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Abstract

The usage of IoT devices is rising exponentially and this leads to a massive increase in
data generated from such devices. Currently, most of the generated data is sent directly to
cloud platforms for processing. This creates physically long distances between the devices
and their platform, causing an increased strain on network infrastructures and setting
higher baseline requirements for them. New smart city ICT-systems should therefore
be designed with this in mind to lessen the total unnecessary usage of long distance
network communications. This can be done by utilizing computation between the devices
and the cloud platforms through a distributed-to-centralized form of computing known
as fog-to-cloud computing. This thesis investigates how this computational paradigm
can be adopted into future ICT-systems for a smart city context while facilitating data
management from distributed sources and up to cloud computing solutions. It proposes
an architectural model based on research done into the state of fog-, cloud- and fog-to-
cloud computing. This research is then made into requirements for the design of the
model to act as a scientific basis. The model utilizes concepts like containerization and
container orchestration and argues for the suitability of those for a smart city scenario.
A useful feature of this is to enable usage of a wider array of IoT-devices as resources
for the ICT-system operation and runtime. Through implementing and evaluating the
architectural model, the thesis then aims to start a discussion on standardization of
architectures and best practices for use in smart cities, neighbourhoods and buildings.

Keywords: Cloud Computing, Fog Computing, Edge Computing, Smart City, Smart
Building, Containerization, Container Orchestration, Swarm Computing, Cluster Com-
puting, IoT
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Sammendrag

Bruken av IoT-enheter gker eksponentielt, og dette fgrer til en enorm gkning i data gener-
ert fra slike enheter. For gyeblikket sendes det meste av de genererte dataene direkte til
skyplattformer for behandling. Dette skaper fysisk lange avstander mellom enhetene og
plattformene deres, noe som medfgrer gkt belastning pa nettverksinfrastrukturen og fast-
setter hgyere basiskrav for dem. Nye "smart city" IKT-systemer bgr derfor utformes med
tanke pa dette for & redusere den totale ungdvendige bruken av langdistanse nettverk-
skommunikasjon. Dette kan gjgres via beregninger og behandligner mellom enhetene og
skyplattformene gjennom en "distributed-to-centralized" form for databehandling, kjent
som "fog-to-cloud"-databehandling. Denne oppgaven undersgker hvordan dette bereg-
ningsparadigmet (computational paradigm) kan bli vedtatt i fremtidige IKT-systemer
for en "smart city"-kontekst, samtidig som dataforvaltning tilrettelegges fra distribuerte
kilder og opp til sky-lgsninger. Den foreslar deretter en arkitektonisk modell (archi-
tectural model) basert pa forskning gjort pa standarder og status i "fog"-, "cloud"- og
"fog-to-cloud"-databehandling. Denne forskningen er videre utformet som krav til design
av modellen. Modellen utnytter konsepter som "containerization" og "container orches-
tration" for deretter & argumentere hvor egnede de er for et "smart city"-scenario. En
nyttig funksjon av dette er & muliggjore bruk av et bredere utvalg av IoT-enheter som
ressurser for driften av IKT-systemet. Gjennom implementering og evaluering av den
arkitektoniske modellen, forsgker oppgaven a starte en diskusjon om standardisering av
arkitekturer og beste praksis for bruk i smarte byer, nabolag og bygninger.
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Abbreviations

FME = Centres for Environment-friendly Energy Research
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ZEB = Zero Emission Building

IoT = Internet of Things

NTNU = Norwegian University of Science and Technology
ICT = Information and Communication Technology

F2C = Fog to Cloud

D2C = Distributed-to-Centralized

QA = Quality Attribute

GDPR = General Data Protection Regulation

TPWM = Tiered-Priority Workload Management

PaaS = Platform-as-a-Service (Cloud Computing)

SaaS = Service-as-a-Service (Cloud Computing)
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1 Introduction

1.1 Introduction

The usage of IoT devices are increasing rapidly and are projected to reach 10 Billion
connected IoT devices by 2020 [1]. Many to most of these devices generate data such as
sensor data, usage statistics etc. This massive and growing increase in data generation
has a proportional demand for aggregation and processing of this data in order for it to
be useful in analytics, services and applications. Computational paradigms such as cloud
computing is a popular approach to data aggregation and analytics [2] and this poses new
problems and challenges to be faced. Studies done on the data generation of a smart city
points to large amounts of data being generated ,without accounting for the data being
generated from other sources (like mobile devices), with the need rising in the future
[3]. The growing strains on networking infrastructure needed for a total reliance on a
centralized computational paradigm need to be addressed. Some proposed strategies to
mitigate and relieve these strains are pre-processing data, distributed data organization
and fog computing [3]. Some cities like Barcelona have already implemented some smarter
approaches to city management [|4] while broader projects like +CityXchange [5] are
becoming more popular. In the future this will only increase (as shown in figure
and there will be a corresponding need for network infrastructure and possibly to handle
the increasing flow of data through new applications and services as well.

In an IoT setting, the fog is the layer that stretches from the outer edges of the network
up to where it is eventually stored [6]. It helps to visualize fog computing as a form of
low-lying cloud closer to the ground, thereby its namesake, when considering its relation
to cloud computing. Fog computing is, generally speaking, the concept of performing
computational tasks out towards this outermost layer (edge) of the network. This is
usually in the form of data pre-processing, aggregation, real-time data storage, providing
interfaces to edge IoT devices and services. The purpose of fog computing is generally
not to replace the cloud but to extend it by acting as an extension of the cloud itself
by providing computational capacity closer to the edges of the network. By performing
tasks like data analytics closer to the edges of the network, it will reduce communications
overhead |7]| while also reducing overall strain on the network. Furthermore, functionality
like real-time data access and pre-processed/aggregated data will lessen the need for
these tasks in the cloud-layer and make it easier to keep up with rising demands and
development. Another useful benefit will be the possibility of having applications and
services physically closer to the devices and data sources. This in turn will greatly reduce
latency and would be very useful in time-sensitive applications like crisis prevention and



other time-sensitive operations.

In a smart city context, there is a need to properly manage the flow of the increasing
amounts of data being generated that normally flows directly to cloud computing systems.
One promising solution is to utilize both fog- and cloud-computing combined as fog-to-
cloud-computing to manage the flow of the data from where it is generated, up through
fog intermediaries and finally up to the cloud. This solution is presented through a
paper published by the ZEN research centre named "Data Preservation through Fog-
to-Cloud (F2C) Data Management in Smart Cities" [8]. It focuses primarily on the
management of data and persistence through the management of the data flow, and not
necessarily on usage in applications and services. This thesis will therefore focus on how
the fundamental principles of Fog-to-Cloud Data Management can be applied to new
applications and services in a smart city context to help alleviate the aforementioned
problems and challenges.

1.2 Thesis Structure

The structure of the thesis will be as follows:

1. Introduction - Introducing the problem the thesis will tackle and the motivation
behind it.

2. Background - Background research done to better understand the problem and to
provide a scientific basis for the main part of the thesis.

3. Methodology - Research method applied for the various parts of the thesis. De-
scribes the general process of the thesis and provides insight into methodology
applied for the different parts of the research and other work done.

4. Results - The main part of the thesis where the proposed solution and all related
parts are outlined. Divided into four parts which follows the sequence of develop-
ment: 1. Requirements to the design of the model. 2. The architectural model
(proposed solution). 3. The implementation of the architectural model. 4. The
evaluation metrics to evaluate the architectural model and the implementation.

5. Discussion - Evaluation of the architectural model and implementation using the
requirements and quality metrics. After that, there is a discussion on the archi-
tectural design choices, scientific contributions and reflections on the thesis as a
whole.

6. Conclusion - Conclusion of the thesis, answering the research questions and pro-
posals for future work.



2 Background

The thesis proposes an architectural model that aims to start discussions of standardiza-
tion and best practices for applications and services for use in smart cities, neighbour-
hoods and buildings. It follows principles of distributed-to-centralized data management
as a core part of the model and designs the rest based on research done on the state of
fog-, cloud- and fog-to-cloud-computing. This chapter is meant to provide insight into the
context of the thesis as well as showing the background research done. It has an overview
of the different network layers of centralization, architectures assessed through the liter-
ature review, other essential papers and an overview of the technologies, platforms and
frameworks from the model and implementation.

2.1 Smart Cities

There are much discussion and many different definitions on what exactly constitutes a
"smart city". This discussion varies from programmers and technologists definition of
applying tech to city government and services 9], to a wider definition from other disci-
plines defining it as innovating and imagining new better ways of providing these services
[10]. The thing most of the definitions have in common is collecting data from various
sources and utilizing that to provide better services and improve general governance in
cities. This is a growing field of studies with several large government-funded initiatives,
like EU smart cities and community lighthouse projects [10|, are progressing steadily in
pioneering smarter cities. There are also several projects focusing on smart cities on a
lower scale, like the ZEN centre (more info on this later on in the thesis) focusing on
smart neighbourhoods.

The smart city impacts many facets of the governance of the city and the daily lives
of its citizens [11]. These areas are as shown in figure smart environment, smart
mobility, smart economy, smart governance, smart people and smart living. All of these
areas together form the entire context of what a smart city is and can involve. By applying
gathered data into decision making, service handling and application development, all of
these areas can be affected in a positive manner. This is usually realized through smarter
city services for the citizens, better utilization of available resources such as electricity
through grid computing, e-democracies and other applications to involve the citizens in
decision-making.
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Figure 2.2: An overview of the monetary investments into smart city project by region

2.2 Network Centralization

Different computational paradigms often act on different levels of centralization with
regards to networking. Some computational paradigms are designed around heavily cen-
tralized networking (cloud computing), while others are designed to function at the utter
edges of the network (edge computing) with others being somewhere in between (fog
computing). This section elaborates on the different layers of this centralization of net-
working and aims to provide insight into this field of research in the context of smart
cities.



2.2.1 Identifying Network Layers

To identify the different possible network layers when considering degrees of centraliza-
tion, the relevant parts of the network in a smart city context must be examined. This
will involve looking at the highest and lowest forms of centralization. The most central-
ized form is then a heavily centralized form of computation, and the least centralized
will be the smaller devices at the edges of the network. The most centralized layer would
then be the cloud layer and the least centralized would then be the edge layer at the
utter edges of the network. Between those two, there is a layer called the "fog layer" that
bridges the gap of computation on the edges and centre. In addition, there is a "fog-to-
cloud" layer that is a combined term for computation extending from the fog layer to the
cloud layer or vice versa. Much of the literature use the term fog and edge computation
interchangeably, but there are differences to the layers in addition to the overlapping [12].
To simplify the situation somewhat, not all forms of computational work at the edge of
the network is necessarily considered a part of the fog while some forms of fog computing
can extend or interact with the edges of the network. The layout of this Fog-to-Cloud
environment (distributed-to-centralized) could therefore be considered to have “2.5 lay-
ers” where in some cases the utter edges of the network can be argued as a distinct layer
on its own. Furthermore there are several definitions and description of what constitutes
the fog computing layer and they all share the common though that the fog extends
from the end of the cloud layer and to the edge of the network itself. The fact that
the terms edge- and fog computing are often used interchangeably does complicate the
manner.The description given by Aazam and Huh [13] encompasses this thinking well;
“Fog computing refers to bringing networking resources near the underlying networks. It
is a network between the underlying network(s) and the cloud(s). Fog computing extends
the traditional cloud computing paradigm to the edge of the network, enabling the cre-
ation of refined and better applications or services. Fog is an edge computing and micro
data center (MDC) paradigm for IoTs and wireless sensor networks (WSNs).” The thesis
will then focus on the environment of the cloud layer, the fog layer and their combined
definition of the fog-to-cloud layer. The thesis will therefore take basis in fog-to-cloud
being the combined layer of both the cloud- and fog layer. Any form of centralization
on the edges then becomes a part of the fog, while computation strictly confined to the
edge without centralization is then a part of the edge layer (as shown in figure This
makes the fog layer and cloud layer the relevant network layers along with their combined
fog-to-cloud layer.
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2.2.2 Centralized Architecture
Network Layer

The Cloud Layer The "Cloud Layer" is a collection of everything relating to the act
of providing or utilizing applications and/or services in the cloud. The cloud itself is
a heavily centralized form of computation or data-management consisting of connected
data-centres of varying sizes that together forms a centralized platform. Due to the
complex and costly nature of building cloud platforms, the norm is to utilize services
provided by bigger companies for cloud computing tasks instead of building one. As of
2019, cloud service providers like Amazon Web Services (AWS), Google Cloud Platform
(GCP) and Microsoft Azure dominates most of this trade [14]. These providers sell
access to their cloud computing services in the form of Platform as a Service (PaaS),
Infrastructure as a Service (IaaS) and/or Services as a Service (SaaS). Cloud computing
has become exceedingly popular and is presently heavily embedded both in commercial
and private usage. In the future this paradigm will undoubtedly increase in popularity
and usage, further increasing the need for expansion of the existing services and possibly
new actors in the market as well. As an example, AWS (amazons cloud service) makes



up a small portion of the e-commerce giants business, but is responsible for most of the
delivered operating income [15].

Computational Layer

Cloud Computing Michael Armbrust et. al defines cloud computing like this: "Cloud
computing refers to both the applications delivered as services over the Internet and
the hardware and systems software in the data centers that provide those services."
[16]. It is a broad definition that covers the entirety of the scope for cloud services and
applications available. This broad definition is fitting as the field of cloud computing is
a massive enterprise and is seen as a massively growing market with large potentials for
profit. Cloud computing is mainly used in either transaction processing (i.e., read and
update workloads) or OLAP (OnLine Analytical Processing) workloads. These forms of
computation are usually made available through scalable pay-as-you-go virtual machines.
This makes virtual machine hosting systems one of the most popular forms of establishing
cloud computing platforms.

Smart city services and applications, like many other current services and applica-
tions, utilize the cloud to both host their services and perform most of computational
tasks there as well. This makes cloud computing a relevant computational paradigm to
consider when either designing an independent smart city service or when interfacing
with one is necessary. It is a considerable undertaking to create new cloud computing
platforms, and it would therefore generally be preferable to use an existing platform in-
stead of establishing your own. This again has lead to little publicly available research
and material on how one would go about establishing their own cloud platform. The
largest providers available tend to keep to secrecy on the inner workings of their plat-
form due to them spending large sums of both money and work-hours in their research
and development.

Examples of cloud computing include [17]: SaaS examples: BigCommerce, Google
Apps, Salesforce, Dropbox, MailChimp, ZenDesk, DocuSign, Slack, Hubspot.

PaaS examples: AWS Elastic Beanstalk, Heroku, Windows Azure (mostly used as
PaaS), Force.com, OpenShift, Apache Stratos, Magento Commerce Cloud.

IaaS examples: AWS EC2, Rackspace, Google Compute Engine (GCE), Digital Ocean,
Magento 1 Enterprise Edition*.
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2.2.3 Distributed Architecture
Network Layer

The Fog Layer The "fog layer" is the network layer that is more distributed and physi-
cally closer to the edges of the network compared to the cloud layer [6]. A fog is considered
a cloud that is less dense and physically closer to the ground, so this visualization gives
a general idea of what the fog layer is in comparison to the cloud. There are some dis-
agreements on where the fog begins and where it ends. The similarities in the definitions
lie in the fact that it starts at the edges of the network and extends up to the cloud
layer. The disagreement often lies in what extent computing at the extreme edges of
the network constitutes fog computing or if it is then edge computing. Some other con-
cepts like "cloudlet" [18] (smaller data-centres/servers providing cloud-like functionality
to edge mobile devices) would also fit comfortably within the parameters of the fog.

Edge Layer As mentioned above, the terminology of edge computing and fog computing
is often used interchangeably, making it harder to properly distinguish the two. This
thesis uses the definition of the edge being more or less exclusive to the logical edge of
the network and as soon as it is a bit more centralized, it is in the context of the
fog. The edge layer will then be the network layer of the extreme edges of the network
exclusively and the possible computations made on the devices in that context.



Computational Layer

Fog Computing Fog computing is computational tasks, applications, services etc. that
is done in the fog layer. It has its beginning as a complimentary extension of cloud
computing where fog computing can provide low-latency functionality by being closer to
the utilized devices |20]. This is its main functionality and area of use, but it could also
be used as a standalone alternative to the cloud when necessary. The core features of fog
computing is that it acts as a middle-layer between the devices at the edge and the cloud.
This enables data pre-processing, aggregation, analytics etc. close to the data sources
and mitigates some of the struggles associated with cloud computing such as high latency
due to being physically further from the sources. An example of fog computing can be a
small server that processes data from local sensors and sends it to a cloud storage system.

Edge Computing Edge computing, as fog computing, is a computational paradigm
centred around devices at the logical extremes of the network [19|. Its main focus is to
utilize computation at the site of the distributed devices to the extent of the resources
available. This could either be for light applications that does not require a lot of
resources, or to combine it with other more centralized systems that have these resources
available. If edge computing is to be used on its own at the edges, this sets higher
requirements to the devices at the edges or to expand the computational capacity where
these devices are located. An example of edge computing can be that a device that
generates data processes it locally on the device before sending it to a more centralized
system. Or that it stores its own locally generated data in a local database that can be
queried from other systems.

2.3 ZEN

The ZEN (Zero Emission Neighbourhoods) research centre is a research centre for en-
vironmentally friendly energy established in 2017 by the Research Council of Norway
[21]. They have a multi-disciplinary approach to reaching their goals where information-
technology is one of those disciplines. The research of this thesis is done in collaboration
with this research centre and will therefore take basis in some of their previous research.
The most influential paper being "Data Preservation through Fog-to-Cloud (F2C) Data
Management in Smart Cities" [8].

2.3.1 Distributed-to-Centralized Architecture
Data Preservation through Fog-to-Cloud (F2C) Data Management in Smart Cities

This paper focuses on how data preservation can be done in smart cities with a distributed-
to-centralized (Fog-to-Cloud) approach [8]. The paper argues that the amount of data



that will be generated by sensor devices etc. will increase exponentially and impose great
strains on the network infrastructure as this will most likely be handled by cloud systems.
Further it argues that time-sensitive applications and needs for real-time data makes a
purely cloud-based solution unsuitable in some smart city scenarios. Their proposal to
mitigate this is to provide a fog computing solution as an extension of the cloud solutions
and provide data management for the entire flow of data from the devices at the edge
and up to a more centralized solution. By providing this between the edge and the cloud,
you can benefit from the strengths of the cloud while reducing the strain on the network
infrastructure by reducing the amount of data sent, and also providing low-latency access
to real-time data.

2.4 Architectures

This section covers a brief overview of the architectures discovered and assessed in the
literature review. It is included to better understand the theoretical basis for the choice
of requirements later on in the thesis.

2.4.1 Cloud Computing Architectures
Dynamic user-integrated cloud computing

This paper proposes a dynamic user-integrated approach to development of cloud solu-
tions |22] in its architecture. It is specifically designed to tackle challenges set by lacking
network infrastructure for locations with underdeveloped network infrastructure, using
China as their problem scenario. This model proposes that user clients are dynamically
added to the datacenter when utilizing services in the cloud so that the datacenter is
able to better scale to rising demands without needing a physical expansion.

A new cloud computing approach based SVM for relevant data extraction

This paper proposes a new SVM-based (Support Vector Machine) cloud architecture for
storage and retrieval of data in the cloud [23]. It aims to solve the growing concerns con-
nected to the amount of data that is stored and processed in cloud systems. By utilizing
a new SVM technique, it develops learning models that can be used to information fil-
tering and extracting the most useful data. With this model, the total amount of stored
data can be reduced and thereby freeing resources and ensures more cost-effective cloud
storage solutions.
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HTC Scientific Computing in a Distributed Cloud Environment

This paper describes a distributed cloud computing system for use in high-throughput
computing (HTC) scientific applications [24]. This distribute cloud computing system
would be comprised of several separate Infrastructure-as-a-Service (IaaS) clouds that are
set into a unified infrastructure.

NoHype

This paper focuses on a central part of many cloud computing architectures: virtual-
ization [25]. It raises several concerns about the way cloud computing infrastructures
utilize a "virtualization layer" to handle the different virtualized operations running in
the cloud, and the security concerns this raises. One virtualized instance in the cloud can
attack the virtualization layer and possibly access other instances handled in this layer,
and therefore raising concerns to the confidentiality and integrity of systems running
in that cloud. It proposes an altered architecture that serves the same features as the
virtualization layer without actually utilizing it, thereby mitigating these concerns.

C-Cloud

This paper presents an alternative to the common datacenter model by utilizing a shared
network of more distributed resources over multiple machines |26]. This platform is
then comprised of many connected devices such as PCs, laptops, enterprise servers and
clusters, instead of larger data centers like most other cloud infrastructures.

2.4.2 Fog Computing Architectures
Vision: mClouds - computing on clouds of mobile devices

This paper presents an alternate computational paradigm for future infrastructures based
on mobile devices [27]. The though is that with the growing capacity and resources and
increased ubiquity of mobile devices makes a strong case for the use of mobile clouds.
This architecture is then comprised of a network of mobile devices that provides cloud-like
features from available computational capacity in local mobile devices.

A Fog Operating System for User-Oriented loT Services

This paper aims to take advantage of technological trends of increased IoT presence
and capability |28]. It introduces FogOS, a fog computing architecture for IoT services
to capitalize on these developments and increase the capabilities of IoT services. The
operating system aims to tackle challenges of varying diversity and heterogeneity of the
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IoT devices it will utilize. They then argue how the FogOS is designed to provide and
manage loT services in an effective and efficient manner.

IFCloT: Integrated Fog Cloud loT

This paper identifies a need for an extension to the existing data management sys-
tem through cloud computing |12|. Based on several concerns like network latency and
bandwidth constraints they clarify the weaknesses by only utilizing the cloud comput-
ing paradigm and states that a new solution will be needed to face growing demands.
They then propose an Integrated Fog Cloud IoT solution that extends the existing solu-
tions by moving relevant computational parts to the logical extremes of the network and
thereby closer to the utilized data sources. Their solution is then set in an Intelligent
Transport System context to provide a better understanding of possible usage. This
context gives a general overview of the strengths of the proposed architectural paradigm
and more specifics of the solution itself is highlighted. A reconfigurable and adaptive
fog-node/edge-server architecture is presented as a viable solution to the given problem.
Afterwards they elaborate on other possible usages such as smart cities, localized weather
maps, environmental monitoring and real-time agricultural data analytics and control.
They argue that fog computing provide several advantages in certain settings and that
cloud-computing is lacking as a natural consequence of its centralized nature. The de-
centralized strategy of fog computing is superior with concerns to future IoT challenges
such as network latency and bandwidth constraints. In addition it is also better at real-
time responsiveness, mobility support and location-based customization. Fog computing
is thought of not as a replacement for cloud computing, but to augment its current
capabilities with the strengths of fog computing when feasible.

FOG-Engine

The weaknesses of the current state of cloud computing, such as latency and inefficiency
in dealing with big data applications, is underlined at the start of the paper [29]. A
Fog approach is proposed to alleviate some of the difficulties by augmenting the already
existing cloud architecture with local clusters of computational units physically closer to
the sources and sensors. The concept of a “FOG-engine” is proposed in the article to
fill the need of devices closer to the source. In the proposed solution IoT devices are
equipped with the FOG-engine and they make up a Peer-to-Peer smart system. This
smart system coordinates between each other while also providing a gateway to cloud
services for other devices. To reduce data communications overhead on data analytics, it
is proposed to move the computations closer to the data source. FOG-engine is proposed
as a way to enable on-premise processing at the device-level of the IoT. This has several
benefits such as lower latency, higher throughput, and less usage of network bandwidth.
Proper evaluations are needed however to demonstrate the benefits of the solution.
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2.5 Containerization

"Containerization is a lightweight alternative to a virtual machine that involves encap-
sulating an application in a container with its own operating system. A container takes
its meaning from the logistics term, packaging container. When we refer to an appli-
cation container, we mean packaging software." . In short then, a container is then
the entirety of the code that is to be executed, the environment it is to run in and all
dependencies packaged neatly together. These containers can then be run on a container
platform of the same type and framework. Docker is a popular open-source containeriza-
tion platform that can be used for this purpose (more on docker below in its own section).
So as an example, a container image is built according to a specification provided from
a file (Dockerfile in this example). This image can be used to make containers, that are
packaged code and dependencies made according to a specific blueprint in the form of
the image. These containers can then be built through images on any device that have
the docker platform installed.

Containerized Applications

Host Operating System

Infrastructure

Figure 2.5: Hlustration of containerization through the docker platform

2.6 Container Orchestration

"Containers support VM-like separation of concerns but with far less overhead and far
greater flexibility. As a result, containers have reshaped the way people think about
developing, deploying, and maintaining software. In a containerized architecture, the
different services that constitute an application are packaged into separate containers
and deployed across a cluster of physical or virtual machines. But this gives rise to the
need for container orchestration—a tool that automates the deployment, management,
scaling, networking, and availability of container-based applications." [31]. Container or-
chestration is then the act of managing and organising containers to a specified pattern of



behaviour that is explicitly defined. This definition includes several factors that is needed
to orchestrate the different containers and is different depending on the specification for
each container orchestration framework. The things all have in common, however, is the
specifications of the different containers to be orchestrated (image, number of replications
etc.). More information on specific technologies are outlined further on.

2.7 Technologies and Frameworks

This section covers the different programming languages, technologies, frameworks and
platforms utilized in the thesis. It is mainly meant as a quick introduction to the purpose
and function of each of the entries and not comprehensive explanations.

2.7.1 Programming Languages
Python

"Python is an interpreted, interactive, object-oriented programming language. It incor-
porates modules, exceptions, dynamic typing, very high level dynamic data types, and
classes. Python combines remarkable power with very clear syntax. It has interfaces to
many system calls and libraries, as well as to various window systems, and is extensible
in C or C++. It is also usable as an extension language for applications that need a
programmable interface. Finally, Python is portable: it runs on many Unix variants, on
the Mac, and on Windows 2000 and later."[32|. Python is quick to learn and provides
an environment that makes it quick to go from an idea to an executable script. Due to
the native support on most linux-based operating system, python has become a powerful
tool for native-like scripting on these operating systems. This leads to python being
dominant in IoT due to the high percentage of those devices running linux.

JavaScript

"JavaScript (JS) is a lightweight interpreted or just-in-time compiled programming lan-
guage with first-class functions. While it is most well-known as the scripting language
for Web pages, many non-browser environments also use it, such as Node.js, Apache
CouchDB and Adobe Acrobat. JavaScript is a prototype-based, multi-paradigm, dy-
namic language, supporting object-oriented, imperative, and declarative (e.g. functional
programming) styles."[33]. JavaScript is a well-known language that sees dominant use
on the web and increased usage in other parts like back-end usage through Node.js. If
web technologies are to be involved in the project at any point, JavaScript is also in-
volved in some way. This is either by native JavaScript files, a super-type of JavaScript
like TypeScript, or some other language that is transpiled or compiled to JavaScript.
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Typescript

TypeScript is a superset of JavaScript that adds typing to the language and compiles
down to native JavaScript|34]. The inclusion of optional typing functionality in the
language alleviates some of the most prominent concerns to the language that lies in its
on-the-fly variable type assignment in runtime. It is gaining popularity and has become a
standard in web application frameworks like angular. In addition to this, it also supports
the newer ECMAScript standards and adds this functionality to JavaScript through the
compilation.

2.7.2 Standards and Technologies
JSON

"JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is
easy for humans to read and write. It is easy for machines to parse and generate.
It is based on a subset of the JavaScript Programming Language, Standard ECMA-
262 3rd Edition - December 1999. JSON is a text format that is completely language
independent but uses conventions that are familiar to programmers of the C-family of
languages, including C, C+-+, C#, Java, JavaScript, Perl, Python, and many others.
These properties make JSON an ideal data-interchange language."[35]. JSON is adopted
as a standard in machine-to-machine communications on the web and has wide usage in
lots of different applications, services and API’s. The versatility of the standard makes
it easy to send data of many types and structures easily from one client or server to
another.

MongoDB

MongoDB is a popular cross-platform document-oriented database that uses documents
on a JSON-like format as a base database-entry format [36]. It is classified as a NoSQL
(Not only SQL) database that is different from regular relational databases (like MySQL)
in that it is not based on how the entries in the database relate to the others. Due to
the independent nature of each entry in the database, it is highly scalable and easy to
implement simple databases.

2.7.3 Frameworks and Platforms
Docker

Docker is a containerization platform that provides both the platform to run containers
on and the tools to create and build containers to run on the platform|37]. It is a
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popular platform for containerization and is adopted as a standard of containerization
in the field. More information on the process of containerization is provided in the
section earlier. The specifics of Docker containerization lies in how the container image
is built through the Dockerfile. This file contains explicit instructions on the program
environment, dependencies and specific build instructions on what commands to run and
build sequence.

Docker-Compose "Compose is a tool for defining and running multi-container Docker
applications. With Compose, you use a YAML file to configure your application’s ser-
vices. Then, with a single command, you create and start all the services from your
configuration."[38]. Docker-compose is a useful tool for defining an environment of mul-
tiple containers and building that environment through it. This YAML file can also be
used further for container orchestration in a swarm with small configurations.

Docker Swarm Docker swarm is a configuration of the docker engine that allows it to
configure and utilize a network of other docker engine to run containers that are balanced
throughout this network as a swarm|39|. It builds this swarm network out of nodes where
each node is a docker engine running either on different devices or through VMs. The
nodes in the swarm are either of the type "manager" or "worker", where "manager"
nodes perform workload balancing and request forwarding while "worker" nodes perform
tasks and commands given by manager nodes. Each manager node is also a worker node
in addition to its manager role.

Node.js

"As an asynchronous event driven JavaScript runtime, Node is designed to build scalable
network applications. In the following "hello world" example, many connections can be
handled concurrently. Upon each connection the callback is fired, but if there is no work
to be done, Node will sleep."[40]. Node is a popular JavaScript framework that provides
back-end and middleware functionality in JavaScript with the ability to build and serve
JavaScript applications through Node.js. It is commonly used to serve both API’s and
web applications of multiple types. Web application frameworks like React, Angular and
Vue use node.js as a base for their frameworks.

Node Package Manager (npm) "npm is the world’s largest software registry. Open
source developers from every continent use npm to share and borrow packages, and many
organizations use npm to manage private development as well."[41]. npm is widely used
and adopted by many different frameworks and technologies. It is essential in developing
and building different web applications and is used as a standard in frameworks such as
react, angular and vue.
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Express

"Express is a minimal and flexible Node.js web application framework that provides a
robust set of features for web and mobile applications."[42|. It is a common lightweight
framework used in building web application that are based on node.js. Through the
simple server hosting configuration, it is easy to build the web application through node
and serve it through Express.

Nginx

"NGINX is open source software for web serving, reverse proxying, caching, load balanc-
ing, media streaming, and more. It started out as a web server designed for maximum
performance and stability. In addition to its HI'TP server capabilities, NGINX can also
function as a proxy server for email (IMAP, POP3, and SMTP) and a reverse proxy
and load balancer for HT'TP, TCP, and UDP servers." [43|. Nginx is popular to use as
a serving web solutions with a wider array of functionality than minimalist frameworks
like Express.

Angular

"Angular is a platform that makes it easy to build applications with the web. Angular
combines declarative templates, dependency injection, end to end tooling, and integrated
best practices to solve development challenges. Angular empowers developers to build
applications that live on the web, mobile, or the desktop".|44]. Angular is a node.js-
based web application framework maintained by Google and is one of the go-to choices
when creating web applications alongside frameworks like React and Vue. It is not
minimalistic like React and have opinionated selections of standard packages used to
serve the application. This makes is able to provide a simple servable web application
out of the box without the need for much configuration.

Angular-CLI "The Angular CLI is a command-line interface tool that you use to initial-
ize, develop, scaffold, and maintain Angular applications. You can use the tool directly in
a command shell, or indirectly through an interactive UI such as Angular Console."[45].
It is a common tool used in the development and building process of the application. It
provides easy-to-use convenient tools for generating projects, components etc. while also
providing functionality to serve and build the application for both testing and production
environments.
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2.7.4 Packages, Libraries and Modules
Mongoose

"Mongoose provides a straight-forward, schema-based solution to model your application
data. It includes built-in type casting, validation, query building, business logic hooks
and more, out of the box."|46|. It is a package for use in managing and communicat-
ing with a MongoDB database through JavaScript. It provides convenient abstractions
of typing, modeling and communications to the database that makes it easier to both
develop and maintain applications using MongoDB as a database.

Chart.js

Chart.js is a simple module for creating and managing charts in the web application
through JavaScript|47]. It provides a simple interface with type libraries for making
charts in HTML.

Bootstrap

"Bootstrap is an open source toolkit for developing with HTML, CSS, and JS. Quickly
prototype your ideas or build your entire app with our Sass variables and mixins, re-
sponsive grid system, extensive pre-built components, and powerful plugins built on
jQuery."|48]. Bootstrap provides easy functionality through its library to develop re-
sponsive web designs without having to go through the process of creating it yourself.
It has a wide array of functionalities that are easily customizable and provide a good
foundation for the design of web applications of any type.
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3 Research Methodology

3.1 Research Method

This thesis is conducting research in collaboration with the research centre on Zero
Emission Neighbourhoods in smart cities (hereby referred to as ZEN Centre) as a part
of a larger research initiative with several other master theses. The research method
applied in this thesis is a simple method that emphasises the informed selection of a
solution to solve a specified problem or reach determined goals. The method goes through
several phases during the research process from 1. Assessing and identifying a problem
or research opportunity 2. Gathering enough information to make an informed decision
on how to possibly solve the issue or reach the goals. 3. Proposing the solution based on
the information and insight gathered and 4. Evaluating the solution based on its ability
to solve the identified issue or reach the goals set. This process is expanded into more
steps for a more detailed process as shown here:

1. Assess a problem or an interesting opportunity and the area of study.

Identify the exact problem and explicitly define what is to be solved.

Collect sources and build understanding of the problem and its underlying themes.
Define goals to achieve and requirements set for a solution to the problem.
Propose a solution to the problem that should fulfill goals and requirements.
Develop the solution to the problem.

Evaluate the solution based on knowledge gained through the development process.

@ N o ot N

Conclude research based on the evaluation and to what extent the problem is solved
or mitigated.

These steps are followed throughout the thesis and provide the scientific basis for the
proposed architectural model outlined later on in the thesis. This method is realized in
several steps as outlined below:

1. Identified the problem through the problem description given for the master thesis,
extended discussion and introductory reading session on the field of study. (Intro-
duction Chapter of the thesis)

2. Conducted a structured literature review on the state-of-the-art of the field of study
to provide basis for the solution. (Background Chapter of the thesis)
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3.2

3.3

. Collected supplementary articles and an additional relevant literature review to

further increase the theoretical basis. (Background Chapter of the thesis)

. Made requirements for the solution based on the collected sources and studies to tie

the theoretical basis into the design of the solution. (Part 1 of the Results Chapter
in the thesis)

. Designed an architectural model based on the requirements to solve the problem

identified earlier. (Part 2 of the Results Chapter in the thesis)

. Implemented a solution based on the architectural model as a blueprint to test the

efficacy of the proposed solution. (Part 3 of the Results Chapter in the thesis)

Defined evaluation metrics to use in reviewing the designed model and the imple-
mentation of it. (Part 4 of the Results Chapter in the thesis)

. Evaluated the architectural model using the metrics and to what extent they fulfill

the requirements set. (Discussion Chapter of the thesis)

. Conclude the research with insight gained in the evaluation and propose further

work. (Conclusion Chapter of the thesis)

Research Questions

RQ1: How can applications/services be made in a distributed-to-centralized context
for smart cities?

RQ1.1: What are the prevailing methodologies and technological trends in the
layers of the distributed-to-centralized context?

RQ1.2: What would be fitting requirements for the development and operation of
a system within this context?

RQ1.3: What would be a fitting architectural model for applications and services
in the given context that satisfies the requirements set in RQ1.27

RQ1.4: What quality metrics could be used to evaluate the model presented in
RQ1.37

Requirements

The theoretical background of the conducted literature review and the sum of the col-
lected sources should provide an understanding of the different kinds of architectures and
methodologies applied in the relevant layers of network centralization (fog and cloud). By
looking at these architectures and their definition, it becomes possible to outline common
priorities, focus-areas and challenges. They can then be used as a basis to outline proper
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requirements for new ICT-systems to operate within this given context. By documenting
these requirements along with possibly some additional requirements added based on
personal experience it should then provide a solid basis for the design of an architectural
model.

3.4 Evaluation Metrics

To provide a more objective way of evaluating the model itself, there should be defined
metrics to evaluate it afterwards. This will be done by selecting fitting QA’s (Quality
Attributes) that suits the selected requirements and goals of the architectural model.
These quality attributes will then serve as a proper method of evaluation for both the
architectural model and the implemented system. How well they perform according
to the selected quality attributes will provide the basis for discussing the efficacy and
suitability of the model and implementation for the discussion chapter.

3.5 Literature Review Research Method

The research method applied for the literature review is based on the structured litera-
ture review model (SLR) applied for computer science [49] with three phases; planning,
conducting and reporting. The structure for the review itself is outlined below. This
review is meant as background research and to create a theoretical scientific basis for
the following masters thesis. The final method used is altered somewhat to better fit
the context and goal of the review. The purpose of the review itself is to identify and
categorize different specified architectures at the different layers outlined (fog and cloud).
Therefore it becomes less important to guarantee full coverage of the field (as that would
prove to be too large a workload for the review alone) , than it is to focus more in-depth
on the more viable candidates to be reviewed. Taking the time constraints into account,
this review took a more quality-based approach, rather than quantity-based, to ensure
results that can be of further use for the master thesis itself.

3.5.1 Planning

The planning phase consists of five steps: Identification of the need for a review, Com-
missioning a review, Specifying the research question(s), Developing a review protocol,
Evaluating the review protocol. Step 1 and 2 was done when it was identified a need for
a literature review as a basis for further research on the masters. The research questions
were identified as such:

RQ1: What are the different network layers with regards to network centralization in
a smart city context?
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RQ2: What are the different architectural solutions available /presented in the respec-
tive layers/areas identified in RQ17

The next step is develop and evaluate a review protocol. This protocol encompasses
how the research was done and how it is to be done to produce reproducible results. As
the method applied on this review is somewhat altered to include input and suggested
articles from others, it has been altered to reflect this change in procedure.

3.5.2 Conducting

Conducting the review is done in five steps: Identification of research, Selection of primary
studies, Study quality assessment, Data extraction and monitoring, Data synthesis

Identification of Research

Identification of research consists of specifying what sources to be searched and how to
search them. This includes listing sources of research, studies and articles that are to be
reviewed as well as determining the terms and their combination to search for. For this
search it will be fitting to divide the sources into two categories; primary and secondary
sources. This is mainly because of fitting secondary sources that are available, but they
are not necessarily held to the same standards as the primary sources. Nevertheless they
are included as secondary sources as excluding them would be detrimental to the search.

Primary Sources ACM digital library, IEEE Xplore, ISI web of knowledge, ScienceDi-
rect, SpringerLink, Wiley Online Library.

Secondary Sources OpenFog Consortium, Supervisor Recommendations

Group 1 Group 2 (Cloud/Centralized) | Group 3 (Fog/Decentralized)
Term 1 | Architecture | Cloud Computing Fog Computing
Term 2 | Framework Edge Computing
Term 3 | Infrastructure

Search Terms The search strategy will then be either term from group 1 combined with
either term from group 2 or group 3 ([G1,T1] V [G1,T2] vV [G1, T3))A(|G2,T1] V [G3,T1...T2])

All search queries will then be used to search for complete matches on all search
terms in the query (e.g. Cloud Computing Architecture) published after 2010 (given
date to reduce overloading amount of articles). These given queries will then be searched
systematically across the given primary sources. Each query will be searched three times
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on each source where the sorting is different (most relevant, most citations and most
downloads where possible) for variety and to ensure better coverage of the field.

Selection of primary studies

Studies here are selected based on the criteria above as well as some general points that
exclude some studies. These are: 1. Duplicates (keep the highest ranking source), 2. The
same study published in different sources (keep the highest ranking source), 3. Studies
published before 2010 (as a general reference to exclude older studies). These studies are
then gathered, assessed by the method described below and the architectures in question
is extracted and added to the review.

Study quality assessment

With a selection of primary studies to include, they should be assessed based on some
specific criteria that makes it eligible for inclusion in the study, or excludes it as it is
not deemed necessary to include for the research. These are made with the research
questions, research goal and research strategy in mind to best fit what the research aims

to achieve.
Criteria Identification | Criteria
IC1 The study concerns a Fog-To-Cloud environment
1C2 The study is either an architectural proposal or a review /critique of an existing architecture
1C3 The study describes a valid architecture
1C4 That architecture must be usable or reasonably adaptable to a smart-city environment
1C5 The study most contain some reasoning behind the selection of the architecture

(IC = Inclusion Criteria, QC = Quality Criteria)

3.5.3 Reporting

Reporting is done in three steps: Specifying dissemination strategy, Formatting the main
report, Evaluating the report. These steps conclude with the end report and the final
review itself. To better fit with the overall context of the master thesis, these steps
involves how the review is merged with the thesis. It is meant to provide a scientific
background for the rest of the thesis, so it is then added into the background chapter of
the thesis. The discovered layers and list of architectures are then outlined in seperate
sections of the background chapter.
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4 Results

4.1 Requirements

These requirements are to act as a baseline for the design of the architectural model. They
are based on the previously mentioned literature review and will provide the scientific
grounding for the design. This basis will help to ensure that the model adheres to the
state of the art and improve its relevance to the field of research.

Each requirement outlined below contain the requirement itself, additional comments
to what the requirement is and a specified reason for the selection of the requirement. The
requirements are then split into two different categories based on design/implementation
priority. These are "Primary Requirements" that are the main focus of the design and
"Secondary Requirements" that will affect the design, but not necessarily be central
to the design. Both consists of requirements that are significant for the design of the
architectural model and the implementation of it.

Primary Requirements

Requirement 1: The system must be able to scale its computations based on re-
sources available. What: By this it is meant that the model must enable and facilitate
functionality to scale computations/operations depending on the resources available.

Why: One of the main strengths of using a more distributed form of computing is
being able to utilize locally available resources. By using smaller devices with different
resources available you can drastically increase the scope of the system without neces-
sarily needed to buy more hardware or renting more server space. This was a common
theme throughout most of the architectures of the literature review.

Requirement 2: The system must be able to continue its operation as usual within
normal operating parameters (within reasonable limits) when adding or removing
resources. What: The model must provide functionality to handle changes to available
resources and hardware without inferring significant downtime. This would be either if
a device is added, removed, disconnects or malfunctions.

Why: With the inherent volatility that comes with distributed computing, it is im-
portant that this risk is mitigated by the model. This is largely due to more points of
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failure with the system comprising of several smaller devices instead of fewer centralized
servers. This volatility can (and most likely will) affect the system and should therefore
be handled in a proper manner.

Requirement 3: The system must be able to utilize devices with a lower amount
of resources/computational capacity What: Being able to support the integration of
smaller devices (both in size and resources) into the system and making them a part of
the operations of the system.

Why: As mentioned before some of the strengths of distributed computing lies in
utilizing multiple smaller devices. Due to this nature, there must be functionality to
support the usage of smaller devices for either parts of the system, or to support it in its
entirety when feasible. These devices would be e.g: raspberry pi’s, embedded devices,
mobile phones, [oT Devices etc.

Requirement 4: The system must be able to receive and manage data provided from
both internal and external sources What: The model must provide functionality to
properly store and manage data retrieved from internal and external sources.

Why: In order to provide proper data management in a distributed-to-centralized
manner, there must be functionality in place to interface with the system. The focus
on this requirement is the storage and management part of that environment. This
interfacing is central to the core functionality of the system as it enables data aggregation
and pre-processing.

Requirement 5: The system must be able to support cloud functionality in the form
of resources for storage and/or data management What: The system must be able
to provide functionality that supports the usage of cloud resources (storage, computation
etc.). This can be either supported natively in the system itself or providing interfacing
options with cloud platforms.

Why: In order to fully facilitate the distributed-to-centralized data management en-
vironment, there must be functionality available that bridges the gap between a mainly
distributed system to either use or provide services for a cloud solution. If this was
not the case then the model would be restricted to the "fog" network environment as it
would not be able to interact with the cloud network environment. An important point
from the background research is that the fog should extend the capabilities of the cloud
and not seek to replace it. By then enabling the bridging of fog and cloud through a
distributed-to-centralized data flow, this priority is maintained in the model.

Requirement 6: The system must provide a platform for data aggregation and/or
data pre-processing functionality What: The model must be able to provide function-
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ality for the processing of data that it manages. Preferably this support is not dependant
on a single language or framework, but rather that it is able to use these interchangeably.

Why: In order to provide proper data management throughout the data life-cycle
of the data managed by the system, there must be functionality available to process
and aggregate this data. Unprocessed data decreases the utility of the data and should
therefore be processed in order to be of better use. It is important that this can be
handled when needed by the system itself. Often data is also combined with other data
sources, data types etc. to further increase its area of use, so it is considered a vital
function to support this. This also relates to the background research through both the
focus on providing distributed-to-centralized data management but also that many of
the assessed architectures provided similar functions or at least strives to.

Requirement 7: Must provide functionality to forward data "upwards" in the network.
Either to another "fog" system or to the cloud What: Must provide functionality that
enables the "forwarding" of data upwards in the network either to some other distributed
system higher up in the hierarchy or straight to a centralized solution. This can be
achieved either by providing functions for sending the data at set sizes and intervals to a
specified entry-point, or by providing an interface for the extraction of the data for the
other system to utilize.

Why: This relates to the sentiment specified earlier about distributed-to-centralized
data management. If the model does not provide functionality to "funnel" the data
upwards, then it does not properly facilitate the proper data flow that is desired.

Requirement 8: The system must provide support for data life-cycle management

What: The system must provide functionality to keep track of, manage and process data
throughout the life-cycle of the data that is managed by the system. This will include
keeping track of the age of the data and make sure that it is handled according to the
needs of the specifications of the data life-cycle. In addition it is required that the system
keeps track of the location of the data throughout the phases of the data life-cycle that
it manages and forwards requests properly.

Why: One of the strengths of having the system physically closer to the data sources
is being able to provide real-time (or at least reasonably close to real-time) data of
the sources where such is possible with reduced latency. Furthermore, the data may
transform over time to be used in more use-cases than the more recent data. Being able
to handle the data at these different phases of its life-cycle will extend the usefulness of
both the system and the data it manages. Example life-cycle: Real-time data —> Recent
data —> Historical data

Requirement 9: The system must provide an interface to retrieve the data managed
by the system This includes routing to the data storage according to the data life-cycle
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management of the system.

What: The data that is managed by the system must be retrievable by an autho-
rized /authenticated client according to the area of use for the system. This could include
either a report-like function or simply a status "ping" of the selected data.

Why: There must be functionality to access the data managed by the system when
needed if that is included in the purpose of the system. Usually this will be central to the
core functions of the system as accessing the managed data will be important in smart
city /neighborhood /building scenarios.

Secondary Requirements

Requirement 1: Security What: The model must be designed with improved security
in mind and mitigate risks of potential security breaches within reasonable limits. Specif-
ically keep in mind the entry-points of the system. All "intractable" parts of the model
must either provide a secure entry gateway if needed, or limit outside interactions to it.
Internal gateways are to be kept free of outside interaction and all purposefully designed
interactions must adhere to common security principles to protect both the integrity of
the system, its data and the privacy of potential data sources and users.

Why: Security is important and should always be kept in mind when designing or
implementing solutions. It is noted here as a secondary requirements as it is inherently
difficult to improve the security of an abstract model as most of the security vulnerabilities
adhere to the implemented solution itself.

Requirement 2: The system should be able to utilize an array of commonly available
hardware/devices What: The system should be kept as independent as possible from
different platforms, operating systems, programming languages and frameworks. If any
of these are specified particularly as a dependency, then it should be as interchangeable
with similar options as is feasible.

Why: Keeping the model entirely dependent on a specific platform, operating system,
programming language and/or framework will severely limit the potential of the model
itself. By keeping the model design as independent as possible it has increased usability
and adaptability both in its area of use and its ease of use for potential developers. Some
of the architectures assessed in the review are dependent on new frameworks introduced
in their papers. This tendency to introduce new frameworks and/or languages increases
the complexity of the solution and decreases the adaptability of the system as well as
creating a steeper learning curve.

Requirement 3: The system should be able act accordingly to the different energy-
efficiency needs on embedded devices What: The system should be able to identify
and keep track of the different energy-efficiency needs of the devices in use. It should
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then be able to act and change its behaviour/runtime according to the possible different
needs of these devices.

Why: Different devices have different specifications with regards to resources available,
energy-efficiency focus and potential battery capacity. In order to properly manage IoT-
devices and other smaller embedded devices it is important to keep this in mind e.g: a
battery-powered device should be treated differently than a device that is connected to
the power-grid.

Requirement 4: Privacy What: The model must be designed with privacy as a priority.
If feasible, the model should take steps to mitigate privacy concerns and take actions to
protect people’s privacy through the data managed by the system. The data should be
anonymized when possible without lessening the function of the system. In addition to
this it is important to limit access to data that can be used to identify individuals or
groups of people to people that have a proper certification and no intention to exploit
the data of the system.

Why: With the rapidly increasing ubiquity of connected devices, privacy has become
a large concern both for end-users and involved governments. After the General Data
Protection Regulation [50] (GDPR) passed European Union legislation, privacy has gone
from a concern to a requirement. Therefore it is important to keep privacy in mind
when designing new systems that has even a remote possibility of handling personal
information. Big corporations like Microsoft, Google, Amazon etc. has not lowered this
concern for people as more and more information leaks on the extent of what these large
companies know about your personal information and preferences.
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4.2 Architectural Model - Tiered-Priority Swarm Computing
(TPSQC)

4.2.1 Overview

The goal of this section is to provide the design of an abstract architectural model to be
used as a schematic and guide when designing ICT-solutions (applications, services etc.)
in a smart city environment. The model is purposefully made to utilize concepts rather
than specific technologies and frameworks when feasible to fit this purpose. In addition
to this, it is a major focus that the design itself adheres to the concept of distributed-to-
centralized data management. This intended compliance is achieved through designing
the entirety of the model to act as a "component" itself. It will be able to be used
anywhere in this data-flow by facilitating the flow of data from any number of sections
of the network structure and providing interfaces for the receival and retrieval of data.
In essence this allows an implemented system to be used at any desired level of network
centralization from smart buildings up to smart cities and beyond. It could facilitate the
entirety of the data flow from the distributed sources to centralized storage, or it could
provide this for any smaller section of the data flow. This is up to the implementation
of the model as the model itself is able to scale to fit the size of the intended area of use.

The key priorities set for the design of this model revolve around several important
concepts. These are: The concept of a scalable system utilizing a wider range of devices,
being able to make use of devices on an IoT scale rather than larger dedicated hardware,
the support of data at its different phases in its life-cycle and lastly to provide more of
a platform with wide areas of use. This is to better fit the different possible use-cases
of smart systems up from smart buildings to smart cities. This makes it clear that the
design of this architectural model must have a "component" mentality which means that
the system is divided into smaller components that together provide the full range of
functionality the system is to offer. These components will be small enough in scope
to be properly support devices with less resources. In order to make full use of this
component-based design, something is needed to coordinate and otherwise manage the
components running on different devices. In addition this coordinator/manager will need
ways of handling data management in accordance with D2C-DM and the requirements
and needs of the data life-cycle.

4.2.2 Swarm Computing (Clusterized Computing)

"Swarm computing" is a term coined from the recently adopted "Docker Swarm" platform
as it is that concept that is applied on the platform. The term swarm computing could
then be viewed as cluster computing at a large scale with a larger part of the nodes in the
network being represented by a multitude of smaller devices. The core concept of this
clusterized computing is to build, manage and maintain a form of "runtime environment"
that is specified using "containers", their interaction and a desired state. The Docker
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Swarm platform is based on docker containers and the specified runtime is mostly in
the form of managing parallels of the given containers when they run over capacity
and are unavailable for further requests. The term can then be loosely defined as a
form of parallel computing based on specified components and the management of those.
(More information on containerization and container orchestration are available in the
background chapter)

The core strength of this form of computational paradigm lies in the scalable nature
along with the impartiality to specific languages and frameworks. This strength makes
it a viable candidate to be used in a distributed network setting such as the setting for
this thesis. The core concepts that make up swarm computing will be elaborated further
on for each important aspect of the paradigm. There are more problems, however,
that are not solved solely by swarm computing. That is why the swarm computing
paradigm is extended with further functionality in addition to changes to the workload
management priority assignment elaborated below in the section on "Tiered-Priority
Workload Management".

Raft consensus group

Internal distributed state store -

g \‘\
Worker é Worker 5 Worker ! Worker Worker é Worker 5 Worker 5

Gossip network

Figure 4.1: Swarm Architecture Example - Case from Docker Swarm implementation

Containerization

Concept Containerization is the concept of dividing parts of (or all) the system into
components that are packaged individually with its own run-time environment. A con-
tainer is defined as "Package Software into Standardized Units for Development, Ship-
ment and Deployment". This in turn is run on a container platform that is able to
handle both the packaging and shipping when developing and also the deployment when
the system enters the production environment. This is fundamentally different from the
current standard of using virtual machines as the container is only packaged with what it
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needs to run and therefore requires less overhead as multiple operating systems running
are no longer needed. This in turn makes it highly portable and able to run in parallel
when required.

Specification The different container architectures specify the structure and syntax for
the environment to run inside each container, but all have a standardized form that
guarantees the same environment when run on the same platform. The current most
popular architecture specify the structure of the container through a file following a
specific syntax called "DOCKERFILE" where all packages, languages etc. are outlined
along with the install /initializing sequence that is run when the container is "mounted".

Independency from specific Languages and Frameworks Due to the container com-
prising the entire runtime environment needed for that component, it has a high degree
of independency from specific programming languages and frameworks. As long as the
chosen architecture is suitable to that type of bundling there is no inherent constraints
introduced bu the container itself. Some languages and frameworks has a higher rate of
compatibility due to the degrees of dependencies they impose on the container. Bundle
size and installation complexity are important factors in this due to the container speci-
fication file increasing in proportion to this. Size generally matters less than complexity
in most cases, but where storage space is limited this can lead to some frameworks and
programming languages being less viable than others.

Container Orchestration

Concept Container orchestration is the practice of managing a multitude of containers
(container definition described earlier) according to set specifications to achieve an "ideal
state" of the system. The base for this concept is through the management of the right
type of containers, the desired amount of those and what behaviour they shall have. The
usage for container orchestration varies and can scale up from multitudes of a singular
type of container running in parallel to a complex system with multiple types and varied
amounts of containers to be run. In order for this to work, you need the containers that
are to be used, a somewhat detailed description of the desired "ideal state" of the system,
a management system to coordinate these containers to achieve this desired state and a
way to forward and delegate workload to the appropriate container type. These concepts
will be outlined more in detail below.

Ideal State When designing the system, the "ideal State" is then specified by these
different types of containers and the desired number of the different containers that are
to be mounted. The orchestration system will then through its managers organize the
running containers and mount new containers as needed. This ideal state is meant to be
used as a blueprint and a guideline for how the system is meant to be handled for an
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ideal scenario. The specified number of containers for a certain type is by no means a
min or max, but rather what the system should default to when it is operating within
expected parameters.

Container Management In order for the system to maintain and organize its own
status during its operation, it needs functionality to both monitor and alter its runtime
parameters. This is achieved through container management in some form or another.
A common approach to this is to assign different roles to the "nodes" in the network.
These nodes are containers of any type that can usually either act as a "worker" or a
"manager" node. The manager nodes act as a worker node itself, but will also contribute
to organization and management for the cluster. These tasks include checking the status
of the different nodes, delegating incoming requests to an appropriate worker that has
resources available, stopping or starting containers as needed in accordance with the ideal
state etc. The number of manager nodes will also scale as needed by the system.

Forwarding and Workload Delegation For the cluster to work properly there must be
a way to manage the workload balance of the nodes and also to ensure that requests
are forwarded to a node that is capable of handling it. This task is usually handled
by the managers of the cluster as a part of the operating tasks they perform to achieve
the ideal state. The core of this concept is mainly to achieve a balance between the
resources being used, available resources in the active containers and the total amount of
available resources from the hardware. When a task is being forwarded to an appropriate
container, but none has the capacity to handle the request, the managers then uses more
of the available hardware resources (if any is available) to start a new container to run
in parallel with the others.

4.2.3 Tiered-Priority Workload Management
Purpose

As explained above, workload management is central to proper management of a cluster
and therefore central to container orchestration. At the time of writing, this allocation
of resources is done randomly where resources are available without the functionality to
specify otherwise. Usually this has little consequences, but that carries the assumption
that the resources available can be used interchangeably without much concern of what
kind of device it runs on. This will matter with an increased focus on devices with
lower amounts of resources and different priorities when it comes to energy-efficiency
and power management. These devices such as IoT-, mobile- and embedded devices
have vast differences in storage, computational capacity, battery capacity and possibly
bandwidth. In order to properly utilize these kinds of devices alongside larger devices,
these differences must be accounted for. The random selection of device resources to
utilize as a node in the cluster can lead to devices running on a limited battery capacity
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being used while dedicated hardware remains poorly utilized. There will likely be a lot
of use-case scenarios where the number of smaller devices heavily outweighs the number
of larger devices in the network cluster. Statistically, the randomized selection will lead
to the smaller devices being utilized more often than more capable hardware due to
the difference in multitude. Tiered-Priority Workload Management (TPWM) would
change this by systematically assigning priority to the different devices depending on
their capacity and energy-efficiency priorities.

Concept

As mentioned above, the model must be able to handle a vast array of different devices
in order to achieve its full potential. These differences in resources and capacity need
to be factored into the workload management done by the system. One way to do this
would be to utilize a smarter resource allocating method that factors in the inherent
differences in the devices of the swarm network. There are several factors that would
affect the workload management; storage, GPU- and CPU-capacity, memory, internet
connectivity (bandwidth + speed), battery capacity (if applicable) and energy-efficiency
priorities. By assessing these and evaluating a total "capacity" of the devices, you can
assign them a priority by comparing it to the other devices in the swarm. This can be
taken further to assign different "tiers" of priority where the devices will be placed in
a tier according to their total assessed capacity. The tiers themselves are dynamic and
serves as a guideline for the orchestration management when viewing available resources
for workload delegation. The "lookup" of available resources would start at the highest
tier, Ty, and if not enough resources are available it will proceed further down the tiers
(e.g Tl—Tg).

Tiered-Priority Assignment

Resources
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TR TR
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Energy Efficiency
Priority

Figure 4.2: Tiered-Priority Example
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Priority Assignment

The assignment of priority to a given device can be done in several ways. One is to
manually assign a priority-tier to a device when it is added to the swarm. This would
only require a simple configuration document for the swarm managers to utilize where it
will act as a quick lookup of resources on the lists of units. One other would be to have
a script that automatically assigns priority-tier when a device is added to the swarm.
This would require a script that is capable of assessing the capabilities of a given device
based on the earlier specified factors (storage, GPU- and CPU-capacity, memory, internet
connectivity, battery capacity and energy-efficiency priorities). The automatic priority
assignment would be preferable as that enables the swarm to potentially add and remove
compatible devices dynamically from devices on the same network.

As of writing there are no viable frameworks or technologies supporting a customized
workload management algorithm to the extent envisioned for this model. This could
be achieved through several sub-networks in the swarm that would be operate as two
distinct swarm networks and would therefore result in poorer resource utilization and
scalability. Another option would be to develop a container orchestration system that
allows priority assignment for workload management or to modify an existing solution.
This however, is sadly beyond the scope of this thesis so it will not be featured in the
example implementation later on in the thesis.

4.2.4 Data Management
Concept

One of the core design principles of this thesis is to enable and facilitate the flow of data
from the edges of the network to a more centralized state (D2C-DM). In order for this
model to function in a distributed, centralized or distributed-to-centralized capacity, it
needs to be able to handle the appropriate flow of data. For this compatibility it needs
to be able to receive data from data sources at the edges of the network like sensors
etc. while also providing an interface to access this data to facilitate a more centralized
system that will handle the data further. In addition to this interfacing, the model must
be able to handle the management of data at different points in its lifecycle. This will be
specified according to the needs of the system and the data that it manages. It can be
to anything from real-time data and up to historical data depending on the implemented
system and its degree of centralization. A more distributed implementation may require
the handling of real-time (or close to real-time) while a more centralized implementation
may require the handling of historical data. Either way it must be able to handle this
range of data and the data transformation specified for the data throughout the part of
the lifecycle managed by the system.
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Data API

To achieve a usable interface both for the retrieval and receival of data, a middle-layer is
needed between the swarm and its sources and clients. This middle-layer shall provide
an API that can be utilized by both the implemented system and any other system that
are to interact with it. Some likely examples of this could be sensors sending data to
the system, some application viewing data handled by the system, another system that
has processed data it sends to the implemented system and/or a more centralized system
that continues the flow of data and manages the data further. All these possible scenarios
are handled by serving this middle-layer for interaction with the implemented system.

Data Lifecycle Management

Data in a smart city setting usually comes from the edges of the network through sensors
and the like. It is often combined with other data either from other sensors or other
sources. When combined with other sources of data, it can provide insight into a larger
context and provide information beyond the scope of a singular source and type of data.
Combining, transforming and aggregating data is therefore very common in smart cities.
It is then vital to facilitate this process and enable it as an inherent part of the design of
this model. The core part of this would be to enable data transformation that is triggered
either through an action (when receiving data and/or pre-processing before passing it on
etc.) or is time-triggered either through the duration it has been stored in the system
or through the age of the data according to its timestamp. By utilizing the container
orchestration architecture, the implemented system can create both data transformation
containers to process the data and data management containers to manage the process
and schedule data transformation tasks if time-triggered events are desired.

Age of Data

~1-5 seconds ~1-2 Weeks ~1+ Months
Aggregate Aggregate and Compress
Real-time Data > Recent Data 9 il > Historical Data

Distributed Centralized
Degree of Centralization =

Figure 4.3: Example of typical data life-cycle in a smart city scenario. Illustrates data
flow from distributed to centralized based on age of data
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Request Handler

The model aims to support any phase of the data lifecycle from a small part to the entire
lifecycle. This could possibly entail the management of data from the sources themselves
up to and including historical data storage. No matter how this is envisioned to be
solved in an implemented solution it should have support from the model. The managed
data may not only go through several transformations, but could end up with different
storage solutions at different physical locations all depending on the needs of the data
management. To handle this properly the model requires a request handler. This handler
would be called on by the middle-layer (API) when a request is made to the swarm. It
will then process the form of the request (POST/GET), authentication and security
validation on the request, and lastly the location(s) of the data required. Depending
on the lifecycle management policy of the implemented system, the data could be at
different locations and using different query languages and frameworks. The handler
will therefore be abstract in its design to allow for as many different possible solutions
desired by the implemented system. This would entail that the developers utilizing this
architectural model would have to design the specifics of their request handler as needed
to fit their architectural priorities and needs.
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4.3 Implementation

In order to test out the efficacy of the model and to provide proper evaluation methods,
it is useful to develop an example of a possible implementation of the model. This
implementation will act as a proposed solution to realize the architectural model using
currently available technologies and frameworks. Firstly, there will be an example of an
ideal implementation to be used as a template for creating architectures following the
model in addition to the actual realized architecture applied for the implementation. This
is to show a more general architecture that utilizes the model and how this is adapted into
a more specialized solution for the given scenario. The specialized architecture will be
the main focus of this chapter and will contain more detailed descriptions of the applied
design, utilized technologies and frameworks and how the principles of the model apply
to the different parts/components of the system.

The purpose of this implementation is to:
e Provide an example of an implemented solution based on the architectural model
e Test the efficacy of the solution for solving the problem description outlined earlier

e Test the validity of the architectural model as a solution to the outlined require-
ments from the background research

e Outline possible flaws to the architectural model that needs to be addressed now
or in future work

e Provide the basis for a system to properly evaluate both the architectural model
and the implementation of it

4.3.1 Scenario

The scalability of the model makes it so that it can applied to different degrees of network
centralization. To show this scalability, it can be useful to show it at a smaller scale
and outline how it can be scaled up to fit a larger scenario or used in unison with
other more centralized systems. One common use-case on a more distributed scale is
a Smart Building scenario. This scenario will therefore focus on a small scale smart
building system set in a simulated apartment complex that provides monitoring of life-
quality factors in the apartments. The "building" has two apartments that have a smaller
embedded device (raspberry pi) capable of monitoring the temperature in each apartment
in addition to a dedicated machine situated in a server-room in the basement of the
building. The needs here is then to provide a system capable of managing the temperature
data from the smaller devices and providing an interface to monitor the data that is
managed by the system. The scale of the implementation is therefore both to show an
example for more distributed use-cases and also to reduce the amount of work needed to
implement the system due to time constraints.
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The total list of the systems needs/goals will be as follows:
e Provide an interface to receive temperature data from sensors
e Process the data received and compress data to minute-basis rather than seconds.

e Provide interface to request and retrieve the data.

Build a web application for users to interface with the system to display the data
managed by the system.

Provide interface for other systems to retrieve data for further use.

Apartment 2
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Raspberry Pi

Temperature
Sensor
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Figure 4.4: Apartment building scenario with displayed hardware available

4.3.2 Implementation of TPSC

One of the core concepts of the architectural model (Swarm Computing) is to divide
the system into components, apply containerization to these components and utilize
container orchestration to run and manage it. This applied to scale can be envisioned
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as swarm computing due to the numerous nature of smaller devices working together to
fulfill the computational needs of the system. It is then important that the implemented
system has a high degree of componentization to allow for scaled operation through
container orchestration. Further it is important to facilitate the flow of data to the
system, within the system and from the system to comply with distributed-to-centralized
data management priorities. Lastly it is important to manage the container orchestration
to allow for prioritized workload management to better comply with energy-efficiency
policies of the utilized devices. With these factors in place through the concepts, designs
and methods outlined in the architectural model (TPSC), the system can then be viewed
as utilizing the model properly.

The implemented system achieves most of these priorities, with some exceptions for
tiered priority assignment due to technological constraints in the available technologies
and frameworks. This will be outlined further on in the outlined architecture below as
well as in the discussion.

Architecture Template

To better understand the basis of the architecture, a proposed architectural template will
be outlined here in short. This was set up early in the implementation to function as a
general-use template for implemented systems utilizing the TPSC architectural model. It
adheres to the principles outlined in the model and includes all the concepts, designs and
methods. This template was used as a starting-point in designing the implementation,
where changes were made to better suit the scenario and scale the system would operate
within. It is included here to give more context and examples on how to utilize the
architectural model in addition to functioning as a starting-point for the final architecture
outlined below.
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Figure 4.5: Architecture Template designed for a generalized use-case for TPSC imple-
mentation

Figure [£.5]shows an illustration of the template with some references to technologies
and frameworks that would function well with the intended use-cases of the system.
These technologies can freely be exchanged with others with same levels of functionality.
This example shows an example of how the different components could be designed to
achieve the intended level of functionality as according to the architectural model. The
components inside of the Swarm Cluster section are intended to be containerized and
can be scaled through replication to suit workload needs of the system. It also adheres
to distributed-to-centralized data management through the API to allow receival and
retrieval of data, and through the request handler to retrieve the data from its correct
stage of the data life-cycle (real-time, recent or historical data). The cloud portion is
meant to show how the systems can facilitate data management for the entirety of the
data life-cycle. This data life-cycle can be handled through real-time data from sensors,
recent data stored in the swarm itself and historical data storage allocated to a cloud
storage/management system.
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4.3.3 Architecture
Architecture Overview

This section covers the various technologies and frameworks utilized in the implementa-
tion of the architectural model. The major components and central features are listed
below with sections detailing their major and minor dependencies. A major dependency
is a technology or framework that is central to the core functionality and completely nec-
essary for the system to build and operate within its parameters. A minor dependency
is mainly packages utilized in the component that serves a purpose for some of the func-
tionality, but is easier to replace with some other package or technology that serves the
same function. This section covers a brief description of the purpose of the dependency
while more detailed description is found below and in the discussion chapter. Figure [£.0]
shows the revised architectural template that has been modified to suit the scale of the
scenario.
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Figure 4.6: Hlustration of revised architectural template to better fit scenario

Container Orchestration Architecture Major Dependencies:

e Docker - Containerization of component through official MongoDB image refer-
enced in "docker-compose.yml" file.

e Docker-Compose - Container orchestration and management of services running on
the swarm through the service configuration supplied in the "docker-compose.yml"
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file.

API-, Request Handler- & Data Aggregator Architecture Major Dependencies:
e Docker - Containerization of component for use in swarm.

e Express - Serve API for data storage and data retrieval both internally and exter-
nally.

e Javascript - Express server configuration, API routing and data aggregation.
e Node - Backend JS framework to serve API through Express setup.

e Node Package Manager (npm) - Package management through dependency injec-
tions and installation in docker container.

Minor Dependencies:

e Mongoose - Database modelling and management of database communication through
connection controllers.

Web Application Architecture Major Dependencies:
e Docker - Containerization of component for use in swarm.
e NginX - Serving the web application on exposed port.

e Angular7 - Developing and building the web application to be served on Nginx.
Provides functionality for processing and displaying the data managed by the swarm
network.

e Angular-CLI - CLI utility of development and building of application.

e Typescript - Standard language used in Angular. Used for data processing of data
from the database and formatting it to display through chart plugin.

e Node - Backend framework for serving web application through Nginx configura-
tion.

e Node Package Manager (npm) - Package management through dependency injec-
tions and installation in docker container.

Minor Dependencies:
e Bootstrap - CSS library for use in the design of the web application.

e Chart.js (Ng2-charts) - Versatile chart plugin from npm for use in displaying data
from database in web application.

Data Storage Architecture Major Dependencies:
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e Docker - Containerization of component for use in swarm.

e MongoDB - NoSQL document database for storage of temperature data from sen-
sors. Interactions to the database is handled through the API.

Temperature Sensor Major Dependencies:

e Python 3 - Scripting of "temperature sensor" functionality to simulate a tempera-
ture sensor running on a raspberry pi.

Project Structure

This section explains the file structure of the project and provides some explanations
on the central parts of the code. This is supposed to act as a brief overview with
the code shown as figures, while a deeper explanation will be provided later on. The
finished project for the implementation can be found on Github on this github link
(https://github.com/petterrostrup/TPSC).

b Temperature_Sensor

b Web_App

README.md

Figure 4.7: Structure of project for TPSC implementation

The structure of the project (as shown in figure consists of three directories as well
as a "docker-compose" file. The directories; API, Temperature Sensor and Web App
make up the bulk of the code while the "docker-compose" file is used in container or-
chestration and management. The "docker-compose" file (see figure for part 1 and
figure for part 2) contains specified information for the building of "images" for
the containers and instructions on how they are supposed to run and interact with each
other. This is also known as the ideal state of the orchestration management. The three
services in the file represents each type of container to be run in the swarm with images
(docker image to run as a base for the container), volumes (storage), ports (exposed ports
outward and port-forwarding to the container), deploy (swarm behaviour and expected
ideal state within that swarm, especially replicas which is the number of this container
to run), and network (the services that are expected to communicate lies on the same
network). More details on this will be outlined in the "Container Orchestration" section.
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Figure 4.8: Part 1 of the docker-compose file for Container Orchestration
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Figure 4.9: Part 2 of the docker-compose file for Container Orchestration

The API directory consists of the code necessary to build and run the API of the system
that handles retrieval and receival of data according to the needs of the system. It serves a
POST function (see figure on /api/temp that takes in a multitude of temperatures
from a JSON and saves them to the database. It does some pre-processing on the data
it receives through an "average on_minute" function that takes all data recieved on a
second-basis and calculates an average for every data entry on that minute and saves
that to the database instead. The API also serves a GET function (see figure
that gets entries from the database and returns them as a JSON. Both the POST and
GET functions use the "Temperature" model (see figure as a mongoose schematic
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model (described in more detail later) to interact with the database. This component
includes the following concepts outlined in the model: API, Request Handler and Data
Aggregator. All of these will be described more in detail later in their sections.

: tures");
Temperature. find( rr, temperatures) {
if (err)

end(err);

res.json(temperatures);

1)

Figure 4.11: API GET function on /api/temp

EMpera tureschema
Jol
time:

Figure 4.12: Model used by API for database modeling

The Web _App directory consists of a web application that sends requests for data to
the API, processes the data and displays the information using a chart plugin. It sends
a GET request to the API (/api/temp) and transforms the data acquired into a usable
format for the chart.js library. This is done through these three functions: "mergeAnd-
Process", "splitAndSort", and "setLabelsAndData" found in the "app.component.ts"
file in the source directory of the web application. "mergeAndProcess" (see figure [4.13))
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takes the JSON-response received from the request and processes the data by merging
measurements for the same minute and changing some variable types to adhere to the
"Temperature" (see figure interface. "splitAndSort" (see figure takes in
the processed list of temperature measurements done in "mergeAndProcess" and splits
them into sub-arrays where every array is the measurements from the same temperature
sensor. "setLabelsAndData" takes the list of lists created by "splitAndSort" (see figure

for part 1 and figure for part 2) and makes labels and datasets to be used in
chart.js.

mergeAndProcess(duplicatelList: [Temperature]): [Temperature] {
for ( j = @; j < duplicatelList.length; j++) {
if (( duplicateList[j].time) == 'string') {
duplicateList[j].time = Date(duplicateList[]].time);
duplicatelist[j].time.setSeconds(®@);
}
for ( k = ©; k < duplicatelist.length; k++) {
if (( duplicatelList[k].time) == 'string') {
duplicatelist[k].time = Date(duplicatelist[k].time);
duplicatelList[k].time.setSeconds(@);
}
if (duplicatelist[j]._id != duplicatelist[k]._id) {
if ((duplicateList[j].sensor == duplicatelList[k].sensor) &&
(duplicateList[j].time.getFullYear() == duplicateList[k].time.getFullYear()) &&
(duplicatelList[j].time.getMonth() == duplicatelist[k].time.getMonth()) &&
(duplicatelist[j].time.getDate() == duplicatelist[k].time.getDate()) &&
(duplicatelList[j].time.getHours() == duplicatelist[k].time.getHours()) &&
(duplicateList[j].time.getMinutes() == duplicatelList[k].time.getMinutes())
M
duplicatelList[j].temp = ((duplicatelList[j].temp + duplicatelList[k].temp)/2);
duplicatelList.splice(k, 1);

}

return duplicatelist;

}

Figure 4.13: mergeAndProcess function used in the WebApp

export Temperature {
_id: string;
sensor: string;

time: Date;

temp: number;

Figure 4.14: Temperature model interface used in the WebApp
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splitAndSort(dataToSort: [Temperature]): [[Temperature]] {
splitList: [[Temperature]];
itemFound = 3
dataToSort.forEach(element
itemFound = ;
if ( splitList != 'undefined') {
listLength = splitList.length;
for ( i=0; i < listLength; i++) {
listLength = splitList.length;
if (splitList[i][e].sensor == element.sensor) {
splitList[i].push(element);
itemFound = 3
break;

}

}
if (!itemFound) {

splitList.push([element]);

}
else {
splitList = [[element]];
}
});

return splitlList;

Figure 4.15: splitAndSort function used in the WebApp
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setLabelsAndData(labelListData: [[Temperature]]) {
labellist = [];
datalList = [];
toDate;
fromDate;

labellistData.forEach(e
e.forEach(f {
if ( fromDate == 'undefined') {
fromDate = f.time;
}
if ( toDate == 'undefined') {
toDate = f.time;
}
if (f.time < fromDate) {
fromDate = f.time;
}
if (f.time > toDate) {
toDate = f.time;
}
});
}s

minutes = (toDate.getTime() - fromDate.getTime()) / 1©086;
minutes /= 68;
minutes = Math.abs(Math.round(minutes)) + 1;

for ( i =9; i< (minutes); i++) {
labellList.push(fromDate.tolLocaleString());
fromDate = Date(fromDate.getTime() + 660e0);

Figure 4.16: Part 1 of the setLabelsAndData function used in the WebApp
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labellListData.forEach((e, i) {
s S { datalList[i] == "undefined' ) {
datalList.push({
data: Array(minutes),
fill: 5
label: e[@].sensor
})

}
e.forEach(f {

newLabel = f.time.tolLocaleString();
labellList.forEach((g, j) {
if (newLabel == g) {
console.log(datalList[i]);
datalList[i].data[j] = f.temp;

}
});

i) F
})s

.lineChartLabels = labellist;
.lineChartData = datalist;

Figure 4.17: Part 2 of the setLabelsAndData function used in the WebApp

The Temperature Sensor directory contains a python script that acts as the temper-
ature sensors that generates data for the system. This was originally intended to use an
actual temperature sensor connected to a raspberry pi, but that was abstracted away
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due to issues with the sensor and time constraints (more information on this later). This
is technically considered "out of scope" of the system as the system specifications are
that it is to provide functionality for the receival of data from sensors. It is included as
an "example-data" provider to show how this can be done and to provide data for the
system to manage and process. The "sensor.py" and "sensor2.py" (see figure for
part 1 and figure for part 2) files are python scripts that is to simulate the tem-
perature in the apartments mentioned in the scenario and are running on the raspberry
pi’s mentioned earlier. They have upper and lower temperature limits set and a dynamic
function for determining the increase or decrease of temperature "measured" in periods.

rt random
t time

rt datetime
t json

t urllib.request
myurl = "http

tempBot
tempTop

percentile = 8.18
direction = @
timeToFlip
timeToSend

temp = 20
flipTime =
sendTime
templList

return o._ str_ ()

Figure 4.18: Part 1 of the sensor python script
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while
percentCheck = random.random()
flipTime += 1
sendTime += 1

if percentCheck < percentile:
newlTemp = temp + (@.1*direction)

if (newTemp < tempTop) (newTemp > tempBot):
temp = round{newTemp, 2)

if flipTime == timeToFlip:
somePercent = random.random()
if somePercent < 8.33:
direction = -1
elif (somePercent > 8.33) (somePercent < 8.66):
direction = 8

direction =

flipTime =

newObject = {

"temp

- ¥

: datetime.datetime.now(),

templList.append(newObject)

if sendTime == timeToSend:
req = urllib.request.Request(myurl)
req.add_header( Content-Type', 'applicatio ;
jsondata = json.dumps(templist, default = myconverter)
jsondataasbytes = jsondata.encode( utf-8")
req.add_header{ Content-Length’, len(jsondataasbytes))
print (jsondataasbytes)
response = urllib.request.urlopen{req, jsondataasbytes)
sendTime

Figure 4.19: Part 2 of the sensor python script
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Hardware

This section covers the hardware used in development and testing of the implementation.
The devices outlined in this section was chosen to best fit the scenario with a dedicated
computer in a server room and a raspberry pi for each "apartment" with temperature
sensors attached.

The dedicated computer was set as a swarm manager node for the container orches-
tration and the two raspberry pi’s were added to the swarm network as worker nodes
(workerl and worker2). All devices ran the docker engine and were connected to the
same network. In addition to joining the swarm network as worker nodes, the pi’s were
running one of the temperature sensor scripts each outside of the swarm.

Hardware Specs Dedicated Computer: HP Pavilion 14-bf182no laptop
Intel® Core™ i5-8250U processor

Nvidia GeForce 940MX with 2 GB RAM

e 8 GB DDR4 RAM

e 256 GB SSD

Raspberry Pi: 2x Raspberry Pi 3 Model B

e SoC: Broadcom BCM2837.

e CPU: 4x ARM Cortex-A53, 1.2GHz.

e GPU: Broadcom VideoCore IV.

e RAM: 1GB LPDDR2 (900 MHz)

e Networking: 10/100 Ethernet, 2.4GHz 802.11n wireless.

e Bluetooth: Bluetooth 4.1 Classic, Bluetooth Low Energy.
e Storage: microSD.

e GPIO: 40-pin header, populated.

Container Orchestration

Purpose and Functionality The purpose of the container orchestration in the imple-
mentation is to provide workload balancing, significant scaling functionality and build /deploy
automation. This is one of the core concepts of the architectural model and is important
when considering smart city /neighbourhood/building scenarios. In the scenario, there
are two devices available that has the primary function of measuring temperature and
pass that along. This uses a fraction of the available resources they have and could
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therefore be better utilized. By setting up a swarm network and adding these devices
as worker nodes, they can provide these unused resources to the local system and help
with scaling and load balancing. This makes it so that the swarm network can provide
the basis for a much larger system than would be possible to host on either of the indi-
vidual devices. In this example, a relatively average laptop can be used in unison with
these other devices and provide a scaling system for a reduced cost when considering the
alternative would be to buy a larger server to host it (or buy space on a cloud system).

Orchestrating the Swarm Network The container orchestration uses Docker as a base
for all the containers and Docker Swarm as the implemented swarm network framework.
This works by initializing a swarm on the first manager node (the swarm can have multiple
managers as well as workers) and generating a token that can be used to join the network.
Now all devices on the same network with the docker engine installed can join the swarm
network as either a worker- or a manager node (as shown in figure . When all
desired nodes are added to the swarm, this can be viewed by a "docker node Is" command
(as shown in figure [4.22). This swarm network is then utilized by deploying services
consisting of container configurations (image etc) and service configuration (number of
containers to run of the type etc) to the swarm service stack. This service configuration is
either provided as parameters to a "docker service create" command, or as a yml file (as
shown in figure These services are then created and the workload is balanced across
the nodes available in the swarm network (as shown in figure [£.23). For the services of
this implementation, this is shown through the figures below. All the containers running
on the manager node is shown in figure and all the containers running on the
worker nodes are shown in figure and figure [4.26]

docker swarm joi 3 xhhdk5j5tquemh3dazvphtaeny75xky2c95jhrpxwiptolkku-cietkojéwhe2hz74wn8d69nvg 192.168.99.1:2377

his node j a_swarm as a wor

Figure 4.20: Joining the swarm as a worker node on a device

S docker stack deploy --compose-file docker-compose.yml tpsc

Ignoring unsuppeorted optiens: build

reating network tpsc_swarm_net
reating service tpsc_web-api
reating service tpsc_web-app
reating service tpsc_mongo

Figure 4.21: Deploying services to the swarm network using a yml file

3 $ docker node 1s
Ip HOSTNAME STATUS AVAILABILITY MANAGER STATUS ENGINE VERSION

mpkv2xjnf5jlzzt23nedvtivy * petter-laptop Ready Active Leader 19.03.0-beta3
usowkmfcdfhigeskjipmnaywp workerl Ready Active 18.09.6
Sepmwcz65daf25asxdblin9dl worker2 Ready Active 18.09.6

Figure 4.22: Overview of all nodes running in the implemented swarm network

o4



B $ docker service 1s
1D NAME MODE REPLICAS IMAGE PORTS
Lriivs7gvvgx registry replicated 1/1 registry:2 *:5000->5000/tcp

apnymléb@omb tpsc_mongo replicated 1/1 mongo:latest *:27017->27017 /tcp
hzczk9adccvt tpsc_web-api replicated 2/2 127.0.0.1:5000/web-api:latest *:491 >8080/tcp
gadavgn2eo3m tpsc_web-app replicated 2/2 127.0.0.1:5000/web-app:latest *:8080->80/tcp

Figure 4.23: Overview of the services running in the swarm network after deployment

0 A I E ERROR
49whueoude3] ) e g about a minute ago

zkm50rzvtokc egi a egistry:2 etter- i Running about an hour a

Figure 4.24: Overview of all containers running in the implemented swarm network on
the manager node

: $ docker node ps workerl
NAME - NODE DESIRED STATE CURRENT STATE ERROR

4ddotv71whp tpsc_web-app.2 .0.0.1:5000/web-app:latest  workerl Running Running about a minute ago
cbadudvshbc tpsc_web-api.2 .0.0.1:5000/web-api:latest workerl Running Running 49 seconds age

Figure 4.25: Overview of all containers running in the implemented swarm network on
the workerl node

: S docker node ps worker2
(] NAME INAGE NODE DESIRED STATE CURRENT STATE ERROR

ivwazbafsuin tpsc_web-app.1 127.0.0.1:5000/web-app:latest  worker2 Running Running about a minute ago
X59uf2s6h351 tpsc_web-api.1 127.0.0.1:5000/web-api:latest  worker2 RuNning Running about a minute ago

Figure 4.26: Overview of all containers running in the implemented swarm network on
the worker2 node

API+ - API, Request Handler & Data Aggregator

Purpose and Functionality This component is a combination of several central con-
cepts from the architectural model. Its combined functionality encompasses that of the
API, Request Handler and Data Aggregator concepts. The component then provides
functionality such as an interface to post and get data from the swarm, handling these
request in a proper manner that forwards it to the right container, and data aggregation
functionality. In essence, this container acts as an all-encompassing middle-layer between
the swarm and external users/devices with all functions it needs built in.

Web Application

Purpose and Functionality This components purpose is to show an example of a user
interface for the users to interact with the system and access the data managed by it. It
is a relatively simple web application that sends a data request to the API for the sensor
data managed by the swarm, processes the received data and formats it into a visual
representation through a chart module. This component is built into the swarm in this
implementation, but this can also be hosted externally with minimal changes as it only
interfaces with the swarm through the API which is also served for external interfacing.
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Figure 4.27: Image from Web Application with example data from two different sensors
with a time-gap between measurements

Data storage

Purpose and Functionality The data storage components purpose is to provide storage
opportunities for the swarm network operations as well as to provide persistence to the
services. This component does not manage data aggregation, processing or requests as
that is the purpose of other components ( the API component in this case).

Temperature Sensors

Purpose and Functionality The temperature sensors is implemented using a python
script that simulates room temperature of the apartments in the implementation and is
to run on the raspberry pi’s to serve this purpose. They are not a part of the swarm
implementation as they are acting as external sensor data providers. The main purposes
of these scripts are to provide relevant example data and to show how the implemented
system can handle input from sources like temperature sensors.

4.4 Evaluation Metrics

In order to properly test the efficacy of the architectural model and the implementation
of it, there is a need for objective ways of measuring how well they fulfill their role and
solve the issues listed earlier. One way of doing this is to establish important quality
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attributes (QA) for the system that is based on the requirements and focus points of the
model itself. This section covers the definition of these quality attributes, while their
selection, possible measurements and fulfillment by the model and implementation will
be covered by the discussion.

4.4.1 Quality Attributes

Scalability

Scalability is a measure on how well the system can scale its own operations to meet both
high and low workloads without impacting the performance of the system. This will be
both how much they are equipped with functionality to handle these changes and how
well it can handle a workload that is designed to stress-test the system or even to break
it.

Modifiability

To what degree the system can be altered for the individual parts of the system without

having to make changes multiple times. More or less to what degree of effort is needed
to make changes to the system without having to alter large parts of the code.

Compatibility

To what degree the system is able to operate within its normal parameters on different
devices without modification or alterations to the system or the devices.

Interoperability

To what degree the system is able to switch out parts of the system and their dependencies
with others of similar function while still functioning in a similar manner.

Availability
How available is the system with regards to up-time, planned downtime and time to

update the system. To what degree does the system plan for and handle potential
factors that could result in downtime.
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Maintainability

How well does the system support changes such as new business requirements, bug-fixes
and addition of new features. How much effort is required to make changes to the system
that normally occur over the life-cycle of the system over time. Also how much time is
needed to restore the system after a failure.

Performance
Performance shows how well the system performs while within its normal operating

parameters and how much load the system is able to handle before it slows down signif-
icantly.

Reliability

How well does the system continue to operate within its normal operating procedures.
How reliable the system is itself while not under the stress of irregular factors affecting
it.

Energy-Efficiency

In what manner does the system support factors such as energy-efficiency priorities and
potentially battery capacity of the devices utilized.

Privacy

To what degree does the system facilitate privacy protection functionality and policies.
How well the information flow and control is handled from a design and implementation
perspective as to protect the privacy of actors involved in the system.

Security

In what way does the system implement and enforce security measures designed to pro-
tect the integrity, confidentiality and privacy of the system with regards to its internal
operations and stored data. How well is the system able to defend itself from known and
unknown security threats.
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5 Discussion

5.1 Evaluating the Architectural Model

This section covers the evaluation of the architectural model according to the require-
ments set and the evaluation metrics outlined in the results chapter.

5.1.1 Fulfilling Requirements
Primary Requirements

Requirement 1: The system must be able to scale its computations based on re-
sources available. This is fulfilled via the scalable container orchestration functionality
that is present in the swarm network. All components of a system using the model are
to be containerized and can then be scaled either up or down according to the needs of
the system and the workload.

Requirement 2: The system must be able to continue its operation as usual within
normal operating parameters (within reasonable limits) when adding or removing re-
sources. The swarm network is automatically load-balanced according to the operating
specification of the services that are set to run on the swarm network. When adding new
resources to this network, they become available for load balancing and can be used by a
manager node in delegating and distributing the workload on the system. If resources are
removed from the network, the managers will detect a change in the number of containers
running and correct that by running new instances of those missing containers on other
available nodes.

Requirement 3: The system must be able to utilize devices with a lower amount of
resources/computational capacity This is solved by the model allowing for building
a number of smaller components that are small enough to be run on devices with less
resources available. There is, however, an explicit need for the device to run on an
operating system that is capable of running the containerization platform. As of writing
there are no containerization platforms that are able to run on directly on motherboards
or with minimalistic operating systems, so a certain level of operating system is needed
on the device to be compatible with the model. An example of what is required is shown
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in the compatibility matrix of the docker engine [51]. This is then mostly fulfilled with
the current technologies available, but will be entirely fulfilled when containerization is
able to run with less dependency on operating systems.

Requirement 4: The system must be able to receive and manage data provided
from both internal and external sources Through the data management module of
the architectural model, this is handled sufficiently. The model provides a Data API
outwards from the swarm network where data can be received and the Request Handler
then processes the request for storage in the proper data storage solution (most likely a
database).

Requirement 5: The system must be able to support cloud functionality in the form
of resources for storage and/or data management The architectural model supports
cloud functionality in two possible ways. One is to handle requests for data through the
API that a cloud system can access and send requests to, the other is to incorporate
it into the system by handling the cloud functionality through the Request Handler
component. By creating functionality in the Request Handler, requests are sent where
the requested data is located, and this could then lead the request to a cloud system
through this integration.

Requirement 6: The system must provide a platform for data aggregation and/or
data pre-processing functionality This can be solved in several ways through the ar-
chitectural model. One way, is to provide it as a part of the data lifecycle management
components, that can aggregate and process data based on the age of the data if relevant.
Another is to build it into the Request Handler that processes and aggregates the data
received in a POST request before storing it, or to process the data from a GET request
before sending it back.

Requirement 7: Must provide functionality to forward data "upwards" in the network.
Either to another "fog" system or to the cloud This can be solved in different ways
in the model. It can provide an interface in the API to handle data requests from a
cloud or fog system and send the data that it requires. The data lifecycle management
can also provide this functionality by monitoring the data stored in the swarm and then
send this data further depending on the needs of this data flow.

Requirement 8: The system must provide support for data life-cycle management
In the Data Management module, there is a section that covers the data lifecycle man-
agement. According to the different needs of the data lifecycle, it can either be processed
on requests or triggered by the age of the data by a monitoring data aggregator compo-
nent. Data processing on requests as an example cloud be that data stored within the
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system must be processed in a specified way e.g: sensor data must be processed from
average measurement from every minute to average measurement from every hour when
the data is requested by a cloud system for historical data storage. This data life-cycle
management is then handled by the Request Handler. When data processing is triggered
by the age of the data e.g: the system is to process and send sensor data that has an age
of over 2 weeks. This is then handled by a data aggregator component that monitors the
database.

Requirement 9: The system must provide an interface to retrieve the data managed
by the system This is realized through the Data API provided by the model. This API
can handle GET requests sent to it and provide the data requested through the Request
Handler in the swarm.

Secondary Requirements

Requirement 1: Security To address the security of the model the possible weak points
of the model must be addressed. An overview of potential weak points in the model and
how it is mitigated would suit this purpose nicely. The nodes and containers in the
swarm network normally does not expose any entry-points or ports outwards of the
swarm network unless specified. This makes it easier to control the entry-points for
systems using the model, as all of them are deliberately exposed through the definition
of the services running in the swarm. Normally the only exposed entry-point in the model
is the API itself as the rest are strictly only for container-to-container and node-to-node
communications. This means that as long as the requests received through the API is
sanitized and verified in the Request Handler, then most security concerns should be
mitigated.

Requirement 2: The system should be able to utilize an array of commonly available
hardware/devices The versatile nature of containerization and container orchestration
should mitigate any concerns tied to usage of specific technologies, frameworks or plat-
forms as long as they can be built into a container. The only limitation put on the usage
of devices is that any device to be added to the swarm network as a node must be able
to run the chosen containerization platform. Any limitations here are then tied to the
compatibility of that containerization platform and not the model itself. At the time of
writing, there is little support for containerization that is not dependent on an operating
system and the support for obscure or highly specialized operating systems are lacking.
The docker compatibility matrix [51] shows compatibility with a wide range of different
operating systems, but may not offer compatibility with specific operating systems used
on some embedded devices. This requirement is therefore partly fulfilled, with some
minor limitations to obscure devices or devices without the ability to run a compatible
operating system until they are supported.

61



Requirement 3: The system should be able act accordingly to the different energy-
efficiency needs on embedded devices Through the tiered-priority workload manage-
ment, the workload balancing of the swarm network is prioritized where systems with a
higher energy-efficiency focus have a lower priority than devices without. This ensures
that the system would utilize devices with energy-efficiency focus on a lower frequency
than the other devices. The devices of a higher tier of prioritization would then need
to be utilized fully before the lower-tiered devices would be available for selection. This
results in a more balanced approach where energy-efficiency focus is maintained.

Requirement 4: Privacy The privacy of the identities connected to the managed data
can be maintained through proper authorization of the requests sent to the API. The
Request Handler can authenticate requests sent through the API and ensure that the
data is only handed to clients that have the proper authorization for the data that is
requested. This authentication can be made with the type of data requested in mind and
ensure that the data have different levels of authorization connected to them and better
ensure privacy and integrity of the system.

5.1.2 Assessing Quality Attributes
Scalability

It is difficult to provide an exact measure on how well the model and system will scale to
rising demands, as this is often tied to usable resources and hardware specifications. The
best way to "measure" this system is to examine the tools the system has available to
mitigate and handle rising workloads, and also how the system handles lower amounts of
workloads. There are two ways to improve scalability: Vertical: To increase, we add more
resources, such as memory, disks or processors into one system. Horizontal: We increase
the number of computing units and divide the load. The key indicators for measuring
this attribute are:

The model supports scaling both vertically and horizontally through the nature of
swarm computing through container orchestration. It is able to scale vertically seamlessly
through the workload balancing of the system. This is done by the manager nodes being
able to utilize these new resources as soon as they are available in the swarm network.
The process of adding new nodes to the swarm network is easily achieved by installing the
container orchestration platform on a device and adding it to the swarm network as shown
in figure It is a simple method completed in one command when utilizing docker
swarm as an example. Horizontal scaling is done through the load balancing function
of the swarm itself. The manager nodes will automatically scale to rising demands by
allocating new resources available in the swarm network and creating new instances of
the containers as needed.

The model can therefore be considered to have a high degree of scalability when factors
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such as hardware is excluded from the equation.

Modifiability

The model is highly modifiable through containerization and container orchestration.
Containerization supports all programming languages, frameworks and platforms as long
as they can be bundled properly into a container. This means that a component can
potentially be removed in its entirety and replaced with another component comprised
of entirely different programming languages and dependencies without changing the rest
of the system as long as it serves the same functionality as the component it is replacing.
It is also easy to update and make changes to a container by changing the code and/or
dependencies and then building a new version of that image that the container uses. This
can then be applied to the service using that type of container by performing a rolling
update to that service using docker swarm as an example [52]. The service is then being
sequentially replaced by containers of the new image version with no downtime and no
loss of work as the containers are not replaced with new ones until they have completed
their tasks.

This makes the model highly modifiable with the specifics of how modifiable the
system is to become is up to the developers utilizing the model.

Compatibility

Compatibility when referring to programming languages, frameworks and platforms is
almost universal when applying containerization. If the combination of code, environment
and dependencies can be built and bundled by the containerization platform, then it can
be applied to this model. Compatibility when referring to devices it is run on, is a bit
different due to some technological limitations on available containerization platforms.
This is due to the available platforms like docker is not universally compatible with all
operating systems and have some requirements set. The compatibility matrix of docker
[51] shows a high degree of compatibility, but with restrictions to obscure and customized
operating systems that could potentially be found on some embedded devices and micro-
controllers.

The model is then highly compatible on a general level, with some reductions to
compatibility with the smallest and older embedded devices.

Interoperability

As mentioned in the evaluation of the modifiability of the model, containerization enables
the components to be replaced with other components of similar /same functionality. The
degree of similarity required between the components depends on the implementation
due to possible dependencies being in place from container to container, and therefore
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requiring the same functions. Other than that, there are no inherent limitations set in
the model as the containers can act as entirely independent units.

This results in the model having a high degree of interoperability only being potentially
hampered by limitations set by the implementations themselves.

Availability

The container orchestration present in the swarm handles all faults and crashes that can
happen in the network. If a container is crashing, the manager nodes will try to restart
the containers according to the "restart policy" defined in the service specification of the
affected containers as written in the docker compose reference [53]. If a node crashes or
is disconnected, the containers running on that node will be moved or restarted on other
available nodes if there are enough resources available. This results in a high level of fault
tolerance that will only truly result in the system being down if all the manager nodes
have crashed or is disconnected from the swarm network. This can also be mitigated by
increasing the number of manager nodes and distributing them to different devices and on
different network connections as explained here in the docker documentation [54]. Other
than this, the container orchestration system is capable of rolling updates as explained
in the modifiability evaluation of the model. It is then possible to update the system
without having downtime.

All these different factors leads to the model having a high level of fault tolerance and
no need for downtime for updates, resulting in a high degree of availability.

Maintainability

The system uniformity of the containerization platform means that if the system can be
built on your development devices, it should function the same way in the production
environment without much alteration. These changes can then be applied to the system
through the rolling updates as explained earlier without introducing any downtime to
the system. That means that the model supports the ability to not only make changes
that should affect the production environment quickly without much need for testing it
in production and also being able to stage these changes without downtime. It is then
easy to change the system and introduce bugfixes.

These factors in addition to the modifiability explained earlier, leads to the model
supporting a high degree of maintainability.

Performance

Performance is difficult to discuss without factoring in how the model is implemented or
what hardware it has to run on, so this will be a short description of what design choices
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in the model that can factor into performance. The most relevant part of the model to
discuss in this context is the models ability to utilize the resources available to boost the
performance of the system. This is achieved through the container orchestration as it can
create new instances of containers on nodes with available resources. Assuming that the
implemented system has components with containers of varying sizes, this should result
in the swarm network utilizing most (if not all) of the available resources. This is due to
the resource demands of the new containers will vary due to the differing sizes of the new
containers. It is important to note here that the actual performance of the system varies
much depending on how it is implemented and what devices the swarm network consists
of. If the system is comprised of few large components on a swarm network with many
small devices, this can lead to a poor usage of resources as the remaining resources on
the devices can’t be used for a new instance of the container as each container requires
too much.

In total, the model provides adequate functionality to utilize available resources and
increase performance, but is otherwise lacking as the resulting performance is mainly
decided by the implementation and the developers.

Reliability

The fault tolerance and availability discussed in the availability evaluation of the model
affects reliability as well as these other factors. The ability of the system to have high
availability and high fault tolerance directly translates to a high level of reliability. The
container orchestration strives to maintain what is described as the "ideal state" of the
swarm network that is defined through the services running on it. This leads to the swarm
network not running unused scaled up containers and will always focus on returning the
swarm network to a state that is designed to handle the normal operating parameters
of the system. That, in addition to the earlier mentioned factors, results in the model
having a high degree of reliability.

Energy-Efficiency

The model is to utilize a tiered-priority workload management that sets a priority to
devices depending on the resources of the device and energy-efficiency priorities of the
device added to the swarm network. As an example of this priority setting: battery-
powered device would have a low priority and dedicated server machines would have a
high priority. This means that devices that have available capacity would be differentiated
between its total level of resources and energy-efficiency priorities when selecting a node
to run a container in. It is then more feasible to utilize devices that are more focused on
running efficiently with regards to energy-usage without having the regular randomized
selection picking them at a higher frequency than more suitable devices.

This feature of the model maintains the energy-efficiency priorities of the devices it is
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to utilize and could therefore be considered energy-efficient.

Privacy

The model has some functions in place that makes it easier to maintain privacy through
authentication and verification that can be built into the Request Handler of the model.
The only external entry-point in the model is through the Data API that sends requests
to the Request Handler for further handling. By authenticating the requests for data
and verifying that they should have access to the data they are requesting, it becomes
easier to guarantee the confidentiality of the data when it can be identifiable.

Other than this, the model does not have any extra functionality in place for privacy.
Therefore it can be considered to have a certain minimum of privacy protection, but
anything further than this is up to each implementation.

Security

The model has some advantages when it comes to security such as only one external
entry-point to the system through the Data API. The network feature utilized in the
swarm network is not externally exposed and as such all ports and communications
inside the swarm is not accessible from outside the swarm network unless specified. This
makes it easier to build a secure system due to only needing to focus on the singular
entry-point when considering authorization, validation and sanitizing incoming requests.
All functions of the API is explicitly defined and is handled by the Request Handler
afterwards. It is then immune to common security concerns such as SQL injection and
buffer overflow due to this abstraction and no direct line of communication being available
to the database. The API is capable of utilizing HTTPS connections thereby enabling
secure connections to and from the system. When considering DDoS attacks, this can
be handled by keeping track of incoming requests in the Request Handler and utilizing
packages in the API to block and prevent such attacks [55].

The utilization of an API and a Request Handler for all requests made to the system
puts several layers of abstraction between the data storage and the outside requests. This
makes it inherently more secure and enables the system to implement security measures
in these abstraction layers.

5.2 Evaluating the Implementation

This section covers the evaluation of the implementation of the architectural model.
Most of the evaluation of the architectural model is relevant for the implementation as
well due to the implementation being a realization of the model that follows it as a
blueprint. Therefore, this section focuses more on where it differs from the model and is
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more closely tied to the specific architecture in relation to the scenario. Keep in mind
that some design choices in this implementation were made to reduce the work required
to create the implementation. This is mainly due to the implementation serving as an
example, and also being made with one person using some unfamiliar technologies and
frameworks.

5.2.1 Fulfilling Requirements
Primary Requirements

Requirement 1: The system must be able to scale its computations based on re-
sources available. The system utilizes docker swarm for the container orchestration,
which includes functionality for scaling the implementation. The defined services run
across the nodes in the network and scale up as needed by allocating and utilizing avail-
able resources on nodes in the network.

Requirement 2: The system must be able to continue its operation as usual within
normal operating parameters (within reasonable limits) when adding or removing
resources. The implementation used three nodes in the network where two are worker
nodes and one is a manager node. The nature of the swarm functionality of the docker
engine makes it easy to add or remove nodes to this network with a simple join/leave
command (as shown in figure . As long as the resources removed are not of the
manager node or a new manager node is added beforehand, then it should not be a
problem to add or remove resources.

Requirement 3: The system must be able to utilize devices with a lower amount of
resources/computational capacity The system utilizes raspberry pi’s as worker nodes
without any issues. They are considered lightweight computational devices and are rep-
resentative to devices of similar size available as IoT devices. As long as the device is
capable of running an operating system compatible with the docker engine [51], then
there is no issue to add it to the network. Other than this the system has few compo-
nents, but they are of varying sizes. This makes it so that even small devices can run
the containers with the smallest requirement of resources. As an example, the laptop
mentioned in the hardware section of the implementation was capable of running two
docker machines [56] (local VMs running the docker engine) and using them as worker
nodes in addition to already being a part of the swarm as a manager node. That laptop
alone was capable of running the entirety of all the containers divided between itself and
its own hosted virtual machines.

Requirement 4: The system must be able to receive and manage data provided
from both internal and external sources The Data API served through Express on
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Node.js is capable of receiving data from multiple sources. The management of that
data is handled through the Request Handler and Data Aggregator situated in the same
component as the API. This combined component then handles both the receival and
management of data in cooperation with the Data Storage component that stores the
data.

Requirement 5: The system must be able to support cloud functionality in the form
of resources for storage and/or data management The system in its current state is
only capable of supporting cloud functionality externally through the Data API and not
as an internal part of the Request Handler. This could be supported, however, through
an extension of the Request Handler that connects it to the cloud service. If the Request
Handler is extended in this way, it could then do a check on the request and forward it
to the cloud when appropriate.

Requirement 6: The system must provide a platform for data aggregation and/or
data pre-processing functionality Through the Data Storage and API+ components
this is achieved. The data is received through the API, aggregated and processed through
the Data Aggregator and stored properly through the Request Handler and the Data
Storage component.

Requirement 7: Must provide functionality to forward data "upwards" in the network.
Either to another "fog" system or to the cloud This is partly supported through
external requests only. The cloud can request the data that it needs through the API
and then manage it further as it sees fit. Internally that functionality is not developed
as a part of the Request Handler (mostly due to time constraints), and would need to be
added later on. The system is fully able to support this functionality but is not added
as the system is now.

Requirement 8: The system must provide support for data life-cycle management
The data life-cycle of the implementation was selected as a simple life-cycle that is man-
aged through triggered events. The data was to be transformed at receival and pre-
processed when requested before sending the data. The simple transformation was to
process the data received from measurements every second to aggregated averages of
measurements every minute. This is done in the Data Aggregator part of the API com-
ponent. The pre-processing on requests are done in the same Data Aggregator.

Requirement 9: The system must provide an interface to retrieve the data managed
by the system The Express API provides GET methods that retrieves data from the
Data Storage. The GET function as it is now is a simple function that retrieves the data
managed as a whole. This can (and would have been) be expanded to query based on
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measurements from and to a specified time to improve the usability of the data retrieval.
It was simplified to query the data as a whole due to time constraints as the design of
the web application is not what the implementation intended to showcase.

Secondary Requirements

Requirement 1: Security At the time of completion, the implementation has not uti-
lized much extra security counter-measures other than protections related to injections
and overflow. The system was supposed to be run and accessed locally to serve as an
example of an implementation and has therefore less need for strong security. It lacks
security measures connected to authentication and verification of access as any malicious
attacks to it would require to be hosted externally and not locally. This was deemed
as a necessary time-saver as the exclusion of these simple mechanics saved time in the
implementation and does not lessen what the implementation aimed to show. The fix
for this is relatively simple to implement and is a fully supported functionality in the
implementation. Authentication can be solved by adding authentication and verification
requirements to the Data Storage component and then adding username and password
to the query sent to the API. The implementation does however protect against injec-
tions and overflow attacks through the extra layers of abstraction between the client
and the data (API and Request Handler). This indirect form of communication with the
database increases the integrity of the system as a whole and eliminates some of the more
common forms of attack such as injection attacks (SQL injections etc.). In addition to
this, the Request Handler sanitizes the request by assigning typing and schema-modelling
(through Mongoose) before sending it to the database.

Requirement 2: The system should be able to utilize an array of commonly avail-
able hardware/devices As discussed earlier, the system is able to use a wide array of
hardware/devices as long as they have the ability and capacity to run an operating sys-
tem that is compatible with docker [51]. Many devices are capable of running a simple
lightweight linux distribution and this guarantees compatibility with the system through
the docker engine.

Requirement 3: The system should be able act accordingly to the different energy-
efficiency needs on embedded devices Tiered-priority workload management was sup-
posed to satisfy this requirement. It was very troublesome to implement due to lack of
support in the platforms and current technological limitations, so it was not added to
the system. There is no support for customized node selection in the load balancer of
the manager nodes and would therefore need to be implemented either from scratch or
to build it into the docker platform. This is sadly beyond the scope of the thesis and
could rather be done as further work (more on this in the further work section of the
conclusion).
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Requirement 4: Privacy As mentioned earlier, privacy protection was deprioritized due
to the localized nature of the implementation. As no external network communication
is expected, there is little need for verification of access to data that is generated as
example data for use in the system-context alone. The Data Storage component does
however support this feature in the database and could easily be implemented if needed.

5.2.2 Assessing Quality Attributes
Scalability

The scalability of the implementation is affected by the same factors as the architectural
model. It is easy to add new nodes to the docker swarm network through the "swarm
join" functions and this enables vertical scaling. Horizontal scaling is managed by the
manager nodes in the swarm network and will create new instances of the containers of
the different services as demands rise.

Modifiability

The implementation consists of three different components in the swarm (Web Applica-
tion, API+, Data Storage). These components can freely be modified by making changes
to the code, its environment or dependencies. Then these changes are made by building
new images that includes the changes. These new images can be rolled out the the com-
ponents by pushing the new images to the image registry service in the swarm (shared
collection of images to be used in the swarm that is accessible by all nodes in the swarm)
and issuing a "service update" command to the swarm network. This can be a bit tricky
the first time, but this process can also be automated into an "update script" that issues
these commands for you for increased ease of use.

Compatibility

The implementation is compatible with all devices that have the ability to run the docker
engine. If the device either has or is capable of running an operating system that is
compatible with docker (see the docker compatibility matrix) [51], it is guaranteed to be
completely compatible with the system.

Interoperability

The implementation has three types of components that run in the swarm network. These
components could potentially be exchanged for other components of similar functionality
without much issue. The web application component can freely be exchanged as it is only
reliant on functionality available in the API and no other component is reliant on the
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functionality it offers. The Data Storage component can also be exchanged for any type
of storage component without much issue. The only change necessary to exchange that
component is to make changes to the Request Handler so that it uses the proper form of
communication (it uses Mongoose currently which is only for use with MongoDB). The
API+ component can also be exchanged with another as long as it serves the same API
functionality (GET and POST for /api/temp HTTP requests) and communicates with
the Data Storage in the same way.

Availability

Due to the size of the swarm network, it has only one manager node. If the machine
running the manager node is disconnected or crashes, there will be noticeable downtime
as the system must be restarted or reconnected. This makes the implementation have
a low amount of fault tolerance if it is the manager node. Other than this, the other
nodes can be disconnected or crash without any downtime as the manager node will
reschedule the containers on other available nodes instead. In total, this will result in a
relatively high availability which can be increased by adding more nodes as managers to
the network.

Maintainability

The factors mentioned in the modifiability evaluation of the implementation is the same
for maintainability. The same process of updating the containers seamlessly makes it
easy to introduce bugfixes or changes to the system without introducing downtime or
other issues.

Performance

The implementation has both the Web Application and the API+ components running in
parallel in the swarm by default deployment. They are both relatively lightweight devices
and are able to run without difficulty on all devices in the swarm network (including the
raspberry pi’s). This makes it easier to utilize all the resources that are available to their
full extent and therefore providing a good basis for the performance of the system. Other
than that, some data processing is done by the clients as the web application needs to
process the data to a usable state for the chart visualizations. That further decreases
the total load on the system itself and therefore makes it able to handle more requests
than it normally would.
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Reliability

The ideal state of the system is defined through the "docker-compose.yml" file and is to
function as the default state of the system that it will revert to whenever feasible. It
comprises of the three types of components (Web Application, API+ and Data Storage)
where both the API+4 and Web Application components have replicas running in parallel.
These handle most of the workload set on the system by requests and makes the system
very capable of functioning at normal operating procedures.

Energy-Efficiency

The implementation sadly does not have tiered-priority workload management imple-
mented due to difficulties and lacking support in the technologies and frameworks avail-
able. This does mean that the system is not able to distinguish between the devices
that the swarm comprises of and will use the default workload management of Docker
Swarm that selects nodes at random. Some restrictions have been set to the system such
as the Data Storage only being able to run on the manager nodes, and does make a bit
of a difference as long as manager nodes are only set on devices without much need of
energy-efficiency priorities.

Privacy and Security

The implementation in its current state is only meant to be served locally to show the
efficacy of the architectural model. It is therefore not needed to defend against the same
form of malicious attacks that it could be subject to on a hosted online service that is
exposed to the internet. This means that normal security measures such as authentica-
tion, verification and encryption/decryption is not included in the implementation. It
does have the ability to include these features, but the time to implement them would be
significant and therefore deemed excessive for this local implementation. These features
can be added to the system to prepare it for internet hosting by enabling them in the
database, using authentication in requests, verifying authenticated access to the data,
encrypting/decrypting requests and enabling HT'TPS in the API. The implementation
does, however, have security measures in place with request abstraction between the
client and database and the sanitizing of request content. These security measures does
protect the system from common attacks such as injection- and overflow attacks.
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5.3 Architectural Design Choices

5.3.1 General Choices

The implementation is made with the scenario in mind and its scope is therefore limited to
a smart building system using three devices with two temperature sensors sending data
to the system. This has resulted in some deliberate deviations from the architectural
template as presented in the results chapter under the implementation section. Since
the scale of the implementation is on the smaller end of what the architectural model
is capable of, the swarm network has been reduced to three components that together
provide all the functionality the swarm is to have. These components can be divided
into several other components when the system is to function at a larger scale and the
implementation would then be a lot more similar to the one presented as the template.

5.3.2 Container Orchestration
Choice of Technologies and/or Frameworks

For the implementation, Docker Swarm was selected to provide the container orchestra-
tion functionality and Docker for the containerization. Docker is the standard choice for
containerization and Docker Swarm is a solid contender for container orchestration.

Originally, Kubernetes was considered for this functionality, but that framework
proved a bit troublesome for a local distributed implementation as it is primarily de-
signed for use on a cloud platform. After some trial and error, the decision was made
to switch to Docker Swarm due to networking troubles especially. Docker Swarm is a
simpler framework as Kubernetes tries to be a more all-encompassing alternative.

Priority Assignment

Tiered-priority as envisioned in the architectural model proved to be troublesome to
implement due to technological limitations in the frameworks available. Container or-
chestration is currently designed mostly for use in cloud- and large enterprise systems
due to technological trends favoring cloud computing utilization. In this context, there
is little need for a prioritized selection of nodes as most are equal in terms of resource-
availability and energy-efficiency priorities and would therefore be best served with a
randomized selection. For use in smart cities/neighbourhoods/buildings on the other
hand, this is not the case and important for optimal implementations. These limitations
can be mitigated through either developing it into the frameworks, or making a plugin
either for Docker Swarm or Kubernetes as they are open-source frameworks. This how-
ever, would require significant insight into the inner-workings of the frameworks and a
great deal of effort to develop. Therefore priority assignment in node selection is rather
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a subject for further work in this field.

5.3.3 API+ - API, Request Handler & Data Aggregator

This component is a combination of the functionality of the Data API, Request Handler
and the Data Aggregator modules of the architectural model. This was done mainly
because of the size and scope of the implemented system, and also to show that multiple
concepts can be combined into a single component and is not required to be its own
component. For a larger system, however, there are merits to having each of the concepts
as their own component to better provide scaling on the exact components where it is
needed, and not having to waste resources. This system is on a more distributed scale
and can therefore function with fewer larger components.

Choice of Technologies and/or Frameworks

The API uses express on top of node to serve its interface. Express is a well-known
web application framework that is often used to serve applications of varying scale. It
is a minimalist framework with simple functions for building services such as an API
used in this implementation. The other concepts were built into this express framework
implementation by providing the functionality built into the API as integral functionality
called in the POST and GET functions displayed earlier in the project structure section.
The Request Handler is represented through the API by the requests being forwarded to
the correct container of the swarm network, and the Data Aggregator is present through
the data processing scripts called in the API (such as "temp average minute.js").

The technology and frameworks utilized in this component can freely be exchanged
with other of similar functions as long as it is able to serve an API that handles
HTTP/HTTPS POST and GET requests. If Node.js is still to be used as a base, alterna-
tives like Nginx [43], Koa [57] and other similar node-based web frameworks could be used
instead. If a more homogeneous programming language selections with the raspberry pi’s
is wanted, Django [58] could be used instead as it is a python-based web framework with
similar functionality to Express.

5.3.4 Web Application
Choice of Technologies and/or Frameworks

The web application is built using Angular and served using Nginx with node as a
base. These technologies are easy to use in combination due to the common reliance on
both node and npm. Angular is a popular web application framework and was selected
mainly due to familiarity for development purposes, but can easily be exchanged for an
implementation of another node-based web application framework (react, vue.js etc.).
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All these frameworks have their own pros and cons and the choice between them usually
boils down to personal preferences. The choice of utilizing Nginx to serve the application
was mainly due to ease of use. As Angular provides its own routes etc. as part of the
build, only a simple server framework is needed to provide the entry-route to the routes
managed by Angular. After this, angular takes care of the rest. For this reason, Nginx is
a good fit due to the ease of use and short time to implement. Due to Angular’s reliance
on node.js, it is a good idea to keep the server based on the same framework. If another
technology is desired, then the web application framework should be exchanged as well
as to not have unnecessarily many dependencies.

5.3.5 Data Storage
Choice of Technologies and/or Frameworks

MongoDB was selected as the database technology and framework for this implemen-
tation. It is a NoSQL (Not only SQL) document database that stores each entry as a
document with keys and values. It is a widely adapted technology and is suited as a
storage solution for this implementation due to its scalable nature. This is different from
a SQL database that is inherently relationary and focuses on how each data entry relates
to the other data. Temperature measurements from sensors do not require relations to
each other and would therefore be suited for a document database implementation. As
the implemented system is to store recent data only, then there should be no major
differences in utilizing other data storage solutions such as MySQL or PostgreSQL with
regards to scale.

Data Storage in Implementation

Managing persistent data storage in a swarm network is difficult due to several factors
relating to the nature of swarm computing. The containers that make up the swarm
network can be situated on any node in the network and can potentially be replicated
multiple times. All the containers running on different nodes will have separate storage
spaces and will therefore have different sets of data depending on the workload manage-
ment of the system. When restarting the data storage containers, they are not guaranteed
to be situated on the same node as previously. This needs to be accounted for and can
be solved in several different ways:

1. Restrict data storage service placement to manager nodes. This is the solution
utilized in the implementation (mainly due to time constraints and little famil-
iarity with persistent data storage in container orchestration). It works with one
master manager node as this guarantees that the container will always run on the
same node, as node roles are not meant to be changed. This is by far the easiest
solution as it circumvents the entire problem by making the container deployment
deterministic. It is not the best solution, however as this restricts the number of
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manager nodes of the swarm network.

2. Shared volume for the containers. Volumes are a mechanism used in the Docker
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