completely secure cloud storage solution. This has motivated us
to create a scheme that solves all of these challenges.

Additionally, we do see this as a golden opportunity to learn more about soft-
ware development, development methodologies, team work, and practical use of
information security and cryptography.

1.2 Related Work

In the later years, there has been a lot of research done in the �eld of security in
cloud computing. The problems that arise are fundamentally not di�erent from
those revealed by classic information security scenarios. The key point is that when
using a service hosted by someone you do not know, you have to treat that someone
as untrusted and as a possible attacker. Generally speaking, you loose control over
the hosting environment, and hence has to deal with the security issues this implies.

In Section 2.5, we present four papers [7, 8, 6, 9] which try to solve security
issues in a shared hosting environment. Common to all of these, is that they either
rely on special, secure and tamper-proof hardware and/or a trusted third party.

Another way of providing a solution to the same problem, is to give the respon-
sibility of the security operations to the client, i.e. in an environment that the user
has control of. In Section 2.6, we present three publicly available software services
that relates to this approach.

One of these applications, Tahoe-Least Authority File System (LAFS) [5], is
given special attention. This is because it is an open source and a well documented
piece of software, that answers most of the problems arising in an untrusted cloud
storage environment, thus it relates closely to the work performed in this thesis.

2

1.3 Scope and Objectives

There are two main objectives for this thesis, the �rst is to make a cryptographic
scheme that ful�ls the criteria mentioned in the introduction. The scheme shall
in addition provide the possibility of sharing stored data between multiple cloud
storage users, while sustaining desired security. The underlying scheme for sharing
data should further be applicable for both enterprise and personal user scenarios.

The second main objective is to implement the proposed scheme as part of a
proof of concept application for Android devices. The application shall be designed
for personal users and implement the most necessary features, and be measured in
security and performance.

Finally, it is important that the implementation of the cryptographic scheme
should be available as open source and well documented. This criterion exists
because the security should be veri�able to anyone interested in using the software.
In addition, we believe open source encourages participation and analysis of the
system which in turn will lead to a more secure system.

1.4 Limitations

We will focus on making an architecture that covers the scope and objectives, in an
easy to understand and thorough way. In addition, making core functionality, that
demonstrates the most important security features in a proof of concept system,
will be prioritized.

However, due to time and resource constraints, we will focus less on the follow-
ing:

� The language in the proof of concept client should be clear, but the Graphical
User Interface (GUI) itself will not be prioritized

� Experimentation with the proof of concept code, other than basic perfor-
mance and security measurements

� Experimentation with the proof of concept client on hardware equipment
other than what we easily have available at the time of testing

1.5 Methodology

The work behind this thesis, is carried out by the three authors in cooperation.
The methodology used, can be categorized based on the three main parts of this
work; the research, the design and abstraction part, and the software development
cycles.

The research will include an analysis of related systems, and a study of relevant
background theory. Based on this theory, we will use experimentation to create and
design a theoretical solution to the problem of secure storage and sharing of �les
on an untrusted server. We will work by iteratively analysing our experimentation
to �nd and correct �aws with the design.

3

The third part of the work, is the software development cycles of the proof of
concept application.

SCRUM We will work after SCRUM principles � an iterative and incremental
based framework for project management [10]. There does not exist a SCRUM
product owner for the system we will create, nor do we ful�l the requirements and
characteristics of a traditional SCRUM team[10]. Hence, we will use the principles
that are practically possible for us to follow:

� Daily stand-up with planning of the tasks of the current day

� Weekly sprint1 planning meetings

� Keep tasks on stickers, that we move between di�erent phases on a board: to
do, in progress, quality assurance and done. This is to keep track of progress
in the current sprint

� Continuously analyse the process, and improve it if possible

DRY We choose to follow the Don't Repeat Yourself (DRY) principle when de-
veloping software. Hunt and Thomas [11] de�ne DRY as:

Every piece of knowledge must have a single, unambiguous, authorita-
tive representation within a system.

This principle can be taken further, as to not develop something that has already
been developed in the past. If there exist a library for a given task that does
ful�l the requirements set for the speci�c task, we will choose to utilize the library
instead of developing similar code by ourselves.

1.6 Outline

This thesis is presented as per the following chapters:

Chapter 2 � Background provides background knowledge of the security ser-
vices, technologies and software used to form a secure cloud storage system. In
addition, relevant research and commercial solutions are scrutinized.

Chapter 3 � Technical Procedure goes through the development process of
the scheme and software produced by this thesis. It starts with an overview of the
architectural properties, followed by the more speci�c cryptographic scheme that
�ts in with the architecture. Lastly, the implementation of the proof of concept
system is described.

1A sprint is a de�ned period with a given set of tasks.

4

Chapter 4 � Experimental Procedure presents the measurements and prac-
tical experimentation done to look at how the system behaves performance- and
security-wise.

Chapter 5 � Results illustrates the �ndings from the experimentation.

Chapter 6 � Discussion re�ects on the speci�c implementation and results from
the previous chapters. Associated functionality to a secure cloud storage system is
presented and discussed.

Chapter 7 � Future Work suggests possible enhancements and additional fea-
tures that are applicable to the proposed cryptographic scheme.

Chapter 8 � Conclusion extracts the most important results and �ndings, and
concludes the work done in this thesis. Further work that can be applied to the
created system and scheme, are presented as �nal ideas.

In addition, included appendices consist of:

Appendix A � Other Relevant Implementations presents the implementa-
tions created to carry out the security experiments.

Appendix B � Attachments describes the contents of the supplied attach-
ments.

5

6

2
Background

The basis and underlying technologies for a secure storage service in the cloud
are numerous and often complex. In the following sections, we will go through
the security services, cryptographic primitives and attacks that are relevant. In
addition, we present related research and existing solutions available at the time
of writing.

2.1 Cloud Computing

In this section, we will extend from the de�nitions given in Chapter 1, and further
describe terms that are associated with Cloud Computing.

2.1.1 Service Models

NIST de�nes three service models which deals with which kind of service the con-
sumer can rent from a provider [2].

Software as a Service (SaaS) The capability of a consumer to run application
of the provider on cloud infrastructure, using a thin client, browser or similar, is
called SaaS. The web-based email service GMail1 can be seen as an example of
this.

1http://www.gmail.com/

7

http://www.gmail.com/

Platform as a Service (PaaS) The capability for a consumer to deploy software
onto the cloud, but without actually controlling the underlying platform, operating
system and so on, is called PaaS.

Infrastructure as a Service (IaaS) The capability provided to the consumer to
provision processing, storage, networks and other fundamental computing resources
where he can run arbitrary software, including operating systems and applications,
is called IaaS. An example is when renting a Virtual Machine (VM).

2.1.2 Deployment Models

The NIST draft lists several deployment models which deals with how the cloud is
organized in terms of where it is hosted, and who has access to it.

Private Cloud A private cloud is a cloud infrastructure operated solely for an
organization. The party managing the cloud, and where it is located is not de�ned.

Community Cloud A community cloud is a cloud infrastructure shared by sev-
eral organizations to serve a common concern. Where it is located, and who man-
ages it, is not given.

Public Cloud A public cloud is a cloud infrastructure where everyone, or at
least a large group, can have access, and is owned by an external provider of cloud
services.

Hybrid Cloud A hybrid cloud is a cloud infrastructure composed of two or more
clouds of any other model.

2.2 Security Services

This section explains the security services used in this thesis. A security service
is any processing or communication service that enhances the security of the data
processing systems and the information transfers of any organization, as de�ned
by Stallings [12, p. 12].

Con�dentiality Con�dentiality is the act of keeping a message secret from unau-
thorized parties. This can typically be done by either preventing other parties ac-
cess to the message at all, or by making the contents unreadable, for instance by
the use of encryption.

Integrity Integrity implies that a message cannot be altered without the re-
ceiving part noticing. In a security perspective, integrity deals with detecting,
preventing and recovering a message being changed by an attacker.

8

Availability The property of a system being accessible and usable upon demand
by an authorized system entity, are de�ned by the availability service.

Authentication Authentication is the act of an entity, ie. a user, service or
similar, to prove that it is what it claims to be.

Non-Repudiation Non-repudiation prevents both the sender and the receiver of
a message from refuting the authenticity of transmitted message. In other words,
one party can prove the involvement of the other party.

Access Control Access control is the prevention of unauthorized use of a re-
source.

2.3 Security Attacks

This section brie�y list security attacks relevant to this thesis, as de�ned by
Stallings [12, Ch. 1.3].

Active and Passive Attacks Two general classi�cations of security attacks
exist, where a passive attack attempts to learn or make use of information from the
system, but does not a�ect system resources. An active attack attempts to alter
system resources or a�ect their operation.

Tra�c Analysis Tra�c Analysis is the act of capturing and examining commu-
nication data sent between two parties. This information might contain secrets, or
for instance leak enough information about an encryption key to recover it.

Masquerade Masquerade is an active attack where the attacker pretends to be
one of the legitimate parties.

Replay Replay is an active attack where the attacker capture some data in a
communication session and subsequently retransmit that information.

Modi�cation of Messages Modi�cation of messages is an active attack where
the attacker alters some of the contents of a message sent between two communi-
cating parties.

Denial of Service Denial of Service is an active attack where the attacker seeks
to make resources unavailable for legit users, i.e. by overloading an application by
sending a great amount of tra�c.

Man-in-the-middle In the Man-in-the-middle (MITM) attack, an attacker in-
tercepts messages between the communicating parties and then either relay or
substitute the intercepted message. This an active attack.

9

2.3.1 Attacks on Cryptographic Primitives

Even though cryptographic primitives are designed to be secure, they might have
implementation �aws and be used in an improper fashion, e.g. by using wrong
parameters [12].

Cryptanalysis Attack A cryptanalysis attack is an attempt to deduce a speci�c
plaintext or to deduce the key being used in a ciphertext.

Brute Force Attack In a brute force attack, an attacker tries to obtain a secret
by testing the algorithm with up to all possible inputs. The secret might be an
encryption key, or the data fed into a cryptographic hash function.

A related attack is the dictionary attack, where the attacker tries to obtain a
secret by trying a subset of all known inputs, i.e. a prede�ned dictionary of words.

Side-Channel Attack A side-channel attack is an attack which does not di-
rectly attack a cryptographic primitive, but rather the implementation of it or the
environment it runs in [13].

2.3.2 Security Considerations in Cloud Computing

There are some considerations when using cloud services from an external provider,
as opposed to local hardware, software and platforms. Most notably that you loose
control of selecting the people which will have physical and digital access to the
infrastructure [14]. In essence, this means that the provider can read every data
sent to and from the servers as well as the data stored.

Another risk is that information might be leaked to other users of the same cloud
infrastructure. For instance it might be possible for a VM to leak information to
other VMs on the same host [14]. The highest risk of this is in a public cloud where
almost anyone can gain access.

2.4 Cryptographic Primitives and Applications

This section describes the low level security primitives and applications used through-
out this thesis.

2.4.1 Randomness

Randomness is a basic property that multiple of the cryptographic primitives rely
on, and hence deserves an explanation. Random data is informally de�ned as unpre-
dictable to the attacker, even if she is taking active steps to defeat the randomness
[13, p. 137].

A Cryptographically Secure Pseudorandom Number Generator (CSPRNG) pro-
duces pseudo random numbers based on a generated seed from a deterministic
algorithm. What separates a CSPRNG from a PRNG is that it has properties

10

making it suitable for use in cryptography. In other words, a CSPRNG should
pass statistical randomness tests while simultaneously resisting serious attacks and
predictions. Predictions should not be possible even if an attacker sees much of the
random data generated by the CSPRNG [13, p. 140].

2.4.2 Encryption

Encryption is the process of transforming some information into an unreadable
form for anyone not possessing a secret, the key. It is primarily used to enforce
con�dentiality, but can also be used for other purposes, e.g. authentication.

In its basic form, an encryption scheme consist of an encryption algorithm (the
cipher), a key and a message (the plaintext), that is all used to create an encrypted
message, i.e. the ciphertext. If a strong cipher is used, knowledge of the cipher,
and multiple plaintext and ciphertext pairs, should not be enough to obtain the
key, or to decrypt ciphertext with a corresponding unknown plaintext [13].

Block Cipher and Stream Cipher There are di�erent classi�cations of how
a cipher treats data [12, p. 32]. A block cipher will encrypt a block of data of
a speci�c size. If the data is larger than the block size used by the application,
a mode of operation is needed. In a stream cipher, the plaintext will usually be
combined with a pseudorandom key stream to generate the ciphertext.

Symmetric-key Encryption A cipher where the same key is used for both
encryption and decryption, is known as a symmetric-key algorithm [12, p. 32]. The
Advanced Encryption Standard (AES) is a block cipher that works on a block of
128 bits, and support keys with length of 128, 192 and 256 bits. NIST standardized
AES in 2001 [15].

The Mode of Operation The mode of operation used for symmetric-key en-
cryption enables subsequent safe use of the same key.

In a simple scenario, this could be to encrypt the normal data block-by-block.
This mode of operation is called the Electronic Codebook (ECB). One problem with
this, is that some information of the plaintext will leak, i.e. the same plaintext will
always be encrypted as the same ciphertext.

Cipher Block Chaining (CBC) is another example of a well known mode of
operation, and is illustration in Figure 2.1. In CBC, a non-predictable and unique
Initialization Vector (IV) is used. The IV is XORed with the �rst block of plaintext,
which again is encrypted with the cipher. The resulting ciphertext is used as an
�IV� for the next block [12, p. 183], and so on.

Asymmetric-key Encryption Asymmetric-key encryption is an encryption scheme
where di�erent keys are used for encryption and decryption [12, p. 259].

An asymmetric-key encryption scheme is often called a public-key encryption
scheme, where one key is de�ned as private and the other as public. The public

11

Figure 2.1: An illustration of the CBC mode of operation

key is shared to allow other parties to encrypt messages that only the owner of the
private key can decrypt.

The downside of an asymmetric compared to a symmetric cipher is that it
requires a larger key, and that it has a larger computational overhead to obtain the
same level of con�dentiality [13]. The probably best known asymmetric cipher is
Rivest, Shamir and Adleman (RSA).

2.4.3 Cryptographic Hash Functions

A cryptographic hash function is a deterministic mathematical procedure, which
takes an arbitrary block of data and outputs a �xed size bit string. The output is
referred to as the hash value, message digest or simply digest.

Another property of a cryptographic hash function, is that the smallest change
in the input data, e.g. one bit, should completely change the output of the hash
function. In other words, it should be infeasible to �nd the reverse of a crypto-
graphic hash function [12, p. 335]. It should also be infeasible to �nd two blocks
of data which produce the same hash value, i.e. a collision.

The standard de�ned by NIST for cryptographic hash functions today, are
Secure Hash Algorithm (SHA)-1 and the SHA-2 family [16].

2.4.4 MAC Functions

Ferguson et al. [13] de�nes a Message Authentication Code (MAC) to be a con-
struction that detects tampering with a message � i.e. it authenticates the message.

12

A MAC can be constructed in di�erent ways. One example is HMAC which con-
structs the MAC using a secret key, the message and a hash function [17].

2.4.5 Key Derivation Functions

A key derivation function is a function which takes a key, a password, a passphrase
or similar, and creates a new key from it. One of the applications of such a function,
is to create a stronger key from a weaker key, such as a password. This technique
is called key stretching. The process involves making the derivation of a key from a
password an expensive process in terms of computing power, which in turn makes
it more resistant to brute force attacks.

Password-Based Key Derivation Function version 2 (PBKDF2) is a key deriva-
tion function that utilizes key stretching. It uses a password, together with a
randomly generated salt and a pseudorandom function [18]. The function will
combine these inputs in a speci�c way, and can repeat the process for a speci�ed
number of times, called the iteration count. A higher iteration count results in a
stronger key. The salt provides defence against a precomputed collection of keys,
i.e. a rainbow table, in the sense that it will make sure that a password will not
derive the same key if di�erent salts are used.

2.4.6 Digital Signatures

A digital signature is the digital equivalent of a normal signature, i.e. it veri�es
that an entity approves with or has written a message. It can also verify the date
the signature was made. In addition, it should be veri�able by a third party [12,
p. 379]. A digital signature should not be feasible to fake.

The RSA cipher can be used to generate signatures. In addition, there is
also a standard for digital signatures de�ned by NIST, called Digital Signature
Scheme (DSS)[19]. DSS uses Digital Signature Algorithm (DSA) as the underlying
algorithm.

2.4.7 Digital Certi�cates and PKI

A digital certi�cate is the pairing of a digital signature and a public key [12]. By
this scheme, the services con�dentiality, authentication and non-repudiation can
be achieved.

For example, a user has a certi�cate with some clues about an identity in it,
e.g. an e-mail, together with a public key. This certi�cate can then be signed using
digital signatures, to verify that some other entity trusts this certi�cate.

In practice, the entity which signs certi�cates is the Certi�cation Authority
(CA), which all clients have the public key information for, and trusts. This is
refered to as a Trusted Third Party (TTP). The CA will also contain information
about which certi�cates has been revoked, i.e. should not be trusted in use. Such
a scheme is usually referred to as a Public Key Infrastructure (PKI).

13

PGP

Pretty Good Privacy (PGP) is a scheme similar to PKI, but with no CA that all
users trust [12]. Instead, trust is made between users by somehow verifying their
public keys, for instance by meeting face to face. A user can then sign the key of
another user, set a trust level for the user, and publish this information to a key
server. Other users can then calculate a trust on an unknown person, based on the
trust set by people that they trust, from information located on publicly available
key servers.

2.4.8 SSL/TLS

Transport Layer Security (TLS), and its predecessor Secure Socket Layer (SSL), are
technologies for obtaining con�dentiality, integrity and authentication for transfer
of �les over a network [12]. It does so by a combination of di�erent algorithms and
primitives, and a digital certi�cate is required for authentication.

To transfer �les securely over Hypertext Transfer Protocol (HTTP), TLS/SSL
is used to form Hypertext Transfer Protocol Secure (HTTPS).

2.5 Research on Security in Cloud Computing

This section will elaborate on selected research concerning privacy within cloud
computing. The review of this subject will focus on solutions that provide con�den-
tiality within the cloud. Solutions that partially provide privacy are not considered
as they are not relevant to our research.

We choose to present the following papers as they provide possible solutions to
the same problems handled in this thesis, although with a di�erent approach. The
�rst three security systems seek to secure the cloud server itself, and the last one
argues for building a secure system on top of a non-trusted cloud provider.

2.5.1 Privacy as a Service

A concept entitled Privacy as a Service (PasS), was suggested in 2009 [7]. PasS is
a set of security protocols ensuring privacy of customer data in cloud computing
architectures. The main design goal with PasS, is to maximize the user's control
over her sensitive data, both processed and stored within a cloud.

The PasS concept is based on a fundamental system model and trust model. The
system model consists of three communicating parties, namely a cloud provider, a
cloud customer and a TTP. The PasS system model is shown in Figure 2.2.

It is important to notice that the PasS system model is dependent on pre-
installed cryptographic coprocessors in the hardware running the cloud service. A
cryptographic coprocessor is in this context de�ned as a small hardware card, in-
cluding a processor, Random Access Memory (RAM), Read Only Memory (ROM),
backup battery, persistent storage and an Ethernet network card. A coprocessor
interfaces with a server in the cloud, and provides a safe environment for processing
of customer's data.

14

Figure 2.2: System model of PasS

The cryptographic coprocessors are used in the cloud because they are suppos-
edly tamper-proof against physical attacks. The coprocessors are precon�gured by
the TTP before they are installed. By using this procedure,a safe computational
environment for the cloud customer is provided, which is kept secret from the cloud
provider.

The main task of the TTP is to compute a set of public/private key pairs, load
them into the persistent storage of the coprocessor, and further send them to the
customer. The TTP also loads its own secret key into the coprocessor. This key
distribution ensures secure communication between the three parties. The key pair
of the customer is sent through a secure communication channel.

With cryptographic coprocessors in the cloud and a secure communication, the
cloud customer can choose between three di�erent levels of privacy towards the
cloud provider � no privacy, privacy with a trusted provider and privacy with a
non-trusted provider.

No privacy implies storing data as clear text in the cloud. Privacy with a trusted
provider involves storing encrypted data in the cloud. This data is encrypted by
the cloud provider and only achievable by the customer or cloud provider.

In the case of privacy with a non-trusted provider, the customer encrypts the
private data before uploading it to the cloud provider. The key used for encryption
is shared with the cryptographic coprocessor, through an authenticated version of
the Di�e-Hellman key management protocol. The coprocessor can further process
the encrypted data and store it in the cloud facility. The stored data is encrypted
and unknown to the cloud provider.

15

2.5.2 Privacy Manager

In 2009, HP Labs proposed a way to manage and control the private data of
users, stored and processed in a cloud facility [8]. Their solution was partially
implemented as a software program called privacy manager.

The privacy manager uses a feature called obfuscation, which is similar to en-
cryption. However, the obfuscation method is di�erent from encryption in the sense
that the obfuscated data can be processed in the cloud, without the cloud provider
knowing the encryption key or the original data. Pearson et al. [8] mention the
following obfuscation methods:

� Yao's protocol for secure two-party computation [20]

� Gentry's homomorphic encryption scheme [21]

� Narayanan and Schmatikov's obfuscation method [22]

Due to better e�ciency, the privacy manager uses the latter alternative. How-
ever, the obfuscation method of Narayanan and Schmatikov does not provide com-
plete con�dentiality to the cloud provider [22].

In addition to installing a privacy manager at the user's terminal, HP Labs
suggests the use of trusted computing solutions to address the lower-level protection
of data. The Trusted Computing Group (TCG)2 is an example of an organization
developing and providing trusted computing solutions. A tamper-proof piece of
hardware called a Trusted Platform Module (TPM) is recommended [8], which
is designed by TCG. The TPM is installed in the machine running the privacy
manager, to ensure that processes carried out by the privacy manager can be fully
trusted.

The privacy manager is suggested to work in three di�erent use cases. It can
be implemented to support a single client, the use of hybrid clouds and/or the use
of an infomediary within the cloud.

2.5.3 Trusted Cloud Computing Platform

Equal to Privacy as a Service and the privacy manager, Trusted Cloud Computing
Platform (TCCP) was proposed as a solution to provide secure computations and
storage within a non-trusted cloud provider [6]. As opposed to the previous solu-
tions, TCCP is directed against secure execution of guest VMs outsourced to IaaS
providers.

The original infrastructure, before adding TCCP, is assumed to consist of a
cloud manager, which manages a cluster of nodes running one or more VMs. Among
multiple tasks, the cloud manager is responsible for loading VM images into its own
nodes. Each node has a VM monitor which will further launch and monitor VMs
from the received corresponding images.

2http://www.trustedcomputinggroup.org/

16

http://www.trustedcomputinggroup.org/

TCCP is based upon the TPM chip and is a remote attestation scheme. The
scheme enables a network entity to verify whether another remote entity runs a
TPM chip or not.

The TCCP system architecture is illustrated in Figure 2.3. The trusted com-
puting base of TCCP includes a trusted coordinator and a trusted virtual machine
monitor. The coordinator manages the trusted nodes within a cluster. To be
trusted, a node must be located within a security perimeter and run a trusted
virtual machine monitor.

Figure 2.3: System architecture of TCCP

The coordinator maintains a record of the nodes located in the security perime-
ter, and use remote attestation to ensure nodes are trusted. Each trusted node in
a cluster contains a TPM chip and a corresponding trusted monitor. The main
task of the trusted monitor, is to enforce a local closed box protection of a client's
running VM.

Each trusted virtual machine monitor cooperates with a trusted coordinator
to protect the transmission of VMs between trusted nodes, and to ensure that
VMs are executed by trusted nodes. In this context, the TCCP speci�es several
protocols for both launching and migrating VMs inside the cloud. These protocols
are described by Santos et al. [6].

The trusted coordinator-part is installed in servers operated and maintained by
a trusted third party, to prevent unwanted tampering from the IaaS provider. A
client can further use remote attestation to the coordinator to verify that the IaaS
provider secures its computation.

With TCCP, the client interacts with the IaaS provider as usual. The di�erence
is that the trusted nodes and their trusted coordinator communicates to ensure a
secure environment for executing the client's VM.

17

2.5.4 Cryptographic Cloud Storage

In 2010, researchers at Microsoft were looking at the problem of building a secure
cloud storage service on top of a non-trusted storage provider [9]. They describe
architectural solutions related to both personal and enterprise use cases. The archi-
tectures are explained in high level and are designed to utilize and combine recent
and non-standard cryptographic primitives. The personal scenario is depicted in
Figure 2.4.

Figure 2.4: Cryptographic cloud storage, personal scenario.

The architecture consists of the following computational components:

� Data Processor

� Data Veri�er

� Token Generator

� Credential Generator

The Data Processor is responsible for encrypting data before it is sent to the
cloud, and decrypting data when it is retrieved.

Integrity is supported through a Data Veri�er component, which checks whether
speci�c data has been tampered with. The veri�cation procedure is independent
of the download and upload procedures, and can be called at any time by the user.

The Token Generator is used by the user to generate tokens that works like data
identi�ers. Tokens are given to and utilized by the provider to �nd data requested.

To enable sharing of data, the architectural scheme is suggested to use a Creden-
tial Generator. The Credential Generator is responsible for generating and sending
credentials to other users. These credentials are cryptographic keys that can be
used to decrypt de�ned portions of data. The user must also send the correspond-
ing tokens together with the credentials to share data. How tokens and credentials
are sent between users is not discussed.

18

Attribute Based Encryption Microsoft propose to utilize attribute based en-
cryption for con�dentiality. In attribute based encryption, data is encrypted using
a public key and series of attributes de�ned as a policy. This ciphertext can further
be decrypted by a set of decryption keys. A decryption key is associated with a set
of attributes, and is able to decrypt the ciphertext if it contains a given number of
the attributes used to encrypt the ciphertext [9]. The private keys are meant to be
implemented as the distributed credentials mentioned above.

It is important to mention that attribute based encryption is a relatively new
technique in cryptography, which can make it hard to de�ne its level of security.

Proof of Storage The veri�cation procedure is proposed to utilize a proof of
storage protocol to provide integrity. The protocol utilize small portions of infor-
mation independent of the size of the veri�ed data and can be executed an arbitrary
number of times. Applicable protocols for proof of storage are de�ned in [23, 24].

Enterprise Scenario The solution for an enterprise scenario is similar to the
one of a regular user, however computational components are rather dedicated
to separated machines to provide scalability. The suggested architecture for an
enterprise scenario is shown in Figure 2.5.

Figure 2.5: Cryptographic cloud storage, enterprise scenario.

It is important to notice that each employee will need an initial credential from
the credential generator to use the cloud storage application. The distribution of
these credentials is not discussed.

19

2.6 Existing Solutions

There are a number of existing solutions for storing data in the cloud, with more
or less the functionality required to ful�l the problem description for this thesis.
The section highlights some of them.

2.6.1 Dropbox

Dropbox3 is a popular commercial application for storing data in the cloud, claim-
ing more than 25 million users [25]. All �les are saved using Amazons S3 storage
service.

The company claims the use of strong encryption and strict access control [26],
but has received criticism for its lack of security [27]. Among these concerns, is the
Forgotten Password feature, that enables Dropbox to hold the passwords of their
users. This implies that the encryption is performed server-side and that Dropbox
can read all data stored with their service.

In addition, Dropbox is not open source, and hence it is di�cult to verify that
the security features actually work as claimed.

2.6.2 Tahoe-LAFS

Tahoe-LAFS4 is an open source, distributed and secure cloud storage �le system,
ful�lling the criteria in Section 1.3. The integrity and con�dentiality of the �les
are guaranteed by the algorithms used on the client, and is independent of the
storage servers, which may be operated by untrusted people. This is de�ned as
provider-independent security [5].

In Tahoe-LAFS, �les are exclusively encrypted client-side, then split up using
erasure coding, before being uploaded to the cloud, as illustrated in Figure 2.6.

Architecture of Tahoe-LAFS

Tahoe-LAFS has a three layer architecture: the key-value store, the �le system,
and the application [5].

The key-value store, is the lowest layer and is implemented by a grid of Tahoe-
LAFS storage servers. Data is kept on the storage servers in the form of shares,
which are encrypted and encoded parts of �les. Capabilities are short ASCII strings,
containing information on where to �nd, decrypt and verify a �le or folder. Nodes
in the grid learn about each other through an introducer.

The �le system layer is responsible for mapping human-meaningful pathnames
to pieces of data. Each directory contains a table of capabilities for its children,
i.e. subdirectories or �les. Two main forms of capabilities are available for each
�le, read-only and read-write, and these can be distributed to e.g. share a �le with
friends.

3http://www.dropbox.com/
4http://www.tahoe-lafs.org/

20

http://www.dropbox.com/
http://www.tahoe-lafs.org/

Figure 2.6: Tahoe-LAFS: Insertion of a new �le

Since it is not practical for users to remember strings containing random char-
acters, the application layer is used for providing a user-friendly interface to the
directories and �les.

File Types There are two kinds of �les in the Tahoe-LAFS � immutable and
mutable �les. An immutable �le is created exactly once. Mutable �les can be
modi�ed, and everyone who has access to the signing key can make new versions
of the mutable �le. Directories are implemented as mutable �les.

Erasure Coding By using the Solomon-Reed erasure coding scheme, Tahoe-
LAFS is able to recover a �le using only a prede�ned subset of the parts distributed
to the storage servers. Erasure coding is a type of Forward Error Correction (FEC)
code, which extends a message with C characters into a longer message with N
symbols [28]. The original C characters can then be recovered from a subset of the
N symbols.

Sharing To share a folder, and hence its subfolders and �les, the corresponding
capability of the folder has to be distributed. Tahoe-LAFS in itself does not provide
a speci�c way of doing this, and leaves it up to the user to distribute keys in a secure
manner.

21

2.6.3 Wuala

Wuala5 is a software o�ering a secure cloud storage �le system. It is written in
the Java programming language, and hence has easily been ported to a number of
platforms, e.g. Windows, Linux, OS X and Android.

Sources of Information The authors have released a paper on a cryptographic
tree structure for the �le system that Wuala uses, called Cryptree [29], but other
details of how the system works is hard to come by. The only source of technical
information of this system found, was a Google Tech Talk [30].

A side from this, Wuala is closed source, and hence it is di�cult to verify that
the software indeed does what it states.

Network Scheme Wuala claims strong focus on reliability and availability, by
both providing storage on their own central servers, in addition to a Peer-to-Peer
(P2P) cloud of Wuala users that has donated capacity to the system. There are
also additional advantages resulting directly from using a distribution scheme based
on P2P. Examples of this are no maximum �le size and no tra�c limit.

Similar to the Tahoe-LAFS, Wuala uses an erasure coding scheme in the family
of Reed-Solomon [30] to enable the logic behind splitting and combining parts of a
�le and creating redundancy.

Sharing Files and folders can be either private, shared or public. In addition,
there exist a concept of public and private groups of users, which can be used to
manage access control over shared folders and �les.

When creating a new group in the Wuala client, as depicted in Figure 2.7, the
default choice is to create a private group, but provide access through a secret link
via the Wuala web page. This implies a key distribution where the group members
has to rely on Wuala as a trusted third party.

Security When adding a new �le to Wuala, the �le and its meta data are en-
crypted with 128 bit AES, before encoded into redundant fragments using erasure
codes, and lastly uploaded to the network. 2048 bit RSA is used for authentica-
tion. All cryptographic operations are performed locally on the client-side, and the
password used never leaves the client.

Access control are provided using the e�cient cryptographic tree structure
Cryptree [29, 30], which is based on the notion that no information should be
revealed to the computer holding the access control structure, i.e. the hosting
server or the P2P network. Keys for nodes in the tree are derived from the keys of
the parents, implying that if a user has a key to a folder, she also has access to all
the subfolders and �les.

However, since the source of Wuala is not available for scrutiny by the public,
none of these security features can easily be veri�ed.

5http://www.wuala.com/

22

http://www.wuala.com/

Figure 2.7: Creating a new group in Wuala

23

24

3
Technical Procedure

This chapter will describe our architectural and cryptographic scheme for providing
secure storage of data on a remote untrusted system. It will further explain the
procedures carried out to create a proof of concept application, that implements the
proposed architectural and cryptographic scheme. The application, named Cloud
Storage Vault (CSV), is implemented as an Android application, and consists of
separate server and client functionality.

The chapter will start by giving an overview of the proposed architecture fol-
lowed by a more detailed description of the corresponding cryptographic scheme.
The chapter will end by describing the implementation details for both the server
and client-side functionality of the Cloud Storage Vault.

3.1 Architectural Overview

The architectural solution of a secure cloud �le sharing system has to convince
its users that the functions indeed are secure, and that the concepts are easy to
understand and accept. The following sections will elaborate on the architecture,
favouring simplicity and familiar concepts, such as �les and directories. We also
introduce the concept of capabilities. Key concepts are based on equivalent opera-
tions found in Tahoe-LAFS [5].

Figure 3.1 represents an overview of the functionality that the architecture must
support. The illustration exhibits a user uploading a �le to the cloud, and adding
this to a parent directory. After she has done this, it is possible for her to distribute
the capability of the �le to other users to realize sharing of �les or directories.

25

Figure 3.1: Overview of user functionality

3.1.1 File Storage

The solution for �le storage proposed in this thesis, is that only a simple key-value
store is needed on the server-side. The key works as a lookup index for a speci�c
value, while the corresponding value equals an encrypted �le object. The server
will be required to support the operations of uploading and downloading key-value
pairs to this store.

From the users perspective, a �le object can have multiple forms � it can either
be a mutable or an immutable �le. A mutable �le can be changed, and is what a
user will see as a directory, while an immutable �le is as a normal �le but cannot
be changed.

A user will need certain information to be able to reach and read a �le object,
and we de�ne these properties as the capability of a �le object. For now, the capa-
bility represents the ability to �nd, read, verify that a �le has not been tampered
with, and write to a mutable �le.

Both the concept of two di�erent �le types, and capabilities are in�uenced by
the similar use in Tahoe-LAFS.

Directory Structure

The contents of a directory are �les and other directories. More speci�cally, a
directory contains the means to �nd �les or directories, namely the corresponding
capabilities. In addition, there exist a human readable name, an alias, for each
entry in a directory. This design gives a �exible and space-conservative structure,
since any �le object may be found in multiple directories, but does only exist once
in the cloud.

26

A user will need to have some way of storing the capabilities of her �le objects.
This could potentially be done client-side, but a problem arises if the user wants
to use several terminals. Thus, we introduce the root folder, a folder from which
all other �les and folders can be reached. The user will only need to know of one
single capability to reach all her stored data. This capability has to be stored in a
secure manner, e.g. in an encrypted keyring. The resulting structure is a directed
graph, as illustrated in Figure 3.2.

Figure 3.2: File system structure

3.1.2 Authorization, Authentication and Accounting Layer

The possession of a capability gives a user access to read a �le or read or write a
folder, and hence serves as the primary access control. There are however some
properties that the server provider might want that cannot be given by the capabil-
ity. Therefore a layer implementing authentication, accounting and authorization
might be preferable.

Block Access to Encrypted Data

The capability for a �le or folder might be intentionally or unintentionally leaked
by a user. In this case, it would be preferable that the server can block access

27

to a particular object. The server could also potentially enforce access rights on
all encrypted objects, so that they are only retrievable by the owner. This would
however complicate sharing.

Modi�cation and Deletion of Files

For each directory, there exist a di�erent capability for read and write operations,
though the read capability can be deduced from the write capability. From the
write capability, it is possible to deduce another secret, the write enabler, which
the server also knows of. Knowledge of the write enabler is needed for the server
to grant access to modify or possibly delete a folder.

For immutable �les, there is no concept of write access, only read. A user might
not want to pay for storage of �les that she no longer needs. A layer that identi�es
the creator of a �le, can by the same method decide who should have the rights to
delete it.

Accounting

If the server-side of the system is held by a cloud storage provider, it is important
to be able to decide which users should be billed for the �le storage and generated
network tra�c.

In the case of an immutable �le, the storage costs can be billed to the user
creating the �le. The costs of network tra�c can further be charged to the users
retrieving the �le.

Accounting might also be interesting for an organization using a third party
cloud provider. For instance an employee who leaves the organization, might be
tempted to copy all the data stored on the server. The organization should then
be able to discover what has been done, using some form of an audit trail.

It is however worth noting that if the accounting happens server-side, there is
no real way to verify that all logs stored there are correct, since the cloud provider
will have access to modify or delete them.

3.1.3 User Scenarios

The various user scenarios supported by the software, provides a logical way to
describe the external properties of the system. The fundamental operations are
downloading, uploading and sharing of �les and folders.

Download File

The download procedure is depicted in Figure 3.3. The client sends a download
request with the identi�er of a folder, which she possesses the capability of. The
server will respond with the encrypted directory. The user will use the capability
to decrypt the directory.

In the directory, the user �nds the aliases and necessary capabilities to gain
access to the children of that folder. If the user now wants to download a �le from
the accessed folder, she obtains the identi�er from the capability, and requests the

28

Figure 3.3: Scenario: Downloading a �le

server for this �le. Once downloaded, the capability provides means of decrypting
and verifying that the data has not been tampered with.

Upload File

Figure 3.4 shows the process of uploading a new �le. The capability is generated
by the client, and used to encrypt the data. The �le is then uploaded to the server,
and the capability and an alias is linked in to the parent folder.

Figure 3.4: Scenario: Uploading a �le

Share Files

As shown in Figure 3.5, for Alice to be able to share �les with Bob, she �rst has to
create a new directory that will contain these �les. Alice is then required to share

29

the capability of the new directory with Bob. When the capability is shared, the
new directory will work as a secure channel where Bob and Alice can share their
own folders and �les.

Figure 3.5: Scenario: Alice shares a �le with Bob

Before transferring the capability to Bob, Alice links the shared directory to a
parent directory, so she can easily retrieve it at a later time. She can also link �les
and other directories to the shared directory.

The capability distribution is a key design issue, and has to be performed in a
secure manner. This can be solved in a variety of ways, and the solutions proposed
in this thesis are discussed in Section 7.2.

After receiving the capabilities for the shared folder from Alice, Bob requests
and receives the encrypted shared directory, in addition to linking it with a parent
directory for future usage. He can then download shared �les as if they were his
own.

Read-Only Shares If Alice wants to share a directory in read-only mode, she
can simply share the read capability with Bob, instead of the write capability.
This will work as intended, but might prove somewhat cumbersome for Alice. If
Alice wants to write to the directory she has shared with Bob, she cannot enter it
through the parent folder shared with Bob, since this will only grant her the read
capability. The implication is that Alice will have to access the directory through
another path in her directory tree, to get the write capability.

A more simple solution is to enable Alice to store the write capability individu-
ally among her private �les, while storing the read capability in the shared parent

30

directory. The solution can easily be implemented by using a specialized write key
folder under Alice's root folder. The write key folder will then contain write capa-
bilities to every folder that Alice has shared in read-only mode. The idea behind
the write key folder is illustrated in Figure 3.6.

Figure 3.6: Sharing read-only folders

3.1.4 Constraints

The software using this architecture should be able to run on restricted devices, i.e.
equipment with limited memory and Central Processing Unit (CPU) power, often in
addition to constraints on power and network utilization. This has implications for
the design of the software, since all cryptographic operations has to be performed
client-side.

3.2 Cryptographic Architecture

This section elaborates on the cryptographic solutions applied to the architecture
in Section 3.1. It will take a closer look at how con�dentiality and integrity are
solved.

We will start with a brief introduction explaining the fundamental security
concepts. The cryptographic architecture is further described in terms of �le and
directory operations.

31

Table 3.1: The contents of a Capability

Data Comment
Type A Capability is either read-only or read-write
Key A cryptographic key
Verify A hash needed to verify the contents of a �le or folder

3.2.1 Security Concepts

The basic security concept of the application is to keep the �les of a user con�dential
to a third-party storage provider. To solve this, the application encrypts data
locally at the user terminal before uploading them.

When accessing a �le, the application downloads the encrypted �le before de-
crypting it locally. To enable this simple encryption scheme, the user is required
to possess the knowledge of at least one capability, which contains cryptographic
keys to decrypt and verify the contents of the root folder.

The root folder will in turn contain the capabilities for its own children, which
enables the client to decrypt �les and folders stored in the root folder. The other
folders work in the same manner.

By initially knowing that �les are placed encrypted on a remote server and that
the user possesses one or more cryptographic keys locally, we can continue with
a more comprehensive description of the complete cryptographic solution. The
details are explained in terms of capabilities and the operations conducted on �les
and folders.

Capabilities Capabilities are containers which has the necessary information to
locate, encrypt, decrypt, verify and possibly write �le objects. The possession of
a capability grants these rights, which can be either read access or read and write
access. Such an access scheme is known as capabilities as keys [31]. The contents
of a capability is summarized in Table 3.1, and will vary somewhat for �les and
folders, since they are implemented by immutable and mutable �les respectively.

Encrypted Keyring Every user will need to possess a root capability to access
their �les. Due to the amount and randomness of data in a capability, it will be
impossible for most users to remember. To keep a copy of the capability on the
user terminal is a possible solution, but since such a device could be lost or stolen
it should be protected in an encrypted keyring. This keyring can then be unlocked
by something which the user is able to remember, such as a password.

Secure Channel Even though the security of the contents of the �les relies on
cryptographic operations performed client-side, a secure channel between the client
and the server has to be formed. This is because of the possibility for an attacker,
Mallory, to do various unwanted procedures if such a channel is not in place. Firstly,
she can discover write enablers, and thus be able to replace directories. Similarly,
Mallory can replay recorded messages, e.g. to set a folder back to a previous state.

32

By extracting the username and password, she can also manipulate accounting
features by saving �les taking up place in the quota of another user.

3.2.2 File and Directory Operations

This section describes the elementary �le and directory operations supported by
the application. The basic �le operations are upload �le and download �le, and cor-
respondingly for directories, create directory, open directory and modify directory.

For simplicity, the illustrations in the following sections includes naming of
cryptographic primitives. However, it is important to note that this cryptographic
scheme will work with other primitives. Any symmetric cipher could work instead
of AES, any signing function that uses both a private and public key could be
used instead of RSA, any MAC could be used instead of HMAC-SHA and any
cryptographic hash function could be used.

The security of the system does rely on these choices, and a recommendation
with rationale for each of the needed primitives will be given in Section 3.2.3.

The scheme used for directory operations, are in�uenced and similar to the one
found in Tahoe-LAFS.

Upload File

The operation behind uploading a �le, is depicted in Figure 3.7. A random sym-
metric encryption key is generated. This is hashed once to obtain the storage index,
i.e. the identi�er of the �le. The storage index is then hashed again to form the
IV for the �le.

Next, the �le is hashed and the resulting digest is stored together with the
encryption key in the capability. Finally, the �le is encrypted with the encryption
key and the IV, before being transferred to the server.

Download File

The process of retrieving a �le is illustrated in Figure 3.8. The storage index is
obtained by hashing the stored encryption key extracted from the capability, and
the IV is obtained by hashing the storage index. The �le is then downloaded from
the server and decrypted. Next, the �le is hashed, and the resulting digest is
compared against the digest stored in the capability. If these two match, the �le
has not been tampered with.

Create Directory

Creating and uploading a directory are illustrated in Figure 3.9. The process is
more complex than for �les, because it has to support changing the contents of the
folder.

Firstly, an asymmetric key pair is generated, and forms the private signing key
and the public key. The signing key is hashed to form the write key, and again to
form the read key, and once more to form the storage index.

33

Figure 3.7: Behind the scenes: Uploading a �le

The contents of the folder is encrypted with the read key and a random IV.
The resulting ciphertext is hashed and signed with the signing key. The signing
key is further encrypted with the write key, and together with the ciphertext, the
public key, the IV and the signature, uploaded to the server.

The write enabler is deduced from the write key with the use of a MAC function
and a �xed message. It is transferred alongside the directory. The write key is
stored together with a hash of the public key in the capability.

Open Directory

Opening a directory involves both downloading, verifying and decrypting the di-
rectory. The veri�cation process is illustrated in Figure 3.10 and decryption is
illustrated in Figure 3.11.

From the capability, the user obtains the read key together with the storage
index. From the server, the user receives the encrypted contents of the folder,
the IV, the signature for the folder and the public key. The user veri�es that the
public key is correct by hashing it and matching it against a hash stored in the
corresponding capability. Afterwards, the public key is used to verify the signature.
If both these checks pass, the folder is decrypted with the read key and the IV.

34

Figure 3.8: Behind the scenes: Downloading a �le

Modify Directory

In addition to read the contents of a directory, the user might want to write to it
as well. The process of doing this, is similar to initially creating the �rst directory.
The key di�erence, is that the user already has the write key in the form of a
capability, and must use this to decrypt the encrypted signing key which resides
on the server, instead of generating a new one.

A new IV is generated, and the content of the folder is encrypted, and signed
by the signing key. The IV, the signature and the encrypted contents are then
uploaded to the server. The write enabler is also sent alongside, which is deduced
in the same way as when creating a new folder.

3.2.3 Recommendations for Cryptographic Primitives

For the proposed cryptographic scheme to be secure, it needs secure cryptographic
primitives. More speci�c, it needs a symmetric cipher, a cryptographic hash func-
tion, a MAC function, a key stretching function, and a function for digital signa-

35

Figure 3.9: Behind the scenes: Creating a directory

tures, as observed in Figures 3.7, 3.8, 3.9, 3.10 and 3.11. Additionally, primitives
for a secure channel between the client and the server has to be established.

These primitives needs to be set in accordance with the security requirements
established in Section 1.3. Additionally, the hard part of selecting appropriate
cryptographic primitives, is trying to predict for how long the primitives will be
secure. Giry [32] compares studies listing predictions on how long primitives will
be secure based on di�erent sources with di�erent predictions.

Symmetric Cipher

For a symmetric cipher we recommend the NIST standard AES, and a key size of
128 bit should su�ce. ECRYPT II [33] has one of the more pessimistic predictions
on how how secure this choice is, saying data encrypted with a key size of 128 bit
should be secure until 2030-2040.

The gain of not choosing a larger key is a somewhat greater performance �
AES-128 uses 10 transformation rounds while AES-256 uses 14 � and of course
that the keys are smaller to store. However, for a new system there are really no
reason not to select a key size of 256 bit [13].

36

Figure 3.10: Verifying a directory

Mode of operation The mode of operation we recommend is CBC for the en-
cryption of �le and folder contents. This is based more on practical advice than
on security considerations. Ferguson et al. [13] advices the use of either CBC or
Counter (CTR) mode, where CBC mode is easier to implement correctly.

For the encryption of the signing key, ECB can be used, since the key is en-
crypted exactly once and the data is considered random.

Padding One negative consequence of using CBC, is that it requires that the
plaintext is an exact multiple of the block length, i.e. 128 bit. Since this is not
always the case, a padding scheme will be required. A padding scheme does not
have any security implications as long as it is reversible [13], at least not for CBC.
Based on this, any available padding scheme can be used.

Cryptographic Hash Function

The SHA-family is the current standard for cryptographic hash functions, and from
this we recommend double SHA-256. The cryptographic scheme requires the hash
function to have an output of at least the size of the key used for encryption. SHA-1

37

Figure 3.11: Decrypting the contents of a directory and obtaining the signing key

has an output of 160 bits and could have been used for 128 bit key size, but is not
recommended for use in new systems [34]. The use of double SHA-256 compared
to single, is to prevent a length-extension attack [13].

Signature Algorithm

For a signature scheme, the most commonly used algorithm seem to be either RSA
or DSA. Both functions would work, but we recommend RSA, primarily because
Tahoe-LAFS made the same choice.

There might be a performance bonus in selecting RSA. An internet draft [35]
suggests that DSA is about three times faster than RSA at signing, but RSA is
about ten times faster at verifying a signature. A performance comparison from
Microsoft [36] suggest that DSA is 29% faster at signing and RSA is 29% faster at
verifying signatures. Veri�cation, in the form of opening a folder, is an operation
we believe most users will do signi�cantly more than updating and creating folders.

Multiple sources cited in Giry [32] recommend at least 2048 bit as the key length
used in RSA.

38

MAC

The use of the MAC function in CSV is somewhat special. The de�nition states
that a MAC function is used for authenticating messages. As depicted in Figure
3.9, the output of the MAC function is another key. By presenting this key, a user
veri�es to the server that he is in possession of the write key for a folder and thereby
authenticated and authorized to change the folder contents. The key di�erence is
that the MAC is used to verify that a user has write access, and not the contents
of the message sent.

Because of the usage of the MAC as a simple key derivation function, the
most important factor to consider when choosing a primitive, is that it should be
infeasible to go from the result, back to the original key. On the basis of this,
Ferguson et al. [13] recommend HMAC-SHA256.

Secure Channel

The secure channel can be provided in the form of the client and the server com-
municating over TLS. As this is a technology under continuous scrutiny, we rec-
ommend setting the available parameters as high as possible to meet the demands
of the current situation. The reason for not specifying this more thorough, is that
libraries and software, used both server- and client-side, may have limitations.

As an example, in the proof of concept system created, we used RSA with a
key length of 4096 bits and SHA-256 to create the certi�cate, and set the server to
only allow the strongest ciphers available.

Encrypted Keyring

The locally stored root capability should be encrypted in some form, and a scheme
that should be compatible with most terminals is a password based key derivation
function. For this NIST recommend PBKDF2 [37]. The iteration count is to be
set at high as possible while at the same time maintaining acceptable performance,
but with a minimum of 1000. The salt should be at least 128 bit and randomly
generated. For the pseudorandom function, the recommendation is to use HMAC
with any NIST approved hash function.

We also looked at the usage of PBKDF2 in Wi-Fi Protected Access (WPA),
and what security it provides against brute force attacks. WPA is used because the
utilization of PBKDF2 is similar to the one in our scheme. It uses 4096 iterations,
and HMAC-SHA-1 as the pseudorandom function. So far, the most e�ective brute
force attack against WPA was published on Black Hat DC 2011 by a security
researcher named Thomas Roth. He proved that anyone can crack WPA passwords
with a speed of up to about 400 000 passwords per second, using multiple Amazon
Elastic Compute Cloud (EC2) cluster Graphics Processing Unit (GPU) instances
[38]. His �ndings also indicate that Amazon themselves can reach an even higher
unknown speed. The same researcher has also hinted that he might be able to
reach 1 million keys per second with a similar setup [39].

With this in mind, we recommend at least the same amount of iterations to
be used in our scheme as in WPA, i.e. 4096 rounds. This should yield acceptable

39

performance on most devices. The most elegant solution, would be to �ne tune this
on a per device basis. The client can time the calculation of 4096 iterations, and
increase the number if the computation is too fast. The pseudorandom function
should be HMAC-SHA-256, since NIST recommends against utilizing SHA-1 in
new applications. The salt should be at least 128 bits.

Password Requirements NIST also recommends that passwords should be at
least 10 characters long. If we assume that every password is alphanumeric, there
exists 62n di�erent passwords for a password of length n. With the stated the-
oretical results of 1 million passwords per second, this means that any password
of length 9 and 10 is cracked in at most 429 and 26614 years respectively. These
calculation does not take anything but the claimed current cracking speed by Roth
into account.

The results are only applicable in the real world if we can guarantee that a user
actually chooses a random password, which is probably not true. A more realistic
setting is that the attacker uses some dictionary, and that a user's password is not
strictly random. By this rationale, it is more important to be safe than sorry, and
for password guidelines we therefore recommend:

� Password length >= 10.

� Password must include at least one capital letter, one small letter and one
number.

3.3 Server Implementation

The server, in the most basic form, has to support two operations � sending and
receiving �les. In addition, an extra layer is needed to support user management
and access control to able to allow modi�cation of folders. This section describes
the server implementation for the proposed scheme.

3.3.1 Communication and Architectural Patterns

By de�nition, cloud applications are accessible over the Internet. The system we
are creating, should be able to send and receive �les and information from a server
in the cloud. The Hypertext Transfer Protocol (HTTP) is the foundation of data
communication for the World Wide Web. The protocol is well tested, will pass
through most �rewalls and has a multitude of available libraries in programming
languages. To get a working server, we can also use any existing web server as a
foundation, which will decrease total development time. Thus, HTTP was chosen
as our communication protocol.

REST

TheWeb is built around an architectural style called Representational State Transfer
(REST) [40, ch. 5], which is de�ned by four interface constraints: identi�cation

40

of resources, manipulation of resources through representations, self-descriptive
messages, and, hypermedia as the engine of application state. In addition, REST
dictates �ve1 architectural constraints [40]. Our server application adheres to these
constraints, or patterns, as follows:

Client-server
This server will be the server part of the client-server pattern.

Stateless
Since the server is just a simple key-value �le store, it does not need to keep
state.

Cacheable
The server could easily add caching, by putting each encrypted �le in mem-
ory as downloaded, and e.g. using the Least-Frequently Used algorithm for
choosing which items to swap out. In addition, for every update of a folder,
the corresponding cache item has to be marked as invalid.

Layered system
Layers are used to encapsulate, separate and hide functionality. Figure 3.12
illustrates the layers of the server application.

Uniform interface
The interface between clients and server(s) are given by the URI scheme in
Table 3.2. A write enabler must also be provided together with the storage
index when a folder is uploaded.

Figure 3.12: Architectural layers in the server application.

Table 3.2: The REST interface of the server application.

URI Description
/put/<storage index> Creates or updates encrypted �le
/get/<storage index> Retrieves encrypted �le

In this context, resources are the encrypted �les, and the architectural con-
straints of REST also matches that of our system as a whole. Thus, the server
application is designed in a RESTful manner.

1And one optional, Code on demand, which is not applicable for our system.

41

Secure Channel

Since we are utilizing HTTP, we can easily add an extra layer of TLS to form
HTTPS. This makes it more di�cult for potential attackers to intercept messages,
and also provides protection against the MITM attacks. It also provides protection
against eavesdropping, which would have revealed the write enabler for folders and
enabling an attacker to delete folders. The top-most layer of Figure 3.12 thus refers
to TLS.

3.3.2 Environment

The Python programming language in a Linux environment was chosen as develop-
ment platform, together with a set of applications, interfaces and micro frameworks.
The rationale for each of these follows.

Python Python is a high-level general-purpose programming language. It was
chosen due to previous knowledge and experience by the authors, in addition to its
simplicity.

Apache The Apache HTTP Server is a well tested and used web server. Ac-
cording to Netcraft [41], Apache is by far the most used web server software, and
has been so since 1996. It was chosen on the basis of previous experience and its
superb documentation.

WSGI The Python Web Server Gateway Interface (WSGI) is, as the name sug-
gests, an interface between a web server and a Python application. It is de�ned in
Python Enhancement Proposal (PEP) 3333, and speci�es both sides of the inter-
face � the application and the server [42]. The server-side is implemented in the
form of an Apache module, namely mod_wsgi, and the application is where we put
our code.

For each of the requests the server receives, a call to the application function
is made with two arguments � a data structure containing the environment vari-
ables, and a callback function for which the application uses to return data to the
requesting user via the server.

Pyroutes To adhere to the DRY principles, we chose to make use of an open
source micro framework around WSGI, called Pyroutes2. It provides short cuts
for the most frequently used functionality when developing web services, as that of
Uniform Resource Locator (URL) handling and processing of submitted user data
in the form of GET and POST requests.

Pyroutes did not, however, support the HTTP PUT request, so this was imple-
mented and contributed back to the project3.

2http://www.pyroutes.com/
3https://github.com/pyroutes/pyroutes/pull/4

42

http://www.pyroutes.com/
https://github.com/pyroutes/pyroutes/pull/4

3.3.3 Implementation Details

The code was structured as illustrated in Figure 3.13. The �le handler.py provides
the interface for mod_wsgi and the server application, and basically includes the
URL scheme in fileserver.py. An example URL mapping is shown in Listing 3.1.
The function get_file() is registered to have the URL /get through the decorator
provided by Pyroutes. After retrieving the �le from disk, a proper HTTP response
is returned, containing required headers.

The �le filesystem.py contains the low-level �le system operations, save_file()
and retrieve_file(), together with a set of helper functions to manage �le ac-
cess checking and database operations. The folder sql/ contains Structured Query
Language (SQL) code to create necessary tables in the database, and db.py pro-
vides an helper function to connect to the database.

|-- cloudstorage

| |-- __init__.py

| |-- db.py

| |-- fileserver.py

| |-- filesystem.py

| |-- settings.py

| `-- sql

| `-- write_enablers.sql

|-- handler.py

`-- tests

`-- filesystem_tests.py

Figure 3.13: Server module structure

Listing 3.1: URL mapping in �leserver.py

1 from pyroutes import route

2 from pyroutes . http . response import Response

3

4 from cloudstorage . filesystem import (retrieve_file ,
5 FileSystemException)
6

7 @route ('/get')
8 def get_file (request , storage_index=None) :
9 if storage_index is not None :

10 try :
11 file_to_send , size = retrieve_file (storage_index)
12 except FileSystemException , e :
13 return Response (e . text , status_code=e . code)
14

15 headers = [('Content -Type' , 'application/octet -stream') ,
16 ('Content -Length' , str (size))]

43

17 return Response (file_to_send , headers)
18

19 return Response ('No resource ID given.' , status_code=400)

Authorization functionality

The only functionality of the authorization layer implemented, is the server-side
veri�cation that a client has proper access to overwrite a folder, e.g. when a client
wishes to update a folder with new contents.

When a client �rst uploads a new folder, it provides a write enabler, which the
server adds to the database along with the storage index of the folder. For every
subsequent request to write to this folder, the server veri�es that the provided write
enabler is equal to that in the database.

If a client tries to put a folder with a storage index that already exists, the server
replies with an error code if the client in addition does not provide the correct write
enabler.

3.4 Client Implementation - Android

The proof of concept client we have implemented, is made for devices using the
Android operating system, which is based on Linux. The Software Development
Kit (SDK) for making Android applications, is essentially a somewhat modi�ed
version of Java.

Most devices that use the Android operating system are mobile phones or
tablets, which implies that they are more limited in terms of computational power
and memory, compared to a modern computer. The point of making the client for
such a device, i.e. a smart phone, is the growing availability, and the �exibility
these devices provide. A user carries the device everywhere, it provides network
connectivity, and is almost always on.

A nice side e�ect of developing on a smart phone platform, is that if the software
performs well on a constrained device, it will almost certainly perform just as well
on any faster device.

3.4.1 Environment

The client was made on the Android platform and written in the Java programming
language, together with a set of frameworks. The rationale for these are as follows.

Android The Android operating system is made by Google, and is most com-
monly found on mobile phones and tablets. The platform choice of Android was
done based on hardware availability and familiarity with developing on the platform
and the programming language.

44

Java Java is a high-level, object-oriented programming language. Applications
written in Java runs in a Java Virtual Machine (JVM), which implies that a Java
application can run on almost any device which has a JVM.

The �JVM� on Android is called Dalvik, but it is strictly not a Java Virtual
Machine as the bytecode on which it operates is not Java bytecode. After the
regular Java compiler has created the .class �les, a Dalvik tool transforms them
to another class �le format called .dex [43].

HttpComponents Apache HttpComponents are a set of libraries for HTTP
transport in Java. The part used in our client is called HttpClient. Android
incorporates parts of this client in its runtime environment. The use of this library
adheres to the DRY principles as de�ned in Section 1.5.

JCA Java Cryptography Architecture (JCA) is an architecture for doing crypto-
graphic operations in Java. The architecture is based on principles of implemen-
tation independence, implementation interoperability and algorithm extensibility.
Basically what this means, is that each JVM can have di�erent implementations of
the cryptographic primitives, but the developer does not necessarily need to know
which ones are available.

ZXing Barcode Scanner ZXing Barcode Scanner4 is a popular Android appli-
cation which can be used by other Android applications to both scan and generate
barcodes. By the use of this application, we adhere to the DRY principles by not
creating our own code to generate barcodes.

3.4.2 Architectural Patterns

Client-Server The client we have implemented is the client part of the overall
client-server pattern of the system.

Pipe-and-Filter The basis of the pipe-and-�lter pattern is that there exist a
chain of processing elements, where the output of one element is the input of the
next element. We use this for �le uploads and downloads to limit the memory
usage of the client, as well as to increase performance.

Asynchronous Pattern We use asynchronous calls to slow operations � e.g. �le
upload and key generation � extensively, to prevent the user interface from hanging
and to deliver a smoother user experience in general.

3.4.3 Implementation Details

The following section describes the code structure of the client implementation, in
addition to cryptographic entities used.

4http://code.google.com/p/zxing/

45

http://code.google.com/p/zxing/

Structure

The source of our client is logically separated into two entities � CSVlib and
CSVAndroid. CSVlib is a pure Java library which contain the necessary enti-
ties, cryptographic operations and communication calls required for the client.
CSVAndroid contains primarily a graphical user interface to make use of CSVlib
on an Android device.

Cryptographic Entities

All the cryptographic entities � namely folders, �les and capabilities � are all part
of CSVlib. Their relationship can be seen in Figure 3.14.

no.ntnu.item.csv.csvobject no.ntnu.item.csv.capability

CSVFile

<<interface>>

CSVObject

CSVFolder

Capability

Figure 3.14: Cryptographic entities and their relations

Capabilities Capabilities are containers for cryptographic keys and information
to identify a corresponding object. They will will contain information to identify
an object as either a �le or a folder, and have the information to read, write and
verify that object.

Capabilities are stored server-side in folders in its serialized form shown in
Figure 3.15. Object Type speci�es if the capability represents a �le or a directory,
with values F or D respectively.

Figure 3.15: Serialized form of a capability

Key Type speci�es the permissions the key will grant on the object, and can be
either RO (Read-only) or RW (Read-write).

The di�erent parts are separated by the colon character. The key and verify
strings are encoded in Base32 [44], which means that the 128 bits these strings are
represented by, will be replaced by an alphabet of 32 di�erent symbols, namely
A-Z and 2-7. This makes it possible to read for a human with few mistakes or
misunderstandings.

46

Folders A folder is represented by the class CSVFolder. A CSVFolder object is
a collection of aliases and their corresponding capabilities. For the most part, the
data stored in a folder is so small that it can easily live for as long as needed in the
memory of the client.

When a folder is created or updated, the content is serialized and encrypted,
before it is uploaded to the server directly from memory. The serialization for each
item in a folder is on the form alias;capability, where the capability itself is also
serialized.

Files A �le is represented by the class CSVFile. While a folder in general is
small, a �le can be of any size, even larger than the RAM on the device.

To keep the memory footprint low, we use the pipe-and-�lter architectural pat-
tern to stream data all the way from the server to the device, or vice versa, through
encryption and veri�cation.

An example of how we do this for uploads, is shown in Listing 3.2.

Listing 3.2: Pipe and �lter upload of a �le

1 FileInputStream is = new FileInputStream ("/file/path") ;
2 BufferedInputStream filebuffer = new BufferedInputStream (is) ;
3

4 MessageDigest md = MessageDigest . getInstance ("SHA -256") ;
5 DigestInputStream digestInputStream = new DigestInputStream (
6 filebuffer , md) ;
7 BufferedInputStream digBuffer = new BufferedInputStream (
8 digestInputStream) ;
9

10 Cipher cipher = Cipher . getInstance ("AES/CBC/PCKS5Padding") ;
11 // c iphe r i s a l s o i n i t e d with a random generated key , and an
12 // IV which i s the d i g e s t o f the key
13 CipherInputStream cipherInputStream = new CipherInputStream (
14 digBuffer , cipher) ;
15 BufferedInputStream readBuffer = new BufferedInputStream (
16 cipherInputStream) ;
17

18 // HttpCl ient uploads data by read ing from readBuf f e r
19

20 byte [] tmpdigest = md . digest () ;
21 md . reset () ;
22 md . update (tmpdigest) ;
23

24 // The d i g e s t (double SHA−256) from the f i l e j u s t uploaded)
25 byte [] digest = md . digest () ;

The InputStreams are chained together, with the e�ect that a read from
readBuffer will trigger a read trough the whole pipe. The DigestInputStream

will update the state of the hash function, but is transparent in the sense that what

47

goes into the stream will also be what comes out. The CipherInputStream on the
other hand, will output an encrypted stream of the data from the �le. To handle
di�erent input/output speeds, bu�ers are placed between each step of the stream
to gain some performance.

Communication with Server

For HTTP transport, we utilize the Apache Software Foundations HttpComponents
Client5, also known as HttpClient. This Client o�ers support for authenticated
requests to a server, and both upload and download through PUT and GET requests
respectively.

We wrap communication with the server in two classes, Communication.java
and CSVFileManager.java. Communication.java provides functionality for send-
ing and retrieving data from our server, while CSVFileManager.java provides
speci�c methods for sending and receiving the encrypted objects, CSVFile and
CSVFolder.

Deviations in the Choice of Cryptographic Primitives

The implementation of the proof of concept client deviates from the recommenda-
tion given in Section 3.2.3. This occurred as a result of new discoveries that were
made while analysing the system. All unfortunate deviations are corrected with
a patch �le submitted along with the code attachment, described in Appendix B.
For the other primitives we follow the recommendation.

RSA Key Length The key length chosen for the RSA cipher is 1024 bits, in
contrast to the argued 2048 bits. It is therefore important to notice that all mea-
surements, presented in Chapter 4 and 5, are based on an RSA key length of 1024
bits.

AES Key Length The key length used in our implementation is 128 bit for
AES. The reason to prefer a shorter key length in CSV is to make manual key
exchange less cumbersome. 256 bits are however preferred.

3.4.4 Sharing

A shared folder is a folder which two or more people have the required capability
for.

The problem of creating a share with someone, is that you have to verify that
you are actually sharing with the correct person. The data, or secret, that will have
to be shared, is a serialized form of the capability of the shared folder, as shown in
Figure 3.15.

The client supports two methods of doing this. The most cumbersome is having
to manually copy the key from one user's client to another, and afterwards verify

5 http://hc.apache.org/

48

h

that the key for the selected folder is correct. An example of this can be seen
in Figure 3.16. This feature is also needed to support out-of-band methods for
establishing a share, e.g. through the use of PGP.

Figure 3.16: Establishing a share by copying the key

The other possibility is to make use of a Quick Response (QR) code, which is a
matrix barcode that can store information. This means that one user will generate
a barcode, and the other user can scan that code using the camera on his device.
Figure 3.17 illustrates how this code will look. The barcode contains both the key
and the veri�cation for the shared folder. Once two users have shared a folder once,
that folder can be used for all future shares, which means that the two people will
never have to meet and do the capability exchange again. The identity has thus
been veri�ed.

49

Figure 3.17: Establishing a share by using barcodes

3.4.5 Adding a New Client

Using more clients, or di�erent devices, is almost the exact same as sharing, and
is solved in the same manner. The only di�erence is that the capability that needs
to be transferred, is that of the root folder. It is also possible to take any other
folder and use as a new root for the new client if that is the wish of the user.

3.4.6 Securing the Client

For a user to access her root folder, the client will have to know the capability of
that folder. This is clearly too much random data for most users to remember, so
the capability will have to be stored on the client. The client might be stolen or
broken into by some means, and if the capability is stored in clear text, it is easily
compromised. We therefore implement a locally stored encrypted keyring which
contains this capability.

PBKDF2 is used with 4096 iterations and HMAC-SHA-256, together with a

50

user de�ned password to derive a 128 bit encryption key. The keyring is then
encrypted with AES and the derived key, in ECB mode. Figure 3.18 illustrates the
keyring contents. The username, password, scheme, hostname and port �elds are
used to remember the credentials needed to get access to the server.

Figure 3.18: The keyring format with encrypted �elds shaded in blue

3.4.7 User Interface

We have tried to make a user interface that is easily understandable by a novice
user, both in terms of where to click and in terms of how we name cryptographic
operations. For instance we never use the word capability in the client. To make
the GUI even easier to understand, we have created a video that examines the
most important user interactions with the application. The video is available in
the attachment, which is further described in Appendix B.

In addition to the attached video, this section will present the most important
parts of the implemented GUI.

Main Screen The main screen of the application is shown in Figure 3.19. Before
the user gets to this screen, she will have to unlock her encrypted keyring with her
password. If it is the �rst time the application is started, she have to enter her
online credentials, and get a choice to either import an existing root folder, or to
generate a new one. In both cases, the user will have to choose a password to
encrypt the root capability. The most common action from the main screen would
be to Browse the Vault � in other words to explore the available �les stored on the
server.

Browse the Vault The interface for browsing �les stored in the cloud, is made
in what we understand as a common and understandable way of interpreting users
actions on the Android platform, and can be seen in Figure 3.20. Tapping a �le
will download that �le, and tapping a folder will open that folder.

Selecting �les to upload is treated in a similar way. To reveal this option, the
user have to press the Menu-button. The user will then be allowed to browse her
local �le system for the �le she wishes to upload, and tapping that �le will start
the upload.

A long press on a �le, or a folder item, will reveal the context menu shown
in Figure 3.21. The least understandable action is probably Unlink, which will
remove a �le or a folder from the parent folder. The reason why it says unlink
and not delete, is that the architecture does not specify a way for deleting �les.
The implementation does not make this choice either. This is further discussed in
Section 7.3.

51

Figure 3.19: Main screen of the client application

Figure 3.20: Browsing the cloud storage from the client

52

Figure 3.21: Context menu showing actions available for items stored

53

54

4
Experimental Procedure

This chapter describes the experimentation performed on the implemented system.
It will start by explaining the measurements on the performance of the application.
Finally, the chapter will go through the experimental procedures taken to measure
the security of the locally encrypted keyring.

4.1 Performance of the Client

We have tested the Android client on two Android smartphones, an HTC Desire
and an HTC Hero. We have also tested the Java libraries on a desktop computer.
The speci�cations for HTC Desire can be seen in Table 4.1, for HTC Hero in Table
4.2, and the desktop computer in Table 4.3. The server has identical speci�cations
as the computer. We emphasize that the measurements are meant to be taken as
indications of the performance of the scheme and implementation, and not as exact
measurements. The server was never considered as a possible bottleneck for the
system, due to all heavy operations being performed client-side.

4.1.1 Measured Operations

The construction used to encrypt, hash and transfer �les, is a pipeline as described
in Section 3.4.3. The interesting thing to measure, is the overall speed of the
pipeline, compared to a simple �le transfer with no extra operations such as hashing
and encryption. To try to pinpoint the exact bottlenecks in the pipeline, we also
measure the bandwidth we get from each of the isolated operations in the pipeline
on one of the Android devices, the HTC Desire.

55

Table 4.1: HTC Desire Speci�cations

Product HTC Desire
CPU Qualcomm Snapdragon QSD8250, 1 GHz
Memory 576 MB RAM
Storage Samsung Micro SDHC Class 2, 4 GB
OS Android 2.2
Kernel Version Linux 2.6.32.15

Table 4.2: HTC Hero Speci�cations

Name HTC Hero
CPU Qualcomm MSM7200A, 528 MHz
Memory 288 MB RAM
Storage Micro SDHC Class 6, 4 GB
OS Android 2.2
Kernel Version Linux 2.6.29.6

Table 4.3: Test computer Speci�cations

Product HP Compaq 8100 Elite SFF PC
CPU Intel Core i7 CPU 860 @ 2.80GHz
Memory 4GB RAM
Storage Hitachi HDS72105 SATA2
OS Ubuntu 10.10 64 bit
Kernel Version Linux 2.6.35
Network 1Gbit wired Ethernet

Folders are relatively small in size, and the implementation does not include the
use of a pipeline. All cryptographic operations are completed for the whole folder
prior to sending any data. The speed of these operations are therefore measured
and includes the following:

1. The average time it takes to create a folder, i.e. initial key generation

2. The time it takes to encrypt and sign a folder, with varying amount of data

3. The time it takes to verify a newly downloaded folder, with varying amount
of data

4. The time it takes to serialize a folder, with varying amount of data

56

4.1.2 The Measurement Procedure

To test the bandwidth of the pipeline for �les, we measure the incoming tra�c to
our server using the tool nload1 during a �le upload.

The average bandwidth are observed for a few seconds after the �le upload has
been started, until the �le upload is nearly complete. This does not take overhead
into consideration, such as the initial key generation, but for any �le with a certain
size, this overhead should be neglectable.

To be able to test the di�erent folder operations in the program code, we use
the Java function System.currentTimeMillis(), which we call before and after
an operation, and calculate the di�erence to get the time spent. When we test
operations that are dependant on the contents of a folder, we do this with each
containing item being 86 bytes.

4.1.3 Eliminating Bottlenecks on Android Devices

On the Android devices, three possible bottlenecks that we might be able to con-
trol are identi�ed: the network, the memory card and our implementation of the
application.

The mobile phones will normally obtain their network connection through a
wireless protocol that varies naturally in throughput, e.g. Universal Mobile Telecom-
munications System (UMTS). These protocols work just �ne, but from a measure-
ment standpoint, we want to have a fast and stable connection. The solution
was therefore to connect the Android devices to the test computer, and use the
computers network through the Universal Serial Bus (USB) interface.

Another bottleneck, might be the memory card. The class of a memory card will
identify the least sustained write speeds obtainable from the card in a fragmented
state [45]. The class number X represents this guarantee in X MB, so a Class 2
card guarantees a speed of 2 MB/s. However, there are the possibility that the
card can perform signi�cantly better than what the class number indicates.

4.1.4 Sources of Error

The trouble with measuring performance on operations that are relatively quick, is
that they are vulnerable to noise from the system. The Android system comes with
a lot of built-in services that runs sporadically, and hence a�ect the measurements.
However, the small and quick operations are not necessarily fascinating to measure
� the interesting behaviour to observe is how their performance is a�ected when
the amount of data is increased. The goal of the client is to deliver a quick and
smooth experience for the user.

We cannot explicitly tell what the speed of either the network nor the memory
card are, and this is thus another error source. But by comparing the speed for �le
operations in CSV with the modi�ed version without encryption and hashing, we
should get an indication about how quick the software can be.

1 http://www.roland-riegel.de/nload/

57

http://www.roland-riegel.de/nload/

4.2 Security of the Encrypted Keyring

The locally stored and encrypted keyring can be considered a security risk if it
somehow ends up in the hands of an attacker, either by a device being lost or by an
intrusion in to a device. Even though the keyring is encrypted, it might be prone
to brute force or dictionary attacks. If an attacker is able to decrypt the keyring,
enough information to access the root folder of a user is obtained, and thus all the
�les stored by the user as well.

When considering brute force attacks, it must be emphasized that it is the user's
password, indirectly encrypting the keyring, that is the target weakness. A brute
force attack on the 128-bit AES encryption key directly will be ine�cient as it
involves a key space of 2128 keys. The possibility of dictionary attacks would addi-
tionally disappear, as the encryption key is generated in a pseudorandom manner.
This section describes our approach to attack the keyring.

Keyring Format

The format of the encrypted keyring is given in Figure 3.18. It is encrypted with
128-bit AES in ECB mode, but the key is not randomly generated. The key is
is derived from a password using PBKDF2. The weakness of this, compared to a
random 128 bit key, is that users probably chose shorter and less random passwords.

Another weakness is that parts of the keyring plaintext are known by an at-
tacker. The serialization of a capability for a writeable folder will start with
D:RW:, followed by 16-byte of Base32-encoded data, another colon (:) and then
16 more bytes of Base32-encoded data. In addition, the �elds in the decrypted
form of the keyring are separated by the pipe character (|).

General Procedure

To perform a brute force or dictionary attack on the encrypted keyring, one must
decrypt the keyring for each password guessed. The decryption involves both
key derivation with PBKDF2, and decryption with 128-bit AES in ECB mode.
PBKDF2 is a function that can be used with a varying number of iterations, with
the purpose of having a customizable way for users to increase key strength. The
attacks are tested on 500, 1000, 2000, 4000 and 8000 iterations.

Implemented Attacks

We created two programs designed to crack the keyring password. The �rst pro-
gram, named Brute Force and Dictionary Attack (BFDA), was designed for a single
computer, while the second program, named Cluster Dictionary Attack (CDA), was
created to perform attacks by a cluster of cooperating computers.

Both use dictionary attacks, but BFDA is also capable of a plain brute force
attack. The source code and compiled .jar �les for both programs can be found
in the attached disc. Implementation details are given in Appendix A.

58

Con�guration

BFDA requires Java with the Java Cryptographic Extensions (JCE) and Jurisdic-
tion Policy �les which enables Java to use stronger cryptographic primitives. It
also depends on Java being con�gured to use Bouncy Castle as its primary JCE
provider. These prerequisites are required because the keyring is encrypted using
Bouncy Castle, as this is used by default on the Android platform.

CDA requires almost the same con�guration as BFDA, but naturally for each
node in the cluster. Additionally, the cluster must be con�gured with Apache
Hadoop.

The steps we performed to set up Java with Bouncy Castle and the Jurisdiction
Policy �les, are as described by Peterson [46], and the guide we used for con�guring
Apache Hadoop in a Cluster using Ubuntu Server, are made by Noll [47].

Hardware Speci�cations

The hardware speci�cations for the computer running Brute Force and Dictionary
Attack are given in Table 4.3. The Cluster Dictionary Attack was executed over a
cluster of Amazon EC2 instances, of type High-CPU Extra Large Instances. The
hardware speci�cation for a single instance, used in the cluster attack, is given in
Table 4.4.

Table 4.4: Hardware Speci�cations for Cluster Instances

Instance Type High-CPU Extra Large Instance
CPU Intel Xeon CPU E5410 @ 2.33GHz
RAM 7GB
OS Ubuntu 10.10 64 bit
Kernel Version Linux 2.6.35
I/O Performance High (as de�ned by Amazon)

Running BFDA

The command used for executing a brute force attack with BFDA can be seen in
Listing 4.1. The command for running a local dictionary attack is seen in Listing
4.2.

Listing 4.1: Running local brute force attack

1 $ java −jar BFDA . jar /path/to/keyring \
2 maximum_password_length number_of_threads

59

Listing 4.2: Running local dictionary attack

1 $ java −jar BFDA . jar /path/to/keyring \
2 /path/to/dictionary number_of_threads

Cloud Dictionary Attack

CDA was executed on 20 of the previously speci�ed Amazon EC2 nodes. One
instance was con�gured as both a Hadoop master and slave node, while the 19
other instances were con�gured as slaves. This was done to utilize as much as
possible out of the available nodes, as the master node performs less computational
work than the slave nodes.

Multiple scripts are needed to initiate the distributed attack. The commands
executed to start the Hadoop master and slaves, and mount up the shared, dis-
tributed �le system Hadoop Distributed File System (HDFS), are shown in Listing
4.3. The �nal command enables the Hadoop cluster to support MapReduce. This
is necessary as the CDA attack is implemented as a map-reduce problem. Details
about Apache Hadoop, MapReduce and the implementation of CDA, are given in
Appendix A.

Listing 4.3: Starting Hadoop Cluster with HDFS

1 # Star t HDFS and i n i t i a l i z e master and s l av e nodes
2 $ /path/to/Hadoop/bin/start−dfs . sh
3

4 # Star t a MapReduce c l u s t e r from the master node
5 $ /path/to/Hadoop/bin/start−mapred . sh

The last requirement, before executing the attack, is to copy the desired dic-
tionary �le and keyring into the HDFS. Copying �les from the master node to the
HDFS is done with the command shown in Listing 4.4. The attack can then be
started on the master node with the command shown in Listing 4.5.

Listing 4.4: Copying �les into HDFS

1 $ /path/to/Hadoop/bin/hadoop dfs −put /path/to/file \
2 /path/to/file/in/HDFS

Listing 4.5: Executing the CDA Attack

1 $ /path/to/Hadoop/bin/hadoop jar /path/to/CDA . jar \
2 /HDFSpath/to/dictionary /HDFSpath/to/output/file \
3 /HDFSpath/to/keyring number_of_slaves \
4 number_of_threads_per_slave

60

5
Results

In this chapter we present the quanti�able numbers retrieved when doing the ex-
perimentation described in Chapter 4. This includes performance measurements
of the implemented client, and results of the attacks performed on the encrypted
keyring.

5.1 Performance of the Client

This section presents the numbers obtained from benchmarking the client, and
highlights the most important results. As mentioned in Section 3.4.3 we imple-
mented the CSV client with a key length of 128 bits for AES and 1024 bits for
RSA. The results presented in this chapter are based on this �rst client.

5.1.1 Files

This section shows the network speed obtained when uploading and downloading
�les. Table 5.1 displays the obtained bandwidth when using the unmodi�ed client,
while Table 5.2 shows the obtained bandwidth when using the same client, but
with encryption and hashing disabled. Table 5.3 shows the speed of the individual,
isolated operations in the process pipeline on the HTC Desire.

We observe that the performance of the Android devices for uploads is severely
lower for uploads than for downloads, and that this is not the case for the com-
puter client. We also notice that the speed with encryption and hashing disabled,
is severely higher for all three devices. From the individual results of the HTC

61

Table 5.1: File upload/download on CSV

Device Upload Download
Desire 715 kB/s 1,25 MB/s
Hero 209 kB/s 486 kB/s
Computer 27,7 MB/s 24,9 MB/s

Table 5.2: File upload/download on CSV with encryption and hashing disabled

Device Upload Download
Desire 2,62 MB/s 2,3 MB/s
Hero 1,68 MB 1,75 MB
Computer ∼70 MB/s ∼70 MB/s

Desire, we identify that the encryption and decryption is the most time consuming
operation.

5.1.2 Folders

Table 5.4 shows the average time it takes to create an empty folder on the di�erent
devices. Table 5.5 exhibits �gures on serialization of folders and Table 5.6 shows
the time it takes to encrypt and sign the folder, and is visualized in Figure 5.1.
These three actions are what has to be performed every time a folder is changed,
while the operation of creating a blank folder is added if the content should be
added to a new folder. Table 5.7 displays the time the devices used to verify an
existing folder, a step which is taken by the client every time a folder is opened.
Results noted as N/A for the HTC Hero, are operations that lead to an Out of
Memory exception during execution.

We observe that the slowest part of folder operations are the initial key gener-
ation and the serialization speed. Veri�cation, encryption and signing is satis�able
for all devices. We also note that the performance of signing and encrypting, as
well as verifying, seems to increase as the amount of data gets larger. The serializa-
tion part behaves the exact opposite, where performance drops when the amount
of data gets larger. We also note that our implementation struggles to handle large
folders on the HTC Hero.

Table 5.3: Speed of individual operations on HTC Desire with a 4,38 MB �le

Device Time Bandwidth
Read �le to memory 1,141s 3.84 MB/s
Encrypt �le data 3,761s 1,16 MB/s
Decrypt �le data 3,140s 1,40 MB/s
Hash data 0,358s 12.25 MB/s

62

Table 5.4: Create a blank folder

Computer HTC Desire HTC Hero
81ms 1330ms 2060ms

Table 5.5: Serialize the contents of a folder with n*86 bytes of data

n*86 bytes Computer HTC Desire HTC Hero
50 <1ms 10ms 263ms
100 1ms 236ms 376ms
250 4ms 943ms 2164ms
500 17ms 3561ms 8223ms
750 42ms 8152ms 17230ms
1000 71ms 14190ms 30397ms
2500 487ms 90462ms 191312ms
5000 1980ms 362558ms 756426ms
7500 4400ms 806255ms N/A

Table 5.6: Encrypt and sign the contents of a folder with n*86 bytes of data

n*86 bytes Computer HTC Desire HTC Hero
50 6ms 78ms 201ms
100 6ms 86ms 272ms
250 19ms 33ms 323ms
500 5ms 43ms 295ms
750 6ms 52ms 185ms
1000 6ms 69ms 206ms
2500 10ms 123ms 434ms
5000 17ms 317ms 793ms
7500 23ms 394ms N/A

Table 5.7: Verify a folder with n*86 bytes of data

n*86 bytes Computer HTC Desire HTC Hero
50 <1ms 3ms 10ms
100 <1ms 3ms 9ms
250 <1ms 3ms 11ms
500 <1ms 4ms 11ms
750 <1ms 5ms 13ms
1000 1ms 5ms 17ms
2500 3ms 8ms 26ms
5000 4ms 14ms 41ms
7500 6ms 19ms N/A

63

Figure 5.1: Benchmark of how long it takes to sign and encrypt a folder

5.2 Security of the Encrypted Keyring

Results from running the BFDA and CDA against an encrypted keyring are given
in the following sections.

5.2.1 Brute Force and Dictionary Attack

With BFDA, we executed both a brute force and a dictionary attack to estimate
the amount of passwords we could test during the course of a second.

The results for both attacks are shown in Table 5.8. Results are given for
di�erent numbers of PBKDF2 iterations in passwords per second (PW/s). Figure
5.2 exhibits these numbers.

Table 5.8: Speed results of running BFDA

PBKDF2 iterations Brute force attack Dictionary attack
500 2240 PW/s 2240 PW/s
1000 1120 PW/s 1110 PW/s
2000 570 PW/s 560 PW/s
4000 280 PW/s 280 PW/s
8000 140 PW/s 140 PW/s

Figure 5.2 indicates that by doubling the number of iterations in PBKDF2, the
e�ciency of a brute force attack would decrease by half of its value, as expected.

64

Figure 5.2: Results from running brute force and dictionary attacks against an
encrypted keyring.

Using 1000 iterations in PBKDF2, as recommended by NIST [37], the brute
force attack was able to reach a speed of around 1100 passwords per second. With
this speed, it will take, in average, 39 hours to crack a password with a length of 6
characters, consisting of small letters.

5.2.2 Cluster Dictionary Attack

When running CDA, each node of the cluster achieved approximately the same
results as a single computer running a dictionary attack with BFDA. We found
that there was a small di�erence where the local computer achieved about 50
passwords per second more, compared to an instance in the cluster. The results
may be due to the di�erence in CPU power between the local computer and a
single cluster instance.

With 20 nodes in the cluster, we were able to test around 4600 passwords per
second, given PBKDF2 with 4000 iterations. Running CDA in a cluster of 200
nodes, should further reach a speed of 46 000 passwords per second. Given a brute
force attack with a speed of 46 000 password per second, it will take about 289 283
years in average to recover a password with the 10 character long alphanumeric
password. Calculations are as follows.

65

6210 passwords

46000 passwords/second
= 18245638388442.18 seconds

18245638388442.18

60 ∗ 60 ∗ 24 ∗ 365
= 578565.40 years

578565.40

2
= 289282.70 years in average

Given that the correct password is chosen completely random from the possible
set of passwords, the average time will represent the time used to check half of the
possible password space. The calculated time for brute forcing the whole password
space is therefore divided by two to get the average time.

At the time of writing, renting a single Amazon EC2 high-CPU extra large
instance costs 0.68 USD per hour 1. This unit price results in an hourly cost of
13.6 USD and 136 USD for clusters of 20 and 200 instances respectively.

1From the price list at http://aws.amazon.com/ec2/pricing/

66

http://aws.amazon.com/ec2/pricing/

6
Discussion

This chapter will discuss the technical procedure elaborated in Chapter 3, as well
as experimental �ndings from Chapter 5.

The security of the cryptographic scheme will be analysed in relation to the ap-
plicable security services. Regarding the implementation, we will look at the choice
of use case and the corresponding choice of key distribution. We will additionally
discuss the performance and security �ndings associated with the implementation.

6.1 Security of the Cryptographic Scheme

In this section, we will go through the cryptographic scheme proposed and described
in Section 3.2. Lastly, we analyse how the scheme does or does not support various
features and functionality.

Even though we regard the proposed scheme as secure, some information will
be leaked both to the server, and potentially to an external attacker if a secure
channel for communication is not used.

The provider will be able to observe which folder is the root folder of a user.
This is because it will probably be the �rst folder a user creates, in addition it
will probably be the �rst folder a user accesses during each session. The provider
will also see which of kind of object is a folder and which is a �le, because a write
enabler is sent alongside a folder. The sequence of objects that a user requests will
also leak some information about the �le and folder hierarchy. Lastly, the sharing
of objects is possible to determine based on who accesses a given storage index.

We do not consider any of this information to be dangerous for the server to

67

possess, but if an external attacker obtains the write enabler for a folder, this might
cause some problems in regards to availability.

6.1.1 Con�dentiality

Con�dentiality is provided by encrypting data locally with a random key before it
is stored in the cloud. This implies that con�dentiality can only be breached by
weaknesses in the cryptographic primitives, side-channel attacks or attacks on the
client. Security of the client is discussed in Section 6.2.4.

It is obvious that con�dentiality weights heavily on the strength of the uti-
lized cryptographic primitives. The recommended primitives in Section 3.2.3 are
believed to ensure con�dentiality. It is also possible to change the recommended
cryptographic primitives with future or existing algorithms.

The proposed cryptographic scheme has an additional weakness that can pos-
sibly end with a breach of con�dentiality. Namely, the procedure taken to derive
the write key of a folder. The write key is the result of hashing the private key
used to sign a folder. Given an attack that can derive the private key from the
corresponding public key, it will be easy for an attacker to retrieve the write key
of the folder. While the cryptographic primitives recommended should make this
infeasible to do at the time of writing, it might be possible in the future. The write
key could instead be generated from a CSPRNG, which is the case for the read key
of �les.

6.1.2 Integrity

The cryptographic scheme provides integrity by adding a cryptographic hash value
into the encrypted parent folder of a object that is stored in the cloud. The hash
value from a �le is derived from its content, while the hash value from a folder
is generated from its public key. To breach integrity, an attacker must be able to
change a cryptographic hash value stored inside a folder. This implies that both
reading and writing to a folder is achieved.

With this in mind, the integrity of the cryptographic scheme relies on the con-
�dentiality provided by the encrypted folders. In other words, the integrity builds
on the underlying cryptographic primitives as well as the client security.

6.1.3 Non-repudiation

It is possible, in the proposed cryptographic scheme, to con�rm that a user with
access to the correct capability has changed a folder, ie. uploaded or unlinked
a �le to the folder. The scheme does not provide the information necessary to
con�rm which user changed the folder or when it happened. It is possible, however,
to implement this functionality on top of the proposed scheme to provide non-
repudiation in the accounting layer.

68

6.1.4 Authentication

One could argue that the proposed scheme does not include authentication, but at
the same time one could argue that the possession of a capability authenticates a
user. If authentication is not implemented as an extra layer as described in Section
3.1.2, the server does not really authenticate the user. Granted the knowledge
of the storage index does indicate possession of the capability, but this index can
theoretically be stolen by using tra�c analysis if the communication channel is
not secured. The possession of a capability does authentication in some way, but
not the user. Rather it authenticates the capability, and at the same time grants
authorization to the otherwise useless encrypted data.

6.1.5 Access Control

Access to a resource in the proposed scheme is given by capabilities. Anyone can
download any encrypted data from the server if they possess a storage index, but
that does not give access to the data. The possession of a capability does however
grant this access.

The server will only need to handle write enablers in regard to access control.
Knowledge of the write enabler indicates knowledge of the write key which again
indicates possession of the whole capability. This means that access control in this
context is also given by the capability. The write enabler is vulnerable to tra�c
analysis and other attacks that compromise availability if it is not sent over a secure
channel. An improvement of the scheme that could reduce the risk of this, is to
have the server actually verify that folders uploaded have a correct signature. With
that improvement, the write enabler is strictly not necessary, but this will increase
the requirements of the server.

6.1.6 Availability

The proposed scheme does not try to provide availability in regards to the storage
provider. The provider might chose to delete all data, or shut down the server at
any time. Tahoe-LAFS has solved this by using erasure coding and storing the
data on di�erent nodes. The result is that some nodes might be taken down, but
as long as a su�cient number is available, the data will also be. This would also be
possible with the proposed scheme, but is considered out of scope for this thesis.

If a secure communication channel is not used, availability will be a problem
in regards to an external attacker. By using tra�c analysis, write enablers can be
obtained, which means that data can also be overwritten. A MITM attack could use
modi�cation of message to either prevent a user from storing data or to make the
user store wrong data. These attacks do not compromise the con�dentiality of the
data, and they will be discovered by the integrity check failing. A possible attack,
that is not detected by the integrity check, is the replay attack. The attacker can
record an update of a folder and replay that message when the folder has further
been updated causing possible loss of data.

69

6.1.7 Sharing

One of the major advantages of CSV over many cloud storage systems, is the
possibility to share �les and folders in a secure manner. If only the read capability
of a folder is shared, the user holding the write capability are guaranteed to be the
only one capable of making valid changes to the folder.

The server denies people with only the read capability to make changes to the
folder by the use of the write enabler. The write enabler serves the purpose of
proving to the server that one holds the correct write capability. If someone with
access to the �le system on the server, e.g. a cloud provider employee, decides to
make changes on a folder, the integrity check will warn the user of this.

6.1.8 Supporting Multiple Cryptographic Primitives

The main problem with selecting cryptographic primitives for our scheme, is that
one cannot be sure how long they will remain secure. A recommended approach
is to build systems that can easily change the cryptographic primitives, in case of
discoveries enabling an attacker to break a primitive [13]. The main problem with
this approach is that if for instance AES is broken, and the cloud provider keeps
backups of all user data on their server, that information could be compromised
with regard to the provider.

A change of a cryptographic primitive in our scheme would lead to backward
compatibility being broken, i.e. one would be unable to obtain �les or folders stored
before the change. This could be remedied by a meta block for each �le and folder,
containing the utilized cryptographic primitives. In addition, the capability would
have to contain which cryptographic hash function that should be used, to be able
to deduce the storage index from the key.

6.2 Implementation

This section will discuss and deal with the di�erent choices taken to ful�l the im-
plementation of the cryptographic scheme. We will start by discussing the use case
we chose to implement. Further on, we will analyse our choice of key distribution
scheme and look at alternative solutions. Lastly, we will discuss the performance
and security of the client implementation.

6.2.1 Choice of Use Case

There are mainly two types of user groups interested in a cloud storage solution �
personal or enterprise. The proof of concept implementation is more aimed against
the personal use case, than the enterprise market.

In an enterprise, the use of a TTP are often already in place, usually in the
form of an IT department. An additional fundamental di�erence, is that it would
usually be more de�ned who the users are supposed to share �les with, and what
they should have access to. An organization might not approve of a model where
all users can forward read rights to other users.

70

6.2.2 Key Distribution

Our solution for key distribution is by no means revolutionary, it does require
two users to meet each other to exchange keys. However, the scheme only require
that users meet each other once, all sharing after that can be done with no contact
between the two parties. The use of barcodes for transferring keys on smart phones
also makes the process of actually handing over a key much easier. In addition, the
manual import option in the client grants every user the possibility of using any
other channel for transferring keys.

6.2.3 Performance

The measurements performed on our client reveal that it has some performance
issues with regards to the speed of downloads and uploads. For �les, a perfect
client would render the network or the memory card as the bottleneck, but our
measurements state that this is not the case. However, we �nd the performance
obtained by both the computer and the HTC Desire as satis�able. The HTC Hero
struggles with certain operations, but is at the same time an older device with
limitations in both CPU and memory capacity.

Because of the cryptographic operations, the download and upload speed for a
given �le is decreased by around 50-80% on all three devices. The results for the
individual operations performed on HTC Desire shown in Table 5.3, indicates that
encryption and decryption are the slowest elements in the process pipeline, and
responsible for most of the performance drop.

Limitations of Libraries Another thing to note, is that the implementations
of the InputStream and OutputStream objects in Java and the Apache HttpCom-
ponents seems to read and write the requested number of bytes stream by stream.
This implies that the implementation will never reach the speed achieved by the
slowest component in the pipeline.

Multiple CPU Cores Branching the operations in the pipeline to di�erent
threads should make it possible to gain better performance, especially in an en-
vironment which spots multiple processor cores. Multiple CPU cores is standard
on modern computers, and there is no reason to suspect otherwise than that also
smart phones will be equipped with this in the nearest future. In addition, dedi-
cated cryptographic coprocessors may relieve the CPU from additional work.

Folders The performance of the folder operations in the implementation is quite
good, if we look at the cryptographic functionality. We identify the slowest oper-
ation to be the generation of new cryptographic keys. For a user of the Android
client, this should not be a problem, since the folder creation is done as an asyn-
chronous task while the user enters the name of the new folder. Another solution
is to have the application maintain a pool of keys before they are requested by the
user. In this way a key can almost always be ready for the user when needed.

71

The other cryptographic operations on folders completes quite quickly, but the
performance for serializing the folder contents is too low when folders contain a
large number of items. A folder with thousands of children is not something we
expect an ordinary user of the Android client to have, but if we change the scenario
to backing up an entire computer, the serialization part might become a problem.

The slow serialization operation can partially be blamed on our own implemen-
tation. The folder items are stored in a HashMap, which is serialized to a string
to make it ready for encryption. Ideally, this step is not necessary, given that the
folder contents exists in its correct form in memory. This might not be possible due
to reasons such as decreased performance when manipulating the folder content.
But we believe it is possible to create a faster implementation of the currently
utilized serialization algorithm.

Cache Since opening folders is a relatively expensive procedure, given that it has
to be downloaded from the server, decrypted and veri�ed, we keep the currently
opened folder and its parents in a stack. This can be seen as a kind of cache, and
could be extended to include all folders opened in the active session.

6.2.4 Security of the Client

If a user physically looses her device, and the CSV software is running, anyone
who �nds the device can get access to the user's private �les and folders. This is
because the client software will have to keep the root capability from the keyring
in memory, and will potentially have copies of the �les on the device. The same
applies if the device is broken into, e.g. through a vulnerability in the operating
system.

Downloaded Files

An attacker who gains access to the device running CSV will be able to read
downloaded �les. It is possible to avoid writing downloaded �les to the persistent
storage medium. This can be implemented using a temporary �le system that only
persists in the memory of the client, e.g. ramfs. This is a �le system for clients
running Unix-like operating systems. However, utilizing this method will limit the
possible size of the downloaded �les to the size of the available memory.

In case limited �le size is not an acceptable solution, it is possible to use a
temporary �le system that supports swapping, e.g. tmpfs. This will, however,
potentially keep parts of a large �le on the persistent storage medium, revealing
information about a downloaded �le. A practical feature would be to store the en-
crypted �les on the persistent storage medium, and only put them in the temporary
�le system when needed.

Disclosing the Root Capability

The con�dentiality of the root capability is held by an encrypted keyring that is
stored client-side. The keyring is encrypted with a key derived from a password

72

provided by the user. Unfortunately, using a password to encrypt the keyring,
makes the keyring a suitable target for brute force and dictionary attacks. The
vulnerability of the keyring against these attacks was questioned in Section 4.2.

Brute Forcing the Keyring From the results in Section 5.2, we noticed that the
choice of iterations in PBKDF2 were conclusive to the e�ciency of a brute force
attack against the encrypted keyring. By doubling the number of iterations in
PBKDF2, the e�ciency of a brute force attack would decrease by a corresponding
50%.

When following the recommendations for PBKDF2 and password constraints
given in Section 3.2.3, it is infeasible to perform a brute force attack against the
encrypted keyring. However, even though the keyring is secured against such an
attack, it is still vulnerable to dictionary attacks due to the passwords being made
by humans. To completely prevent such attacks, one would have to make sure that
the encrypted keyring is never disclosed.

Our implemented attacks were not very e�ective against the keyring, but both
CDA and BFDA may be subject to improvement. An example to increase e�ciency
would be to design the programs to run on GPUs rather than CPUs. We are also
not sure that the cryptographic primitives supplied by Bouncy Castle are the fastest
available. Considering �ndings by Roth [38], it is reasonable to believe that the
keyring is more vulnerable to brute force attacks than what our attacks imply.
However, even with the speed obtained by Roth, such an attack seems infeasible,
while a dictionary attack will always be possible and its success strongly dependant
on the chosen password.

Active Attacks While the encrypted key ring may resist some dictionary and
brute force attacks, other problems arise when facing an active attacker. If the
attacker is able to read the memory of the device, she can also read the root
capability if this is unlocked by the user.

A mechanism that decrease the risk of this happening, is to have the software
time out after a speci�ed interval. At the timeout the software can overwrite the
sensitive information in memory.

Another scenario would involve the attacker installing a keylogger on the com-
promised client. This type of software can further detect the keyring password
when the user logs in to the application.

73

74

7
Future Work

The proposed cryptographic scheme has multiple features that can be added and
improved. In the following sections, we present what we see as the most important
ones.

7.1 Simplifying the Server

The implemented proof of concept server generally performs quite well, and was
never identi�ed as a bottleneck during the performance measurements. However, by
making the server-side contain less logic, CSV could be used against for instance the
Amazon S3 service. This would more easily enable users that are not comfortable
with setting up a web server, to set up the whole system from scratch. Another
possibility is that the cloud provider could run the server as IaaS.

By redesigning the scheme to use a dumb �le store, the write enabler func-
tionality will be lost. However, a service like Amazon S3 do provide some access
control, and in the scenario of a friend net, this could actually be considered as a
better solution. Luckily, the cryptographic architecture presented in Section 3.2,
are loosely coupled with the accounting layer, so extending the proof of concept
software to use a dumb �le store should not pose any great concerns.

7.2 Key Distribution

The challenge of key distribution in a user friendly way is hard. To successfully
authenticate a user and transfer a key, it is possible to choose from the following

75

methods:

� Use a trusted third party

� Meet a user in person

� Use some sort of safe out of bound channel

Since one of the basic problems of this thesis is that the cloud provider is not
to be trusted, it is not desirable to use a trusted third party. This implies that
the only option left, is to verify another user in person, although an out of band
scheme like PGP could be used.

In PGP, users can publish that they have veri�ed other users and to which
degree they trust them [12]. Other users can use this information to calculate
the probability that a certain user is legit. The reason why this scheme is not
implemented, is that it is fairly complex for a standard user to grasp. There are
however nothing that stops a user that want to use the PGP scheme to transfer
capabilities.

If the cryptographic scheme presented in Section 3.2 should be used in an or-
ganization, a PKI is probably the best solution. In this setting, the organization
can itself be the trusted third party that enforces that all certi�cates granted to
users are correct. A user could then simply be prompted by the name of the user
she would like to share a �le with, and the rest could be handled by software logic
and the trust of the PKI.

7.3 Deletion of Files

To support deletion of �les, various alternatives has to be assessed. Consider the
following scenarios:

1. A folder is shared between two users, and one of the users has linked in the
�les in other directories as well. What should happen if the other user deletes
the �les in the shared folder?

2. A folder contains a folder which is a link to a folder �higher� in the folder tree,
and thus creating a loop. By deleting the folder, should all subdirectories be
deleted as well, i.e. cascading delete?

The choice of the alternatives presented shortly, are not taken by the proposed
cryptographic scheme, as it is merely a practical decision.

To remedy the problem of cascading deletion with loops, the system could utilize
an algorithm for �nding strongly connected components of a graph, before actually
deleting any �les.

Two components are strongly connected if there exist a path from A to B, and
from B to A, as depicted in Figure 7.1 where a directory is linked in at a higher
level in the directory tree. The dashed line represents the actual path in the graph.

76

Figure 7.1: Theoretical cycle in the directory graph

If the folder X is requested to be deleted, the A and Y directories are also removed.
This behaviour may not be expected nor desired by the user.

Tarjan's Algorithm [48] is an example of algorithm that can be implemented to
do this kind of check, and is basically a depth �rst search, with a stack containing
visited nodes.

Creator The accounting layer on the server could store the username of the
creator of the �le along with each storage index, and use this to decide who should
be granted access to delete �les.

Write Enabler Similarly, the server could grant removal rights to whoever pro-
vides the write enabler, in the same manner as when updating folders. This requires
that delete enablers is produced for immutable �les.

Link Count The �les could include a link count in its meta data, which is up-
dated whenever a user links or unlinks it from a folder. When the link count reaches
zero, the user noti�es the server to delete it. This would have to be combined with
the use of delete enablers for �les.

7.4 Veri�cation of Files

The veri�cation scheme for immutable �les is suboptimal in every way a user wants
to use an ordinary �le. The problem is that the user will have to download the
entire �le, before she can verify that the �le is what it is supposed to be. If it turns
out that the �le does not pass this check, and the error was in the very �rst byte,
the user has wasted time and bandwidth downloading a lot of useless data. The
same scenario applies if the user only wants to look at a small part of a �le, e.g.
the middle section of a movie, or to utilize the �le while it is still downloading.

A possible solution to support this kind of veri�cation, would be to build a hash
tree of the whole �le, as shown in Figure 7.2. With a hash tree, smaller parts of the
�le can be veri�ed, and errors can be detected earlier. The hash tree could be stored
encrypted on the server together with the encrypted �le, and the capability could

77

hold the root hash of the tree. The downside to this approach, is that performance
would be a�ected due to the substantial amount of hash operations required to
compute the hash tree. This idea of a hash tree is implemented in Tahoe-LAFS
[5].

Figure 7.2: Hash tree of a �le

7.5 Version Control System

Some of the currently available cloud storage systems, as Wuala and Dropbox
mentioned in Section 2.6, support a kind of version control of the �les stored.
This means that the data lost during a modi�cation of a �le are saved alongside
the current �le, so that the user has enough information to restore the �le to a
previous state. In practice, this often mean to store multiple versions of the same
�le, or the di�erence between two versions. This could be implemented in CSV by
one of the following methods.

Extension to Folders By adding a list of subsequent �les to the directory struc-
ture exempli�ed in Section 3.4.3, we can link previous versions of a �le in the
serialization form:

alias;capability;capability;capability

To make this feasible and user friendly, a time stamp would have to be added
to the capability. This would increase the size of the folder.

Type of Mutable File A new form of mutable �le could be implemented in
practically the same form as a directory, containing timestamps instead of aliases,
and pointing to corresponding storage indexes. With this procedure, it should be
easy to con�gure for the user which �les and folders that should be under version
control.

78

7.6 Deduplication

The term data deduplication implies not having to store redundant data. By im-
plementing a deduplication scheme, multiple advantages can arise in the sense of
a storage system. For the service provider, this could mean cost savings in the
form of not having to store the same �le twice, but still claim money from users
for the given storage. For the users of the service, this could mean better network
utilization, as uploading a big �le that already exist on the server would take no
time at all.

However, there are practical disadvantages and great privacy concerns related to
deduplication, in addition to some solutions that address these issues. The scheme
does not support deduplication. This is because all encryption keys are randomly
selected, neither the server or the client is able to detect whether a �le already
exists in the system.

Practical Disadvantages Deduplication relies on the use of hash functions to
check whether a �le or a block of data exist on the storage node. In general, as long
as you hash something larger than the length of the digest, there exists collisions,
and hence data corruption.

Further on, the additional hash operations and queries to the server pose extra
computational overhead, which increase if the deduplication is on block level.

Privacy If deduplication is used on �le-basis globally � i.e. for all users � there
exist a privacy risk. The provider will be able to prove that a certain �le exists
on the system, and has the ability to �gure out which user has saved this �le thus
e�ectively compromising the con�dentiality of that �le. If the deduplication scheme
works in a manner in which the �le is not uploaded if it already exists on the server
any user is able to prove that a �le is already stored.

Customizable Deduplication Tahoe-LAFS tries to provide a solution that has
all the advantages and none of the issues related to deduplication, by convergent
encryption with an added secret [5].

Convergent encryption implies using the hash of the plaintext as the key to the
symmetric encryption algorithm, i.e. the same plaintext will always yield the same
ciphertext, making it easy to implement deduplication.

Tahoe-LAFS adds a per-client secret to the hashing procedure, as depicted
in Figure 7.3, before using the result as a key to encrypt the �le. This enables
per-client deduplication, or per-group deduplication if the user shares the secret
with other users. Since the storage index is based on the encryption key, and the
plaintext will always lead to the same encryption key, the client can check for �le
existence on the server and prevent duplication.

79

Figure 7.3: Tahoe-LAFS deduplication scheme

80

8
Conclusion

The main purpose of this thesis was to create and implement a solution to a secure
cloud storage service. The scheme was to provide what we de�ned in Chapter 1 as
a secure storage system.

Key elements of the proposed cryptographic scheme is based on the secure and
relatively scrutinized �le system Tahoe-LAFS. With this in mind, and the use of
cryptographic primitives recommended in Section 3.2.3, the proposed cryptographic
architecture is believed to o�er a secure storage system.

In Section 5.2, attempts were made to attack the locally encrypted keyring. The
�ndings did not reveal any obvious weaknesses, but results from another researcher
indicates that dictionary attacks are feasible. However, to acquire the keyring, an
active attack on the client device is required. In addition, measuring performance
on constrained devices proved that the trade-o� between the levels of usability and
security did not undermine the desired strength of the underlying cryptographic
primitives. For older devices, the transfer speeds might not be satis�able.

When developing a secure �le system, one of the greatest challenges turned out
to be the choice and implementation of cryptographic primitives. Good references
and external recommendations can help, but only to a certain degree. Key distri-
bution is also a general problem that will always be hard to accomplish, if a trusted
third party is not to be included. Yet another challenge experienced, is that all
additional features desired for a secure cloud �le system are hard to implement
without compromising security. Deduplication is an example of this.

We have shown that it is possible to create and implement a fundamental crypto-
graphic scheme for a secure cloud storage system, supporting sharing. The scheme
does not require a speci�c key distribution method, but provides the choice of im-

81

plementing any desired solution on top. We have also implemented an open source,
proof of concept server and client for Android devices, that has further been mea-
sured in performance and evaluated in security. The client support easy exchange
of keys by using barcodes.

While our scheme solves some of the basic challenges of security within cloud
storage, there are several features that could improve the scheme. The most im-
portant being a better approach to verifying �les, to e.g. allow streaming, and the
possibility of deleting �les. For our implementation it would be interesting to see
a modi�ed version which could work directly with an existing dumb cloud storage
solution, such as Amazon S3.

82

Bibliography

[1] Jeremy Geelan. Twenty-One Experts De�ne Cloud Computing. http://

cloudcomputing.sys-con.com/node/612375, January 2009. Retrieved May
13, 2011.

[2] Peter Mell and Timothy Grance. The NIST De�nition of Cloud Computing
(Draft). NIST Special Publication 800-145, January 2011.

[3] Google history. http://www.google.com/corporate/history.html. Re-
trieved May 15, 2011.

[4] Windows Live - All services. http://home.live.com/allservices/. Re-
trieved May 15, 2011.

[5] Zooko Wilcox-O'Hearn and Brian Warner. Tahoe - The Least-Authority
Filesystem. In Proceedings of the 4th ACM international workshop on Storage
security and survivability. ACM, 2008.

[6] Nuno Santos, Krishna P. Gummadi, and Rodrigo Rodrigues. Towards trusted
cloud computing. In Proceedings of the 2009 conference on Hot topics in cloud
computing. USENIX Association, 2009.

[7] Wassim Itani, Ayman Kayssi, and Ali Chehab. Privacy as a Service: Privacy-
Aware Data Storage and Processing in Cloud Computing Architectures. Tech-
nical report, American University of Beirut, 2009.

[8] Siani Pearson, Yun Shen, and Miranda Mowbray. A Privacy Manager for
Cloud Computing. Technical report, HP Labs, 2009.

[9] Seny Kamaraand and Kristin Lauter. Cryptographic cloud storage. In Fi-
nancial Cryptography and Data Security, Lecture Notes in Computer Science.
Microsoft Research, Springer Berlin / Heidelberg, 2010.

[10] Ken Schwaber and Mike Beedle. Agile Software Development with Scrum.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2001.

[11] Andrew Hunt and David Thomas. The Pragmatic Programmer: from jour-
neyman to master. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1999.

83

http://cloudcomputing.sys-con.com/node/612375
http://cloudcomputing.sys-con.com/node/612375
http://www.google.com/corporate/history.html
http://home.live.com/allservices/

[12] William Stallings. Cryptography and Network Security � Principles and Prac-
tices. Pearson Education Inc., fourth edition, 2006.

[13] Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno. Cryptography Engi-
neering: Design Principles and Practical Applications. Wiley Publishing Inc.,
2010.

[14] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey,
You, Get O� of My Cloud: Exploring Information Leakage in Third-Party
Compute Clouds. In Proceedings of the 16th ACM conference on Computer
and communications security. ACM, 2009.

[15] National Institute of Standards and Technology. Speci�cation for the Ad-
vanced Encryption Standard (AES). Federal Information Processing Stan-
dards Publication 197, November 2001.

[16] National Institute of Standards and Technology. Secure Hash Standard (SHS).
Federal Information Processing Standards Publication 180-3, October 2008.

[17] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message
Authentication. RFC 2104 (Informational), February 1997. Updated by RFC
6151.

[18] B. Kaliski. PKCS #5: Password-Based Cryptography Speci�cation Version
2.0. RFC 2898 (Informational), September 2000.

[19] Digital Signature Standard (DSS). Federal Information Processing Standards
Publication 186-3, June 2009.

[20] Andrew C. Yao. Protocols for Secure Computations. Technical report, Uni-
versity of California Berkeley, 1982.

[21] Craig Gentry. Fully Homomorphic Encryption Using Ideal Lattices. In Pro-
ceedings of the 41st annual ACM symposium on Theory of computing, 2009.

[22] A. Narayanan and V. Shmatikov. Obfuscated Databases and Group Privacy.
Technical report, University of Texas, Austin, 2005.

[23] Guiseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Lea Kiss-
ner, Zachary Peterson, and Dawn Song. Provable Data Possession at Untrusted
Stores. Technical report, Johns Hopkins University, UC. Berkeley and Google,
Inc, 2007.

[24] Ari Juels and Burton S. Kaliski Jr. PORs: Proofs of Retrievability for Large
Files. Technical report, RSA Laboratories and EMC Corporation, 2007.

[25] Dropbox. Dropbox Reveals Tremendous Growth With Over 200 Million Files
Saved Daily by More Than 25 Million People. http://www.dropbox.com/

press/release, . Retrieved April 27, 2011.

84

http://www.dropbox.com/press/release
http://www.dropbox.com/press/release

[26] Dropbox. How secure is Dropbox? http://www.dropbox.com/help/27, .
Retrieved April 27, 2011.

[27] Miguel de Icaza. Dropbox Lack of Security. http://tirania.org/blog/

archive/2011/Apr-19.html. Retrieved April 27, 2011.

[28] Barry A. Cipra. The Ubiquitous Reed-Solomon Codes. Society for Industrial
and Applied Mathematics (SIAM) News, 26-1, January 1993.

[29] Dominik Grolimund, Luzius Meisser, Stefan Schmid, and Roger Watten-
hofer. Cryptree: A Folder Tree Structure for Cryptographic File Systems.
In SRDS'06, 2006.

[30] Dominik Grolimund. Google Tech Talk: Wuala - A Distributed File System.
http://www.youtube.com/watch?v=3xKZ4KGkQY8, 2007. Retrieved May 31,
2011.

[31] Mark Miller, Ka-Ping Yee, and Jonathan Shapiro. Capability myths demol-
ished. Technical report, Combex Inc., UC Berkley, Johns Hopkins University,
2003.

[32] Damien Giry. Cryptographic Key Length Recommendation. http://www.

keylength.com/en/compare/, 2011. Retrieved May 24, 2011.

[33] European Network of Excellence in Cryptology II. Ecrypt II Yearly Report
on Algorithms and Keysizes. Technical report, ECRYPT II, March 2010.

[34] National Institute on Standards and Technology. Brief Comments on Recent
Cryptoanalytic Attacks on Secure Hashing Functions and the Continued Se-
curity Provided by SHA-1, August 2004.

[35] P. Ho�man. DSA with SHA-2 for DNSSEC (Draft). Technical report, IETF,
July 2009.

[36] Microsoft. Performance Comparison: Security Design Choices. http://msdn.
microsoft.com/en-us/library/ms978415.aspx, October 2002. Retrieved
May 23, 2011.

[37] Meltem Sönmez Turan, Elaine Barker, William Burr, and Lily Chen. Rec-
ommendation for Password-Based Key Derivation. NIST Special Publication
180-132, December 2010.

[38] Thomas Roth. Breaking encryptions using GPU accelerated cloud
instances. https://media.blackhat.com/bh-dc-11/Roth/BlackHat_DC_

2011_Roth_Breaking_encryptions-wp.pdf, January 2011. Retrieved May
10, 2011.

[39] Thomas Roth. Upcomming black hat talk. http://stacksmashing.net/

2011/01/12/upcoming-black-hat-talk/, january 2011. Retrieved May 29,
2011.

85

http://www.dropbox.com/help/27
http://tirania.org/blog/archive/2011/Apr-19.html
http://tirania.org/blog/archive/2011/Apr-19.html
http://www.youtube.com/watch?v=3xKZ4KGkQY8
http://www.keylength.com/en/compare/
http://www.keylength.com/en/compare/
http://msdn.microsoft.com/en-us/library/ms978415.aspx
http://msdn.microsoft.com/en-us/library/ms978415.aspx
https://media.blackhat.com/bh-dc-11/Roth/BlackHat_DC_2011_Roth_Breaking_encryptions-wp.pdf
https://media.blackhat.com/bh-dc-11/Roth/BlackHat_DC_2011_Roth_Breaking_encryptions-wp.pdf
http://stacksmashing.net/2011/01/12/upcoming-black-hat-talk/
http://stacksmashing.net/2011/01/12/upcoming-black-hat-talk/

[40] Roy Thomas Fielding. Architectural Styles and the Design of Network-based
Software Architectures. PhD thesis, University of California, Irvine, 2000.

[41] Netcraft. January 2011 Web Server Survey. http://news.netcraft.com/

archives/2011/01/12/january-2011-web-server-survey-4.html. Re-
trieved April 27, 2011.

[42] Python Web Server Gateway Interface v1.0.1. Python Enhancement Proposal
3333, September 2010.

[43] DalvikVM.com. Brief overview of the Dalvik virtual machine and its insights.
http://www.dalvikvm.com/, 2008. Retrieved May 21, 2011.

[44] Simon Josefsson. The Base16, Base32, and Base64 Data Encodings. RFC 4648
(Proposed Standard), October 2006.

[45] SD Speci�cations Part 1 Physical Layer Simpli�ed Speci�cation.
http://www.sdcard.org/developers/tech/sdcard/pls/simplified_

specs/Part_1_Physical_Layer_Simplified_Specification_Ver3.01_

Final_100518.pdf, 2010. Retrieved May 15, 2011.

[46] Zachary Peterson. Installing Policy Files and Bouncy Castle Provider. http:
//znjp.com/mcdaniel/BC.html, 2008. Retrieved May 4, 2011.

[47] Michael G. Noll. Running Hadoop On Ubuntu Linux (Multi-
Node Cluster). http://www.michael-noll.com/tutorials/

running-hadoop-on-ubuntu-linux-multi-node-cluster/, 2007. Re-
trieved May 4, 2011.

[48] Robert Tarjan. Depth-�rst search and linear graph algorithms. SIAM Journal
on Computing, Vol. 1, 1971.

[49] Apache Hadoop. Project Description. http://wiki.apache.org/hadoop/

ProjectDescription, 2009. Retrieved May 6, 2011.

[50] Je�rey Dean and Sanjay Ghemawat. MapReduce: Simpli�ed Data Processing
on Large Clusters. Technical report, Google Inc., 2004.

86

http://news.netcraft.com/archives/2011/01/12/january-2011-web-server-survey-4.html
http://news.netcraft.com/archives/2011/01/12/january-2011-web-server-survey-4.html
http://www.dalvikvm.com/
http://www.sdcard.org/developers/tech/sdcard/pls/simplified_specs/Part_1_Physical_Layer_Simplified_Specification_Ver3.01_Final_100518.pdf
http://www.sdcard.org/developers/tech/sdcard/pls/simplified_specs/Part_1_Physical_Layer_Simplified_Specification_Ver3.01_Final_100518.pdf
http://www.sdcard.org/developers/tech/sdcard/pls/simplified_specs/Part_1_Physical_Layer_Simplified_Specification_Ver3.01_Final_100518.pdf
http://znjp.com/mcdaniel/BC.html
http://znjp.com/mcdaniel/BC.html
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-multi-node-cluster/
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-multi-node-cluster/
http://wiki.apache.org/hadoop/ProjectDescription
http://wiki.apache.org/hadoop/ProjectDescription

Appendices

87

A
BFDA and CDA

Implementations

This chapter contains details about the implementations of BFDA and CDA.

A.1 Brute Force and Dictionary Attack

BFDA includes a brute force attack and a dictionary attack against a user's en-
crypted keyring. Details about the implementation follows.

A.1.1 Implementation Details

BFDA is written in Java and utilize the javax.crypto library with Bouncy Castle
version 1.34 as JCE provider to decrypt the encrypted keyring. The Bouncy Castle
JCE provider seems to be necessary as Android uses it by default to encrypt using
AES. For PBKDF2 BFDA utilizes a free Java library1.

The program is divided into two functions, named bruteForceAttack and
dictionaryAttack, that correspondingly executes a brute force and dictionary
attack. The bruteForceAttack function is shown in Listing A.1.

1http://rtner.de/software/PBKDF2.html

89

http://rtner.de/software/PBKDF2.html

Listing A.1: bruteForceAttack function

1 public void bruteForceAttack (String [] input) {
2 current_word = new char [1] ;
3 words = new Stack<String>() ;
4 THREADS = Integer . parseInt (input [2]) ;
5 bf_threads = new BruteForceThread [THREADS] ;
6 MAX_WORD_LENGTH = Integer . parseInt (input [1]) ;
7

8 for (int i = 0 ; i < bf_threads . length ; i++) {
9 bf_threads [i] = new BruteForceThread ("bf" + i) ;

10 }
11

12 waitForBFThreads () ;
13

14 while (! found) {
15 if (current_word . length > MAX_WORD_LENGTH)
16 break ;
17 pushWord (current_word . length − 1) ;
18 char [] tmp = new char [current_word . length + 1] ;
19 tmp [tmp . length − 1] = ' ' ;
20 System . arraycopy (current_word , 0 , tmp , 0 ,
21 current_word . length) ;
22 current_word = tmp ;
23 }
24 }

bruteForceAttack starts a number of BruteForceThread threads. The func-
tion continues after all BruteForceThreads are initialized and ready to start their
task. It then enters a while-loop, which executes a pushWord function for each
iteration.

The task of pushWord is to simply create and push all possible words of a given
length onto a stack of words. The length of the words to push are given by its
integer argument. The whole attack is based on letting the main thread create and
push words onto a stack, while the BruteForceThreads are pulling words from
it. When a word is pulled, it is subject to PBKDF2, where the result is used to
decrypt the ciphertext. If decryption results is a given plaintext, the password has
been recovered.

The dictionaryAttack function is shown in Listing A.2.

Listing A.2: dictionaryAttack function

1 public void dictionaryAttack (String [] input) {
2 File dict = new File (input [1]) ;
3 THREADS = Integer . parseInt (input [2]) ;
4

5 if (dict . exists ()) {
6 try {

90

7 fr = new FileReader (dict) ;
8 buf = new BufferedReader (fr) ;
9 start = System . currentTimeMillis () ;

10 for (int i = 0 ; i < THREADS ; i++) {
11 new DictionaryThread ("dict" + i) ;
12 }
13 } catch (FileNotFoundException e) {
14 e . printStackTrace () ;
15 }
16

17 } else {
18 System . out . println ("ERROR: Dictionary does not exist!") ;
19 printHelp () ;
20 System . exit (0) ;
21 }
22 }

dictionaryAttack reads an input dictionary �le into a BufferedReader. It
then starts a given number of DictionaryThreads. The DictionaryThreads will
read from the BufferedReader in a synchronized way. When a word is read from
a DictionaryThread it will be subject to PBKDF2, where the result is used to de-
crypt the ciphertext. If decryption results in a recognizable plaintext, the password
has been recovered.

A.2 Cluster Dictionary Attack

CDA is written in Java, and is built around the same procedure as the dictio-
nary attack in BFDA. However, the di�erence lays in the cooperation of multiple
computers. To enable a cluster of computers to cooperate, we used the following
environment.

A.2.1 Environment

The environment is based upon a software framework from Apache called Hadoop.
The main functionality of Hadoop is described below.

Apache Hadoop

Apache Hadoop makes it possible for multiple machines to cooperate and run com-
putational work together. Hadoop also provides a distributed �le system HDFS,
that can store data across multiple cooperating machines [49]. The computational
work in Hadoop is organized and distributed using MapReduce.

MapReduce MapReduce is a programming paradigm introduced by Google. It
is designed to process and generate large sets of data using a cluster of machines
[50].

91

In MapReduce, a large set of input data is divided into multiple key-value pairs.
The key-value pairs are further distributed to multiple MapReduce tasks running
on multiple machines.

A MapReduce task is divided into a mapper and a reducer. The task of a
mapper is to perform an operation on a key-value pair and return a key-value pair
as a result to the reducer. The reducer collects pairs from multiple mappers and
combine the results into one or more output �les.

A.2.2 Implementation Details

The CDA attack is implemented as a MapReduce problem, with a large dictionary
�le as the data input set. The dictionary is split into separate key-value pairs,
where each value is a single line in the dictionary and the key corresponds to the
number of that line.

The key-value pairs are handled by a map function implemented in CDAMapper.
The map function has the responsibility of checking every word on a single dictio-
nary line. Each line in the dictionary should contain a certain amount of words.
This is to enable the map function to run multiple threads at the same time, where
each thread checks one or more words. With multiple threads, the attack is able to
utilize more CPU power for each running machine in the cluster. A detailed view
of the map function, is given in Listing A.3.

Listing A.3: Mapper function in CDAMapper

1 @Override

2 public void map (LongWritable key , Text value ,
3 OutputCollector<Text , LongWritable> output ,
4 Reporter reporter)
5 throws IOException {
6

7 String [] line = value . toString () . split (" ") ;
8 String [] line_chunk = new String [WORDS_PER_THREAD] ;
9

10 // Create threads to check words in l i n e
11 for (int i = 0 , c = 0 ; i < (THREADS * WORDS_PER_THREAD)
12 && i < line . length ; i += WORDS_PER_THREAD , c++) {
13 if (line . length − i >= WORDS_PER_THREAD) {
14 System . arraycopy (line , i , line_chunk , 0 ,
15 WORDS_PER_THREAD) ;
16 } else {
17 System . arraycopy (line , i , line_chunk , 0 ,
18 line . length − i) ;
19 }
20 dictionary_threads [c] = new DictionaryThread ("dict" + i ,
21 line_chunk) ;
22 }
23

92

24 // Wait f o r a l l threads to f i n i s h
25 for (DictionaryThread dt : dictionary_threads) {
26 try {
27 dt . thread . join () ;
28 } catch (InterruptedException e) {
29 e . printStackTrace () ;
30 }
31 }
32 if (! password . equals ("")) {
33 output . collect (new Text ("Password is [" + password

34 + "]. Found at") ,
35 new LongWritable (System . currentTimeMillis ())) ;
36 }
37 }

When receiving a key-value pair, the map function �rst splits the input line
into an array of words. It then creates a given number of DictionaryThreads and
serves each a subarray of words from the array. Each DictionaryThread will check
all of its incoming words similar to the DictionaryThread in BFDA. If the correct
password is found, the password will be written to the sysout folder.

A class named Processor initializes the CDA attack by con�guring the mapper
and reducer tasks. The number of mappers is set equal to the number of nodes used
in the cluster. This is to ensure that each machine only runs one mapper at a time.
The number of reducers are set to zero, because their behaviour in MapReduce are
not needed.

The for-loop at Line 10 in Listing A.3 requires the number of words per line,
in the dictionary, to be equal to a multiple of the number of threads in use. It
is recommended that the input dictionary follows this requirement. In this occa-
sion, we have created a Bash script, named dictmaker.sh, that changes a regular
dictionary into an N words-per-line dictionary. The script can be found on the
attached disc.

93

94

B
Attachments

This thesis comes with two available attachments � one digitally uploaded to the
DAIM system1, and one physical disc.

B.1 Electronic Attachment

The electronic attachment, uploaded to DAIM, consists of the following �les and
directories:

Application All �les and source code of the proof of concept system, i.e. the
background library, server and client. A patch �le containing security �xes,
is also included.

Other Scripts and raw data from the experiments.

B.2 Attached Disc

The attached disc contains all contents also provided in the electronic attachment,
as well as a video demonstrating the Android client.

1http://daim.idi.ntnu.no/

95

http://daim.idi.ntnu.no/

	Title Page
	Abstract
	Preface
	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction
	Motivation
	Related Work
	Scope and Objectives
	Limitations
	Methodology
	Outline

	Background
	Cloud Computing
	Service Models
	Deployment Models

	Security Services
	Security Attacks
	Attacks on Cryptographic Primitives
	Security Considerations in Cloud Computing

	Cryptographic Primitives and Applications
	Randomness
	Encryption
	Cryptographic Hash Functions
	MAC Functions
	Key Derivation Functions
	Digital Signatures
	Digital Certificates and PKI
	SSL/TLS

	Research on Security in Cloud Computing
	Privacy as a Service
	Privacy Manager
	Trusted Cloud Computing Platform
	Cryptographic Cloud Storage

	Existing Solutions
	Dropbox
	Tahoe-LAFS
	Wuala

	Technical Procedure
	Architectural Overview
	File Storage
	Authorization, Authentication and Accounting Layer
	User Scenarios
	Constraints

	Cryptographic Architecture
	Security Concepts
	File and Directory Operations
	Recommendations for Cryptographic Primitives

	Server Implementation
	Communication and Architectural Patterns
	Environment
	Implementation Details

	Client Implementation - Android
	Environment
	Architectural Patterns
	Implementation Details
	Sharing
	Adding a New Client
	Securing the Client
	User Interface

	Experimental Procedure
	Performance of the Client
	Measured Operations
	The Measurement Procedure
	Eliminating Bottlenecks on Android Devices
	Sources of Error

	Security of the Encrypted Keyring

	Results
	Performance of the Client
	Files
	Folders

	Security of the Encrypted Keyring
	Brute Force and Dictionary Attack
	Cluster Dictionary Attack

	Discussion
	Security of the Cryptographic Scheme
	Confidentiality
	Integrity
	Non-repudiation
	Authentication
	Access Control
	Availability
	Sharing
	Supporting Multiple Cryptographic Primitives

	Implementation
	Choice of Use Case
	Key Distribution
	Performance
	Security of the Client

	Future Work
	Simplifying the Server
	Key Distribution
	Deletion of Files
	Verification of Files
	Version Control System
	Deduplication

	Conclusion
	Appendices
	BFDA and CDA Implementations
	Brute Force and Dictionary Attack
	Implementation Details

	Cluster Dictionary Attack
	Environment
	Implementation Details

	Attachments
	Electronic Attachment
	Attached Disc

